MIHICTEPCTBO OCBITH | HAYKM YEPAIHW
HauloHaneHWin aepokocMidHuA yHIBEpCUTET iM. M. €. MykoBcekoro
"XApKiBCEEMIA aBiauinHWg iHCTUTY T

MINISTRY OF EDUCATION AND SCIENCES OF UKRAINE
National aerospace unlver3|t1,f named after M. Y, E:'hul’-:ﬂvskj,r}!

"Kharkiv aviation institute 7
PE!"-L! -rlJ i zy

G. I. Koshovyy, K. Y. Korolkov, T.V. Rvachova

[. I. Kowoswi, K. K. Koponekoe, T. B.

KPATHI IHTErPAIM
| ENEMEHTW TEOPII NONs

HasyaneHwid nocibHuk

MULTIPLE INTEGRALS
AND ELEMENTS
OF THE FIELD THEORY

Tutorial

18R (11
.H AV Hr.}u TE xnlmm}

_'l 1 || i l Ix |
w1 L8 YT I
(R e U e B1Lg HEY
L | l"-I L n 'I".'-\. P R LT L 4
e bt |
a VKT L AR g u'l.”_'l . tlian Ll "-'T
SR HLL R K I

Xapkie "XAlI" 2003
Kharkiv "KhAI" 2003



i

YOK 517.37 G348, 8/

KpaTthi iHTerpany | enemeHTy Teopii nons / 1. Kowoewi, K.H. Koponskoe,
T. B. Peauosa. — Haed. nocibHuk. — Xapkie: Hau. aepokacm. yH-T "Xapk.
asiay. iH-1", 2003. - 55 .
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BaMnuBiMK  posdinamy BULLOI MaremaTtvkv, SIK KpatHi iHTerpana i
BEKTOPHUI ananis. MaTtepian uux po3ginia BUKNaOEHo 3riqHo 3 NpOrpamo
kypcy "Bulia matemaTtvka”, AKMA BUKNAOSETBCA Y BULLMX TEXHIMHAX
HaB4anoHWx 3aknagax. TeopeTuHdHWA MaTtepian noaado y Neplnx ABOX
Po3ainax, a TpeTid po3gin MICTUTL NPaKTUYHI 384341 Ta NPUKNagn, sHadHy
HacTUHY AKWMX HaBeneHo 3 po3s'Askami. [na pewTtw HaBeaeHo signosigi,
WO € 4OCKTE BadKNUBUMK 4NA CAMOCTIAHO! poboTH CTyaeHTIB.
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HACTUHOW, /10 AKOI BIQHECEHO AeAki BinbW rpoMIZaK MUTAHHA NPaKTUYHOrO
xapakTepy.

Ans  cTygedTis Apyroro Kypocy BULLMX  TEXHIYHAX HaBEYaNBEHMX
3aKnafie, a Takow Moe ByTH KOPUCHUM ANA AUNNOMHWKIR T3 acnipaHTia.

I'heoretical and practical questiens connected with such important
parts of the Higher Mathematics as Multiple integrals and Vector Analysis
are considered. The Material of these parts corresponds with the program
of the "Higher Mathematics" course, which is taught in Technical Institutes,
Theoretical material is shown in the first and the second chapters, and the
third chapter consists of problems and exercises, the most part of which is
shown with solutions. The other part has answers. which is rather
important to sludents who solve problems by themselves.

Theoretical material methodologically corresponds with the practical
part, which contains some large practical problems.

For second year students of High Technical Educational
Establishments, also could be useful for graduates and posigraduates.
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Chapter 1.
Multiple Integrals.

1.1. Some examples leading to the notion of a multiple integral.

Let us consider a solid (£2) with the density of mass distribution p.
The density o can be variable, that is different at different points of the
solid. Let the function o= p(\) (where Afis a point of ©2) be known and
let it be necessary lo determine the whole mass m of the solid.

Let us mentally divide the solid (&) into » paris (subregions)
(L2 ), & =1,2,..,n. denote AL as the volume of (£) then choose arbitrary
points M, k=12, ..n in each of the subregions ({). If the parts (2,) are
sufficiently small we can regard the density as being constant within each
of the parts withoul an essential error. Then the mass m,,,, , of the parl

() can be computed as the product of the density by the volume.
Thus we obtain

T = Ep{.t;;‘j Mc}k .
&

This i1s an approximate equality since the densities of the paris are
nevertheless variable. But the smaller parts the greater accuracy. Hence,
passing lo the limil, as AL, — 0, we obtain the exacl equalily

(]
m=Hm > (M, ) AQ,
hom |
The limit is taken here in a process in which not only the volumes but
also all the linear sizes of the parts tend to zero. Besides, it is supposed
that the limil does not depend on the way of the partitioning (£ into
subregions.
Reasoning in a similar way we can conclude that if an electric charge
is disiributed over a solid (£ with densily ¢ the magnitude 4 of the charge

is found by means of the formula

g =lim Y (M, ) AQ, .
k=1

1.2. Definition and basic properties.

For definiteness, let us consider integrals over three-dimensional
regions. Suppose we are given a bounded (finite) region (&) in space. Let
a function «— f{£2) be defined over (£2) and let the value f(£}) of the function
be finite at each point M of the region. To compose an integral sum we

= 1



arbitranly break up the region (£2) into subregions (£2,,) (&), ... , (£2,)and
take an arbitrary point. A, (k=1.2.... 1) in each of them. Then we write down
the integral sum:

X S(M) A
k=1
where AL, denotes the volume of the subregion ().

The limit of the integral sum taken in a process in which all the linear
sizes of the subregions entering into the partitions of the region () are
unlimitedly decreased is called the integral of the function f over the region
(£2). Denoting the integral by the symbol [ fds2 we can write

(Lh

[fiM)d2=1im ¥ f(M,)A0,

[£2) k=I

(£2) 1s called the region (domain) of integration. Compare this with the basic

definition of the definite integral.

The basic properties of a definite integral are implied by the definition
of an integral as the limit of the integral sum. Therefore we can easily
extend these properties to multiple integrals,

We enumerate them here.

1) The integral of a sum equals the sum of the integrals of the summands
(the same is true for the difference);

fon £ fo)di2 = [ Ad2+ | frder.
(&) ERE (4]

2) A constant factor can be taken outside the sign of integration:

jf.ﬂ."'ﬁ = ‘_f_,lf:!ﬂ, {c=rconst).
1L [ EF)

3} The theorem of a partition of the region of integration: for any partition of
the region (£) into parts the integral over the whole region is equal to
the sum of the integrals over the parts. For definiteness, if (L) is divided
into the parts (£2, ) and (£2,) we have:

[fdQ = [fda « [ rdg2 .
{42} (&0 ) (&b
4) The integral of unity is equal to the measure of the region of integration
[fdQ =v,,.
(L4}
5) Itis allowable lo integrate inequalities:
f fi<f;then [ fdQ< |f,dQ.

LRl (L)



6) An integral satisfies the inequalities:
foin V€ [/ < [ V.
(£
7} They are connected with the notion of the mean value / of a function /
over a region (L),
V= |f.d.
(@)
8) There is an inequality of the rorm

C[fds (] de.
() | (w2)

1.3. Geometrical meaning of an integral over a plane region.

Such an integral, unlike other multiple integrals, can be directly
interpreted geometricaily. Its geometric meaning is similar to that of an
ordinary define integral.

Let us be given an integral of the form fn -d% , where (5) is a domain

51

w

. / r\-_ (5) - ﬁ.{_._,.-.;}

—— e —

Fig. 1

lying in a plane. (See Fig. 1). Let us draw the w-axis perpendicularly to the
plane and construct a line segment of length A AN parallel to the u-axis and
passing through a point M belonging to the domain (5.

For simplicity’s sake we now consider positive values of /¢ then the
segment is drawn in the positive direction of the u-axis and the end-point N
of the segment lies above the plane £. When the point M runs throughout



the domain (5) the corresponding point V describe a surface, which is the
graph of the integrand. The surface together with the plane figure (%) and
the cylindrical surface formed by the line segment parallel to the w-axis and
drawn through each point of the contour bordering the domain () bound a
cylindrical body.

The geometric meaning of integral j’_mx lies in the fact that it is

(%]

equal to the volume of the cylindrical body. Indeed, the element of volume
corresponding to a plane element 45 of the domain (%) containing a point
M can be regarded as a right cylinder with base «% and height /(M) to
within infinitesimals of higher order. Hence, this volume is approximately
equal to JF-fM)dsS. Summing up these elements of volume we arrive at
the formula

Fe J-fr.:”s = [
which is what we sel up 1o prove.

1.4. Integrals over a rectangle.

VWe now consider an integral /= ju diy where ({1 is a rectangle
(L)

bounded by coordinate lines of the Cartesian coordinate syslem arbitrary
chosen in a plane (see Fig. 2). The rectangle is described by inequalities
a<x<h and c= v<=d where a, b c. d are some constants. When forming
an integral sum it is natural to break up (£2) into parts by means of straight
lines parallel to the coordinate axes which divide the integral a<x </} into
parts Ax; and the integral ¢ < vy <4 into parls Av,.

Let us denote by wu,; the value of the integrand v wix,v) al a point
belonging to the subregion adjoining the intersection of the -th vertical line
with the &-th horizontal line (see Fig. 2).

