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Chapter 1. Introduction to Analysis

1.1. Real numbers

The absolute value or the modulus of real number x is defined as the
nonnegative number
¥, it X220
Ix| =

-x,if x <0;
It is supposed that the rules for comparing real numbers as well as arith-
metical operations on them are already known to the reader.

Solve the given equations:
1.|3x—4\=15; ' 2_\/.7_5;+x3:0; 3.-]—x2+2x—3=1;
4, 2::11 e 5. Joe-2f =—x+2
Solve the given inequalities:
6. \x—ZiZl; 7. ‘xz ~‘7x+ljl>xz—7x+12
8.5 +2,(x+3) ~10<0; 9. bc_l:ﬂ <4-x;

10_\I(x+1)2 <-x-1

A real number X is rational, i.e. representable in the form of the ratio

m i
=m0 € Z, if and only if decimal [x)x,, %, .. is periodic. Otherwise the

number X is irvational.

Example 1. )
Prove that the number log,,5 is irrational.
m

Solution: Let us assume that Ig5 is a rational number, i.e. 1g5= ¥ Then

10" =5 10"=5"; 2"x5"=5". But the last equality is impossible, since the

number 2 enters into the factorization of the lefi-hand member in simple factors,
but does not enter into a similar factorization of the right-hand member which



contradicts the uniqueness of presenting whole numbers in the form of prime
. factors. Therefore our assumption is false and, consequently, the number Ig5 is
irrational.

Prove that the given numbers are irrational:
11. 43; 12.2+4V2,  13.log; 7, 14. log, 5

Example 2.
Compare the given numbers V2 -+/5 and B2,
Solution:
Suppose the below inequality is correct: 2 -5<3-2
Then -

42543 | 6+42<8+2/15 , Wa<1+415 , 8<16+24/15

Since the last inequality is true, by virtue of the equivalence of the transforma-
tions performed, the initial inequality is also true.

Compare the given numbers

1 1 1\& 1Y% 1
15. lo%%E and logé ‘i; 16. (-S—J and (;} 17. 10&0&25 and 1.

1.2. Set and Set Operations

A set is understood as any well-defined collection of objects called the
elements or members of the set.

The notation @ € 4 means that the objects a is an element of set A (be-
longs to the set A), otherwise we write @ & A. A special set that plays an im-
portant part in Set theory is the empty set sometimes called Null set, which
contains no elements. The notation used to denote the empty set is the symbol
@. The notation A C B (read: "A is contained in B”, or, equivalently, "B con-
tained A”) means that every element in a set A is also an element of a set B, in
this case A is called a subset of B, The sets A and B are equal (written A=B) if
AcBand BC 4.

There are two basic ways of defining (describing) a set:
a)The set A is defined by a direct enumeration of all its elements

Q,,4y,...4, i.e. written in the form :
A= {al,az,...,a“};




~ b)The set A is defined as the totality of those and only those elements
belonging to a certain basic set T which possess to the general property o..
In this case we use a shorter notation:

A= {x € Tla(x)};

where & (x ) means that the element x possesses the property L.

Example 3.
Describe the set:

A=fxeZ (x-3)x(x? -1)=0ana‘x20};
by enumerating (or listing) its elements.

Solution:
A is the set of all integer nonnegative roots of the equation

(x-3)x (34:2 - 1)= 0. Consequently, 4= {1,3};

The union of sets A and B is defined as the set:
AUB={x e dorx € B}
the intersection of the sets A and B is defined as the set:
AN B = {x|x € dandx € B},
the difference between the sets A and B is understood as the set:
A\B = {x'xeAandx ¢ B}.
In particular, if A is a subset of some universal set T, then the difference

set T\A is denoted by the symbol A and is called the complement of the set A
(relative to T).

Describe the given set by listing all its elements:

18.A=!gtER|x3-3x2+2x=0} 19_A={xeRx+l£2andx>0};
x
20,A={reN|x2-—3x—4£0k .21_A={erEsz‘-:5};
35 A:{xemog,ld}; 23, A={xeR|cos’2x=lana0<x$27rL
EI

Represent the indicated sets on the coordinate plane:
24. {(x,y)e Rz|x+y=2k 25. x,y]eR"(x’—l)x()wZ):O}
26. {(x,y) ERzly> \1'2x+lan02x+120k 27. {x,y)e Rz‘y2 > 2x+IL



28 {(x,y)e R2|x"+yzs4} | 29. {(x,y)eR’]x2<2y+]£
30. Jc,_)»)tf;z‘{mlxz-{»2x+y2 >3i

A set X is said to be countable if there can be established one-to one cor-
respondence between the elements of this set and those of the set N of all natu-
ral numbers.

Example 4.

Show that set Z of all integers is countable.
Solution:

Let us establish one-to-one correspondence between the elements of this
set and natural numbers, for instance, by ordering the set Z in the following
way: 0,1, -1,2, -2, ... , and then associating each integer with its ordinal number
in this sequence. -

Prove that the given sets are countable.

31 {neN|n=2k,keN}, 3. {neN‘n=2",keN}.

1.3. Logic symbolism

When presenting mathematical considerations it is expedient to use a
short-notation with specific symbols utilized in logic. Here we shall introduce
only several simplest and most widely used symbols.

Let a, B, ...be some sentences or statements, i.e. narrative sentences each
of which can be identified as true or false.

The notation @ means “not 0", i.e. the negation of the statement C..

The notation i=>{ means:” the statement 0. implies the statement (=
is the implication symbol).

The notation ci<>[3 means: “the statement @ is equivalent to the statement

"i.e. “if o, then B, and if B, then o (<> is the equivalence symbol).

The symbolic notation ot A B means “ct and B”(A is the symbol of
conjunction). :

The notation o,V  means ”ct or B”( Vv is the symbol of disjunction).

The logic notation: VxeX 0(x) means: "for any element xeX the state-
ment 0(x) is true" (V is the generality or universal quantifier).

The notation 3 xeX 0((x) means: "there exists an element x € X such
that the statement & (x) is true for it* (3 is the existential quantifier).

