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NEURAL NETWORK BASED IMAGE CLASSIFIER RESILIENT TO DESTRUCTIVE

PERTURBATION INFLUENCES — ARCHITECTURE AND TRAINING METHOD

Modern methods of image recognition are sensitive to various types of disturbances, which actualize the de-
velopment of resilient intelligent algorithms for safety-critical applications. The current article develops a
model and method of training a classifier that exhibits characteristics of resilience to adversarial attacks, fault
injection, and concept drift. The proposed model has a hierarchical structure of prototypes and hyperspherical
boundaries of classes formed in the space of high-level features. Class boundaries are optimized during train-
ing and provide perturbation absorption and graceful degradation. The proposed learning method involves the
use of a combined loss function, which allows the use of both labeled and unlabeled data, implements the com-
pression of the feature representation to a discrete form and ensures the compactness of the distribution of
classes and the maximization of the buffer zone between classes. The main component of the loss function is the
value of the normalized modification of Shannon's information measure, averaged over the alphabet of the
classes, expressed as a function of accuracy characteristics. Simultaneously, accuracy characteristics are cal-
culated on the basis of smoothed versions of the distribution of statistical hypothesis testing results. It is exper-
imentally confirmed that the proposed approach provides a certain level of disturbance absorption, graceful
degradation and recovery. During testing of the proposed algorithm on the Cifar10 data set, it was established
that the integral metric of resilience to tensor damage by inversion of one randomly selected bit is about 0.95 if
the share of damaged tensors does not exceed 30%. Also, during testing of the proposed algorithm, it was es-
tablished that an adversarial attack with a disturbance that does not exceed the Loo-norm threshold equal to 3
provides resilience that exceeds the value of 0.95 according to the integral metric. Additionally, the integral
metric of resilience during adaptation to the appearance of two new classes is 0.959. The integral metric of re-
silience to the real drift of concepts between the two classes is 0.973. The ability to adapt to the appearance of
new classes or the concept drift has been confirmed 8 times faster than learning from scratch.

Keywords: image classification; robustness; resilience; graceful degradation; adversarial attacks; fault

injection; concept drift.
Introduction

Image classification is one of the most common
tasks in the field of artificial intelligence. Classification
analysis of visual objects is often a component of secu-
rity-critical applications. Examples of such applications
are autopilots of transport and combat drones, medical
diagnostics, production processes, monitoring of traffic
flows and inspection of infrastructure or production
facilities, and the like. Therefore, the urgency of solving
the problem of ensuring the resilience of image classifi-
cation analysis models to the influence of destructive
disturbing factors increases.

In works [1, 2], the vulnerability of artificial intel-
ligence algorithms was investigated and the following
destructive effects were identified: noise and adversarial
attacks, faults and faults injection into the deployment
environment of an intelligent algorithm, concept drift
and emergence novelties, that is, test samples that are
outside the distribution of training data.

The resilience of the data classifier model to de-
structive influences is primarily ensured by achieving

robustness to absorb a certain level of destructive influ-
ences and implementing the graceful degradation mech-
anism to achieve the most effective behaviour in condi-
tions of incomplete certainty [2, 3]. However, in prac-
tice, data analysis models must be continuously im-
proved taking into account the non-stationary environ-
ment and new problems. That is why an equally im-
portant component of resilience is the ability of the
model to quickly restore productivity by adapting to the
destructive impact and improving the intelligent algo-
rithm to increase the efficiency of subsequent adapta-
tions [4, 5]. Recovery and improvement mechanisms are
developed within the frameworks of continuous and
meta-learning [6, 7].

There are many methods and approaches to im-
prove robustness against adversarial attacks. Some re-
searchers classify methods for ensuring robustness
against adversarial attacks into the following categories
[8]: gradient masking methods [9, 10]; robustness opti-
mization methods [11]; methods of detecting adversarial
samples [12]. But the work [13] demonstrated the inef-
ficiency of gradient masking methods. Approaches to
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optimize robustness include adversarial training and
regularization methods that minimize the impact of
small disturbances in input data [11]. The last category
includes methods of detecting adversarial samples at the
input of the model to reject them, however, Carlini and
Wagner [12] rigorously proved that detecting the prop-
erties of adversarial samples is very difficult and re-
source-consuming. In works [8, 14], it was proposed to
divide the methods of protection against adversarial
attacks into two groups that implement two separate
principles: increasing intraclass compactness and inter-
class separation in the feature space; increasing the ro-
bustness of features and eliminating non-robust features
of the image. The first group includes the well-known
methods of knowledge distillation, as they contribute to
the increase of interclass distances in the space of fea-
tures [15]. The work [16] develops the principle of the
information bottleneck, which proves the high robust-
ness of the discrete characteristic representation and the
efficiency of the loss function based on information
measures.

Faults are often modeled by generating random or
directed inversions (bit flips) in the memory that stores
the weights or the output value of the neuron. To ensure
robustness to the injection of faults into the computing
environment, deployment of neural networks uses three
main approaches: introduction of explicit redundancy
[17]; modification of the learning algorithm [18]; archi-
tecture optimization [18]. The introduction of obvious
redundancy is implemented, as a rule, by duplication of
critical neurons and synapses, uniform distribution of
synaptic weights and removal of unimportant weights
and neurons. It is possible to increase the robustness of
the neural network before fault injection at the stage of
machine learning by adding noise, disturbances or di-
rectly faults during training. A regularization compo-
nent (penalization) is also introduced for the indirect
inclusion of faults in the conventional algorithm [19].
Optimization of the architecture to increase robustness
consists in minimizing the maximum error at the output
of the neural network for a given number of inverted
bits in the memory where the weights or results of in-
termediate calculations are stored. In research [19], this
problem was effectively solved on the basis of evolu-
tionary search algorithms. However, architecture opti-
mization is traditionally a rather resource-intensive pro-
cess.

