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1. Products of vector 

 

 Many physical relationships can be expressed concisely by the use of 

products of vectors. There are two different kinds of vector products. The first, 

called the scalar product, yields a result that is the scalar quantity, while the 

second, the vector product, yields another vector. 

1. Scalar product (dot product) of two vectors A
r

 and B
r

. We draw the two 

vectors from a common point as in Fig.1 a). The angle between their directions is 

θ, as shown. We define the scalar product, denote by BA
rr

⋅ , as 

θθ cosBAcosABBA
rrrr

==⋅ . 

It is a scalar quantity, not a vector, and it may be positive or negative. When θ is 

between zero and 90°, the scalar product is positive; when θ  is between 90˚ and 

180˚, it is negative; and when  °= 90θ , 0=⋅ BA
rr

. The scalar product of two 

perpendicular vectors is always zero. 

 The order of the two vectors doesn’t matter. For any two vectors A
r

 and B
r

 

ABBA
rrrr

⋅=⋅ . 

 If we the components of vectors A
r

 and B
r

, we can represent their scalar 

product as follows: 

zzyyxx BABABABA ++=⋅
rr

. 

2. Vector product (cross product) of two vectors A
r

 and B
r

 is denoted by 

BAC
rrr

×=  or [ ]BAC
rrr

⋅= . To define the vector product we again draw A
r

 and B
r

 

from a common point. The two vectors A
r

 and B
r

 then lie in a plane. We define the 

vector product C
r

 as a vector quantity with a direction perpendicular to this plane 

(i.e., perpendicular to both A
r

  and B
r

) and a magnitude given by AB sinθ. That is, 

if BAC
rrr

×= , then 

C = ABsinθ. 
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  We measure the angle θ from A
r

 toward B
r

 and take it always positive. We 

note also that when A
r

 and B
r

 are parallel or antiparallel, θ = 0 or θ = 180° then C = 0. 

 There are always two directions perpendicular to a given plane. To 

distinguish between these, we 

imagine rotating vector A
r

 about the 

perpendicular line until it is aligned 

with B
r

 (choosing the smaller of the 

two possible angle). We then curl 

the fingers of the right hand around 

this perpendicular line so that the 

fingertips point in the direction of 

rotation; the thumb then given the direction of the vector product. Alternatively, 

the direction of the vector product is the direction a right-hand-thread screw 

advanced if turned in the sense from A
r

 toward B
r

 (Fig. 1b). 

B
r

 

θ 

A
r

 

Fig. 1 

a 

θ

B
r

b 

A
r

 

C
r
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2. Kinematics of translation motion 
 
 Our study of physics begins in the area of mechanics, which deals with the 
relations among force, matter and motion. Mechanics consists of kinematics, 
dynamics and static. Kinematics studies motion of the body without the reason of 
this motion. 
 Motion is a continuous change of position. We can think of a moving body 
as a particle when it is small and when there is no rotation or change of shape. We 
say that the particle is a model of a moving body; it provides a simplified, 
idealized description of the position and motion of the body. 
 

2.1. Motion along a straight line 
 
 The simplest case is motion of a particle along a straight line, and we will 
always take that line to be a coordinate axis. Then we will consider more general 
motion in space, but these can always be represented by means of their projections 
onto three coordinate axis. Displacement is in general a vector quantity, but we 
first consider situations in which only one component is different from zero. Then 
the particle  moves along one coordinate axis, and its position is described by a 
single coordinate. 
 

2.1.1. Displacement and average velocity 
 

Let us consider a hockey player skating the puck down the center line of the 
ice toward the opposition’s net. The puck moves along a straight line, which we 
will use as the x-axis of our coordinate system, as shown in Fig. 2. The puck’s 
distance from the origin O at center court is given by the coordinate x, which 
varies with time. At time t1 the puck is at point P with coordinate x1 and at time t2 
it is at point Q where its coordinate is x2. The displacement during the time 
interval from t1 to t2 is the vector from P to Q; the x- component of this vector is 
(x2–x1) and all other components are zero. 
 It is convenient to represent the quantity (x2–x1), the change in x, using the 
Greek latter ∆ (capital delta). 

∆x = x2 – x1.                   (1) 
Similarly, we denote the time interval 

from t1 to t2 as ∆t = t2 – t1. 
 The average velocity of the puck 
is defined as the ratio of the displacement ∆x to the time interval ∆t. We represent 
average velocity by latter υ with a subscript “av” to signify average value. Thus  

t
x

tt
xx

av ∆
∆υ =

−
−

=
12

12 .       (2) 

Fig. 2 

x Q P O 
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 Strictly speaking, average velocity is a vector quantity and this defines the 
x-component of the average velocity. 
 We have not specified whether the speed of the hockey puck is or is not 
constant during the time interval ∆t = t2 – t1. It way has started from rest, reached 
maximum speed and then slowed down. But that does not matter. To calculate the 
average velocity we need only the total displacement ∆x = x2 – x1 and the total 
time interval ∆t = t2 – t1. 
 

2.1.2. Instantaneous velocity 
 

Even when the velocity of a moving particle varies, we can still define a 
velocity at any instant of time or at any specific point in the path. Such a velocity 
is called instantaneous velocity. 
 The instantaneous velocity is defined as 

dt
dx

t
xlim

t
==

→ ∆
∆υ

∆ 0
.           (3) 

The limit of 
t
x
∆
∆  as ∆t approaches zero is written 

dt
dx  and is called the derivative of 

x respect to t. Since ∆t is assumed positive, υ has the positive x-axis points to the 
right, a positive velocity indicates motion toward the right. 
 In more general motion, velocity must be treated as a vector quantity. In that 
case Eq. (3) becomes the x-component of the instantaneous velocity. When we use 
the term velocity, we always mean instantaneous rather then average velocity, 
unless we state otherwise. 
 The instantaneous velocity at any point of coordinate – time graph equals 
the slope of tangent to the graph at the point. If the tangent slopes upward to the 
right, its slope is positive, the velocity is positive, and the motion is toward the 
right. If the tangent slopes downwards to the right, the velocity is negative. At a 
point where the tangent is horizontal, its slope is zero and the velocity is zero. 
 If distance is expressed in meter and time in second velocity is expressed in 

meter per second ⎟
⎠
⎞

⎜
⎝
⎛

s
m . 

 The term speed has two different meanings. It may mean the magnitude of 

the instantaneous velocity. For example, when two cars travel at 
hour
km50  one 

north and the other south, both have speeds of 
hour
km50 . In a different sense, 

referring to an average quantity, the speed of a body is the total length, divided by 
the elapsed time. Thus if a car travels 90 km in 3hr, its average speed is 

hour
km30 , 

even if the trip starts and ends at the same point. In the latter case the average 
velocity would be zero, because the total displacement is zero. 
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2.1.3. Average and instantaneous acceleration 
 

When the velocity of a moving body changes with time, we say that the 
body has acceleration. Just as velocity is a quantitative description of the rate of 
change of position with time, so acceleration is a quantitative description of the 
rate of change of velocity with time. 
 Considering again the motion of particle along the x-axis, suppose that at 
time t1 the particle is at point P and has velocity υ1, and that at a latter time t2 it is 
at point Q and has velocity υ2. 
 The average acceleration aav of the particle as it moves from P to Q is 
defined as the ratio of the change in velocity to the elapsed time: 

ttt
aav ∆

υ∆υυ
=

−
−

=
12

12 .          (4) 

Again, strictly speaking, υ1 and υ2 are values of the x-component of instantaneous 
velocity, and Eq. (4) defines the x-component of average acceleration. 
 We can define instantaneous acceleration, following the same procedure 
used for instantaneous velocity. 

dt
d

t
lima
t

υ
∆
υ∆

∆
==

→0
.          (5) 

Instantaneous acceleration plays an essential role in the laws of mechanics, 
while average acceleration is less frequently used. When we used the term 
acceleration, we always mean instantaneous acceleration. 

The acceleration 
dt
da υ

=  can be expressed in various ways. Since 
dt
dx

=υ  it 

follows that 

2

2

dt
xd

dt
dx

dt
d

dt
da =⎟

⎠
⎞

⎜
⎝
⎛==

υ .           (6) 

The a is therefore the second derivative of the coordinate with respect to time. 
 If we express velocity in meter per second and time in seconds, then 

acceleration is in meter per second, per second ⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅
ss

m 1 . This is usually written as 

2s
m , and is read meters per second squared. A few remarks about the sing of 

acceleration may be helpful. When the acceleration and velocity of a body have 
the same sing, the body is speeding up. If both are positive, the body moves in the 
positive direction with increasing speed. If both are negative, the body moves in 

The instantaneous acceleration at any point on the graph equals 
the slope of the line tangent to the curve at that point. 
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the negative direction with a velocity that more and more negative with time, and 
again the body’s speed increases. 
 When υ and a have opposite sing, the body is slowing down. If υ is positive 
and a negative, the body moves in the positive direction with decreasing speed. 

Example 1. The velocity of the car is given by the equation  υ = m + nt2, 
when  m = 10 m/s;  n = 2 m/s. 
a) Find the change in velocity of the car in the time interval between t1 = 2 s and    

t2 = 5 s. 
Solution. 

At time t1   υ1 = m + nt1
2 = 10 + 2⋅22 = 18 m/s. 

At time t2   υ2 = m + nt2
2 = 10 + 2⋅52 = 60 m/s. 

The change in velocity is therefore   ∆υ = υ2 – υ1 = 60 – 18 = 42 m/s. 
b) Find the average acceleration in this time interval. 

Solution. 
 

14
3
42

===
t

aav ∆
υ∆  m/s2. 

c) Find the acceleration at time t1 = 2 s. 
Solution. 

82222 =⋅⋅=== nt
dt
da υ  m/s2. 

 
2.1.4. Motion with constant acceleration 

 
How to find the velocity at any time 

The simplest accelerated motion is straight–line motion with constant 
acceleration, when the velocity changes at the same rate through the motion. The 
graph of velocity as a function of time is then a straight line; the velocity increases 
by equal amounts in equal time intervals (Fig. 3). 

Hence in Eq. (4) we have 

                     
12

12

tt
a

−
−

=
υυ .  (7) 

Now let t1= 0 and t2 be any arbitrary later time t. 
Let υ0 represent the velocity when t = 0 (called 
the initial velocity), and let υ be the velocity at 
the later time t. Then Eq. (7) becomes  

   
0

0

−
−

=
t

a υυ  

or 
            υ = υ0 + at .          (8) 

Fig. 3 

at 

t t 0 

υ0 

υ 
υ 
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We can interpret this equation as follows. The acceleration a is the constant 
rate of change of velocity, or the change per unit time. The term at  is the product 
of the change in velocity per unit time and the time interval t. Therefore it equals 
the total change in velocity. The velocity υ at any time t then equals the initial 
velocity υ0 (at time t = 0) plus the change in velocity at. Graphically, we can 
consider the ordinate υ at time t  as the sum of two segments: one with length υ0 
equal to the initial velocity, the other with length at equal to the change in velocity 
during time t. 

Here is an alternative route to Eq. (8). We know that υ is some function of t. If the 
derivative of that function with respect to t is the constant a, what must the function itself 
be? (Such a function might be indefinite integral). One possibility is the function at; its 
derivative with respect to t is the constant a. But the derivative of the function (at+C), 
where C is any constant, is also equal to a, because the derivative of any constant is zero. 
Thus we conclude that the function for v  must have the form 

           υ = at + C.           (9) 
 Now this function must also satisfy the additional requirement that at time       
t = 0 it yields the value υ0. Substituting t = 0 and equating the result to υ0, we find 

υ0 = a(0) + C   or C = υ0 .        (10) 
 Putting all this together, we again obtain 

υ = υ0 + at . 
 

How to find the position at any time 
 

We may use a similar procedure to find an expression for the position x of 
the particle as a function of time, if the position at time, if the position at time t = 0 

is denoted by x0. We know that 
dt
dx

=υ ; what function of t must x be, in order for 

its derivative with respect to t to equal (υ0 + at)? 
 The function 

     Datx ++=
2

2

0υ .         (11) 

Where D is any constant, satisfies this requirement; this may be checked easily by 
taking the derivative of Eq. (11). 
 

2.1.5. Velocity and coordinate by integration 
 

When x varies with time we use the relation 
dt
dx

=υ  to find the velocity υ as 

a function of time. Similarly, we can use 
dt
da υ

=  to find the acceleration a  as a 

function of time if the velocity υ is given as a function of time. 
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 We can also reverse this process. Suppose υ is known as function of time; 
how can we find x as a function of time? It is simply the integral of υ from t1 to t2. 
As     dx = υ(t)dt, 

then         ( )∫∫ =
2

1

2

1

t

t

x

x

dttdx υ , 

or        ( )∫=−
2

1

12

t

t

dttxx υ , 

and similarly:         dυ = a(t)dt, 

( )∫ ∫=
2

1

2

1

υ

υ

υ
t

t

dttad , 

( )∫=−
2

1

12

t

t

dttaυυ . 

Example 2. An automobile travels along a straight highway. It’s 
acceleration is given as a function of time by  a = D – bt,  where  D = 2 m/s2;             
b = 0,1 m/s3.The position at time t = 0 is given by x0= 0, and the velocity at t = 0 is           
υ0 = 10 m/s. Derive expressions for the velocity and position as function of time. 

1. As      ( )
dt
dta υ

= , 

then      dυ = adt. 