1f an element x € X , for which the statement a(x) is true, not only ex-
ists, but is also unique, then we write:




J1xe Xa(x);

Example 5.
Using logic symbolism, formulate the principle of mathematical induction.
Solution:

Let 0, be some statement making sense for all #€ N . Let us introduce the
set A= {?1 €N [a (?‘1 )}, i.e. the set of all those natural numbers for which the
statement O is true. Then the principle of mathematical induction can be formu-
Jated in the following way:

(1edr(ned)=(n+)ed=4=N, )

Since the notation a(n) means that the statement o is true for the number
n e N statement (1) can be written differently:

(o)) Acln)=>afn+1))=>Vin € Nefn);

1.4. The Notion of Function

Let D be an arbitrary set of real numbers. If each number x € D is asso-

ciated with exactly one definite real number f (x ) , then we say that numerical
function is defined on the set D. The set D is called the domain of definition

and the set: £ = {y € Rl}’ L f(x),x € D}, the set of values of the nu-
merical function f, the symbolical notation being:

f:D—>E or y=f(x);

The most widespread method of specifying a function is its analytical rep-
resentation. The analytical representation of a function is given by a formula,
which shows hoty the value of the dependent variable y for any value of the in-
dependent variable x can be determined. When a function is specified analyti-
cally its domain (of definition) is usually understood (provided that there are no
additional conditions) as the maximum set of values of x for which the formula
representing the function makes sense. This means that the application of the
formula to these values of x should result in definite real values of y (natural
domain of definition of function).

Example 6.
Find the domain (of definition) and the set of values of the function

lx)=—=

1-x

3 .



Solution:
The natural domain of definition of this function is the set

D= {-I]|x| < ]}= (~11), and the set of values is the set E = {y!y 2 1] ={1,).

Let the function f:D — E be so that for any X,,X, € D from the con-
dition X, # X, it follows that f (XI ) #f (xz). In this case any number y € E
can be associated with quite a definite number X € D so that [ (I)= ¥, in this

way a new function is defined /™' :E—> D called the inverse of the given
function f.

Here are two functions: [ : X — Y and g:¥ — Z. Their composition
(or the composite function obtained by combining the functions f and g) is de-
fined as the function: A=go f:X — Z 6 sgpecified by the equality:

Wx)=g(f(x) , xex.

Find the natural domain of definition and the set of values E for the given
function:

1-2
33. y=iiiX+3}; 34, y=+/5-2x; 35, y=arccos y Jc;

36. y = log,(1—2cosx);37. J’=\J'1*\x|; 38. yzloga(Sx—xz ~6);

Find the set of zeros Dy = {xlf (x)= 0}, the domain of positiveness
D, = {x‘ 7(x)> U} and the domain of negativeness D_ = {xif (x)< 0} for the

given function:

39. f(x)=1+x; 40. f(x)=2+x—x2; 41_‘f(x)=sin§r_-;

A function f' (x ) is said to be even (odd) if its domain is symmetric about

the point x=0 and f(— x)z f(x)(f(_ x) = —f(x)),
Which of the indicated functions are even, which are odd, and which are
neither even nor odd:

42, f(x)=x*+5x7; 43, f(x)=x+sin2x; 44. f(x)=sinx-cosx;

45. f(x)=lgi-—ﬁ;
—X
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A function f(x) is called periodic if there is a positive number T (period
of the function) such that Vx € D(f (x+ T)=1! (x))

Which of the functions given below are periodic?
Determine the least period T.

46. f(x)="5c087x; 47. f(x)=cos®2x; 48. f(x)=xsinx;

X X
=1g=-2g=;
19, f(x) g -2g5

Find the inverse function and domain of its definition if the given function
is defined on the indicated interval:

50. y=x"-1; a) IE(“W,—%‘{I T IE.B,HO];

5 —_ . 'xE _EE bxeﬁB_’r
1., y=smx; a) 272 | ) 272 |

Find the compositions fog and gof ofthe indicated functions:
s2. f(x)=x%g(x)=x; 3. f(x)=1-xg(x)=x"
s4. f(x)=2",g(x)=log, x.

1. 5. Elementary Functions and Their Graphs

Listed below are the basic elementary functions:
1.Power function: Y = x“,aeR.
2 Exponential function: ¥ =a",a>0,a#1.
3.Logarithmic function: Y = log, x,a>0,a#1.
4. Trigonometric functions: ¥ =Sinx,y =c0sx,y = tanx,y = cotx.
5.Inverse trigonometric (circular) functions:
y = arcsin x, y = arccosx, y = arctanx, y = arccot x;

Any function which can be constructed of a finite number of basic ele-
mentary functions with the aid of arithmetical operations and operations of
forming a function of a function is called an elementary function.

The graph of the function ¥ = f(x) is defined as the set
I'={(x,y)eR’|xeD,y=f(x)},

where R? is the set of points in the plane.
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On a plane with a rectangular Cartesian system of coordinates Oxy the
graph of a function is represented by a set of points M(x,y) which coordinates

satisfy the relation ¥ = f(X) (graphical representation of a function).
Construct the graphs of the given elementary function:

1
SS.J’=X"§ 56.y=~=1+x
| 3z
57.V=2—x|+|2+x| 58.y =~ 18(2x+=7)
59.y = cosx+|sinx| 60. y = 4arcsin(x -1)
61.y = xsign (cos x) 6.y = 7 Bt
X A -
63.7Y= cosx~l+5 64.y=2" -1
65.y =log, [x-3| 66.y = log,(x +1)|
67.y = arcsin(sin(x + %)) 68. ¥ = arccos(cos 3x)
- i
69.y =| arctg(x —1)| 70,7 =’ o

1. 6. The concept of a Sequence

The sequence of real number is understood as a function f : N — R
defined on the set of all natural numbers.
The number f(n) is called the n™ term of the sequence and is denoted by

the symbol X, , and X, = f(1) is called the formula of the general term of
the sequence (X,) ey .
Limit of the sequence. A number a is said to be the linit of the sequence
(xﬂ)nENa Le.
limx, =a

A=0

if for any £>0 there is an ordinal number N(&) such that for

n> N(g) the inequality | X, —a |< & is fulfilled. In this case the sequence it-
self is called convergent,
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Compute the indicated limits:
n-1 ol Sn+1
lim lim Iim
71.lim == 72.5im = 73 lim =~
. (n42P -(n-2)° . A +3n+1
74, m S 5. lim———
ne  O5p° +39n nsn p—]
Jigg = Tn+1 77 lim(2R=L_ 1427’
76022 5n—6n" " o Sn+7 24507
78 im(v2+n —+/n). 79 limn}(Vr® +1 - -2),
I.. 2 n-1 2" +3"
lim(+—=+..+—— lim
80. lim(— 3 % o silimo—=
. P+22 440 ; 3\[P?Sin(ﬂ*]!)
A e s g3 lim —— =
=0 n N30 n—1
1

llm(L“}'"l‘“‘f' & )
84 012" 2.3 T nany -

H—yeo

SR | 1
Y atetet ot g P 1 R
85. lm(S 55 +(=1) 5")'

A sequence (x;,),,e w is said to be infinitely small if lim x, = 0.
n-y00

A sequence (X, ),y is said to be infinitely large (converging to infinity) (
written lﬂg Xp = %) if for any £>0 there exists an ordinal number N(g) such

that for n > N(g) the inequality [X;| > € is fulfilled.