&
i
losy w8 Ay - o kv
I = L__*
a b



We then approximately have /=% u,Ax,Av, where the summation
id

is extended over all the subregions. It is a two-dimensional integral sum:
&l i

w i y [
S=31 3w, Ax Ay, E-_:Eil ?:Iud.h}'# W.-’"Ll_, :

i=l ]
If the divisions along the y-axis are sufficiently small the sum inside
the brackels is close to the corresponding integral:

i [l
pIUPY SR [”ﬂ"J'] :
k=| L f

It follows that

&= irj'rmf\-] Ax; (1)

I'..|IlI F

Bul this is also an integral sum for function, which depends on .
Hence, if the divisions along the v-axis are also sufficiently small we can

write:
i

8§ = J'l Jl.!.r{ x, ¥y ’u’.r . (2)

In the process of decreasing the subregions of the partitions
equalities (1) and (2) become mare and still more accurate and turn into
the precise relations in the limit. Consequently,

b o -
{ — j'ur.l’_f} = [[ju[.rh ¥ idy |.53'1
{2 CRA /

Thus, to compute an integral taken over a rectangle with sides
parallel to the coordinate axes we can first perform the integration with
respect 1o v, for a fixed x {the inner integration) and then integrate the
result (the outer integration).

The reverse order of passing from sum to an iterated two-fold sum

(see above) would yield:
df b )
e r(ju[.r._m'}r.l’.rji{r

Hence, when computing a double integral in Cartesian coordinates
we have lwo ways of passing to a repeated two-fold integral,

The transition from one of these ways to the other is referred to as
the inversion of the order of integration,



1.5.  Integral over an arbitrary plane region.

Let the domain of integration be an arbitrary plane figure lying in the
x. v-plane. For instance, take the domain depicted in Fig. 3.

v oA

¥Y=ipix)

. i -

y={ix)

i
i
I
L >
b

Fig. 3

The considerations given above can be transferred to this case with
some slight changes. Namely, instead of the inlegral (1) we arrive at an
integral of the form

s i)

ji..l'{_.l._l.=]|-f'|"i’= {H{.J.‘._r}-u_’r.

g alr)
where v=yv, =g(x) and v=1v, =g (x) are, respectively, the equations of
the upper and lower parts of the boundary of the domain. Accordingly, the
final result will be of the form:

b o21x) ;
[ = _Fu 8} = _fHI:J.'._L":I- dy J.fa’.'r :
{L2) al g hx)

Consequently, the limits of integration in the inner integral are
variable in the general case; they depend on the variable of integration in
the outer integral.

We can also invert the order of integration, that is perform the first
integration with respect to v and the second — with respect to v. Then we
arrive at a formula of the form

o wraiv)
!-—-ﬂ j'ul[,r.,n:‘.l-.ca’.r]ﬂfv.
e wy )
It is sometimes necessary to break the domain of integration into
several parts before setting up the limits of integration.



For example, j'dn- _j_; {x, ) dy.
i1 i

L

1.6. Integral over a three-dimensional region.

Let us now consider an integral / - _[u df2 , where (£2) is a solid, that
(£2)
is @ domain in space.

We compute it following the procedure, which was developed for an
integral over a plane figure. The corresponding integral sum is now
represented as an iterated three-fold sum. In the simplest case when (£2) is
a rectangular parallelepiped defined by the inequalities a<x<h, ¢ <ysd

and ¢=:-= f we obtain, after passing to the limit in the integral sum, the

formula
b d bf df f A
I = ‘{{."A"{u'l_l'fu{.lu..l'.:_]"n:i'_' - J{ r[ 1 -f.ﬂ':Jaﬁ-‘ ey

arl g i

A

By the way. it is possible to perform here the integration by inverting
the order of integration in five different ways because there are six different
combinations (permutations) of the differentials o, oy, d-,

If the domain of the integration is of more general form the
delermination of the limits of the integration could be more complicated.

Let the domain of integration be of the form shown in Fig. 4.

2k
g LY)
@~
. S  BESTER -—Fu..
P SERON R S0
v=ynix) -G' >F' yrz{x}

s R —

Fig. 4
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Then we can put down integral / in the form:

boowlrh eale.r)
Jn - d2 = _{.rf,:. _f.rf_} _[ulfx. y.z)-dz.
{42 a wylx] el )

1.7. Passing to polar coordinates in plane.

As in the case of one-dimensional integral, we can introduce different
variables of integration while computing a double integral. Here we shall
consider a typical example of computing a double integral in the polar
coordinates.

Let us take an integral of the form: [ = _[mi_F_J, where (£2) 1S a region in
(L)
the x. y — plane, which is depicted in Fig. 5. It is necessary to perform the
integration in polar coordinates. We must divide the domain into parts by
means of the coordinate curves of the polar coordinate system, i.e. by the
lines r-consr and g=consi, as it is shown in Fig 5.

in

Fig. 5

Each of the elementary areas thus obtained can be regarded as
being equal to a reclangle with sides Jr and rdp to within infinitesimals of
higher order. Hence, we have d{2=rdrdg Performing the summation over

all the elementary areas we obtain [ = [jurdrdg, where the integrand must
gy

of course be expressed as a function of r and @ By analogy with 2.2, we

- 11 -



Atz
sel up the limits of integration and thus receive [I jum’r Jda;-:r. The
rliul' friend
geometrical meaning of the limits of the integration is illustrated in Fig. 5.
Folar coordinates are particularly convenienl for regions whose
boundary consisis of coordinate curves of the polar coordinate system.

1.8. Passing to cylindrical and spherical coordinates.

Let us take an integral / - J'a.ru'f.? where (&) is a domain in space. It is
fLF)
necessary to perform the integration in cylindrical coordinates, We have to
divide the domain into parts by means of the coordinate surfaces of the
cylindrical coordinate system, i.e. the surfaces r—consi, @-=consi and
270 0nst,

Then each of the elements of volume (see Fig. 6) can be regarded
as being egual to the volume of the rectangular parallelepiped with
dimensions dr. rde and d: to within infinitesimals of higher order of
smaliness (relative to the element of volume). Consequently we have
ddd rdvdipd:. Therefore the integral takes the form jﬂm-drdqﬂ: where the

[44)
limits of integration are still to be set up as in 1.6., where we set the limits
in Cartesian coordinates.

dr
rdg

-\-\-\-\--\'\-\.}/
1
- I

oL



Letl we use spherical coordinates.

The element of volume can be again regarded as being
approximately equal to the volume of the corresponding rectangular
parallelepiped (see Fig. 7). In this case the rectangular parallelepiped has
the sides dp. pd# and psinflia Thus we have ff!.'i=,ﬂ'zﬁin&f;;ﬂﬂfgﬂ and
3= _[Hup;‘ sinéad @i . (7)

i3]

X Fig. 7

The limits of the integration are set up in a particularly simple manner
In this coordinate system (and also in other systems) when () consists of
coordinate surfaces because in such a case not only the limits of the outer
integration are constant but the first and second integrations as well.

As an example, let us consider the problem of determining the

‘1

R

13 -



position of the geometrical center of the gravity of a solid having the form
of a hemisphere of radius & To do this we place the hemisphere as it is
shown in Fig.B8.

Then the symmetry implies that the center of gravity will lie on the

=-axis. Taking advantage of formula z, = - I _[::ﬂ'ﬂ'. passing to spherical

Y
3

coordinates by means of formula (*) and taking into account that
z = poeas 7 we obtain the following expression:

N

Ix 2 "
B, = 1 f[_[pcusﬂpzsi1lﬂipﬂﬂf¢?= ~ jr.fl;ﬂ' jﬁinHunﬁﬂiﬂ _lrlﬂ'ldlﬂ = # K
1: } (o 2ak’ | 0 L
1;'r!-.' ! o

3

1.9. Integral over an arbitrary surface.

Let us consider the integral sz":‘.r taken over an arbitrary surface

[eF |
i 71, which can be curvilinear in the general case (see Fig. 9). To compute it
in Cartesian coordinates we must consider the projection of the surface (o

on the coordinate planes, For definiteness, let us take the projection of (&)
on the x, v — plane which we denote by (5).




Since the element (the area of an infinitesimal part) of a curvilinear
surface can be regarded as being plane to within infinitesimal of higher
order of smallness relative to the area, we have J5-docosy where

3 e
y=(n k&) and & is a normal vector. It follows that

dxdy

jmfﬂ' = Hh' :

(o) {5y (COs 'l

Let the surface in question be represented by an equalion of the form

z= f{x,y). Then the vector s = _g,r' [ g"ll-j+!{ is directed along the
X ¥

normal to the surface al every point belonging to the surface. Hence we
have:

W 1
['ﬂ':l;'\j"ﬂ k'z_"l_ _'_-.-__-”".j-” =,
& i oy

Therefore,

f= Huf.r___h J"fx,_rj-],u.'li +-[j'j5‘; + [_f:j]!.:?'.l':l'f! :

140
In particular we derive the formula for the area

Se= [N+ (7 +(f7) dudy

(5
M
Let reader deduce the formula of cos(d &) Tor a surface represented

by an equation of the form F(x, 1y, z)=0.

- 15 -



Chapter 2.
Elements of the Field Theory.

2.1. Scalar field. Directional derivative. Gradient.

We say that there is a scalar field « defined in space if the value of
the quantity « is specified at each point M of space, i.e. v=u(M). Let the
Cartesian coordinate system v, v, = in space be given. Then a stationary
scalar field can be regarded as a function u=uix.v.2).

Suppose that a curve (L) starts at the point M in the direction ! (see
Fig. 10).

