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Lecture Ne1
INTRODUCTION TO THE AUTOMATIC CONTROL THEORY

To operate — means to expect, and to
expect means — to know much.
Marcus Tullius Cicero
Lecture outline:
1. Basic concepts of the automatic control theory (ACT).
2. Examples of the automatic control systems (ACS).
3. Concise history of the automatic control theory.

1.1. Basic concepts of the automatic control theory

Automatic control theory studies automatic control systems, their
properties and ACS designing methods.

The mechanization and automation of human productive and
cognitive activities form the core of scientific and technical progress.
Mechanization is the process of replacing a person by the machinery in
working process. Automation is the process of replacing a person by the
machinery in both the operating and control processes.

To date most of the processes are automatized inclusive of
technological, power-generating, transporting, designing, planning,
calculating, and exploratory operations, information processing, troops
and armoury supervision, etc. The automation of these processes results
in productivity and work efficiency increase; product quality improvement;
scheduling and control optimization and releases the person from
monotonous work, labour under harmful and hazardous (to health)
conditions and excessive toil.

Theoretically the process of automatization is based on the
cybernetics, a complex science studying general principles of data
acquisition, storage, transmission, processing and application to the
systems of any kind. The cybernetics ideas and techniques are applied to
engineering, medicine, soldiery, agriculture, criminalistics, etc. The
technical cybernetics is engaged in the principles of technical control
systems development.

Cybernetics has been first defined by the American mathematician
Norbert Wiener (1894-1964) in his book named "Cybernetics or the control
and communication in an animal and a machine". It included the automatic
control theory, information theory, finite automata theory, theory of
algorithms, operation study, the theory of mass service, the theory of the
big systems, etc.
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Technically the automatization is based on the possibility to integrate
various electromechanical, electronic, hydraulic, pneumatic and other
devices into the control systems (CS).

Control is a set of activities providing arranged systems structure
preservation or purposeful exchange, operation modes maintenance,
programme and purport organization. In other words, control is the
process of transforming ‘'what it is' into 'what it should be'"
The main stages of control are:

1. To define control purpose. The purposes of control may include
certain process parameter stabilization, input signal monitoring, a control
object state-to-state, etc. The purpose should be positive, topical and real.

2. To evaluate the possibility, methods, means, time and cost of
control purpose achievement.

3. To analyze the controlled object properties (to identify the object
structure and parameters, to estimate object linearity and stationarity, to
evaluate control efficiency, limitation, controllability, observability, etc) and
environmental interaction (the analysis of reference action and
disturbance, system-with-environment interference).

4. To select the control process quality criteria (e.g. accuracy,
operation speed, power and fuel consumption, cost, etc.

5. To organize control procedure, that is to select control system
structural pattern, equipment, energy source, necessary data, action
programme, control principle, control systems production, etc.

6. To provide control system survivability (operability monitoring,
failure diagnosis and counteraction, operation modes maintenance, etc).

7. To evaluate current and future conditions: to rate and calculate
state variables, disturbances, to estimate quality criteria, to forecast
course of events, to compare the obtained values with expected ones.

8. To make a decision and to provide its performance that is to
regard all the factors, actions and effort and controlled object influences.

9. To estimate control outcome: to compare the obtained results with
those expected, to ascertain mistakes, to elaborate the control process
improvements.

10. To develop the control system applying new methods of CS,
facilities and components construction.

In the control process we should revert to separate stages, some of
them carried out simultaneously. At all stages the system approach
should be applied, i.e. the system should be considered bodily in the
whole spectrum of its interactions with the environment.

The automatic control system is a set of controlled objects, the
measuring, computing, amplifying, executive and control equipment,
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incorporated in order to execute the task assigned without direct human
participation.

Controlled object is a controlled and observable part of the
environment, able to carry out the intended goal. An aircraft, a ship, a
machine tool, a process installation, a shell of any kind, etc. including their
combination can be regarded as a controlled object.

Semi-automatic systems and automated control systems (ACS) do
not excluded a person completely from the control process. Such systems
are still named ergatoid. For example, the air traffic control system
includes the person - operator.

Regulation is the specific case of control.

Regulation means the maintenance of a constant physical value or its
transformation according to the required principle. The altitude, velocity or
flight course stabilization, signal level change monitoring, missile
guidance, aircraft group maneuvering synchronization, plane glide path
conduction, generator voltage and frequency stabilization, etc., can serve
as the examples of regulation.

The elementary automatic control systems are automatic regulation
systems (ARS), the principles of ARS construction studied by the ACT
component, the automatic regulation theory (ART).

Generally the ACS could be resented as combination of automatic
controlled object (ACO) and device of automatic control (DAC) (that is a
regulator). Such scheme is presented on Fig. 1.1.