A number a is called a limit point of a sequence_(X,),cy, if for any
& > 0 there can be found an infinite number of terms in this sequence satisfy-
ing the condition | X, —a|< &

Bolzano-Weierstrass principle: any bounded sequence has at least one
limit point. i

The largest (smallest) of the limit points of a sequence is called the limit
superior (the limit inferior) of this sequence and is denoted by the symbol

Iimxﬂ (lir—nxn ) .

Find all the limit points of the given sequence:
2461
"o (_l)n

86. X 87.x, = cos(ff)



For each of the following sequences find lim and lim ;

n+1 2 TN 24+(-1" 1
cCO8 " — 94—
4 2 n

1
88. %, =1+— 89,
n

1. 7. Limit of a Function

Let a function ¥ = f(X) be defined on a set D.
A number a is called the limit of the function ¥ = f(x) at a point x,

written }5}1 f(x)=a if for any £>0 there is a number &(¢)>0 such that for
o

any xeD the condition 0<x-x|<d(e) implies the inequality
| f(x)-al<e.

We shall use following remarkable limits:

sinx
!3237-% &
lim(1 + —) = lim(1+ Ree, 3)

where e —2.?1828... is the base of natural logarithms.

Evaluate the given limits:

3x+1 . oAx=1-3 \lx-H? \/_
D

lim———> lim ——— x>0
onlm—"or. mimT—em. sl .
. x*=x . VIrx—1] «/E
95_11_13'11—-— _ 96 Hif=—smeagic . 297 51_1;2 )
) x -1 SRR 3x+3x+4/3x
—~2 A \1"2+x v2-x

lim—
£60. HO,/ =3 wu{/m Vax-Y2-x°
102.lgn(4x-a—&). 104, im(v4x* - 7x+4 - 2x).

Compute the given limits, using remarkable limit (2):

sin(a")
lir li lim FHEE=E =
108, ;.3?: x O i, oo *ﬂ(smo:) g
p - i ., l~cos2
109, lim xcot 7. ,10_11,:.3.33@35 o] T S0R2E
X x— 4x 130 X
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sin2a — tan 2¢ . cosox —cos fix
02 iy = 1 PSR e,
1 : . X—a
4. lim(———cotx lim tan —sin
i14. 1 ). s o e ==
g B VA R 117.lim(Z - x)tanx
% T-4x x4 2
(1-cosa)? 1+cos5x
e limn et
18, a0 tan’ @ —sin’a 1]9':=~~r1—cos4.1r

When computing limits of the form liff} Uty ™

lim V' (x) = o, remarkable limit (3) is used.

Xrxy

, where lim U(x) =1 g

Example 7.
lim B

Compute |17V (2 + x)

Solution:
e S ~2 sEan
3x s Bl T 1+ i 24z

We have ( ) 1+ o x) ( )

Since Irm(1+———) S hm (l+r) =€ and lim—=—.3xy=—-6
2 +X ZH z-)w2+ X
; lim(——)* =¢™®

we abtain x_m(z > x)

(here the continuity of a composition of continuous functions has been used).

Usiﬁg remarkable limit (3) compute the following limits:
2

im0 pgp lim(5

1w x—2 B0 x

%5 4 _ 4
120. 3). 122, lim(cos x)*

123, lim(1 +anVx)? 124, lim %(In(2 + x) - Inx)., 125, lim~ 1n1/]+"_
X

x bx
' - : b e —e
126, lim & 127 Jim 1281 128. lim

=1 x-1" e Shh Ty, alh x=0 i

Let us also introduce the following notion of a one-side (unilateral) limit.
The number @ is termed the right-hand (left-hand) limit of the function

y=f(x) at the point X;(written x—l.i;,nlaf(x) = G(X}jmof(x) =4)) if for any
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£>0 there exists a number J&(g)>0 such that the condition
0<x—x,<6(—6<x-x,<0) implies | f(x)-a|<&. The notion of a one-

side limit at infinitely ( xl_i'l}'lwf (x) and }_l’f}'!vf (x)) is introduced in a similar way.

Compute the indicated one-side limits:

. X=3 2+4x JYMBy,
lim i e
129. x-320| x ~ 3| 130. Xl_1>12};1:04_x2 ' 131. x—l-—tgl}ﬁ?
lim (2 + x)° i
132, lim (2+x)", 133, lim arcigx

1. 8. Infinitesimals and Infinities.
(Infinitely Small and Infinitely Large Quantities)

A function @(x) is called infinitesimal as X —> X, if 1im a(x)=0,
x-3Xg
Infinitesimals a(x)and A(x) are said to be comparable if there exists at
v L), o ofx)
least one of the limits 1im or lim——
€ x—¥g a(x) —big ﬁ(x)
Let @(x) and S(x)be comparable infinitesimals as x = x, and let for

. 1 a(x) C
the sake of definiteness, there exist xlﬂt B(x) T

Then:

a)If C # 0, then @(x)and B(x) are infinitesimals of the same order.

b) In particular, for C=1 the infinitesimals @(x)and f(x) are said to be
equivalent, written & ~ P,

¢)If C =0, then @(x) is an infinitesimal of higher order than f(x); in
this case we write @ =0 ( f).

3 ; fim -2 4 0

)If there exists a real number r >0 such that | S5 (B()) , then

a(x) is said to be infinitesimal of erder r relative to f(x).

A function a(x) is called infinitely large as X —> X, if Egg a(x) =

The notion of comparable infinities and their classification is introduced much
in the same way as it was done for infinitesimals.




16

If a(x)~ay(x), B(x)~B,(x) as x — x,, then
llm (x) lIl'l a(x) al (x) ﬁl(x) ]J.lTl al(x)
S ) ra® AX) A AR

Example 8.
arcsin -J-—‘
f~x*
Compute l-.u m
,_aresin =i i
Solution: We have lim ln(l-—;c) & }E}} lx e ™
because arcsina ~ a In(1-x)~-x.
Compute the given limits:
. COSX—CO0S2X
134, lim 1 135, lim =222
=1 lgx x>0 1-cosx
: 4x* -1 i m'c:rgx2
lim——— hm—
A5G =l-'% arcsin(l — 2x) 137 arcsin3x - sin 3
- l—cosdx . 2y/2 —(cosx+sinx)’
lim——"
138, 5 2sin® x + xtg7x) 139, ll—?; 1—sin2x

1.9. Continuity of a Function

Continuity of a Function at a Point. A function ¥ = f(x) with the do-
main of definition D is said to be continuous at a point x,, when the following
three conditions are fulfilled:

(a) thefunction y = f(x) is defined at the point X, i.e. X, € D

(b) there exists lim f(x);

X—*Iﬂ

(¢) lim f(x)=f(x).