(L)

Fig. 10

Then the rate of change of the field in this direction (related to unit
length) is called the derivative of u along the direction /:

g TS
ou i WV Y=l M) T

el AS-s0 AN
To compule the directional derivative let us suppose that the curve

(L) is represented in parametrical form by the equation 7 =/7{s) where the
parameter s 1s the arc length reckoned along (£). Then the values of u
laken along (/) form a composite function u(s)=u(xis)1s)h=(s)). Therefore,
by the rule of differentiating a compaosite function, we have:

it dude dudv dudsz

e o ———

g dvds dyds drds
The right-hand side can be represented as a scalar product of two vectors

(grad u “;" ). The first vector is called the gradient of the field. It is

LR

E 1-'.]'H = -e'}”' 4 FJ”
designed as grad u=—1 + -
dx o e

3 ax - L-;I'I-' - I:..iZ .
ehy

k.

The second veclor —=—i+-~j+- =k =7 Is the unit veclor in the
s v e s

direction /.

Thus Eﬁ:—x =grad w- T = grad,u (") ( grad,n denotes the projection of the

16 -
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gradient on the axis passing the direction /).
Note that the derivatives ), w,and u. are also directional

derivalives, for instance u_ is the derivalive in the direction of the x-axis.

Let us put down one more useful formula containing the gradient
which is based on the definition of the total differential:

chu chu e — :
du=—de+—dy+—dz=gradu dF.
x v 2

Let the field » and a point M be given. Let us set the following

problem: in what direction is the derivative ™ maximal? We see that on
i

the basis of the formula (*) the problem reduces lo the following question:
in which direction is the projection of the vector grad 1 maximal? Evidently,

the maximal projection of any vector is obtained when we take ils own
direction, the maximal projection being equal to the modulus of the vector.

Thus, the vector gradu at a point M indicates the direction of the
maximal rate of increase of the field v; this maximal rate (related 1o the unit
length) is being equal to |grad ul.

2.2. Level surface.

Level surface of a field wM) are the surfaces on which the held
assumes constant value, that is the surfaces represented by equations of
the form: w( M)=const.

Depending on the physical meaning of the field these surfaces may
be called isothermic surfaces (for the temperature field), isobaric surfaces
and the like.

There is a simple relationship between these surfaces and the
gradient of the field: at each point M the gradient is normal to the level
surface passing through the point A,

Actually, as it is seen on Fig. 11, the surfaces v =C and w=C + AC
can be regarded as being almost plane near the point A if AC is

sufficiently small, and besides du _ ‘_""i" = f"'f: _
el AS  AS
Ai

e AL
- - - - . —r‘ _t :
- AN P

LE It:*‘.l.'-'ﬁl-ll..'?-1'l'-'|H'."|[l!'

= "M_'f?_w.af' S KOBO-TEXHIUHA
Fig.?‘ ‘ i u‘_.ﬂii'ﬁ‘_t{ﬂ :L

- 17 = L ilonunio Fo
: | ""'1'- g T | Ml & .'f‘:.‘_.'l-'.Hl:'.l..'l.h{lll:-
|: W :Irl L1 e +
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But it is clear that if / directly along the normal to the surface the

quantity AS will assume its least value, and 5?:: will therefore assume its

I
maximal value. This implies our assertion.
In particular, we see that the assertion enables us to solve the
following problem: to find the equation of the tangent plane passing
through a point M (x,.v,.z,) of a surface (L) having an equation of the

form Flx, y,z}=0. To solve the problem let us introduce a scalar field in
space by means of the equation u = F(x.v,z). Then (/) becomes one of
the level surfaces of the field because we have u=Flr, v.2)=0 on the
surface,

Then the vector tg__rim}.wn ={F;),f l{FL‘.]ﬂ}+{}~‘__' Ik (the subscripl
‘zero” indicates that the corresponding derivatives are taken at the point
M, ) is perpendicular to the sought-for tangent plane.

Hence, we obtain the equation of the plane:

5 3 Jo b =2 )+ [F: ]r|'|-r."' ~ ¥p )4 “-.'r]':.ll:.: —2)=0.

The last equation can be put down as F =10.

A surface for which the tangent plane is to be constructed can be
represented by an equation of the form == f{x, v}, Here we can rewrite the
equation as - - {(x,v})=0 and denote ils left-hand side by #(x.y.z). Then
the last formula for a plane is directly applicable, and thus we have

T F oo
r{” - xy) [ i J [:-II_.L-I'I.]"_(:'_ -_(:-}1“

Y r}.r i I'-\. .'I. il

e,

= — &g —[{}IJ lx— x5 )4 {:i;]n{_\'—_l',.J.

,ax g

The right-hand side is equal to the total differential 4, we thus

obtain the geometrical meaning of the total differential of a function of two
independent variables. Namely, the differential is equal to the increment of
the third coordinate of the point in the tangent plane.

Take an example. Let us compule the gradient of a centrally

symmetric field « = f(r) where r=[f|=+x" + * 4 =7 . In this case the level

surfaces are concentric spheres with centre at the origin of coordinates
(why is it s07). If we take two spheres for which the difference of their radii
is egual to 4r then the difference of the corresponding values of the

=1



function f which are taken on these surfaces will be equal to 4 .
Therefore, the change rate of the function in a direction, which is
df
-

transversal to the level surfaces, (that 1s along a radius) is equal to

Hence,
l:l,',’.":'.l'r.‘.!'_f{rj = d’i F2 _.l ﬂi‘
efr r dr

1

where r* =F/r is the unit vector in the direction of the vector .
Let the reader obtain this result on the basis of the definition

grad [ = fTi+ f7j+ fk
2.3. Vector fields. Vector lines.

We say that there is a vector field 4 (field of vector 4) defined in
space if the value of the vector quantity 4 is specified at each paint M of
the space, i.e. 4=4(M). We shall deal with a stationary field, which does
not change as time passes. If such a wvaration lakes place we shall

consider the field at a fixed moment of time and thus reduce our
consideration to a stationary field. As examples of vector fields, we can

consider the field of velocity v, the field of force F, the electric field £
(where [ is the electric field strength) etc.

A curve (L}, which is tangent to the vector 4 at each point, is called a
vector ine. In other words this is a curve whose direction (i.e. the direction
of its tangent) coincides with the direction of the field at each point
belonging to the curve. Depending on the physical meaning of the field we
speak about a streamline (flow line) of a field of velocity, a line of force of a
field of force and so on,

If we take Cartesian coordinates x, v, z, the vector 4 can be resolved
according to the formula:

A= .xIIl_.r,_v_.r:j:'_ + A, i.r,_u.i:}j + ﬁr;{-r._v.:}-‘r-
On the basis of Veclor Algebra and Differential Calculus, we can put down
the symmetric system of differential equations for the vector lines of the
field A:
de v ik
A x, 2y A (xy.2) A(xy.2)
In the case of a plane field the system turns into the equation;
dlx elv

A (x,1,2) .»1.: (x,1,2)
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From the geometrical point of view the problem of constructing vector
lines of a given vector field is equivaient to that of constructing integral
curves for the given directional field. As it was shown, when the theory of
differential equations was studied, there is only one vector line passing
through a non-singular point. Thus, the whole region in which a vector field
s defined is filled with vector lines of the field. In a sufficiently small
domain ccitaining a non-singular point the totality of the wvector lines
resembles the set of parallel segments, which can be curved a littie. In the
vicinity of a singular point the family of vector lines can have a very
complicated structure.

2.4. The flux of a vector through a surface.

Let a vector field be defined in a domain of space and let an oriented
surface (e lie in the domain. We remind reader that orienting a surface is
eguivalent to indicating its outer and inner sides. The flux of a vector field

A through a surface (o):
0= [4,de,

1)
where 4, is the projection of the vector 4 on the unit outer normal 5 to

(o

The flux is a scalar quantity. Since it is a particular case of a surface
integral it possesses all the properties of this integral. Here we point out a
characteristic property of a flux: it is multiplied by (-1) when the orientation
of the surface is changed because this yields the change of the sign of 4.

The value of a flux is essentially dependent on the mutual disposition
of the surface (w) and the vector lines of the field. Indeed, if the surface

i) is everywhere intersected by the vector lines from its inner side to the

outer side (the direction of a vector line at a point is indicated by the vector
of the field at this point) we have (=0, if otherwise we have (0 =0; finally
if some of the vector lines intersect the surface in one direction and some
in the opposite direction the flux is equal to the sum of a positive and a
negative quantity and thus it can be positive or negative or equal 1o zero.

The flux is always equal to zero in the case the surface is totally
covered by the arcs of the vector lines because the vector 4 is tangent to
such a surface at each point and hence 4, = 0.

The physical maeaning of a flux depends on the type of the field. For
instance, let the veiocity v of a gas flow be considered. Then the guantity
40 = v dm 15 equal to the volume of an elementary gas cylinder passing

through the area (dw) in unit time (See Fig. 12).

= M} =



2.5. Divergence.

Let us take a volume (') bounded by a surface (o) and lying in a

domain of space where a vector field 4 is defined. The flux of the field

through the surface Q= {4-dg (the symbol { indicates that the integral
[er)

is taken over a closed surface). If the flux is positive this means that the

number of vector lines passing through (o) from the interior of the domain

(1"} exceeds the number of lines passing in the opposite direction. In this
case we say that there is a source of vector lines in (V). (The fiux of .4

through (#) is sometimes referred to as the number of vector lines of A
intersecting () from its inner side to the other side).

The quantity {2 characterizes the source strength. If < we
say that the source is a sink in (¥). A sink is usually termed as a negalive
SOurce.

