УДК 621.5.049

И.И. ПЕТУХОВ, Ю.В. ШАХОВ, В.Н. СЫРЫЙ

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

МЕТОД РАСЧЕТА СОПЛА СТРУЙНОГО ОХЛАДИТЕЛЯ КРИОГЕННОЙ ЖИДКОСТИ

Предложен полуэмпирический метод расчета параметров вскипающего потока криогенной жидкости. Обоснован вид обобщающих зависимостей при определении скорости, температуры и расхода жидкой фазы. Результаты расчета для кислорода и водорода сопоставлены с опытными данными и параметрами, полученными на основе дифференциальных моделей.

криогенное топливо, жидкостный ракетный двигатель, турбонасосный агрегат, ресурсные испытания, струйный охладитель жидкости, вскипающий поток, сопло Лаваля, метод расчета

Создание перспективных ракет-носителей (РН), в том числе многоразового использования, находится в неразрывной связи с разработкой новых жидкостных ракетных двигателей (ЖРД) на криогенных компонентах топлива, преимущества которых в данной области неоспоримы. Практически все разрабатываемые ЖРД предназначены для первых ступеней РН и являются многоразовыми с эксплуатационным циклом до 100 полетов, например Rocketdyne RS-83, COBRA (Pratt & Whitney и GenCorp Aerojet), РД-191 и др. [1, 2]. Это двигатели большой единичной тяги и, следовательно, с большим расходом криокомпонентов. Поэтому достаточно острой является проблема проведения ресурсных испытаний элементов конструкции ЖРД, в том числе центробежных насосов турбонасосных агрегатов. Решение этой проблемы может быть достигнуто путем многократного использования криогенной жидкости при испытаниях агрегатов за счет ее охлаждения в струйном охладителе жидкости (СОЖ) [3].

Создание струйных охладителей для стендов различного назначения невозможно без построения достоверной математической модели СОЖ. Сложность рабочего процесса не позволяет создать единую математическую модель для устройства в целом. Поэтому целесообразным является поэлементное описание СОЖ.

Важнейшим элементом, где при прямом контакте с паром реализуется охлаждение жидкости, является сопло. Для расчета его характеристик в данной работе предложен упрощенный полуэмпирический метод, базирующийся на соответствующей дифференциальной модели [4, 5] адиабатного истечения вскипающей жидкости и экспериментальных данных.

Необходимость разработки такого метода определяется потребностью в расчетах характеристик сложных криогенных стендов с СОЖ. Модель [4, 5] в этом случае неприемлема в силу большой продолжительности счета.

При построении упрощенного метода расчета используются базовые допущения и система уравнений [4, 5], записанная в одномерном стационарном приближении. Рассматриваются только параметры жидкой фазы как представляющие основной интерес при расчете СОЖ. Расчетные соотношения для расхода скорости и температуры жидкости на срезе сопла получены путем интегрирования исходных дифференциальных уравнений движения и притока тепла к жидкой фазе при допущении о равновесности пара.

Так как подынтегральные функции непрерывны, их значения на интервале интегрирования усредня-

лись, а коэффициенты, учитывающие неточности осреднения, определялись с использованием опытных данных и результатов расчетов на базе дифференциальной модели. При этом незначимые члены в уравнениях отбрасывались на основе предварительной оценки.

Для малых величин охлаждения жидкости в СОЖ, характерных для испытаний криогенных насосов, приращение ее скорости в расширяющейся части сопла невелико. Поэтому скорость жидкости на срезе сопла определяющим образом зависит от скорости в его в горле

$$w_s = \varphi_s \cdot \sqrt{2 \cdot \frac{P_{01} - P_s}{\rho_L^0}} \quad , \tag{1}$$

напрямую связанной с расходом через сопло

$$Q = \mu_s \cdot f_s \cdot \sqrt{2 \cdot \frac{P_{01} - P_s}{\rho_L^0}}.$$
 (2)

Здесь коэффициент расхода µ_s определяется как произведение коэффициента скорости φ_s конфузорной части на коэффициент сужения струи, зависящий от формы канала и свойств потока [6 и др.].