If condition (a) is fulfilled, then condition (b) and (c) are equivalent to the
following:

lim A7 (x,,Ax) = 0

where Af (x4, 8%) = f(x, + Ax) = f(x,)

is the increment of the functiony = f(x)at the point x, corresponding to the
increment of the argument AXx =X — X, If at least one of the three conditions
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is violated at the point x,, then x, is called a point of discontinuity (or simply, a
discontinuity) of the function y = f(x).

Classification of points of discontinuity
The following three cases are distinguished:

(@ lim f(x ) exists but the function is not defined at the point x, or the con-

X—hXg
dition lim f(x)=f(xy) is violated. In this case x, is called a removable dis-
continuity.

(b) }_132 J(X) does not exists.

If both one-sided limits lixl:l of (x)and lim i f(x) exist (obviously not
Xy + X2~ >

equal to each other), then X is termed a disconfinuity of the first kind.
(c) Inall other cases X, is called a discontinuity of the second kind.

Find the point of discontinuity of the given function, investigate their na-
ture, and if a discontinuity is removable, redefine the given function so as to
make it continuous.

il _|3x=5]
141, f(x) T 142, fR)=5—5.
143, fm=E 1 144, f(x)=sinx.

X X
145. f(x)=1-xsin—. T .=y
x 34-x

J 1 i

147. f(x)~(x+l)arctanx. 148. f{x)-——-—-——mtm(x+2).

Continuity on a Set. Uniform Continuity.

A function y= f(x) is said to be continuous on a set D if it is continu-
ous at each point x€ D. It is called uniformly continuous_on D if for any
&> 0 there exists a number §(¢) >0 such that for any *',X"€ D the inequality
| x'=x"]< 8(¢) implies | f(x") - f(x")|<&.

Cantor’s theorem,

If a function ¥ = f(X) is continuous on the interval fa; b], then it is uni-
formly continuous on this interval. R
¥ HAVK (3 34 1B “(:-::' :.‘ﬂ

DR O !
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Chapter 2. Differential calculus:
function of one variable derivatives

2.1. The Derivative Defined

Differentiation of Explicitly Represented Functions.

Let Af (x4, Ax) = f(x, + Ax) - f(x,) be the increment of the function
¥ = f(x) at the point X, corresponding to the increment of the argument Ax.
The derivative of the first order (or the first derivative) of a function y = f(x)
at a given point x, is defined as the limit
£y = fim ALLEe22) @1)
The derivative of function f(x), considered on the set of those points

where it exists, is a function itself. The process of finding the derivative is also
called differentiation.

Table of derivatives of basic elementary functions:

1. (xa)'=ax”'l,a#-0

2. (@*) =a*Ina,a>0;(e*) =¢'

; 1
3. (log, x)' =log, e-~,a>0,a %L |, (Inx)' =~
% ] X
5. (sinx) =cosx 6. (cosx)' = —sinx
1
tanx)' = cotx)' =~
7, ) cos’® x g, (cotx) sin? x
9. 10.

(arcsinx)' = —(arccosx)’ =

(arctanx)’ = (arccotx) = =
I+x

Rules for differentiation of functions:

1. Let C be aconstant and let f(x), g(x), be differentiable functions.
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Then:
1.(C) =0 2. (f+g)=f"+g 3.(Cf) =Cf"
r I ] f | (- f'g_fg'
4. (f2)=fg+ 12 g o(es)lab b IET S g o
g &
Find the derivatives of the given functions:
- i 2 +x
149, y=3-2x+—x": W A .
9.y 3% 160 2_\/}‘,
150. ¥ = B 161, = (x=1)( I +1)
= S vt 61. y=Wx-D)(=+1);
a’ Jx
x-1
151 Y=775 162. y = Wx* =24x"
s 1
9. 3= 5 163. y = BVx? +6Yx* ;
153,y = (x* =D(x* —4)(x* +9); 164 y=—4~— : . |
; ; 164, e {/x—;,
15 y-x1+1 =x’ cotx
4. x3_x1 165- y_ 3
g 1+3x? S tan x
155, ¥= : y= :
(—2% : 166 3 (‘x'i
cosx
)= e— —; =
1. ra3x-1’ 167. l1+sinx’
3[.L2
a x
= +—. = i
157. Y 5\[:;_3 b 168, ¥ «Esmx,
F a+bx . x_]_xz
= . =3x"lo, —
158. o 54 169. ¥ B2 ¥+
I i sin x — oS X
e J)_2.1!:—1 x’ 20 sinx+cosx’



20

2.2. Differentiation of a Composite function

Let the function y = f(x) have a derivative at the point x, and let the
function z = g(y) have a derivative at the point ¥, = f(x,). Then the composite
function z = g(f(x)) has a derivative at the point x, equal to

z'(xy) = g' (W) f'(xp) 2.2)
(the rule for differentiation of a composite function).
Example 9. Find the derivative of the function z = log, (arcsinx)

Solution:

Setting z = log, y and y =arcsinx, we have

[ 1 r
z()’)=10839"y* and ¥'(x)=

Jugl

Hence, according to (2. 2), we obtain

z'(x)

_logse I
arcsinx [;_ 2

Find the derivatives of the given functions:

3

17k y=x53\!x5 +a;

2
172, y = /" s
I3

173 sin 3% 6 ax
— —_— = bCcos—
T D) - 4 3

174, y =(1+4x*)*;

175. y=4/(1+3x*)*;

X

)
=Ssin —-
176. Y 2%

177. y=x“e :

178. y=+/1+sindx —/1-sindx;
179. y = xarcsin In x ;

— §(———).
180. y =co (4 2),

186. y=1’arccot£.
2 3

’ 1
y=,|l+tan(x+-):

X

. X
188. y=°052(sm-3—);

189. y = ysinvx ;

190, y =arctan(x~v1+x*);

187,

b+acosx
191. ¥ = arccos ———
a+bcosx
x
192. y=~/;ez;
y-e_’rz
193. o
194, y =20x
195 y=2""",
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181, y=4/(+sin’x)* ; 196. y=3%;
182.,1’:"5'E coszg; 197. y=log, In2x;
183. );:g\"xz+a+—gln£r+\fxz+a); 198. y =Inxlog, x~Inalog, x;

184. V= ]-U'[al'i(%-l-%); 199, y = e\,l'ln(ax2+bx+c) _

I+
185. y=ln\ﬂl_z2 ; 200. ¥ = Inarctan 1+x? :

201. yrhrs(xi-xﬂa2 +x%).

