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Chapter 1.Basic methods of computing the indefinite integral
1.1.Definition of indefinite integral

A function F (x) is called an antiderivative (a primitive) of the function f (x)
defined on some set X if F'(x)= f(x) for allx € X . If ®(x) and F(X) are two
antiderivatives (two primitive functions) of one and the same function f (x), then
@(x) = F(x)+C, where C is a constant. Conversely, if F (x) is an antiderivative of the

function  (x), the set {F(x)+CC €R} is the totality of all of its primitive function
£ (x) and denoted by the symbol I f(x)dx which is read: indefinite integral of
function. Thus, by definition, the Indefinite Integral

[ fe)de={F0)+C, 1)
where F (x) is one of the antiderivatives of the function f (x) and the constant C takes

on real values.
By virtue of the established tradition, equality (1) is written without denoting

explicitly the set on the right, i. e. in the form If (x)dx = F(x)+C, where C is called

an arbitrary constant.
Properties of the indefinite integral.
o (fma) =FE@+C) = £}
[af (x)dx = a [ f(x)dx,a#0;
[£iqxydx = f(x)+ C;
() + )= [Aidx+ [£2(x)ax

5

(3]

IS

The table of basic indefinite integral:

n+l

na X dx _ .
. II dx“—-——n+1+ci(n¢._l); 9. I-—x_-— 1n1x|+C,

it

i _ o
.Ia dx-hm+C (a#1); Ie de=e*+C

w



4, Isinxdx=-cosx+C; 5 Icosxdx = sinx+ C;

6. I = tanx + C,; 7! =—cotx + C;
cos? x sm X

dx x
= In|tan —|+-C;
& '[sinx | 2 |
I

dx ¥
—~—=—an:tan—+C .
10. Ixz +az a ’(G?EO),
dx 1
ll.I T ® o 2a]n

= In| 1:an(-';)E + i:—)i;

x+a

+G;

x—a

= arcsin —+ C,|x|<|al;

12]\/-——

13 I———=hﬂx+Jx +a* G, |x]>al;
Cixt+d
dx
14, I____W = In(x +Vx* +a*) + C;
15. fsinhxdx=coshx+c; 16. _{coshxdx=sinhx+C;
dx
17. ‘[coshz = —tanhx + C; IS'I?nﬁzuwmx+C'
1.2.Direct Integration

The finding of the indefinite integral with the aid of the table of integrals and
identical transformations is called direct integration.

dx
+ 2°
Solution: The integrand we transform:
=& - Tegt-nt = 1

Zaxt xP(+x%)  (A+x?)x? "X 14x?

Example 1. Compute I Boog

Thus, we have:



dx dx dx .
el e o

1+x
1-x

+C

Find the indicated integrals, making use of the table of basic integrals.

1. .[-\/de;

-

7

J'xa +2

d,

o

X
,jf(1+3f2-‘)dq
IZ—sinx

sin” x
1. jsinz ;:—dx;

I dx
B-Jcos 2x +sin 2 x’

~1

9, dx;

e Xy
in—— cos=) dx;
15. J’(SJH2 2)

I?JS-I

19_[ dx;

21, [(x+a)(x +B)dx;

cos’ x +3cosx—2
2. | d

X5

GDS X

d x
i s
4. f_—dx(@jg;)z :

6. [27e'dx;
8. [(2x+3cosx)dh;

3-2cot’x
10. j————*

COS2 X

12. *(a) _[tanz xdx, (b) _[tanhz xdx;

dx;

14. I(arcsin x + arccos x)dx;

W '[x +4.

18.ITJT“—;;
(1+x)

i J.x(1+3r:)

= 1

22._[ a3 + x 3|edx

3

24.(a) ICOtz xdx, (b) _[coth 2 xdx;



dx . x’ =9 =
25. J 2 ’ 26. _[ 2 :
Axt =7 x“ -8
There are two variants of the technique Infegration by change of variable

1.3.The method of placing under the differential sign

Let it be required to complete the integral _[f (x)dx. Let us assume that there

exists a differentiable function # = ¢(x) and a function g (x) such that the integrand
flx)dx can be written in the form Jf(x)dx=g(#(x)) @(x)cd=g(u)du (this
transformation is known as placing u = ¢(x)under the differential sign). Note that the
following relation is fulfilled:

[£ () = (@' (x)ate = [gtwata|

Therefore the computation of the integral I f(x)dx is reduced to computing the
integral j g(u)du (which may turn out to be simpler than the original one) followed
by the substitution u = ¢(x).

Example 2. Compute the integral ISiﬂ * x cos xdx.

ASolution:

. . . - . 3 -
The integrand can be written in the form: sin 3 x cos xdx =sin’ xd sin x .
Thus, we have:

4 s 4
: . . u sin® x
Ism3xd31nx=| u=sinx= J-usdu=—a~+C = +C
Example 3. Compute the integral | —at—
xampre = P x*4+x-3
Solution:
2x +1 d(x’+x-3) du
. -——-—-—-—-—-—-—-—-dx = B _—
Wehave.jx;+x_3 '[ x*+x-3 u

= Inju||_,,, , *C=In| X" +x-3|+C




The operation of placing the function ¢(x) under differential sign is equivalent to
replacing the variable x by a new variable u=gx).

de.
Example 4. Compute the integral J-w

Solution:
Let us change variable by the formulas # = 3x + I.
1
Then du = 3dx, je dx = }-a’u
and
1
f dx #} rdu AT 4
| 753 )8 =4 lf=ﬂﬂ%—C—\l.i‘.1::+i+C'.
JGx+D u

The transformation performed is equivalent to placing the function u=3x+1 under
the differential sign.

Compute the given integral with the aid of a suitable substitution.
1

27 J. v3+xde, g j(3—4sinx)3 cosdx; 29. J-coshxsinhxdx;

2
30 (0o s BIGE R 3 .
tan” x a+bx xIn? x
X
. cos —=
33. I—S—E&iﬂ—; 34. I V2 ; 3s. Jcotxdx;
a—btanx 7 3sin X
V2
e ; dx
36. I 3% dx; 37. Icos(ax+b)a§x; 38. jsm(lnx)—r;
X
39, sm&ij‘:; 10, [—F 41 fge;
% cos(x—%) x* =1
_2 dx dx
42, |x-57F dx; 4. : 44, ;
J jsinhz 3x '[1—4::2



S dx dx

45, dx; 46. 3 47. |—= '
Ij‘re—m IvS 3x I 9x? -1
sin xdx xdx
48. 49, 50. 5
I\/cos xh '[x +] J ¥l
sin ax .
5% J'-_?—)—; 52 '[0053 axdx‘, 53, jcosh‘? x sinh xdx;
54, IE_—S(# 55, J'tan sdx; 56. [coth 4xdx;
€
a i xdx i s
57, |——dx; Y N I O L et
I x? Icoshz(xz + 1) o2 '[ a**'L]
dx a*
60, |——; 61. 62. |——=0dx
J : 4x% 4+ 7 IJ&I -
6. [—= — (0<b<a)

(@a-b)x* ~(a+b)
1.4 The method of substitution.

