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PREDICTIVE MODEL OF COVID-19 EPIDEMIC PROCESS  

BASED ON NEURAL NETWORK 
 

The COVID-19 pandemic, which has been going on for almost three years, has shown that public health systems 

are not ready for such a challenge. Measures taken by governments in the healthcare sector in the context of a 

sharp increase in the pressure on it include containment of the transmission and spread of the virus, providing 

sufficient space for medical care, ensuring the availability of testing facilities and medical care, and mobilizing 

and retraining medical personnel. The pandemic has changed government and business processes, digitalizing 

the economy and healthcare. Global challenges have stimulated data-driven medicine research. Forecasting the 

epidemic process of infectious processes would make it possible to assess the scale of the impending pandemic 

to plan the necessary control measures. The study builds a model of the COVID-19 epidemic process to predict 

its dynamics based on neural networks. The target of the research is the infectious diseases epidemic process in 
the example of COVID-19. The research subjects are the methods and models of epidemic process simulation 

based on neural networks. As a result of this research, a simulation model of COVID-19 epidemic process based 

on a neural network was built. The model showed high accuracy: from 93.11% to 93.96% for Germany, from 

95.53% to 95.54% for Japan, from 97.49% to 98.43% for South Korea, from 93.34% up to 94.18% for Ukraine, 

depending on the forecasting period. The assessment of absolute errors confirms that the model can be used in 

healthcare practice to develop control measures to contain the COVID-19 pandemic. The respective contribution 

of this research is two-fold. Firstly, the development of models based on the neural network approach will allow 

estimate the accuracy of such methods applied to the simulation of the COVID-19 epidemic process. Secondly, 

an investigation of the experimental study with a developed model applied to data from four countries will con-

tribute to empirical evaluation of the effectiveness of its application not only to COVID-19 but also to other 

infectious diseases simulations. Conclusions. The research’s significance lies in the fact that automated decision 

support systems for epidemiologists and other public health workers can improve the efficiency of making anti-
epidemic decisions. This study is especially relevant in the context of the escalation of the Russian war in Ukraine 

when the healthcare system's resources are limited. 

 

Keywords: epidemic model; epidemic process; epidemic simulation; simulation; COVID-19; neural network. 

 

Introduction 
 

The COVID-19 pandemic, which has been going on 

for almost three years, has shown that public health 

systems are not ready for such a challenge [1]. As of 

September 2022, more than 630 million people fell ill 

worldwide, more than 6.5 million of whom died [2]. 

In the context of the spread of COVID-19, national 

health systems have experienced an excessive load, 

which included a lack of medical personnel, a shortage of 

necessary equipment, overburdened hospitals, a lack of 

diagnostics and specific treatment, etc. In some countries, 

such as the UK and Italy, a higher proportion of severe 

and extremely severe forms of novel coronavirus 

infection has been observed, which has led to a rapid 

depletion of human resources for providing medical care, 

the stock of biomedical materials, and beds to 

accommodate patients [3, 4]. South Korea has 

experienced a shortage of hospital beds, resulting in 

patients dying at home while waiting to be admitted to 

the hospital [5]. With the onset of the pandemic in the 

United States, there was a shortage of personal protective 

equipment and medical personnel in the country [6].  

Measures taken by governments in the healthcare 

sector in the context of a sharp increase in the pressure 

on it include containment of the transmission and spread 

of the virus, providing sufficient space for medical care, 

ensuring the availability of testing facilities and medical 

care, and mobilizing and retraining medical 

personnel [7]. Some countries have timely introduced 

innovative approaches to contain the pandemic. For 

example, thanks to mass screening of morbidity and 

technologies for contact tracing of infected patients, 

Singapore made it possible to introduce 14-day isolation 

of people who had contact with patients [8]. In countries 

with high healthcare funding, such as Sweden, the 

capacity of the national healthcare system made it 

possible to provide patients with specialized beds, which 
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made it possible not to implement a complete 

lockdown [9]. However, no country has been able to 

properly implement the full range of measures necessary 

to contain the spread of new coronavirus infection. 

The pandemic has changed government and 

business processes, digitalizing the economy and 

healthcare. Global challenges have stimulated data-

driven medicine research aimed at the analysis of medical 

data [10], automated medical diagnostics [11], analysis 

of medical images [12], the study of molecular 

structures [13], identification of factors affecting the 

development of the disease [14] and spread of the 

epidemic process [15], etc. 