E) l lf,(t) EZ(t)l lfm

U
0 [ U0 [T v

Figure 1.1- General view of ACS

E is the ACS supply energy. E usually is not specified on the block
diagrams because of the power supply energy content being essentially
higher than the amount of energy consumed by the system. Signal E is
designated only in the systems of energy regulation
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The vector of reference action g(¢z) (the input signal) initializes the

information of required, desirable output value, i.e. the purpose of control
(e.g. the required value of the flight altitude and speed, the course of the
aircraft, its roll and pitch); » — a number of reference actions. The
reference action is introduced to the system by a person or higher level
system, it is equal or proportional to the required output value:
2(t) =y, (t) or g(t)=ay,, (7).

The vector of control action u(¢) (control action, control) is produced
by the device of automatic control (DAC) and renders purposeful influence
on the automatic controlled object (ACO). The process of moving the
elevator, rudder or ailerons can be an example of the vector of control
action. | is a number of control actions.

The vector of disturbance action f(t) (disturbance) is an influence the
environment exerts to the controlled object and the control device. It
shows, e.g. how the flaws influence the plane, waves effect the ship, the
load biases on the engine and power supply, or the impact the
measurement mistake, ACS parameter change, noise, temperature
change can have. p is a number of disturbance actions.

Vector of controlled variables y(t) (the controlled variables, output) is
a variable linked to the state of controlled object (e.g., speed and altitude
of the aircraft), m — a number of controlled variables.

Besides that the mathematical description includes a state vector x(z)
(state), n being the order of system. The signals describing energy in the
system elements could be selected in the capacity of state variables
(linear and angular speeds, capacitor voltage, inductance current, etc.).

1.2. Examples of ARS

The plane autopilot course channel (Fig. 1.2).
. Controlled object, a plane.
Sensitive element, a gyroscope.
Amplification-transformation device.
Executive mechanism, a steering machine.
Control device, the rudder.

oA wN
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Figure 1.2 -The course channel of autopilot

The gyroscope (2) keeping constant the space direction of the axis of
rotation while the plane (1) deviates from the required flight direction v, ,

the sensor output voltage ug is proportional to a deviation Ay .

This signal ug =kgAy is intensified in (3) and transmitted to the

steering machine (4) which shifts a rudder (5). The plane keeps turning
around until the deviation Ay is eliminated.

The rotation velocity stabilization system of the lathe motor
spindle (Fig. 1.3)

Any working mechanism (WM) (a lathe spindle, the radar aerial, etc)
can be regarded as a controlled object.

The difference between setting potentiometer (SP) voltage and
feedback potentiometer (FBP) voltage is delivered to the input of the
amplification-transformation device (ATD):Au=ug — upg.

The tachogenerator transducer (TG) generates voltage U,; which is

proportional to the velocity o of electrical motor (EM) rotation.
We specify setting voltage ug by shifting a slider of the setting

potentiometer. The increase of the load torque 7T causes the engine



velocity drop, the feedback voltage decrease and the
voltage Au=ug — upy growth.

EM TG
+ = +

ot LS FBP

o b

Figure 1.3 — The rotation veI00|ty stabilization
system

This results in the gain of the engine shaft rotation velocity due to the
greater voltage coming from the amplifier. Thus we obtain the
compensation of disturbance influence on the controlled object which
remains incomplete in the described system. To obtain the full
compensation we need an astatic regulator.

1.3. Concise history of automatic control

Certain automatic regulators have appeared long time ago.

At the urn of our era the Arabs provided a water clock with a floating
level regulator.

In 1657 a Dutch scientist Christians Guygens (1629 - 1695) has built a
pendulum rate governor into watch.

The plenty of regulators has been developed at the edge of the XVIII-
XIX centuries during the industrial revolution in Europe. In 1765 a Russian
heating engineer I.I. Polzunov (1728 - 1766) put forward a steam engine
feed-water regulator. In 1784 an Englishman James Watt (1736 — 1819)
developed a steam engine speed centrifugal governor. The first loom
control timing unit based on punched cards was constructed by
Frenchman Joseph Jacquard (1752 — 1834) in 1804. These regulators
had opened the gates to the gush of new inventions.

But the development of complex machines with regulators required
deep theoretical research.

A Russian scientist I.A. Vyshnegradsky (1831 — 1895) has become
the founder of the automatic control theory, having published the work
«About the general theory of regulators» in 1876. This study treated a
regulator and a steam engine as an integrated system, and it introduced
the methods of stability and regulation quality analysis. Unfortunately the
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paper "About regulators" (1866) written by an English physicist James
Maxwell (1831 — 1879) remained unnoticed by his contemporaries as the
author dealt with the highly specific telescope driving mechanism.

A Russian mathematician A.M. Lyapunov (1857 — 1918) in 1892
developed the strict modern theory of mechanical systems balance and
movement stability. His methods gave birth to some ideas of the modern
automatic control theory. C.Ye.Tsiolkovsky (1857 — 1935) suggested
applying plane rudder electric control (i.e. the first autopilot) in 1898. The
first Russian textbook on the automatic control theory was written in 1909
by N.Ye. Zhukovsky (1847 — 1921).