Hence  ( ) ( )∫ ∫ ∫ ∫ +−=−=−== 1
2

2
1 CbtDtbtdtDdtdtbtDdttaυ . 

Constant of integration C1 is defined from initial condition υ = υ0 at t = 0, i.e. 
υ(0) = 0⋅D + 0,5 b⋅0 +C1 = υ0,    C1 = υ0; 

and    υ = υ0 + Dt – 0,5bt2. 

2. As  
dt
dx

=υ , then dx = υdt , and 

.
6
1

2
1

2
1

2
1

2
32

0
2

0
2

0∫ ∫ ∫ ∫ ∫ +−+=−+=⎟
⎠
⎞

⎜
⎝
⎛ −+== CbtDttdtbtDtdtdtdtbtDtdtx υυυυ

Constant of integration C2 we can obtain using initial condition x(0) = 0, 

i.e.   ( ) 20 0
6
10

2
100 CbDx +⋅−⋅+⋅=υ ; C2 = 0. 

Finally    32
0 6

1
2
1 btDttx −+=υ . 
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2.2. Motion in space 
 
 Let our body moves along some curve OO΄ (Fig. 6). To define the body’s 
position we use vector rr  – so–called position vector. Position vector is the vector 
from origin to the point of body’s location. 
Let at time t1 the body is at point A. Its 
position vector is 1r

r
. At time t2 the body is 

at point B and its position vector is 2r
r

. 
The vector 12 rrr rrr

−=∆  is called the 
displacement vector. When body moves its 
position vector changes with time, i.e. 

( )trr rr
= . 

Position vector (as any vector) can be 
represented in components: 
        ( ) ( ) ( ) ( )ktzjtyitxtr

rrrr
++= . 

To define how rapidly body’s position changes we use velocity. Velocity is 
defined as 

dt
rd

t
rlim

ot

rr
r

==
→ ∆

∆υ
∆

, 

and is directed along the tangential to the trajectory. 
 When the motion is not uniform the velocity is not constant. The change of 
velocity is characterized by vector of acceleration: 

dt
d

t
lima

ot

υ
∆
υ∆

∆

rr
r

==
→

. 

 
2.2.1. Normal and Tangential Components of Acceleration 

 
When particle moves in the xy -plane the  acceleration of a particle moving 

in curved path can also be represented in terms of rectangular component a⊥ and 
a║ in direction normal (perpendicular) and tangential (parallel) to the path as 
shown in Fig. 4. Unlike the rectangular components referred to a set of fixed axes, 
the normal and tangential components do not have fixed direction in space. They 
do, however, have a direct physical significance. The parallel component a║ 
corresponds to a change in the magnitude of the velocity vector υ

r
. While the 

normal component a⊥ is associated with a change in the direction of the velocity. 
 Let’s consider the case, when a particle moves in a circle with constant 
speed. Fig. 5 shows a particle moving in a circular path of radius R with center at 
O. The vector change in velocity, υ∆

r
, is shown in Fig. 5(b). The particle moves 

from P to Q in a time ∆t. The triangles OPQ and opq in Fig.5(a) and Fig. 5(b) are 
similar, since both are isosceles triangles and the angles labeled ∆θ are the same. 

1r
r

 B 

A 

• O′ 

O 

z 

y 

x 

• 

2r
r

 

Fig. 6 
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Hence   
R
S∆

υ
υ∆
=

1

     or     S
R
∆υυ∆ 1= . 

The magnitude of the average normal acceleration (a⊥)av during ∆t is therefore 

( )
t
S

Rt
a av ∆

∆υ
∆
υ∆

⋅==⊥
1 . 

The instantaneous acceleration a⊥ at point is the limit of this expression, as point Q 
is taken closer and closer point P: 

t
Slim

Rt
S

R
lima

tt ∆
∆υ

∆
∆υ

∆∆ 00
11

→→
=⎟

⎠
⎞

⎜
⎝
⎛ ⋅=⊥ . 

However, the limit of 
t
S
∆
∆  is the speed υ1 at point P, and since P can be any point 

of the path, we can drop the subscript from υ1 and let υ represent the speed at any 
point. Then 

     
R

aan

2υ
== ⊥ .         (12) 

The magnitude of the normal acceleration is equal to the square of the speed 
divided by the radius of the circle. The direction is perpendicular to υ and inward 
along the radius. 
 We have assumed that the particle’s speed is constant. If the speed varies, 
Eq. 12 still gives the normal component of acceleration the tangential component 
of acceleration is equal to the rate of change of speed: 

aτ = a׀׀ = 
dt
d

t
lim
t

υ
∆
υ∆

∆
=

→0
 .        (13) 

 

//ar  

⊥ar  

ar  

υ
r

 

P • • P 

• 

2υ
r

 

1υ
r

 Q 

l 

∆θ 

∆S 

a 
Fig. 5 

1υ
r

 

2υ
r

 ∆θ 

υ∆
r

 

q 

p 

o 

O 
b 
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Velocity can change its magnitude and its direction. The tangential acceleration 

dt
daτ
υ

=  defines the change in the magnitude of velocity and is directed along the 

tangential to the trajectory (as velocity vector). 

 The normal acceleration 
R

an

2υ
=  characterizes the change of velocity 

direction and is directed along the radius of curvature to the center of the curve 
and normally to the velocity and tangential acceleration. 

The vector sum of normal and tangential acceleration gives the acceleration 
of the body (Fig. 4): 

naaa rrr
+= τ ,          (14) 

a2 = aτ2 + an .         (15) 
 

2.2.2. Principle Problems of Kinematics 
 

 There are two principle problem of kinematics. 
 First: from known  position vector rr  calculate all the characteristics of 

motion (i.e. distance from the origin rr , velocity vector vr  and its magnitude vr , 
vector of acceleration ar  and its magnitude ar , normal na  and tangential τa  
components of acceleration and radius of curvature R . To obtain the solution of 
this type of problem we have to take derivatives of position vector and velocity 
with respect to time. 

Second: from known acceleration ar  calculate the other characteristics of 
motion: velocity vector vr  and its magnitude vr , position vector rr , distance from 
the origin rr , normal na  and tangential τa  components of acceleration and radius 
of curvature R . To solve such kind of problems we have to take integrals. 
 Lets consider the first class of problems. When we are given the position 
vector as function of time we can find all characteristics of the motion as follows: 

( ) ( ) ( ) ( )ktzjtyitxtr
rrrr

++= . 
 The distance of the body from the origin is the module of the position vector: 

222 zyxr ++=
r

. 

a) The displacement is ( ) ( ) ( )kzzjyyixxr
rrrr

121212 −+−+−=∆  

and         ( ) ( ) ( )2
12

2
12

2
12 zzyyxxr −+−+−=∆ . 

b) Velocity is calculated as 
dt
rdrr

=υ , 

or  ( ) kjik
dt
dzj

dt
dyi

dt
dxkzjyix

dt
d

zyx

rrrrrrrrrr
υυυυ ++=++=++= , 
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where   
dt
dz;

dt
dy;

dt
dx

zyx === υυυ  - are the components of velocity along x -, y - 

and z -axis, correspondingly. 
 Magnitude of the velocity is equal to the module of the velocity vector. 
c) Acceleration of the body is 

( ) kajaiak
dt

dj
dt

d
i

dt
dkji

dt
d

dt
da zyx

zyx
zyx

rrrrrrrrrr
r

++=++=++==
υυυυυυυ , 

where  2

2

2

2

2

2

dt
zd

dt
da;

dt
yd

dt
d

a;
dt

xd
dt

da z
z

y
y

x
x ======

υυυ   are the components of 

the acceleration vector along x -, y - and z - axis, correspondingly. Magnitude, that 
is module of acceleration vector we can obtain as 

222
zyx aaaa ++= . 

Tangential acceleration is ( )222
zyxdt

d
dt
da υυυυ

τ ++== . 

To calculate the normal acceleration we need the radius of curvature R. If we are 
not given R we can use the formula 222

τaaa n += , then  22
τaaan −= . And, 

finally, radius of curvature R we get as 
na

R
2υ

= . 

For the second type of problems we have to apply the following strategy: 

as acceleration   
dt
da υrr

= , then   ∫ ∫= dttad )(rrυ , and velocity   ∫ += Cdtta
rvr )(υ . 

When acceleration is constant, then   Cta
rvr

+=υ .  
As   

dt
trdy )()(

r
r

=υ , then   dtttrd )()( υrr
=  and   ∫= dtttr )()( υrr . 

Now it is time to consider several examples. 
Example 1. The position vector of body changes with time as 

( ) jCtiBtAr
rrr

++= 2 , where A = 10 m, B = –5 m/s2, C = 10 m/s. Calculate 
velocity, acceleration, tangential and normal components of acceleration and 
radius of trajectory curvature. 

Solution. 
1. Module of position vector is 22 yxr += . In our case  x = A + Bt2;  y = Ct. 

That is   ( ) 2222 tCBtAr ++= . 
2. Velocity we can find as follows 

( ) ( ) 022 ====+== zyx ;Ct
dt
d

dt
dy;BtBtA

dt
d

dt
dx υυυ  

and velocity vector ( )jit;jCiBtji yx

rrrrrrrr
10102 +−=+=+= υυυυ   m/s. 
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And then the magnitude of velocity, i,e, module of vector υr  is 
( ) 222 1102 t;CBt +=+= υυ   m/s. 

3. Acceleration ar  is  jaiaa yx

rrr
+= . 

In this case   ( ) 022 ======
dt
dC

dt
d

a;BBt
dt
d

dt
da y

y
x

x

υυ  

and iBa
rr

2=  then ( ) 1022 222 ===+= BBaaa yx   m/s2. 
4. Tangential acceleration is 

( )
2

22

1
102

t
tCBt

dt
d

dt
da

+
=+==

υ
τ   m/s2. 

5. Normal acceleration is   
R

an

2υ
= . 

As we are not given R, we have to use connection   222
τaaa n += , hence 

22
222

1
10

1
104

tt
tBaaan

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−=−= τ . 

6. And radius R will be   ( ) ( )2
3

2
222

2

110
10

1110 ttt
a

R
n

+=
+

+==
υ . 

 
Short answer questions 

 
1. Is it possible that displacement is zero but not the distance? 
2. Can a body have a constant velocity but a varying speed? 
3. Are the magnitude of average speed and velocity equal? 
4. The distance traveled by a body is found to be directly proportional to the 

square of time. Is the body moving with uniform velocity or with the uniform 
acceleration? 

 
True – false type questions 

 
1. A body can have eastward velocity while experiencing a westward 

acceleration. 
2. A lorry and a car moving with the same kinetic energy are brought to rest by 

the application of brakes, which provide equal retarding forces. Both come to 
rest in equal distance. 

3. A body is moving with a uniform velocity in one frame A, then there is another 
frame B in which it is accelerating. 

4. A car covers the first half of its distance between two places at a speed of 40 
km/hour and the second half at 60 km/hour. The average speed of the car is 
then 50 km/hour. 
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5. A car covers the first half of its time between two places at a speed of 40 
km/hour and the second half at 60 km/hour. The average speed of the car is 
then 50 km/hour  

6. A train is moving with a speed of 60 km/hour and a car is moving by its side in 
the same direction with a speed of 20 km/hour. The speed of the car relative to 
train is 80 km/hour. 

7. Two cars A and B are moving in the same direction with equal speeds. A 
passenger in the car A finds that the car B is at rest. 

 
Examples 

 
1. A body travels 200 sm in the first two seconds and 220 sm in the next four 

seconds. What will be the velocity at the end of the seventh from the start         
(υ0 = 115 sm/s, a = – 15 sm/s2)? 

2. A point moving with constant acceleration from A to B in the straight line AB 
has velocity υ0 and υ at A and B respectively. Find its velocity at C, the mid – 
point of AB. Also show that if the time from A to C is twice that from C to B, 
then υ = 7υ0. 

3. An α-particle travels along the inside of straight hollow tube, 2,0 meter long, of 
a particle accelerator. Under uniform acceleration, how long is the particle in 
the tube if it enters at a speed of 1000 m/s and leaves at 9000 m/s. What is its 
acceleration during this interval  (a = 2,0⋅107 m/s2)? 

4. A truck starts from rest with an acceleration of 1.5 m/s2 while a car 150 meter 
behind stars from rest with an acceleration of 2 m/s2. How long will it take 
before both the truck and side, and how much distance is traveled by each         
(S1 = 450 m (truck) and S2 = 600 m (car),   t = 24.5 s)? 

5. A particle is moving in a plane with velocity given by ( ) jtcosai
rrr

ωωυυ += 0 , 
where i

r
 and j

r
 are unit vectors along x and y axes respectively. If particle is at 

the origin at t =0, calculate the trajectory of the particle and find the distance 

from the origin at time 
ω
πt

2
3

= .  
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⋅
=+⎟

⎠
⎞

⎜
⎝
⎛=

0

2
2

0

2
3

υ
ω

ω
πυ xsinay;aS . 

6. The body is moving with velocity given by jxβi
rrr
⋅+⋅=αυ , where α and β 

are constant. If body is at origin at t =0, find its radius-vector, velocity 
acceleration as functions of time. 

( ja;jti;jtitr
rrrrrrrr
⋅=⋅+⋅=+⋅= αβαβαυαβα 2

2
). 

