Specialized systems of data processing

153

UDC 004.312.466.05

doi: 10.32620/reks.2022.4.12

Artem PEREPELITSYN, Vitaliy KULANOV, Inna ZARIZENKO

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

METHOD OF QOS EVALUATION OF FPGA AS A SERVICE

The subject of study in this article is the evaluation of the performance issues of cloud services implemented
using FPGA technology. The goal is to improve the performance of cloud services built on top of multiple FPGA
platforms known as FPGA-as-a-Service (FaaS). Task: to analyze the delays in communications between host
computer and FPGA; propose the steps of development to reduce the delay and perform the evaluation of the
response time for the FPGA-based accelerator depending on number of involved cards; consider the reliability
aspect of such systems implemented using programmable logic. According to the tasks, the following results
were obtained. The FPGA-as-a-Service where FPGA resources are provided through a set of hardware/software
toolset is considered. The usage of queueing theory for cloud-based services is analyzed. The contribution of the
parts of FPGA-as-a-Service to the final delay of the service is discussed. The process of modeling of work the
services based on FPGA accelerator cards with use of Jackson's network is analyzed in detail. The model of the
delays of FaaS that considers the parameters of accelerator FPGA cards is offered. The formula of the total
response time of the service combined based on the response of the components of is obtained. The proposed
steps of reduce data processing delays include increase the size of data blocks for processing in FPGA by each
kernel, change the communication model with kernel from sequential to pipelined, following timing closure tech-
nique and use more FPGA accelerator cards in parallel to divide the enquiring delay. Based on the proposed
model the evaluation of response time of FaaS was done. The advantage of the use of many FPGAs in parallel
for same data processing task instead of implementation of requests thread for each accelerator card is shown.
Conclusions. The main contribution of this study is a step forward to the modeling of FPGA-based services that
can be used for FPGA-based artificial intelligence (Al) applications. It helps to improve the performance of the
system by means of reducing the delays at different stages of requests processing. Another side of this result is
the reliability aspect that is based on modified manner of service operation in case of use the proposed steps of
system optimization. It helps to improve the processing of requests to FaaS. The proposed method is the next
step after prototyping of such systems because it helps to turn the FaaS from the object for development to the
tool for deployment of new technologies like Al applications.

Keywords: FPGA; FPGA-as-a-Service; FaaS; cloud infrastructure; queueing theory; performance; reliability.

Introduction

FPGA accelerators provide high performance, high
throughput and predictable time delay with higher design
flexibility and relatively low power consumption. FPGA
as a service allows applying a new paradigm for address-
ing issues related to redundancy and parallelization when
creating complex safety-critical components, thereby
making the transition to the new phase of development of
service systems that enhance the reliability of cloud tech-
nologies [1].

FPGA-oriented systems are one of the priority areas
for development of modern cloud technologies, which, in
fact, determines the technology for efficient acceleration
of dedicated tasks.

But FPGA resources can support restricted number
of kernels running in parallel, every single kernel can run
several DPUs (Data Processing Unit) in parallel as well,
and multiple FPGA accelerator cards are connected
within a single host computer. Communication with ker-
nels adds the response delay due to the specifics of com-
munication framework implementation [2]. Adding more
DPUs allows saving time on communication with the

host, but it may also decrease the final clock frequency
(timings) of a project. But at the same time solving of
same computational task with few FPGAs helps improv-
ing the total bandwidth.

To find the optimal numbers of DPUs in the kernel,
number of kernels in a FPGA and a quantity of FPGAs
within a host a developer needs to perform iterative ex-
perimental research to find out the results (system clock
frequency and a response time) for different configura-
tions.

To avoid this overhead the queueing theory can be
used to evaluate the system. The model allows guaran-
teeing QoS by following one of the important its charac-
teristics which is the response time.

The cloud system is modeled using Jackson's theo-
rem [3], which can be used to determine and measure the
QoS, based on the response time for services.

Response time is defined as a sum of latency and
service time in a cloud and components’ delays.

The purpose of the study is to improve the perfor-
mance of services built on top of multiple FPGA plat-
forms known as FPGA-as-a-Service (FaaS).

© Artem Perepelitsyn, Vitaliy Kulanov, Inna Zarizenko, 2022

154

Radioelectronic and Computer Systems, 2022, no. 4(104)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

To achieve the goal, the following tasks are going
to be performed: to analyze the delays in communications
between host computer and FPGA, to propose steps to
reduce the delay and to perform the evaluation of the re-
sponse time for the FPGA-based accelerator depending
on cards used and consider the reliability aspect of such
systems.

1. Analysis of use of Queueing Theory
for building FaaS platform

Many modern FPGA accelerating cards can be con-
sidered as a reconfigurable platform for different pur-
poses. Users have an opportunity to implement their own
design along with making changes in a predefined project
architecture of existing FPGA cores according to the re-
quirements to achieve greater performance compared
with products based on fixed architectures [1, 4].

Providing FPGA resources allows users to allocate
an entire FPGA silicon chip for their projects and imple-
ment a hardware architecture (platform) according to the
business needs. Also, it is possible to allocate a host ma-
chine to a user with a set of connected FPGA-boards.