Let it be required to compute the integral I f(x)dx, where the function f (x) is

defined on a set X.
We introduce a new variable » by the formula x=g@(u):U — X, where the

function @(x) is differentiable on some set U and maps U one-to-one onto X, i. €. has

the inverse function u =@/ (x): X - U.
Substituting x = ¢@(u) into the original integrand we obtain

flx)dx = f(p(u)g'(u)du = g(u)du
The following equality holds true

[fG)dx = [flp@)e'(w)du = [g@)du],_ -1,
Le. the computation of the integral [f(x)dx is reduced to finding the integral
fg(u)a'u (which may turn out to be simpler than the initial one) followed by the

substitution u = ¢~ (x).
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1+x

RN 5

Example 5. Compute the mtegral _f

Solution:

dx.

In the present case the domain of definition of the integrand X = (0,+%). let us

make the substitution x = @(u) = u? ,u e[0,+).

Then

I 1+x
144x
—4In(u+1)

dy = 2uduu=9 (x)= Jx,
dx = ZIH U = ZI(u —u+2)du— 4_[ o 2[%:{3—§u2+2u]-—=

i =2{§x% —§x+ Zx/i]—4h1(\[-’_ﬁ+1)+c

whence

Find the indefinite integrals making the indicated substitutions.

64. j—sﬂx‘—txz—,r:msx; 65. | —t=lnx;
4+c0s” x x(1—-In” x)
2x 3
66 [t =e® 67. [x2e!* dnt=4x’;
1+ 36
?v’x ‘J_' xjdx 3
68. [——=dx,t=+x; 69, b=l
IJI J x-1
dx 3 2
70, ol I 02 71. {N4x—1-dx, 4x-I1=t";
‘[1+3Jx+1 J
72. [Y5+6% dx, 5+6x=1"; 73. [sin(a+ bx)dx, a+bx=1;
7hs falinesi g Ly 23, 75 Bz =,
x\[i—x3 X 4 x2 f
?6.j-£-—,x_tz, 77. J—-dx x=lnt.
X+AX e* +1

1.5.The method of integration by parts

If u (x) and v (x) are differentiable
integration by parts is valid

j udv

uyv

functions, the following formula for

- [ vdu @)



1"

This formula is used when the integrand f(x)dx can be represented in the form
udy so that, with a proper choice of expressing u and dv, the integral standing on
the right of (2) may turn out to be simpler than the original integral. One should be in
mind that » must be supplied with such factors, which get simplified during
differentiation. For instance, if the integrand is a product of a polynominal by a
trigonometric or exponential function, the polynominal should be distributed to u
and the remaining expression to dv. Here formula (2) may be used repeatedly.

Example 6. Find _[xz cosxdx.

Solution: We set u=x” and dv = cosxdx.
Then du=2xdx and v= jcosxdx =sinx (the constant € is assumed here to be
equal to zero, i.e. we take as v one of the antiderivatives).

By formula (2), we have [x? cosxdr = x? sinx — [2xsin xdx.

We apply the formula for integration by parts once again to the integral standing
on the right, equating u, as before, to the polynominal (i.e. to 2x).

We have: u = 2x,dv = sin xdx. Hence, du = 2dx and v = _fsin xdx=-—cosx.
Applying formula (2), we finally obtain:
[x* cosxdx = x’sinx—( —2xcosx— [( =cosx )2dx)=x"sinx+2xcosx—2sinx+C

If a logarithmic or inverse trigonometric function is contained (as a factor) in the
integrand, then it should be taken for u since these functions are simplified during
differentiation.

Example 7. Find _{lnxdx.

Solution: We set u = Inx,dv =dx,

Then du = o and v= _"dx" x. Substituting into formula (2), we find
x

Inxdx=xlnx- Jlxéx- =xlnx-x+C
x

Afler repeated application of the formula for integration by parts, we sometimes
arrive in the right-hand side at an expression containing the original integral; i.e. we
obtain an equation with the sought for integral as an unknown.
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Example8. . Find [€”* sin xdbx.
Solution:
We set u = e**, dv = sin xdXx.
then du = e**2dx and v =—cosx substituting into formula (2), we find
Iez" sin xdx =—e** cos x + 2 Iez" c0s xdx

Applying the formula for integration by parts once again to the integral standing
on the right, equating u, as before, to the exponential function, we have

5 ) . i
Ie * sin xdx = —e** cos x+2(e”* sin x—2 _{ez" sin xdx)

2x v
Thus, we obtain the equation for unknown integral I= Ie * sin xdx.

I =—e*cos x+2e* sinx—41,

5] = —¢** cos x + 2e** sin x ,
Finally we have:

. 1 4
_[e"" sin xdx = ge"(—cosx +2sinx)
Find the indicated integrals, applying the formula for integration by parts.

78. Iarccos xdx; 79. j-x cos xdx; 80. I x In xdx

1
o ] dxs w67 -xeDind

g3. [x” sin xdx; g4, [x%e” dx ; g5. [x7e*dx;
3
8. [xPe  ar; 87 [rdn gg. |xarctanxdy;
X
% arccos x .
89. j_"ﬂ'gf—dx; 90.']9‘”‘ cos bxdx; 91. _[e dx ;
CcOos

x
92. finr +V1+x7 )k 03, [x% In xde ; 94 fx3%dx;

dx
Zie s ettt cos(In x)dx.
95. [(x? —2x+3)cos xdx; 96. J' T 97. [cos(Inx)



Chapter 2. Standard Methods of Integration

Here we shall present some classes of functions which can he integrated by
means of certain standard methods. It should be noted that in some cases those
standard methods may not be the simplest. It is often advisable to perform certain
preliminary transformations. But the reader will be able to find the simplest tech-
nique leading to the desired result only afier necessary experience in computing
integrals will be acquired.

2.1 Integration of Rational Functions.
Any rational function (rational fraction) can be represented in the form of a
sum of an entire rational function (a polynomial), in case the fraction in question is
improper, and partial rational fractions. A polynomial can be integrated termwise by

means of the simplest methods. Partial fractions of the form c = 7 can also be
x—a
integrated quite easily.
Example 9. Integrate function  x’ -2x+3
x(x—I)(x+2)7°
Solution: x'=2x+3

If it is necessary to inte function ————————— which is a proper
ol A o AT EE pop

fraction, so that it can be presented in the form of partial rational fractions.

Then, we obtain
3_
J-x 2x+3 e qéi_"z 3\ 12+55 I 2
x(x=D)(x+2)? 4x 9(x-I) 6(x+2)® 36(x+2)
=—§!n|x|+—2-1n}.vc-l|+i a +5—5-In]x+2|+C
4 9 6(x+2) 36

Hence, now we must consider partial fractions of the form

Mx+ N
oy et o . p’-4g<0).
(x" + px+q)p
We begin the integration with a simplification of the numerator. Namely, taking

into account that (x’ + px+q)'=2[x+%] we replace x in the numerator by

(x +i§)-% and then combine similar terms without removing the parentheses.