Find the derivatives of the given hyperbolic functions:

202.y= sinhx = A ;e—x (hyperbolic sine),
203. y=coshx = i _;e—: (hyperbolic cosine),
204, y=tanhx = zz:;i (hyperbolic tangent),
205. y=cothx = :f::j (hyperbolic cotangent).

The logarithmic derivative of a function y=f(x) is defined as the
derivative of the logarithm of this function, i.e.

(nyy =2
¥

Taking the logarithm prior to finding the derivative often simplifies the
computation of the derivative.

x(x—1
Example 10, Find the derivative of the function J = /- Ec— 2 ) .
Solution:
We have

iny= %(]n(x) +In(x—1) - In(x—2)),

S A S | 1 1
gy s s oo wiad oty
L2 g e
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hence
x*—4x+2

Y =(ny)y = —r——
2,/(;:— (x-2)°

Example 11. Find the derivative of an exponential composite function:

1
p el

X
Solution:

Taking the logarithm, we obtain
Iny=xIn(l1+ l)
X

Then we find the derivatives of the left-hand and right-hand members

(ny)y=L=lngs+dy- L
¥y x 14x

Consequently,

¥ =(ny)y=0+1y e+ dy-1,
X x l-x

Taking first the logarithm of the given function, find its derivative:

_(x=3)°(2x-1) o J2)x-1)?
206.y———-—(x+]}3 : 207'}'“1’______3;’ :

208, y=—mo—u= "I+2. 209 y‘x3 _.'.‘.:.;]._...
T YE-1rex+)’ ' V(x+2}Vx-2"

' 2 ¥z
210. y = X7 2. =% 212 y=vx ;

-
] x

213. y=(nx)*; 214, y=(sinx)™*. 25y =x"

2

2.3. Differentiation of Functions Represented Implicitly or Parametrically

The function y = f(x),x € (a,b) is said to be represented implicitly by the
equation F(x,y)=0 if for all x €(a,b)

F(x, f(x))=0 ) (2.3)

To compute the derivative of the function y= f(x), one should

differentiate identity (2. 3) with respect to x (regarding the lefi-hand member as
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a composite function of x) and then solve the obtained equation with respect to
().
Example 12. The equation g yz =1 defines implicitly on the interval (-1;1)

two functions:
yi(x)=v1-x* 2
y2(9)=—VI-2" |

Find their derivatives without using explicit expression (2. 4).

Solution:
Let y(x) be any of these functions. Then, differentiating the identity

x? +y%(x)=1 with respect to x, we obtain
2x+2y(x)y'(x)=0

-

Hence
; x
| y(x)=-ﬁ
ie.
J’;r(x)= yl?x)= Jlsz
o Lt et

Example 13. Deduce the rule for differentiation of an inverse function.
Solution:
If x=f"'(y),y €E, is the inverse of the function y = f(x),x €D, then

for all the following equality is fulfilled:

S G)N-r=0
In other words, the inverse function x=f'(y) is a function represented
implicitly by the equation _

f(x)-y=0 2.5
To compute the derivative of the function x = (), we differentiate (2. 5)
with respect to y:

7Gx, () -1=0
1
1. )

whence x, (¥)=
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For implicitly represented functions as well as for composite functions we shali
r

also use symbols of type ¥, to denote their derivatives whenever it is necessary
to indicate with respect to which variable differentiation is carried out.

Find y, for the indicated implicitly represented functions:

x? yl

216 — +57 =1; 217. x* +y* =x"y?; 218. 2yln y = x;
a

219, e siny—e’ cosx =0; 220. sin(xy) +cos(xy) = 0;
991, 2F +27=2%7; 222. x—y = arcsinx —arcsiny;

223. Jx +4y =+a,a>0.

Let there be given two functions:
x=g¢(t),y=y(t)t (@ p) (2.6)
If the function X =¢@(#) has an inverse #=¢"(x) on the interval (@, /) then a
new function is defined:

y(x) = (¢ (%) 2.7
which is said to be represented parametrically by relations (2. 6). Differentiating
(2. 7) with respect to X and applying the rule for differentiation of an inverse
function (Example 13), we obtain

v, =y, o, =L =2 (2. 8)

Example 14. Find y,' if
x=cos’t,y=sint,t € (U,%)
Solution:

Since ¥, =cost,$, =—2costsint, by formula (2. 8), we find

¥, = ,x=cos’ 1.

2sint

Find y: for the function represented parametrically:
224, x =2,y =3t" = 51,1 € (—o0,40) ;
225, x=t*+2,y= 0.5¢%,1 € (—o0,40);

1 -
=——,y=(—) 1%,
226, =" sV (r+1) 3

227. x = 2_;>J’ i 22;9'{ = (—w,‘HD);
228. x =acos@,y =bsing,p € (0,7);
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229 x =tan{, y =sin 2t + 2cos 21,7 e(ﬂ-%,-g);

t € (0,400);

1 i 1
230, X = arccosS———, y = arcsin———,
Vi+t? v1+#?
231, x=In(1+¢%),y =t —arctant,t € (0,4);
232. x =3log, cott, y =tant +cott,f € (0,%) .
233, x =arcsin(z? - 1), y = arccos 24,1 € (0,4/2).

Find y, at the indicated points.

234.x=r1nt.y-hit t=1.

235. x =1(fcost—2sint), y ur(rsmr+2mst),l-§—
/4
236, X = e’ cosry—e Smrt*—g
3at 3at’
X=——s,y=——f=2
BT X =10 An g

2.4. Derivatives of Higher Orders

The derivative of the second order of the function y = f(x) is defined as
the derivative of its first derivative, i.e.
Y'(x)=('(x). 2.9)
In general, the derivative of order N (or the nth derivative) is defined as the
derivative of the derivative of order (n-1), i.e.

Y@ =" %), =23,.. (2. 10)

d
For the derivative of order »n the notation Td;{- is also used.
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Example 15. Find " if y=In(x+ Vi4+x?).
Solution:

: 1
We have ¥ = F . Consequently
+x

B
(1 +I2)3.|’2 i

Lg

g v

Find the derivatives of the second order of the given functions.

2 %%
238, y =cos” X; 239. y=¢e " ;
240, y = arctan x? 241 y_arcsinx
. : . S

Example 16. Find the second derivative of the function represented implicitly.

y

arctan=
1y’ =ae  *,a>0.