Давление P_s в горле сопла отвечает началу парообразования и всегда ниже давления насыщения, определенного по температуре жидкости (рис. 1, 2).

Значения давления насыщения обозначены на рисунках пунктирными линиями со значками, соответствующими параметрам на входе в сопло. Степень перегрева жидкости зависит от рода и чистоты жидкости, размеров и концентрации инородных включений, степени турбулентности потока. Последние факторы плохо детерминированы и на практике их влияние на перегрев определяют на основе опытных данных. Для этого, например, согласовывая расчетные и опытные значения критического расхода через специально изготовленные цилиндрические каналы, связывают размер и концентрацию зародышей паровой фазы с реализуемым перегревом и расходом определенной (в том числе и по степени чистоты!) вскипающей жидкости [7].

Такой способ требует больших затрат времени и далеко не всегда оправдан. В данной работе используются только экспериментальные данные, полученные для сопел струйного охладителя жидкости, и основополагающие закономерности процесса истечения.

Рис. 1. Распределение статического давления по длине сопла СОЖ СА-9В и давление насыщения, соответствующее температуре на входе, при истечении вскипающего параводорода: $\blacksquare - P_{01} = 0.785$ МПа,

$$T_{01} = 27,5 \text{ K}; \blacktriangle - P_{01} = 0,766 \text{ M}\Pi a, T_{01} = 26,0 \text{ K};$$

 $\Box - P_{01} = 0,769 \text{ M}\Pi a, T_{01} = 25,2 \text{ K};$
 $\odot - P_{01} = 0.408 \text{ M}\Pi a, T_{01} = 24.1 \text{ K}$

Рис. 2. Распределение статического давления по длине сопла СОЖ СА-456 при истечении вскипающего кислорода:

$$1 - T_{01} = 107,4$$
 K; $2 - T_{01} = 98,7$ K;
 $3 - T_{01} = 97,1$ K

В частности, давление P_s в соотношениях (1), (2) определяется через перегрев жидкости в горле выражением

$$P_{\mu}(T_{01}) - P_s = \chi_1 + \frac{\chi_2}{\text{Re}_s^n},$$
 (3)

где χ₁, χ₂ – постоянные для каждого кригенного компонента коэффициенты, имеющие размерность давления;

$$\operatorname{Re}_{s} = \frac{D_{\mathcal{H}B} \cdot W_{LS}}{v_{s}}$$
(4)

число Рейнольдса для потока в горле сопла; D_{3KB} – эквивалентный гидравлический диаметр горла. Коэффициенты χ_1 , χ_2 определяются капиллярными эффектами и размерами жизнеспособных зародышей паровой фазы. Число Рейнольдса в соотношении (3) характеризует степень турбулентности потока, которая влияет на процесс зарождения паровой фазы. Конкретные значения коэффициентов и показателя степени приведены в табл. 1.

> Таблица 1 Коэффициенты и показатели степени для полуэмпирической модели расчета параметров сопла

	ЖВ	ЖК
C_{f}	0,002	0,002
D_d , мкм	40	100
n	0,5	0,5
$\chi_1, 10^{-5}$	23,69	-0,0331
χ_2 , 10^{-8}	-83,42	0,282
Хинв	0,0868	3,45
χ_{d}	2,9547	0,75
$\chi_{vd}, 10^5$	290	68
χ_{mp}	0,103	1,57

При известном давлении *P_s* скорость потока в горле сопла определяется выражением (1), расход - выражением (2). Коэффициенты расхода и сужения струи берутся по данным [6, 8]. Для сопел с суживающейся частью, выполненной по профилю Витошинского, сужением потока пренебрегали, а коэффициент скорости составлял 0,97.

Расчетные и экспериментальные значения параметров сопоставлены в табл. 2, 3.