After that we break up the integral into two integrals.
The first integral is of the form




P
e Z)dx . | d(x’ + px+q)

Waprrg? 2767 +preg)
and we therefore find it immediately.

The second integral is of the form
j- dx

(12 - px-f—q)‘a :
To compute it we complete the square in the denominator which results is
X+ px+g=(x+ a)2 +b where a and b are constants. Now, if we put we arrive
at the integral

i
Ig= |———d. €
B .[ (yz + b)ﬁ dy )
which can be easily found in the case =1 (how can we do it?). To find integral

(3) for B =1,2,3... we shall deduce a recurrence formula which will enable us to
pass from / ; to the simpler integral 1 -1 €1 The formula is obtained by means of

integration by parts.
We have
1 b 1 (b+y)=y 1 1 ¥
[ =i —2—dy== [ y="1,, ¢ —d
: bI(yub)’dy b'{ (y+by =~ " bjy(y’+b)ﬁ 3
Here we put u=ydv= Y _dy, ie. du=dy,

(v’ +b)
v=j ﬂyafy 1J«d(y’+b)_ =3 1

OGP by 230740y 2B-1) G +0)"
Hence,
Fo=tf DB = ket A 4
P *""+2b(ﬁ-1)(y?+b)ﬁ*f bjzus—i) 2 +b)P % @
y 28-3

i + Iaq_

2(B-10° +b 7 2(B-D *”

(let the reader verify all the calculations!).

As we have already mentioned, formulas of this type are called recurrence
formulas. Such formulas express an unknown quantity dependent on a number (this
is the quantity /4 with the number f in our case) in terms of similar quantities
with lower numbers (this is the quantity 75, with the pumber f-1 in our case).
These formulas may not yield the solution immediately but they enable us to obtain
the solution after several successive reductions of the number. Thus, formula
(4)expresses I in terms of 15, If we repeatedly apply the formula to Ig_;, that

is if we substitute 1 for § into formula (4),we obtain the expression of Ig_; in
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terms of /4_, etc. Finally, we arrive at the integrai J, which is immediately found,

as has already been indicated. For instance for p =2 and B = 3 we have:
Example 10.

12=_[ }jdx X

1 -
(e 2+x) 21w Her?) 27ETE

Example 11.
dx X 3

By = ?+—I;;-=——L—-+ - +§arctgx+C.
(}+x2}% 4(x2+})’ 4 4(x2+1)7 sli+x?) 8

Example 12. Compute j~—-£1—2——dx

(x‘? +2x+ 3)2

Solution:
At first replace x+2 in the numerator by %(Zx +2)+ 1 and then break up the

integral into two:

1 2x+2 B dx

2 (x3+2x+3)2 (x"’+2x+3)2
The first integral we transform:
1 d!x +2x+3! Jedu 11 CI=_£ - 1 +Cy,
2 (x +2x+3)2 27 2U 2x* +2x+3
To find the second integral we complete the square in the denominator

x% 4+ 2x+3=(x+1)’ + 2 and then change of variable by the formula x+/=y.

‘t r
f[xz i, 3]: = ‘I-bv:ivz}l =l,= m+ (see Example 10)

x+1 1 x+l+(,

'[1+y 4[x’+2x+3]+m 2

Thus, we have
xX42 - i x+1

1
(13+2x+3)2 H_Ex +2x+3+4(x ¢2x+3) 42
x—1 ! x+1
4(x2+2x+3J+41f§amtg V2 s

Example 13. Compute f ( );
x\x“ +1

Solution: The fraction — is a proper one. It's decomposition into

(x +I)J

arctgx+1+c =
V2

partial fraction is




A Bx+C Dx+E

A P T

So we have
1= Ale? +1f +(Br+ C)elx? +1)+ (Dx+ E)s.
For x = 0 we obtain A = 1.
For x=i weget I =(Di+E) & I=-D+Ei & D=-1, E=0.
The coefficients of x* are 0 = A+ B <& B=—A=-1.
The coefficients of x> are 0=C.
Thus

& A1 3 o g L 1
jx(x;+})a J-[x = +1 (x2+f);}ﬁ lnl,x] 2111(.’{ +f)+2x2+1 +C

Hence, the integral of a rational fraction is always expressible in terms of
elementary functions, and this can be achieved by means of the above standard
methods. The elementary functions in terms of which an integral of this type is
expressed are rational functions, the logarithmic function and the arc tangent. The
most difficult thing in the integration is the factorization of the denominator.

Compute the five integrals.
98, I;;jTj-; 99, jﬁ?}; 100. Ix;’;x;
ok, | e i s S G
104. jﬁ);“ 105. j;}%; 106. Ixf:,g;
2
107, Iﬁjﬂ ; 108, j-(;ﬁdx_

Methods of computing many integrals of other types which we are going to study
here are essentially based on the transition from a given integral to an integral of a
rational function by means of suitable substitutions. This is the so-called
rationalization of the integral which reduces the computation to the above standard

methods.

2.2 Integration of Irrational Functions Involving
Linear and Linear-Fractional Expressions.

First we take an integral of the form
[R(xNax+b)dx (n=2,3,..)



1
where a and b are constants and R (x, y) is a rational function of its two arguments x
and y. The integrand is an irrational function here because it contains the radical. To
rationalize the integral let us use the substitution ax + b =t", adx=nt""dt
which yields

JR(x,Xax+b)dx = R{L“—'Q ,:}ur"“fdz
a

The integrand in the last integral is a rational function (why?). Similarly,
an integral of the form IR(x, Nax+b,Wax+b,.)dx (nm=2734,.)
where R(x,y,z,..) is a rational function of its arguments x, y, z, . . . goes into an

integral of a rational function after the substitution ax+b=1" with p suitably
chosen (how must we choose p in the general case?).

dx
Example 14. Find | ————————
P IJ21:+3 ~2/2x+3
Solution:
The substitution 2x+3 =15, 2dx=6¢dx yields
J- dvc3 i 33rdr —3J'-—d1‘
V2x+3-242x+3 ¢
Performing the division of £ by 7 —2 we find
PE

—— =242t 444
t-2 t-2

and hence we finally obtain
dx 2 8 }2, 3 2 |
=3¢ +2t+4+—— =t +3t°+12t+24Inlt -2+ C =
jx.h?::c%—.i' 23 2x+3 J( =
=2x+3+3Y2x+3 +I26\f2x+ +241n"52x+ 4+C

The rationalization of an integral of the form

_[R[x,n.l / z:j}tx (h=2.3,4)

where R (x, y) is a rational function is carried out by means of the substitution

b d-t"-b

ok =t", ax+b=cxt" +dt", x=
cx+d a-ct"

Thus, integrals in which R is a rational function of its arguments are always

expressible in terms of elementary functions.