These FPGA accelerating cards allocated remotely
and connected to the server using various interfaces. Ser-
vice-oriented software is used along with the built-in sys-
tem for processing/controlling the process of loading data
and firmware to configure programmable logic [2].

A user interacts with a server to share and collect
data; a user can provide a configuration file of a bitstream
(firmware) for the programmable device. When manag-
ing remote operations with an FPGA board, one must
consider distributed access, which consists of setting up
permissions as well as setting up and organizing a
queue [4].

To initiate interaction with FaaS, clients send re-
quests to rent dedicates resources starting from hardware
ones — FPGA boards, RAMs, CPU cores etc. to appropri-
ate software applications and tools. The FaaS platform
allocates resources in accordance with client’s needs. The
development process is based on modern software devel-
opment strategy involving CI/CD (Continuous Integra-
tion/Continuous Delivery) pipelines [4].

To deploy the FaaS infrastructure, one can use the
containerization technology, where each software com-
ponent is installed in a separate container, isolated from
other applications, but executed within the same hard-
ware infrastructure [5].

The performance of cloud services can be modeled
using response time metrics, throughput, and network us-
age [6, 7]. To analyze the quality of service in cloud com-
puting systems in case of processing complex requests
with multiple tasks and high system performance require-
ments, a queuing approach with the fork-join queuing
system can be used [6].

The model of use of parallel blocks M/M/1for the
average response time was obtained in [7] only for the
case of two M/M/1 systems operating in parallel, while
in [8], various methods for approximating the average re-
sponse time were obtained.

The response time distribution of the simulated sys-
tem can be obtained based on the model [8]. The system
model is expressed in an open M/M/m network, assum-
ing an exponential density function for arrival and service
times. Using the response time distribution, authors de-
termined the optimal level of service and the relationship
between the maximum number of tasks and the minimum
number of resources (virtual machines). The response
time is considered for both —the Queue waiting time and
the Service time.

But at the same time one queue is not enough for
modeling of servers. The response time of the system can
be treated as the Jackson network. And performance of
the server and the network are the significant parameters
which are greatly influenced system response time.

The result of the analysis shows that there are ex-
amples of modeling of architecture and implementation
of a cloud PaasS systems. Similar approach can be applied
for FaaS. The optimizing of the location [9] of service-
oriented cloud applications based on the Virtual Machine
(VM) should be also taken into account [10].

The performed analysis showed that queueing the-
ory is widely used for building models of different ser-
vice which are used for the evaluation of multiple QoS
metrics. Considering FaaS uses the same principle and
way of providing service it was suggested to use queuing
theory (QT) for its modeling.

2. QoS model of FaaS

The process of request processing in FaaS can be
represented as queue that consists of several service units
that are service channels. The channel is ready to receive
the request. The random nature of requests and the ser-
vice time leads to the fact that an excessively large num-
ber of requests can be accumulated at the input of the
gueue. They either queue or leave the system unattended,
while in other periods, the queue works with underload
or stands idle.

Due to the possible increase in the duration of ser-
vicing of request, a significant number of subqueries may
accumulate in the synchronization buffer, exceeding the
allowable volume, which may lead to failures, or de-
crease the quality of the services provided.

It's offered to apply a queuing system that repre-
sents Jackson's open network for modeling the work of
FaaS system.

Let consider an open queue network with K nodes
satisfying the following conditions:

Specialized systems of data processing 155
— each node corresponds to an M/M/n queuing 1 C(m,p)
system. The k node has n serving devices; Tps = ey @)

— clients arrive from the external environment to k
node according to the Poisson process with Ak intensity.
Requests can also come from other nodes to k node;

— aclient can visit the same node several times.

The network has a single IS entry point (Inbound
Server). The server acts as a load balancing device, which
redirects user requests to the processing server, where
i =1 ... m, namely the nodes of the processing server. The
load balancer is modeled by the M/M/1 queue, with the
arrival and service rates modeled exponentially with pa-
rameters A and L, where A < L. The processing server is
modeled as an M/M/m queuing system. It has a service
speed that is equal to p; itisp=pi,i=1..m.

OS is a cloud architecture output server that trans-
mits response data back to client who made request.

CS is a client-server. It sends exponentially distrib-
uted queries with the A parameter to the incoming IS
server. It also receives responses from cloud architecture.
CS receives files or fragments of files until the request is
completely satisfied. Both the OS and CS are also mod-
eled by the M/M/1 queue.

Connecting servers with exponential receipt and
distribution of services are independent of each other dis-
tribution [11]. Therefore, this is a power distribution for
clients leaving the server.

Based on Jackson's theorem for calculating the
overall average arrival rate, we must summarize the re-
sponse time from outside the system and the response
time of the internal nodes. Using Jackson's theorem, we
obtain y — the rate of arrival of the exponential distribu-
tion at both nodes, y =1/ (1 - 1).

The response time (T) of cloud architecture is deter-
mined by the following formula:

T:T|S +TPS +TOS +Tcs. (1)

Let us consider each term of this equation.