The source of a vector field can be concentraled at separate points
or distributed over some surfaces or curves. They can also be distributed
in space. We first turn to the latter case. Here we can introduce not only

. J . ; :
the average density ri— of the source in (¥) but also the density of the field

sources at  any point M of space which is defined as

lim =lim _[,—f-d.%:a.lﬂ £ where (A}) is a small volume enveloping the
Ak w 4
| Aex |

-

poinl M and (Ac) is the surface which bounds (AV). This density is called

the divergence of the vector field 4 and is designated as div4.
Let the Cartesian coordinate system be given in space. Then the

vactor field 4 can be represented in the form:
A= A (X, vzl + A (x, v 20+ A(x, -pz]-.ﬁ
in this case the divergence (in Cartesian coordinates) is defined by

the formula:

¥ 34, 3
divd = r” - sy | ~|-':Ji
Ay ey s
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2.6. Ostrogradsky’'s formula.

; : : ¥
Rewrite the formula for divergence in the form ..:.fnui—::ij-, ie.

d() = divAdV . The last expression represents the number of vector lines

issued from the element of wvolume (dV). Summing logether these
gxpressions over a domain () we arrive at the formula for the number of
vector lines coming out of the finite volume (1) (that is for the flux of the

vector field A):

JAdeo = {H:m AdV

(e}

where (I} is any finite domain and (o) is its boundary surface. This is
Ostrogradsky's formula, which plays an important role in the vector field
theory. It was discovered by M. Osirogradsky in 1826. The formula holds in

all cases when the field 4 and its divergence div4ddo not approach infinity
in {1

2.7. Line integral and circulation.

Let an oriented curve (L) (i.e. such a direction of describing this curve

is indicated) be given in the domain of space where a vector field 4 is
defined. Then we can form the line integral

[ = f._ifﬂ'.l" - I.."'II.I.!I.".' + A dv + A dz
i I

T'o define the integrals we write the formulas:

'-i"'}'i Ay
_{U:hr—lumlt M ) Ax,
; I'-ir— | el a_?'II.

where Ay, 15 the mcrernent of the abscissa i along the &-th
elementary arc elc.; we pass to the limit in the process when all the lengths
of the elementary areas decrease unlimitedly and n — =

Integrals of this type arc readily reduced to ordinary definite integrals.
For example, if the curve (1) rs represented in a parametric form we have

jE lelx = }'I (e), vl z(e) ) 2()dr
[
where the uaiues i« and (=f correspond to the ends of the curve
(L}
A line integral has an obvious physical meaning when A is a field of the
force. In this case the inlegral is equal to the work performed by the field
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when the point upon which the force acts describes the curve (/)

If the curve (L) is a closed curve line integral is called the circulation
(in this case we can write {AdF)

i

2.8. Rotation.

Let us consider a circulation taken along an infinitesimal closed loop
(AL). Let the contour (AL) be placed near a point M of space and (AS) is
the area of a surface bounded by the curve (AL) and # is the unit outer
normal to the surface.

§A-dr
Then 1im =48 (mr,, ;i)”. where rot4 is the rotation (or
Al L 1— A AS :

curl) of the vector field A. Thus, the projection of the field rotation on any
direction at any point M of space is equal to the circulation of the field over
an infinitesimal loop bounding a surface perpendicular to # to the area of
the surface.

The rotation (in Cartesian coordinates) is defined by the formula (see
3.8.):

& o

a4 o4, ) fad ad. ) {94, a4,
rotd =j| — - +j[--- = | J".| —
dy oz L dr o dy
The vector ror 4 form a new vector field in those parts of space where the

original field 4 is defined.
The rotation of a plane field has a particularly simple expression.
Indeed, if

'

5 - . . A :
A = A fx.vi + A (x,¥)y . then we have rotd = A—[ 3 d_A-'-

k1

ax  dv |
2.9. Green's formula.
Let us consider the circulation of a plane field A4 = Pix, v} + O(x, v)/

over a closed loop (L), which is oriented in the positive direction. Bounded
by the loop the finite domain will be denoted by 5 (See Fig.13). The
circulation can be written as

I = -.!‘ Plx, v)dx + {Q{x, v el ’ Vaspafx]
(L) A (A

For the first integral we obtain /_ \
b h {a)
fP{.r._p: blx -+ _F.F"{ X, ¥a)dx = : ) .-"}

b e |
=~ ([P{x,v,) ~ P(x.v,)] dx (see Fig.13). ' N

rl 2 b

Fig.13
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The expression under the sign of integration is a partial increment of
i with respect to v, which can be represented in the form of an integral of
the derivative:
LR T
Pix, v )= Px, 0= f ﬂn"t
"L :-er
Substituting this expression we obtain

) b @atx) :
| Px, y)dx = _FL [ o dy gy =— ”dF{J’.m}'
(4 a\ i ey O (5) 9

The second integral j' (M. vidvis transformed similarly (we leave the
(L]

calculations to the readers). Adding together the results we arrive at the

Green's formula.
(L] ¥\ dx  dy

The formula is applicable if all the functions £.0. ot ,'-qf*-g- are finite

the ey
everywherea in (5).

2.10. Stokes' formula.

The formula was discovered in 1854 by the English physicist and
mathematician G.G. Stokes (1819-1903) is widely applied to the theory of
vector field. Let a finile oriented loop (/) bounding a finite ariented surface
(4} be given. Let the orientations of the (L) and (%) be coherent as it is
shown in Fig.14. Divide (S5) into small surfaces (AS)), (AS)... (AS.)
bounded by the loops (AL) (Als).....(Al,.). Then we conclude that

JA-dF = Z A -dr
{£]

A= AL )
ik E.? Because the integrals taken
. \ o S i | over the arcs entirely lying inside
. :; T / . | (L) and which enler into the right-
o I S hand side mutually cancel out and
- e T the sum of the remaining integrals

H Regarding as  being
= N Y M infinitesimal we can apply formula:

A1 I|I
Ih-ﬂ‘w o f’\<jJ just equals the lefi-hand side.
] \ \ -// ‘.-"u;l.]
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r{ﬁ dr= (ro, A)-AS; + ...
1.15.]?
and obtain:

dA-dr =Y (ro1,4);AS, +...
if) i=|

The sum on the right-hand side is an integral sum and therefore
passing to the limit in the process when the linear sizes of all the sub
domains are decreased unlimitedly we obtain:

JA-dr = [frot1, 4-dS
(i (5}

Thus, the circulation of a vector field over a closed loop is equal to
the flux of the rotation of the field through a surface bounded by the loop.
This stalement is called Stokes’ theorem.

2.11. Special sorts of the vector fields.

A Potential field. A vector field is called potential (or conservative) field
if 4= gradl/ , where U is a scalar field. It is called the potential of the vector
field 4. The condition rotd =0 is necessary and sufficient for the field 1 to
e polential.
Properties of the potential field.
If a vector field 4 is potential then:
i i H »

1. Jddi = [(VU -dF)= aU =UB) -U(A), here V=72 +;% 412 is
y p ox dy dz
Hamilton's differential operator. It is used to denote differential operations
of the first order: gradl/ =VU , divi =V - A, rotd=V x 4. Also we have five
main differential operations of the second order, and they as well can be

denoted in terms of Hamilton's differential operator:

a) V-VU =AU
b) VeV =0
c) V- (V-4)

d) V. (VxA)=0
) Vx(Vx )=V (V. DH-Ad
2 -.j.fi‘a’.F- 0.
r
M

3. UM)= [AdF +U(M,).

M
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B. Solenoidal field. A vector field A4 is called solenoidal field if divA= 0. In

this case due to Ostrogradsky's formula the flux of the vector field 4
through a closed surface is equal to zero: {{A4,do =0. As an example of

solencidal field we can consider a vector field of a Vartexes A= ruil,
because divroili =V - I:'ﬁ? % E'] =0,

C. Harmonic field. A vector field 4, which is both potential and solenoidal,
is called harmonious (or Laplace's) field. We have two conditions: rard =1
and divA =10, The potential U of this field is harmonic function, i.e. AL =0.

To prove it we consider above conditions rord =0,
A= gradU divd = divgradlU =V - VU =AU =0,

- D8 -



Chapter 3.
Problems and exercises.

3.1. Computing double integrals in Cartesian coordinates.

When computing a double integral in Cartesian coordinates we have
two ways of passing to an iterated integral.

Example 1. Find | = H't:dﬂ{r, where (; is bounded by the lines v=u,
G}

p=—, x=2.
' X
Solution. Let us first draw the region (domain) of integration (see Fig. 15).
i ol o )
It allows to use the formula /= [dr | ~ dv, where ¢ (x)= e @ lx )=x,
- a e.l'l'||:".'|-_ui 4
o g e N
O
3 ]I|
NS
! N
3 QR
1‘:.3‘___ v=1/x
: >
| 2 X
# |
Fig. 15

We can perform the integration with respect to » (the inner int.) for a fixed
X

L_. T 2 & (] | b \1 2 r | L} :
IL., Lﬂ'J‘ =X jdt '=.'l:'2 ——l I=x"| — e i |—---.r +x
¥ na ¥l ! v X F.
¥ \ .l
Then integrating the result of the first imtegration (which depends only
on x ) with respect to v within the limits of its variation we have:
2 g Y

. i y |
[ = I_[(—.r + 1“5}'4’A'=H- rj + 14 L'I —2;.

Example 2. Invert the order of integration in the iterated integral;

1=

:Fr..r'u' LF {{h W

i 7
=y l=x

ey



Solution. Draw the domain of integration by using the limits of integration;
yrolv) ==yl —_v'j' s ly)=1-y v =0, ¥, =1(see Fig. 16).

Fig. 16
The upper part of the boundary of the domain

¥ E—\'}-—-["'Il_'r‘ 1= =0 and the lower part is the straight line y =0.