Compute the five integrals. s e e
FHAVKG o @ FEXHTT
dx xdx Sve G T _
09. |-———:; 10, ] ,11}? A Sy COMITHOTO
‘[(5+xN}+x '[3\:‘2::—3 l-_;.ul:onj'\/_'a.e\/;. iR A =l
YHIBEPCH YETY ip. ML MRS

.x;h_ni';:'t SRR Al

e

B

%

A4
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+1  dx dx

; ax

{3203l : 113. : {4 RSt ot
/ x-1(x-1y ji{&+4px I(x_])(/xs
I [x-1 §x+5-1

115. —J——dx; 116. dx
J'.75 x+1 (x+5“f+3Jx+5i

2.3. Integration of Irrational Expressions Containing Quadratic
Trinomials.

Here we mean integrals of the form >
lex,v'ax3 +bx +c):1’x

where R (x, y) is a rational function of its arguments. Such an integral can also be
expressed in terms of elementary functions in all cases. In computing these integrals
we apply frigonometric substitutions. 1n order to do this we first complete the
square and pass to a new integral:

jR(x,J;c’ +bx+ c)ix = _[R(x,\}i (o1 £ m’ }ix

where k I and m are constants. After that we use one of the following substitutions:

b+ 1= mitant for the radical y(kc+1) +m?
joe+ = msint for the radical —(kx+1)° +m’ and
Jor+1=—"— for the radical /(kx +1)* —m’?

cos!
(of course, we cannot have the case J-(x+1) —m? for real integrals). The
substitutions enable us to extract the roots (check it up!) and thus we come to an
integral of the form jR ,(cost,sinf)dt
where R;(x,y) is dhother rational function of its arguments. Now we shall describe
methods of computing an integral of the form

Example 15. Find f——(——J_L—)j-
x? +4x+7

Solution:

du
Using the substitution u=x+2 we get I—————-
| Ve +3)
substitution
u=+~3tant, du= V3 at, Jul + -=—‘Et—.
cost.

COSgl

, then we make the second

Thus,
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jcos!a‘x = ésmr+ £

1 1
IVu? +3 3Vx?+4x+7

j ..3 3

2.4 . Integration of Functions Rationally Involving Trigonometric
Functions.

Here we shall deal with an integral of the form

IR(sin x, cos x %)

where R (u, v) is a rational function in » and v. Such an integral is always
expressible in terms of elementary functions. To prove this let us make the so-

called universal substitution tang =t. Then we have l
2tan 2 d
2 2t -7 dx 2dt

sin x = = COt=—— =
TN o b 1% Btz st ekl

)

(verify the calculations!). Hence, integral (5) reduccs to the integral

2 1-t*) 2
IR[ ; 2} > dt

1+22 1+8% ) 141

where the integrand is a rational function of r. The last integral can he found by
means of the method of Sec. 2.1.

The universal substitution ofien leads to very complicated expressions
containing rational fractions and it is therefore preferable to avoid it in problem-
solving practice. In certain particular cases it is better to use some other
substitutions which we are going to consider here.

1. Let the integrand in integral [R(sinx,cosx)dx be an odd function with
respect to sin x, that is let R(—sinx,cosx)=—R(sinx,cosx).
Then we can write

I = [R(sinx,cosx)dx = j_fi{_s.lgﬁ.w__m

in xdx = _[R ;(sinx, cos x)sin xdx

where R, is an even function with respect to sin x. R, being a rational function, we
can easily express it in terms of sin” x and cos x.
It follows that
I= ij (sin'? x,cnsx}sin xdx =~ JRZ (I —cos? x,cosx}dcosx
and therefore if we put cos x = ¢ we arrive at an integral of a rational function,
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2. Similarly, if the integrand in_[R(sin x, cosx)dx is an odd function with respect
to cos x then the substitution sin x=  rationalizes the integral.

sin? xdx sin? xcos xdx

cos® x— 2sinxcosx °cos’ x(cos’ x— 2sinx)

Solution: We have putting sinx =,cosxdx =df we derive

2
= ) tdt :
= \1-t ~21)
The last integral is readily found if we decompose the integrand into partial fractions
or if we take advantage of the equality

= f}[(f —rz)— (I-r" —2:)].

3. If the integrand does not change its value when we simultaneously change the
signs of sin x and cos x, that is if
R(- sin x,~cosx) = R(sin x,cosx)

Example 16. Find 1= [ = |

then we can apply the substitution tan x = f (or cot x = f). We can easily verify that
this yields the rationalization of the integral in the general case but we are not going
to do this hero because in every concrete example the advisability of the substitution
is confirmed by the resuits of the calculations.

) dx
Example 17. .Find I- J-—'-,—T’
sin’ xcos™ x
: dx
Solution: We have [ = _[—-—;-——7—
tan” xcos X
1 dx

Putting tanx =1,cQ8" X =——, —
2 1+I‘3 OOS'?JC

a 3
= Qi:ézdm ](r’+2+ti,}it=t—3-+2r—§+cz

=tan’ x + 2tanx - cotx +C
The same integral can be computed if we represent it as
! . 2 2 )2
sin” x+cos” x
I =9 B
sin” xcos” x
and remove the brackets in the numerator (check it up!).

= dt, we complete the integration:

Let us separately consider integrals of the form
[sin™ xcos" xdx
where m and n are arbitrary integers of any sign. In case m is odd the integral

belongs to case 1 considered above, and thus it can be found by means of the
substitution cos x = ¢. If  is odd the integral belongs to case 2. Finally, if both m and
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n are even we have case 3. But the calculations can sometimes be simplified. For in-
stance, if m 2 0 and n 2 0 and if both m and n are even we can apply the formulas

w2 o CORAX o & 2 I+cos2x
sin x=——~2—, smxcosx=55m2x and cos“ x=——ro

The same result can be obtained if we express the trigonometric functions in
terms of exponential functions by using Euler's formulas.

We sometimes perform integration by parts in computing integrals in order to
reduce the positive exponents and increase the negative exponents in powers of sin x
and cos x.

Example 18. Find Icos = 1k

sin® x
Solution:

cos’ x, cosx
dx, dv= -

sin’ x sin” x
2

cos” x

2 ) when integrating the function —=—:
2sin” x sin” x

J-coszx _ cosx !dx

dx (that is du = —sin xdx

We can put cosx =u and I

and v=—

sin® x 2sin’x *2sinx

Now, making the change of variable tang— ={ we obtain

2 2y
Icos xdx=_ cosx __1_‘ 2dt(]+r T _ cos;c —i]n]t{-r-C:
sin’ x 2sin’x 2 2r{1+r"") 2¢in’ x
- ——lnl I+C
2sin’x 2 2|
Find the given integrals:
B
117, jsin3xdx; 118, [32 Xo, 119. feos* Zax;
cos® x 2
2
120. 121, [52 %, {55 [coc it b
Sln x cos x sin xcos X
dx dx
123. ; 124, |———m—; 125.
'[4cosx+3sinx+5 J]—jsinzx I3cosx+2
26 Joe B cast e pUIBREEL L | g,
4sin” x—7cos’ x I+4cos’ x 2-sinx’
129, j”“g" 130, [— %

I-cigx sin® x + 8sinxcosx + I2cos’ x
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2.5 General Remarks.

