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1. Products of vector

Many physical relationships can be expressed concisely by the use of
products of vectors. There are two different kinds of vector products. The first,
called the scalar product, yields a result that is the scalar quantity, while the

second, the vector product, yields another vector.

1. Scalar product (dot product) of two vectors A and B. We draw the two

vectors from a common point as in Fig.1 a). The angle between their directions is
0, as shown. We define the scalar product, denote by A-B , as

A-B= ABcosﬁz‘;lHE‘cosé’.

It is a scalar quantity, not a vector, and it may be positive or negative. When 0 is

between zero and 90°, the scalar product is positive; when & is between 90° and

180°, it is negative; and when € =90°, A-B=0. The scalar product of two

perpendicular vectors is always zero.

The order of the two vectors doesn’t matter. For any two vectors A and B

A-B=B-A.

If we the components of vectors 4 and B, we can represent their scalar

product as follows:
A-B=AB +AB +AB..

2. Vector product (cross product) of two vectors A and B is denoted by

C=AxB or C= LZI . EJ. To define the vector product we again draw A and B
from a common point. The two vectors A and B thenlieina plane. We define the
vector product C as a vector quantity with a direction perpendicular to this plane
(i.e., perpendicular to both 4 and B)and a magnitude given by AB siné. That is,
ifé:;ixé,then

C = ABsin6.



We measure the angle 6 from A toward B and take it always positive. We

note also that when A and B are parallel or antiparallel, 6 =0 or 6 = 180° then C = 0.
There are always two directions perpendicular to a given plane. To

distinguish  between these, we

C | imagine rotating vector A about the

B . perpendicular line until it is aligned
0 ~ : with B (choosing the smaller of the
R pi two possible angle). We then curl

a 4 b the fingers of the right hand around

this perpendicular line so that the
Fig. 1 fingertips point in the direction of
rotation; the thumb then given the direction of the vector product. Alternatively,

the direction of the vector product is the direction a right-hand-thread screw

advanced if turned in the sense from A toward B (Fig. 1b).



2. Kinematics of translation motion

Our study of physics begins in the area of mechanics, which deals with the
relations among force, matter and motion. Mechanics consists of kinematics,
dynamics and static. Kinematics studies motion of the body without the reason of
this motion.

Motion is a continuous change of position. We can think of a moving body
as a particle when it is small and when there is no rotation or change of shape. We
say that the particle is a model of a moving body; it provides a simplified,
idealized description of the position and motion of the body.

2.1. Motion along a straight line

The simplest case is motion of a particle along a straight line, and we will
always take that line to be a coordinate axis. Then we will consider more general
motion in space, but these can always be represented by means of their projections
onto three coordinate axis. Displacement is in general a vector quantity, but we
first consider situations in which only one component is different from zero. Then
the particle moves along one coordinate axis, and its position is described by a
single coordinate.

2.1.1. Displacement and average velocity

Let us consider a hockey player skating the puck down the center line of the
ice toward the opposition’s net. The puck moves along a straight line, which we
will use as the x-axis of our coordinate system, as shown in Fig. 2. The puck’s
distance from the origin O at center court is given by the coordinate x, which
varies with time. At time ¢, the puck is at point P with coordinate x; and at time ¢,
it is at point Q where its coordinate is x,. The displacement during the time
interval from ¢, to ¢, is the vector from P to Q; the x- component of this vector is
(x—x;) and all other components are zero.

It is convenient to represent the quantity (x,—x;), the change in x, using the
Greek latter A (capital delta). 6 ¢ > ;

Ax = X, — .. (1) P Q
Similarly, we denote the time interval
from ¢, to t, as At = t, — ;.

The average velocity of the puck
is defined as the ratio of the displacement Ax to the time interval Az. We represent
average velocity by latter v with a subscript “av” to signify average value. Thus

X, —x;, A

v, =2 =22 2
el 2)

Fig. 2




Strictly speaking, average velocity is a vector quantity and this defines the
x-component of the average velocity.

We have not specified whether the speed of the hockey puck is or is not
constant during the time interval At = ¢, — ¢,;. It way has started from rest, reached
maximum speed and then slowed down. But that does not matter. To calculate the
average velocity we need only the total displacement Ax = x, — x; and the total
time interval At = ¢, — ¢;.

2.1.2. Instantaneous velocity

Even when the velocity of a moving particle varies, we can still define a
velocity at any instant of time or at any specific point in the path. Such a velocity
is called instantaneous velocity.

The instantaneous velocity is defined as

v=lim —="". (3)
A—0 At dt

The limit of Zb; as At approaches zero is written Z’,}; and is called the derivative of

x respect to £. Since At is assumed positive, v has the positive x-axis points to the
right, a positive velocity indicates motion toward the right.

In more general motion, velocity must be treated as a vector quantity. In that
case Eq. (3) becomes the x-component of the instantaneous velocity. When we use
the term velocity, we always mean instantaneous rather then average velocity,
unless we state otherwise.

The instantaneous velocity at any point of coordinate — time graph equals
the slope of tangent to the graph at the point. If the tangent slopes upward to the
right, its slope is positive, the velocity is positive, and the motion is toward the
right. If the tangent slopes downwards to the right, the velocity is negative. At a
point where the tangent is horizontal, its slope is zero and the velocity is zero.

If distance is expressed in meter and time in second velocity is expressed in

m
meter per second (j :
S

The term speed has two different meanings. It may mean the magnitude of

the instantaneous velocity. For example, when two cars travel at 50 one

hour
km

north and the other south, both have speeds of 50 . In a different sense,

hour

referring to an average quantity, the speed of a body is the total length, divided by

the elapsed time. Thus if a car travels 90 km in 3hr, its average speed is 30 hkm ,
our

even if the trip starts and ends at the same point. In the latter case the average
velocity would be zero, because the total displacement is zero.



2.1.3. Average and instantaneous acceleration

When the velocity of a moving body changes with time, we say that the
body has acceleration. Just as velocity is a quantitative description of the rate of
change of position with time, so acceleration is a quantitative description of the
rate of change of velocity with time.

Considering again the motion of particle along the x-axis, suppose that at
time ¢, the particle is at point P and has velocity v, and that at a latter time #, it is
at point Q and has velocity vs.

The average acceleration a,, of the particle as it moves from P to Q is
defined as the ratio of the change in velocity to the elapsed time:

aavzuz_UI:AU. @
t,—t, At
Again, strictly speaking, v; and v, are values of the x-component of instantaneous
velocity, and Eq. (4) defines the x-component of average acceleration.

We can define instantaneous acceleration, following the same procedure

used for instantaneous velocity.

)

Instantaneous acceleration plays an essential role in the laws of mechanics,
while average acceleration is less frequently used. When we used the term
acceleration, we always mean instantaneous acceleration.

The instantaneous acceleration at any point on the graph equals
the slope of the line tangent to the curve at that point.

: dv : : : dx .
The acceleration a = I can be expressed in various ways. Since v = % it
t t

follows that
dv d(dx\ d’x
NI o
dt dt\dt) dt
The a is therefore the second derivative of the coordinate with respect to time.
If we express velocity in meter per second and time in seconds, then

acceleration is in meter per second, per second | —— |. This is usually written as
S-S

m : :
— , and is read meters per second squared. A few remarks about the sing of
S

acceleration may be helpful. When the acceleration and velocity of a body have
the same sing, the body is speeding up. If both are positive, the body moves in the
positive direction with increasing speed. If both are negative, the body moves in



the negative direction with a velocity that more and more negative with time, and
again the body’s speed increases.
When v and a have opposite sing, the body is slowing down. If v is positive
and a negative, the body moves in the positive direction with decreasing speed.
Example 1. The velocity of the car is given by the equation v =m + nt’,
when m=10m/s; n=2 m/s.
a) Find the change in velocity of the car in the time interval between ¢, =2 s and
H= 5s.
Solution.
Attimet, v =m +nt=10+22>=18 m/s.
Attimet, v, =m +nt;’ =10+ 257 = 60 m/s.
The change in velocity is therefore Av = v, — v; =60 — 18 =42 m/s.
b) Find the average acceleration in this time interval.

Solution.
¢ =A%y e
At 3
c) Find the acceleration at time ¢, =2 s.
Solution.
0= 2p=2.2.2-8 mis®
dt

2.1.4. Motion with constant acceleration

How to find the velocity at any time
The simplest accelerated motion is straight-line motion with constant
acceleration, when the velocity changes at the same rate through the motion. The
graph of velocity as a function of time is then a straight line; the velocity increases
by equal amounts in equal time intervals (Fig. 3).
Hence in Eq. (4) we have

LVa L L
a="2—"1 7
v - (7)
at Now let #,= 0 and ¢, be any arbitrary later time t.
Let v, represent the velocity when ¢ = 0 (called
V) the initial velocity), and let v be the velocity at
R the later time ¢. Then Eq. (7) becomes
0 > _
t / LU0
t-0
Fig. 3 of
v=uyytat. (8)



We can interpret this equation as follows. The acceleration a is the constant
rate of change of velocity, or the change per unit time. The term at is the product
of the change in velocity per unit time and the time interval ¢. Therefore it equals
the total change in velocity. The velocity v at any time ¢ then equals the initial
velocity vy (at time # = 0) plus the change in velocity at. Graphically, we can
consider the ordinate v at time ¢ as the sum of two segments: one with length v,
equal to the initial velocity, the other with length af equal to the change in velocity
during time ¢.

Here is an alternative route to Eq. (8). We know that v 1s some function of z. If the
derivative of that function with respect to ¢ is the constant @, what must the function itself
be? (Such a function might be indefinite integral). One possibility is the function at; its
derivative with respect to ¢ is the constant . But the derivative of the function (at+C),
where C'is any constant, is also equal to a, because the derivative of any constant is zero.
Thus we conclude that the function for v must have the form

v=at+C. 9)
Now this function must also satisfy the additional requirement that at time
t = 0 it yields the value v,. Substituting = 0 and equating the result to vy, we find

vy=a0)+C or C=uyy. (10)
Putting all this together, we again obtain
V=Y t+at.

How to find the position at any time

We may use a similar procedure to find an expression for the position x of
the particle as a function of time, if the position at time, if the position at time ¢ = 0

, dx : :
is denoted by xy. We know that v = j; what function of # must x be, in order for
t

its derivative with respect to ¢ to equal (vy + at)?

The function
2

x:UO+a;+D. (11)

Where D is any constant, satisfies this requirement; this may be checked easily by
taking the derivative of Eq. (11).

2.1.5. Velocity and coordinate by integration

. oy : dx :
When x varies with time we use the relation v = = to find the velocity v as
t

: . . dv :
a function of time. Similarly, we can use a = T to find the acceleration a as a
4

function of time if the velocity v is given as a function of time.



We can also reverse this process. Suppose v is known as function of time;
how can we find x as a function of time? It is simply the integral of v from ¢, to 2.

As dx = v(t)dt,

then fdx = i ol(t)dt
or X, =X = Iu(t)dt
and similarly: dv = a(t)dt,

Ly )
[dv=alr)dr,
v 4
5
L, —U = _[a(t)dt.
i
Example 2. An automobile travels along a straight highway. It’s
acceleration is given as a function of time by a = D — bt, where D =2 m/s’;
b= 0,1 m/s’.The position at time ¢ = 0 is given by x,= 0, and the velocity at =0 is
vy = 10 m/s. Derive expressions for the velocity and position as function of time.

dv
1. A t)=—,
S alt) 0
then dv = adt.
Hence J' jD bt) dt_det—jbtdt_Dt—;bt +C,.

Constant of integration C, is defined from initial condition v = v at £ =0, i.e.
U(O) =0-D+ 0,5 b-0 +C1 = Uy, C] = Up,
and v = vy + Dt—0,5bt".