Forecasting the epidemic process of infectious 

processes would make it possible to assess the scale of 

the impending pandemic to plan the necessary control 

measures. 

Therefore, this study aims to build a model of the 

COVID-19 epidemic process to predict its dynamics 

based on neural networks. The research is targeted at the 

infectious diseases epidemic process by the example of 

COVID-19. The research subjects are meth-ods and 

models of epidemic process simulation based on neural 

networks. 

To achieve the aim of the research following tasks 

have been formulated: 

1. Methods and models of COVID-19 forecasting 

should be analyzed. 

2. A simulation model of the COVID-19 epidemic 

process based on neural networks should be developed. 

3. The selection of hyperparameters of the 

developed model should be optimized using the grid 

search method. 

4. Verification of the developed model should be 

provided. 

5. Results obtained during the experimental 

studies should be analyzed. 

The respective contribution of this research is two-

fold. Firstly, the development of models based on the 

neural network approach will allow estimating the 

accuracy of such methods applied to the simulation of the 

COVID-19 epidemic process. Secondly, an investigation 

of the experimental study with a developed model 

applied to data from four countries will contribute to 

empirical evaluation of the effectiveness of its 

application not only to COVID-19 but also to other 

infectious diseases simulations. 

In this paper, section 1, namely the current research 

analysis, provides the current state of COVID-19 epi-

demic process simulation methods and models. Section 

2, namely Materials and Methods, provides methods of 

neural network models development, methods of soft-

ware implementation, and model of COVID-19 based on 

neural network. Section 4 provides the results of forecast-

ing of COVID-19 morbidity for Germany, Japan, South 

Korea and Ukraine. Conclusions describe the outcomes 

of the investigation. 

Given research is part of a project on development 

of complex intelligent information system for epidemio-

logical diagnostics, the concept of which is discussed 

in [16]. 

 

1. Current Research Analysis 
 

Methods for predicting the dynamics of infectious 

morbidity have been known for more than a century, and 

research in this direction begins with the work of Ker-

mack and McKendrick. They formulated the classical 

SIR model [17]. Models of the epidemic process have 

significantly developed with the spread of the COVID-

19 pandemic. At the same time, most of the research is 

still based on the compartmental approach, i.e., the de-

velopment of the classic SIR model developed almost 

100 years ago. 

Thus, in [18], two compartmental models of the dy-

namics of the incidence of COVID-19 were considered 

to study individual behavior during the spread and con-

tainment of the epidemic. The results show that the best 

investment strategy in social distancing reduces the epi-

demic peak for infected cases. By increasing the vaccine 

coverage, the epidemic peak for infected cases decreases. 

The authors of [19] use the SEIR model to model the dy-

namics of COVID-19 in Slovenia. The standard model 

has been extended to distinguish between age groups, 

symptomatic versus asymptomatic disease progression, 

and vaccinated and unvaccinated populations. 

The study [20] is devoted to developing a compart-

mental model of COVID-19, which includes the effect of 

unconnected infectious links of the transmission. The dis-

continuous ties model proposed by the authors quantita-

tively describes the mechanism of suppression of second-

ary transmission of COVID-19. The study results show 

that the shape of epicurves of confirmed cases is deter-

mined by the probability of unrelated infectious associa-

tions, and the magnitude of cases is proportional to the 

exponent of the base reproduction number in each infec-

tious burst generated by the virus, the base reproduction 

number. 

The authors of [21] extend the SEIRD model of the 

COVID-19 epidemic process by adding a vaccinated 

population and forming a global model. The study results 

show that 30-day forecasts reproduce the spread of the 

infection well, better for regional than national data. The 

study [22] adapts the SIR epidemiological model to study 

the evolution of the spread of COVID-19 in Germany and 

Brazil. The authors propose a simple probabilistic 

method for the evolution of active cases, which is helpful 

for automatically estimating the parameters of an epide-

miological model.  
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However, the compartmental approach to modeling 

the epidemic process has some disadvantages, including 

insufficient accuracy, low adaptability of the model to 

external factors, the high computational complexity of 

the model, etc. 

Models based on machine learning show higher ac-

curacy in predicting the dynamics of COVID-19. The 

study [23] considers ARIMA, SARIMA, and Prophet 

models to predict daily new cases and cumulative con-

firmed cases of COVID-19 in the US, Brazil, and India 

over 30 days. The authors of [24] explore standard statis-

tical machine learning models for COVID-19 modeling: 

linear regression, least total shrinkage and determination 

administrator, and support vector machine. To improve 

accuracy, the authors apply exponential smoothing to 

each model. The resulting ensembles effectively predict 

the dynamics of COVID-19 over the next 30 days and the 

impact of proactive assessments, such as social exclusion 

and isolation, on the spread of COVID-19. 