M-r0ex <
Thus we have:

0 Aleg? I kg
jnf'.l.‘ j_.l'"{rr,_r}u_’r 4 J'zi'x J__.f'h',_l' Jedv .
| o TR

3.2. Computing triple integrals in Cartesian coordinates.

fo compute a triple integral we ought to set up the limils of
integration.
Example 3. Compute fﬂzcﬂn!}ﬂ:. where (') is bounded by the planes

[

x4+ pre=lz=U, y=4, x =1,
Solution. Suppose thal we want to set up the limits of integration when
integrating in the following order: [dx [dv [zd= .

Here the first (inner) integration is performed with respect to =, for
fixed + and . Therefore the limits of this integration are =z=0 and
-=1-x-1 (the equations of the upper and lower parts of the surface

bordering the solid (' |, (see Fig. 17).




| =1 ey

Li|-.:v.a': = ?]., (1—2x —_hr}:".

After the integration with respect to z and the substitution of the
limits we cobtain thal the resuit of the first integration depends only on x
and y. Now we pass to the projection (5 ) of the solid (¥ ] on the x,y -
plane and perform the second integration:

e

| SN W
ﬁ[l—j{l—; — v} dy-—ﬁl{] ).

The result of the second integration will depend only on x. It should
be integrated with respect to x over the maximal range of x. After the third
integration we obtain:

I 4

] 1 |{|—.I'.':' 1 |
l—xYdx=- | =

{a“ i & 4 b 23

Homelfask,
Evaluate the given integrals:

1. fev Jx? + vy
L] {0
Fard

2. ldx I =

il . X g A

;
xelv
-

[ftx® + v7 vy, where G is bounded by the straight lines -

v=x.x+y=2agx=0;

4. J‘j_r_rd.m"_'n' , G isbounded by thelines :x + v=2, x“ + p* =2v(x =0);
L

5. ([tx +2y)dxdv, (7 is bounded by the lines: v =x°,y = ;
£

6 ax [ay [ede:
i

il i

o -..'I.':r-n: 2a—x|
7. jdx [vdy  fdz;

{l f

8. _[_lp]'.r_r:dn-. where I’ is bounded by the surfaces:

2 2
y=x% r=y,z=xp,. 2=0;

9. Hjl;x +v¥)dv, ¥ is bounded by the surfaces > =v* —x?, - =0, v=1.

_29.



3.3. Computing double integrals in polar coordinates.

These coordinates are particularly convenient for regions whose
boundary consists of coordinate curves of the polar coordinate system
because in such cases when setting up the limits of integration we obtain
constant limits not only in the outer integral but also in the inner one.
Example 4. Find J'J{.r: v Jdvdv , where G is bounded by the lines:

i

y=x., ¥=0, y=yd_x? {x=0)
Solution. Lel us first draw the domain of integration: we have

o =0, [ = ‘:_;,{mps[}._f}[m;z (see Fig. 18)
¥

%

If_ //_'l'_-'l

prafd—x”

L

y=ill

Fig. 18

& »
: - 1 . oo 3 T
Thus J_flf.‘t' B T j:fup:rjr'rdr = f{ r L] qu;ﬂ_—"l-;:}r
Li i il il
Example 5 Passing to polar coordinates find _”1,;.1.' '+_L-3{£1-;{1=, where (7 is
L7

bounded by the circle x " + v* =2ax

Salution. Draw the circle (x —a)” + ' -—a"{ see Fig. 19); we have

T 3
3 s R < P s
S EP=s_,0<r=2acosp

_ [
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Thus

L "
[ 2icos @ 2 ,?
H"'-'I'-‘ - dxdy _”’ o gy = I{!"qi"-'r I rrdr - j 2 uuwgﬂﬂlw-
¥ . il x 0
gadx léa? 2 . | Yo 4%
i [EGH' @ = o i-“ ~sin® @)ad sin g = | b 2 =
3 % 33 331 9
2

3.4. Triple integrals in cylindrical coordinates.

Cylindrical coordinates are particularly convenient for solids whose
boundary consists of coordinate surfaces of the cylindrical coordinate
syslem I e. r=const (cylinder), @-const (half-plane) and = = const

(plane).
I = [[]f(rcos p.rsin @,z rdrdgd=
.

where the limits of integration are still to be set up as in previous lesson,
where we set the limits in Cartesian coordinates.

Example 6. Passing to cylindrical coordinates compute [[[=\/v* + v,
I

where V is defined by inequalities 0y =2, 0= p=V2x  x” . 0<:224

Sofution. The equality v = V2x —x2in cylindrical coordinates takes the form
(see Fig. 20} r=2cosg@ (1< @< ), so that

T d
1 2 vo g |" Yoo gt

j_[f 1.'1 by dt_f:h;ﬂ J r u"rj o 1ae I{,n'{,q J r f.l'r-

1]

2 z
=28 JL{H iﬁ"t‘?l-tj!'l—z

=

F '




Hometash:
Passing to cylindrical coordinates compute
| 65, HJ_F;."V. Vix?+y°=4,0<2<5;

kJd

F
[7 jjj:rft'. Foxteyt e 0<z22a
J

3.5. Triple integrals in spherical coordinates.

We use spherical coordinates when the region of integration is
bounded by coordinate surfaces p=const (sphere), &=const (cone),

¢ = const (half-plane). In such cases, when setting up the limits of

integration, we obtain constant limits not only in the outer integral but also
in the inner inteqgrals.

Example 7. Passing to spherical coordinates find [|(x®+v%)dv, if(V ) is
3

defined by inequalities: +* +v" +z" <R, == 0.
Solution. The boundary of the region () ) consists of coordinate surfaces :
p=K,z=0, Inthis case we have the following limits of integration:

O=g=<2r B¢ {t:I.;r L pe(UR) (See Fig. 21)

Fig. 21
Sowehave 7
K N
. 2 2 .I"-'_ EER:" n
HJE v+ v = fﬂ’qﬂ I:-'.i|13 &H}Jr"drz — _{1! —cos” @)d(cos ) =
¥ L] i) i 2 }

5 3 "
cas f 1.7 <

=—2mq (cosfl — — 'L'l = 4.?1"!?".
5 3 15

Homelask,
Passing to spherical coordinates compute:
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_m.n’: :c.l".;l.'ﬂ':l.-'ﬂ':., where (1) is bounded by the sphere Tt gl = Rl

and coordinate planes x =0,y =0z =0 (x 20,0 >0,z 2 0));

dxdvids ) . .
2, _[_[_f = _.“__ —. where (V') is a spherical region between two spheres:
4yt gzl
r* +_1'? +z7 =g and x? +_i-"? $2° = 4:;:;
R g2 —
P e L e T
3. [dx [ dy Vel

[]] e SR
YA+

£ o-n L
Yo~ -k~ i T b

4, ij-n’.r J" ey fm‘: .
i

1 {3 3
A AW

3.6. Computation of scalar field's characteristics and vector lines of
the vector field.

The main formulas:

1 TS 1) i
oradiu =Vu=f—+ j .
el oh oz
ﬂr =i [t’ln_{-‘; I, 1"..1 = f :
el H

J:xamp»fc Ei! Check up the orthogonality of level surfaces of the scalar fields

=2 4§ :,1—1':I.1_.
Solution. At each point M the gradient is normal to the level surface
passing through the point M .So we ought to check up the orthogonality of
gradients:

Vie=2xi+2vj-2:k, WVy= :e'+'_=':.|‘+ (¥ + ¥k, 50

(Vu,Ve)=2xz +2pz - 22(x + ) =0.

A curve (/.) which is tangent o the vector ¢ at each point is called a
vector line. We have the system of differential equations for the vector
lines of the field a—a ;+u f+ a. ko

de _dv _d:

a, 4. a.
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Example 9. Find the vector lines of the vector field a: a=v?i+y* /.

Solution. « is a plane field , thus the differential equations for the vector

dx  dy I ] o SR
B, S +o, OFr —y=-x+xy, ¥l+¢x)=x

x LR ¥

7

lines are

Answer: y = i
| =y
Example 70. Find the vector line of the field cq.r=—-;w1' + X }'+bk£ passing
through (1,0,0)

Solution. The systemn of the differential equations for the vector lines is

4P

¥ X h
The first equation xdx = vdv, x> +v> =¢2. If x =1, v=0, then ¢ =1,
Thus x =cost. y=sint.
Answer: x =cost, y =sini, =M

Homelask.
Find gradient of given scalar field v at the point A :

1. u=qx" 4y =z, M(34,]). Answer: ;I + ;r,r ~k.

2 =-::~‘:*-' S 4e* , M{2,~L1). Answer. e (4i —2j + 3k).
3.u=In(3—x")+xviz, M(1L-1]). Answer:2i—2; tk.
Find derivative of given scalar field « at the point A/ in the direction I:

4.u—=x" 4 ;r‘ 2t M{1-34), -""'..l;- k. Answer, < I:.--IT'
i PR
. Sy & |2
Su=x+Inly" +z°), M(2L)), I=-2i+j—k. Answer. - '||Il3
- ; sy o 2
B.u=In{vx* +2" +z), M(331), I =-i+2j+2k. Answer:ﬁ.

Tu=x' 3x’v+3x’ +1, M(31), I=MN , N(65). Answer:0.

Find the direction of the maximal rate of increase of the field « at the point
M and this maximal rate related to the unit length:

8. u=xlv+ iz 4zly, M(100). Answer: J, 1.