Domain randomization methods [20] are proposed
in these papers, which increase the robustness of the
model to limited shifts in the data distribution. Domain
randomization consists in generating synthetic data from
a large number of variations, so that real-world data can
be considered as another variant of the domain [20].
Randomization of viewing angles, textures, shapes,
shaders, camera effects, scaling and other effects can be

used for this. In other papers [21], the use of self-
supervised learning algorithms on data from different
domains is proposed to achieve generalization beyond
the boundaries of each of the specific domains. The
method of Transfer Learning and Multi-Task Learning
strengthen the resistance to out-of-distribution disturb-
ing [22]. However, if real concept drift appears in the
data stream, then there is a need to implement reactive
mechanisms for the purpose of quick adaptation [23].
There is research on adapting to real concept drift, but
the task of adapting in the absence of markup for test
data or a significant delay in obtaining it is still a chal-
lenge.

Adversarial attacks, injection of errors, drift of
concepts and samples outside the learning distribution
cannot always be absorbed, therefore the development
of reactive resilience mechanisms, namely graceful deg-
radation, recovery and improvement [2, 4] is relevant.
The implementation of these mechanisms is often asso-
ciated with the need to detect a disturbing factor. The
most successful methods of detecting adversarial sam-
ples, samples outside the training distribution (out-of-
distribution) or concept drift are based on the analysis of
the space of high-level features. At the same time, con-
fidence metrics based on distances and classification
algorithms based on prototypes are used [24, 25]. In
work [26], the mechanism for detecting faults affecting
the prediction result is based on the calculation of the
reference value of the contrastive loss function on test
diagnostic data samples in the absence of faults. To de-
tect faults, the current value of the contrastive loss func-
tion for diagnostic data is compared with the reference
value. Algorithms of nested learning and hierarchical
classification were proposed in [27], which is useful for
implementing the sophisticated degradation mechanism.

Algorithms for adapting models to destructive fac-
tors are considered in papers [28], where the principles
of active learning or contrastive learning are used to
increase the speed of adaptation by reducing the re-
quirements for the volume of labeled data. The works
[29] proposed training methods with semi-supervised
learning for the simultaneous use of both labeled and
unlabeled data to speed up adaptation to the drift of
concepts. The papers [7] consider continuous learning
methods that allow continuous accumulation of
knowledge on various tasks and improvements, as well
as various reminder mechanisms to avoid the problem
of catastrophic forgetting. Various approaches to the
implementation of meta-learning to increase the effi-
ciency of adaptation are investigated in [6].

Thus, there are studies of individual principles of
the resilience of data classification analysis models, but
there are practically no works that consider their simul-
taneous combination.
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The purpose of the article is to develop the archi-
tecture and training method of the image classifier,
which contains the main components of mechanisms of
resilience to destructive factors. Under the goal, the fol-
lowing research tasks are formulated:

— propose an architecture and training method of
an image classifier to ensure resilience to adversarial
attacks, faults injection and concept drift;

— to verify that the classifier has the properties of
disturbance absorption (robustness), graceful degrada-
tion, recovery and improvement;

— evaluate the resilience of the classifier to de-
structive factors.

Problem statement

Exist a set of unlabeled images {x}J |j:1,_n} and

a set of labeled images {xrsn,j | m=1M; j=le} for
training and testing the algorithm of image classification
analysis, where n and ny,, are the size of the set of un-
labeled images and the size of the set of labeled images
of m -th class, respectively. Let be given the set of clas-
ses {X% |m :L_M} and the structure of parameters
vector g of data analysis algorithm, that has be given as

g=<el,..,e§l,..,e51,fl,..,féz,..,fzz >, (1)

B +5,=3,

where €, — &, -th parameter of the algorithm affecting
the formation of the feature representation of observa-
tions, & =15, ;

f&z — &, -th parameter of the algorithm affecting the

accuracy characteristics of the classifier, &, =12, .

At the same time, the restrictions imposed on the
parameters in the form of formulas are known
Ral(el,...,eal,...,egl) <0, Raz (fl""’féz ,...,sz) <0.

It is necessary to find the optimal values of the pa-
rameters vector g (1) which provide a compromise

between the maximum value of the information criteri-

on of efficiency averaged over the set of the classes J
in normal conditions (that is, before the disturbance or
after adaptation) and the maximum value of the integral
metric of the resilience R of the classifier to disturb-
ances during the given control period [ 4, 30]:

J= J(@m, Bm: Dym: Doym) 2

0 Mi

1
M 1

3

where J is the function of the information criterion of
efficiency for the two-alternative system of decision
evaluations;

oy Is an estimation of the probability of errors of
the first kind for the decision rule of the m-th class;

Bm is an estimation of the probability of errors of
the second kind for the decision rule of the m-th class;

Dy m is a sensitivity (first reliability) of the decision
rule of the m-th class;

D, is a specificity (second reliability) of the deci-
sion rule of the m-th class;

l Tc -
ﬁijtzoa(t)olt
= Tc‘— !
_[tzoJo(t)dt

R 3

where j(t) is dependence of the current value of the

information criterion of system efficiency on time
(number of the test sample or mini-package);
T is control period, the values of which are chosen

based on the results of a preliminary assessment of the
average duration of the interval between the events of
destructive effects or the maximum permissible recov-
ery time [4];

P is a set of destructive events during the interval of
the control period [0, Tc];

Jo (t) is normal functional state (steady state with-

out disturbances), which is entered into the formula for
displaying the values of the integral index of resilience
in the interval [0, 1];

g" = argmax{nJ(g) + L-MR()} @)
G

where m is the coefficient regulating the trade-off be-

tween the information criterion of efficiency and the
resilience of the algorithm during the control period.