7. The radius-vector of material point is  ( ) jCtiBtAr
rrr

++= 2 , where A = 10m,       
B = – 5 m/s2, C = 10 m/s. Calculate velocity υ

r
, acceleration ar , tangential and 
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normal accelerations. ( jit
rrr

1010 +−=υ  m/s;  ia
rr

10−=  m/s2;  2110 t+=υ  m/s;  

a = 10 m/s2;  
21

10
t

ta
+

=τ  m/s2;  
21

10
t

an
+

=  m/s2). 

8. Radius-vector of the body is ( ) ( ) jtsinitcosr
rrr

ωω 22 += , where ω = const. Find 
the trajectory, velocity, acceleration, tangential and normal accelerations and 
radius of curve as function of time. 
(Trajectory is the circle  x2+y2= 4.  ( )tcosjtsini ωωωυ

rrr
+−= 2 ;  υ = 2ω;  

( )tsinjtcosia ωωω
rrr

+−= 22 ;  a = 2ω2;  aτ = 0;  an = 2ω2;  R = 2). 
9. The acceleration of the point is  a = - rυ,  where r is constant. Calculate the 

speed and distance as function of time. At time t = 0, S(0) = 0, υ(0) = υ0 = 0. 

( ( )rtrt eS;e −− −== 1
2

0
0

υυυ ). 

9. The point is moving along straight line with the speed  Sk=υ ,  where k is 
constant. Calculate speed and acceleration as function of time. At time t = 0 
particle is at origin. 

 
2.3. Projectiles motion 

 
When a body is projected in air in any direction, then the body is called a 

projectile. The angle, which the direction of projection makes with the horizontal, 
is known as angle of projection. Fig. 7 shows a body projected with an initial 
velocity υ0 at an angle θ with the horizontal. The path traced out by the body in its 
journey is called as trajectory. 

The distance between the point of projection and point where the trajectory 
meets any plane drawn through the 
point of projection is called the range. 
In Fig. 7 AB is the range. The time 
that elapses before the body again 
meets the horizontal plane through the 
point of projection is known as time 
of flight. At a certain point the angle 
θ, which the velocity of the projectile 
makes with the horizontal, is called 
the direction of motion of the body at 
that point. 

The velocity υ of the projectile 
can be resolved along x and y axes as follows: 

–the vertical component  υy = υ sinθ ; 
–the horizontal component  υx = υ cosθ . 

Fig. 7 
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Neglecting air resistance the horizontal component remains unaffected by 
gravity, i.e. constant, while the vertical component changes due to acceleration of 
gravity. 

The vertical displacement y at any time t is given by 
2

0 2
1 gtty y −=υ                                      (16) 

or 

    2
0 2

1 gtt)sin(y −= θυ .         (17) 

The vertical component of velocity at any time t is 
υy(t) = υ0 sinθ – gt.         (18) 
 

1. Time taken to reach the maximum height. 
At highest point the vertical component of velocity of projectile is zero. 

From Eq. 18, we get 
0 = υ0 sinθ – gt , 

or 

     
g
sint θυ0= . 

2. Greatest height attained. 
At greatest height h, we have υy = 0, υ0y = υ0 sinθ, acceleration = – g now 

using  02 = υ0y
2+ 2gh, 

we have     0 = (υ0 sinθ)2 – 2gh 

or     
g

)sin(h
2

2
0 θυ

= . 

 
3. Total time of flight. 

When the body returns to the same horizontal level, the displacement y in 
the vertical direction is zero. Using Eq. 17 we obtain: 

2
0 2

10 gtt)sin( −= θυ  

or     
g
sint θυ02

= . 

 
4. Horizontal range. 

During time t, the body has moved horizontally with a constant velocity       
υ0x = υ cosθ. 

Then horizontal range 

g
sin

g
sincost)cos(x θυθυθυθυ 22 2

00
00 === . 
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The range will be maximum when θ = 45°, i.e. 

g
xmax

2
0υ= . 

 
5. Equation of trajectory. 

In a projectile motion 
t)cos(x θυ0= ,           (19) 

2
0 2

1 gtt)sin(y −= θυ .          (20) 

From Eq. (19) 

θυ cos
xt

0

= . 

Putting this value in Eq. (20), we get 
2

00
0 2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

θυθυ
θυ

cos
xg

cos
x)sin(y  

or     
θυ

θ 22
0

2

2 cos
gtanxy −= . 

This is the equation of a parabola. Thus the equation of the trajectory is a 
parabola. 

 
Range and time of flight on an inclined plane 

Let us consider an inclined plane, which makes an angle β with the 
horizontal as shown in Fig. 8. Let a particle is projected at an angle α with the 
horizon with a velocity υ0. This particle 
strikes the inclined plane at a point A. Our 
aim is to find out the time of flight and 
range OA. The initial velocity υ0 can be 
resolved in two components: 

a) υ0 cos(α–β) along the plane and 
b) υ0 sin(α–β) perpendicular to the plane 

Similarly, g can be resolved in two 
components: 

a) g׀׀ = g sinβ - parallel to the plane and 
b) g⊥ = g cosβ - perpendicular to the plane. 

If t  be the time taken by the particle to 
go from O to A, then in this time the 
distance described perpendicular to OA is zero. Applying equation 

2
0 2

1 gttS +=υ  

  y A 

α 
β 

Fig. 8 

O B x 

υ
r
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we get   2
0 2

10 tcosgt))sin(( ⎟
⎠
⎞

⎜
⎝
⎛−−= ββαυ  

or     ( )
β

βαυ
cosg

sint −
= 02 .       (21) 

Equation (21) represents the time of flight. During this time t , the horizontal 
velocity υ0 cosα along OB is given by 

( ) ( ) ( )
β

αβαυ
β

βαυαυ
cosg

cossin
cosg

sincosOB −
=

−
=

2
00

0
22 . 

From ∆OAB: 
( )

β
αβαυ

β 2

2
02

cosg
cossin

cos
OBOA −

== . 

 
Questions 

1. A ball is dropped from the window of a moving train on horizontal rails. What 
is the path followed by the ball on reaching the ground? (Ans.: A parabolic 
path). 

2. A passenger sitting in a train moving with constant horizontal velocity drops a 
ball vertically downward. What is the path observed by (a) a man in the train, 
(b) a man standing on the ground near the train and (c) a man in a second train 
moving in the opposite direction to the first train on a parallel track? (Ans.: (a) 
A straight line (vertically downward); (b) parabola and (c) parabola). 

3. Why does the direction of motion of a projectile become horizontal at the 
highest point of its trajectory? (Ans.: At the highest point the vertical velocity 
becomes zero). 

4. At what point of the projectile path the speed is minimum? At which point 
maximum? (Ans.: At the highest point, at the projection point). 

5. At what angle with the horizontal a player should throw a ball so that it may go 
to (a) a maximum distance? (b) For maximum height? (Ans.: (a) 45°, (b) 90°.) 

6. Two bombs of 10 and 15 kg are thrown from cannon with the same velocity in 
the same direction. Which bomb will reach the ground first? (Ans.: Both reach 
simultaneously, because the time of flight does not depend upon the mass (if 
air resistance is negligible)). 

7. A ball is dropped gently from the top of a tower and another ball is thrown 
horizontally at the same time. Which ball will hit the ground earlier? 

(Ans.: Vertical component of velocity of both balls is zero, therefore, time of 

flight of each ball  
g

ht 2
= ). 
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Solved examples 
 

Example 1. A stone is projected from the ground with a velocity of 25 m/s. 
Two seconds letter it just meets a wall 5 meters high. Find (a) the angle of 
projection of the stone, (b) the greatest height reached, (c) how far beyond the wall 
the stone again hits the ground. Neglect air resistance. 

Solution. Let the stone be projected at angle θ above the horizontal. Horizontal 
component of initial velocity υ0x = 25 cosθ, vertical component of initial velocity 
υ0y = 25 sinθ. 

a) We consider the vertical motion of the stone. The upward direction is taken 
as positive. Here υ0y = 25 sinθ,  g = –10 m/s2, h = 5 m, t = 2 s. 

Using    2
0 2

1 gtth +=υ , 

we have   ( ) 410
2
12255 ⋅⋅−⋅= θsin  

or    ;sinθ5025 =   ;sin
2
1

=θ   θ = 300. 

b) To calculate the greatest height reached, we use the formula 
υy

2 = υ0y
2 + 2gh ;  υy = 0 ;  υ0y = 25 sin300 = 12,5, 

i.e.    0 = 12,52 – 2⋅10h ;  h = 7,8 m. 

c) Total time of flight   52
102
2522 0 ,

g
sint =

⋅
⋅

==
θυ  s. 

According to given problem, the time taken to clear the wall is two seconds, hence 
time in air after clearing the wall t1 = (2,5-2) = 0,5 s. Horizontal distance traveled 

during the interval   81050
2
3253050250 ,,cos,costS =⋅=°⋅== θυ  m. 

 Example 2. A stone is thrown from the top of a tower of height 50 m with a 
velocity of 30 m/s at an angle of 30° above the horizontal (Fig. 9). 

Find: 
(a) The time during which the stone will be in air. 
(b) The distance from the tower base to where the stone will hit the ground. 
(c) The speed with which the stone will hit the ground. 
(d) The angle formed by trajectory of the stone with the horizontal at the point of hit. 

Solution. The situation is shown (a) horizontal component of velocity 
υ0x = 30 cos30° = 25,98 m/s. 
Let t be the time taken by stone to reach the ground, i.e. the time during which the 
stone will be in air. Taking the upward direction as positive, we have 

2
0 2

1 gtth y +=υ , 

as           – 50 = 15t – 0,5⋅10t2. 
Solving for t, we get  t = 5 s. 
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(b) The distance S where the stone will hit the ground 
    S = υ0xt = 25,98⋅5 = 104,98 m. 
(c) From Fig. 9 υx = υ0x = 25,98 m/s and υy = -15 + (10⋅5) = 35 m/s. Now  

643359825 2222 ,,yx =+=+= υυυ  m/s 

(d)     
x

ytan
υ
υ

θ =  

or          
9825

35
,

arctan=θ . 

 
Problems 

 
1. An airplane is flying in a horizontal 

direction with a velocity 600 
km/hour and at height of 1960 m. 
When it is vertically below the 
point A on the ground, a body is 
dropped from its. The body strikes 
the ground at point B. Calculate the 
distance AB. (Ans.:  3,333 km). 

2. A stone is thrown from the ground 
towards a wall 6 m high at a 
distance of 4 m such that it just 
clears the top of the wall. Find the 
speed of projection of the stone. 
(Ans.:  11,43 m/s). 

3. From the top of a tower of height 40 m, a ball is projected upwards with a 
speed of 20 m/s at an angle of 30° to the horizontal. When and at what distance 
from the foot of the tower does the ball hit the ground? What is the velocity of 
the ball at this instant? (Ans.:  4 s;  340  m;  34,64 m/s). 
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 300 

   50 

0 x 

Fig. 9 
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3. Dynamics 
 
 In this chapter we begin to study more general problems involving the 
relation of motion to its causes. These problems form the area called dynamics. All 
of dynamics is based on three principles called Newton laws of motion. The first 
law states that when the vector sum of forces on a body is zero, the acceleration of 
the body is also zero. The second law relates force to acceleration when the vector 
sum of forces is not zero. And the third law relates the pair of forces that 
interacting body exert on each other. 

3.1.  Mass and Second Newton Law 
 We know from experience that a body at rest never starts to move by 
itself; some other body has to apply a push or pull on it. Similarly, when a 
body is already in motion, a force is required to slow it down or stop it. To 
make a moving body deviate from straight-line motion, we must apply a 
sideways force. All these processes involve a change in either the magnitude or 
the direction of the velocity. In each case the body has acceleration and the 
force must act on it to cause this acceleration. 

Before the time of Galileo and Newton, it was generally believed that a 
force was necessary just to keep a body moving, even on a level, frictionless 
surface or in outer space. Galileo and Newton realized that no net force is 
necessary to keep a body moving, once it has been set in motion, and that the 
effect of a force is not to maintain the velocity of a body, but to change its 
velocity. The rate of change of velocity for a given body is directly proportional 
to the force acting on it. 

To say that the acceleration of a body is directly proportional to the force 
exerted on it is to say that the ratio of the force to the acceleration is a constant, 
regardless of the magnitude of the force. This ratio is called the mass m of the 
body. Thus 

a
Fm =  

 or      maF = .            (22) 

We can think of the mass of a body as the force per unit of acceleration. For 
example, if the acceleration of a certain body is 5 m·s-2 when the force is 20 
N, the mass of the body is 

4
5

20
2 =

⋅
=

−sm
Nm  N·m-1s2 

and a force of 4 N must be exerted on the body for each m·s-2 of acceleration 
This relationship can also be used to compare masses quantitatively. Suppose 
we apply a certain force F  to a body having mass 1m  and observe an 
acceleration of 1a .. We then apply the same force to another body having mass 
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2m , observing an acceleration 2a . Then, according to Eq. (22),  2211 amam = ; 
or 

2
1

1
2

a
a

m
m

= .  

We can use this relation to compare any mass with a standard mass. If 1m  is a 
standard mass and 2m  an unknown mass, we can apply the same force to each 
and measure the accelerations; the ratio of the masses is the inverse of the 
ratio of the accelerations. When a large force is needed to give a body a certain 
acceleration (i.e., speed it up, slow it down, or deviate it if it is in motion), the 
mass of the body is large; if only a small force is needed for the same 
acceleration, the mass is small. Thus the mass of a body is a quantitative 
measure of the property described in everyday language as inertia. 