Таблица 2

$P_{01},$	$T_{01},$	$P_{S3}, 10^{-5}$	$P_{SP}, 10^{-5}$	<i>Q</i> э,	Q_{P} ,
10^{-5} Ha	К	Па	Па	кг/с	кг/с
8,805	25,98	3,19	3,192	2,145	2,222
8,765	25,33	3,02	3,048	2,221	2,262
8,805	25,23	3,02	3,012	2,246	2,280
8,805	25,12	2,99	2,987	2,266	2,288
8,805	25,01	2,99	2,991	2,275	2,290

Экспериментальные и расчетные данные по истечению из сопла СОЖ жидкого водорода

Таблица 3

Экспериментальные и расчетные данные по истечению из сопла СОЖ жидкого кислорода

	1	2	3	4	5
$P_{01},$ 10 ⁻⁵ Па	9,73	5,8	4,88	10,1	10
<i>T</i> ₀₁ , К	98,2	97,3	97,3	97,6	92,6
P_{S3} , 10 ⁻⁵ Па	2,10	1,90	1,90	2,00	1,40
$P_{SP}, 1$ 0 ⁻⁵ Па	2,10	1,91	1,88	1,98	1,21
<i>Q</i> э, кг/с	18,6	13,7	12,07	19,53	20,36
<i>Q</i> _{<i>P</i>} , кг/с	20,74	14,8	13,0	21,41	22,54
V_{L2 э, м/с	39,2	34,6	33	41,6	37,1
$V_{L2p,}{ m M/c}$	37,6	32,1	30,3	39,71	35,0
$T_{L2,}$ м/с	93,7	91,4	91,1	92,6	90,4

$T_{L2p, M/C}$ 94,07 92,7 92,33 93,86 91,45

Далее определим скорость, температуру и объемное содержания жидкости на срезе сопла СОЖ. Для этого рассмотрим движение вскипающей жидкости в расширяющейся части. Начальным сечением является горло сопла, где параметры уже рассчитаны. Известна и геометрия расширяющейся части сопла. Как правило, это плоский канал с углом раскрытия, обеспечивающим безотрывное истечение парожидкостного потока.

Для определения скорости жидкости на срезе сопла проинтегрируем уравнение движения [4, 5] на участке пузырьковой и парокапельной структуры потока. С учетом введенных допущений получим для расчета приращения кинетической энергии в расширяющейся части сопла соотношение

$$\frac{W_{L2}^{2} - W_{S}^{2}}{2} = \int_{P_{UHG}}^{P_{S}(T_{1})} \frac{dP}{\rho_{L}} + \int_{P_{2}}^{P_{UHG}} \frac{dP}{\rho_{L}^{0}} + 0.75 \cdot \int_{Z_{UHG}}^{Z_{2}} \frac{\rho_{v}^{0}}{\rho_{L}^{0}} \cdot \frac{C_{D}}{d_{d}} \cdot (W_{v} - (5) - W_{L})^{2} \cdot dZ - \int_{Z_{1}}^{Z_{2}} \frac{X_{mp}}{\rho_{L}} \cdot dZ,$$

где два первых члена правой части характеризуют работу внешних поверхностных сил, третий – работу сил межфазного трения, а четвертый - сил трения на стенках сопла.

Положение сечения инверсии пузырьковой структуры потока в паро-капельную определялось из условия, что скорость жидкости на участке между горлом сопла и сечением инверсии постоянна, а объемное содержание жидкости в сечении инверсии составляет 0,25. В этом случае

$$Z_{uhb} - Z_s = 3 \cdot h_s \cdot \frac{Z_2 - Z_s}{h_2 - h_s},$$

где Z_s , h_s – продольная координата и высота горла сопла; Z_2 , h_2 – то же для среза сопла; Z_{uhs} – продольная координата сечения инверсии. Величину проскальзывания между фазами получим из оценки порядка этой величины

$$O\left(W_{V} - W_{L}\right) = \frac{\Delta P}{\rho_{V}^{0}} \cdot \left(1 - 2 \cdot \sqrt{\frac{\rho_{v}^{0}}{\rho_{L}^{0}}}\right)$$

Полагая, что диаметр капель d_d , коэффициент сопротивления C_D и плотность пара меняются вдоль сопла незначительно, получим значение третьего интеграла правой части (5).