The authors of [25] use a random forest model to 

predict the number of COVID-19 cases at the US county 

level. At the same time, the authors propose a new func-

tion for training input data. The training uses case projec-

tions created by matching the estimated effective repro-

ductive number against real-time test data until they are 

maximally correlated, helping the model better fit the ep-

idemic trajectory set by traditional models. 

The study [26] proposes to apply Bayesian optimi-

zation to tune Gaussian process regression hyperparame-

ters to develop an efficient model for predicting recov-

ered and confirmed cases of COVID-19 in India and Bra-

zil. The authors of [27] propose a comprehensive fore-

casting ensemble framework based on six single predic-

tion models, including time-varying Jackknife model av-

eraging, time-varying parameters, time-varying parame-

ter SIR, logistic regression, polynomial regression, auto-

regressive moving average. 

All considered models based on statistical machine 

learning methods show accuracy sufficient for use in 

public health practice. However, only some models can 

use a large set of heterogeneous input data. 

On the other hand, some works devoted to applying 

the neural network approach to modeling COVID-19 

show even more relevant results in the healthcare system.  

Thus, the study [28] is devoted to building a model 

based on artificial neural networks to predict the effective 

reproductive number Rt trend. At the same time, the au-

thors use various architectures of neural networks, such 

as Feed Forward, Mono-Dimensional Convolutional, and 

Lon Short-Term Memory. As a result, the authors ob-

tained an Rt forecast with daily time resolution instead of 

the weekly resolution provided by official sources. 

The authors of [29] compared the prediction perfor-

mance of linear and non-linear prediction models using 

daily COVID-19 incidence data. In particular, Nonlinear 

Autoregressive Neural Network-work, Autoregressive 

Integrated Moving Average, TBATS, and Exponential 

Smoothing are considered. The results showed that the 

model based on neural networks shows the highest accu-

racy. 

The study [30] proposed an approach based on 

multi-source deep transfer learning to effectively predict 

the dynamics of COVID-19 in conditions of a small 

amount of data. This approach overcomes the problems 

of low variance and high bias in the model. The authors 

show that in addition to the dynamics of morbidity, the 

population density and economic conditions of the se-

lected territory are also critical. Long Short-Term 

Memory architecture is used for modeling.  

Paper [31] proposes a Convolutional Neural Net-

work with Long Short-Term Memory architecture using 

a spatio-temporal approach to predict the dynamics of 

COVID-19 for 7 days. Spatiotemporal representation al-

lows you to borrow data from neighbors for cell-level 

prediction. This allows accurate forecasts at the county 

level, which is essential for optimizing the allocation of 

healthcare resources in real-time. 

Taking into account recent advances in the develop-

ment of neural network models for the analysis of epi-

demic data, in this study, we propose a model of the 

COVID-19 epidemic process based on a neural network. 

 

2. Materials and Methods 
 

2.1. Development of Neural Network Model 
 

Training the developed network configuration is 

carried out iteratively following the error backpropaga-

tion method. At the first stage of each iteration, the data 

of the following training example is fed to the neurons of 

the input layer and propagated from the first layer to the 

last. In contrast, the initial value of each neuron is calcu-

lated by the formula (1): 

 

OUTq = fa(∑ OUTpwpq
N
p=1 ),  (1) 

 

where OUTq, and OUTp are output values of q and p neu-

rons; 

fa is activation function; 

wpq is connection between p and q neurons weight co-

efficient. 

At the second stage of the training iteration, the 

weight coefficients of neural connections are recalculated 

according to formula (2). Recalculation is performed 

starting from the last layer and ending with the first: 

 

wpq = (i + 1) = wpq(i) + nδqOUTp,        (2) 

 

where wpq(i+1) is new value of connection between p and 

q neurons weight coefficient; 
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wpq is old value of pq-connection weight coefficient; 

n is speed of training; 

q is delta coefficient of neuron q; 

OUTp is output value of neuron p. 