2. As U:Z”)tc’ then dx = vdt, and

x=judt:j(uo +Dt—%bt2)dt=IUOdZ+IDtdt—I%bt2dt= Uot+%Dt2 —ébﬁ +C,.

Constant of integration C, we can obtain using initial condition x(0) = 0,

ie. x(O):UO-O+;D-O—éb-O+C2; C,=0.
. 1, 1,
Finally X=vt+ _-Dt" ——bt".

2 6

10



2.2. Motion in space

Let our body moves along some curve OO" (Fig. 6). To define the body’s
position we use vector ¥ — so—called position vector. Position vector is the vector
from origin to the point of body’s location.

Let at time ¢, the body is at point A. Its y 4
position vector is 7;. At time #, the body is QA

at point B and its position vector is 7,.
The vector Ar =7, —7; is called the

displacement vector. When body moves its

position vector changes with time, i.e.
F=7(t).

Position vector (as any vector) can be

represented in components: ,
F(e)= (0 + y(0)f + (). Fig. 6
To define how rapidly body’s position changes we use velocity. Velocity is
defined as

and is directed along the tangential to the trajectory.
When the motion is not uniform the velocity is not constant. The change of
velocity is characterized by vector of acceleration:
. .. Av dv
a=lim —=—.
At—o At dt

2.2.1. Normal and Tangential Components of Acceleration

When particle moves in the xy-plane the acceleration of a particle moving

in curved path can also be represented in terms of rectangular component a; and
a| in direction normal (perpendicular) and fangential (parallel) to the path as
shown in Fig. 4. Unlike the rectangular components referred to a set of fixed axes,
the normal and tangential components do not have fixed direction in space. They
do, however, have a direct physical significance. The parallel component a|
corresponds to a change in the magnitude of the velocity vector v . While the
normal component a is associated with a change in the direction of the velocity.
Let’s consider the case, when a particle moves in a circle with constant
speed. Fig. 5 shows a particle moving in a circular path of radius R with center at
O. The vector change in velocity, Ao, is shown in Fig. 5(b). The particle moves
from P to Q in a time At. The triangles OPQ and opg in Fig.5(a) and Fig. 5(b) are
similar, since both are isosceles triangles and the angles labeled A are the same.

11



Av _ AS
v R
The magnitude of the average normal acceleration (a_),, during At is therefore
(al )av _Adv v AS

Hence or Av= I;IAS )

A R At
The instantaneous acceleration a at point is the limit of this expression, as point Q
is taken closer and closer point P:

a = lim ﬁﬁ —ilim—
J_ - - .
A—>0\ R At R At—0 At

Fig. 5

- AS . : : :
However, the limit of m is the speed v, at point P, and since P can be any point
4

of the path, we can drop the subscript from v, and let v represent the speed at any

point. Then
UZ
an:%:?- (12)

The magnitude of the normal acceleration is equal to the square of the speed

divided by the radius of the circle. The direction is perpendicular to v and inward
along the radius.

We have assumed that the particle’s speed is constant. If the speed varies,
Eq. 12 still gives the normal component of acceleration the tangential component
of acceleration is equal to the rate of change of speed:

Av _dv

=a,= 1 . 13
e = i AfTo At dt (1)

12



Velocity can change its magnitude and its direction. The tangential acceleration

a, = cj;: defines the change in the magnitude of velocity and is directed along the

tangential to the trajectory (as velocity vector).
2

: v : :
The normal acceleration a, = Y characterizes the change of velocity

direction and is directed along the radius of curvature to the center of the curve
and normally to the velocity and tangential acceleration.

The vector sum of normal and tangential acceleration gives the acceleration
of the body (Fig. 4):

a,, (14)
+a,. (15)

2.2.2. Principle Problems of Kinematics
There are two principle problem of kinematics.

First: from known position vector 7 calculate all the characteristics of
motion (i.e. distance from the origin ‘77 , velocity vector v and its magnitude [v|,

vector of acceleration a and its magnitude |a

, normal a,, and tangential a,

components of acceleration and radius of curvature R . To obtain the solution of
this type of problem we have to take derivatives of position vector and velocity
with respect to time.

Second: from known acceleration ‘ﬁ‘ calculate the other characteristics of

motion: velocity vector v and its magnitude ||,

the origin ‘17 ,normal a, and tangential a, components of acceleration and radius
of curvature R. To solve such kind of problems we have to take integrals.
Lets consider the first class of problems. When we are given the position

vector as function of time we can find all characteristics of the motion as follows:

#(6)=x(e) + y(t)] + (¢ )k .
The distance of the body from the origin is the module of the position vector:
‘17‘ =X’ +y*+z°.

a) The displacement is A7 = (x, —x, )i +(y, —y,)j +(z, =z, )k

and Ar:x/(xz—xl)z+(y2—y1)2+(22—21)2.
b) Velocity is calculated as v = CZ ,
. d - - g dx~ dy d
or v=—I\xi +y+zk)=—i+—]j Pk = vi+v +Uk
dt b+ + 26)- a tad T T

13



d. d d :
where v _= —x;u v =% _are the components of velocity along x -, y -

a’” T a T dr
and z -axis, correspondingly.
Magnitude of the velocity is equal to the module of the velocity vector.

c) Acceleration of the body is

a:d“ d(uz+z)]+uk) T+ Jj+ Uik =
dt dt dt dt dt

dv, d’x dv, d’y dv, d’z
= 72"61)} = az = = 2

dt dt dt  dr’ dt dt

the acceleration vector along x -, y - and z - axis, correspondingly. Magnitude, that

1s module of acceleration vector we can obtain as

a=.|a;+a, +a; .
: L dv d
Tangential acceleration is a, = i v} +v; +U;

To calculate the normal acceleration we need the radius of curvature R. If we are
not given R we can use the formula a®> =a’ +a’, then a,=-/a’ —a’ . And,

2

: v
finally, radius of curvature R we getas R=—.
a

n

=
~.]

ta,j+ak,

are the components of

where a, =

For the second type of problems we have to apply the following strategy:

as acceleration a = Cfl—l;, then jd U= J'Zz(t)dt , and velocity © = .fc‘z(t)dt +C.

When acceleration is constant, then & = at+C.
As B(y)= d’(’) ,then dF(1)=0()dt and 7(t) = [(t)dt
Now 1t is time to consider several examples.
Example 1. The position vector of body changes with time as
r= (A + Bt? ET + Ct], where A = 10 m, B = -5 m/s%, C = 10 m/s. Calculate
velocity, acceleration, tangential and normal components of acceleration and

radius of trajectory curvature.
Solution.

1. Module of position vector is 7 =-/x* + y* . In our case x =4 + Bt’; y = Ct.

That is er(AHBﬁ)2 +C°t? .
2. Velocity we can find as follows
v, = dx :d(A + Bf*)=2Bt;v _ i(Ct),-uz =0
dt dt Yoodt dt

and velocity vector 0 =v_i + uy] =2Bti +Cj,;0 = (— 106 + 10]) m/s.

14



And then the magnitude of velocity, i,e, module of vector 0 is

v=-/2Bt) + C*;v=10/1+1> mJs.

3. Acceleration d is @=a,i +a ]

d
=90 d gy aopig =0 240
dt dt YToar dr

and d=2Bi  then a=.|al +a, = (2B) =2B=10 m/s”.

4. Tangential acceleration is

In this case a

a. = dvo_d (2Bt)’ +C* = 0 e,
dt dt NEYS
5. Normal accelerationis a, =l;e.

: : 2 2 2
As we are not given R, we have to use connection a” =a, +a_, hence

10¢ 10
a =-la*—a’* = |4B* - = .
" ’ \/ («/IHJ J1+82
NI+

6. Andradius Rwillbe R=— (1 01+ )Z 10 +t )2 .

Short answer questions

Is it possible that displacement is zero but not the distance?

Can a body have a constant velocity but a varying speed?

Are the magnitude of average speed and velocity equal?

The distance traveled by a body is found to be directly proportional to the
square of time. Is the body moving with uniform velocity or with the uniform
acceleration?

el

True — false type questions

1. A body can have eastward velocity while experiencing a westward
acceleration.

2. Alorry and a car moving with the same kinetic energy are brought to rest by
the application of brakes, which provide equal retarding forces. Both come to
rest in equal distance.

3. A body is moving with a uniform velocity in one frame A, then there is another
frame B in which it is accelerating.

4. A car covers the first half of its distance between two places at a speed of 40
km/hour and the second half at 60 km/hour. The average speed of the car is
then 50 km/hour.

15



. A car covers the first half of its time between two places at a speed of 40
km/hour and the second half at 60 km/hour. The average speed of the car is
then 50 km/hour

. A train is moving with a speed of 60 km/hour and a car is moving by its side in
the same direction with a speed of 20 km/hour. The speed of the car relative to
train is 80 km/hour.

. Two cars A and B are moving in the same direction with equal speeds. A
passenger in the car A finds that the car B is at rest.

Examples

. A body travels 200 sm in the first two seconds and 220 sm in the next four
seconds. What will be the velocity at the end of the seventh from the start

(Vo =115 sm/s, a = — 15 sm/s*)?

. A point moving with constant acceleration from A to B in the straight line AB
has velocity vy and v at A and B respectively. Find its velocity at C, the mid —
point of AB. Also show that if the time from A to C is twice that from C to B,
then v = 7v,,.

. An a-particle travels along the inside of straight hollow tube, 2,0 meter long, of
a particle accelerator. Under uniform acceleration, how long is the particle in
the tube if it enters at a speed of 1000 m/s and leaves at 9000 m/s. What is its
acceleration during this interval (a =2,0-10" m/s*)?

. A truck starts from rest with an acceleration of 1.5 m/s* while a car 150 meter
behind stars from rest with an acceleration of 2 m/s”. How long will it take
before both the truck and side, and how much distance is traveled by each

(S) =450 m (truck) and S, = 600 m (car), t=24.5s)?

. A particle is moving in a plane with velocity given by v = z)ozT + (aa)cos a)t)] ,
where i and j are unit vectors along x and y axes respectively. If particle is at
the origin at ¢ =0, calculate the trajectory of the particle and find the distance

L 370, ) :
from the or1g1natt1met:3—ﬂ. [S—\/(;woj +a2;y=aSina) xj-
UO

. The body is moving with velocity givenby 6 =a i + fx- j, where azand 8
are constant. If body is at origin at ¢ =0, find its radius-vector, velocity
acceleration as functions of time.

14

- T - - e - =
(r=a-ti +7t2];u:a-z +af-ti;a=af-j).

. The radius-vector of material point is 7 = (A + Bt2)1T + Ctj , where 4 = 10m,
B=-5m/s>, C=10 m/s. Calculate velocity &, acceleration a, tangential and

16



normal accelerations. (0 = —108i + 10] m/s; da=-10i m/s*; v=101+¢ m/s;
a=10m/s*; a = 10r 10

SN J1+¢2

8. Radius-vector of the body is 7 =(2cos ot )i +(2sinawt)j , where @= const. Find

2. 2
m/s’; a, = m/s”).

the trajectory, velocity, acceleration, tangential and normal accelerations and
radius of curve as function of time.

(Trajectory is the circle x*+’=4. 0= Za)(— i sinwt + j cos a)t); v=2w;
a= —2w2(fc0swt + ]sina)t); a=2&"; a,=0; a,=2a"; R=2).

9. The acceleration of the point is a = - ru, where r is constant. Calculate the
speed and distance as function of time. At time £ =0, S(0) =0, (0) =v, = 0.

(V=v,e ;8= l;)(l —e " )).

9. The point is moving along straight line with the speed v =k-/S , where & is
constant. Calculate speed and acceleration as function of time. At time ¢ =0
particle is at origin.

2.3. Projectiles motion

When a body is projected in air in any direction, then the body is called a
projectile. The angle, which the direction of projection makes with the horizontal,
is known as angle of projection. Fig. 7 shows a body projected with an initial
velocity vy at an angle 0 with the horizontal. The path traced out by the body in its
journey is called as trajectory.