Architecture of the resilient
classifier model

During the construction of the model, we aim to
implement the main characteristics of resilience: robust-
ness, controlled degradation, recovery and improve-
ment. For this, the model will be based on the following
principles:

— formation of a prototype and a compact spherical
container for each class to detect out-of-distribution
samples of training data and concept drift;

— the use of a hierarchical system of sample label-
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ing and hierarchical classification to implement the
principles of graceful degradation;

— the organization of FIFO memory buffers with a
limited size for storing labeled and unlabeled data that
was fed to the input of the neural network and has the
corresponding values of labels or loss functions, for the
implementation of diagnostic and recovery mechanisms.

Fig. 1 shows the architecture of the resilient classi-
fier. It is shown that the classifier model consists of a
feature extractor built on the basis of four ResBlocks
modules of the well-known ResNet50 architecture, and a
classification module based on prototypes [25]. A set of
vector-prototypes is built for the classification analysis
of the feature presentation. Prototype vectors are not
fixed, they are determined in the learning process as well
as the weighting coefficients (filters) of the feature ex-
tractor. At the same time, to ensure the principle of
graceful degradation, prototypes can belong to different
levels of hierarchy in accordance with the hierarchy of
labeling. In addition to prototypes, the radii of hy-
perspherical separating surfaces (containers) for each of
the classes are optimized during the training process.
Container radii are stored in memory to detect a high
level of uncertainty in decision making.

To increase the immunity and robustness of the
characteristic description, it is suggested to use one of
the options for implementing the information bottleneck
principle [16]. For this purpose, it is assumed to com-
press the feature representation by bringing it closer to a
discrete form. Therefore, the output of the feature ex-
tractor uses a sigmoid layer and the corresponding regu-
larization in the learning algorithm.

Mini-batch Feature extractor
generator based on ResNet
Active E
learning : H
request / :
response E Sigmoid
:\
) 4 : \ 4

Buffer of labeled and

Prototypes module
unlabeled data for bt Y

) N with class hierarchy
diagnostic and recovery

¢ v |

E Prediction post-processing / Loss function computation E

Fig. 1. Architecture of the resilient image
classifier model

Confidence in the prediction for the i-th sample is es-
timated by the value of the function of belonging to the
k-th recognition class, which has the form

diSt(Zi s Zk)

o 5)

pe(zi)=1-

where z; is binary feature representation of the i-th

sample at the feature extractor output;
Z, is a prototype for the k-th class in the feature

space;

N is dimension of the feature vector z; ;

i is scaling factor for the radius of the hyperspher-
ical separating surface (container) of the k-th class,
e €(0;1) ;

dist() — squared Euclidean distance.

If the maximum value of the membership function
(1) for the input unlabeled sample x; with a feature

representation z; is less than zero, then such a predic-

tion should not be trusted, and this sample should be
added to the buffer of unlabeled data outside the train-
ing distribution. If the incoming unlabeled sample falls
into one of the containers of recognition classes, then it
should be added to the buffer of unlabeled data belong-
ing to the distribution of one of the classes. Buffers of
unlabeled samples can be used for semi-supervised
learning based on pseudo-labeling, soft-labeling or con-
sistency regularization [29]. In addition, unlabeled sam-
ples are candidates for a request for manual labeling
(active learning). At the same time, data from the buffer
of unlabeled data can be moved to the buffer of labeled
data after receiving feedback about their real belonging
to recognition classes. The priority of recommending
samples for labeling depends on the value of the mem-
bership function.

If a labeled sample falls outside the boundaries of
its class container, then this may indicate novelty in the
data or virtual drift of concepts. Control of falling of
labeled samples into a container not of its class can be
used to detect the real drift of concepts. To avoid cata-
strophic forgetting in the conditions of concept drift or
the appearance of a new class of recognition, the re-
minder function is implicitly implemented based on data
buffers and reference vectors in the feature space.

After updating the weight of the model, it is neces-
sary to store (or update) the diagnostic sample of data
and the corresponding value of the loss function in the
memory. After that, together with the test samples in
each mini-batch, it is necessary to pass a sample of di-
agnostic data to compare the past and current value of
the loss function to detect faults (injection of faults) in
the memory of the network parameters. If the difference
in the loss function exceeds a certain threshold o, it is
necessary to initiate the network fine-tuning algorithm
based on diagnostic data to eliminate this discrepancy,
not below the threshold §.
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Machine learning method

When developing a machine learning method, we
aim to ensure the main characteristics of resilience:
robustness, graceful degradation, recovery and
improvement. For this, the following principles will be
the basis of the learning algorithm:

— increasing the compactness of the distribution of
classes and the buffer zone between classes to increase
robustness to noise, emissions and adversarial attacks by
introducing an additional regularization component to
the resulting loss function;

— penalization for the discretization error
(compression to binary form) of the feature
representation as one of the options for implementing
the information bottleneck to increase the robustness
and informativeness of the characteristic description;

— taking into account the hierarchical nature of the
data labeling and the hierarchical nature of class
prototypes by calculating the loss function separately
for each level of the hierarchy to provide graceful
degradation mechanisms in the recognition mode;

— implementation of reactive performance
recovery mechanisms under the influence of
disturbances based on fine-tuning of weights on
diagnostic data to eliminate the impact of detected
faults, new initialization of prototypes of drifting classes
or new classes, use of new data without labeling in the
consistent regularizing component to quickly adapt to
adversarial attacks;

— avoiding catastrophic  forgetting  during
adaptation to changes and attacks without completely
retraining the model from scratch by implementing
reminder mechanisms based on buffer data and
prototype vectors.