Solution:

Differentiating the equation defining the function y(x), we obtain
y

x+ wwd  yx-y _ yx-y
=g . 2 3 =
Jxt+y? Xty J;2+y1
Hence, x+y=xy' -y
X +y
and, consequently, i v (2.11)

Differentiating (2. 11) and making use of the expression (2. 9), found for ', we
get
< ¢ 2t
(x-37

Find the second derivative of the function represented implicitly.

242, y* = 2px; 243, y = tan(x+y);
244, y=1+xe”; 245. 7 =xy.



27

Example 17. Find the second derivative of the function represented
parametrically x = Int, y = £*,1 € (0,4)

Solution:

'

Wehave ¥, = Y23
xl‘

L4 't ror ' : 9.{2
and yl’:‘ :(yx )x =(J’x ); tx =(yl'!) :__'_=9t3.
e 11

Note that in the present case the parameter f is readily eliminated from the

"

given equations by putting = e”. Consequently, the expression for V., asa

function of x has the form y, =9,

In the general case, if x = @(f),y = w(t), then y,," is computed by the
formula
P'(t) ')
_Y'0p')-e" '@ _lp"@) y'()
@)y (')’

Find the second derivative of the function represented parametrically.

Ve : 2. 12)

246. x =sect,y =tant,t € (0,%) :

247. x = arctant, y = In(1+¢7),¢ € (~o0,+) ;
248. x=arcsint,y = In(1-1%),t e (-1));

. T
249, x=acos’t,y = asin’ 1,1 (O’E) :
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2.5. Geometrical Applications of the Derivative

The magnitude of the derivative f'(x;) of the function y = f(x) at the
point x, is equal to the slope £ = tang of the tangent line 7T" to the graph of
this function drawn through the point M, (x,¥y) where y, = f(xg) (Fig. 2. 1).
The equation of the tangent line 77" to graph of the function y = f(x) at its
point M (xg, ) has the form

y=yo = f'(x)(x=%p)

The straight line NN' passing
through the point of tangency M,
perpendicular to the tangent (line) is
called the normal to the graph of the
function y = f(x) at this point.

The equation of the normal is:

(x=xp)+ f'(xg)y = ¥0) = 0.

7 T
Write the equations of the tangent
and the normal to the graph of the
given function y = f(x) at the indicated point if:
250. y=x’-Sx+4,x5=-1; 251, y=~x,x9=4;
252. y=x3+2x2—~4x—3,xg =-2; 253, y=tan2x,x,=0;

2
254, y:lnx,xgzl; 255, y:ej_z ,xaz»-j_

-

2.6. Differential of First Order

A function y = f(x) is called differentiable at a point x, if its increment

Ay(x0,Ax) can be represented in the form:
Ay(xp,Ax)= AAx + 0(Ax)

The principal linear part A Ax of the increment Ay is called the
differential of this function at the point xo, corresponding to the increment Ax
and in denoted by the symbol dy(x;,Ax).

For a function y = f(x) to be differentiable at a point Xy, it is necessary
and sufficient that the derivative f'(x,) exists; the equality 4= f'(x,) being
valid.
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This assertion allows any function having a derivative to be called
differentiable. It is in this sense that we have used this expression in the
preceding section.

The expression for the differential has the form:

dy(x,,dx) = (o Jax,

where dx = Ax.

Example 18. Find approximately the volume V of the sphere of radius
r=1,02m.
Solution:

Since V(r)= %ﬂrs , setting r,=lAr=002 and using formula
(Ay ~dy), we obtain: =
V(1.02)=V(1)+ AV(1.0.02) =V (1)+V'(I)x o,oz:i;-m 47 x0.02~4,43m° .

Geometrical meaning of the differential. The differential dy(x,,Ax) is
equal to the increment of the ordinate of the tangent line 77" to the graph of the
function y = f(x) at the point M, (x;,y,)with the increment of the argument
equal to Ax (Fig.AZ).

y

71

M(xnt+ AX, vo+ Av)

Ay

Ma(xa,Y0)

R 4

g | .
z

Fig. 2.2

Find the differentials of the indicated functions for arbitrary values of the
argument x and its arbitrary increment Ax=dx.
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256, x\a’ - x* +a? arcsin®> - 5259, xInx—x+1.121y° + y-x* =1.

a

257. sinx—xcosx+4. 260. xaresinx + v/ —x° - 3.

258, xarctanx—Inv1+x’ . 261, arctan® =lnyx?+y? .
x
262.¢” =x+y.

263. Compute approximately:
arcsin 0,05; b)arctan 1,04;  ¢)In 1,2

2.7. Differentials of Higher Orders

Consider the differential dy(x,A;x)= f"(x)A;x as a function x with a
fixed Ax = A;x. Assuming that the function y = f{x) is twice differentiable at
the point x we find the differential of dy(x,A;x) for Ax = A,x:

d(dy(x’ A.Fxn xAr=Apx™ f”(x)A;XA;I

The value of the obtained expression for A;x = A,x = dx is known as the
second differential or the differential of the second order of the function

y = f{x) and is denoted by the symbol d”(x,dx).

Hence:
d*y= f"(x)ax. (2.13)
Analogously,
Py =dldy)= [ (=
) d"y= a’(d”“" y)z 7 () (2. 14)
Find the second differentials of the indicated functions y of the argument x.
: sinx
264. y = asin(bx +¢). 265, ==~

266. y=ax’ +bx+c. 267, xp+y =1,

268. (x—af +(y-bf =R*. 269. X’ +y =y,
270. x=y—asiny.
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2.8. Theorems on differentiable functions

Mean value Theorems.

Rolle’s theorem. If a function f{x) is continuous on the closed interval
[a;b] differentiable for x € (a,b) and f(a)= f(b), then there exists at least
one point ¢ € (a,) such that f(c)=0.

Points at which f*(x)=0 are called the stationary points of the function
J).

Lagrange’s theorem. 1f a function f{x) is continuous on the closed
interval [a,b] and differentiable forx € (ﬂ, b), then there exists at least one
point € € (ﬂ,b) such that "

7 (b )_ ¥ (a) =f f("Xb - a) (Lagrange’s formula).

Cauchy’s theorem. If two functions f{x) and g(x) are continuous on the
closet interval [a,b] differentiable for x €(a,6) and g'(x)#0 for all
x € (a,b) then there exists at least one point ¢ € (a,b) such that:

ft)-1(a) _ f'lp)
gle)-gla) g'Ww)

_L’Hospital-Bernoulli Rule.