Tis defines the response time of the input server
(1S), which acts as a load-balancing device. The input
server is modeled as the M/M/1 queue. Thus, the formula
for obtaining the queue model for the cloud system is the
response time for the M/M/1 queue:

1
Tis=—=, 2
1-2
L
where A is the arrival rate, and L is the input server ser-

vice speed.

TPS represents the response time of process service
nodes that actually process user requests. Process service
nodes are modeled as M/M/M queue. The response time
of the queue is determined by the formula:

where m is the number of processing elements, and y and
pw=pi, i=1... m, are the arrival and service rates of each
processing element.

A key point of Jackson's theorem is as follows: each
node can be considered independently of all other nodes,
and state probabilities can be determined using the Erlang
formula. This greatly simplifies the calculation of state-
space probabilities.

The term C (m, p) represents the Erlang formula,
which gives the probability of a new client joining
M/M/m queue. The Erlang formula is defined as:

(mp)" 1
11—
Cc(m,p)= T
m-1(mp)” (Mp)” 1
k=0 k1 m' 1-p
where p=1vy/p.

Tos represents the response time of the output
server (OS), which transfers data back to a client; its op-
eration is modeled as an M/M/1 queue. The service speed
of this node is defined as O/F, where O is the average
bandwidth speed (in bytes per second) of the OS, and F
is the average size of the system response files. Its re-
sponse time is determined by the formula:

F
Tos =—2 : ®)
e
o
g
F
Tos = . 6
0S =5 .F (6)

TCS is the response time of the client-server (CS)
that receives the data; its operation is modeled as an
M/M/1 queue.

The service speed, in this case, is defined as C/F,
where C is the average bandwidth rate of the client-server
in bytes per second. Like in Tos, F is the average size of
the system response files in bytes. The response time is
defined as:

E
Tes = c , (7)
1-_Y_
C
)
F
Teg =t . 8
CS =T F (8)

The performance of cloud systems must be adapted
to the needs of the area to which they are applied.

156

Radioelectronic and Computer Systems, 2022, no. 4(104)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

3. FaaS: proposed steps to reduce
data processing delays

The delay of the FPGA-based service includes the
delays of its parts. The projects implemented with XRT
framework show the delay during launch the kernel. It is
based on the way of communication of the kernel with
the host application. This communication process is re-
quired to pass the data and parameters to the kernel that
implements the functions that should be accelerated us-
ing FPGA.

Depending on the duration of one kernel iteration
the percentage of communication phase from overall ker-
nel execution time can be different. The longer duration
of the computation the less contribution of communica-
tion to the total kernel running time. Normally this dura-
tion is no longer few second. This is based on the nature
of system level implementation of the communication
with FPGA accelerator card [12].

But Xilinx provides different modes of communica-
tion with XRT-managed kernels [13]. Itis possible to use
the pipelined mode of communication to reduce the im-
pact of enquiring delay in total execution time. But it re-
quires the efforts from the developer.

To reduce the time of computations or running the
kernel it is necessary to improve the performance of the
FPGA implementation. This parameter depends on the
kernel clock frequency that can be assigned as v++ pa-
rameter of the project in Vitis [14].

But the final frequency of clk after the compilation
depends on the optimization of the project and can be less
then specified value.

To improve the timing parameters of FPGA project
it is recommended to follow Timing Closure tech-
nique [15].

The proposed model of FaaS response time can be
used to evaluate the delays in the service implementation
to optimize request enquiring and processing.

Considering the results of the delay evaluation in
FaaS components the following steps could be applied to
improve the timings:

1) increase the size of dataset (batch) for a single
data processing iteration to reduce the number of kernel
lunches that is one of the most time-consuming opera-
tions;

2) use Pipelined Execution Model instead of Se-
quential Execution Model as XRT Controlled Kernel Ex-
ecution Model;

3) follow Timing Closure as a basic recommenda-
tion of Xilinx (also provided in UG949) to improve the
final project clock frequency and as a result the total per-
formance;

4) use more FPGA accelerator cards in parallel for
same host-application to distribute data processing and
divide the enquiring delay.

4. FaaS response time evaluation

Throughput in data processing is one of the im-
portant indicators for the end user of the service. Also,
the response time of an individual service element or set
of services is important.

The ability to estimate response latency indicators
for a service and throughput indicators allows to predict
the operation of such a system depending on the intensity
of requests. Such assessment allows to detect bottlenecks
in advance and to use this information when building or
optimizing such a service.

The proposed FaaS model allows to carry out such
evaluation with the assignment of the actual values of the
parameters of individual components of the service.

The architecture deployed for this test case con-
sisted of servers created both using virtual and host ma-
chines containing an inbound server (IS), as well as out-
put server (OS) and client-server (CS). Virtual machines
were provided by VMAccel with the same U50 cards as
installed at the host machine.

According to the simulation results, the most signif-
icant improvement was obtained in the transition from
one to two virtual machines (fig. 1 and fig. 2). Adding of
one server allows to obtain faster response.