The distance between the point of projection and point where the trajectory
meets any plane drawn through the
point of projection is called the range.
In Fig. 7 AB is the range. The time
that elapses before the body again
meets the horizontal plane through the
point of projection is known as time
of flight. At a certain point the angle
0, which the velocity of the projectile
makes with the horizontal, is called
the direction of motion of the body at
that point.

The velocity v of the projectile
can be resolved along x and y axes as follows:

—the vertical component v, = vsind;

—the horizontal component v, = v cosé.
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Neglecting air resistance the horizontal component remains unaffected by
gravity, i.e. constant, while the vertical component changes due to acceleration of

gravity.
The vertical displacement y at any time t is given by
y=voyt—;gt2 (16)
or
y:(uosine)t—;gtz. (17)
The vertical component of velocity at any time t is
V(1) = vy sinO— gt. (18)

1. Time taken to reach the maximum height.
At highest point the vertical component of velocity of projectile is zero.
From Eq. 18, we get

0=uv,sinf— gt
or
v, sin@

g

2. Greatest height attained.
At greatest height h, we have vy = 0, vy, = vy sin6, acceleration = — g now
using 0% = vy, ’+ 2gh,

we have 0= (vysin)* —2gh
. 2
or h:(UOSlnH) ‘
2g

3. Total time of flight.
When the body returns to the same horizontal level, the displacement y in
the vertical direction is zero. Using Eq. 17 we obtain:

0:(1)0Sin(9)t—;gt2
. 2v, sin@
g

or

4. Horizontal range.

During time t, the body has moved horizontally with a constant velocity
Uge = L cosO.

Then horizontal range

20, sin@ _ v; sin26
g g

x=(vp,cos0)t=v,cosl

18



5.

The range will be maximum when 0 = 45°, i.e.

2
xmax = 070 :
g
Equation of trajectory.
In a projectile motion
x=(v,cos0)t, (19)
yz(uosinﬁ)t—;gtz. (20)
From Eq. (19)
X
t= .
v, cos O

Putting this value in Eq. (20), we get
2
y=(v,sinb) ol ! ( x j

v, cos O - Eg v, cos O
2
g
or =xtan — —=>——.
4 20, cos’ 6
This is the equation of a parabola. Thus the equation of the trajectory is a
parabola.

a)
b)

a)
b)

Range and time of flight on an inclined plane
Let us consider an inclined plane, which makes an angle 3 with the

horizontal as shown in Fig. 8. Let a particle is projected at an angle o with the
horizon with a velocity v,. This particle
strikes the inclined plane at a point A. Our y
aim is to find out the time of flight and
range OA. The initial velocity v, can be
resolved in two components:

vy cos(a—p) along the plane and

vy sin(a—p) perpendicular to the plane

A

!

Similarly, g can be resolved in two a
components: p

g, = g sinf} - parallel to the plane and
_ - O B

g, = g cos 3 - perpendicular to the plane.

If ¢ be the time taken by the particle to Fig. 8

go from O to A, then in this time the

distance described perpendicular to OA is zero. Applying equation

1
S:uJ+§g2
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we get 0=(v,sin(c —,B))t—(;gcosﬂjtz

. 20, sin(a - )
- gcosff
Equation (21) represents the time of flight. During this time ¢, the horizontal
velocity vy cosa along OB is given by
20, sin(a — B) _ 20; sin(a — B)cosa

or

21)

OB = (v, cosax)

gcos gcos f
From AOAB:
Od — 0B _ 20, sin(a — f)cosa
cos [ gcos’ B '
Questions

1. A ball is dropped from the window of a moving train on horizontal rails. What
is the path followed by the ball on reaching the ground? (Ans.: A parabolic
path).

2. A passenger sitting in a train moving with constant horizontal velocity drops a
ball vertically downward. What is the path observed by (a) a man in the train,
(b) a man standing on the ground near the train and (c) a man in a second train
moving in the opposite direction to the first train on a parallel track? (Ans.: (a)
A straight line (vertically downward); (b) parabola and (c) parabola).

3. Why does the direction of motion of a projectile become horizontal at the
highest point of its trajectory? (Ans.: At the highest point the vertical velocity
becomes zero).

4. At what point of the projectile path the speed is minimum? At which point
maximum? (Ans.: At the highest point, at the projection point).

5. At what angle with the horizontal a player should throw a ball so that it may go
to (a) a maximum distance? (b) For maximum height? (Ans.: (a) 45°, (b) 90°.)

6. Two bombs of 10 and 15 kg are thrown from cannon with the same velocity in
the same direction. Which bomb will reach the ground first? (Ans.: Both reach
simultaneously, because the time of flight does not depend upon the mass (if
air resistance is negligible)).

7. A ball is dropped gently from the top of a tower and another ball is thrown
horizontally at the same time. Which ball will hit the ground earlier?

(Ans.: Vertical component of velocity of both balls is zero, therefore, time of

125,

g

flight of each ball ¢ =
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Solved examples

Example 1. A stone is projected from the ground with a velocity of 25 m/s.
Two seconds letter it just meets a wall 5 meters high. Find (a) the angle of
projection of the stone, (b) the greatest height reached, (¢) how far beyond the wall
the stone again hits the ground. Neglect air resistance.

Solution. Let the stone be projected at angle 6 above the horizontal. Horizontal
component of initial velocity vy, = 25 cos 6, vertical component of initial velocity
Vgy = 25 sin0.

a) We consider the vertical motion of the stone. The upward direction is taken
as positive. Here vy, = 25 sin6, g=-10 m/s>, h=5m,t=2s.

Using h=l)0t+;gt2,
we have 5:(25sin0)-2—;-10-4
or 25=50sin6; Siné’:;; 0=30".

b) To calculate the greatest height reached, we use the formula
v = vy’ +2gh; 0,=0; vy =25sin30"=12,5,
ie. 0=12,5"~210h; h=7,8m.
2v, sin0 _2-25 _25s.
g 2-10
According to given problem, the time taken to clear the wall is two seconds, hence
time in air after clearing the wall #; = (2,5-2) = 0,5 s. Horizontal distance traveled

NE]

during the interval S =uv,tcos@=25-0,5c0s30° = 257 -0,5=10,8 m.

c) Total time of flight =

Example 2. A stone is thrown from the top of a tower of height 50 m with a
velocity of 30 m/s at an angle of 30° above the horizontal (Fig. 9).
(a) The time during which the stone will be in air.
(b) The distance from the tower base to where the stone will hit the ground.
(c) The speed with which the stone will hit the ground.
(d) The angle formed by trajectory of the stone with the horizontal at the point of hit.
Solution. The situation is shown (a) horizontal component of velocity
Lox = 30 cos30° = 25,98 m/s.
Let ¢ be the time taken by stone to reach the ground, i.e. the time during which the
stone will be in air. Taking the upward direction as positive, we have

I
h:ont‘l'Egt )

as ~50=15¢t-0,5-10¢.
Solving for t, we get =35 s.
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(b) The distance S where the stone will hit the ground
S = vyt =25,98:5=104,98 m.
(c) From Fig. 9 v, = vy, = 25,98 m/s and v, =-15 + (10-5) = 35 m/s. Now
v=[v] +v] =+/2598" +35" =436 m/s

) tan6=""
v

X

or 0 = arctan )
25,98

Problems

1. An airplane is flying in a horizontal
30" direction with a velocity 600
50— km/hour and at height of 1960 m.
O, When it is vertically below the
point A on the ground, a body is
dropped from its. The body strikes
the ground at point B. Calculate the
distance AB. (Ans.: 3,333 km).
. A stone 1s thrown from the ground
0 > > towards a wall 6 m high at a
X distance of 4 m such that it just
clears the top of the wall. Find the
Fig. 9 g v speed of projection of the stone.
(Ans.: 11,43 m/s).
3. From the top of a tower of height 40 m, a ball is projected upwards with a
speed of 20 m/s at an angle of 30° to the horizontal. When and at what distance
from the foot of the tower does the ball hit the ground? What is the velocity of

the ball at this instant? (Ans.: 4's; 40-/3 m; 34,64 m/s).

Cl

Oy

Ci
\®]

Ci
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3. Dynamics

In this chapter we begin to study more general problems involving the
relation of motion to its causes. These problems form the area called dynamics. All
of dynamics is based on three principles called Newton laws of motion. The first
law states that when the vector sum of forces on a body is zero, the acceleration of
the body is also zero. The second law relates force to acceleration when the vector
sum of forces is not zero. And the third law relates the pair of forces that
interacting body exert on each other.

3.1. Mass and Second Newton Law

We know from experience that a body at rest never starts to move by
itself; some other body has to apply a push or pull on it. Similarly, when a
body is already in motion, a force is required to slow it down or stop it. To
make a moving body deviate from straight-line motion, we must apply a
sideways force. All these processes involve a change in either the magnitude or
the direction of the velocity. In each case the body has acceleration and the
force must act on it to cause this acceleration.

Before the time of Galileo and Newton, it was generally believed that a
force was necessary just to keep a body moving, even on a level, frictionless
surface or in outer space. Galileo and Newton realized that no net force is
necessary to keep a body moving, once it has been set in motion, and that the
effect of a force is not to maintain the velocity of a body, but to change its
velocity. The rate of change of velocity for a given body is directly proportional
to the force acting on it.

To say that the acceleration of a body is directly proportional to the force
exerted on it is to say that the ratio of the force to the acceleration is a constant,
regardless of the magnitude of the force. This ratio is called the mass m of the
body. Thus

F
m=—
a
or F=ma. (22)

We can think of the mass of a body as the force per unit of acceleration. For
example, if the acceleration of a certain body is 5 m-s™> when the force is 20
N, the mass of the body is

m= N =4 N'm''s’
Sm-s ™2
and a force of 4 N must be exerted on the body for each ms™ of acceleration
This relationship can also be used to compare masses quantitatively. Suppose
we apply a certain force F' to a body having mass m; and observe an

acceleration of a;.. We then apply the same force to another body having mass
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my , observing an acceleration a,. Then, according to Eq. (22), mya; =myay;
or

n_a

meap .

We can use this relation to compare any mass with a standard mass. If m; is a
standard mass and m, an unknown mass, we can apply the same force to each

and measure the accelerations; the ratio of the masses 1s the inverse of the
ratio of the accelerations. When a large force is needed to give a body a certain
acceleration (i.e., speed it up, slow it down, or deviate it if it is in motion), the
mass of the body is large; if only a small force is needed for the same
acceleration, the mass is small. Thus the mass of a body is a quantitative
measure of the property described in everyday language as inertia.

To identify another important property of mass, we measure the masses
of two bodies, using the procedure just described, and then fasten them
together and measure the mass of the composite body. If m; and m, are the

individual masses, the mass of the composite body is always found to be
(my +my). This very important result shows that mass is an additive quantity,

and that it is directly correlated with quantity of matter. Indeed, the concept of
mass is one way to give the term quantity of matter a precise meaning.

In the discussion above, the particle moves along a straight line (the x-
axis), and the force also lies along this direction. This is of course a special
case. More generally, the force may also have a component in the y-direction,
and the particle's motion need not be confined to a straight line. Furthermore,
more than one force may act on the particle. Thus this formulation needs to be
generalized to include motion in a plane or in space and the possibility of
several forces acting simultaneously.

Experiments show that when several forces act on a particle at the same time, the
acceleration is the same as would be produced by a single force equal to the vector sum of
these forces. This sum is usually most conveniently handled by using the
method of components. When several forces act on a particle moving along
the x-axis,

> Fy=ma, .