To identify another important property of mass, we measure the masses 
of two bodies, using the procedure just described, and then fasten them 
together and measure the mass of the composite body. If 1m  and 2m  are the 
individual masses, the mass of the composite body is always found to be 
( 21 mm + ). This very important result shows that mass is an additive quantity, 
and that it is directly correlated with quantity of matter. Indeed, the concept of 
mass is one way to give the term quantity of matter a precise meaning. 

In the discussion above, the particle moves along a straight line (the x-
axis), and the force also lies along this direction. This is of course a special 
case. More generally, the force may also have a component in the y-direction, 
and the particle's motion need not be confined to a straight line. Furthermore, 
more than one force may act on the particle. Thus this formulation needs to be 
generalized to include motion in a plane or in space and the possibility of 
several forces acting simultaneously. 

Experiments show that when several forces act on a particle at the same time, the 
acceleration is the same as would be produced by a single force equal to the vector sum of 
these forces. This sum is usually most conveniently handled by using the 
method of components. When several forces act on a particle moving along 
the x-axis, 

∑ = xx maF . 

When a particle moves in a plane, with position described by coordinates 
(x,y), the velocity is a vector quantity with components υx and υy equal to the 
time rates of change of x and y, respectively, and the acceleration is a vector 
quantity with components ax and ay equal to the rates of change of υx and 
υy, respectively. Then a more general formulation of the relation of force to 
acceleration is 
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∑ = xx maF ,  ∑ = yy maF .  

This pair of equations is equivalent to the single vector equation 

      ∑ = amF rr
,      (23) 

 
where we write the left-hand side explicitly as ∑ F

r
 to emphasize that the 

acceleration is determined by the resultant of all the forces acting on the 
particle. If the particle moves in three dimensions, then of course Eq. (23) 
include a third equation for the z-components  ∑ = zz maF . 

Equation (23), is the mathematical statement of Newton's second law of 
motion. The acceleration of a body (the rate of change of its velocity) is equal to 
the resultant (vector sum) of all forces acting on the particle, divided by its 
mass, and has the same direction as the resultant force. 

To introduce the concept of impulse and momentum let us consider a particle 
of mass m moving in space and acted on by a varying resultant force F. Newton’s 

second law states that   
dt
dmamF υ
r

rr
==  

or     υ
rr

mddtF = . 

Then     ∫ ∫=
2

1

2

1

t

t

mddtF
υ

υ

υ
rr

. 

The integral  ∫
2

1

t

t
dtF

r
  is the impulse of force F

r
 in the time interval  (t2 – t1)  and is 

the vector quantity. The integral  ∫
2

1

υ

υ

υ
r

md   is momentum. So, Newton’s second law 

can be written 

as          
dt
pdF
rr

= .               (24) 

Important points regarding Newton’s law 
1. If a body is in equilibrium, then it does not mean that no force acts on the body 

but it simply means that the net force  (resultant of a number of force acting on 
the body) on the body is zero. 

2. Action and reaction are always equal and opposite and they act on different 
bodies. 

3. Whenever a force acts on a body, the reaction R always acts normal to surface 
of the body. Consider the case of a book placed on the table. The book applies 
action force on the table equal to its weight mg downward. Now the table 
exerts an equal reactionary force mg on the book in the upward direction. 
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4. Consider the case of a mass m attached to a linear spring. Let, by application of 
a force F1 the extension or compression in the spring be x then F = kx where k 
is known as force constant of the spring. The unit of k is Newton/meter. 

 
3.2. Weight of a body in a lift 

 
Earth attracts every body towards its center. The force of attraction exerted by 

the earth on the body is called gravity force. If m be the mass of the body then the 
gravity force on it will be mg. Generally, the weight of a body is equal to the 
gravity force P = mg. But when the body is on an accelerated platform, the weight 
of a body appears. The new weight is called as apparent weight. Here we shall 
consider the apparent weight of a man standing in a lift which is in motion. We 
consider the following cases: 
1. The lift is not accelerated (i.e. υ = 0 or constant). The situation is shown in        

Fig. 10 (a). In this case FR = ma = 0. Hence apparent weight 
P′ = actual weight = mg. 

 

2. When the lift is accelerated upward. In this case, there will be two forces 
acting on the man, i.e. weight mg and reaction  FR = ma  both acting in the 
downward direction as shown in Fig. 10 (b). 
Apparent weight  P′ = mg + FR = mg + ma = m(g + a)  or apparent weight > 
 > actual weight. 

3. When the lift is accelerated downward. This situation is shown in Fig. 10 (c). 
Here the weight mg acts downward while the reaction  FR = ma  acts upward. 
We assume that  a < g.  Hence apparent weight  P′ = mg – FR = mg – ma =        
= m(g – a) i.e. apparent weight P′ < actual weight P. When the lift is 
accelerated downward such that a > g, then  FR = ma  is greater than weight 
mg. Apparent weight P′ = m(g – a) < 0 – negative so the man will be 
accelerated upward and will stay at the ceiling of the lift. 

Now we consider the special case when g = a. In this case apparent weight    
P′ = 0. Thus in a freely falling lift, the man will experience a state of 
weightlessness. 

Fig. 10 
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3.3. Motion of connected bodies 
 

1) Two bodies.  Let us consider the case of two bodies of mass m1 and m2 
connected by a thread and placed on a smooth horizontal surface as shown in        
Fig. 11. A force F

r
 is applied on the body of mass m2 in forward direction as 

shown. Our aim is to consider acceleration of the system and the tension T in the 
thread. The forces acting separately on two bodies are also shown in the figure. 

 

From Fig. 11   
⎩
⎨
⎧

=−
=

.
,

2

1

amTF
amT

 

Adding first and second equations  
21 mm

Fa
+

=  

and       F = (m1 + m2) a, 

tension    
21

1
1 mm

FmamT
+

== . 

2) Three bodies. In case of three bodies, the situation is shown in Fig. 12. 
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321

1
11 mmm

FmamT
++

== , 

F – T2 = m3a 

and           
321

3
2 mmm

FmFT
++

−= . 

 
3.4. Motion of a body on a smooth inclined plane 

 
 Let us consider the case of a body of mass m placed over a smooth fixed 
plane AB making an angle θ with the horizontal as shown in Fig. 13. N is normal 
reaction of the smooth surface on the body, mg is the weight of the body acting 

downward. 
 Resolving these two forces along 
AB and perpendicular to AB, we have 

⎩
⎨
⎧

=
=

.cos
,sin

θ
θ

mgN
mgma

 

So we have  a = g sinθ  and  N = mg cosθ. 
 The same results can also be 
obtained by resolving the forces 
horizontally and vertically.  
 

3.5. Motion of two bodies connected by a string 
 

Case 1. Let us consider the case of two bodies of mass m1 and m2, which are 
connected by light inextensible string passing over a 
light smooth pulley (Fig. 14). 

Here it is assumed that m1 > m2. Our aim is to 
find out the acceleration of the system and tension in 
the string. 
The mass m1 has downward acceleration hence 

             m1g – T = m1a.             (25) 
The mass m2 has upward acceleration hence 
      T – m2g = m2a.           (26) 
Solving Eqs. (25) and (26), we get 

               g
mm
mma

21

21

+
−

=  

and                 g
mm

mmT
21

212
+

= . 

 
Case 2. Let us consider the case of a body of mass m1, to which a light and 

inextensible string is attached, rests on a smooth horizontal table. The string 
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passes over a frictionless pulley fixed at the end of table. Another end of the string 
carries a mass m2 as shown in Fig. 15. Our aim is to calculate the acceleration of 
the system and tension in the string. Here we have 

m2g – T = m2a             (27) 
and         T = m1a.              (28) 

Solving  Eqs. (27) and (28), we have   g
mm

ma
21

2

+
=  

and     g
mm

mmamT
21

21
1 +
== . 

 
Case 3. Here we shell consider the above case with a difference that m1 is 

placed on smooth inclined plane making an angle θ with horizontal as shown in 
Fig. 16. In this case  

⎩
⎨
⎧

=−
=−
amTgm

amgmT

22

11 ,sinθ
 

and         ⎥
⎦

⎤
⎢
⎣

⎡
+

−
−=

21

12
2 1

mm
sinmmgmT θ . 

Case 4. Let us consider the case when masses m1 and m2 are on inclined 
plane making angle α and β with horizontal respectively as shown in Fig.17. 
Here we have  

⎩
⎨
⎧

=−
=−

.sin
,sin

22

11

amgmT
amTgm

β
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Solving system we get 
( )

21

21

mm
sinmsinmga

+
−

=
βα  

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−

= ββα sin
mm

sinmsinmgmT
21

21
2  

or           ( )βα sinsing
mm

mmT +
+

=
21

21 . 

 
Case 5. The body of mass m is moving in plane xy according the law             

x = A sinω t,  y =B cosω t  and vector of force acting on the body. 
 Solution. According the second Newton’s law: 

amF rr
= . 

As we are given mass m, acceleration ar  we get as follows: 
 as  x = A sinω t  then 

tcosA
dt
dx

x ωωυ ==  

and     tsinA
dt

da x
x ωωυ 2−== , 

as  y =B cosω t  then  tsinB
dt
dy

y ωωυ −==  

and     tcosB
dt

d
a y

y ωω
υ 2−== . 

Hence acceleration vector is 
( ) rjtcosBitsinAjaiaa yx

rrrrrr 22 ωωωω −=⋅+⋅−=+= , 

where   jtcosBitsinAjyixr
rrrrr
⋅+⋅=+= ωω . 

Force F
r

 is    rmamF rrr
2ω−==  

and module of force vector  22222 yxmFFF yx +=+= ω . 
 

Case 6. Body with mass m = 1 kg is at rest at the origin. At time t = 0 the 
force  jtiF

rrr
62 +=   begins to act on the body. Define the body’s trajectory. 

 The Newton’s equation is   jti
dt
dm

rrr

62 +=
υ . 

This equation in components is written as 

t
dt

d
m;

dt
dm yx 62 ==

υυ . 

Hence  ∫ ∫ ∫ ∫ +=+= 21 62 Ctdtd;Cdtd yx υυ , (as m = 1) 
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and     υx = 2t + C1;  υy = 3t2 + C2. 
We define constants of integration C1and C2 by using initial conditions υx(0) = 0,             
υy(0) = 0:   C1 = 0  and  C2 = 0.  

Then    

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

==

23

,2

t
dt
dy

t
dt
dx

y

x

υ

υ
 

and t
dt
dx 2= ,     23t

dt
dy

= , 

∫ ∫= tdtdx 2 ,     ∫ ∫= dttdy 23 , 

 3
2

3

2

2
2 CtCtx +=+= ,   4

3 Cty += , 

 x(0) = t2 + C3 = 0 ⇒ C3 = 0,  y(0) = t3 + C4 = 0 ⇒ C4 = 0, 
 x(t) = t2;     y(t) = t3. 

 To define trajectory we have to obtain to connection between x and y. As      

x = t2  hence  xt =   and  ( ) 2
3

33 xxty === , i.e. 

2
3

xy = . 
 

Questions 
 

1. A person sitting in a train moving with constant velocity throws a ball 
vertical upward. Will the ball return to thrower’s hand? 

2. According to Newton’s third law every force is accompanied by on equal 
and opposite force. How can a movement ever take place? 

3. A cord from a ceiling of a motorcar suspends a ball. What will be the effect 
on the position of the ball if: 

a) the car is moving with constant velocity; 
b)  the car is moving with acceleration motion; 
c) the car is turning towards right? 

4. Air is thrown on a sail attested to boat from an electric fan placed on the 
boat. Will the boat start moving? 

5. Two bodies of mass M and m are allowed to fall from the same height. If air 
resistance for each be the same, then will both the bodies reach the earth 
simultaneously? 

6. A man stands in a lift going downward with uniform velocity. He 
experiences a loss of weight at the start but not when lift is in uniform motion. 
Explain why? 



 32

Problems 
 

1. A body of 0,02 kg falls from a height of 5 meter into a pile of sand. The 
body penetrates the sand a distance of 5 cm before stopping. What force has the 
sand exerted on the body? (F = – 19,6 N). 

2. A block of ice slides down from the top of an inclined roof of a house 
(angle of inclination of roof = 30° to the horizontal). The highest and lowest point 
of the roof are at height of 8,1 m and 5,6 m respectively from the ground. At what 
horizontal distance from the starting point will the block hit the ground (neglect 
friction)? (S = 8,93 m). 

3. A block mass m1 = 4 kg on a smooth 
inclined plane of 30° is connected by a cord 
over a small, frictionless pulley to a second 
block of mass m2 = 5 kg, hanging vertically         
(Fig. 18). Calculate the acceleration with which 
the block moves and also the tensions in the 
cord.  
(T = 33,3 nt ; a = 3,33 m/s2). 

4. The force applied on the body is jtitF
rrr

24 += . Determine the change of 
impulse of the body in the time interval 0 ≤ t ≤ τ. ( jip

rrr 24 ττ∆ += ). 
5. The body of mass m is in uniform motion along x-axis with velocity              

υox = υo. At time t = 0 the force  jbtF
rr

=   is applied on the body (b = const > 0). 
Calculate the trajectory of body’s motion if at time  t = 0  body was at the origin. 

Answer: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 3

0

3

6 υm
bxy . 