8000

7000 /I

6000 /
& 5000
=
8
2 4000 /
E 3000

2000

1000 —

//
0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Requests
Fig. 1. Response time (T) with one server

8000

7000

6000
4 5000
fe
o
& 4000
2
E 3000 //

2000 /

1000 "

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Requests

Fig. 2. Response time (T) with two servers

Specialized systems of data processing

157

Based on the model the response time depends on
different parameters including the delay of communica-
tion of XRT-managed kernel with the host application.
This delay can be shorted using the change of manner of
communication with kernel or by means of penalization
of the acceleration with use of few cards for same task.

If the host application enquires the task with use of
few FPGAs in parallel the delay for user would be the
same as for one chip. But in this case the amount of pro-
cessed datasets would be multiplied by the number of
cards running in parallel. It means that the contribution
of kernel communication delay to the total delay of data
processing depends on the number of working in parallel
FPGA accelerator cards. In this case to obtain the exact
value of the delay per dataset it is necessary to use the
coefficient. This coefficient is the result of the division of
1 by the number of involved cards.

The performed modeling of value of this coefficient
shows that for 2 cards in parallel the value of the kernel
communication delay per one dataset is a half of its value
for 1 card. Adding of more cards improves the FaaS tim-
ing and reduces the role and contribution of kernel com-
munication delay (fig. 3).

=
N

[y

\

o
Y
A

N

I
>

N

Coefficient of delay
&
/

\\

l

o

1 2 3 4 5 6 7 8
Total number of installed FPGA accelerators

Fig. 3. Dependence of the data transferring time
as the component of entire duration of data processing
in FPGA depending on number of installed cards

This result shows that it is important to organize the
parallel processing of the same task at all available FPGA
accelerator cards to reduce the impact of the communica-
tion delay. It means that if there are n cards and n tasks it
is better to organize only one processing thread with n
accelerators instead of creation of n parallel threads. The
rest tasks wait in the queue while current is processing on
n cards in parallel. This concept is based and valid for
XRT-managed FPGA projects.

These, the iterative evaluation of the delay and
throughput results for the service allows to change the
values of the parameters of individual components in ac-
cordance with the proposed set of steps. The optimization
of the system with values of parameters can reduce ser-
vice response times and increase throughput.

5. Discussion

This study considers the FPGA-as-a-Service in
which FPGA resources are provided through a set of
hardware/software toolset. The use of the proposed ap-
proach for modeling services based on FPGA allows de-
scribing the processes of processing requests in such sys-
tems at the level of the mathematical apparatus. This al-
lows you to find bottlenecks and influence the final
throughput of FPGA-based services.

It is shown that the total delay in the implementation
of such systems is the sum of two delay factors inside the
chip, the delay in the process of communication between
individual cores and the host computer, the total delay in
the server rack with a set of accelerator cards, and the
additional delay introduced by network.

The proposed sequence of steps to reduce overall
latency and increase system throughput results allows the
predictable reduction of latency at both: the chip and the
host levels.

These steps also include the process of increasing
the frequency of system clocking by optimizing the de-
sign itself inside the accelerator. This is important for im-
plementation of resource-intensive Al applications based
on different kinds of neural networks [16, 17].

Conclusions

The concept of developing cloud services using
FPGA-based systems has been described and discussed
to improve their productivity. The performed analysis
showed that FPGA implementation of acceleration for
the dedicated task ensured better performance then CPU
and even GPU implementations with less power con-
sumption.

The analysis showed that the process of program-
ming the FPGA solutions with accelerator cards adds the
delays caused by different reasons, including the delay of
data transferring between kernel and host computer, lim-
ited clock frequency of FPGA project and fixed number
of cards running in parallel.

To improve the timing of FaaS implementations it
was proposed to evaluate it using modeling. It was pro-
posed to use models based on the queueing theory. They
allow describe analytically the process of functioning of
FPGA as a service.

Different parameters of service organization were
analyzed including the speed and number of requests
from users, speed of server maintenance and internal ser-
vice performance.

Based on the proposed model the evaluation of re-
sponse time of FaaS was done to determine possibilities
of improving productivity. It was showed the difference
of the response time and internal delays for different
number of installed FPGA accelerator cards.

158

Radioelectronic and Computer Systems, 2022, no. 4(104)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

To improve the timing of FPGA-based services it
was proposed to use the set of optimization steps that can
be applied for both: system at the development stage and
for existing projects that allow modification and optimi-
zation.

The proposed steps include increase the size of data
blocks for processing in FPGA by each kernels, change
the communication model with kernel from sequential to
pipelined, following timing closure technique and use
more FPGA accelerator cards in parallel to divide the en-
quiring delay.

The model for designing cloud computing architec-
tures for FaaS is the main contribution of the research.
We consider the possibility of using the elements of the
queueing theory for analyzing performance and reliabil-
ity of the FaaS and FPGA technology. The queuing the-
ory and Jackson’s networks chosen to evaluate perfor-
mance in terms of response time to allow formulating
recommendations to improve technical characteristics.