Classifier training has two main stages:

— the preparatory stage, when training is carried
out on the available amount of data;

— adaptation of the classifier to novelty and
disturbances during operation.

The main criterion of learning in both cases is the
information measure. The loss function based on the use
of the information measure has the form:

Line =1-3 (6)

where J is the value of the information criterion of
efficiency averaged over the set of the classes (1).

K. Shannon's normalized entropy information
measure is used as an information measure of k-th class
recognition efficiency [30] and it calculated by the
formula

1.1 k K
2 Lk + DZ,k (04 + D2,k

Dy | Dy
092
D1k +Bx Dy +Bk
Bk By

+ log, +
Dik +Bxk Dy +Bx

D D
20— log, ——= ] ™

oK + D2,k Ok + D2,k

where H, is a priori entropy for two alternative

decision systems;
H(y) is posterior entropy, which characterizes the

residual uncertainty after decisions are made.

Separaring hyperspherical surfaces are constructed
for each class on the radial basis of the feature space
and are the basis for decision rules. The accuracy
characteristics for decision rules of the k-th class are
calculated based on statistical hypothesis testing:

TP
Dy == K——+¢, ®)
! TPk +FNk +€
TN
Dok =o———+e, ©)
! TNk+FPk +¢€
FN
o=——K g, (10)
FNk +TPk +&
FP
By=—— K4, (11)
FPk +TNk +&

where TP, is the number of correct positive

classifications of samples for decision rules of the k -th
class;

TN, is the correct-negative
classifications of samples for decision rules of the ks-th
class;

FP, is the number of false-positive classifications
of samples for decision rules of the k -th class;

FNy is the number of false-negative classifications
of samples for decision rules of the k -th class;

€ is a constant that is added for numerical stability,
e=10"°.

Procedures for calculating statistical tests are non-
differentiable, so in training mode, you can use their
smoothed versions [31]

number  of

n
TP~ > 90y,
i—1

(12)



100 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2022, no. 3(103) ISSN 2663-2012 (online)
n _ 1 K K )
FP~Y 9, 00-Y;), (13) d =—222dlst(ic,ik); (22)
i=1 N(K-1)* kZ1cm
n
FN =~ Z(l— Yi) OVi, (14) T is the average value of the scaling factor of the
=1 class container radius calculated by the formula
n
TN=Y(-§)ol-y), (19 L K
= F==>"n. (23)
) ) o Kia
where © is element-wise multiplication operator

(Hadamard product);

Yi :{yi,k | kzl,_K} is a class label for i-th sample
in one-hot coding format [31];

¥i ={relu(piyk)|k:1,_K} is the value of the
membership function (5) after the relu() function for the
i-th sample.

The admissible domain of criterion (7) is limited

by inequalities D; ) >0.5 and D, >0.5, or By <0.5
and oy <0.5, then, for the convenience of optimization

by the method of error backpropagation, it is suggested
to perform the following operations during the
calculation of the loss function [30]:

Dy =max(Dy, 0.5), (16)
D,k =max(D;, 0.5), (17)
oy =min(ay, 0.5), (18)
Bk =min(By, 0.5). (19)

To increase the compactness of the distribution of
classes and the interclass gap in the feature space, it is

suggested to use the contrastive-centre  loss
function [32]
dist(z;, z, )
LecL =—x Y (20)
Z diSt(Zi, Zk) +1
k=1k=y

In order to optimize the boundaries of the class
distribution, it is additionally proposed to use a
regularizing component that connects the average
distance between the prototypes of classes and the
average radius of the class containers

Le =T/(d+1), (21)

where d is the average value of the normalized distance
between class prototypes, calculated by the formula

To speed up adaptation to changes, data samples
without labeling can be used to form a consistent
regularization component in the loss function [29]. At
the same time, unlabeled data is divided into two
groups: unlabeled data falling into class containers; un-
labeled data that does not fall into any of the recognition
class containers.

Unlabeled data falling into the containers of
existing classes is proposed to be used for consistent
regularization by calculating the next component of the
loss function

Ulce =CE(a* @ ) "G ). (24)

where  zj , indicative representation of

augmented versions of the input sample x; ;
q(z)
belonging of the characteristic representation z, for

zi -
is an estimation of the probability of

the sample x; to the recognition classes after
calculating the values of the membership functions

exp(uk (z, )) .

ak(z) =« ; (25)
CZ::] exp(l’tc (Zi ))

CE(-) isthe standard cross-entropy function.
For vy fractions (<10 %) of unlabeled samples that
fall into class containers and have the largest maximum
values of q (z;), it is possible to form a pseudo-

labeling with the corresponding classes. Such pseudo-
labeled data can be mixed into each mini-batch during
training.