9. w=xy + 1z +xz, M(LL). Answer: i + j + &, 23,

Find the vector lines of the vector field a

B, a==zj- vk, Answer; x~ +zl =¢°
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] - : - Xt+vt+r=c,
Q. a=(z—yp)+(x-2)j+{y—-x),6 Answer: 1 2 : 2
£ e

3.7. Calculating of a flux.

Example 11. Compute the flux of the field 4 =2/ + 2yz5 + (2 — x 3k through

the part of the sphere x° + v* +z* = § bounded by the cone == -._.'xi vt

Fig. 22

Solution. Let us first draw the domain of integration in ({4, do (see Fig.

22} and define the integrand :

. x§ 4+ yf+zk 22(y° +1 2
i = r - e L 7 } dF=axdy . =
2.42 242 2y2
Thus we have
. e 22(v +1) 242
fJa,da=|f SARL L L PN
. 242 z
LT {5 |._|.'I

where (5, ) is the projection of () on the vOy -plane. (5, ) is bounded

by the circle x~ + v* = 4. Passing to the polar coordinates we obtain

im 2 2z .4
H.r!,,:i‘f}' =i dqﬂ'jl{r" sin” @+ 1)rdr = J]_r sin” g+ | de=
(&) D0 0 2 I =X
i

= IH{!—umlqﬂ}-'.--ﬂ-}j'w = 16
il

Hometask.

Compute the flux of the fields:



1. A=wi +z/ + xk through the triangle with vertices (2,0,0),(0,2,0),(0,0,2).
Answer: 4.
2 A=rF=xi + v 1=k through the outer side of cylinder x2 4+ p* =4
bounded by the planes z =0 and z = 35.
Answer: 601 .
3. A4 —xi +y/ - 3=k through the outer side of the surface z =x” + 17
bounded by the plane - =4.
Answer: 40 .
4. A =(x +2) 1+ vj +(z = x)k through the part of sphere xt 4y 27 =1
bounded by the plane z=0 (z=0) . Answer. 2.

Using the Ostrogradsky's formula compute the flux of the field A
through the surface (8 ):

Example 12. A =-xi + 2yj <k B XLyt =6z, 2=2.
Solution. We have divd = _r} '[—J'fJ'*"d.;;]I (2y) 4 j (—y)=1. Then using the
o hy <
formula of Ostrogradsky we obtain:
{4 ,do = [[ldivAdv =V
(5§ (¥}

To compute the volume let us draw the surfaces: x Pt =6z
(see Fig. 23) and set up the limits of integration

=2

Fd

B—x" = 3.11' 2 i = I'EI
vo= [[dedy  Jd= = [de[rl6 - r® =2)dr=2x[2r" - 2 E]—H.?r
b 7 ] 1] ]

4

Fig. 23

Hometask:
5. A =(2x-sinz)i +{e" + z)j+(x+ 220k

& x’ -I-.L': — |, z=4-x—y, 2=10 Answer. &1

&

B.A =pradr?, S:x +y" 42" = R:. Answer: 16aR

ma Bl
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Example 13. Find the flux of the field A4 = yzi + v - =& through the par of
the surface 5 :x° + " =27, where 0<:-<1,

a}

/

vl .

Fig. 24

Solution. Since div4 =0, from the Ostrogradsky's formula follows
[f4,da+ [[4,do=0,
151 CEE |

where §, :x° +1° =L, = =1 (see Fig. 24), n=+# Ay ==z,

o |
rdr==2x 1 ol =
| 2 t

¥ o }
Thus [[4,do- [de[(—z)
5} 1 !: i:
Answer: .

3.8. Calculating line integrals and circulation.

Compute the curvilinear integrals J'A'n‘r'-. where:
i

Example 14 A =_1:'*.?---_|.-‘_.r'1 L:r=2c08ii +Es:nr_',;, f e HL}—:L

Solution. At first lel us consider the integrand:
Adr=(8cos” ti — 8sin’ e 2cosri + .?Sm.r;.r‘] =16hcostsing —cos® t —sin” ¢ )di
then
u
&

“ =—&. Answer: -8.

Example 15. A =(x +22)i+(x +3v)] +(5z + 1)k L-ABC , A(L00),
BOLOY, C(0,01).

I.ff.d.r-' = - ‘IEE'IJHEI{H =4 cos 2t
/ fi
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Solution. Let us divide the triangle into three parts: A4BC = A8 + BC +C1L),
S0

s Ly ' Rtz o . S
!‘ Adr= J'dc!f-+ J}!a‘r+ |Adr, and calculate three integrals separately.
AA8C A & [

For instance, the second integral (BC: z=1-y, x~0).

c 10 Q0
_[.-1:..!'." = jlfﬂ F 22004 (0 4+ 3y )dy +(5(1 =y} + ¥ d_].-'}_'|=j|:3_l-' -S4-4y)dy =
H | 1

: 7 3
. f{ﬁ j.rph_:_.,-=5_?.—:1 Answer: 2.
{1 o

Hometask:

1. A=r. L :x =3cosi, y=3sint, z=1¢, re [02x). Answer. 2n

2. A=2xwi+v j-x"k, L:x?+y’ —2z* =18, y=x from the point (3,3,0)
to the point (3v2.342.3). Answer: 962 — 7).

Using the Stokes’ formula compute the circulation of the field 4 over
the closed Iuﬂp Tt

Example 16, A= .!Fx,futﬁ. Lix'+y' 42728, x+y+z=3,
Sofution. To use the Stokes' formula :J[..-i.-r.;ﬁ-' - H{ rot A ), dex
7 (%]

(8:x +p+z=31we ought to find vor4 and n. We have

ik o L

. % F @l s 5 = Fefrk

.r'rj.r.fi-—_lf]I : =i+ j+k and n'—H_"'I._ .

s L ¢ L L 1 =4 J3

| 2 ¥ ¥
Thus
E[-i'cﬂ H ds =38 , where § 'HH“ R=46. Answer: 6437 .
Hnmerask

3 A—={r+2zW+(x¥3v)j+(5z+3)k . L:A4BC ., A(L0D0), B(0L0),
C(000). Answer: 2.
A4 =(y+ ' AL IO i —2x)j+3e k. Lrx®ygtagt, 2=,
. f ¥
Answer: —27x.
Example 17. Find the flux of the rofation of the field A=vi+zj+xk

through the surfacez =2(1 - x* - ¥*) bounded by the plain = =0.
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Salution. Inversing the Stokes' formula we have:

_”f rotA }, ds = c_f_l'r?'.r +zdv +xdz  where L:2=0,¢" + =1 .
{5 £
So we ::l'.:tarn

5
ydx = _[-:m.r:ifn.m.r_— sin”tdt =-x.  Answer: - r.
|' t

Hom Btask-

Calculate the circulation of the field 4 over the closed contour L
Fmr'!‘IE!ﬂIEiIlEI‘p' Elnd b‘_yr usmg the Stukes fﬂrmula

-+

5 A=x"° ;Hr ;+ 2k ol T e =25, v=4. Answer: ().
6. A=zi—xj+vk , L:x +v  =10+2, z=—1. Answer: — 9.
7. 4—u+=.,r+ sk | f-x:'-r_u‘]::; z==2. Answer: &r.

E.;?-—u—z ;+1£. L:2x? =y 427 =4, y=x. Answer: 127

3. 9. Differential operations and investigation of vector fields.

Hamilton operator; V=i _f} t ;-_’} + A d 1
oy d_l.' CF o

Differential operations of the first order:
divd =V -4, gradl! =V - U, rord =V x 4,

Example 18, Find Vgir), where r = -.,I.'I.rz o4t

i T Foat Fo# R 5= ] A i ' F x
Solution. Veey=al'i+ @l 4 ¢'r'i here ¢/ =7 " < ! , ==, 80D
P ¥ r
— i
Vipr) = @,
2
Hometask:

1. Find ¥ -.'I‘I;'J'!_F]. Answer: 3g(r)+r@ir)

Differential operations the second order:
1. divigradl )=V VU =V U/ =AU :

: v ) 2
."I.:T’“=i,—+ 9 +E} .

el * -EI'L*E =2

2, rot{gradl/ )=V =V =0
3. grad{divd)=V {?AJ;
4. ::"n'{.iw:'i J= VVxA=0;



3. m:{m;.r’r}-_ Vox ["IT-" X A}_ 'i-’{'i?” VA

Homelask:
2 ViV.-(x ivy j+z k=" Answer: 6r
3. ﬂ{ﬁx[.w?f+_s-::_?+:_x?EJ|-—? Answer: (

4. V(Vx(vi—xzj+ypk)="

Find the potential of the field A

-+
=

Example 19. 4 = yz —Xx) ]ul' +{xz IZ + vz . ]_f +{xy + .plz}E :

Solution. The condition rord =0 is true:
Vid=ilx +2vr —x =22v) = j(y ~v)+kiz—x ~z+x)=0.