The methodology for calculating the performance
parameters of cloud services proposed in the article can
be used to simplify the search of the bottlenecks in the
implementation of the service. It helps to improve the re-
liability of such systems.

It helps to improve the performance of the system
by means of reducing the delays at different stages of re-
quests processing. Another side of this result is the relia-
bility aspect that is based on modified manner of service
operation in case of use the proposed steps of system op-
timization. It helps to improve the processing of requests
to FaaS. The proposed method is the next step after pro-
totyping of such systems because it helps to turn the FaaS
from the object for development to the tool for deploy-
ment of new technologies like Al applications.

The contribution of the research is that this is a step
forward to the modeling of FPGA-based services that can
be used for FPGA-based Al applications. The develop-
ment of this methodological and technological basis is
the direction of further research and development.

Contribution of authors: tasks formulation, pro-
posing of steps to reduce data processing delays in FaaS,
description of FaaS evaluation and elements of QoS eval-
uation method — Artem Perepelitsyn; formulation the ti-
tle, goal and part of the research tasks, preparing of the
introduction and the analysis sections — Vitaliy Kulanov;
review and analysis of references on service modeling,
use Jackson's network for description of the model, cal-
culation and visualization the service response time —
Inna Zarizenko.

All the authors have read and agreed to the pub-
lished version of the manuscript.

References (GOST 7.1:2006)

1. Perepelitsyn, A. FPGA as a Service Solutions
Development Strategy [Text] / A. Perepelitsyn,
I. Zarizenko, V. Kulanov // Proceedings 2020 IEEE 11th
International Conference on Dependable Systems, Ser-
vices and Technologies, DESSERT 2020. — 2020.
— P. 376-380. DOI: 10.1109/DESSERT50317.
2020.9125017.

2. Zarizenko, 1. Analysis of tools and technologies
of FaaS development [Text] / I. Zarizenko, A. Pere-
pelitsyn // Radioelectronic and Computer Systems. —
2019. - No. 4. - P. 8893 DOI
10.32620/reks.2019.4.10.

3. Statistical Characterization of Containerized IP
Multimedia Subsystem through Queueing Networks
[Text] / M. Di Mauro, A. Liotta, M. Longo, F. Postiglione
/1 2020 6th IEEE Conference on Network Softwarization,
NetSoft 2020. — 2020. — P. 100-105. DOI: 10.1109/
NetSoft48620.2020.9165357.

4. Kulanov, V. Method of development and deploy-
ment of reconfigurable FPGA-based projects in cloud in-
frastructure [Text] / V. Kulanov, A. Perepelitsyn,
I. Zarizenko // Proceedings of 2018 IEEE 9th Interna-
tional Conference on Dependable Systems, Services and
Technologies, DESSERT 2018. — 2018. — P. 103-106.
DOI: 10.1109/DESSERT.2018.8409108.

5. Containerizing Alveo Accelerated Applications
with Docker [Online]. — Available at: https://xilinx.com/
developer/articles/containerizing-alveo-accelerated-ap-
plication-with-docker.html. — 27.01.2020.

6. Tsimashenka, |. Reduction of Subtask Disper-
sion in Fork-Join Systems [Text] / . Tsimashenka,
W. J. Knottenbelt // Computer Performance Engineering.
EPEW 2013. Lecture Notes in Computer Science. —
Springer, Berlin, Heidelberg, 2013. — Vol. 8168.
—P. 325-336. DOI: 10.1007/978-3-642-40725-3_25.

7. Samuilov, K. Analysis of the response time of a
cloud computing system [Text] / K. Samuilov, I. Zarya-
dov, A. Gorbunova // IX International industry scientific
and technical conference "Information Society Technol-
ogies". —2015. — P. 29-30.

8. Gaidamaka, Yu. A Simplified model for perfor-
mance analysis of cloud computing systems with dynamic
scaling [Text] / Yu. Gaidamaka, E. Sopin, M. Talanova //
Proc. of the 18th International Scientific Conference
"Distributed Computer and Communication Networks:
Control, Computation, Communications”, DCCN 2015.
—2015. — P. 75-86.

9. Vats, S. A Switch Based Resource Management
Method for Energy Optimization in Cloud Data Center
[Text] / S. Vats, S. Kumar Sharma, S. Kumar // Interna-
tional Journal of Computing. — 2021. — Vol. 20, iss. 1.
—P. 85-91. DOI: 10.47839/ijc.20.1.2103.

10. Genetic-Based Task Scheduling Algorithm with
Dynamic Virtual Machine Generation in Cloud Compu-
ting [Text] / A. A. A. Gad-Elrab, T. A. Alzohairy, K. R.

Specialized systems of data processing

159

Raslan, F. A. Emara // International Journal of Compu-
ting. — 2021. — Vol. 20, iss. 2. — P. 165-174. DOI:
10.47839/ijc.20.2.2163.

11. The queueing theory in cloud computing to re-
duce the waiting time [Text] / T. Sai Sowjanya,
D. Praveen, K. Satish, A. Rahiman // International Jour-
nal of Computer Science Engineering and Technology. —
2011.-Vol. 1, iss. 3. — P. 110-112.