Since integration is a much more complicates procedure compared to
differentiation the reader must carefully study the basic methods of integration. But,
on the other hand, it is inexpedient to carry out complicated calculations every time
when it is necessary to compute an integral. It is therefore advisable to use reference
books in which the most widely encountered integrals are collected in orderly way.

Many important integrals are not elementary functions, that is they cannot be
expressed in terms of finite combinations of the simplest elementary functions
which are studied in elementary mathematical courses.

The integrals
fsinx- x“dx
[e**  xdx (@#0..2,.)

Jcosx-x“dx

are not expressible in terms of elementary functions, and therefore all the integrals
that can be reduced to these integrals cannot be expressed in terms of elementary
functions either.

Such integrals are:

Example 19.
!

Ie'xzdx = % j'e_"ujdu , where u = x”.
Example 20.
_[—ai = I{x =e",dx= e"'du\ =3 je"u“’a'u;
Inx
Example 21.

- Isin xldx = lxz = u\ = -;— Isinu . u'idu.



Chapter 3. The definite integral and methods of its
computation.

3.1 The definite integral as the limit of integral sum.

If a function f{x) is defined on the interval [ab/ and
a=X, <X; <X,..<X, =b is an arbitrary division of this interval into n parts, then
the integral sum of the function f{x) on fa,b/ is defined as a sum of the form

Sy, =% f(&x)Axy ,where & €x,_px;), &% =x, %, (See Fig. 1)

k=1
rd
hY T/
y=1(®) vl
i i
e A
T & N
If‘gl A Sufor |1 | ]
=% % w Xt o Xy =D *

Fig. 1

If a function f{x), defined on an interval fa,b/, is such that there exists a
finite limit of the sequence of integral sums S, on condition that the greatest of
the differences Ax; tends to zero and this limit depends neither on the way in

which the interval fa,b] is divided into the subintervals [x; ;,x/, not on the
choice of the points &, is said to be integrable on the interval fa,b/ and the limit

is called the definite integral of the function f{x) in the limit from a to b and is

b
denoted by the symbol _[ f (x)dx which is read: the integral from a to b

a

b
of f{x). Thus J'f(x)dx =lim §,  maxAx, 0.
a

n—> o

The theorem on the existence of a definite integral: 1f the function y=f{x)
is continuous on segment fa,b] , then the limit of the integral sums exists and
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does not depend on the manner of partitioning the segment into subsegments or
on selection of the points &,

To put it in another way, a function continuous on an interval [a,b] is
integrable on this interval.

Geometrical sense of the definite integral: if f{x)20 on an interval [a,b],
then the definite integral is equal to the area of the figure bounded above by the
graph of the function y=(x), on the side by two strait lines x=a, x=b, and below

by segment.
In general case the definite integral represents an algebraic sum of areas of

the figures bounded by the graph of the function y = f(x), the x-axis and the
strait lines x=a, x=b, while areas above the x-axis enter into this sum with the
plus sign, and those under the x-axis with the minus sign.

Newton-Zeibnitz formula. 1¢ p(y) is below the one of the antiderivatives of
a function f{x), continuous on [a,b], then the following formula holds true:

[£(x)dx = F(x) 1= F(5) - F(a) &

This formula allows to compute definite integrals.
2

jx3dx.

Example 22. Compute
4 x*
Solution: For flx)=x ~ ,F(x}——T. Then using the formula (6) we
have:

]xjdx=3c—l:.=4—-{=£.
2 y 4 4

Using the Newton-Leibnitz formula, compute the indicated integrals:

1 8 3
2+ 3N
131, [(Vx + ¥ x? )dx; 132. I—————+x3 = d
0

1
3 § dx
133, J2 7% 134, | ;
0 2 *
2
dx L x?dx
135. ; s [ 2—2—
175 -1 I
2 1
dx
137. [ sh ¥ xdx | 138, [— :
0 U4x +4x+5



‘ix -
+2x 47"

2
2x -1
141. f*“*—z dx
0 X

% In
I

1
130,
Iz

+ 1

Compute the areas of the figures bounded by the indicated lines.

2
142. y=6~x~2x", y=x+2; 143. ¥ = %F,y = 2+/x
— - n —X )
144, J’—0081=y=0,x=—;; 145, y=€",y=0x=Lx=2 ;

3
146.y=;—,x+y=4.

3.2 Properties of the definite integral.
b
1. If f(x) 2 0 on the interval [a,b], then _[f(x)dx > 0;
b b
2. 1If f(x)<g(x) on [a,b] then If(x)dx < _[g(x)dx;
a a

b b
3. 1 [ (x)ax < [| £(x) ] dx .

4. If f(x) is continuous on [a,b], m is the least and M is the greatest value
of f(x) on [a,b), then

b
m(bHa)SJ'f(x)dst(b—a)

(the theorem of estimation of the definite integral)
5. If f(x) continuous on [a,b], then there exists a point ¢ € (@,b)such that
the following equality is valid:
b

_[ f(x)dx= f(e)(b-a) (the mean-value theorem).

a




6. Integration of even and odd functions over symmeﬂ'ic limits.

If f{x) is an even function, then J- f(x)dx =2 If(x)dx

—a

And if f) is an odd function, then If(x)dx =0,
s’ §
7. If a function f{x) is continuous on [a,b], then the integral with a variable

upper limit

D'(x)=('jf(r)dr] = f(x)

3.3. Change of variable

If the function f{x) is continuous on the integral fa,b], and the function
x=@(f) is continuously differentiable on the interval [ef]. and

a = p(a),b=e(f), then

b s £
[fx)yax = [fepe'@a = fywd . @)

b £
This formula allows to reduce the integral jf (x)dx to the integral j“’(t )t

which may be simpler than the initial one.

= I -~
—-X
Example 23. ComputeJ_J s — dx
212, &

Solution: Let us apply the substitution x=sint. Then dx=costdt, t=arcsinx,

t =arcsin—é2— =~i:- and ¢, =arcsin/ = % Consequently

12 /12 .
Ji- —sin? ¢ " cos® 1 " I-sin’t
j costdt = = j

212  xl4 sin” x PR P

"

e

.’E z
4 4

di =

2 T N T
A= ot SR ]
I A a4 i a



‘2

Evaluate the given integrals with the aid of the indicated substitutions

f]_ 1n‘|-8 dx 2
147. 33& 2-—1 148, ._,ex + 1=t :
1+ J3x-2 lns\fe"H

sh! nl2

149, I\fx + ldx,x = sh; 150. f g =t

3+2c:osx 2

7:!4
dx
151. Jw,rgx=t; 152. v3—2x—x2dx,x+1=25int;
-f -

o 1-2sin’x

Evaluate the indicated integrals by changing the variable

153, zj e “f———jﬂfx
2;J‘xvx2—1 *
dx G_J_____.
s S e e
3 dx : el J__ZE
,x+«/2x—1’ ISS'IHZ e* +

2
3 dx 2
150. [x?~9 ~ x?dx ;  160.Show that ji— - I
v} 1

157.