Evaluation of the indeterminate forms. -g— and Z. Let, as x —> a, the
o0

functions f{x) and @(x) be both infinitely small or infinitely large. Then their
ratio is not defined at the point x = @, and it is said to represent an indeterminate

0 5
form Borg, respectively. But this ratio may have a limit at the point x = g,

finite or infinite. Finding this limit is known as evaluation of an indeterminate
form, The L’Hospital-Bernoulli rule is one of the methods for evaluation of the

indeterminate forms g—- and —-. It is based on the following L’Hospital-
o)

Bernoulli theorem.
Theorem. Let in some neighborhood U of the point x = a the functions

fix) and (o(x) be differentiable everywhere except possibly at x = a, and let
0'(x)# 0 in U.




32

If the functions fix) and @(x) are both either infinitesimals, or infinitely

large as x—>a and ﬁ%x—% approaches a limit as x approaches a, then i—gg
X

approaches the same limit, i.e. )
2 @) &
lim == = lim =—7— | 2.15
= plx) < o) g
The rule is also applicable when a = .
2x

Example 19. Find lim 2 (i.e. evaluate the indeterminate form : 5
x—0 arctan Sx 0
Solution:
Using formula (2. 15), we obtain:
s 2
lim =lim ==
x—0arctan5x 1 5

1+25x°
I

since e?* — I and m—-?——-—n' as x—>0.
14+ 25x°“ x5

In some cases evaluation of the indeterminate forms %and 2 may
oo

require repeated application of the L"Hospital-Bernoulli rule.

Example 20. Find lim ln—; (i.e. evaluate the indeterminate form =N
X440 x oo

Solution:

Applying formula (2. 15) twice, we obtain:

2

fg 2 L, AT L iy 0

. ‘_x_— 3 xrie y ¥

3x* 3x7

At each step of applying the L'Hospital-Bernoulli rule it is advisable to
use various identical transformations to simplify the ratio, and also to combine
this rule with any other methods for evaluation of limits.

Example 21. Find lirx}J tﬁx—}%, (i.e. evaluate the indeterminate form % ).
X—¥ X

Solution:

Using formula (2. 15), we obtain:

1
; —COoSs X 3
, tanx-smx . 2 1,. l-cos’x
lim ————= lim &8 X __ = —lim———F—.
x—+0 x z—+0 3.1:2 3 x>0 xl cos” x
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We then eliminate the factor cos” x ro the denominator, since it has the
limit 1 as x — 0. Expanding the difference of cubes standing in the numerator,
we eliminate then the factor (1+ cos x +cos” x ) having the limit 3 as x — 0,
After these simplifications we get:

tan x —sin x

= lim
=0

l-cosx

2
X

lim
x=0 b3
Applying (2. 15) once again, we obtain:
. tanx~-sinx .. l-cosx .
lim - =lim —=lim—
=0 x x=0 X =0 2x
Using the first remarkable limit, we obtain the final result Y5 without

resorting to the L’Hospital-Bernoulli rule once again.
oo]
o0 -

sin x

.

Evaluate the given indeterminate forms [g or

o7\ Him Incos2x — lknx—arctanx
"3 gin2x " a0 x*
273 1irnlr-,f7-—_—€11 m#na#0 274. lim e -1
Ca0 x" gt : ) " 30 aresin 3x
Insin ax . a —=b*
lim ——. lim ,a#bc#d.
&5 x—0 Insin bx 218, 5 ct—-d*
—_— ¥x-15 lim Incosax
7. x5 .J; . \/5_ ¥ 278, x=0 ln COS:?JX ;
. e —et =2x . m—2arctanx
Jitgh ————————, £ s e
R e 280 M >
e* —1
lim x—sinx fim et —e™”
L r— 282, lim {1+ 7)
3z
. e =3x-1 . cotx-—1
lim————. lim —
283. £ 288 o
. X —4xt+5x-2
285. lim

X3l

X —5x"+Tx-3
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2.9, The indeterminate form 0xc, © - 0, 0°, ©°, 1%

Evaluation of the indeterminate forms 0x© and o - To evaluate
lﬁ 7 (x}(p(x), where f{x) is an infinitesimal, and o(x) is an infinite as x — a

(evaluation of the indeterminate form 0xo00), it is necessary to transform the

filx
product to the form '*g_) (the indeterminate form ;—.:-) and then apply the

o (x)

L’Hospital-Bernoulli rule.

Example 22. Find limsin(x~/)xtan % (i.c. evaluate the indeterminate form
o

Oxc0),
Solution:
We have:
lim sm(x—l)xtanéﬂl= sm(x 1)_11 cos(x—])
A=kl x x-21 X =T
cot — Bch
2 2 .. a7
sin < —
2

=-—hmcos(x 1)xsin’ E=_E,
;rr-b 2

To evaluate lim(f( )-@(x)), where fix) and (x) are infinitely large
quantities as x—>a (evaluatmon of the indeterminate form oo-—), it is

necessary to transform the difference to the form f (x)x(l - i}((-—))} and then
evaluate the indeterminate form M (f.e.—). If
o

)

7
iimf—’-(x—) #1, then lim(f(x)-@(x))= . Andif lim plx )"‘1' we obtain the

/) xa 1)

above considered indeterminate form (e x 0).
Example 23. Find lim (x ~1n? x}. (i.e. evaluate the indeterminate form —@).
X—»o0

Solution:

3
We have: Iirn(x—lsf x)z lim x[l-]n x}

X0 X=p+a0 X

Since



3ln2x><-1-

=6 lim 11—]—x=61im

1

X4 X
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In? zh'lxxi
=3 lim ——%=
X x—r+0 :
1 ;
lo61mi=p
x—m:i’ X340 X
1

lim (x~lr13 x): +o0,

X—>+e0

Evaluate the indicated form 0xw or w-w

286.

288.

290.

292.

294,

296.

298.

lim
X—»0

lim x" xe

X—m

X7

lim

1

=

-X

i s f
lim xsin—.

X=pm

X

lim (7 - x)tan >
im (7 - x) n2

_ij
—0\ arctanx x l

lim Inx x In(x - 7).
x—]

lim
X—t—
2

|

X

cotx

g

2cosx

}

287. lim cot’xn-{}

X=> X

289. lim xIn® x.

x—0
291. lim.(e’c - 2)c0tx.
x—0
293. lim(x - 7)cot z(x - 1)
x—]
I.

295, lim x°e* .
x=0

1
mﬂvwx ﬂ
299, hné[-iz- - cot? x)

Evaluation of the forms 07,%”,/”.In all the three cases we have to

evaluate the limit of the expression (f (x))d’(’}, where f{x) is an infinitesimal in
the first case, an infinite in the second, and a function having the limit equal to
unity in the third. As to the function ¢h(x), it is an infinitesimal in the first two
cases and an infinite in the third.