When a particle moves in a plane, with position described by coordinates
(x,y), the velocity is a vector quantity with components v, and v, equal to the
time rates of change of x and y, respectively, and the acceleration is a vector
quantity with components a, and a, equal to the rates of change of v, and
v,, respectively. Then a more general formulation of the relation of force to
acceleration 1s
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Y Fy=may, Y F,=ma,.
This pair of equations is equivalent to the single vector equation

ZF:mﬁ, (23)

where we write the left-hand side explicitly as ZF to emphasize that the

acceleration i1s determined by the resultant of all the forces acting on the
particle. If the particle moves in three dimensions, then of course Eq. (23)
include a third equation for the z-components > F, =ma, .

Equation (23), is the mathematical statement of Newton's second law of
motion. The acceleration of a body (the rate of change of its velocity) is equal to
the resultant (vector sum) of all forces acting on the particle, divided by its
mass, and has the same direction as the resultant force.

To introduce the concept of impulse and momentum let us consider a particle
of mass m moving in space and acted on by a varying resultant force . Newton’s

second law states that F =ma = mcj;

or Fdt =md0o .
no_ vy

Then [Fdt = [mdo .

f Y

t _
The integral IF dt 1s the impulse of force F' in the time interval (#, —¢,) and is
t

L)

the vector quantity. The integral jmd v is momentum. So, Newton’s second law

by

can be written

F=?
dt

Important points regarding Newton’s law

1. If a body is in equilibrium, then it does not mean that no force acts on the body
but it simply means that the net force (resultant of a number of force acting on
the body) on the body is zero.

2. Action and reaction are always equal and opposite and they act on different
bodies.

3. Whenever a force acts on a body, the reaction R always acts normal to surface
of the body. Consider the case of a book placed on the table. The book applies
action force on the table equal to its weight mg downward. Now the table
exerts an equal reactionary force mg on the book in the upward direction.

as (24)
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4. Consider the case of a mass m attached to a linear spring. Let, by application of
a force F; the extension or compression in the spring be x then F' = kx where &
is known as force constant of the spring. The unit of & is Newton/meter.

3.2. Weight of a body in a lift

Earth attracts every body towards its center. The force of attraction exerted by
the earth on the body is called gravity force. If m be the mass of the body then the
gravity force on it will be mg. Generally, the weight of a body is equal to the
gravity force P = mg. But when the body is on an accelerated platform, the weight
of a body appears. The new weight is called as apparent weight. Here we shall
consider the apparent weight of a man standing in a lift which is in motion. We
consider the following cases:

1. The lift is not accelerated (i.e. v = 0 or constant). The situation is shown in

Fig. 10 (a). In this case Fr = ma = 0. Hence apparent weight

P’= actual weight = mg.

4@

By
b

QY
I
()

[l
—

N
4—
N
4—

Fig. 10

2. When the lift is accelerated upward. In this case, there will be two forces
acting on the man, i.e. weight mg and reaction Fi = ma both acting in the
downward direction as shown in Fig. 10 (b).

Apparent weight P’=mg + Fr = mg + ma = m(g + a) or apparent weight >
> actual weight.

3. When the lift is accelerated downward. This situation is shown in Fig. 10 (c).
Here the weight mg acts downward while the reaction Fr = ma acts upward.
We assume that a <g. Hence apparent weight P’'=mg — Fr = mg— ma =
= m(g — a) 1.e. apparent weight P’< actual weight P. When the lift is
accelerated downward such that a > g, then Fy = ma is greater than weight
mg. Apparent weight P’= m(g — a) < 0 — negative so the man will be
accelerated upward and will stay at the ceiling of the lift.

Now we consider the special case when g = a. In this case apparent weight
P’=0. Thus in a freely falling lift, the man will experience a state of
weightlessness.
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3.3. Motion of connected bodies

1) Two bodies. Let us consider the case of two bodies of mass m; and m,
connected by a thread and placed on a smooth horizontal surface as shown in

Fig. 11. A force F is applied on the body of mass m, in forward direction as
shown. Our aim is to consider acceleration of the system and the tension 7 in the
thread. The forces acting separately on two bodies are also shown in the figure.

N4 a AN,
m, - - 1My —
T T F
v - \ 4 —
mg m,g
Fig. 11
, I'=ma,
From Fig. 11
F-T=ma.
: : F
Adding first and second equations a =
m, +m,
and F=(m; +my a,
. mF
tension I'=ma=——.
m, +m,
a
- - > -
A ]\]1 A N2 A N3
my my mj
L1 L L F,
v mlg v n/éé- v m3§
Fig. 12
2) Three bodies. In case of three bodies, the situation is shown in Fig. 12.
F

Acceleration a= ,
m, +m, + m,
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mF

Ti:mla: )
m, +m, + m,
F—T2=m3a
mF
and T,=F - :

m, +m, + m,

3.4. Motion of a body on a smooth inclined plane

Let us consider the case of a body of mass m placed over a smooth fixed
plane AB making an angle 0 with the horizontal as shown in Fig. 13. N is normal
reaction of the smooth surface on the body, mg is the weight of the body acting
downward.

Resolving these two forces along
AB and perpendicular to AB, we have

{ma =mgsin b,

=

A

N =mgcosé.

So we have a =g sin@ and N = mg cos6.

B The same results can also be
obtained by resolving the forces
horizontally and vertically.

Fig. 13

3.5. Motion of two bodies connected by a string

Case 1. Let us consider the case of two bodies of mass m; and m,, which are
% , 7 connected by light inextensible string passing over a
light smooth pulley (Fig. 14).

Here it 1s assumed that m; > m,. Our aim 1is to
"\/ find out the acceleration of the system and tension in
T 4 the string.
1. The mass m, has downward acceleration hence
~ 1T mig — T = ma. (25)
a l T iz The mass m; has upward acceleration hence
l T —myg = ma. (26)
mg Solving Egs. (25) and (26), we get
m, —m,
- a=——"
v m,g m, +m,
2mm,
Fig. 14 and T o vm,

Case 2. Let us consider the case of a body of mass m, to which a light and
inextensible string is attached, rests on a smooth horizontal table. The string

28



passes over a frictionless pulley fixed at the end of table. Another end of the string
carries a mass m; as shown in Fig. 15. Our aim is to calculate the acceleration of
the system and tension in the string. Here we have

myg — T = mpa (27)
and T =ma. (28)
Solving Egs. (27) and (28), we have a = e
m, +m,
and T=ma-= My
m, +m,

Case 3. Here we shell consider the above case with a difference that m; 1s

placed on smooth inclined plane making an angle 6 with horizontal as shown in
Fig. 16. In this case

{T —m,gsinf =ma,

m,g—T=m,a

and szzg{l—m2 — sm@]
m, +m,
A N
my r > /\
4 m1§ 1 T,
my
m,g .
Fig. 15 Y Fig. 16

Case 4. Let us consider the case when masses m; and m, are on inclined

plane making angle a and £ with horizontal respectively as shown in Fig.17.
Here we have

{mlgsma ~T =ma,

T —m,gsin f=m,a.

Fig.17
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Solving system we get
g(m, sina —m, sin )

a=
m, + m,
m, sina —m,sinff .
and T =m,g + sin 8
m, +m,

m,m : .
or T=-""2 g(sina+sinf).

m, +m,

Case 5. The body of mass m is moving in plane xy according the law
x=Asinot, y =B coswt and vector of force acting on the body.
Solution. According the second Newton’s law:
F=ma.
As we are given mass m, acceleration a we get as follows:
as x = A sinwt then

dx
v, = =Awcoswt
dt
dv
and a =—*=—Aw’sinot,
dt
dy :
as y =B coswt then v, :E =—Bwsin ot
dv, 5
and a,= p =—Bw’ coswt .
t

Hence acceleration vector is
d=ai+a,j= —a)z(Asina)t -i + Bcos wt - j): ~0’F,
where r=xi+yj=Asinwt-i + Bcosat - j.

—

Force F is F=mad=-mo*r

and module of force vector F = |F? +F} =ma* /x> + y* .

Case 6. Body with mass m = 1 kg is at rest at the origin. At time ¢ = 0 the
force F=2i + 6tj begins to act on the body. Define the body’s trajectory.

—

The Newton’s equation is mcj;; =2i +61 .

This equation in components is written as

d
mdu" =2;m % _6r.
dt dt
Hence Idux :2jdt + Cl,'jduy :6J.tdt +C,, (asm=1)
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and v, =2t+Cy; uy=3t2+C2.
We define constants of integration Cyand C, by using initial conditions v,(0) = 0,
v(0)=0: C;=0 and C,=0.

Ux—j 2f,
Then dt
v, =D o3
Toodt
and @:2@ @:3%,
dt dt
[dx = [2tdt, [dy=3[rdt,
2
x=2t2+C3=t2+C3, y=1'+C,,
x(0)=F+C;=0=C;=0, Y0)=F+Cy=0=Cy=0,
x() =14 y(b) =1,

To define trajectory we have to obtain to connection between x and y. As

3

x=¢ hence r=-/x and y:t3:(ﬁ)3:x2,i.e.
3
y=x2.

Questions

1. A person sitting in a train moving with constant velocity throws a ball
vertical upward. Will the ball return to thrower’s hand?

2. According to Newton’s third law every force is accompanied by on equal
and opposite force. How can a movement ever take place?

3. A cord from a ceiling of a motorcar suspends a ball. What will be the effect
on the position of the ball if:

a) the car is moving with constant velocity;
b) the car is moving with acceleration motion;
c) the car is turning towards right?

4. Air is thrown on a sail attested to boat from an electric fan placed on the
boat. Will the boat start moving?

5. Two bodies of mass M and m are allowed to fall from the same height. If air
resistance for each be the same, then will both the bodies reach the earth
simultaneously?

6. A man stands in a lift going downward with uniform velocity. He
experiences a loss of weight at the start but not when lift is in uniform motion.
Explain why?
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Problems

1. A body of 0,02 kg falls from a height of 5 meter into a pile of sand. The
body penetrates the sand a distance of 5 cm before stopping. What force has the
sand exerted on the body? (F'=- 19,6 N).

2. A block of ice slides down from the top of an inclined roof of a house
(angle of inclination of roof = 30° to the horizontal). The highest and lowest point
of the roof are at height of 8,1 m and 5,6 m respectively from the ground. At what
horizontal distance from the starting point will the block hit the ground (neglect
friction)? (S = 8,93 m).

3. A block mass m; =4 kg on a smooth
inclined plane of 30° is connected by a cord

1y over a small, frictionless pulley to a second
block of mass m, = 5 kg, hanging vertically
5 m (Fig. 18). Calculate the acceleration with which
2 the block moves and also the tensions in the
. cord.
Fig. 18 (T=33,3nt;a=3,33m/s).

4. The force applied on the body is F =44 + 24/ . Determine the change of
impulse of the body in the time interval 0 <t < t. (Ap =7"i +7°)).
5. The body of mass m is in uniform motion along x-axis with velocity
Uox = Vo. At time ¢ = 0 the force F = btj is applied on the body (b = const > 0).
Calculate the trajectory of body’s motion if at time 7= 0 body was at the origin.
3
Answer: ( y= bx ] .

3
6mu,

3.6. Center of mass of a system of particles and rigid bodies

The point at which the whole mass of the body may be supposed to be
concentrated is called the center of mass.

Consider the case of a body of arbitrary
shape as shown in Fig.19. Let the body consists of
a number of particles Py, P,, P; ... of masses m,
my, ms ... and coordinates (x;, y;, z;), (X2, V2, 22),
(X3 V3 23) ... . If (x,, V., z.) be the coordinates of
center of mass, then

v

Fig. 19
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_ Xy xmy + X

.xc 5
m, +m, +m, +...
y _ym +y,m,+ym, +...
¢ = )
m, +m2 +m3 +...
L A 2y Zm

c

m +m, +m, +...
When there is a continuous distribution of mass instead of being discrete,

we treat an infinitesimal element of the body of mass dm; whose is (x, y, z). Then
we have

J-xdm_.[xdm. _Iydm_.[ydm' _Izdm_jzdm
’yc_'[dm_ M C_ja?m_ M

X = =

‘ jdm M

where M is total mass.