The delta coefficient involved in the calculation of 

weight values for the original layer is calculated by the 

formula (3) and for hidden layers by formula (4): 

 

δq = OUTq(q − OUTq)(vq − OUTq),       (3) 

δq = OUTq(1 − OUTq)∑ OUTpwpq
N
p=1 ,    (4) 

 

where OUTq, OUTp are input values of neurons q and p; 

wpq is connection between p and q neurons weight co-

efficient; 

v is valid value. 
 

2.2. Features of Neural Network Model Software  

Implementation 
 

The Dense layer implements the operation:  

 

output = activation (dot (input, kernel) + bias), 

 

where activation is the element-by-element activation 

function passed as the activation argument, Kernel is the 

weight matrix created by the layer, and Bias is the bias 

vector created by the layer (only applies if use_bias is 

True). If the input to the layer has a rank greater than 2, 

it is smoothed before the output from the Kernel. The ar-

guments are: 

 units are natural numbers, the dimension of the 

source space; 

 activation is the activation function to use. If noth-

ing is specified, no activation is applied (i.e. "linear" ac-

tivation: a(x) = x); 

 use_bias is a boolean whether the layer uses a bias 

vector; 

 kernel_initializer is the initializer for the Kernel 

weight matrix; 

 bias_initializer is the initializer for the bias vector; 

 kernel_regularizer is a regulator function applied 

to the Kernel weight matrix; 

 bias_regularizer is the regularizer function ap-

plied to the bias vector; 

 activity_regularized is the regulator function ap-

plied to the layer's output (its "activation"); 

 kernel_constraint is a constraint function applied 

to the Kernel weight matrix; 

 bias_constraint is the constraint function applied 

to the bias vector. 

The Dropout layer randomly sets the fraction of in-

put units to 0 each time it is updated during training, 

which helps prevent overfitting. The arguments are: 

 rate which floats between 0 and 1 and is a percent-

age of input blocks to turn off; 

 noise_shape is a 1D integer tensor representing 

the shape of the binary dropout mask that will be multi-

plied by the input; 

 seed is a Python integer to use as a random seed. 

Flatten layer, Keras.Layers.Flatten (data_format = 

None) flattens the input. The argument is data_format, a 

string, one of channels_last (default) or channels_first, 

the order in which the sizes are passed on the inputs. The 

purpose of this argument is to preserve weight ordering 

when switching the model from one data format to an-

other. channels_last corresponds to form inputs (batch, 

…, channels), and channels_first corresponds to form in-

puts (batch, channels, …). 

The Input layer, Keras.engine.input_layer.Input() is 

used to initialize the Keras tensor. A Keras tensor is an 

underlay tensor object (Theano, TensorFlow, or CNTK) 

that we augment with specific attributes to allow us to 

build a Keras model simply by knowing the model's in-

puts and outputs. Its arguments: 

 shape is a tuple of shape (integer), regardless of 

batch size. For example, shape=(32,) indicates that the 

expected input will be batches of 32-dimensional vectors; 

 batch_shape is a shape tuple (integer), including 

batch size. For example, batch_shape=(10, 32) indicates 

that the expected input will be batched with ten 32-di-

mensional vectors. batch_shape=(None, 32) specifies 

that batches with any number of 32-dimensional vectors; 

 name is an optional name string for the layer. It 

must be unique in the model. It will be automatically gen-

erated if it is not provided; 

 dtype is the data type expected in the input as a 

string (float32, float64, int32, ...); 

 sparse is a Boolean function indicating whether 

the created holder is sparse; 

 tensor is an additional existing tensor to wrap in 

the input layer. 

The Reshape layer, Keras.layers.Reshape(tar-

get_shape) reformats the output into a specific shape. The 

argument is target_shape, the target shape which is a tu-

ple of integers. The input form is arbitrary, although all 

sizes in the input form must be fixed. The keyword argu-

ment input_shape (a tuple of integers that does not in-

clude a reference axis) is used when using this layer as 

the first layer in the model. 

The Permute layer, keras.layers.Permute(dims) 

keeps the size of the input according to the given pattern. 

It is useful, for example, for connecting RNNs and con-

volutions. The argument is dims, a tuple of integers, 

which does not include sample dimensions. Indexing 

starts from 1. For example, (2, 1) takes on the first and 

second dimensions of the input parameter. The input 

form is arbitrary. The keyword argument input_shape (a 

tuple of integers that does not include a reference axis) is 

used when using this layer as the first layer in the model. 
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ActivityRegularization layer, keras.layers.Activi-

tyRegularization (l1 = 0.0, l2 = 0.0) is a layer that applies 

an update to input data based on a cost function. The key-

word argument input_shape (a tuple of integers that does 

not include a reference axis) is used when using this layer 

as the first layer in the model. 