3.4 Integration by parts.

If two functions ¥ = #(x), v = v(x) and their derivatives #'(x)
and v'(X) are continuous on [a,b] then
b b
4 B
Iudv = uvl|, Ivdu ®)
a a

(the formula for integration by parts)



This formula is used when the integrand b i (x)dx can be represented in

the form UdV so that the integral standing on the right of (8) may be simpler
than the original integral.

Solution: Let us set u=Inx dv =dx, then du =

€
Example 3. Compute I In xdx
1
=

o
X

[

e
We have Ilnxdx:x]ﬂXI-" Ix—dx:e—xlzj
1 1 ] X 1

Evaluate the given integrals using the method of integration by parts.

1 1
P arcsmx
xe X .
it -(!- 2 162, ! J+x
¢ wl3
dx
163. [In? xdx 164, | ——s—:
1 x |6 cOs X
e w4
165. jxln xdx 166. Ie“ sin 4 xdx ;
1 0
1 wld
167. | xarctgxdx . 168. [x7 cos 2xdx ;
= 0
al2
169. jex cos xdx
0

w2
170. Show that for the integral I, = ICOS” xdx the recurrence formula
0

n-t. .
1. =—;— .2 is valid. Evaluate I7.
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Chapter 4. Geometrical applications of the definite
integral

4.1 Area of the plane figure.

If the figure bounded by the graph of a continuous function y = f(x)>0,
two straight lines x=a, x=b and the x-axis (a curvilinear trapezoid), the area is
computed by the formula:

= [f(x)& ©)

Example 25. Find the area of the figure lying in the right-hand half-plane and
bounded by the circle x> + p? = 8 and the parabola ¥y = 2x .

Solution:
Let us first find the points of intersection of the given curves by solving the
system of equations

x*4+y? =8 x*+2x-8=0
=2 x,'2=—]i\/§
We obtain the points (2,2) and (2,-2).

Making use of the symmetry about the x-axis, we find the desired area § as
the doubled sum of the areas of the curvilinear trapezoid bounded, respectively,

by the arcs of parabola ¥ = f__(){x <2 and the circle ¥y =v8-x’,

2<x<\/_

X =2 (x,=—-4<0)

2 J&
S=2([Vaxdx+ [ V8—x’dx)=
0 2

3

¥
-_-2(-\/§§x2|+§\/8—x2 +4 arcsin
7}

) | —27r+—

75

The area of the figure bounded by the graphs of two continuous functions

y=f;(x) and y= f5(x), y = f5(x)2¥ = f;(x) and two straight line
x=a, x=b is determined by the formula (See Fig. 2):

§ = f[lfGx) - fin)]a (10)
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ty

et T 4 R o

=

Fig.2

If a figure bounded by a curve, having parametric equations x=x(¥), y=p(1),
straight lines x=a, x=b, and the x-axis, then it’s area is computed by the formula:

Iz
S = [y()x'(t)dt , (11)
P,
where the limits of integration or found from the equations a=x(t;), b=x(1y)
(#(1)20 on the interval [t;12])-
This formula is also applicable for calculating the area of the figure bounded
by a close curve.

Example 26. Find the area of the loop made by the curve x=a(f-1), y=b(4t-f)
(a>0, b>0).
Solution:

Let us first find the points of intersection of the given curve and the
coordinate axes, We have: x=0 for t=21; y=0 for t=0, £2. Consequently, we
obtain the following points: (0,36) for t=1, (0,-36) for t=-1; (-a, 0) for t=0;
(3a,0) for t=2. The point (3a,0) is a point of self-intersection of the curve. For
0<t<2 y=z0, for— 2<t<0,y 2 0 .The desired area is found as
the doubled area of upper half of the loop by the formula(11)

g 2 2 2
§ =2 [ydx =2 [y(t)¥'(t)dr =2 [o(as - £*)a2tdt = 4ab [~y =
-a 0 1] 0
4 2
= dgh(—1’ - lr’)] 2850
3 R [ S =
The area of a figure bounded by the graph of a continuous function
r =r(p) and two rays p=a,¢ = § Where ¢ and 7 are polar coordinates (a
curvilinear sector) is computed by the formula (See Fig. 3):



k)|

j
[rPde. (12)

Fig. 3

Example 27. Find the area of circular line bounded by arcs of circles

r=2acos @, r=2asing, 05@5% (See Fig. 4).

2a r=2asing

Fig. 4

; - : T : T
Solution: The circles intersect for ¢ = -;; the figure under consideration 18

symmetric about the ray ¢ = % . Consequently, its area can be computed in the
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following way:
mid

§=2- [4a’sin’ pdp =
o

b | =~

v

= 2a’xj' (I ~cos 2¢)dp = 2a’[|p ~Ln 2@;] =ELhe,
" 2 0o 2

Find the area of the figure bounded by:

171. the curve y=lnx and x=¢, x=¢’, y=0;
2 2
x" Y
172. the ellipse _7 + 37 = 1
173. the parabolas y*=4x and x*=4y;
174. the curves y=x"+2x and y=x+2;

2, 27 B x?
175. the curves Y ___x1+9 and Y 6

176. Find the area enclosed by the astroid X = acos’ t, y=asn it

177. Find the area of the figure bounded by the arch of the cycloid x=2(t-
sint), y=2(1-cost) and the Xx-axis.

178. Find the area enclosed by the cordioida r=a(l+singp).

179. Find the area enclosed by one leaf of the curve r=asin2¢.

180. Find the area enclosed by the curve r=asin5 ¢.

4.2 Are length of a curve.

If a smoothcurve is given by the equation y=f(x), then the length I of

its arc is
b
1= [/1+ (»") dx (13)

a
where @ and b are the abscissas of the end points of the arc.

Example 28. Find the arc length of the semicubical parabola y2 =x" from the

origin to the point (4,8).
3 1

= ; 3 e
Solution: We have V= xdy = '512 . Using the formula (13), we find:

4
’ 9
I:!\l+-£xafx=

El 8 i
2| =—(10+10 -
(1+=x) 2?(0'\10 1.

o e
w |
|0

o —



33

If a curve is represented by parametric equations x=x(1), y=y(1) (;<I<t,)

then
I = J-‘\||JC + y'. (14)

7 Xy |
where X d

The arc length of a space curve defined by the parametric equations x=x(1),
y=p(1), z=2(1) (1;<1 <1y) is expressed in a similar way

t
1= [Jai+yiezid, ol

h

Example 29. Find the arc length of astroid x = a-cos’t,y=a-sin’t
Solution: _

We have x, = (acos’f), =—-3acos’tsint, ¥, =3asin*tcost.
Let us consider quarter of the astroid and using the formula (15) we find:

1 =12 w/2

ZI = J' V9a? cos’ sin’ t + 9a® sin” t cos” tdt = 3a Icosfsintdt B
0 )

sin’t 7 3a
§ — a = —

2 lo 2

?
whence I=6a.