Following points should be remembered in case of center of mass:

a) The position of center of mass is independent of the coordinate system chosen;

b) The position of center of mass depends upon the shape of the body and
distribution of mass. The center of mass of a circular disk is within in material
of the body while that of a circular ring is outside the material of the body.

c) In symmetrical bodies in which the distribution of mass is homogeneous, the
center of mass is coincides with the symmetry i.e. geometrical center.

’ 5

Solved examples

Ex.1. A circular plate of uniform thickness has a diameter D = 56 cm. A
circular portion of diameter d = 42 cm is removed from one edge of the plate as
shown in Fig. 20. Find the position of center of mass of the remaining portion.
Solution. Suppose the plate is uniform. If O be the
center of mass of the whole plate and C,, the center of
mass of the cut out circular portion, then the center of
mass of the remaining portion will lie on the C,0. Let
C, be the center of mass of the remaining portion. \v

D’

Area of the whole plate S = 4 \ l
7Zd2

Area of the cut out portion S, = e

Area of remaining portion S, =S5 —§. Fig. 20

Since the weights are proportional to areas then
weigt of cut out portion S 9 mg

weigt of remain portion S, 7 ng.
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D d

Taking moment about C; we get OC,=——-—=7 cm,

or mg-OC| = myg-0OC,,

as oc,="™80c =2 .7-9 cm.
m,g 7

Ex.2. Three ball with masses m, 2m, and 3m are located along x-axis in such
a way that distance between their center is / (Fig. 21). Find the position of center
of mass of the system.
Solution. Suppose the origin is in the center of the first ball. Then its coordinate is
x1 = 0. The coordinate of the second ball is x, = [ and of the third ball is x; = 2/.

3m
m 2m
@l /,\l /\ R
X1:O U U
)szl X3:21
Fig. 21

Then position of the center of mass of system can be obtained as follows
_xymy +x,m, +x;my 0+ 2ml+3m2l 4[

X

c

m, +m, +m, m+2m+3m 3

Problems

1. Cylindrical rod with length / is located along x-axis. It’s density changes

with x according the law: p = po(l - )lcj . Find the position of the center of mass of

this rod. (x. = £/3).
2. Locate the center of a system of particles of masses m; = 1 kg, m, =2 kg
and m3 = 3 kg, situated at the corners of an equilateral triangle of side 1,0 m.

_35 —ng)
T T M

3. Calculate the position of center of mass of the system Earth-Moon.
Distance between Earth and Moon 7 = 3,84-10° m, mass of the Earth
mg = 5,96-10*" kg, mass of the Moon m,, = 7,3-10* kg. (r. = 4600 km from the
center of Earth).

(xC
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4. Work and energy

Energy is one of the most important concepts in all physics science. Its
importance stems from the principle of conservation of energy, which state that it
any isolated system the total energy of all forms is constant.

4.1. Work

In every day life work is any activity that requires muscular or mental
exertion. Physicist use the term work in a much more specific sense, involving a
force acting on a body while the body undergoes a displacement. When a body
moves a distance S along straight line while a constant force of magnitude F,

A=FS
directed along the line acts on it, the work A done by the force is defined as.
The force need not have the same direction as the displacement. In Fig. 22,

the force F, assumed constant makes an angle 6 with the displacement. The work

A done by this force when its point of application undergoes a displacement S is
defined as the product of the magnitude of the displacement and the component of
force in the direction of the displacement.

The component of F in the direction of S is

F
Fcos6. Then
A = (Feosa)S. (29) //<9' 5
An alternative interpretation of Eq. (29) is that _
Scos @1s the component of displacement in the Fig. 22

direction of F . Thus the work is also the component of

displacement in the direction of F multiplied by the magnitude of F.
In other words, work can be expressed as scalar product of two vectors:
A=F-S.

Work itself is a scalar quantity. Work is an algebraic quantity: it can be
positive or negative. When the component the force is the same direction, as the
displacement, the work A is positive. When it is opposite to the displacement, the
work is negative. If the force is at right angles to the displacement, it has no
component in the direction of the displacement, and the work is zero.

When several external forces act an a body, it is useful to consider the work
done by each separate force. Each of these may be computed from the definition
of work in Eq. (29). Then since work is scalar quantity, the total work is the
algebraic sum of the individual works. When several forces act on a body, there
are always two equivalent ways to calculate the total work. We may calculate the
work done by each force separately and take the algebraic sum of these works, or
we may compute the vector sum or resultant of the forces and compute the work
done by the resultant.
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4.2. Work done by a varying force

After work is done by a force that varies in magnitude or direction. Suppose
a particle moves along a line under the action of a force directed along the line but
varying with particle’s position. In Fig. 23 the force magnitude is shown as a
function of the particle’s coordinate x.

F4 To find the work, done by this force, we
divide the displacement into short segments Ax.
F F We approximate the varying force by one that is
constant with in each segment. The force then has
approximately the value F in segment Ax,, F, in
segment Ax,, and so on. The work done in the
first segment is then F;Ax; that in second is
Fig. 23 F>Ax,, and so on. The total work is
A =F1Ax1 +F2AX2 +F3AX3 + ...

As the number of segments becomes very large and the size of each very

small, this sum becomes (in the limit) the integral of F' from x; to x,:

&
g_
5

A= [Fdx. (30)
Note, that integral represents the area under the curve in Fig. 23.
If the force also varies in direction during the displacement, then F in Eq. (30)
must be replaced by the component of force in the direction of displacement. Then
we have

A= '[F cos Bdx .
The definition of work can be generalized further to include motion along a
curved path (Fig. 24). We imagine dividing the portion of the curve between
points P, and P, into many infinitesimal vector displacements, and we call a

typical one of them dl . Each dl is tangent to the

y path at its position. Let F be the force along the path,
P, and O the angle between F and dI . Then the small
0 element d4 may written as
dl dA=F cos@dl = F ,dl = Fdl . (31)
Py The total work then is
Fig. 24

A =_2[Fcos9dl =fF//d1=fﬁdi.
1 1 1

This integral is called a line integral.

36



4.3. Kinetic energy

Isolated system. The bodies system is called isolated one when no external
forces act on it or when all external forces compensate each other.
Suppose for simplicity that system consists only from one particle. Then the

: .. : v =
equation of motion, i.e. Newton’s second law is m? =F.
t

Multiplying this equation on displacement of the particle dr = vdt we
obtain
dv _. e g
mgudt = Fdr;mvodv = Fdr

2
and d( m; j = Fd7 .

I1’H)2

We denote K = and call it kinetic energy.

Kinetic energy can be expressed by momentum p =mov
2
as K= L . (32)
2m
2

v j:O.Hence

When system is isolated then force F' is zero and then d [m

2

K:I’I/lU

= const (33)

i.e. in isolated system the kinetic energy is conserved.

4.4. Work and Kinetic energy

The work done on a body is related to the resulting change in the body’s
motion. Let’s consider a body of mass m moving along a straight line under the
action of a constant resultant force of magnitude F directed along the line. The
body’s acceleration is given by Newton’s second law, F = ma. Suppose the speed
increases from v, to v, while the body undergoes a displacement S = x, — x;.

2 2
Then, we have a=22"Y
28
2 2
Hence F=ma=m22_Y
28
., 1
as FSZEmu2 —Emul (34)
2
and K:mu
2



The product F'S is the work 4 done by force F. The quantity K = ;muz,

one — half of the product of the mass of the body and the square of speed, is called
its kinetic energy K.
The first term of the right side of Eq. (34) is the final kinetic energy of the

1 : TS 1
body, K, = Emuj , and the second term is the initial kinetic energy, K, = Emuf :

The difference between these terms is the change in kinetic energy and we have
the important result that the work done by the resultant external force on a body is
equal to the change in kinetic energy of the body

A=K2—K1=AK (35)

Kinetic energy is a scalar quantity, even thought the particle’s velocity is a
vector quantity. K depends only on speed (the magnitude of velocity) but not on
the direction in which particle is moving. The change in kinetic energy depends
only on the work 4 = FS, and not on the individual value of F and S.

If the work A4 is positive, the final kinetic energy is greater that the initial
kinetic energy and the kinetic energy increase. If the work is negative, the K
decreases. In case in which the work is zero, the K remains constant.

In Eq. (35) A is the work done by the resultant force. Alternatively, we may
calculate the work done by each separate force. 4 is then the algebraic sum of all
these quantities of work.

Although we derived Eq. (35) for case of constant resultant force, it is true
even when the force varies in an arbitrary way. We divide the total displacement x
into a large number of small segments Ax. The change of kinetic energy in
segment Ax; is equal to the work F;Ax; and so on. The total kinetic energy change
is the sum of the changes in the individual segments and is thus equal to the total
work done A=) FAx,,

or, in general
A=[Fds. (36)

4.5. Gravitational potential energy

When a gravitational force acts on a body while the body undergoes a
velocity displacement, the force does work on the body. This work can be
expressed conveniently in terms of the initial and final position of the body. In Fig. 25
a body, having mass m and weigh P = mg moves vertically, from a height above
some reference level to a height /,. The positive direction for % is upward. In this

Fig. 25 F represents the result of all forces on the body. The direction of g is

opposite to the upward displacement and work done by this force is
Agrav =FS=- mg(h; - hg)
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Thus we can express A, 1n terms of values of the quantity mgh at the
beginning and the end of the displacement. This quantity, the product of the
weight mg and the height / above the reference level (the origin of coordinates), is
called the gravitational potential energy, U:

U=mgh. (37)

We can express the work A4,,,, done by gravitational force during the
displacement from /4, to 4,

Agray = U — U, = AU. (38)

Thus, when the body moves downward, /# decreases, the gravitational force
does positive work and the potential energy decreases.

When the body moves upward, the work done by h?
gravitational force is negative and the potential energy hyf------
increases.

Note, that if we shift the origin for 4, then /; and F
h, change, but the difference (4, — ;) does note.

Similarly U, and U, change, but the difference l
(U, — U,) 1is the same as before. The choice of origin is
arbitrary; the physically significant quantity is not the h,
value of U at a particular point, but only the difference 2
in U between two points.

Now let A4, represents the total done by F that Fig. 25
is, by all forces other then gravitational force. The total
work done by all forces is then

A= Agrav + Aother.
Since the total work equals to the change in kinetic energy
Agrav + Aother = KZ - KI = AK

Aopther — (Mghy — mgh,) = ;muj —;muf. (39)

The quantities ;muz2 and ;muf depends only on the final and initial speeds; the

quantities mgh, and mgh; depend only on the initial and final elevations. Then,
Eq. (39) may be written as :

A, =(;m022 —;m012]+(mgh2 —mgh, )= AK + AU . (40)
The sum of kinetic and potential energies is called the total mechanical energy,
E=K+U.

Eq.(40) can also be written
A, = (%muj + mghzj — (%muﬁ + mghl) =

:(K2 +U2)—(K1 +U1):E2 —E =AE.

(41)
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Hence the work done by all forces acting on the body, with the exception of the
gravitational force, equals the change in the total mechanical energy of the body.
If 4,4 1s positive, the mechanical energy increases. If 4,,., is negative, the
mechanical energy decreases.

In a case where the only force acted on the body is the gravitational force,
the work A4, 1s zero Eq.(41) can be written as E; = E,, or

K2 + Ug =K1 + U1.
That is total mechanic energy is constant, that is, conserved. This is a particular
case of the principle of conservation mechanical energy.