 
3.6. Center of mass of a system of particles and rigid bodies 

 
 The point at which the whole mass of the body may be supposed to be 

concentrated is called the center of mass. 
 Consider the case of a body of arbitrary 
shape as shown in Fig.19. Let the body consists of 
a number of particles P1, P2, P3 … of masses m1, 
m2, m3 … and coordinates  (x1, y1, z1), (x2, y2, z2), 
(x3, y3, z3) … . If (xc, yc, zc) be the coordinates of 
center of mass, then  
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 When there is a continuous distribution of mass instead of being discrete, 
we treat an infinitesimal element of the body of mass dm1 whose is (x, y, z). Then 
we have  

M
zdm

dm
zdm

z;
M
ydm

dm
ydm

y;
M
xdm

dm
xdm

x ccc
∫

∫
∫∫

∫
∫∫

∫
∫ ====== , 

where M is total mass. 
 Following points should be remembered in case of center of mass: 
a) The position of center of mass is independent of the coordinate system chosen; 
b) The position of center of mass depends upon the shape of the body and 

distribution of mass. The center of mass of a circular disk is within in material 
of the body while that of a circular ring is outside the material of the body. 

c) In symmetrical bodies in which the distribution of mass is homogeneous, the 
center of mass is coincides with the symmetry i.e. geometrical center. 

 
Solved examples 

 
Ex.1. A circular plate of uniform thickness has a diameter D = 56 cm. A 

circular portion of diameter d = 42 cm is removed from one edge of the plate as 
shown in Fig. 20. Find the position of center of mass of the remaining portion. 
Solution. Suppose the plate is uniform. If O be the 
center of mass of the whole plate and C1, the center of 
mass of the cut out circular portion, then the center of 
mass of the remaining portion will lie on the C1O. Let 
C2 be the center of mass of the remaining portion. 

 Area of the whole plate  
4

2DS π
= . 

 Area of the cut out portion  
4

2

1
dS π

= . 

 Area of remaining portion  S2 = S – S1. 
Since the weights are proportional to areas then 

gm
gm

S
S

portionremainofweigt
portionoutcutofweigt

2
1

2
1

7
9
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Taking moment about C1 we get   7
221 =−=
dDOC  cm, 

or      m1g⋅OC1 = m2g⋅OC2, 

as    97
7
9

1
2

1
2 =⋅== OC

gm
gmOC   cm. 

 
Ex.2. Three ball with masses m, 2m, and 3m are located along x-axis in such 

a way that distance between their center is l (Fig. 21). Find the position of center 
of mass of the system. 
Solution. Suppose the origin is in the center of the first ball. Then its coordinate is 
x1 = 0. The coordinate of the second ball is x2 = l and of the third ball is x3 = 2l. 

 Then position of the center of mass of system can be obtained as follows 

l
mmm

lmml
mmm

mxmxmxxc 3
4

32
2320

321

332211 =
++
++

=
++
++

= . 

 
Problems 

 
1.  Cylindrical rod with length l is located along x-axis. It’s density changes 

with x according the law: ⎟
⎠
⎞

⎜
⎝
⎛ −=

l
x10ρρ . Find the position of the center of mass of 

this rod. (xc = ℓ/3). 
2.  Locate the center of a system of particles of masses m1 = 1 kg, m2 = 2 kg 

and m3 = 3 kg, situated at the corners of an equilateral triangle of side 1,0 m. 

( my;m,x cc 4
3

6
53

== ). 

3.  Calculate the position of center of mass of the system Earth-Moon. 
Distance between Earth and Moon  r = 3,84⋅108 m, mass of the Earth                       
mE = 5,96⋅1024 kg, mass of the Moon mM = 7,3⋅1022 kg. (rc = 4600 km from the 
center of Earth). 

Fig. 21 
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4. Work and energy 
 
 Energy is one of the most important concepts in all physics science. Its 
importance stems from the principle of conservation of energy, which state that it 
any isolated system the total energy of all forms is constant. 
 

4.1. Work 
 
 In every day life work is any activity that requires muscular or mental 
exertion. Physicist use the term work in a much more specific sense, involving a 
force acting on a body while the body undergoes a displacement. When a body 
moves a distance S along straight line while a constant force of magnitude F, 

A = FS 
directed along the line acts on it, the work A done by the force is defined as. 
 The force need not have the same direction as the displacement. In Fig. 22, 
the force F

r
, assumed constant makes an angle θ with the displacement. The work 

A done by this force when its point of application undergoes a displacement S
r

 is 
defined as the product of the magnitude of the displacement and the component of 
force in the direction of the displacement. 
 The component of F

r
 in the direction of S

r
 is 

Fcosθ. Then 
A = (Fcosα)S.             (29) 

 An alternative interpretation of Eq. (29) is that 
Scosθ is the component of displacement in the 
direction of F

r
. Thus the work is also the component of 

displacement in the direction of F
r

 multiplied by the magnitude of F. 
 In other words, work can be expressed as scalar product of two vectors: 

SFA
rr

⋅= . 
 Work itself is a scalar quantity. Work is an algebraic quantity: it can be 
positive or negative. When the component the force is the same direction, as the 
displacement, the work A is positive. When it is opposite to the displacement, the 
work is negative. If the force is at right angles to the displacement, it has no 
component in the direction of the displacement, and the work is zero. 
 When several external forces act an a body, it is useful to consider the work 
done by each separate force. Each of these may be computed from the definition 
of work in Eq. (29). Then since work is scalar quantity, the total work is the 
algebraic sum of the individual works. When several forces act on a body, there 
are always two equivalent ways to calculate the total work. We may calculate the 
work done by each force separately and take the algebraic sum of these works, or 
we may compute the vector sum or resultant of the forces and compute the work 
done by the resultant. 

Fig. 22 
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4.2. Work done by a varying force 
 

 After work is done by a force that varies in magnitude or direction. Suppose 
a particle moves along a line under the action of a force directed along the line but 
varying with particle’s position. In Fig. 23 the force magnitude is shown as a 
function of the particle’s coordinate x.  

 
To find the work, done by this force, we 

divide the displacement into short segments ∆x. 
We approximate the varying force by one that is 
constant with in each segment. The force then has 
approximately the value F1 in segment ∆x1, F2 in 
segment ∆x2, and so on. The work done in the 
first segment is then F1∆x1 that in second is 
F2∆x2, and so on. The total work is  

A = F1∆x1 + F2∆x2 + F3∆x3 + … 
 As the number of segments becomes very large and the size of each very 
small, this sum becomes (in the limit) the integral of F from x1 to x2: 

     ∫=
2

1

x

x

FdxA .        (30) 

Note, that integral represents the area under the curve in Fig. 23. 
 If the force also varies in direction during the displacement, then F in Eq. (30) 
must be replaced by the component of force in the direction of displacement. Then 
we have 

     ∫=
2

1

x

x

dxcosFA θ . 

 The definition of work can be generalized further to include motion along a 
curved path (Fig. 24). We imagine dividing the portion of the curve between 
points P1 and P2 into many infinitesimal vector displacements, and we call a 

typical one of them ld
r

. Each ld
r

 is tangent to the 
path at its position. Let F

r
 be the force along the path, 

and θ the angle between F
r

 and ld
r

. Then the small 
element dA may written as 
  ldFdlFdlcosFdA //

rr
=== θ .          (31) 

The total work then is 

  ∫ ∫ ∫===
2

1

2

1

2

1

ldFdlFdlcosFA //

rr
θ . 

This integral is called a line integral. 
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4.3. Kinetic energy 
 

Isolated system. The bodies system is called isolated one when no external 
forces act on it or when all external forces compensate each other. 
 Suppose for simplicity that system consists only from one particle. Then the 

equation of motion, i.e. Newton’s second law is F
dt
dm

rr

=
υ . 

 Multiplying this equation on displacement of the particle dtrd υ
rr

=  we 
obtain 

rdFdm;rdFdt
dt
dm rrrrrrr
r

== υυυυ  

and         rdFmd rr
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
2

2υ . 

We denote 
2

2υmK =   and call it kinetic energy. 

 Kinetic energy can be expressed by momentum  υ
rr mp =  

as           
m

pK
2

2

= .       (32) 

When system is isolated then force F
r

 is zero and then   0
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ υmd . Hence

       constmK ==
2

2υ ,      (33) 

i.e. in isolated system the kinetic energy is conserved. 
 

4.4. Work and kinetic energy 
 

The work done on a body is related to the resulting change in the body’s 
motion. Let’s consider a body of mass m moving along a straight line under the 
action of a constant resultant force of magnitude F directed along the line. The 
body’s acceleration is given by Newton’s second law,   F = ma. Suppose the speed 
increases from υ1 to υ2 while the body undergoes a displacement  S = x2 – x1. 

Then, we have   
S

a
2

2
1

2
2 υυ −

= . 

Hence          
S

mmaF
2

2
1

2
2 υυ −

==  

as     2
1

2
2 2

1
2
1 υυ mmFS −=       (34) 

and          
2

2υmK = . 
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 The product FS is the work A done by force F. The quantity 2

2
1 υmK = , 

one – half of the product of the mass of the body and the square of speed, is called 
its kinetic energy K. 
 The first term of the right side of Eq. (34) is the final kinetic energy of the 

body, 2
22 2

1 υmK = , and the second term is the initial kinetic energy, 2
11 2

1 υmK = . 

The difference between these terms is the change in kinetic energy and we have 
the important result that the work done by the resultant external force on a body is 
equal to the change in kinetic energy of the body 

A = K2 – K1 = ∆K.       (35) 
 Kinetic energy is a scalar quantity, even thought the particle’s velocity is a 
vector quantity. K depends only on speed (the magnitude of velocity) but not on 
the direction in which particle is moving. The change in kinetic energy depends 
only on the work A = FS, and not on the individual value of F and S. 
 If the work A is positive, the final kinetic energy is greater that the initial 
kinetic energy and the kinetic energy increase. If the work is negative, the K 
decreases. In case in which the work is zero, the K remains constant. 

In Eq. (35) A is the work done by the resultant force. Alternatively, we may 
calculate the work done by each separate force. A is then the algebraic sum of all 
these quantities of work. 
 Although we derived Eq. (35) for case of constant resultant force, it is true 
even when the force varies in an arbitrary way. We divide the total displacement x 
into a large number of small segments ∆x. The change of kinetic energy in 
segment ∆x1 is equal to the work F1∆x1 and so on. The total kinetic energy change 
is the sum of the changes in the individual segments and is thus equal to the total 
work done     ∑=

i
ii xFA ∆ , 

or, in general 
      ∫= SdFA

rr
.       (36) 

 
4.5. Gravitational potential energy 

 
 When a gravitational force acts on a body while the body undergoes a 
velocity displacement, the force does work on the body. This work can be 
expressed conveniently in terms of the initial and final position of the body. In Fig. 25 
a body, having mass m and weigh P = mg moves vertically, from a height above 
some reference level to a height h2. The positive direction for h is upward. In this 
Fig. 25 F

r
 represents the result of all forces on the body. The direction of gr  is 

opposite to the upward displacement and work done by this force is 
Agrav = FS = – mg(h1 – h2). 
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 Thus we can express Agrav in terms of values of the quantity mgh at the 
beginning and the end of the displacement. This quantity, the product of the 
weight mg and the height h above the reference level (the origin of coordinates), is 
called the gravitational potential energy, U: 

U = mgh.       (37) 
We can express the work Agrav done by gravitational force during the 

displacement from h1 to h2 
Agrav = U1 – U2 = ∆U.      (38) 

 Thus, when the body moves downward, h decreases, the gravitational force 
does positive work and the potential energy decreases. 
When the body moves upward, the work done by 
gravitational force is negative and the potential energy 
increases. 
 Note, that if we shift the origin for h, then h1 and 
h2 change, but the difference  (h1 – h2)  does note. 
Similarly U1 and U2 change, but the difference             
(U1 – U2)  is the same as before. The choice of origin is 
arbitrary; the physically significant quantity is not the 
value of U at a particular point, but only the difference 
in U between two points. 
 Now let Aother represents the total done by F

r
 that 

is, by all forces other then gravitational force. The total 
work done by all forces is then 

A = Agrav + Aother. 
 Since the total work equals to the change in kinetic energy 

Agrav + Aother = K2 – K1 = ∆K, 

Aother – (mgh2 – mgh1) = 2
1

2
2 2

1
2
1 υυ mm − .   (39) 

The quantities 2
22

1 υm  and 2
12

1 υm  depends only on the final and initial speeds; the 

quantities mgh2 and mgh1 depend only on the initial and final elevations. Then,      
Eq. (39) may be written as : 

    ( ) UKmghmghmmAother ∆∆υυ +=−+⎟
⎠
⎞

⎜
⎝
⎛ −= 12

2
1

2
2 2

1
2
1 .           (40) 

The sum of kinetic and potential energies is called the total mechanical energy, 
E = K + U. 