By using the third property we have:
{x, e { w0 (v, =

Hix. v.2)= f Adr+¢= _F-[_l.': —xv Jdx + j' (Xx= — ': bzt b 4
(0,00 (10.0) (v 003 =

2 TN IR T T et T
+“._,.J_,_”Ln + vz kdz e - ﬁ[u'J +I_][[.':j1 b z)Ydz +oc=xvz = + 1 5 +C
Hometask: Find the potential of the field A
5. A=(3xy - 1)+ (x’ =3ngt) Answer: r'v-xy +¢
B.A=2xvit(x? =2wz)j— vk Answer: x v —yz+e
Test the function » (is it harmonic?)
fou= a,,-'-r'" +_|"1 +2f —x Answer. No.
B. w=ax’ +3bx’y +3{'.JL’_L'? +dv’ Answer: Yes, if a+c=0, b+d =0,

3.10. Expressing divergence in Cartesian coordinates.

Let a Cartesian coordinate system ()= be given in space. Then a
vector field 4 can be represented in the form
A=A (v, vzli+A, (x,y.z)+ A (x.y.z )k . In this case we can deduce a
simple formula for computing the divergence divA . To do this we take into
account the fact that the particular form of an infinitesimal domain (AL2)

which occurs in the definition of a divergence is inessential. Therefore we
can take a small rectangular parallelepiped with faces parallel to the
coordinate planes
(see Fig. 25).
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P
y/f:" figs

Fig. 25

Then  {fd,do= [[.+ [[.+ [[.+ [..+ [l-4 ]} the flux can be
AT p ! I £l £ ¥ K

represented as a sum of six summands corresponding to the six faces of

the parallelepiped. We now consider the sum of two summands

corresponding to the faces (designated by | and Il in Fig. 25), which are

parallel to the y)--plane and whose unit outer normals are denoted as n,

and n,;. We have {1 ]'x ==(4, ]If , and on the basis of Taylor's formula we

can write (A4,), =—(4,), =(4,), +(d 4, }, +.., where the expression

3 1A _ : ; ; ; ;

o, A 7-‘--_:‘-5 Av is the partial differential with respect to « which appears
LF A

here because the points belonging to the faces ! and // differ by Ax in the
values of their abscissas 1. The integration over these faces reduce to the
integration over their projections onto the w0:- plane (i.e. over Sy:), 50 we

have
- [ fOA o
H f Iﬂ' _\jj{ (A, ), +(4,), +|1 [;}.r .J, Ax 4 ... | dyd= =
L A " e
_II }J‘J[ ™ .-I,H:HL | Ax+ .., —|i " Ju AxAvAE +...

The dots here designate the terms of higher order of smaliness relatively to
the terms which are written in full. The subscripts /, /f and M mean that the
corresponding lerms are taken for the points belonging to the faces /. I/ or
for the point M, respectively.

Ferforming similar calculations for the other two pairs of faces and
summing up all the expressions we arrive at the formula for the flux
through the whole boundary surface of the parallelepiped:

- "] . Y
.:-f.{’d-'ldg = d:;il' it r-fr. g i d_j: ‘ .jl_"l';'!i_'l-'ﬂu" i
o ez J”

(e A dv

41



In this case we have AV = AxAvA: and therefore:
| (g4, od, a4, ‘[
+ + -

AV :ﬁﬂﬂﬁrﬂt| ohx v oz j_u t

[T ] 5
Passing to the limits we finally obtain the expression:
/ id. 04
divd = a.'!_" i 'l".-" F 4 ‘}i‘
flr chy dz
We have not written the subscript M here because the formula holds
for any point of the field.

3.11. Expression of circulation taken along an infinitesimal closed
loop.

To obtain the expression we assume that the vector field 4 is

represented in the form
A= A (x.y.z)i +A (x, 0.2 J,r +d (X p.2 W&,
i. & is being resolved into components along the unit vectors of the
Cartesian axes. Let the loop (AL) be placed near a point M, of space.
Now we compute the integral of the first summand, which occurs into the
right-hand side of the formula
j-.-'f dF = LIA de+ A dv+A_d-.

(A (LT
GER oA ,
{ Ay (¥ .7 )de = i (A, )p +{——plE =)+ pl¥ =Yg}t
r_.-‘.-.' i 1\? | el dy
14
+ | i3 Yoz = 2g )l
(=

Here we have applied Taylors formula. The subscript “zero®
indicates that the corresponding quantities are taken at the point M, and

the dots designate the terms of higher order of smallness.

s
C)
L ' : :
¥ (J‘
» Fig. 26



Since

RE| I et i RE .
:_f “'{.1 Jg +1 ~—alX —Xg Y == }'l] Vo =1~ haZg ].:II‘ =
(AL ) o dy o2
— II{'; + |'.': X |Ii1' = ” 3

(AL )

j' vdx=-AScosy and 'f zdy = AScos 7,

(AL (AL}
we obtain
o4 A .
-_[.4'_, dx = [{—X Jiy 08 F {d- * )y cOS FIAS + .
(ALY oz ey

Evaluating the other two integrals in a similar manner and summing
up the results we deduce:
I.ef dir = {rotd), - wAS + ...
(Al )
where asis the area of the surface bounded by the loop, & is the unil outer
normal.

3.12. Exercises for homework.
A) Find derivative of given scalar field v at the point A in the

direction s, where Ji is a normal to the surface & ( the angle between i
and positive direction of --axis is acute.)

Tu=4In(3+x) —dxvz, 5 x= — .'!J.'E + 2= = LML)
2.10=x v+ vz, 5227 - % 14z =0,M(2,4.4)
3.u=-2In(5+x?)—4x=, St +2pt 227 =1L MLLD

] 3 | 1 9 = T
q.u = 4.1‘“|.'— Ix*+52" St =x 54y’ —4..&9’(-2.}3-:}

S.mext —x'y, g2y - _1"1 —dz+12=0M(2.24)

B.u=ux./y—vz*, 5ot 4 _1:3 =4z, M{2.1.-1)
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Titi = —'.-’[m‘fj-l1 t .r!] - dxyz, BT 4!1-.1:1 Yz = TM(LLD

B.u=arcte Y + xz, 5§l _1.'2 - 2z=10,M{2.2-1)
X

S = Infl + )= xy Jz, T Ea _‘F-'E + 27 =1 6, M(1,-2.4)
10.u=yjx" + % -2, §:x+y? =24z, M(34,)
11.u=xfy - (z+1)/x, o TR =4, M{1,1-2)
120 = xy =22, §iz=x? =" M(110)

I 4 v %
Bu=(x" +y° +z7)2, S:2x =y  +2z° ~1=0,M(0-34)

1u=In(l+x*+p*)=/x? + 22, Six' —6x+9y7 +27 =42+ 4, M(3,0,-4)

B) Find derivative of given scalar field « at the point M in the
direction |

Lu=(x+y* +22)2, F=7- j+k.M(LLl)
Zu=xy' —jxpa 2t [=27-2E,M(,5, 2)
Ju=x+nz?+yh), F=-2T+7-k.M(2.L])

4.1 = x(lny— arcigz), =8 +47+8E.M(-21. D
5.z =In3-x%)+xv*z, F=-f+27-2K,M(13,2)
6.1 = sin{x+ 2 v} + . [xvz, I =4 + 3_,.".M(-§ : 3; 3)
Fu=xly’z—In{z-1), [ =57 —67+2/5F, M(11.2)
Bz’ +4v? +27, I =7-Kk,M(1,-34)
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& j

Gogrm i [ =27 +k, M(4,],-2)

b R
0. =[xy ++9= 27, [ =-2T+27-Kk,M(1,1.0)
T1.u=2./x+ vy + varcig=, [ =4 -3, M(3,-2,1)
12.0 =27 + 2arctg(x - v}, [ =T+27-2kE.M(1.2-D
13,0 = In(x” + 37 )+ 02, F=i-7+3k.M(1-12)
‘14-1;:,1‘.1!—"_{, I =5+7-k M(—43-1)
150 = Infx + -/ v? +2%), [==27 - [+ E.M(.-34)
161 = x° —arctgl v + =), I'=37 -4k M{2.1D

C} Find the vector lines of the vector field

Ta=4y -9y 2.a=2xd+hf I.d=x7+4y 4.d =4z —9xF
D=y +8zk B.a=2xi +8zk T.a=47-92F 8.d=>5x 4 10w/
Q.d=yi+dzk  10.a=9y7 —4x] 1l.a=6a7 +122k 12,8 =47 +
1Ba=xi+zk  1MMa=77+14zk 15.@=dxi + yj 16.8=97 + 4pF
17.8=2pi 4327 1Ba=xi+3)f 19.a=37+6zk 20.7=2z74 3xk
21.a=yj+3zk 22.a=x7+3zk 28.a=2:7+3vk 24.4=2a7 4 6y

2d.d=xi+y 26.d=5yvi+Txf 27.a=23 1628 28B.5=9:— axk

29.8=5zf + Txk 30.4=2x7 + 62k 31.8=5z7+5vk
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D) Find the flux of the vector field & through the part of the plane 7~
which is situated in the first octant (the angle between its normal and --
axis is acute.)