Note, that in the case when body travels from initial elevation /4, to a final
elevation 4, along a slanted or curved path the work
done by the gravitational force is the same as when
the body travels straight up. To prove this divide, the
path into a large number of small segments AS;; the
work done during this displacement is the
component of displacement in the direction of the
force, multiplied by the magnitude of the force (Fig.
26). The vertical component of displacement is

AScos @ = Ah.
And therefore Ag,,, = mg(h; — hy) = mgAh.
Fig. 26 Similarly, the work done by a stretched or

compressed spring that exert a force F'=—kx ona
particle where x is the amount of stretch or compression, can be represented in
term of a potential energy function

U:lkxz, (42)
2
A, =U,=Us = et = @)

4.6. Conservative and dissipative force

We have seen that when a body acted on by a gravitational force moves
from one position to another; the work done by the gravitational force is
independent of the body’s path. A similar situation occurs when a body is attached
to a spring and moves from one position to another, changing the extension or
compression of the spring. In both case the total mechanical energy is constant or
conserved. For this reason the gravitational and elastic force are called a
conservative force and work done by these force can be represented as

A=U 1— Uz.

The work reversible on the return trip is always exactly the negative of that
on the first of the trip. Thus the work done by a conservative force always has
these properties:
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1. It is independent of the path of the body and depends only on the starting point
and end point.

2. Itis equal to the difference between initial and final values of the potential

energy function.

It is completely reversible.

4. When the starting point and end point are the same — that, the path forms a
closed loop the total work is zero:

A={Fdl =0. (44)

For comparison a function force is a dissipative force, and the total
mechanical energy, is not conserved and we have to describe the energy relation in
terms of additional kinds of energy.

W

4.7. Conservation of Momentum

The concept of momentum is most useful in situations involving several
interacting bodies. Let’s consider first a system consisting of two bodies that
interact with each other but not with anything else each body exert a force on the
other, so the momentum of each body changes. According to Newton’s third law,
the forces the bodies exert on each other are always equal in magnitude and
opposite in direction. Thus the impulses given to the two bodies in any time
interval are also equal and apposite and therefore the momentum changes of the
two bodies are equal and apposite.

We define the total momentum of the system P as the vector sum of
momenta of the bodies in the system:

P=m0, +m0, + MO, + .= P, + Py + Ps + . . (45)
If the change in the momentum of one body is exactly the negative of that of the
other, then the change in the total momentum must be zero. Thus when bodies
interact only with each other, their total momentum is constant.

A force that one part of system exerts on another is called an interval force
and a force exerted on a part of the system by some agency outside the system is
an external forces act on a system, we call it an isolated system. Thus we may
state the principle of conservation of momentum as follows:

The total momentum of an isolated system is constant, or conserved.

4.8. Elastic collision

If the total kinetic energy of two bodies remains to be same both after and
before the impact the collision is said to be perfectly elastic. Collisions between
atomic, nuclear and fundamental particles are examples of elastic collision.

Consider two smooth spheres of mass m; and m, moving along the line
joining their centers with velocities v, and v, respectively. Let after collision, their
velocities become u; and u, respectively. As momentum is conserved:
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momentum before collision = momentum after collision
m;;—myL, = Mpu; —myu
or m](lh — U]) = mg(ug — Ug). (46)
In elastic collision the total energy remains conserved, i.e.
energy before collision = energy after collision

or lmlz)l2 + ;mzuj = lmlul2 + ;mzuzz,
or m (] =07 )=m, 3 = 3). (47)
Dividing Eq. (47) by Eq. (46), we have vitu =0 tu.
The velocity v; and v, may be obtain in the following way: Eq. (3) we have
U=u— o+ uv. (48)
Substituting this value of v; in Eq. (46), we get
mi(U; + U — Uy —uz) = my(u; — Ly,

or 21’)’1101—1’}/111/!2—1’}’111)2 =myur,—myL; ,
or 2m101—m102+m21)2=m1u2+m2u2,
or 2m101 +(m2—m1)02=(m1+m2)u2.
Hence
m, —m 2m
w, ="My, A, (49)

2
m, +m, m, +m,

Similarly, we can obtain the value of v;:

u, = v, + ,. (50)

Special cases:

1) When m; = m,, then from Eq. (46): u; — v =u, — v, on comparing with

Eq. (48), we get u; = 1v,, and u, = vy; 1i.e. in one dimensional elastic collision

of two bodies of equal masses the bodies simply exchange velocities as a result of

collision.

2) When v, = 0 (the second mass is at rest), then from Egs. (49) and (50), we have
2m,

U, =—"U
m, +m,

and u, :uul. (51)
m, +m,
Now we consider the following three case:
1. If my=m,, then v;=0v and v, =0.
Thus, both the momentum and kinetic energy of the first body are completely
transferred to the second as u; = 0, i.e. the first body is stopped.

2. If my>>my, then uy=—-v; and u, = v, =0.
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Thus, when a light body collides with a much heavier body at rest, the velocity
of light body is approximately reversed and heavier body remains approximately
at rest.

3. If my,<<my, then u; = v, and u, =2v;.

Thus when a heavy body collides a much lighter body at rest, the velocity of

the heavy body remains practically unchanged while the light body rebounds

with approximately twice the velocity of heavy body.

4.9. Maximum energy transfer in a head on elastic collision

Consider a ball of mass m; moving with velocity v, collides with a ball of
mass m; at rest. Let the velocity of the first ball after collision be #;. Now the

initial kinetic energy of first ball K, = ;ml v/, the final kinetic energy of first ball
1

K,=—mu.
f Ty
The fractional decrease in kinetic energy is
KoKy _vi-m_y_m (52)
K, v} v}
According to Eq. (51) u, = uul
m, +m,
b B 2
or [Mj 53)
) m, +m,

2

Substituting the value of " from Eq. (53) into Eq. (52), we have

2
1

2
K[ _Kf :1_(1711 —mzj _ 41711}’}’12

K, m, +m, m1+mz)2 '
K —-K, 4
If m;=mand m,=nm, then — /= nz-
K. (1+n)
The transfer of energy will be maximum when K, = 0. For n=1
4n
5 =1
(1 + n)

Thus when the mass ratio is unity, the whole of the kinetic energy of the
moving ball is transferred to the ball initially at rest.
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4.10. Perfectly inelastic collision

The collision is known as perfectly inelastic when there is a loss of kinetic
energy during collision and colliding bodies stick together and move as a single
unit. For example the collision between a bullet and a target is perfectly inelastic
when the bullet remains embedded in the target. In this case kinetic energy is not
conserved. Between the two limits of perfectly elastic and perfectly inelastic
collisions, all other collisions are imperfectly elastic.

Now we shall calculate the change of kinetic energy in an imperfectly
elastic collision. Let us consider the case of two bodies of masses m, and m;,
moving along the joining centers with velocities v; and v, respectively. Let after
collision they velocity u; and u, (u; = u, = u). As total momentum remains
constant

mio; + movy = miuy + myuy = (my + mo)u (54)
and
= MU T maU, (55)
m, +m,
Decrease in kinetic energy

1 1 1 1
AE:(E’"MZ +5m21)22)—(5m1u12 +5m2u22).

Short answer questions

1. A body is kept moving with uniform speed in a circle by centripetal force
acting on it. However the work done by this force is zero. Is it true? Explain.

2. The Earth moving round the sun in a circular orbit is acted upon by a force and
hence work must be done on the earth by this force. Do you agree with this
statement?

3. Is it possible that a body be in accelerated motion under force acting on the
body, yet no work is being done by the force?

4. Springs A and B are identical except that A is stiffer than B, i.e. force constant
k4> kp. In which spring is more work expended if:

a) they are stretched by the same amount?

b) they are stretched by the same force?

5. Alorry and a car moving with the same kinetic energy are brought to rest by
the application of brakes, which provide equal retarding forces. Which of them
will came to rest in a shorter distance?

6. When a constant force is applied to a body moving with constant acceleration,
is power of the force constant? If not, how would force have to vary with speed
for the power to be constant?
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Solved examples

1. An object of mass 5 kg falls from the rest through a vertical distance of 20 m
and reaches a velocity of 10 m/s. How much work is done by the push of the
air on the object?

Solution. The motion of the body is shown in Fig. 27. The A F
following two forces are acting on the body:
a)weight mg is acting vertically downward;

b) the push of the air is acting upward.

As the body is accelerating downward, the resultant force < l

1S

a
(mg — F).
Work done by the resultant force to ball through a vertical
distance h=20mis A = (mg—F) h. mg
1 2 v

Gain in the kinetic energy 4K =K, — K, = Emu
Now the work down by the resultant force is equal to the

change in kinetic in energy, i.e. (mg—F )h = ;mu2 ,

or thmgh—;muz.

Work done by the force F'is 4 = - 750 Joule. The negative sign is used because
the push of the air is upward while the displacement is downwards.

2. AB is a quarter of a smooth circular track of radius R =4 m as shown in
Fig. 28 (a). A particle P of mass m = 5 kg moves along the track from A to B
under the action of the following forces:

a) A force F|, is directed always toward to B, its magnitude is constant and
equals F, =4 N.

b) A force F, that is directed along the instantaneous tangent to the circular
track; its magnitude is F, = (20 — S) N, where S is the distance traveled in
meter;

¢) A horizontal force F, =25 N.

If the particle starts with a speed v = 10 m/s, what is its speed at point B.

Solution.

a) Work done by force F,. As shown in Fig. 28 (b), let the particle be at point P
at some instant of time ¢. The particle moves from position P to position Q in
small interval of time df. The direction of force on particle P will be in the
direction PB. The small amount of work done in time dt is

dA, = F,dScos 6.

As dS = Rd6

then dA, = F,cos BRd 6.
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Now the total work done as the particle moves from A to B is given by
% % %
A, = J-F cosORAO = FRJ.COSHdH_F Rsan

b

A,=11,32 (Joule).
b) Work done by force Fy: dA, = F)dS.

In this case dA, = (20 - 5)-dS
but S=R6 and dS = RdO.
R B

a b
Fig. 28

So dAy = (20 — RO)-Rd 6

4 V4 7 / 2”4
Or = [(20-R6)-RdO= jzoRde jRe Rd6 20R9\ 7 >

0 0
and A4, = 807[—16(] =248,67 (Joule).

4 2.4

c) Work done by force F.:
The magnitude of F. is 25 N, which is always horizontal. The net displacement
of the particle is OB. Hence the work done

A, =F.R,
A =100 (Joule).

d) There would be some work done against weight. The net vertical displacement
would be equal to the radius of the track R:

A, =—mgR =-196 (Joule).
Negative sign is used because the force of weight and displacement are in

opposite directions. Total work done 4 =A4, + A, + A. + A,

A=11,32+ 248,67+ 100 — 196 = 163,99 (Joule).
Let v, and v, be the velocity of the particle at A and B respectively,
1

1
—mu, ——mv:=4.
2
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Hence lmulf:A+lmuj.
2 2

Speed v, can be obtained as follows: v, = \/ 2(/1 + ;muj)
m

or v, = 12,85 m/s.

3. A projectile of mass m = 50 kg 1s shot vertically upward with an initial
velocity of vg = 100 m/s. After =5 s it explodes into two fragments, one of
which having mass m; = 20 kg travels vertically up with a velocity v, = 150
m/s.

What is velocity of the other fragment at that instant?
Solution.
After explosion, one fragment of mass m; = 20 kg goes upward with velocity
v; = 150 m/s. It is quite obvious that the second fragment of mass m, = 30 kg
will go downward with a velocity, say v,.
The velocity of the projectile after =5 s is
v=10,—gt=100-9,85=51 m/s.
The momentum of projectile before explosion
p =mo=50-51 =2550 kg-m/s.
Momentum of projectile after explosion p=p, + p,.
Where p; = m v, - momentum of the first fragment,
P2 = myU, - momentum of the second fragment,
1.€. mo = m;D, — M,
_muy, —m

and L, = MUY 15 s,
m2

4. A rod of length /= 1 meter and mass m = 0,5 kg is fixed at one end is initially
hanging vertical. The other end is now raised until it makes an angle 60° with
the vertical (Fig. 29). How much work is required?