Activations can be used either through the activa-

tions layer or the activations argument supported by all 

previous layers. The following activation functions are 

available: 

 Elu is an exponential linear block that returns an 

exponential linear activation function: x if x>0 and al-

pha*(exp(x)-1) if x<0; 

 Softmax activation function that returns a tensor 

as the output of a softmax transformation; 

 Selu is scaling exponential linear unit (SELU). 

SELU is: scale*elu(x, alpha), where alpha and scale are 

predefined constants. The values of alpha and scale are 

chosen such that the mean and variance of the inputs are 

maintained between two successive layers as long as the 

weights are properly initialized (see Lecun_normal ini-

tialization). The number of inputs is "large enough" (see 

links for more information). Returns a resized exponen-

tial activation function: scale*elu(x, alpha); 

 Softplus activation function, which returns the 

Softplus activation function: log(exp(x)+1); 

 Softsign activation function, which returns the 

softsign activation function: x/(abs(x)+1); 

 Relu is a rectification, linear block with default 

values that returns element by element. max(x,0). Other-

wise: f(x)=max_value for x>=max_value, f(x)=x for 

threshold<=x<max_value, f(x)=alpha*(x - threshold); 

 Tanh is the activation function in the form of a hy-

perbolic tangent, that returns the hyperbolic function: 

tanh(x) = (exp(x) – exp(-x))/(exp(x) + exp(-x)); 

 Sigmoid is an activation function in the form of a 

sigmoid, that returns the sigmoidal activation function: 

1/(1+exp(-x)); 

 Hard_sigmoid is the "hard" sigmoid activation 

function, which is faster to compute than the sigmoid ac-

tivation function. It returns: 0 if x<-2.5, 1 if x>2.5, 

0.2*x+0.5 if -2.5<=x<=2.5; 

 Exponential (basic) activation function, that re-

turns the exponential activation function: exp(x); 

 Linear (that is, identification) activation function 

returns the incoming tensor, unchanged. 

A metric is a function used to evaluate the perfor-

mance of the model. Metric functions are provided in the 

metrics parameter when the model is compiled. The met-

ric function is similar to the loss function, except that the 

results of the metric evaluation are not used when train-

ing the model. Any of the loss functions can be used as a 

metric function. Available metrics: accuracy, binary_ac-

curacy, categorical_accuracy, sparse_categorical_accu-

racy, top_k_categorical_accuracy, sparse_top_k_cate-

gorical_accuracy, cosine_proximity, clone_metric. 

The optimizer is one of the two arguments required 

to compile Keras. It is possible to either instantiate the 

optimizer before passing it to model.compile() or call it 

by name. In the latter case, the default optimizer settings 

will be used. The following optimizers are available: 

 SGD, Stochastic Gradient Descent Optimizer in-

cludes momentum support, learning rate decay, and 

Nesterov momentum; 

 RMSprop optimizer is recommended to leave the 

parameters of this optimizer at their default values  

(except for the learning rate, which can be freely config-

ured); 

 Adagrad is an optimizer where the learning rate 

depends on specific parameters adapted to how often the 

parameter is updated during training. The more updates a 

parameter receives, the slower the learning rate. It is rec-

ommended to leave the optimizer parameters at their de-

fault values; 

 Adadelta is a more robust extension of Adagrad 

that adapts the learning rate based on a sliding gradient 

update window instead of accumulating all the gradients 

from previous years. Thus, Adadelta continues to learn 

even when many updates have been made. Compared to 

Adagrad, there is no need to set the initial learning rate in 

the original version of Adadelta. Like most Keras opti-

mizers in this version, the user can set the initial learning 

rate and decay factor. Leaving the parameters of this op-

timizer at their default values is recommended; 

 Adam optimizer is the default parameter corre-

sponding to the parameters specified in the original work; 

 Adamax is a variant of Adam based on the infinity 

norm; 

 Nadam is a Nesterov Adam optimizer. Just as 

Adam is essentially RMSprop with momentum, Nadam 

is RMSprop with Nesterov momentum. 
 