Unlabeled data falling outside existing class
containers can be instances of unknown classes,
outliers, or the result of concept drift. For such samples,
it is suggested to use soft labeling which is based on
distances to prototypes of already known classes and is
calculated by the formula
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exp(—dist(zi \Z, ))

qiiSt (Zi ) =K i
glexp(—dist(zi : Zc))

(26)

For samples that are outside the containers of
known classes, the component of consistent
regularization is calculated according to the formula

LYte = CE(a" @), a™ ().

@7)

Consistent regularization can be performed not only
at the level of the classification module, but also at the
level of features. The corresponding regularization
component of the loss function is calculated by the
formula

LuLz :dist(zi’ 2} ) (28)

To implement the information bottleneck, a
regularization component is additionally introduced,
which penalizes the discretization error of the feature
description [30]

Lp =2 (e-2) (29)
D i i/
where e is unit vector.

The initial values of the parameters of the
prototypes of the lower-level classes are proposed to be
initialized based on the Hadamard matrix [30]. To do

this, the dimension of the Hadamard matrix is first

determined N, =27 %™ whereceil() is a

function for rounding a number to a larger integer value.
Then all values less than O are replaced by 0, i.e
Z = max (0,Hadamard(N ,mq)) - TO facilitate the

process of adapting the prototype to the features of the
data structure, label smoothing is used according to the
formula Z'=27*0.7+0.15, as a result of which 1s will
turn into 0.85, and Os into 0.15. From the obtained
matrix, the first K vectors are chosen, the dimension of
which is limited to the first N features, i.e
Z=2Z[1:K,1:N]. At the same time, the initial value of

the radius scaling factor r, for the hyper-spherical

container of the k-th class is initialized by the value of
half of the Plotkin bound divided by the dimension of
the feature space [30]

(1 N K j 1 K
e < | =— == :
22K-1JN 4-(K-1)

(30)

In the case of the appearance of a sample with a

marking indicating a new (K +1)-th class of the lower
level, it is necessary to form a new prototype of the

class z,,, with the corresponding initial value of the
radius scaling factor r 4. To do this, the nearest vector

from the remaining unused rows is selected from the
modified Adamar matrix Z' where the closeness is
determined based on the square of the Euclidean
distance. The initial value of the scaling factor of the
container radius for the new class is also determined by
the formula (30), but taking into account the new
number of classes. In case of recognition of real concept
drift, prototypes of drifting classes are filled with
random numbers from the range [0; 1].

Each coordinate of the prototype-vector of the
upper hierarchical level is initialized by copying the
corresponding coordinate of one of the prototypes of the
lower level, which is selected randomly. The radius of
classes of the upper hierarchical level is determined by
the formula (30) taking into account the number of clas-
ses at this level.

The resulting loss function is formed by the sum of
the above components, averaged over the levels of the
class hierarchy with coefficients that regulate the impact
and priority of individual components.

When training on labeled training data, the loss
function is used

Ls =Anebne T AceL

Il

CCL +7\‘CEC +7\’DLD’ (31)

L
INF 1
Lnes Leoo and L. respectively averaged by H-levels

of class-hierarchy;
Anes Aeers Aco Ap are coefficients that adjust the

influence and priority of the components of the resulting
loss function.

When new data become available, the labeled
samples are combined with unlabeled samples to
implement continuous adaptation, and the following
loss function is calculated

where L oL L are values of the loss functions

LTOTAL = LS +7\‘(L)JuéEE0llJJtCE +)\‘iSCEEanCE +7\’UL2EUL2 ' (32)

where LY., LT

UCE
tions L., LY. and L., respectively averaged by
H-levels of class-hierarchy;

A, Mees Ay, are coefficients that adjust the
Lin
UCE

L., are values of the loss func-

influence and priority of the components L%,
and L, respectively.

The following values of coefficients for the
components of the loss function are suggested by
default: Ane =1.0, A =10, . =0.001,
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Ap =0.001, A2 =0.1, Al =0.1, A, =0.01.

Results of machine learning and discussion

The Cifarl0 dataset was chosen for experimental
research because its 1images have a small
dimensionality, ~ which  accelerates  experimental
research. The classes of this dataset can be arranged in a
hierarchical structure. For example, the first top-level
class may be the animal class, which includes
subclasses bird, cat, deer, dog, frog and horse. The
second top-level class may be the vehicle class, which
includes subclasses airplane, automobile, ship and truck.
Therefore, at the output of the classifier, 12 prototype
vectors will be used, of which 2 are for top-level
prototypes and 10 are for bottom-level prototypes. The
CIFAR-10 dataset consists of 50,000 training and
10,000 test color images of 32x32 pixels. Images are
evenly distributed among 10 classes. For the
convenience of analysis, we will use 70 % of the
training data to train the base model and form
dataset_base, and 30 % will be used for additional
training dataset_additional.

As a result of perturbations there is a decrease in
productivity. To test the ability to recover, we consider
recovery to be the state of achieving 95% of the
performance that was before the perturbing impact. The
control interval is equal to 200 iterations to ensure
testing on the full amount of test data.

To test the model for fault resilience and
recoverability, it is proposed to use the TensorFI2
library, which is capable of simulating software and
hardware faults. In the experiment, it is proposed to
consider the impact of the most difficult to absorb type
of faults, which is to generate a random inversion of bits
(bit-flip injection) in each layer of the model. At the
same time, a fixed fraction of tensors (fault rate) is
randomly selected and 1 bit is randomly selected in
them to be inverted. For diagnostics and recovery,
diagnostic data is added to each mini-batch along with
test data for model input. Diagnostic data are generated
from the dataset_additional and their number is equal to
the size of 128 samples.