Solution.

The weight mg of the rod acts as the center of
gravity. When the rod is rotated through 60°, Y moves
Y', i.e. it is raised through height

h=AY =0Y — OA =0Y - OY'cos60° =

=0Y(1 - cos60°),

as OY=OY’=;.

Gain in potential energy U = mgh. The work done 4
has been stored as potential energy, i.e. Fig. 29
A =U =mgh=1,225 (Joule).
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4. A uniform chain is held on a frictionless table with one-fifth of its hanging over
the edge (Fig. 30). If the chain has a length / and a mass m, how much work is
required to pull the hanging part back on the table?

Solution. Mass of the hanging part of the chain is m, = ;m . The weight ;mg

acts at the center of gravity of the hanging chain, i.e. at a distance /, =110 below

the surface of a table.

The gain in potential energy in
pulling the hanging part on the table
/5 m | mgl
! U=mgh="381,="50
. Hence work done will be
Fig. 30 A=U=0,02mgl.

Problems and exercises

Ex.1. A small ball A slides down the quadrant of a circle as shown in
Fig. (31), and hits the ball B of equal mass which is initially at rest. Find the
velocities of both balls after collision. Neglect the effect of friction and assume the
collision to be elastic.

Answer: v; =0 and v, = 1,4 m/s.

Ex.2. A bullet of mass m moving with a horizontal velocity v, strikes a
stationary block of mass M suspended by a string of length L (Fig. 32). The bullet
gets embedded in the block. What is the maximum angle made by the string after
impact?

2.2
Answer: cos@ = {1 — )2 } )

Fig. 31 Fig. 32
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Ex.3. A running man has half the kinetic energy that a boy of half his mass
has. The man speeds up by 1,0 m/s and then has the same kinetic energy as the
boy. What were the original speeds of man and boy?

ANSWer: VUyman = 2,4 mM/S; Lpey = 4,8 m/s.

Ex.4. A proton of mass m, = 1,6- 10 kg undergoes a head on collision with
an o-particle initially at rest. After the collision, the a-particle moves with a speed
of 8:10° m/s. Calculate the velocity of the proton before and after the collision.
Mass of a-particle m, = 6,58-107" kg.

ANSWer: Upefore = 2-10° m/s; Usfier = 1,2:10° m/s.

Ex.5. What is the minimum stopping distance for a car of mass m, moving

with speed v along a level road, if the coefficient of static friction between the

tubes and road is 4?

2
1y

Answer: S = .
2u- gl
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5. Rotational Motion
5.1. Kinematics of Rotational Motion

Let us consider a rigid body that rotates about a stationary axis (in Fig. 33), A
rigid body rotates about a stationary line passing through point O perpendicular to
the plane of the diagram. Line OP is fixed in the body
and rotates with it. The angle between this line and the
P horizontal line is 0. The angle 6 describes the position
of the body completely. Thus 0 serves as a coordinate

% to describe the rotational of the body.

PI

Rotational motion of a body can be described in
terms of the rate of change of angle 6. In Fig. 33 a
reference line OP makes an angle 0; with the reference
line OX, at a time #,, at a later time ¢, the angle has
changed to 0,. We defined the angular velocity as

o
v

Fig. 33

(56)

Angular acceleration is the limit of ratio Aa/At as At — 0 :
Ao  do

= lim )
At—>0 At dt

Because w = d@/dt , the angular acceleration can be written as
2
p-d(40) 0 -
dt\ dt dt
It is convenient to represent qualities d6, w and ¢ as vectors, strictly speaking,

as pseudo-vectors. These vectors are directed along the axis of rotation according
to the rule of right-handed screw. In Fig. 34 two cases are shown:

a) Particle is moving in clockwise direction vectors d@ and @ are directed
downward vector of angular acceleration £ has the same direction when

(57)

My

AN
\J%l

Fig. 34
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angular velocity increases and opposite direction when angular velocity
decreases.

b) Particle is moving in anticlockwise direction. In this case d 0 and @ are
directed upward, angular acceleration & — upward or downward.

5.1.1. Rotation with constant angular acceleration

When the angular acceleration is constant, it is easy to derive equations for
angular velocity and angular position as function of time by integration.

dw
—— =& =const.
dt
Then Ida)zjg-dt, wo=ct+C(C,

where C is an integration constant. If @, 1s the angular velocity when ¢ =0, C; is
equal to @y and
w=ay+ et (59)

Also, o= Cif; integrating again, we find

[dO=[w,dt+[&-tdt+C, .

The integration constant C; is the value of 6 when #=0 (the initial position),

which we denote 0,. Thus
2

6’=t90+a)0t+82 . (60)

We can also derive an equation-relating @ and 6. The final result is:
o=y +290- 6)). (61)

5.1.2. Relations between angular and linear velocity and acceleration

When a rigid body rotates about a stationary axis, every particle of the body
moves in a circle lying in a plane perpendicular to this axis, with the center of the
circle on the axis. Earlier we get a relation for the acceleration of a particle moving
in a circular path, in terms of its speed and the radius; this relation is steel valid
when the particle is part of the rotating rigid body.

The speed of a particle in rigid body is

directly proportional to the body’s angular v
velocity. In Fig. 35 point P is at a distance R away .
from the axis of rotation, and it moves in a circle R AS
of radius R. When the angle 6 increases by a small 0 0 S
amount 40 in a time interval A¢, the particle X
moves through an arc length AS = R 46, If 40 is _

Fig. 35

very small, this arc is nearly a straight line, and
the average speed of the particle is given by
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_A5 _ .40

v = = . 62
“ A At (62)
In the limit, as Ar— 0, this becomes
L= Rﬁ =Rw. (63)
dt

The direction of the particle’s velocity is tangent to its circular path at each
point. Eq. (63) can be written in vector form:
G=@xR.
If the angular velocity changes by Aw, the particle’s speed changes by an amount
Av given by
Av = RAw.
This corresponds to a component of acceleration a, tangent to the circle. If
these changes take place in a small time interval Az, then

Av_ Ao
At At
And in limit Ar — 0,
a. =R _pe, (64)
dt

where a, is a tangential component of acceleration of a point at a distance R from
the axis.
The normal component

The tangential and normal components of
acceleration are shown in Fig. 36. Their sum is
| the acceleration a.
X a=a,+a_; (65)
2

Fig. 36 d=-la, +a] . (66)

5.2. Kinetic energy of rotation

Kinetic energy of a particle with mass m is
lmu2 :lmRza)z. (67)
2 2
The total kinetic energy of the body is the sum of the kinetic energies of all
particle of the body

K = ;mlRfa)z + ;mszza)z +..= Z;minaf :

i
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As the angular velocity @ is the same for all particle in the rigid body, we
can rewrite this as K= ;(Z mirf)a)z :

To obtain the sum > m,r;”, we subdivide the body (in our imagination) into

a large number of particles, multiply the mass m; of each particle by the square of
its distance from the axis, and add these products for all particles. The result is
called the momentum of inertia I of the body, about the axis of rotation:

1= mr}. (68)

In «SI» units of / is 1 kilogram-meter” (kg-m?).
We can express the rotational kinetic energy of a rigid body as

I 2
K= ;’ . (69)
When body is rolling it takes part in two kinds of motion: translational and
rotational ones, so its kinetic energy is the sum:
2 2
K=K, +K_="° +I§’

trans

5.3. Moment-of-Inertia Calculations

When the body consists of a continuous distribution of matter, we can
express the sum in terms of an integral.

Imagine dividing the entire volume of the body into small volume elements
dV so that all points in a particular element are very nearly the same distance from
the axis of rotation; we call this distance 7, as before. Let dm be the mass in a
volume element dV. The moment of inertia then can be expressed as

1= Irzdm : (70)
: : : dm :
Density p is mass per unit volume, p = W , SO we may also write

I=[r’pdV.
If the body is homogeneous (uniform in density), then p may be taken
outside the integral
I=p[riav. (71)

In using this equation, we express the volume element dV in terms of the
differentials of the integration variables, usually the coordinates of the volume
elements. The element dV must always be chosen so that all points within it are at
very nearly the same distance from the axis of rotation. For regularly shaped
bodies this integration can be after be carried out quite easily. Discuss several
examples.
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5.3.1. Uniform slender rod; axis perpendicular to length rod

Rod has mass M and length /. We wish to compute its moment of inertia about
an axis through O, at an arbitrary distance from one end. Using Eq. (70), we
choose as an element of mass a short section having length dx at a distance x from
point O. The ratio of the mass dm of this element to the total mass M is equal to
the ratio of its length dx to the total length /.

Thus CZ}; :a;x’
dx dx
O where dm :MT.
= I=h Using (70) we obtain:
h I-h v <7
I,=[x'dm="" [Xdm="--"- =—M(>-3hl+3h")
o I 3|, 3
Fig. 37

From this general expressing we can find the
momentum of inertia about an axis through any point on
the rod. For example, if the axis is at the left end, # = 0 and

I= ;Mlz . (72)
If the axis is the right end, 2 =/ and

1=1M12.
3

As would be expected. If the axis passes though the center, /= ; and

1=112M12. (73)

5.3.2. Hollow or solid cylinder; axis of symmetry

Fig. 38 shows a hollow cylinder of length / and inner and outer radii R, and
R,. We choose as the most convenient volume element a thin cylindrical sheet of
radius r, thickness dr and length /. The volume of this shell is very nearly equal to
that of flat sheet of thickness dr, length /, and width 2. Then
dm = pdV = 2 nplrdr.
The moment of inertia is given by

R,
I=p[rav =2zpl [Fdr :”'j(R;‘ - Rﬁ):”gl[(Rj ~R*\RZ + R?)|.
R,
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Volume V= (Rz2 - Rlz).
Hence M = 7pl (R,> — R®)
and the moment of inertia is
I= ;M(Rf +R?) (74)

If the cylinder is solid, R, = 0; letting outer
radius be R; we find that the moment of inertia of a
solid cylinder of radius R is

I= ;MRZ . (75)
If the cylinder is very thin, R, and R,, are »
nearly equal, if R represents this common radius
£ )

I =MR*. (76)
Note, that the moment of inertia of cylinder ar
does not depend on the length /. It depends only on
the radial distribution of mass, not on distribution Fig. 38

along the axis.
5.3.3. Uniform sphere of radius R, axis through center

Divide the sphere into thin disks. The radius » of the disk shown in Fig. 7 is

r=-R*—x*.

Its volume is dV = midx = n(R* — x*)dx
and its mass is dm = pdV.
Hence from Eq. (75) dl = ?(Rz -x° )2 dx.

Integrating this expression from 0 to R gives the
momentum of inertia of the right hemisphere: from
symmetry, the total / for the entire sphere is just twice this:

1 ZZ?OI(RZ —xz)zdx.

Carrying out the integration, we obtain
[=5P s, _
15 Fig. 39

The mass M of the sphere is M = pV = :72',0R3 .

Hence I= zMRZ.
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5.4. Parallel — axis theorem

There is a theorem that is often useful in finding moments of inertia with
respect to various axes. If the moment of inertia /, of a body about an axis through
its center of mass is known, then the moment of inertia /, about any other axis
parallel to the original one but displaced from it by a distance d (Fig. 40) easily
obtained my means of relation called the parallel — axis theorem, which states that

 d > I,=1I,+Md" . (77)
+ To prove this theorem we consider the body shown
in Fig. 41.
The origin of coordinates has been chosen to
1y Iy coincide with the center of mass. We wish to compute the
moment of inertia about an axis through point P,
_ perpendicular to the plane of the figure. Point P has
Fig. 40

coordinates (a,b), and its distance from origin is d. We
note that d* = a* + b’.
Let m; be a typical mass element, with coordinates (x; y;). Then the moment of
inertia about an axis through O is

I, = Zmi (xl.2 +y! ),

and the moment of inertia about axis through is
I,= Z‘mi l(xl. — a)2 + (yl. — b)ZJ.