Eq.(40) can also be written 

( ) ( ) .
2
1

2
1

121122

1
2

12
2
2

EEEUKUK

mghmmghmAother

∆=−=+−+=

=⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ += υυ

   (41) 
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Hence the work done by all forces acting on the body, with the exception of the 
gravitational force, equals the change in the total mechanical energy of the body. 
If Aother is positive, the mechanical energy increases. If Aother is negative, the 
mechanical energy decreases. 
 In a case where the only force acted on the body is the gravitational force, 
the work Aother is zero Eq.(41) can be written as E1 = E2, or 

K2 + U2 = K1 + U1. 
That is total mechanic energy is constant, that is, conserved. This is a particular 
case of the principle of conservation mechanical energy. 
 Note, that in the case when body travels from initial elevation h1 to a final 

elevation h2 along a slanted or curved path the work 
done by the gravitational force is the same as when 
the body travels straight up. To prove this divide, the 
path into a large number of small segments ∆S; the 
work done during this displacement is the 
component of displacement in the direction of the 
force, multiplied by the magnitude of the force (Fig. 
26). The vertical component of displacement is 

∆Scosθ = ∆h. 
And therefore  Agrav = mg(h1 – h2) = mg∆h. 

Similarly, the work done by a stretched or 
compressed spring that exert a force  F = – kx  on a 

particle where x is the amount of stretch or compression, can be represented in 
term of a potential energy function 

2

2
1 kxU = ,        (42) 

.kxkxUUAel
2
2

2
121 2

1
2
1

−=−=       (43) 

 
4.6. Conservative and dissipative force 

 
We have seen that when a body acted on by a gravitational force moves 

from one position to another; the work done by the gravitational force is 
independent of the body’s path. A similar situation occurs when a body is attached 
to a spring and moves from one position to another, changing the extension or 
compression of the spring. In both case the total mechanical energy is constant or 
conserved. For this reason the gravitational and elastic force are called a 
conservative force and work done by these force can be represented as 

A = U1 – U2. 
 The work reversible on the return trip is always exactly the negative of that 
on the first of the trip. Thus the work done by a conservative force always has 
these properties: 
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1. It is independent of the path of the body and depends only on the starting point 
and end point. 

2. It is equal to the difference between initial and final values of the potential 
energy function. 

3. It is completely reversible. 
4. When the starting point and end point are the same – that, the path forms a 

closed loop the total work is zero: 
∫ == 0ldFA

rr
.       (44) 

For comparison a function force is a dissipative force, and the total 
mechanical energy, is not conserved and we have to describe the energy relation in 
terms of additional kinds of energy. 
 

4.7. Conservation of Momentum 
 

The concept of momentum is most useful in situations involving several 
interacting bodies. Let’s consider first a system consisting of two bodies that 
interact with each other but not with anything else each body exert a force on the 
other, so the momentum of each body changes. According to Newton’s third law, 
the forces the bodies exert on each other are always equal in magnitude and 
opposite in direction. Thus the impulses given to the two bodies in any time 
interval are also equal and apposite and therefore the momentum changes of the 
two bodies are equal and apposite. 
 We define the total momentum of the system P

r
 as the vector sum of 

momenta of the bodies in the system: 
...ppp...mmmP +++=+++= 321321

rrrrrrr
υυυ  .    (45) 

If the change in the momentum of one body is exactly the negative of that of the 
other, then the change in the total momentum must be zero. Thus when bodies 
interact only with each other, their total momentum is constant. 
 A force that one part of system exerts on another is called an interval force 
and a force exerted on a part of the system by some agency outside the system is 
an external forces act on a system, we call it an isolated system. Thus we may 
state the principle of conservation of momentum as follows: 

The total momentum of an isolated system is constant, or conserved. 
 

4.8. Elastic collision 
 
 If the total kinetic energy of two bodies remains to be same both after and 
before the impact the collision is said to be perfectly elastic. Collisions between 
atomic, nuclear and fundamental particles are examples of elastic collision. 
 Consider two smooth spheres of mass m1 and m2 moving along the line 
joining their centers with velocities υ1 and υ2 respectively. Let after collision, their 
velocities become u1 and u2 respectively. As momentum is conserved: 
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momentum before collision = momentum after collision 
m1υ1 – m2υ2 =  m1u1 – m2u2 

or        m1(u1 – υ1) = m2(u2 – υ2).      (46) 
In elastic collision the total energy remains conserved, i.e. 

energy before collision = energy after collision 

or        2
22

2
11

2
22

2
11 2

1
2
1

2
1

2
1 umummm +=+ υυ , 

or    ( ) ( )2
2

2
22

2
1

2
11 υυ −=− umum .      (47) 

Dividing Eq. (47) by Eq. (46), we have υ1 + u1 = υ2 + u2 . 
 The velocity υ1 and υ2 may be obtain in the following way: Eq. (3) we have  

    u1 = u2 – υ1 + υ2 .       (48) 
Substituting this value of υ1 in Eq. (46), we get 

m1(υ1 + υ1 – υ2 – u2) = m2(u2 – υ2) , 
or         2m1υ1 – m1u2 – m1υ2 = m2u2 – m2υ2 , 
or         2m1υ1 – m1υ2 + m2υ2 = m1u2 + m2u2 , 
or         2m1υ1 + (m2 – m1)υ2 = (m1 + m2)u2 . 
Hence 

    1
21

1
2

21
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2

2 υυ
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m
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= .      (49) 

Similarly, we can obtain the value of υ1:  
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1

2 υυ
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= .      (50) 

 
Special cases: 
1) When m1 = m2, then from Eq. (46):   u1 – υ1 = u2 – υ2   on comparing with          
Eq. (48), we get   u1 = υ2,   and   u2 = υ1;   i.e. in one dimensional elastic collision 
of two bodies of equal masses the bodies simply exchange velocities as a result of 
collision. 
2) When υ2 = 0 (the second mass is at rest), then from Eqs. (49) and (50), we have 

1
21

1
2

2 υ
mm

mu
+

=  

and       1
21

21
1 υ

mm
mmu

+
−

= .       (51) 

Now we consider the following three case: 
1. If  m1 = m2,  then  υ1 = υ  and  υ2 = 0. 

Thus, both the momentum and kinetic energy of the first body are completely 
transferred to the second as u1 = 0, i.e. the first body is stopped. 
2. If  m2 >> m1, then  u1 ≅ –υ1  and  u2 ≅ υ2 = 0. 
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Thus, when a light body collides with a much heavier body at rest, the velocity 
of light body is approximately reversed and heavier body remains approximately 
at rest. 
3. If  m2 << m1, then  u1 ≅ υ1  and  u2 = 2υ1. 

Thus when a heavy body collides a much lighter body at rest, the velocity of 
the heavy body remains practically unchanged while the light body rebounds 
with approximately twice the velocity of heavy body. 
 

4.9. Maximum energy transfer in a head on elastic collision 
 

 Consider a ball of mass m1 moving with velocity υ1 collides with a ball of 
mass m2 at rest. Let the velocity of the first ball after collision be u1. Now the 

initial kinetic energy of first ball 2
112

1 υmKi = , the final kinetic energy of first ball 

2
112

1 umK f = . 

The fractional decrease in kinetic energy is  
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According to Eq. (51) 1
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Substituting the value of  2
1

2
1

υ
u   from Eq. (53) into Eq. (52), we have 
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If  m1 = m and  m2 = nm, then   
( )21

4
n
n

K
KK

i

fi

+
=

−
. 

The transfer of energy will be maximum when Kf = 0. For  n = 1 

( )
1

1
4

2 =+ n
n . 

Thus when the mass ratio is unity, the whole of the kinetic energy of the 
moving ball is transferred to the ball initially at rest. 
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4.10. Perfectly inelastic collision 
 

 The collision is known as perfectly inelastic when there is a loss of kinetic 
energy during collision and colliding bodies stick together and move as a single 
unit. For example the collision between a bullet and a target is perfectly inelastic 
when the bullet remains embedded in the target. In this case kinetic energy is not 
conserved. Between the two limits of perfectly elastic and perfectly inelastic 
collisions, all other collisions are imperfectly elastic. 
 Now we shall calculate the change of kinetic energy in an imperfectly 
elastic collision. Let us consider the case of two bodies of masses m1 and m2 
moving along the joining centers with velocities υ1 and υ2 respectively. Let after 
collision they velocity u1 and u2  (u1 = u2 = u). As total momentum remains 
constant 

m1υ1 + m2υ2 = m1u1 + m2u2 = (m1 + m2)u     (54) 
and 

     
21

2211

mm
mmu

+
+

=
υυ .       (55) 

Decrease in kinetic energy 

)umum()mm(E 2
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+−+= υυ∆ . 

 
Short answer questions 

 
1. A body is kept moving with uniform speed in a circle by centripetal force 

acting on it. However the work done by this force is zero. Is it true? Explain. 
2. The Earth moving round the sun in a circular orbit is acted upon by a force and 

hence work must be done on the earth by this force. Do you agree with this 
statement? 

3. Is it possible that a body be in accelerated motion under force acting on the 
body, yet no work is being done by the force? 

4. Springs A and B are identical except that A is stiffer than B, i.e. force constant 
kA > kB. In which spring is more work expended if: 

a) they are stretched by the same amount? 
b) they are stretched by the same force? 
5. A lorry and a car moving with the same kinetic energy are brought to rest by 

the application of brakes, which provide equal retarding forces. Which of them 
will came to rest in a shorter distance? 

6. When a constant force is applied to a body moving with constant acceleration, 
is power of the force constant? If not, how would force have to vary with speed 
for the power to be constant? 
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Solved examples 
 

1. An object of mass 5 kg falls from the rest through a vertical distance of 20 m 
and reaches a velocity of 10 m/s. How much work is done by the push of the 
air on the object? 
Solution. The motion of the body is shown in Fig. 27. The 
following two forces are acting on the body: 
a) weight mg is acting vertically downward; 
b) the push of the air is acting upward. 
As the body is accelerating downward, the resultant force 
is 

(mg – F). 
Work done by the resultant force to ball through a vertical 
distance h = 20 m is   A = (mg – F) h. 

Gain in the kinetic energy   2

2
1 υ∆ mKKK if =−= . 

Now the work down by the resultant force is equal to the 

change in kinetic in energy, i.e.   ( ) 2

2
1 υmhFmg =− , 

or     2

2
1 υmmghFh −= . 

Work done by the force F is A = - 750 Joule. The negative sign is used because 
the push of the air is upward while the displacement is downwards. 
 

2. AB is a quarter of a smooth circular track of radius R = 4 m as shown in           
Fig. 28 (a). A particle P of mass m = 5 kg moves along the track from A to B 
under the action of the following forces: 

a) A force Fa is directed always toward to B, its magnitude is constant and 
equals Fa = 4 N. 

b) A force Fb that is directed along the instantaneous tangent to the circular 
track; its magnitude is Fb = (20 – S) N, where S is the distance traveled in 
meter; 

c) A horizontal force Fc = 25 N. 
If the particle starts with a speed υ = 10 m/s, what is its speed at point B. 
Solution. 
a) Work done by force Fa. As shown in Fig. 28 (b), let the particle be at point P 

at some instant of time t. The particle moves from position P to position Q in 
small interval of time dt. The direction of force on particle P will be in the 
direction PB. The small amount of work done in time dt is 

dAa = FadScosθ. 
As      dS = Rdθ 
then    dAa = FacosθRdθ. 

Fig. 27 
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 Now the total work done as the particle moves from A to B is given by 
4

0

4

0

4

0

ππ π

θθθθθ sinRFdcosRFRdcosFA aaaa ∫ ∫ === , 

Aa = 11,32 (joule). 
b) Work done by force Fb:    dAb = FbdS. 
In this case   dAb = (20 – S)⋅dS 
but         S = Rθ, and    dS = Rdθ. 

So            dAb = (20 – Rθ)⋅Rdθ. 

Or      ( )
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⎛−=
ππ  (Joule). 

c) Work done by force Fc: 
The magnitude of Fc is 25 N, which is always horizontal. The net displacement 
of the particle is OB. Hence the work done 

Ac = FcR, 
A = 100 (Joule). 

d) There would be some work done against weight. The net vertical displacement 
would be equal to the radius of the track R: 

An = – mgR = –196 (Joule). 
 Negative sign is used because the force of weight and displacement are in 
opposite directions. Total work done   A = Aa + Ab + Ac + An, 

A = 11,32 + 248,67 + 100 – 196 = 163,99 (Joule). 
Let υa and υb be the velocity of the particle at A and B respectively, 

Amm ab =− 22

2
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2
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Hence    22

2
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2
1

ab mAm υυ += . 

Speed υb can be obtained as follows:   ⎟
⎠
⎞

⎜
⎝
⎛ += 2

2
12

ab mA
m

υυ  

or     υb = 12,85 m/s. 
3. A projectile of mass m = 50 kg is shot vertically upward with an initial 

velocity of υ0 = 100 m/s. After t = 5 s it explodes into two fragments, one of 
which having mass m1 = 20 kg travels vertically up with a velocity υ1 = 150 
m/s. 

  What is velocity of the other fragment at that instant? 
Solution. 

After explosion, one fragment of mass m1 = 20 kg goes upward with velocity 
υ1 = 150 m/s. It is quite obvious that the second fragment of mass m2 = 30 kg 
will go downward with a velocity, say υ2. 

 The velocity of the projectile after t = 5 s is 
υ = υo – gt = 100 – 9,8⋅5 = 51 m/s. 

 The momentum of projectile before explosion 
p = mυ = 50⋅51 = 2550 kg⋅m/s. 

 Momentum of projectile after explosion   21 ppp rrr
+= . 

Where p1 = m1υ1 - momentum of the first fragment, 
p2 = m2υ2 - momentum of the second fragment, 

i.e.     mυ = m1υ1 – m2υ2 

and     15
2

11
2 =

−
=

m
mm υυυ  m/s. 