Fig. 2 shows the dependence of the value of the
information criterion averaged over set of classes on the
number of testing iterations of the model trained on the
dataset_base. In this case, the first 50 iterations are
performed without fault injection, and on the 51st
iteration 4 versions of the model are generated with
different fractions of tensors with an inverted bit in a
random position, i.e. fault_rate €{0.1;0.3;0.5; 0.6}.

Therefore, 4 performance recovery curves of the model

are shown. Dependence of J (2) and R (3) on the frac-
tion of tensors with inverted bit in random position for

different dimensionality of feature representation at the
output of feature extractor at different hierarchical level
of classifier is shown in Table 1 and Table 2.

The analysis of Fig. 2 shows that the classification
analysis algorithm is resilient to error injection if
fault rate <0.5. However, the larger the greater the loss

of classifier efficiency after recovery. Comparison of
Fig. 2, a and Fig. 2, b shows that the top-level classifier
exhibits a higher level of robustness and resilience,
which allows it to be used in the mechanisms of grace-
ful degradation under the influence of faults.

The choice of model parameters should be carried
out taking into account the trade-off between the
resilience and performance of the model (4). One of the
important hyparameters of the classifier model is the
dimensionality of the feature representation. However,
the analysis of Table 1 and Table 2 shows that there is
no  unambiguous  relationship  between  the
dimensionality of the feature description, fault resilience
and the information criterion of efficiency after
recovery. Perhaps this relationship is clearer in the case
of disturbances of another type.

jtest
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0.4 1
—— fault rate = 0.6
0247 fault rate = 0.5
| —-= fault rate = 0.3
—— fault rate = 0.1
0.0 T . .
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iteration_number
a
jtest
0.8 A
0.6
0.4
—— fault rate = 0.6
P i fault rate = 0.5
’ —-— fault rate = 0.3
—— fault rate = 0.1
0.0

0 100 200 300 400
iteration_number
b
Fig. 2. Dependence of the information criterion
of efficiency averaged over set of classes (2) on test
data from the number of iterations
to the faults and impact of during recovery:
a — lower level of class hierarchy;
b — upper level of class hierarchy
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Table 1
Recovery results for different fraction
of damaged tensors and different dimensionality
of feature representation at the lower hierarchical
level of the classifier

R J
Fault rate
N=64 N=128 N=64 | N=128
0.1 0.978 0.979 0.981 0.980
0.3 0.945 0.951 0.970 0.975
0.5 0.881 0.880 0.952 0.961
0.6 0.674 0.511 0.652 0.651

Table 2
Recovery results for different fraction
of damaged tensors and different dimensionality
of feature representation at the upper hierarchical
level of the classifier

Fault_rate R )
N=64 N=128 N=64 | N=128
0.1 0.981 0.981 0.981 | 0.980
0.3 0.952 0.955 0.981 | 0.978
0.5 0.920 0.919 0.975 | 0.961
0.6 0.815 0.852 0.852 | 0.851

In practice, such metrics as LO-norm, L1-norm,
L2-norm and Loo-norm have become widespread.
However, only LO-norm and Loo-norm impose
restrictions on the spatial distribution of noise, which
protects against the formation of distorted samples that
are misclassified even by humans. In addition, the
choice of perturbation level by the LO-norm or Leo-norm
metric does not depend on the image size, which is
convenient for comparison. In the experiments, the
formation of attacks is proposed to be implemented on
the basis of the search algorithm of the covariance
matrix adaptation evolution strategy (CMA-ES) using
the Loo metric [33].

Measurements of classifier efficiency are carried
out on disturbed test samples, each mini-batch of
disturbed test data is formed on the actual data model.
At the same time, mini-batches of perturbed data from
the dataset_additional set are formed, of which 20 % are
provided with data labels to emulate active learning.
The perturbed data from dataset additional are not
involved in measuring the model performance, but are
used to adapt the model to perturbations of this type.

Fig. 3 shows the dependence of value of the
information criterion averaged over set of clasess on the
number of testing iterations of the model trained on the
ataset_base. In this case, the first 50 iterations are per-
formed without fault injection, and on the 51st iteration,
data sets with 4 different threshold values of the dis-
turbance level are generated, that is
threshold e {1; 3; 5; 10} .

Therefore, 4 performance recovery curves are displayed.

The dependence of J (2) and R (3) on the level of per-
turbation of samples for different dimensionality of the
feature representation at the output of the feature extrac-
tor at different hierarchical levels of the classifier is
shown in Table 3 and Table 4.

The analysis of Fig. 3 shows that the classification
analysis algorithm is resilient to disturbances if
threshold <5. However, the larger threshold is, the
greater the loss of classifier efficiency after recovery. In
this case, the comparison of Fig. 3,a and Fig. 3, b
shows that the top-level classifier exhibits a higher level
of robustness and resilience, which allows it to be used
in mechanisms of graceful degradation under the influ-
ence of adversarial attacks.

The analysis of Tables 3 and 4 shows that the
dimension N = 128, although inferior in terms of the
information criterion of efficiency after recovery,
provides a better compromise solution according to the
form (4) due to a significant improvement in the
resilience of the model.