1.8 =Txi +{5ny+ 2)J +4xk, P. x+y/2+4d4z=1
2.8 =9md + yj - 32K, Po xli3+y+z=]

3.a=2mi +(Tr+2)]+ Tk, Pox+ypl24z2i3=1
4. da=(2x+1W -y + 3=k, P x/3+v+22z=1

2.8 =Tl +9m7 + &, o xdpi3va=1

6.8 =715 +11zk, P x+v+zf3=1

7.3 =xi + {51k, o o2xtvwlZE+zii=]

8.4 -2?—,1;."+3::r k. P xi3+v+zid=]
D.g=5md + (Y4 1)+ 4k, o242 3+ 212=1
10.a =92ci + (5v+ 1)) + 2mk, P 3x+p+2/9=1
M.a=Tmi +2mf 4 (12 + 2)L, P ox+v+zi2=1
12.d =i +(4-22)K, P. 2x+y/3+z/4=]
13.a=3x - Dai + (91 + )] + 6k, Pooxf2Z+y/3%:/9=1
14.a = oei 4 ‘: i + (4 = 22)E. Poox+yi3+zid=1
16.8 =(Sy+ 30 +1 Lk, P x+yp/3+dz=1

16.a =9my7 +( 7=+ 1k, P oxby+z=1

17.a=my + (1 -22)k, Pox/d44+y/34+2=1
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18,8 = (277 — Lpxd + (34 + 34/ + 20k, P 3x+ pi94 z=1

0. @d=mi +27]+ 22k, P x/2+ pf3+z=]

20.3 = 4mi + Ty + (22 + ik, P 2x+ pi3+2:2=]

21.a =3l + 6y + 10k, P 2x¥v+zi3=1

22.d =mi -2vi+ k., P 2x+pib+z=1

23.8=(21x - Daf +62m7 + (1 - 22k, P B+ »i2+213=]|
24.d = mei + 2mf + 2k, P oxiZ2+ pi4+z/3=1

25.d =% +2mi7 + 8K, P 2x+8y+2/3=1

26.7 = 3mi + 67 + 10K, P 2x+v+zx/3=1

278 = mxi - 2yf + &, P 2x+yvlb+z=1

28.8 = (21x - 1)ar + 62m7 + (1 - 22k, P 3x+yf2+z/3=1
29.d =i + 2mvi + 2K, P xi2+vid4+2/3=1

30.4 =9mi + 2] + 84k, P 2x+8ytz/3=]

31.d =Tmd + {4y + )] + 2=k, P xi342v+z=1
32.a=6mx 1 3myf + 10k, P 2x+ pf2+:273=1
Id.d=(r—1)ai +2ms + (1 - )k, Fooxfd4 pi2+4:213=1
3d.d=§ﬂ'+;@¢'+{4—2:}£_, P x4+ yw/3+z/4=1
35.4=Tmxi +4mij + 2z + DK, P xi3+yld+z=1

36.3 =5md + (1 -2} + 4k, P xf2+dy+:z2/3=]
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E) Find the flux of the vector field a through the closed surface §
(choosing outer normal).
il = JIE + _}'? :ll.:l
T.d=(x+z)W +(z+ V), 5
z=x,z=0(z20)

b

2.8=2xI + :.ﬁ", 4

o lz=at 20
5 2
X° 4y =d=

B -;-Zrz'-lr—}
3.3 =27 + 257 + =K, 5 {F L=ty =il

z=y,z=(L

o , ::=f||—:c‘.'1' 1—'TJ
4.8=3xi - zk, 5 , 5
2= 4yt z20
a W o Tl 'E' 1-"3_—3\-:'
S5.d=(z+ v} +y xk, 8 : -'
y=2,

B.d=xi—(x+2v)]+ vk,

2 2

A g | Y =
g o) 1 l,=z=0,

x+2y+3z=06.

; " =5+ 3p°
T. ¥=2(z- y)f +{x-2)k, ,‘,‘:J I +‘1" * i
| ¥ +y =1

B. =i 45— yh, §{FT4 UL+,

z=2Nx +_h-'2 )

9. d=2zi -4y +2xk, 5:{

- - - 3 = . r=f =1
10 sk <=k, .ﬂ"_\[ x+2y=123x+ y=6,y=0
l x4+ v+z=06,z=0.



) . ! : [x+v=1Lx=0 y=0
1. a=8xi ~2yw+xk, S5+ Y i R

13. G=6xi -2_1?'—5-‘?, 5—'J = 3

14. G=(z+ V)i +(x=2)] +2k . S:L ':"”f""l?* t
X Taypra=le, =1,

; : == I - o o P _12
19, d=(y+22)i —yj +3xk, .'::-'il; li 2{; .
S =x"+ ¥, (z=0M

-

16, d=(v+6x) +5{x+2)j + vk, .3‘5{

r=x, p=2x p=2,

o 5
z=x"4+y",z=l

F) Find the work performed by the force / while moving along £
from point M to point V.

LF=(x® =20+ -2x)7,  L:Segment MN, M(-4,0), N(0.2).

2. F=(x" +20) + (" +22)], L: Segment MV,  M(-4.0), N(0,2),

3. F=(x? 4250 + (5 + 20}, L: 3 'J':; =¥, M(-4,0), N(0.2).

4. F=(x+)+24, Li x4 y7=4.(y20) , M(2.0) N(-2,0).
5 F=x'i=2y], Lix? 4 p?=4,(x20,p20), M20), NO.2).

B. F=(x+ )W +217, L: y=x", M{-1,1), N(11).

7. F=x"yi +4j, [ Segment MN,  AM(-1.0), N(O,1).

B. F=(2xy—p) +(x" + 1)/, Liox 4 0% =9, (320), M3.0). N-3.0)
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2
vV

9 F=(x+v)i+{x=p)J, L1 x* + e I, (x20, y20), M(1,0}, M0,3).

3

10. F =i - xf, L x7 ¢ pi=1,(p20), M(1,0), N(-1,0).

11 f'l.—ll,r * + I-’? ..+{ . L-’?} ] 1{. ——I ) . M{l H} N[[} l'.]'}
a .- -1-- s L] : .!"I £ £ [ 5 -
; : :” - d : {2—1’1['1:{'{2

12. F=xvi +2y, Lot + 03 =1,(x20,320) , M(1,0), N(O,1).
13. F=yi —xf, i: x4 Iu-‘?' =L (v20), M —3— 0, N{-;,{I]_
N2 2

14, F=(x> + W0 +2)), L 2P +3° =R, (»=20), M(R0), N(-R.0).
15, F=(x+ vyx’ + v + (v—xfx? + 23T Lox? 4 02 =1, (r20), M(1,0),
A= 1.0,

18. F=x"witm'f, Li x*+ _I.-':"I =4, (x20, y20) , M(2,0). N((,2).

17, F=(x1 _L'q_n'l.a': R VI o S 5l SV I Py =16, {x20, r20),
AMi4.0), NOA4).

18. F=y"i +x°], Loox' 4y =9, (x20, p=0) , M(3.0). M0.3).
19, F=(x+ )7+ 1 x7)], L: Segment MN,  M{1,0). N(0,1).
20, F=(x" + ¥+ v ], 1 Segment MN,  M(2.0), M0,2).
21, F=x], f 24y =9,(x20, y=0). M(3,0), N0,3).

22 F={v:—y¥ +(2xv+x)j, L x? +_1=: =9, {x20, y20), M(3.0), N(-3,0).
23. F=xvi , L: y=sinx, M(x0), N0,0).

24. F=(xy - v W +xi, L l].-rz,l:'j.. MU0,0), N(1,1).
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25. F=xi+ 3, L: Segment MN,  M{1,0). MO.3).

-
LS

26. F=(xy=x) 4 '; 7 L: y=24x, M(0,0), N(1,2).
o o T S L :c3+’: =1, (x=0, p20), M(1,0),
N(0,3).
28, Foe—yi+x, L:ov=x", MO, N2.8).
z P

% 2 = 2 ; . !
29, F=(x* -y +(* +v1)], L = Lz =1, (y=0),  M(3.0), N-3.0).

30. F=(x—v)i + 7. L x4 y7 =4 (y20) , M(2.0). N(0.2),
Task 6.
Find the modulus of the circulation of the field 4 along the loop 1.
+ _'r:F =1,

. g
T Er'ti_r:—_rh'_+.:.?+.ji-. F:«i*
z=1;

J::jﬁ.rz ¢ _1'E |

2. d=xz - f+yk, T
[ z=4,

. 7 F
a : y oL xSt 2t =28
3. @=yzi + 2xz7 + xvk, l:-:[ = )
24yt 29, (220)

L

e 2
g : - U4+ y=l,
4, d=xi + vz —xk, I_:-'I :
x+y+z=1.

5. d={(x-yW +2xj -2k, r:i'



10.

11-

14

13.

14,

15.

d=yzi +2xzj + _].':.‘.'L, I':{ .

=i +yzj +xzk, T {

d=vl +{1-x)j—zk, F:{

) = [::3{;'::+y2j|+1.,
z=4,

d=vi—-xi+z°k, T:

X'+ y7 =9,
X+ p+z=L

. ¥
114—_1.?‘ bz° =4,

"+t =1z >0).

. » ' i N B S
G=vi —xj +°k, |:{ ;

-

2at 429t =1,

G=2vi + 527 + 3k, r:{
x+y+z=3,



16. d=(x—y)i +x +2°k, T:

17. F=xzi—=J+4 ‘w':;., N l I

18. &= 2_1!3? yxzf—xk, Iz : i
|x% + 2 =9, (z> 0.

. I [
19, G=-wi +25+k, r:i '
L Z=].

- 5 = [ #2 4y 422 =2
21. da=2vzi +xs5i+ vk, T ": 12 z” =23,
L+ v =16,(z>10).

22. G=Q-w)i -y -xk, T ¥ =L
.J:'i'_l’-l-_'_":!_

[Ty - = 'E .l:| _;I'::
23. a=—yi + +3:°k, r:]l A
"+ v =L{z=0),

)

_ = - 2 2 F
24,  G=yi-xf+22k, Trq* +¥ - =0

1 3 E
, e - . xS dzt =125,
28, d=x"1 +yzr+2zk, T '



e . e
EEE—J? 1_{;+:E£1 I':_l("_'q'l-"' + ¥ ) 4 2-..

L z=0.
. . = [ oaliead—a
2T.a=23z - E_J"I.II:'E'EF.I:., 4 X+ ¥ '
LZI—E_}?—EJ:L
2 2z
i i - £ ] ;I

2 _'2__12
20.d =4i +3xj +3xzk, pox 7 =2t =0

L z=23,

2 g, 7
X +yv 4 :EI‘_

1

30. &= yai —xzj + xvk, l':{
L _'r" l _PJ :91
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