2.3. Neural Network Model of COVID-19  

Epidemic Process 
 

Building a neural network system includes pro-

cessing input data, developing an architecture, and train-

ing the network. There is no general implementation al-

gorithm for each listed stage; the system configuration 

depends on many factors covered by a particular task. So, 

to obtain a forecast, when developing a neural network, 

the nature of the predicted time series, the desired form 

of obtaining the forecast, the forecasting horizon, the re-

quirement for the time of obtaining the forecast, and the 

volume of input data are taken into account. Flexibility 

and lack of strict formalization in the development of the 

system provide a wide range of opportunities for re-

search, improvement, and adaptation of existing models 
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of neural networks in order to improve the accuracy of 

the forecast. 

When solving the forecasting problem, the neural 

network system is built in the following way: the input 

layer contains several neurons, to which the values of the 

time series under study are supplied, and the last layer 

consists of one neuron, the output of which is a forecast. 

The disadvantage of implementing this algorithm is 

relatively fast error accumulation. 

As a result of the research, a solution was developed 

and tested to eliminate the drawback described above to 

increase the forecast's accuracy. According to the results 

obtained, it is proposed to make the following changes to 

the architecture of the predictive neural network: 

 increase the number of neurons in the initial layer, 

determined by the number of prediction steps; 

 introduce connections between neurons of the in-

itial layer. 

An increase in the accuracy of the forecast occurs 

due to the connection of the output neurons with each 

other so that the value obtained on the first output neuron 

is fed to the input of the second output neuron, and the 

value obtained on the first and second is taken into ac-

count on the third, etc. In other words, for each next neu-

ron of the initial layer, in addition to the signals from the 

neurons of the penultimate layer, the signals received al-

ready at the previous outputs of the network should be 

fed. 

To predict the dynamics of COVID-19, the follow-

ing neural network was built with the structure: 6 pairs of 

layers Dense (relu activation, 64 neurons) and Dropout, 

the last layer is Dense (relu activation), one output, opti-

mizer is rmsprop, error function is mse. 

 

3. Results 
 

Developed neural network model was implemented 

in the Python programming language. An experimental 

study was carried out to forecast new cumulative cases of 

COVID-19 in specified territory for 3, 7, 10, 14, 21 and 

30 days. 
 

3.1. COVID-19 Dynamics Forecasting 
 

Data from the John Hopkins Coronavirus Resource 

Center [32] on new cases of COVID-19 was used for the 

pilot study. A neural network model has been applied to 

predict new cumulative COVID-19 cases in Germany, 

Japan, South Korea, and Ukraine. These countries were 

selected because The dynamics of the spread of COVID-

19 and the control measures implemented in these terri-

tories differed. The forecast was built for the dynamics of 

the epidemic process until February 24, 2022, because 

The escalation of the Russian war in Ukraine has signifi-

cantly affected the dynamics of COVID-19 and the reg-

istration of new cases on the territory of Ukraine. The 

dashboard does not provide data on the spread of 

COVID-19 in Ukraine after February 24, 2022. 

Figure 1 presents the results of predicting new cu-

mulative cases of COVID-19 in Germany. Figure 2 pre-

sents the prediction results for new cumulative cases of 

COVID-19 in Japan.  

 

 
 

Fig. 1. Forecasting of COVID-19 new cases  

in Germany 

 

 
 

Fig. 2. Forecasting of COVID-19 new cases  

in Japan 

 

Figure 3 presents the results of predicting new cu-

mulative cases of COVID-19 in South Korea.  

 

 
 

Fig. 3. Forecasting of COVID-19 new cases  

in South Korea 
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Figure 4 presents the results of predicting new cu-

mulative cases of COVID-19 in Ukraine. 

 

 
 

Fig. 4. Forecasting of COVID-19 new cases  

in Ukraine 
 

3.2. Forecast Accuracy Estimation 
 

Using the relative error of the training data, one can 

assess the adequacy of the constructed model. Relative 

errors were calculated for retrospective cumulative new 

cases forecast for 3, 7, 10, 14, 21, and 30 days to assess 

the accuracy of the constructed forecasts. The relative er-

ror of the forecasted data shows the accuracy of the con-

structed forecast of cumulative new cases of COVID-19. 

Table 1 presents the values of relative error for 3, 7, 

10, 14, 21, and 30 day forecasts of cumulative new 

COVID-19 cases in Germany, Japan, South Korea, and 

Ukraine. Relative error values show the accuracy of the 

model obtained but are not informative for use in public 

health practice. Therefore, indicators of the average ab-

solute error were also calculated, shown in Table 2. 