Сила трения на стенке в гидравлическом приближении определяется как

$$X_{TP} = 2 \cdot C_f \cdot m_L \cdot W_L \cdot \frac{dZ}{A_{TP} \cdot D_{\Gamma}}$$

Тогда с учетом того, что площадь расширяющейся части сопла возрастает по линейному закону, для работы сил трения получаем выражение

$$A_{mp} = C_f W_{cp}^2 \left(\frac{Z_2 - Z_S}{b} + \frac{Z_2 - Z_S}{h_2 - h_S} Ln \frac{h_2}{h_S} \right)$$

где *W_{CP}* – средняя скорость жидкости в расширяющейся части сопла.

Принимая далее закон изменения давления в расширяющейся части сопла линейным (см. рис. 1, 2) и вводя значение средней плотности смеси на участке пузырьковой структуры течения в сопле, получим вместо (5) для расчета приращения кинетической энергии в расширяющейся части сопла соотношение

$$\frac{W_{L2}^{2} - W_{S2}^{2}}{2} = \frac{P_{s}(T_{1}) - P_{2}}{\rho_{L}^{0}} \left[1 + \frac{1.5 \cdot h_{s}}{h_{2} - h_{s}} + \chi_{vd} \cdot \frac{Z_{2} - Z_{s}}{d_{d}} \cdot \left(1 - \frac{3 \cdot h_{s}}{h_{2} - h_{s}} \right) \times \left(1 - 2 \cdot \sqrt{\frac{\rho_{v}^{0}}{\rho_{L}^{0}}} \right) \right] - \chi_{mp} \cdot C_{f} \cdot W_{cp}^{2} \times \left(\frac{Z_{2} - Z_{s}}{b} + \frac{Z_{2} - Z_{s}}{h_{2} - h_{s}} \cdot Ln \frac{h_{2}}{h_{s}} \right).$$
(6)

Здесь поправочные коэффициент χ_{vd} , и χ_{mp} , учитывают неточности осреднения при вычислении соответствующих интегралов в (5). Для расчета величины захолаживания жидкости в сопле СОЖ используются уравнения [4, 5] теплопритока к жидкой фазе в области пузырьковой и парокапельной структур потока. Складывая их, после интегрирования полученного выражения получаем

$$T_{1} - T_{L2} = \frac{P_{s}(T_{1}) - P_{2}}{C_{L} \cdot \rho_{L}^{0}} + \int_{Z_{S}}^{Z_{uns}} \frac{q_{L\sigma} \cdot dZ}{\alpha_{L} C_{L} \cdot \rho_{L}^{0} W} + \int_{Z_{uns}}^{Z_{2}} \frac{q_{L\sigma} \cdot dZ}{\alpha_{L} \cdot C_{L} \cdot \rho_{L}^{0} \cdot W} - \int_{Z_{s}}^{Z_{uns}} \frac{X_{TL} \cdot dZ}{\alpha_{L} \cdot C_{L} \cdot \rho_{L}^{0}}.$$
(7)

Тепловой поток от жидкости к поверхности раздела фаз в области пузырьковой структуры определялся с использованием критерия Якоба и аппроксимации Лабунцова [9]:

$$q'_{L\sigma} \approx \frac{6 \cdot \alpha_v \cdot \lambda_L}{d_B^2} \cdot 3.9 \cdot Ja \cdot [T_L - T_S(P)],$$

где

$$Ja = \frac{C_L \cdot \rho_L^0 \cdot [T_L - T_s(P)]}{\rho_{vs}^0(P) \cdot \Psi_s(P)}$$

В области парокапельного потока отнесенный к единице объема тепловой поток от перегретой капли к межфазной поверхности определяется выражением

$$q_{L\sigma} \approx \frac{6 \cdot \alpha_{L} \cdot \lambda_{L}}{d_{B}^{2}} \cdot Nu_{d} \cdot \left[\widetilde{T}_{d} - T_{s}(P)\right],$$

где \widetilde{T}_d – средняя температура капли.