12. Alveo U280 Data Center Accelerator Card User
Guide, Xilinx, UG1314 [Online]. — Available at:
sandycast.com/support/documentation/boards_and
kits/accelerator-cards/ug1314-u280-reconfig-accel.pdf.
—27.02.2020.

13.XRT Controlled Kernel Execution Models
[Online]. — Available at: https:/xilinx.github.io/XRT/
master/html/xrt_kernel_executions.html. —07.10.2022.

14.Vitis Unified Software Platform Documenta-
tion: Application Acceleration Development, Xilinx,
UG1393 (v2019.2) [Online]. - Available at:
https://docs.xilinx.com/r/en-US/ug1393-vitis-applica-
tion-acceleration. — 28.02.2020.

15. UltraFast Design Methodology Guide for the
Vivado Design Siute, Xilinx, UG949 (v2019.2) [Online].
— Available at: https://docs.xilinx.com/v/u/2019.2-Engl
ish/ug949-vivado-design-methodology. — 6.12.2019.

16.Neural network model of hetero-associative
memory for the classification task [Text] / T. Martyniuk,
B. Krukivskyi, L. Kupershtein, V. Lukichov // Radioelec-
tronic and Computer Systems. —2022. — No. 2. — P. 108-
117. DOI: 10.32620/reks.2022.2.09.

17.Moskalenko, V. Neural network based image
classifier resilient to destructive perturbation influences
— architecture and training method [Text] / V. Mos-
kalenko, A. Moskalenko // Radioelectronic and Computer
Systems. — 2022. — No. 3. — P. 95-109. DOI:
10.32620/reks.2022.3.07.

References (BSI)

1. Perepelitsyn, A., Zarizenko, I., Kulanov, V.
FPGA as a Service Solutions Development Strategy.
Proceedings 2020 IEEE 11th International Conference
on Dependable Systems, Services and Technologies,
DESSERT 2020, 2020, pp. 376-380. DOI: 10.1109/DES-
SERT50317.2020.9125017.

2. Zarizenko, l., Perepelitsyn, A. Analysis of tools
and technologies of FaaS development. Radioelectronic
and Computer Systems, 2019, no. 4, pp. 88-93. DOI:
10.32620/reks.2019.4.10.

3. Di Mauro, M., Liotta, A., Longo, M.,
Postiglione, F. Statistical Characterization of Container-
ized IP Multimedia Subsystem through Queueing
Networks. Proceedings of 2020 6th IEEE Conference on
Network Softwarization, NetSoft 2020, 2020, pp. 100—
105. DOI: 10.1109/NetSoft48620.2020.9165357.

4. Kulanov, V., Perepelitsyn, A., Zarizenko, I.
Method of development and deployment of reconfigura-
ble FPGA-based projects in cloud infrastructure.

Proceedings of 2018 IEEE 9th International Conference
on Dependable Systems, Services and Technologies,
DESSERT 2018, 2018, pp. 103-106. DOI: 10.1109/DES-
SERT.2018.8409108.

5. Containerizing Alveo Accelerated Applications
with Docker. Awvailable: https://xilinx.com/developer/
articles/containerizing-alveo-accelerated-application-
with-docker.html. (accessed January 27, 2020).

6. Tsimashenka, I., Knottenbelt, W. J. Reduction
of Subtask Dispersion in Fork-Join Systems. Computer
Performance Engineering. EPEW 2013. Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, 2013,
vol. 8168, pp. 325-336. DOI: 10.1007/978-3-642-40725-
3 25.

7. Samuilov, K., Zaryadov, l., Gorbunova, A.
Analysis of the response time of a cloud computing sys-
tem. IX International industry scientific and technical
conference "Information Society Technologies”, 2015.
pp. 29-30.

8. Gaidamaka, Yu., Sopin, E., Talanova, M.
A Simplified model for performance analysis of cloud
computing systems with dynamic scaling. Proc. of the
18th International Scientific Conference "Distributed
Computer and Communication Networks: Control, Com-
putation, Communications”, DCCN 2015, 2015,
pp. 75-86.

9. Vats, S., Kumar Sharma, S., Kumar, S. A Switch
Based Resource Management Method for Energy Opti-
mization in Cloud Data Center. International Journal of
Computing, 2021, vol. 20, iss. 1, pp. 85-91. DOI:
10.47839/ijc.20.1.2103.

10.Gad-Elrab, A. A. A, Alzohairy, T. A., Raslan,
K. R., Emara, F. A. Genetic-Based Task Scheduling Al-
gorithm with Dynamic Virtual Machine Generation in
Cloud Computing. International Journal of Computing,
2021. wvol. 20, iss. 2, pp. 165-174. DOI:
10.47839/ijc.20.2.2163.

11.Sai Sowjanya, T., Praveen, D., Satish, K.,
Rahiman, A. The queueing theory in cloud computing to
reduce the waiting time. International Journal of Com-
puter Science Engineering and Technology, 2011, vol. 1,
iss. 3, pp. 110-112.