Jtest
0.8
0.61
0.4 1
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021 =" threshold = 5
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—— threshold = 1
0.0+— T T T T
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iteration_number
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0.6 1
0.4
—— threshold = 10
024~ threshold = 5
| —-= threshold = 3
—— threshold = 1
0.0 — T T
0 100 200 300 400
iteration_number

b
Fig. 3. Dependence of the value of information criterion
of efficiency (2) averaged over set of classes (2)
on test data from the number of iterations
before and after adversarial attack:
a — lower level of class hierarchy;
b — upper level of class hierarchy
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Table 3
Recovery results for different levels
of Loo-perturbation and different dimensionality
of feature representation at the highest hierarchical
level of the classifier

Threshold R J
N=64 N=128 N=64 | N=128
1 0.978 0.985 0.988 0.980
3 0.954 0.967 0.985 0.980
5 0.879 0.905 0.971 0.967
10 0.693 0.766 0.772 0.670
Table 4

Recovery results for different levels
of Loo-perturbation and different dimensionality
of feature representation at the lower hierarchical
level of the classifier

Threshold R J
N=64 N=128 N=64 | N=128
1 0.980 0.988 0.988 0.980
3 0.955 0.965 0.988 0.979
5 0.885 0.905 0.975 0.965
10 0.793 0.843 0.932 0.930

In order to test the adaptation to new classes, we
first train the model without two lower-level classes, for
example, without horse and bird, and then add them as
perturbation. To test the adaptation to the concept drift,
from a certain point on, samples of the automobile class
can be labeled as truck and truck as automobile.
Changes in the test dataset occur synchronously with
changes in the training dataset. Testing will take place
after each training mini-batch on the full amount of test
data. To make the analysis easier, each mini-batch will
be formed in such a way that it will contain
approximately the same number of samples of each of
the currently relevant classes. Samples of new and
existing classes will be taken from dataset_base, but for
existing classes the samples will be selected from the
buffer of the last labeled samples (100 samples per
class). The mini-batch of labeled data can be extended
by 10%  with unlabeled samples  from
dataset_additional. It is assumed that the real concept
drift will be detected automatically when the labeled
samples from dataset_base with modified labeling are
added to the training batches, which will then be added
to the buffer of the last labeled data. The threshold for
detecting real concept drift is set as 50 samples of one
class in a container of another class.

Fig. 4 shows the dependence of the class-wise
averaged information efficiency criterion calculated
with test dataset on the number of training mini-
packages. The first 200 iterations are associated with
learning from scratch. Then there is a decline in
performance when the labeled (and test) samples of new

classes appear, to which the algorithm adapts. The
second decline in productivity is associated with the real
concept drift, due to the arrival of training (and test)
samples with changed labels (truck replaced by
automobile and vice versa).

Jtest

0.8

0.6

0.4+

0.2

0.0

0 100 200 300 400 500 600
iteration number

Fig. 4. Dependence of the efficiency criterion
of model (2) calculated with test data on the number
of training mini-batches during learning from scratch
and during adaptation to new classes
or to the real concept drift

The analysis of Fig. 4 shows that recovery requires
8 times less data than training from scratch. At the same
time, the integrated resilience metric during adaptation
to the emergence of two new classes is 0.959. The
integral metric of resilience to the real concept drift
between the two classes is 0.973. At the same time, after
the recovery there was almost no loss of efficiency by
the information criterion (2).

Thus, the ability of the proposed algorithm to
absorb a certain level of destructive disturbance and the
ability to adapt in order to recover and improve the
performance is experimentally proved. At the same
time, the higher efficiency and resilience of the
algorithm for classes of higher hierarchical level is
confirmed, which allows to implement the mechanisms
of graceful degradation.

Conclusions

The proposed classifier model implements the
mechanisms of perturbation absorption and graceful
degradation. A key design aspect of the model is the
inclusion of class hierarchical structure and
hyperspherical separation surfaces (container) for each
class.

A new learning method is proposed that combines
maximization of compactness of class distribution and
interclass buffer zone, discretization of feature
description and regularization of  consistency.
Regularization of consistency is carried out both at the
level of classification output and at the level of features
and is used to increase robustness and speed of
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adaptation to destructive disturbances due to the
effective use of unlabeled data.
When testing the proposed algorithm on the

Cifarl0 dataset, it was found that if the fraction of
tensors damaged by the inversion of one randomly
selected bit does not exceed 30 %, then the integral met-
ric of resilience to this disturbance is about 0.95.
However, at 60 % of damaged tensors the proposed
algorithm does not provide resilience.

During the testing of the proposed algorithm, it
was found that an adversarial attack with a perturbation
that does not exceed the Loo-norm threshold equal to 3
provides a resilience that exceeds the integral value of
0.95. However, when the perturbation exceeds the Loo-
norm threshold equal to 10, at the lower hierarchical
level the resilience is not provided, and at the upper
level the resilience by the integral metric is on the verge
of recovery. It was noticed that the larger
dimensionality of the feature space provides
significantly better resilience to adversarial attacks at
higher and lower hierarchical levels.

Experimentally confirmed on the open Cifarl0
dataset the ability to adapt to the emergence of new
classes or concept drift 8 times faster than learning from
scratch. At the same time, the integrated resilience met-
ric during adaptation to the emergence of two new
classes is 0.959. The integral metric of resilience to the
real concept drift between the two classes is 0.973.

The practical significance of the work is to form a
new methodological basis for improving the resilience
of image classification systems and quantifing of
resilience to perturbing influences such as adversarial
attacks, fault injection and concept drift.