Дальнейшее преобразование выражения (7) производится с использованием приведенных выше соотношений и выражения для расчета сил трения. В результате из (7) получим

$$T_{1} - T_{L2} = \frac{P_{s}(T_{1}) - P_{2}}{C_{L} \cdot \rho_{L}^{0}} + 23.4 \int_{Z_{s}}^{Z_{uH6}} \frac{\alpha_{v}}{\alpha_{L}} \times \frac{D_{L}^{(T)}}{d_{B}^{2} \cdot v} \cdot \left[T_{L} - T_{s}(P)\right] \cdot dZ + 6Nu_{d} \times \left[T_{L}^{2} - T_{s}(P)\right] \cdot dZ - \frac{2C_{f}}{C_{L}} \times \int_{Z_{uH6}}^{Z_{uH6}} \frac{v^{2}}{d_{B}^{2} \cdot v} \cdot \left[\widetilde{T}_{d} - T_{s}(P)\right] \cdot dZ - \frac{2C_{f}}{C_{L}} \times \left[\widetilde{T}_{s}^{2} - \frac{v^{2}}{D_{c}} \cdot dZ.\right]$$

$$(8)$$

Оценив порядок величин, стоящих в правой части уравнения (8), для различных криогенных рабочих тел установили, что влияние трения и работы расширения на изменение температуры жидкости незначительно, что позволяет пренебречь этими составляющими. Затем, применив к упрощенному таким образом соотношению теорему о среднем, получим

$$T_0 - T_{L2} = \chi_{UHB} \cdot Fo_{UHB} \cdot Ja_{UHB} \cdot [T_{L2} - T_s(P_{UHB})] + \chi_d \cdot Fo_d \cdot [T_{UHB} - T_s(P_2)],$$

где

$$Fo_{uhe} = \frac{4 \cdot D_L^{(T)} \cdot (Z_{uhe} - Z_S)}{d_{B_{uhe}}^2 \cdot v_S};$$

$$Ja_{uhe} = \frac{C_L \cdot \rho_L^0 \cdot \left[T_L - T_S(P_{uhe})\right]}{\rho_{vs}^0(P_{uhe}) \cdot \Psi_S(P_{uhe})};$$

$$Fo_d = \frac{4 \cdot D_L^{(T)} \cdot (Z_2 - Z_{uhe})}{d_d^2 \cdot \frac{(V_S + V_{L2})}{2}}.$$

Полагая далее, что диаметр капель, образующихся после инверсии структуры потока, примерно в три раза меньше диаметра пузырьков в потоке до сечения инверсии и используя соотношение для определения сечения инверсии, получим:

$$Fo_{uhe} = \frac{h_s}{3 \cdot (h_2 - h_s)} \cdot \frac{4 \cdot D_L^{(T)} \cdot (Z_2 - Z_s)}{d_d^2 \cdot v_s} ;$$
$$P_{uhe} = P_s(T_1) - [P_s(T_1) - P_2] \cdot \frac{3 \cdot h_s}{h_2 - h_s} ;$$

$$Ja_{uhe} = \frac{3 \cdot h_s}{h_2 - h_s} \cdot \frac{C_L \cdot \rho_L^0 \cdot [T_L - T_{S2}]}{\rho_{vs}^0(P_{uhe}) \cdot \Psi_s(P_{uhe})}$$

$$Fo_{d} = \left(1 - \frac{3 \cdot h_{s}}{h_{2} - h_{s}}\right) \cdot \frac{8 \cdot D_{L}^{(T)} \cdot (Z_{2} - Z_{s})}{d_{d}^{2} \cdot (v_{s} - v_{L2})}$$