If we are given a polar equation of a smooth curve r=r(pl.a<¢@<f,
then

B
l= j‘\frz + (r')2dq9_ (16)

Example 30. Find the arc length of the cardioid » = a(]—cosg).

Solution:
) We have 7' = @sin ¢ . Let us consider half of the cardioid and using the

formula (16) we find:
éf: [Ja*(1-cosp)’ +d’sin’ ;adq;=aj‘1!2(1—cosgo)d¢)=2ajsin%dgo=4a
@ ] ]

whence I=8a
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Find the arc length of:
181. the parabola y = x? from x=0to x=1.
182. the curve ¥ = (I - %) Jx between the points of its intersection with

the x-axis. ,
183. the closed curve 8d’ y‘? =x*(d*-x"

184. the catenary y = -gcth from x=0to x=3.

185. the curve x=a(3cost-3cos31), y=a(3sint-sin3t) from t=0 10 1= % ;
1

186. the loop of the curve x = ¢, y= r(?— t?).

187. the entire curve I = @ sin #

RS

188. the logarithmical spiral 7 = € % found inside the circle.
189. the cardioid r = 2(] —co8 @) found inside r=l.
i 7
190. the space curve x=at’, }’=a(l‘+§f3), z= a(t——‘—g-) form t =0

to t=\[§.

191. . the space curve x=¢' cost,y=e'sint,z= ¢’ between the planes
z=1, z=e.

. 4.3. The area of a surface of revolution.
The area of a surface generated by revolving on arc of a curve defined

by the function Y= f(x),x€[a,b], about the x-axis is computed by the
formula:

b
0, = 21 [ f()N1 +(f'(x) . (17)
If an arc is represented by parametric equations x=X(1),y= W), tSEst,

then
I
Qx=2ﬂjy(t)-\;xf+y3dt. (18)

i
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If an arc is given in polar coordinates r = (), @<@< f3, then

A
Q,=2x _[r sin qo\/rz +( r')‘?dqp. (19)

@

Example 31. Find the area of the surface generated by revolving the cardioid
r =2(1+ cos@) about the polar axis.
Solution:

We have r'=-2sin @,

Jrz +(r)? = J4(1+ cos @)% + 4sin 2 @ = 4 cos %,
and, further, by the formula (19):

0, —2frj2(1+cos¢)sm4cos—d¢: 64::!305 251n—a'gv 12877
0

Find the area of the surface generated by rotating

2
192 iy s GE e cnaiy e SRAE

, 0<x <3 about the x-axis.

3
193. the arc of the curve y = %-— from x=-1 to x=1 about the x-axis.

194, the ellipse 4x°+)” =4 about a) the x-axis.
195. b) the y-axis.

196. . the arc of the curve y = é\f;(x —12) between the points of its

intersection with the x-axis.
197. the loop of the curve 9o/ =x(-3ax)z about  a) the x-axis,
b) the y-axis.
198. the arc of the curve x=(3cost—cos3f) y=(3sint—sin3f),

0<t< % about the polar axis.

199. the circle » = 2asin @ about the polar axis.

200. the arc of the curve 7 = asec’ %’ 0<t< % about the polar axis.
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4.4. Volume of body.

If the area S (x) of a section of a body by a plane perpendicular to the x-
axis is a continuous function on the interval [a,b], then the volume of the body
is computed by the formula:

b
s ,[S(x)dx . (20)

Example 32. The plane of an isosceles triangle moves in a perpendicular
manner towards a fixed diameter of a circle of radius a. The base of the triangle
is a chord of the circle and its vertex lies on the straight line, parallel to the fixed
diameter of a distance h from the plane containing the circle. Find the volume
of the body formed by the plane of the triangle during its motion from one end

of the diameter to the other (See Fig.15)
B

Solution:
Choosing the coordinate system so that the center of the circle turns out to

lie at the origin and the fixed diameter on the x-axis we obtain the equation of

the circle in the form X +yf =a’.
The section of the body by a plane perpendicular to the x-axis is an

isosceles triangle with base 2y = 2a? - x? and altitude h.
We have:

S(x) = éhhz? —x’h=hmla’ -x* (-asx<a),
then by (20):
V=haj4a2-x5dx=2hj\fahx’dx=2h(§da%f +%arcsin§)‘1!=2}zx
v 2 a9

2
xf_z :lmzh
2 2

o
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In case of solids of revolution we obtain a rather simple expression for
the function S(x). For instance, if a curvilinear trapexoid, bounded by a curve
y=f{x), a<x<b, rotates about the x or y-axis, then the volumes of solids of
revolution are computed by the respective formulas:

b

v, ==z, @1
%

Vel [x]f (x)|dx,a 20 (22)

Example 33. The figure bounded by the curve: X =g cost,y=a-sin2t
(0<t<n/2) and the x-axis rotates about the y-axis. Find the volume of the solid of
revolution.
Solution:

Tt is evident, that 0<x<a and 0<y<a, as well as y=0 for =0 and t=n/2,
considered figure is curvilinear trapezoid.

Further, for t=0,x=a and for t=r/2, x=0. So, desired volume is determed
by the formula (22) We have:

V,=2rx Ix(!) y(t)dt =2m J'acost asin 2t - (—asin t)dt =
‘ %
!y ,
= na’ fsin 290t = 22 f(] —cos 4t)dt =
0 2 3

7t

If a curvilinear sector, bounded by the curve 7 =r(@) and the rays
@=a,p=f, rotates about the polar axis, then the volume of the solid of
revolution are computed by the formulas:

V=27 [r’sin adp. (23)

m]m

o IR, . }
~

Example 34. The cardioid » = a(1—cos@) rotates about the polar axis. Find the
volume of the solid of revolution thus generated,

Solution:
Using the formula (23), we obtaine:
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F s ’ e 4in
V.= L4 jas(l _ cos @)’ sin pdp = 2’ - ton 1) | = gmzj,
Sy 3 g 7 0T

Find the volume of the solid obtained by rotating about the x-axis the
figure enclosed by

201. the lines y=¢ = —Ly=€" +1,x=0;
202. the li11352y=x2, 2x+2y=3;

203. the curve x = af 2 y=alnt (2>0)
204. the astroid X = 2c08° t,y = 2sin’ ¢

Find the volume of the solid generated by revolving the figure enclosed by the
lines: '

205, ¥ = %,y = x+sin” x ( 0<x <) about the y-axis;

)
x
206. Y 2‘5' +2x+ 2,y =2 about the y-axis;

207. x= at’, y=alnt, (2>0) about the y-axis;
208. r = asin? @ about the polar axis;

209. ¥’ = a’ cos2¢ (the lemniscate) about the polar axis.