Future research will focus on meta-learning
algorithms to optimize the performance of data mining
models. Particular attention will be devoted to
increasing the resilience of the model by improving the
architecture of the classifier model.
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HEWPOMEPEKEBUI KJIACU®IKATOP 305PAKEHD
I3 PE3LJILEHTHICTIO O JJECTPYKTUBHHUX 35YPIOBAJIBHAUX
BILIUBIB — APXITEKTYPA TA METOJ HABUAHHS

B. B. Mockanenko, A. C. Mockanenko

CyuacHi MeToAH PO3Mi3HABaHHA 300pakeHb € YyTIIMBUMH IO Pi3HOro THITY 30ypeHb, M0 aKTyali3ye po3poo-
JICHHS PE3LIbEHTHUX IHTENEKTYaIbHUX aITOPUTMIB IS KpUTHYHHUX 0 O€3MEeKH 3aCTOCYBaHb. MeToro CTatTTi € po-
3poO0JIeHHS] MOZAETI 1 METONy HaBUaHHS KJIacHU(iKaTopa, M0 MPOSABISNE XapaKTEPUCTHKH PE3iTHEHTHOCTI 0 MPOTH-
Oopumx aTak, iHKEKIiT HeCIpaBHOCTEH Ta Jpei(y KOHIenI[ii. 3anpornoHOBaHa MOJIETIb MA€ 1€PAPXIUuHY CTPYKTYPY
MPOTOTHIIB Ta rinepchepryHi Mexi KIaciB, mo GOPMYIOTHCS Y IPOCTOPI BUCOKOPIBHEBMX O3HAK. Mexi KJaciB oOri-
TAMI3YIOTBCS IIiJl Yac HABYAHHA 1 3a0€3MeUyI0Th OTJIMHAHHS 30ypeHb Ta BUTOHUCHY JIETpaallifo. Y 3alporoHOBa-
HOMY METOI HaBYaHHS Iepen0avacThcsl 3aCTOCYBaHHA KOMOIHOBaHOI (DYHKIIIi BTPAT, IO J03BOJSE BUKOPUCTAHHS
SIK PO3MIYCHUX, TaK 1 HEPO3MIUEHUX NTAHWX, Peali3ye KOMIIPECIF0 O3HAKOBOI'O IMOJAHHS A0 JUCKpETHOI (opMH i 3a-
Oe3medyye KOMITAKTHICTD PO3MOALTY KJaciB i Makcumizatiro Oydeproi 30HM Mk kiacamu. OCHOBHOIO CKJIaJIOBOIO
¢yHKIIT BTpaT € ycepeqHeHe 3a andaBiToM KIIACiB 3HaYCHHS HOpMOBaHOI Momudikarii indopmariiitaoi mipu [len-
HOHA, IO BUpPa)XXCHA SK (PYHKIIIOHAT TOYHICTHUX XapakTepHCTHK. [Ipy IbOMY TOUYHICTHI XapaKTEpUCTHKHA 00-
YHUCITIOIOTHCS Ha OCHOBI 3IUIA/DKEHUX BEPCIH PO3IIONUTY pe3yibTaTiB MEePEeBipKH CTATHCTHYHUX Timore3. Excrepu-
MEHTaJIFHO MiJITBEP/DKEHO, IO 3aIPONOHOBAHMH MinXia 3a0e3rnedye NMeBHUH piBeHb MOTNIMHAHHS 30ypeHb, BUTOH-
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YeHy Jierpajamilo Ta BigHOBIeHHs. Ili yac TecTyBaHHS 3alpOIIOHOBAHOTO aNropuTMy Ha Habopi manux Cifarl0
BCTAaHOBJICHO, IO 1HTETPAILHUI ITOKAa3HUK PE3LIBETHOCTI JI0 YIIKO/PKEHHS TEH30DPiB 1HBEPCI€I0 OIHOTO BUITAIKOBO
obpaHoro 0iTy craHOBUTH OH3bK0 0,95, SKIO YacTka yIKOIKEHUX TeH30piB He nepesuirye 30 %. Takox, mix yac
TECTyBaHHS 3alpOIIOHOBAHOI'O AJIITOPUTMY OYJIO BCTaHOBJIEHO, IIO MPOTHOOpYA aTaka 3i 30ypeHHsIM, 10 He mepe-
BuIye 3a Loo-HOpMOIO mopir piBHUH 3, 3a0e31euye pe3ibeHTHICTD, SKa MEPEBUIIYE 3a IHTErPaIbHAM MOKa3HIUKOM
3HaueHHs 0,95. Kpim Toro inTerpaibHUN MOKa3HUK PE31TLEHTHOCTI i/ Yac aJanTallii 10 MOSIBH IBOX HOBHX KJIACiB
cranoButh 0,959. InTerpanbHUil MOKa3HUK PE3LTBEHTHOCTI A0 PealbHOro JIpeiidy KOHIENmid Mix ABOMa Kiacamu
cranoButh 0,973. IlinTBeprKeHO 3AaTHICTH alanTalii JO MOSBM HOBHX KiaciB abo apelidy KoHuenuiii B 8 pasiB
LIBHIIE HIXK HABYAHHS 3 HYIIS.

Karouosi cioBa: xnacugikaiist 300pakeHp; poOacTHICTh; PE3UTLEHTHICTh; BHUTOHYEHA JIETpajallisi; MpOTH-
Oopui aTaky; 1HXKeKIisl HeCIPaBHOCTEH; Aper(h) KOHIIENIIiH.
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