Учитывая, что

$$T_0 - T_{uhe} = \chi_{uhe} \cdot Fo_{uhe} \times \times Ja_{uhe} \cdot [T_1 - T_S(P_2)] \cdot \frac{3 \cdot h_S}{h_2 - h_S}$$

для расчета величины захолаживания жидкости в сопле СОЖ получаем окончательное выражение

$$\frac{T_1 - T_{L2}}{T_1 - T_H(P_2)} = \chi_{uH\theta} \frac{3 \cdot h_s}{h_2 - h_s} \cdot Fo_{uH\theta} \cdot Ja_{uH\theta} + \chi_d \cdot Fo_d \cdot \left[1 - \chi_{uH\theta} \cdot \frac{3 \cdot h_s}{h_2 - h_s} \cdot Fo_{uH\theta} \cdot Ja_{uH\theta}\right]$$

Значения коэффициентов N, χ_1 , χ_2 , χ_{mp} , χ_{vd} , χ_{ung} и χ_d получим путем обработки экспериментальных данных и отдельных результатов точного расчета по истечению криогенных жидкостей из сопел СОЖ методом наименьших квадратов. Для водорода и кислорода они приведены в табл. 1. Расчетные и опытные данные сопоставлены в табл. 2.

Рассмотренная методика расчета характеристик сопла СОЖ может быть использована для других рабочих жидкостей и различных сопел при условии соблюдения упомянутых выше ограничений на режимные и геометрические факторы. В то же время для расчетов с другими рабочими телами необходимо получить набор коэффициентов, аналогичный приведенному в таблице 1. Они могут быть определены с использованием экспериментальных данных или результатов расчета с использованием дифференциальной модели [4, 5].

Литература

 Прилукова Л. Программа SLI США "Инициатива по космическим запускам" // Аэрокосмический портал Украины [Электронный ресурс]. – Режим доступа: http://www.space.com.ua/gateway/ news.nsf/0.

2. Клепиков И.А. Концепция маршевого ЖРД многоразового использования на кислороде и сжиженном природном газе // Конверсия в машиностроении. – 2005. – № 3. – С.82-88.

3. Струйная система утилизации жидкого водорода при испытаниях насоса ГТД/ И.И. Петухов, Ю.В. Шахов, В.Н. Сырый, Ю.Е. Давыдов, И.П. Косицын // Авиационно-космическая техника и технология: Сб. науч. тр.– Х.: ХАИ, 1997. – Вып. 4. – С. 364-369.

Исследование течения вскипающего водорода
 в соплах Лаваля / В.Н. Сырый, И.И. Петухов,
 В.Н. Блинков // Газотермодинамические процессы в энергоустановках с многофазным рабочим телом. – 1990. – С. 10-15.

5. Петухов И.И., Сырый В.Н. Численное моделирование вскипающих потоков криожидкостей с кристаллизацией капель // Авиационно-космическая техника и технология. – 2005. – Вып. 1 (17). – С. 30-33.

 Дейч М.Е., Филиппов Г.А. Газодинамика двухфазных сред. – М.: Энергоиздат, 1981. – 472 с.

7. Гетерогенный механизм зародышеобразования
 в потоке перегретой криогенной жидкости /
 В.Н. Блинков, С.К. Дыменко, А.А. Куриленко,
 В.А. Семиглазов, К.И. Сопленков, С.Д. Фролов //
 ИФЖ №3. – 1984. – Т. XII. – С. 371-375.

8. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. – М.: Машиностроение, 1975. – 560 с.

9. Нигматулин Р.И. Динамика многофазных сред.
 Ч. І. – М.: Наука, 1987. – 464 с.

Поступила в редакцию 31.05.2006

Рецензент: д-р техн. наук, проф. А.В. Бастеев, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.