12. Alveo U280 Data Center Accelerator Card User
Guide, Xilinx, UG1314 (v1.3). Available at:
https://www.sandycast.com/support/documentation/
boards_and_kits/accelerator-cards/ug1314-u280-recon-
fig-accel.pdf. (accessed February 27, 2020).

13.XRT Controlled Kernel Execution Models.
Available: https://xilinx.github.io/XRT/master/html/
xrt_kernel_executions.html. (accessed October 7, 2022).

14.Vitis Unified Software Platform Documenta-
tion: Application Acceleration Development, Xilinx,
UG1393 (v2019.2). Available at: https://docs.xilinx.
com/r/en-US/ug1393-vitis-application-acceleration. (ac-
cessed February 28, 2020).

15. UltraFast Design Methodology Guide for the
Vivado Design Siute, Xilinx, UG949 (v2019.2). Available
at: https://docs.xilinx.com/v/u/2019.2-English/ug94

160 ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2022, no. 4(104) ISSN 2663-2012 (online)
9-vivado-design-methodology. (accessed December 6, 17.Moskalenko, V., Moskalenko, A. Neural net-
2019). work based image classifier resilient to destructive per-

16. Martyniuk, T., Krukivskyi, B., Kupershtein, L., turbation influences — architecture and training method.
Lukichov, V. Neural network model of hetero-associa- Radioelectronic and Computer Systems, 2022, no. 3, pp.
tive memory for the classification task. Radioelectronic 95-109. DOI: 10.32620/reks.2022.3.07.
and Computer Systems, 2022, no. 2, pp. 108-117. DOI:
10.32620/reks.2022.2.09.

Haoittuna 0o peoaryii 10.09.2022, posensnyma na peoxoneeii 20.11.2022

METO/J OHIHIOBAHHS SAIKOCTI OBCJIYI'OBYBAHHSI FPGA SIK CEPBIC
Apmem Ilepenenuyun, Bimanin Kynanoe, Inna 3apizenxo

IIpeameTrom BHBUEHHS B JaHil CTaTTi € CydacHi TEXHOJOTi{, IHCTpPyMEHTH Ta CIIOCOOM MOOYIOBH amapaTHHX
MIPUCKOPIOBAYIB TS CTEIiaTi30BaHUX OOYHUCIICHD 1 OIIHKA MPOOJIeM MPOIYKTUBHOCTI CEPBICIB, Peali30BaHUX 3 BHKO-
pucrannsm FPGA rtexuomnorii. MeTow po0oTH € MOKpanieHHs] TPOAYKTHBHOCTI CEpBICiB, CTBOPEHHX Ha OCHOBI Ha-
6opy FPGA mpuckoproBauis, Bimomux sik FPGA-as-a-Service (FaaS). 3aBnanHsi: npoaHai3yBaTi 3aTPUMKH 3B'S3KY
Mix xocT-koMI'toTepoM i FPGA; 3anpononyBaTi Kpok po3poOKH Jjisi 3MEHIIEHHS 3aTPUMKHU Ta IPOBECTH OLIIHKY
Yacy BIATYKY Ui TpUCKOpioBada Ha ocHOBI FPGA 3anexHo Bim KibkocTi 3amissaux kapt FPGA mpuckoproBadis;
PO3TIISTHYTH aCleKT HaJiWHOCTI TaKMX CUCTEM, Peai30BaHMX 3a JIOMOMOIOK0 POrpaMoBaHol JIOTikK. BianosiaHo no
MMOCTABJICHUX 3aBJaHb, OYJU OTPHMAaHI HACTYIHI pe3yabTaTH. Po3risHyro nmooynoBy FPGA sk cepsic, ne pecypcu
FPGA HanaroTecs yepe3 HaOip amapaTHUX/mporpamMHux 3aco0iB. [IpoaHaiizoBaHO BUKOPUCTAHHS TEOpii MacoBOro
00CITyroByBaHHs JUIsi XMapHHX cepBiciB. OOroBOPIOETHCSI BHECOK CKTanoBux 4yacTiH FPGA B KiHIEBY 3aTpUMKY cep-
Bicy. [leranbHO npoaHanizoBaHO Mpolec MOAECITIOBaHHS POOOTH CepBiCiB Ha OCHOBI KapT npuckoptoBaua FPGA 3 Bu-
KOPHCTaHHIM TeOpii MacOBOro 00CIyroByBaHHs. 3alpONIOHOBAHO MOJIENb 3aTpUMOK FaaS, 1o BpaxoBye napamerpu
kapT npuckopioBadis FPGA. Otpumano ¢opMmyidy cyMapHOTo 4acy BiAI'YKY CEpBIiCY, OTPMMAaHOIO 3 YpaxyBaHHAM
BIZI'YKy KOMIIOHEHTIB. 3alporoHOBaH1 KPOKH JJIsl 3MEHILEHHs 3aTPUMOK OOpOOKHM JTaHWX BKITHOYAIOTH 30UIbILICHHS
po3Mipy OsokiB fanux At 00pooku B FPGA koxkHHM s1ipoM, 3MiHYy MOJIeNTi 3B’ SI3Ky 3 SIIPOM 3 MOCITIZIOBHOT HA KOH-
BEEPHY, JOTPUMYIOUHCh TEXHIKH 3aKPHUTTS 4acy, 1 apajienbHO BUKOPUCTOBYHTE Oliblie KapT nmpuckoproBaua FPGA
JUIsl PO3TIOJITY 3aTPUMKH 3anuTy. Ha OCHOBI 3aIiporoHOBaHOI MOEINi MPOBEACHO OLHKY 4Yacy BiATyKy peaiizaii
FaaS. [NokazaHo nepeBary BukopuctanHs 6aratbox FPGA napanenbHo Jyist BUpilleHHs ofHi€T 3a1a4i 00poOKH JaHuX
3aMiCTh peastizallii MOTOKY 3aIMTIB JUIs KOXKHOI KapTH MPHCKOpIoBaya okpemo. BucHoBku: ['ooBHHI BHECOK IILOTO
JIOCITIJDKEHHSI TIOJISIra€ B TOMY, 110 1€ KPOK BIIEpe] 10 MOJEIOBaHHsI cepBiciB Ha ocHOBI FPGA, siki MOXHa BUKOpH-
cToBYyBaTH Juisi oOynoBu mry4dnoro intenekry (L) na ocuoBi FPGA. lle nonomarae miIBUIIMTH MPOAYKTUBHICTh
CHCTEMH 32 PaXyHOK 3MEHIIICHHS 3aTPHUMOK Ha PI3HUX eTarax 00pOoOKH 3aIuTiB. [HIIOK CTOPOHOIO LILOTO PE3YJIbTATY
€ aCMeKT HaJIIHOCTI, sKuii 0a3yeThCst HA MOAN(IKOBAHOMY CIIOC001 poOOTH CITyKOU y pa3i BUKOPUCTAHHS 3aIIpOIIo-
HOBaHMX KpOKIB ontuMisaiii cuctemu. Lle momomarae nokpaiutu o0poOky 3anutiB J0 FaaS. 3anponoHoBanuii me-
TOA € HACTYIHUM KPOKOM ITiCIsI IPOTOTHITYBaHHS TaKUX CHCTEM, OCKUIBKH BiH Jormomarae neperBoputd FaaS 3
00’€eKTa JUIsl pO3pOOKU B IHCTPYMEHT JUIsl PO3TOPTAHHS HOBUX TEXHOJIOTH, TakuX sik cepsicu 111