 
4. A rod of length l = 1 meter and mass m = 0,5 kg is fixed at one end is initially 

hanging vertical. The other end is now raised until it makes an angle 60° with 
the vertical (Fig. 29). How much work is required? 

Solution. 
 The weight mg of the rod acts as the center of 
gravity. When the rod is rotated through 60°, Y moves 
Y´, i.e. it is raised through height 

h = AY = OY – OA = OY – OY′cos60o = 
= OY(1 – cos60o), 

as  OY = OY′ = 
2
l . 

Gain in potential energy U = mgh. The work done A 
has been stored as potential energy, i.e. 

A = U = mgh = 1,225 (Joule). 
 

Fig. 29 
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4. A uniform chain is held on a frictionless table with one-fifth of its hanging over 
the edge (Fig. 30). If the chain has a length l and a mass m, how much work is 
required to pull the hanging part back on the table? 

 Solution. Mass of the hanging part of the chain is mm
5
1

1 = . The weight mg
5
1  

acts at the center of gravity of the hanging chain, i.e. at a distance 
101
ll =  below 

the surface of a table. 
 The gain in potential energy in 
pulling the hanging part on the table 

5010511
mgllgmglmU === . 

 Hence work done will be 
A = U = 0,02mgl. 

 
Problems and exercises 

 
Ex.1. A small ball A slides down the quadrant of a circle as shown in           

Fig. (31), and hits the ball B of equal mass which is initially at rest. Find the 
velocities of both balls after collision. Neglect the effect of friction and assume the 
collision to be elastic. 
Answer: υ1 = 0 and υ2 = 1,4 m/s. 

Ex.2. A bullet of mass m moving with a horizontal velocity υ, strikes a 
stationary block of mass M suspended by a string of length L (Fig. 32). The bullet 
gets embedded in the block. What is the maximum angle made by the string after 
impact? 

Answer: 
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Ex.3. A running man has half the kinetic energy that a boy of half his mass 
has. The man speeds up by 1,0 m/s and then has the same kinetic energy as the 
boy. What were the original speeds of man and boy? 
Answer: υman = 2,4 m/s;  υboy = 4,8 m/s. 

Ex.4. A proton of mass mp = 1,6⋅10-27 kg undergoes a head on collision with 
an α-particle initially at rest. After the collision, the α-particle moves with a speed 
of 8⋅105 m/s. Calculate the velocity of the proton before and after the collision. 
Mass of α-particle mα = 6,58⋅10-27 kg. 
Answer: υbefore = 2⋅106 m/s;  υafter = 1,2⋅106 m/s. 

Ex.5. What is the minimum stopping distance for a car of mass m, moving 
with speed υ along a level road, if the coefficient of static friction between the 
tubes and road is µ? 

Answer:  
gl

S
⋅

=
µ
υ

2

2

. 
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5. Rotational Motion 
5.1. Kinematics of Rotational Motion 

 
Let us consider a rigid body that rotates about a stationary axis (in Fig. 33), A 

rigid body rotates about a stationary line passing through point O perpendicular to 
the plane of the diagram. Line OP is fixed in the body 
and rotates with it. The angle between this line and the 
horizontal line is θ. The angle θ describes the position 
of the body completely. Thus θ serves as a coordinate 
to describe the rotational of the body. 
 Rotational motion of a body can be described in 
terms of the rate of change of angle θ. In Fig. 33 a 
reference line OP makes an angle θ1 with the reference 
line OX, at a time t1, at a later time t2 the angle has 
changed to θ2. We defined the angular velocity as 

dt
d

t
lim
t

θ
∆
θ∆ω

∆
==

→0
.      (56) 

Angular acceleration is the limit of ratio  ∆ω/∆t  as  ∆t → 0 : 

dt
d

t
lim
t

ω
∆
ω∆ε

∆
==

→0
.      (57) 

Because  ω = dθ/dt , the angular acceleration can be written as 

2

2

dt
d

dt
d

dt
d θθε =⎟
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⎞

⎜
⎝
⎛= .      (58) 

It is convenient to represent qualities dθ, ω and ε as vectors, strictly speaking, 
as pseudo-vectors. These vectors are directed along the axis of rotation according 
to the rule of right-handed screw. In Fig. 34 two cases are shown: 
a) Particle is moving in clockwise direction vectors θ

r
d  and ω

r
 are directed 

downward vector of angular acceleration ε
r

 has the same direction when 
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angular velocity increases and opposite direction when angular velocity 
decreases. 

b) Particle is moving in anticlockwise direction. In this case θ
r

d  and ω
r

 are 
directed upward, angular acceleration ε

r
 – upward or downward. 

 
5.1.1. Rotation with constant angular acceleration 

 
When the angular acceleration is constant, it is easy to derive equations for 

angular velocity and angular position as function of time by integration. 

const
dt
d

== εω . 

Then   ∫ ∫ ⋅= dtd εω ,      ω = ε t + C1, 
where C1 is an integration constant. If ω0 is the angular velocity when  t = 0, C1 is 
equal to ω0 and  

ω = ω0 + ε t.        (59) 

 Also,  
dt
dθω = ; integrating again, we find 

∫ ∫ ∫ +⋅+= 20 Ctdtdtd εωθ . 
The integration constant C2 is the value of θ when  t = 0  (the initial position), 
which we denote θ0. Thus  

2

2

00
tt ⋅

++=
εωθθ .      (60) 

We can also derive an equation-relating ω  and θ. The final result is: 
ω2 = ω0

2 + 2ε(θ – θ0).      (61) 
 

5.1.2. Relations between angular and linear velocity and acceleration 
 

When a rigid body rotates about a stationary axis, every particle of the body 
moves in a circle lying in a plane perpendicular to this axis, with the center of the 
circle on the axis. Earlier we get a relation for the acceleration of a particle moving 
in a circular path, in terms of its speed and the radius; this relation is steel valid 
when the particle is part of the rotating rigid body. 
 The speed of a particle in rigid body is 
directly proportional to the body’s angular 
velocity. In Fig. 35 point P is at a distance R away 
from the axis of rotation, and it moves in a circle 
of radius R. When the angle θ increases by a small 
amount ∆θ in a time interval ∆t, the particle 
moves through an arc length ∆S = R ∆θ. If ∆θ is 
very small, this arc is nearly a straight line, and 
the average speed of the particle is given by 
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t
R

t
S

av ∆
θ∆

∆
∆υ ⋅== .       (62) 

In the limit, as ∆t→ 0, this becomes 

ωθυ R
dt
dR == .       (63) 

 The direction of the particle’s velocity is tangent to its circular path at each 
point. Eq. (63) can be written in vector form: 

R
rrr

×=ωυ . 
If the angular velocity changes by ∆ω, the particle’s speed changes by an amount 
∆υ  given by 

∆υ = R∆ω. 
 This corresponds to a component of acceleration aτ tangent to the circle. If 
these changes take place in a small time interval ∆t, then 

t
R

t ∆
ω∆

∆
υ∆
= . 

And in limit ∆t → 0, 

εω
τ R

dt
dRa == ,       (64) 

where aτ is a tangential component of acceleration of a point at a distance R from 
the axis. 

 The normal component  

R
R

an
2

2

ωυ
== . 

 The tangential and normal components of 
acceleration are shown in Fig. 36. Their sum is 
the acceleration a. 

                   τaaa n
rrr

+= ;     (65) 

                            22
τaaa n +=

r
.    (66) 

 
 

5.2. Kinetic energy of rotation 
 

Kinetic energy of a particle with mass m is  
222

2
1

2
1 ωυ mRm = .       (67) 

 The total kinetic energy of the body is the sum of the kinetic energies of all 
particle of the body 
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 As the angular velocity ω is the same for all particle in the rigid body, we 

can rewrite this as     22

2
1 ω⎟

⎠
⎞

⎜
⎝
⎛= ∑

i
ii rmK . 

 To obtain the sum ∑
i

iirm 2 , we subdivide the body (in our imagination) into 

a large number of particles, multiply the mass m; of each particle by the square of 
its distance from the axis, and add these products for all particles. The result is 
called the momentum of inertia I of the body, about the axis of rotation: 

∑=
i

ii rmI 2 .      (68) 

 In «SI» units of I is 1 kilogram-meter2 (kg⋅m2). 
 We can express the rotational kinetic energy of a rigid body as 

2

2ωIK = .       (69) 

 When body is rolling it takes part in two kinds of motion: translational and 
rotational ones, so its kinetic energy is the sum: 

22

22 ωυ ImKKK rottrans +=+= . 

 
5.3. Moment-of-Inertia Calculations 

 
 When the body consists of a continuous distribution of matter, we can 
express the sum in terms of an integral. 
 Imagine dividing the entire volume of the body into small volume elements 
dV so that all points in a particular element are very nearly the same distance from 
the axis of rotation; we call this distance r, as before. Let dm be the mass in a 
volume element dV. The moment of inertia then can be expressed as 

∫= dmrI 2 .       (70) 

 Density  ρ  is mass per unit volume, 
dV
dm

=ρ  , so we may also write 

∫= dVrI ρ2 . 
 If the body is homogeneous (uniform in density), then ρ may be taken 
outside the integral 

∫= dVrI 2ρ .      (71) 
 In using this equation, we express the volume element dV in terms of the 
differentials of the integration variables, usually the coordinates of the volume 
elements. The element dV must always be chosen so that all points within it are at 
very nearly the same distance from the axis of rotation. For regularly shaped 
bodies this integration can be after be carried out quite easily. Discuss several 
examples. 
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5.3.1. Uniform slender rod; axis perpendicular to length rod 
 

Rod has mass M and length l. We wish to compute its moment of inertia about 
an axis through O, at an arbitrary distance from one end. Using Eq. (70), we 
choose as an element of mass a short section having length dx at a distance x from 
point O. The ratio of the mass dm of this element to the total mass M is equal to 
the ratio of its length dx to the total length l. 

Thus  
l

dx
M
dm

= , 

where   
l

dxMdm = . 

Using (70) we obtain: 
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 From this general expressing we can find the 
momentum of inertia about an axis through any point on 

the rod. For example, if the axis is at the left end, h = 0 and 
2

3
1 MlI = .       (72) 

If the axis is the right end, h = l  and 
2

3
1 MlI = . 

As would be expected. If the axis passes though the center,  
2
lh =   and 

      2

12
1 MlI = .       (73) 

 
5.3.2. Hollow or solid cylinder; axis of symmetry 

 
Fig. 38 shows a hollow cylinder of length l and inner and outer radii R1 and 

R2. We choose as the most convenient volume element a thin cylindrical sheet of 
radius r, thickness dr and length l. The volume of this shell is very nearly equal to 
that of flat sheet of thickness dr, length l, and width 2πr. Then 

dm = ρdV = 2πρlrdr. 
 The moment of inertia is given by 
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Volume    V = πl (R2
2 – R1

2). 
Hence     M = πρl (R2

2 – R1
2) 

and the moment of inertia is 

     ( )2
2

2
12

1 RRMI +=        (74) 

 If the cylinder is solid, R1 = 0; letting outer 
radius be R1 we find that the moment of inertia of a 
solid cylinder of radius R is 

2

2
1 MRI = .     (75) 

 If the cylinder is very thin, R1 and R2, are 
nearly equal, if R represents this common radius 

I = MR2.     (76) 
 Note, that the moment of inertia of cylinder 
does not depend on the length l. It depends only on 
the radial distribution of mass, not on distribution 
along the axis. 
 

5.3.3. Uniform sphere of radius R, axis through center 
 

Divide the sphere into thin disks. The radius r of the disk shown in Fig. 7 is 
22 xRr −= . 

Its volume is  dV = πr2dx = π(R2 – x2)dx 
and its mass is    dm = ρdV. 

Hence from Eq. (75)  ( ) dxxRdI 222

2
−=

πρ . 

 Integrating this expression from 0 to R gives the 
momentum of inertia of the right hemisphere: from 
symmetry, the total I for the entire sphere is just twice this: 

( )∫ −=
R

dxxRI
0

222

2
2πρ . 

Carrying out the integration, we obtain 
5

15
8 RI πρ

= . 

The mass M of the sphere is   3

3
4 RVM πρρ == . 

 Hence     2

5
2 MRI = . 

R2 

R1 

dr 

r 

l 

Fig. 38 

Fig. 39 

dx x 

r R 

O 
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5.4. Parallel – axis theorem 
  
 There is a theorem that is often useful in finding moments of inertia with 
respect to various axes. If the moment of inertia I0 of a body about an axis through 
its center of mass is known, then the moment of inertia Ip about any other axis 
parallel to the original one but displaced from it by a distance d (Fig. 40) easily 
obtained my means of relation called the parallel – axis theorem, which states that 

 
                       Ip = I0 + Md2 .       (77) 

 
To prove this theorem we consider the body shown 

in Fig. 41. 
 The origin of coordinates has been chosen to 
coincide with the center of mass. We wish to compute the 
moment of inertia about an axis through point P1 
perpendicular to the plane of the figure. Point P has 
coordinates (a,b), and its distance from origin is d. We 
note that d2 = a2 + b2. 

Let mi be a typical mass element, with coordinates (xi, yi). Then the moment of 
inertia about an axis through O is  

( )∑ +=
i

iii yxmI 22
0 , 

and the moment of inertia about axis through is 
( ) ( )[ ]22 byaxmI ii

i
ip −+−=∑ . 