We expend the squared terms and regroup,
obtaining

I, :Zmi(xl.2 + yl.z)—ZaZmiyi + (a2 +b2)Zml..

The first sum 1s /,. The second and third sums
are zero because they represent the x and y
Fig. 41 coordinates of the center of mass, which are
zero because we have taken the origin to be
center of mass. The final term is &° multiplied by the total mass, so the theorem is
proved.

b 4

5.5. Torque

In studying dynamics of a particle, we made extensive use of Newton’s
second law, which relates the acceleration of a particle to the force acting on it.
Now we need to develop an analogous relation between the angular acceleration
of a rotating rigid body and forces acting on it. This relation includes a new

concept, torque.
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A torque is always associated with a force.
Qualitatively speaking, torque is the tendency of a force
to cause a rotation of the body on which it acts. This
tendency depends on the magnitude and direction of the
force, and also on the location of the point where it acts.
For example, it is easier to push a door open by pushing \

st

near the doorknob side than near the hinge side.

Torque is always defines with reference to a
special axis of rotation. To define torque quantitatively,
we consider a body that can rotate about an axis F,
perpendicular to the plane of Fig. 42 through point O.
Forces F; and F), act on a body; both forces act lines that
lie in a plane perpendicular to the axis. The tendency of
force F to cause a rotation about the axis through O depends on both the
magnitude F of the force and the perpendicular distance /; between the line of
action of the force and the axis. If /; = 0, there is no tendency to cause rotation.

Fig. 42

Torque M is a vector quantity

—

M=FxF, (78)
where 7 is the position vector of the point at which the force acts. M is a vector
quantity. Its magnitude

M = F sin@. (79)
Where 0 is angle between 7 and F . The direction of M is perpendicular to the
plane formed by 7 and F according to the rule of right — handed screw.

5.6. Angular momentum

In translatory motion the linear momentum of a single particle is expressed as
p=mo.
In rotation motion the analogue of linear momentum is angular momentum.
Consider the case of a particle, having linear momentum p . The angular

momentum L of the particle with respect to a fixed point O as origin is defined as
cross product:

L=Fxp, (80)
where 7 is a vector distance of the particle from origin O. The direction of L is
perpendicular to the plane of 7 and p, and magnitude is

L=rpsinb, (81)
where 0 is the angle between 7 and p.

When a particle moves with angular velocity @ in a circle, then its angular
momentum is given by

-

L=rxp=rxmo=m-rxv.
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As v = wr then L =mrorsin(F,0).
In rotation motion v is tangential hence perpendicular to the 7 and so 6 =90°, i.e.

L=mro,
or L=Io, (82)
or L=1&. (83)

5.7. Main Law of Rotational Motion

When a force F' acts a particle, then moment of the force or torque M is

defined as M=FxF.
We now that ﬁ:i(mﬁ)
dt
- . d, .
and as M =7x-—(mv),
dt
- d .
then M ="(Fxmb)
dt
or M:‘LL_ (84)
dt

Thus torque equals to rate of change of angular momentum.
In case when moment of inertia / is constant the main law of rotational
motion can be represented as follows

=" 1a)=19 -1z,
dr  dt dt
ie. M=1I¢. (85)

5.8. Law of Conservation of Angular Momentum

—

When M =0, then UZ’:O or

—

L = const , (86)
1.. in isolated systems the angular momentum is conserved.

5.9. Rolling down an inclined plane.

Let us consider the case of rigid body of radius R and mass m rolling down
without slipping a smooth inclined plane having an angle of inclination 0 as
shown in Fig. 43. As the body rolls down it suffer vertical descent and therefore
loses its potential energy. At the same time, it acquires linear and angular speed
and hence, gains kinetic energy of translation and that of rotation. If there is no
loss in potential energy, then the loss of potential energy is equal to the gain in
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kinetic energy. Let initially the body be at A and
rest and after sometime it readies B, i.e., traverses a
distance S. Suppose v and @ be the velocity and
angular velocity respectively acquired by the center
of the body.

The vertical distance / traveled by the body,
h = S sin6. Then loss of potential energy

U = mg S sin@ and gain in the kinetic energy of
. | o Fig. 43
translation K, = 5 mv~. Gain in the kinetic energy

of rotation K,k = ;[ o’ , where I is the moment of inertia of the body.
Now

mgSSirzé?:;mu2 +;Ia)2,

v
as o= —,then
R

2
mgSSinH:lmuz+lli2
2 2 R
2 .
and D’ :2mgS122 Sm0.
mR” +1

It is useful to compare main characteristics and laws of translational and
rotational motions.

TRANSLATIONAL MOTION ROTATIONAL MOTION

Displacement dr

Angular displacement d¢

Velocity v = dr Angular velocity @ = e
dt dt
.. do d¥F .. do d’¢
Acceleration a = dv = d Z Angular acceleration € = @ gp
dt dt dt dt
Mass m Moment of inertia /
Force F Torque M =7 x F
Momentum p =mv Angular momentum L =7 x p
. o : 1
Kinetic energy K, = ;mu2 Kinetic energy of rotation K, = 51(02
Work A:Iﬁdf Work A:J.]\;Id(ﬁ
Power P =F0 Rotational power P = M@®
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Questions

A body is rotating. It is necessary being acted upon by an external torque?

. A person sits near the edge of a circular platform revolving with a uniform
angular speed. What will be the change in the motion of the platform? What
will happen when the persons starts moving from the edge towards the center
of the platform?

(Ans.: The system tends to keep its angular momentum constant. When the person
sits near the edge of the platform, the moment of inertia of platform increases
and hence its angular velocity decreases. When the persons starts moving
towards the center of platform, the moment of inertia decreases and hence the
angular velocity increases.)

3. How a swimmer jumping from a height is able to increase the number of loops
made in the air?

(Ans.: The swimmer can increase the number of loops by pooling his legs and
arms inward, i.e. by decreasing the moment of inertia. By doing so the angular
velocity @ increases because /@ remains constant.)

4. Why there are two propellers in a helicopter?

(Ans.: If there were only one propeller in the helicopter the helicopter itself would
have turned in opposite direction due to conservation of angular momentum.)

5. A disk of metal is melted and recast in the form rolled sphere. What will be
happen to the moment of inertia about a vertical axis passing through the
center?

N —

Problems

1. A particle of 10 kg mass is moving in a circle of R =4 m radius with a
constant speed of v =15 m/s. What is angular momentum about (a) the center of
circle and (b) a point on the axis of the circle and / = 3 m distant from its center?
Which of these will always be in same direction?

Solution: The situation is shown in Fig. 44.

t L L, a) We know that
L=Rxm0,
C L = Rmuv sinb,

here 0 =90°,as U L R.

N _~r Then L = Rmv=4-10-5 =200 (kg-m)/s.
b) In this case angular momentum is

L =rmuy,
Fig. 44 L=5-10-5=250 (kg-m®)/s.

From figure it is obvious that angular momentum in
first case always has same direction but in second case the direction changes.

60



2. A symmetrical body is rotating about its axis of symmetry. Its moment of
inertia about the axis of rotating being /=1 kg-m® and its rate of rotation
v| =2 rev/s.
a) What is the angular momentum?
b) What additional work will have to be done to double its rate of rotation?
Solution: a) As the body is rotating about its axis of symmetry, the angular
momentum vector coincides with the axis of rotation.
Angular momentum L =lw = 2Inv,
L=213,142=12,57 (kg-m®)/s.

. ) 1
Kinetic energy of rotation K, = 51 o}, as w =27n.

When the rate of rotation is doubled, i.e. @ =2,

o : 1 4
the kinetic energy is K, = 5](022 = 516012 =2lw/ .

.. . 1
Additional work required: A=K, - K, =2Ilw] - 5[ o' =157},

A=236,8 Joule.

3. A uniform disc of radius R and mass m, 1s mounted on an axis supposed in
fixed frictionless bearing. A light card is wrapped around the rim of the wheel and
supposes that we hang a body of mass m, from the cord (Fig. 45). Find the angular
acceleration of the disc and tangential acceleration of point on the rim.

Solution: Let 7" be the tension in the cord. Now,

myg — T = mya, (87)
where a is the tangential acceleration of a point on the rim m
of the disk.
We know that M=lIe — 7
But the resultant torque on the disk, from the other 4
hand M = TRsina = TR, as o = 90°, because TLR. .
Moment of inertia of the disk is 17
1 :;mle. mp; | g
Then angular acceleration ¢is connected with tangential ~
acceleration as follows: &= . v
| R Fig. 45
Hence TR=—-mR>*<
2 R
or 2T =ma

61



and Tr=——. (88)
2
m,a
From Egs. (87) and (88) we get m,g — S =m,a,
or a= 2m,8
m, +2m,
mm,g
and T=m(g—a)=—"2>-.
2(g ) m, +2m,

4. Disk with radius R = 0,2 m rotates according the law: ¢=A4 + Bt + Cr’,
where A =3 rad; B=—1rad/s, C = 0,1 rad/s’. Find tangential a,, normal a, and
instantaneous acceleration of point on the rim at time # = 10 s.

Solution: We know, that angular velocity o is
a):d(D:d(A+Bt+Ct3):B+3Ctz.
dt dt

Then angular acceleration € is
_do_d (3 300)=6ct.
dt dt
Tangential acceleration a, is connected with angular acceleration as follows:
a,= &R, then a,=6CtR or a.=6:0,1-10-0,2=1,2 m/s’.
Normal acceleration is a,= &’R or a,= (B+ 3Ct2)2R; a,= 1682 m/s*.
And as we have got a, and a, the acceleration a can be obtained as

a=-la’ +a’,
a=168,204 m/s’.

5. A sphere of mass m = 10 kg and radius R = 0,2 m rotates about axis passing
through its center. Angle changes with time as =4 + Bf’ + Ct’, where
B=4rad/s®, C=—1rad/s’.

Find the torque action on the sphere as function of time.
Solution: The torque is

g

M=le
Angular velocity is W= CZ) = ;;(A +Bt* +Ct ): 2Bt +3Ct’.
. do d 5
Angular accelerationis &= % = dt(th + 3Ct ): 2B +6Ct.

Then torque can be written as M = I (2B + 6Ct) = 0,4 mR*(2B + 6C¥),
as moment of inertia of the sphere is 1= 0,4 mR".
M=0,4-10-0,04(2-4 + 6:(— 1)) = 1,28 — 0,96.
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Problems and Exercises

. Calculate the angular momentum and rotational kinetic energy of Earth about
its own axis.

. A wheel of radius 6 sm is mounted so as to rotate about a horizontal axis
through its center. A string of neglectible mass wrapped round its
circumference carries a mass of 0,2 kg attached to its free end. When let fall the
mass descends through one meter in 5 seconds. Calculate the angular
acceleration of the wheel, its moment of inertia and tension in the card.

(Ans.: I=8,75-10 (kg-m®)/s; T=1,94N).

. A sphere, a disk and a ring of the same mass and radius are allowed to roll
down an inclined plane simultaneously from the same height without slipping.
Prove that the sphere reaches down first, the disc next and the ring the last.
(Ans.: a;> a; > a3).

. A sphere of mass 1 kg and diameter 1 m rolls without sliding with a constant
velocity of 10 m/s. Calculate what fraction of the total kinetic energy of the
sphere is rotational? How much work has to be done to stop it?

(Ans.: K,o/Kipw= 2/7; A =70 Joules).

. A wheel rotates about an axis passing through its center. Speed of the points of
the rim changes with time according to law v =3¢+ £*. Find the normal a, and
tangential a, components of acceleration and angle as function of time.

2 2 2
(AI'IS.: an:(3t+t); ar:3+ 21‘, ¢:t(3+tj)
R 22 3
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