Kunrouogi cioa: FPGA, FPGA-as-a-Service, FaaS, xmapHa iHdpacTpykTypa, TEOpis MacoBOro 06CIyroBy-
BaHHS, TPOAYKTUBHICTh, HAJIWHICTb.

Iepenenuuun ApreM €BreHoBHY — KaHA. TeXH. HAyK, JIOIL., JOL. Kad. KOMI'IOTEPHHX CHCTEM, MEpEex
i kibepOe3nexku, Hamionaneuuii aepokocmiunmid yHiBepcuteT iMm. M. €. JXKykoBcbkoro «XapkiBChbKuid aBianiiHui
iHCTUTYT», XapKiB, YKpaiHa.

KyaanoB Bitaniii OJiekcaHApPOBMY — KaHJ. TEXH. HAyK, O, JOI. Kad. KOMIT FOTEPHHX CHUCTEM, MEpPEex
1 xibepOe3mnekn, HamionansHud aepokocMiuHmic yHiBepcuTeT iM. M. €. JKykoBchkoro «XapKiBChKHI aBialliitHHUN
iHCTUTYT», XapKiB, YKpaiHa.

3apizenko Inna MukosaaiBHa — acm. Kad. KOMIT IOTEPHHUX CHUCTEM, Mepex i KibepOesmeku, HarrioHampHMiA
aepokocMiuHuil yHiBepcuteT iM. M. €.)KykoBchkoro «XapKiBChKUH aBialliifHINA iIHCTUTYT», XapKiB, YKpaiHa.

Artem Perepelitsyn — PhD, Associate Professor of Computer Systems, Networks and Cybersecurity
Department, National Aerospace University «Kharkiv Aviation Institute», Kharkiv, Ukraine,
e-mail: a.perepelitsyn@csn.khai.edu, ORCID: 0000-0002-5463-7889, Scopus Author ID: 56332607800.

Vitaliy Kulanov — PhD, Associate Professor of Computer Systems, Networks and Cybersecurity
Department, National Aerospace University «Kharkiv Aviation Institute», Kharkiv, Ukraine,
e-mail: v.kulanov@csn.khai.edu, ORCID: 0000-0002-9312-0735, Scopus Author ID: 54911941800.

Inna Zarizenko — PhD student, Computer Systems, Networks and Cybersecurity Department, National
Aerospace University «Kharkiv Aviation Institute», Kharkiv, Ukraine,
e-mail: i.kolesnyk@csn.khai.edu, ORCID: 0000-0003-4649-5793, Scopus Author ID: 57194777356.