The results of building test models showed that it 

takes 50 to 55 days of information on the incidence to 

train the model, so 55 days were used to train the model. 

That is, such a model cannot be used at the pandemic's 

beginning. 

Table 1 

Relative error of forecast (%) 

Duration of forecast 

(days) 
Germany Japan South Korea Ukraine 

Training 3 12,2841 22,3998 1,9539 13,7484 

Forecast 3 6,8896 4,4620 2,5084 5,8373 

Training 7 12,3262 22,5172 1,9517 13,8039 

Forecast 7 6,2943 4,4612 2,3792 5,8247 

Training 10 12,3562 22,6063 1,9507 13,8439 

Forecast 10 6,2792 4,4614 2,3142 5,9379 

Training 14 12,4020 22,7264 1,9523 13,8974 

Forecast 14 6,0395 4,4636 2,1418 6,0404 

Training 21 12,4740 22,9403 1,9609 13,9856 

Forecast 21 6,1131 4,4683 1,8332 6,3146 

Training 30 12,5513 23,2229 1,9761 14,0927 

Forecast 30 6,5074 4,4734 1,5740 6,6558 

 

Table 2 

Mean absolute error of forecast (number of cases) 

Duration of forecast 

(days) 
Germany Japan South Korea Ukraine 

Training 3 197468 32652 1473 74829 

Forecast 3 430169 77053 11583 213606 

Training 7 196427 32361 1416 73883 

Forecast 7 388059 77030 10783 211625 

Training 10 195590 32141 1377 73102 

Forecast 10 381425 77027 10358 214719 

Training 14 194834 31843 1338 75994 

Forecast 14 45122 9633 1182 27097 

Training 21 193181 31310 1296 69992 

Forecast 21 352587 77120 7940 223187 

Training 30 190476 30606 1259 67131 

Forecast 30 357787 77180 6674 229591 
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3.3. Optimizing Model Hyperparameters  

with Mesh Search 
 

Almost every machine learning method has hy-

perparameters - characteristics, the value of which deter-

mines the model's training process. The process of find-

ing the best hyperparameters is called hyperparameteri-

zation. 

In order to automate the selection of hyperparame-

ters, the GridSearchCV class was used. The method using 

this class is straightforward: 

 a grid is supplied with different values for each 

hyperparameter; 

 for each sample from the Cartesian product of 

sets, the model is trained; 

 with the help of different metrics, the models are 

compared with each other; 

 based on the comparison results, the best model is 

selected. 

Let us assume that our model has three hyperparam-

eters - alpha, gamma, and n_iter. Let the following pos-

sible values be given to them: 

 alpha = [0.1, 0.2, 0.3, 0.4, 0.5]; 

 gamma = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; 

 n_iter = [100, 200, 300, 400, 500]. 

According to the laws of combinatorics, the total 

number of trained models is 5*10*5=250. All these mod-

els are compared using the evaluation metric, and the best 

one is selected. 

To evaluate the model on more than just the training 

data passed to the fit() method, use the PredefinedSplit 

class and create a pipeline like this: 

 

X, y = data 

X_train, X_test, y_train, y_test = train_test_split (X, 

y) 

cv = PredefinedSplit ([- 1 if x in X_train else 0 for x 

in X]) 

# Create Pipeline 

... 

pipeline = Pipeline (...) 

# Create GridSearch 

... 

grid_search = GridSearchCV (estimator = pipeline, 

cv = cv, ...) 

# Fit model 

grid_search.fit (X, y) 

# Get best model for current task 

model = grid_search.best_estimator_ 

 

Conclusions 
 

The article is devoted to developing a neural net-

work model for predicting the dynamics of the incidence 

of COVID-19 in a selected area. The adequacy of the 

model was tested on data on the incidence of COVID-19 

in Germany, Japan, South Korea, and Ukraine, taken 

from the John Hopkins Coronavirus Resource Center. 

The model showed high accuracy: from 93.11% to 

93.96% for Germany, from 95.53% to 95.54% for Japan, 

from 97.49% to 98.43% for South Korea, from 93.34% 

up to 94.18% for Ukraine, depending on the forecasting 

period. The assessment of absolute errors confirms that 

the model can be used in healthcare practice to develop 

control measures to contain the COVID-19 pandemic. 

The scientific novelty of the study lies in a new ap-

proach to solving the problem of predicting epidemic 

processes. As part of the approach, several neural net-

works are created, tested by mistake, and the best config-

uration of the neural network parameters is automatically 

selected. The final forecast is built based on the best 

model. Thus, the proposed model does not require man-

ual tuning, which allows its use in automated decision 

support systems for epidemiological diagnostics. 