We expend the squared terms and regroup, 
obtaining 

( ) ( ) .2 2222 ∑∑ ∑ ++−+=
i

i
i i

iiiiip mbaymayxmI

The first sum is Io. The second and third sums 
are zero because they represent the x and y 
coordinates of the center of mass, which are 
zero because we have taken the origin to be 

center of mass. The final term is d2 multiplied by the total mass, so the theorem is 
proved. 
 

5.5. Torque 
 

 In studying dynamics of a particle, we made extensive use of Newton’s 
second law, which relates the acceleration of a particle to the force acting on it. 
Now we need to develop an analogous relation between the angular acceleration 
of a rotating rigid body and forces acting on it. This relation includes a new 
concept, torque. 

Fig. 40 
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 A torque is always associated with a force. 
Qualitatively speaking, torque is the tendency of a force 
to cause a rotation of the body on which it acts. This 
tendency depends on the magnitude and direction of the 
force, and also on the location of the point where it acts. 
For example, it is easier to push a door open by pushing 
near the doorknob side than near the hinge side. 
 Torque is always defines with reference to a 
special axis of rotation. To define torque quantitatively, 
we consider a body that can rotate about an axis 
perpendicular to the plane of Fig. 42 through point O. 
Forces F1 and F2 act on a body; both forces act lines that 
lie in a plane perpendicular to the axis. The tendency of 
force F1 to cause a rotation about the axis through O depends on both the 
magnitude F1 of the force and the perpendicular distance l1 between the line of 
action of the force and the axis. If l1 = 0, there is no tendency to cause rotation. 
Torque M

r
 is a vector quantity 

FrM
rrr

×= ,        (78) 
where rr  is the position vector of the point at which the force acts. M

r
 is a vector 

quantity. Its magnitude 
M = F sinθ.        (79) 

Where θ is angle between rr  and F
r

. The direction of M
r

 is perpendicular to the 
plane formed by rr  and F

r
 according to the rule of right – handed screw. 

 
5.6. Angular momentum 

 
In translatory motion the linear momentum of a single particle is expressed as 

υ
rr mp = . 

In rotation motion the analogue of linear momentum is angular momentum. 
Consider the case of a particle, having linear momentum pr . The angular 
momentum L

r
 of the particle with respect to a fixed point O as origin is defined as 

cross product: 
prL
rrr

×= ,       (80) 
where rr  is a vector distance of the particle from origin O. The direction of L

r
 is 

perpendicular to the plane of rr  and pr , and magnitude is 
L = rp sinθ,       (81) 

where θ is the angle between rr  and pr . 
 When a particle moves with angular velocity ω

r
 in a circle, then its angular 

momentum is given by 
υυ
rrrrrrr

×⋅=×=×= rmmrprL . 

Fig. 42 
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As  υ = ωr  then   ( )υω
rr,rsinrmrL = . 

In rotation motion υ
r

 is tangential hence perpendicular to the rr  and so θ = 90°, i.e. 
L = mr2ω, 

or      L = Iω,       (82) 
or      ω

rr
IL = .       (83) 

 
5.7. Main Law of Rotational Motion 

 
 When a force F

r
 acts a particle, then moment of the force or torque M

r
 is 

defined as     FrM
rrr

×= . 

We now that     ( )υr
r

m
dt
dF =  

and as     ( )υrrr
m

dt
drM ×= , 

then     ( )υrrr
mr

dt
dM ×=  

or      
dt
LdM
r

r
= .       (84) 

Thus torque equals to rate of change of angular momentum. 
 In case when moment of inertia I is constant the main law of rotational 
motion can be represented as follows 

( ) εωω
r

r
r

r
r

I
dt
dII

dt
d

dt
LdM ==== , 

i.e.      ε
rr

IM = .       (85) 
 

5.8. Law of Conservation of Angular Momentum 
 

When M
r

 = 0, then  0=
dt
Ld
r

  or 

constL =
r

,       (86) 
i.e. in isolated systems the angular momentum is conserved. 
 

5.9. Rolling down an inclined plane. 
 

 Let us consider the case of rigid body of radius R and mass m rolling down 
without slipping a smooth inclined plane having an angle of inclination θ as 
shown in Fig. 43. As the body rolls down it suffer vertical descent and therefore 
loses its potential energy. At the same time, it acquires linear and angular speed 
and hence, gains kinetic energy of translation and that of rotation. If there is no 
loss in potential energy, then the loss of potential energy is equal to the gain in 
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kinetic energy. Let initially the body be at A and 
rest and after sometime it readies B, i.e., traverses a 
distance S. Suppose υ and ω be the velocity and 
angular velocity respectively acquired by the center 
of the body. 
 The vertical distance h traveled by the body, 
h = S sinθ. Then loss of potential energy 
U = mg S sinθ  and gain in the kinetic energy of 

translation   2

2
1 υmKt = . Gain in the kinetic energy 

of rotation  2

2
1 ωIKr = , where I is the moment of inertia of the body. 

Now    22

2
1

2
1 ωυθ ImsinmgS += , 

as   
R
υω = , then 

2

2
2

2
1

2
1

R
ImsinmgS υυθ +=  

and     
ImR

sinmgSR
+

= 2

2
2 2 θυ . 

 
It is useful to compare main characteristics and laws of translational and 

rotational motions. 
 

 
TRANSLATIONAL MOTION 

 

 
ROTATIONAL MOTION 

 
Displacement rdr  Angular displacement ϕ

r
d  

Velocity 
dt
rdrr

=υ  Angular velocity 
dt
dϕω
r

r
=  

Acceleration 2

2

dt
rd

dt
da

rr
r

==
υ  Angular acceleration 2

2

dt
d

dt
d ϕωε

rr
r

==  

Mass m Moment of inertia I 
Force F

r
 Torque FrM

rrr
×=  

Momentum υ
rr mp =  Angular momentum prL rrr

×=  

Kinetic energy 2

2
1 υmKt =  Kinetic energy of rotation 2

2
1 ωIKr =  

Work ∫= rdFA rr
 Work ∫= ϕ

rr
dMA  

Power υ
rr

FP =  Rotational power ω
rr

MP =  

Fig. 43 
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Questions 
1. A body is rotating. It is necessary being acted upon by an external torque? 
2. A person sits near the edge of a circular platform revolving with a uniform 

angular speed. What will be the change in the motion of the platform? What 
will happen when the persons starts moving from the edge towards the center 
of the platform? 

(Ans.: The system tends to keep its angular momentum constant. When the person 
sits near the edge of the platform, the moment of inertia of platform increases 
and hence its angular velocity decreases. When the persons starts moving 
towards the center of platform, the moment of inertia decreases and hence the 
angular velocity increases.) 

3. How a swimmer jumping from a height is able to increase the number of loops 
made in the air?  

(Ans.: The swimmer can increase the number of loops by pooling his legs and 
arms inward, i.e. by decreasing the moment of inertia. By doing so the angular 
velocity ω increases because Iω remains constant.) 

4. Why there are two propellers in a helicopter? 
(Ans.: If there were only one propeller in the helicopter the helicopter itself would 

have turned in opposite direction due to conservation of angular momentum.) 
5. A disk of metal is melted and recast in the form rolled sphere. What will be 

happen to the moment of inertia about a vertical axis passing through the 
center? 

 
Problems 

 
1. A particle of 10 kg mass is moving in a circle of R = 4 m radius with a 

constant speed of  υ = 5 m/s. What is angular momentum about (a) the center of 
circle and (b) a point on the axis of the circle and l = 3 m distant from its center? 
Which of these will always be in same direction? 

Solution: The situation is shown in Fig. 44. 
a) We know that 

υ
rrr

mRL ×= , 
L = Rmυ sinθ, 

here θ = 90°, as  R
rr

⊥υ . 
Then L = Rmυ = 4⋅10⋅5 = 200 (kg⋅m2)/s. 
b) In this case angular momentum is 

L = rmυ, 
L = 5⋅10⋅5 = 250 (kg⋅m2)/s. 

From figure it is obvious that angular momentum in 
first case always has same direction but in second case the direction changes. 

Fig. 44 
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2. A symmetrical body is rotating about its axis of symmetry. Its moment of 
inertia about the axis of rotating being  I = 1 kg⋅m2  and its rate of rotation               
ν1 = 2 rev/s. 
a) What is the angular momentum? 
b) What additional work will have to be done to double its rate of rotation? 
Solution: a) As the body is rotating about its axis of symmetry, the angular 
momentum vector coincides with the axis of rotation. 

Angular momentum    L = Iω = 2Iπν; 
L = 2⋅1⋅3,14⋅2 = 12,57 (kg⋅m2)/s. 

Kinetic energy of rotation    2
11 2

1 ωIK = , as   ω1 = 2πν1. 

When the rate of rotation is doubled, i.e.   ω2 = 2ω1 

the kinetic energy is            2
1

2
1

2
22 2

2
4

2
1 ωωω IIIK === . 

Additional work required:   2
1

2
1

2
112 571

2
12 ωωω ,IIKKA =−=−= , 

A = 236,8 Joule. 
3. A uniform disc of radius R and mass m1 is mounted on an axis supposed in 

fixed frictionless bearing. A light card is wrapped around the rim of the wheel and 
supposes that we hang a body of mass m2 from the cord (Fig. 45). Find the angular 
acceleration of the disc and tangential acceleration of point on the rim. 
Solution: Let T be the tension in the cord. Now, 

   m2g – T = m2a,      (87) 
where a is the tangential acceleration of a point on the rim 
of the disk. 
 We know that M = Iε. 
 But the resultant torque on the disk, from the other 
hand  M = TRsinα = TR,  as  α = 90°, because RT

rr
⊥ . 

Moment of inertia of the disk is 
2

12
1 RmI = . 

Then angular acceleration ε is connected with tangential 

acceleration as follows:   
R
a

=ε . 

Hence   
R
aRmTR 2

12
1

=  

or      2T = m1a 

Fig. 45 
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and      
2
1amT = .       (88) 

From Eqs. (87) and (88) we get   amamgm 2
1

2 2
=− , 

or     
21

2

2
2

mm
gma

+
= , 

and    ( )
21

21
2 2mm

gmmagmT
+

=−= . 

4. Disk with radius R = 0,2 m rotates according the law: ϕ = A + Bt + Ct3, 
where A = 3 rad; B = – 1 rad/s, C = 0,1 rad/s3. Find tangential aτ, normal an and 
instantaneous acceleration of point on the rim at time t = 10 s. 
Solution: We know, that angular velocity ω is 

( ) 23 3CtBCtBtA
dt
d

dt
d

+=++==
ϕω . 

Then angular acceleration ε is 

( ) CtCtB
dt
d

dt
d 63 2 =+==
ωε . 

Tangential acceleration aτ is connected with angular acceleration as follows: 
aτ = εR,  then   aτ = 6CtR   or aτ = 6⋅0,1⋅10⋅0,2 = 1,2 m/s2. 

Normal acceleration is   an = ω2R    or    an = (B + 3Ct2)2R;   an = 168,2 m/s2. 
And as we have got an and aτ the acceleration a can be obtained as 

22
τaaa n += , 

a =168,204 m/s2. 
5. A sphere of mass m = 10 kg and radius R = 0,2 m rotates about axis passing 

through its center. Angle changes with time as ϕ = A + Bt2 + Ct3, where                  
B = 4 rad/s2, C = – 1 rad/s3. 
Find the torque action on the sphere as function of time. 
Solution: The torque is 

M = Iε. 

Angular velocity is  ( ) 232 32 CtBtCtBtA
dt
d

dt
d

+=++==
ϕω . 

Angular acceleration is ( ) CtBCtBt
dt
d

dt
d 6232 2 +=+==
ωε . 

Then torque can be written as   M = I (2B + 6Ct) = 0,4 mR2(2B + 6Ct), 
as moment of inertia of the sphere is   I = 0,4 mR2. 

M = 0,4⋅10⋅0,04(2⋅4 + 6⋅(– 1)⋅t) = 1,28 – 0,96⋅t. 



 63

Problems and Exercises 
 

1. Calculate the angular momentum and rotational kinetic energy of Earth about 
its own axis. 

2. A wheel of radius 6 sm is mounted so as to rotate about a horizontal axis 
through its center. A string of neglectible mass wrapped round its 
circumference carries a mass of 0,2 kg attached to its free end. When let fall the 
mass descends through one meter in 5 seconds. Calculate the angular 
acceleration of the wheel, its moment of inertia and tension in the card. 
(Ans.: I = 8,75⋅10–2 (kg⋅m2)/s;  T = 1,94 N). 

3. A sphere, a disk and a ring of the same mass and radius are allowed to roll 
down an inclined plane simultaneously from the same height without slipping. 
Prove that the sphere reaches down first, the disc next and the ring the last. 
(Ans.: a1> a2 > a3). 

4. A sphere of mass 1 kg and diameter 1 m rolls without sliding with a constant 
velocity of 10 m/s. Calculate what fraction of the total kinetic energy of the 
sphere is rotational? How much work has to be done to stop it? 
(Ans.:  Krot/Ktotal =  2/7 ;  A = 70 Joules). 

5. A wheel rotates about an axis passing through its center. Speed of the points of 
the rim changes with time according to law  υ =3t + t2. Find the normal an and 
tangential aτ components of acceleration and angle as function of time. 

(Ans.: ( )
R

ttan

223 +
= ;  aτ = 3+ 2t ;  ⎟

⎠
⎞

⎜
⎝
⎛ +=

32
3

2

2 ttϕ ). 
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