We proceed as follows: taking first the logarithm of y = (f(x))’(’).
In y = ¢(x)In 1 (x) (2.16)
and find the limit of Iny, whereupon the limit of y is found. In all the three

cases, by virtue of (2. 16), Iny is the determine form 0x oo (check this!) which
is evaluated by the above discussed method.
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2x
; 1
Example 24. Find lim [l + ;J . (in other words, evaluate the indeterminate

Xt

form 1).
Solution:

iy 1
Let us put }’=(l+;J . Then Iny=2x Iﬂ(] +;] is the indeterminate

ln[l+i)
]_ny-.:z_—x_

1 and
X

form cox0. Transforming the expression Iny to the form

applying the L'’Hospital-Bernoulli rule, we find:

limlny=2lim
-0 X T30

= Fi—

2x
Consequently, fimy = 11{2(1 + ;] o

Evaluate the indeterminate forms 0°,00%,1° :

Jim x*"* im(arcsinx)**.
300, lm ™, 301.1}%( inx)

1
tirne 25> !
302, lim{r ~2xf™, 0. 1B )

2

1 L
x

lim x

304, lim (e +2°). 305.

306, lim(cot x)i ¢
p <

-0

1
hmxm.

x—+1

308.

3
310. !m(cos ?.x).é :

x= 0

307, lim(tan "
20t

\ 3
309. 11111(“—;] !
Xt X

311 lim(e’r + x)z,

340
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2.10. Taylor’s formula

If the function y = f{x) has the derivative of the order n+1 at the
point x;, then

1@)= 1)+ Lok ) Ly,

(n)
P L;Eﬁ_)(x —x,) R (2)

where:

R, (x)= f(M])(x(";ﬁ;gx ~%) (x=x )" 0e(0)

For x; =0 we have

I £0). ). ) . r*a) ..
f(x)—f(0)+-Tx+——~i(l—x .+...+ g x"+ (n+(l)!?x

(Macloren’s formula).

Example 25. Expand polynomial Q,(x)=x’ into powers of (x - 2).
Result: x* =8 +12(x=-2)+6(x~ 2)2 +{x- 2)3.

Example 26. Expand function f (x)=i into powers of (x - 2) to the
term which has the third degree of (x - 2).

Result: i—} ==24+(x=2)-(x=2F +(x-2/ + ;((x —2)‘7).

Write Taylor's formula for the function:

318. y=2x"-3x*+5x+Lx, ==1. 32l. y=sin’x,x, =0.
319. y=¢&",x, =0. 322. y=1n(4+x2),xu =0,
320. y=cosx,x, =0.

Usage of Taylor's formula, ,

a) Taylor's (Macloren's) formula gives a possibility to find a
function's value. 5%
Example 27. Compute 3/30.
Solution:
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[
130 ={I27(1 + -;] =331+ % , it is sebvious that during

computation we should use expansion of function f (x)=4I1+x into
degrees of x, i. e. Macloren's formula:

Trx=143% (--1) (%—ku)klmm(x)

k=13
Thus,

1112113125; 1
Y30=314-%-—=% ——(]-&--—— —[—) +R(—Ja
3 3 3 2 laN 333 3 3

~ 3% 1,03574=3,10722.
b) Macloren's formula is also used to compute limits of function.

' / 1
etmEmmeosx _ ()4 43)q +x —%x‘?

xsinx’

Example 28. Find lim
x=0

Solution:
As  xsinx’=x"+ o{x3 ),

1
JI1+4x =(1+4x)4 =.’+x-—%x‘2 +%x3 +o(x3),
2 3
sinx * Incosx = (x + o(x){-— 52— + o(x2 )] =—-x? + o(xz),

i 3
Y ke }+4x+x—5x2 =—4x’ +o(x3).

Thus, the sought limit

/ . —4x’ +olx’
lim...=lim 3 Y =—4.
x>0 x+0 x° 4+olx

2.11. The general investigation of functions and tracing of curves

The general investigation of functions may be divided into two parts:
elementary and differential.
Let us start from elementary investigation.
1. Find the natural domain of definition and the set of values of given

function.
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2. Find the points where the curve meets the coordinate axes. These
points are determined by putting y=0 and x=0 successively and thus
obtaining the values of x and y respectively.

Find the intervals where values of function are positive or negative.

4. Symmetry. If the equation remains unaltered when x is replaced by
—x, the graph of function is symmetrical with respect to y axis. The
curve is symmetrical with respect to x axis if the equation remains
unaltered when y is replaced by —y.

(¥3 ]

If interchanging x and y or x and —y the equation remains the same
the graph is symmetrical about the line y=x or the line y=-x respectively.

For example, the graph of function, that is represented implicitly
by the equation x* +y* =6xy, is symmetrical about the'line y=x.
Differential investigation.

1. Find the first derivative. The intervals where the value of derivative is
positive or negative are the intervals where the function is increasing
or decreasing. Also the turning points ( the stationary values where
¥.=0 or it is not exist) are the points where the function has
maximum or minimum values.

2. Find the second derivative. The intervals where the value of the
second derivative is positive or negative are the intervals where the
graph of function is concave upwards or is concave downwards. The
points of inflexion are the points where the sign of the second
derivative is changed. '

3. Asymptotes. A straight line is said to be an asymptote to a curve if the
perpendicular distance of the straight line from a point on the curve
tends to zero as the point moves to infinity along the curve.

For example, for function

33 2
Example 29. Trace the curve y=vx~ - 2x" .
Solution:
The natural domain of definition is (—o0,0); the points where the

graph of this function meets the coordinate axes are (0,0) and (2,0).
3x?-4x  _  3x—4

e -22f He-2Fx

to zero when x=% and it is not exist when.x= 0,x=2. We have two

The first derivative y'= . It is equal
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intervals (—m,O),(g,w) where the function is increasing and interval

(O,g—) where the function is

decreasing.
Thus (0,0) — maximum,

(i,—23 f) - minimum.
3 3

The second derivative
. -8

f 9(x~2)x*

equal to zero but it is not exist
when x=0,x=2. Its sign is
Fig.2.3 changed when x=2, so that the
point (2,0) is the point of

It is not

inflexion.
We have asymptote y=x - %

Trace the curves:
4

121 Y=—— 322 y=¥x+1-3x-1,

xd=]

323, y=Vx’-2x, 304, y=x'e™,

325. J"zx*’E.
X

-
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