The study's practical significance lies in the fact that 

automated decision support systems for epidemiologists 

and other public health workers can improve the effi-

ciency of making anti-epidemic decisions. This study is 

especially relevant in the context of the escalation of the 

Russian war in Ukraine when the healthcare system's re-

sources are limited. 

Future research development. The simulation 

model of the COVID-19 epidemic process developed as 

part of this study is highly accurate. The adequacy of the 

model is sufficient to assess the further development of 

the pandemic in a specific area. However, the disad-

vantage of all models based on neural networks is their 

low interpretability. So, specialists making decisions re-

garding preventive measures cannot identify factors in-

fluencing the development of infectious morbidity. 

Therefore, further research aims to combine neural net-

works, statistical machine learning, and agent-based 

models to obtain a hybrid information support decision-

making system about epidemic well-being. The concept 

of the proposed system is described in [16], some of the 

models which are parts of the system were published in 

[33]. Using agent-based models will make it possible to 

conduct experiments to evaluate the information content 

of external factors that affect the dynamics of the epi-

demic process. Furthermore, neural network models of 

epidemic processes will improve the accuracy of fore-

casts by calibrating the agent-based model on the results 

obtained using machine learning models. 
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ПРОГНОЗНА МОДЕЛЬ ЕПІДЕМІЧНОГО ПРОЦЕСУ COVID-19  

НА ОСНОВІ НЕЙРОННОЇ МЕРЕЖІ 

Сергій Кривцов, Євген Меняйлов, Ксенія Базілевич, Дмитро Чумаченко 

Пандемія COVID-19, що триває майже три роки, показала, що системи охорони здоров'я не готові до 

такого виклику. Заходи, які вживаються урядами у сфері охорони здоров'я в умовах різкого посилення нава-

нтаження на неї, включають стримування передачі та поширення вірусу, надання достатнього простору для 

надання медичної допомоги, забезпечення доступності лабораторій для тестування та медичної допомоги, а 

також мобілізацію перепідготовки медичних кадрів. Пандемія змінила державні та бізнес-процеси, оцифру-

вавши економіку та охорону здоров'я. Глобальні виклики стимулювали дослідження в галузі медицини на 
основі даних. Прогнозування епідемічного перебігу інфекційних процесів дозволило б оцінити масштаби па-

ндемії, що насувається, для планування необхідних заходів боротьби. Метою дослідження є побудова моделі 

епідемічного процесу COVID-19 для прогнозування його динаміки на основі нейронних мереж. Об’єкт дос-

лідження – епідемічний процес інфекційних захворювань на прикладі COVID-19. Предмет дослідження – 

моделі та методи моделювання епідемічного процесу на основі нейронних мереж. В результаті дослідження 

побудовано імітаційну модель епідемічного процесу COVID-19 на основі нейронної мережі. Модель показала 

високу точність: від 93,11% до 93,96% для Німеччини, від 95,53% до 95,54% для Японії, від 97,49% до 98,43% 

для Південної Кореї, від 93,34% до 94,18% для України, залежно від періоду прогнозування. Оцінка абсолю-

тних похибок підтверджує, що модель може бути використана в практиці охорони здоров'я для розробки за-

ходів контролю за стримуванням пандемії COVID-19. Внесок цього дослідження у галузь подвійний. По-пе-

рше, розробка моделей на основі нейромережевого підходу дозволить оцінити точність таких методів стосо-
вно моделювання епідемічного процесу COVID-19. По-друге, вивчення експериментального дослідження із 

застосуванням розробленої моделі до даних із чотирьох країн сприятиме емпіричній оцінці ефективності її 

застосування не лише до COVID-19, а й до інших симуляцій інфекційних захворювань. Висновки. Значимість 

дослідження полягає в тому, що автоматизовані системи підтримки прийняття рішень епідеміологами та ін-

шими працівниками охорони здоров'я дають змогу підвищити ефективність прийняття протиепідемічних рі-

шень. Це дослідження особливо актуальне в умовах ескалації російської війни в Україні, коли ресурси сис-

теми охорони здоров'я обмежені. 

Ключові слова: епідемічна модель; епідемічний процес; моделювання епідемії; імітаційне моделю-

вання; COVID-19; нейронна мережа. 
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