3
Chapter 5. Improper integrals,

5.1. Integrals with infinite limits.
If a function f{x) is continuous for @ < x < 400 | then, by definition,
+00 N
x)dx = lim x)dx
[£(x) qujf( Y (24)
If there exists a finite Jimit in the right-hand side of formula, then the

improper integral is said to be convergent, and if this limit does not exist, then it
is said to be divergent.

40
Example 35. Evaluate J-E_jxdx ‘

[
Solution: We have
3xazx___ li 3xdx 1 _i —3lev =
j'e Nlm -[e 'Nﬁ?m( 33 g)m
= lim -]-(I-»e“'?N)-—
N—+0 3

b
The integrals J'f(x)dx and

-

+0 b o0
[fx)dx = [f(x)dx + [ f(x)dx
- -t b

are determined in a similar way.

Example 36. Investigate [ — . for convergence.
Phst

Solution:

@ 0 0 M
J'] &:jfx +J ﬁllmjr,dx +Iimjrdx=
s S WSS R =, MR TSRS S P 8

- hrn (arcrgM + J}qum((arctgm =7

Hence, this improper integral is convergent.

Evaluate the given improper integral (or prove that it is divergent).
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T T A
210 ; 211. ;
. XIn $ % ;[ x+/In x
a0 xlft +x
212, % 213. ;
g,[ x? + 4 _;[,x""+6x+!1
+o0 R
214, [e ¥ cos xdx ; 215. | i”x
0 ] x (}+X)
o0
xdx 1% 2
26, | ——5; 217 | xe ™ dx;
2 \H(xz +5)3 0
i
218. chos xdx .
0

Geometrically improper integral (24) for f(x)>0 is the area of the figure
bounded by the graph of the function y=f{x), the straight line x=a, and the x-axis
(asymptote) (See Fig. 6).

\ y=i(x)

L x

x=a

Fig. 6

Example 37.
Find the area of the figure bounded by the curve ¥ = x? | the straight line
x=1 and the x-axis (asymptote).

Solution:
The desired area is presented by the integral:

%edx 1
o i

1
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thus, the area equals 1.

5.2.The Test for Convergent

We shall consider the tests for convergent only for integrals of form

[ f(x)dr

a) If F(x) is an antiderivative for f{x) and there exists a finite limit
lim F(x)=F(+»),
X—¥+e0
then integral converges and is equal to F (+0 ) ~ F (a);and if lim F(x)
=+

does not exist, then integral is divergent.
b) Yet fora<x<+w,0< f(x) Sg(x)
+o0
If _[ g (x)dx converges, then _[ f (x)dx converges as well, and

a a

Jf (x)dx < fg(x)dx.

If _[ f(x)dx diverges, then _[g (x)dx aiso diverges (comparison tests).

b) ]ffor a<x<+w, f(x) > 0, g(x) > 0 and there exists a finite limit
tim £ .

e g(x)
then the integral If (X} and Ig (x)dx either converge or diverge
simultaneously (Iimx't;ng comparison teas!).
d) If f]f (x)Hx converges, then If (x)dx converges as well (in this

case the latter integral is called absolutely convergent).
e) If for x — 400 the function f{x)>0 is an infinitesimal of order @ as

00
1
compared with — , then the integral jf (x)dx is convergent for@ >1 and
x

a
divergent @ < 1.
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Example 38.

= e x4l
Investigate I ﬁdx for convergence.
1 Vx

Solution:
b e x+!> x 1 1{1
e e —>—F—=="7, @a=_—</l.
oo ye =72
e dx
The given integral is divergent, since | == is divergent.
7 Vx
Investigate the given integrals for convergence.
40 w_ 2 L
219, of 22 _; 220, [ +Hax; ) R
o X +4 1 X ov1+x°
+= {b: +a oo
222 § : 23, [——5 224. [eax.
333_’3_} ;3+2x +5x 0

5.3.Integrals of unbounded functions

If a function f{x) is continuous for a<x<b and f(b) = © , then by
definition,

b b-¢&
[£(xydx = lim [/ (x)dx (25)

a
If a finite limit exists in the right-hand side, then we say that the improper
integral is convergent. If this limit does not exist, then the equality becomes
meaningless, and the improper integral written on the left is said to be divergent.

If f(a)= oo, the improper integral is defined in a similar way.

If f(c)=%, c€(@b), then

b c—&j b
[7Code= lim [7@)ds + Jim, 7Gx

a c+EZ

Example 39. Investigate the improper integral:
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% # (c>0) for convergence.
Solution:
If o<1 then
1 I .
l . asc a+1l 1 I
J'—“—dx=]1mj‘d=hm =
s = L OA 20 —g +1)| l-a
If a=1 then
1
| 3 dx . !
I*dx=llm —=1im In x| = +o
0 x =0 g X g0 £
If a>1, then o-1>0 and
1 "
1 . x~“**  ngal o 1
[—dx = lim = lim (1 - ) =+
s x 20— g +1|; 1-a 20 &% :

Hence, this improper integral is convergent for a<1 and divergent for a1.

Evaluate the given integral (or prove that it is divergent.

"I dx 2 xdx ¢ dx
225, V55 5% 226 Vs 227, .
1%° +x o(xf?_})% jxln’ x

2 I L S
228. |

1
dx
———; 29, [ cos 555 230 [-———.
oN4-x 0 x“x 5 Xl ~x)

Geometrically, if f{x)>0 improper integral (25) is the area of the figure
bounded by the graph of the function y=f{x), the straight line x=a, and the
vertical asymptote x=b (See Fig. 7)




“

x=a

Fig. 7
Example 40.

1
Find the area of the figure bounded by the curve ¥ = pr e the straight

line x=4 and the y-axis (asymptote).
Solution:

4
dx
The desired area is presented by the integral: ﬁ[ J; 2
4 1 4 hod \/—
—_— — i B = i
Jﬁdx L%jx dx 151_1)1312 X

Hence the area is equal to 4squre units.

4
=4.

-~
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Appendix
Reading of the main Mathematical symbols and formulas.

a+b=c a plus b is equal to (or equals) c
15-5=10 fifteen minus five is equal to 10
axb a multiplied by b (or a times b)
a:b a divided by b
a>b a is greater than b
a<baislessthanb
a’a prime
a”’a second prime
b* b square (or squared)
dy asub one (or a first)

10™" ten to the minus eleventh (power)
[ ] brackets, square brackets
() round brackets, parentheses
{ } braces

\/E the square root of a

VE the n-th root of a

dy

;}; dy over dx (or the first derivative of y with respect to x)
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