The considerable contribution to the modern ACT was made by
E. Routh, A. Gurwitz, A.V. Mikhaylov, H.Nyquist (stability criteria),
V. V. Solodovnikov, Y. P. Popov (frequency methods of system analysis
and synthesis), L. S. Pontryagin, A. A. Feldbaum, N. N. Krasovsky (1924)
(optimal control), A. A. Krasovsky (1921), A.S. Kuhtenko (adaptive
systems), N. Wiener (probabilistic approach), J. Tue, E. Jury (discrete
systems) and a number of other scientists.

James Watt
(1736 — 1819)

An English inventor, the founder of the
first universal thermal engine. He invented
(1774 - 84) the steam engine with the
double-acting cylinder which was equipped
with the centrifugal governor in order to
stabilize rotation velocity.

Ivan Alekseevich Vyshnegradsky
(1831 — 1895)

A Russian mathematician. Worked in
the field of mechanical engineering. He
investigated the dynamics of automatic
control systems in terms of linearized
equations. He exposed the impact the
inertia moment of a flywheel working shaft,
governor ball weight and force of viscous
friction in the coupling have on the system
stability. Vyshnegradsky was the first
scientist who had solved the important
problem of the industrial automatic control
engineering on the basis of the linear theory
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Nikolay Yegorovich Zhukovsky
(1847 — 1921)

A Russian mathematician who worked in the
field of the gas and fluid mechanics, mechanics of
rigid body, the aircraft theory. He was the author of
classical works on aerodynamics. His lectures
"Theory of machine running adjustment" were
published by students in 1909 and became the first
Russian textbook on automatic control where the
description of regulator design was combined with
mathematical research of system "machine -
regulator" dynamics.

Alexander Mikhaylovich Lyapunov
(1857 — 1918)

A Russian mathematician. In the 1890ies
developed the theory of ordinary differential
equations solving stability. The ideas and methods
of his classical works have been widely used in the
control theory since the end of 1940ies. He
developed the first and the second methods of
nonlinear systems stadility analysis. Special
functions, which he had proposed, have his name.

Aurel Stodola
(1859 — 1942)

Austria-Hungary, Switzerland. An industrial
engineer. He developed the scientific basis of
steam and gas turbine design. In middle 1890ies
he summarized the ideas suggested by A.
Vyshnegradsky and investigated the complicated
turbine rotational velocity automatic control system
in terms of linearized equations the theoretical
calculations being followed by experimental check.
The linearized equations became widely applied
for industrial development of automatic control
systems.
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Norbert Wiener
(1894 — 1964)

An American mathematician. Obtained
fundamental results in the theory of random
processes and other mathematical sciences.
One of the founders of stochastic
communication and control theory. In middle
1940ies developed the method of stationary
casual processes filtration (Wiener filter).
The author of the book "The Cybernetics"
(1948) where he had suggested the idea of
universal control science based on the
principle of negative feedback and the
theory of random processes.

Harry Nyquist
(1889 — 1976)

An American telecommunication
engineer. Obtained fundamental
achievements in the wire communication
theory and technology and the theory of
electronic amplifiers. In 1932 issued a paper
where had suggested the analysis of linear
feedback system stability based on the
amplitude-phase characteristic of open-loop
system. This research initiated the
development of frequency methods in the
automatic control theory.

Alexander Aleksandrovich
Andronov

(1901 — 1952)

A Soviet physicist, worked on the
fluctuation theory and the automatic control
theory. The founder of nonlinear automatic
control theory. The author of the phase
space nonlinear system analysis. In 1940ies
together with some of his students and
collaborators developed the method of
“point transformations”. Was a remarkable
teacher, so that a lot of his students became
outstanding scientists and made a
considerable contribution to the
development of the automatic control theory.
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Anatoly Isakovich Lurie

(1901 — 1980)

The USSR. Graduated from the
department of mathematics the Leningrad
polytechnic institute. A founder of nonlinear
automatic control theory. Was the first to
apply the A.M. Lyapunov's stability theory
to the nonlinear system analysis.
Developed Lyapunov functions building
technique, the functions enabling the
efficient solution of the nonlinear automatic
control  systems  stability = problem.
Formulated the problem of absolute
stability and found the solution of some
ACS classes.

Lev Semyonovich Pontryagin
(1908 — 1988)

A Soviet mathematician. In 1930ies
obtained fundamental results in topology.
From the beginning of 1950ies worked in
the field applied mathematics and the
control theory. A founder of the
mathematical theory of optimal processes.
Together with V.G. Boltyansky and R.V.
Gamkrelidze developed essentially new
technique of solving the control theory
variational problems.

Lev Semyonovich Goldfarb
(1910 — 1960)

A Soviet electrical engineer. A creator
of the first electronic controllers for high-
powered alternating current generators. In
1940ies suggested wusing frequency
analysis based on harmonic linearization of
nonlinear elements to study self-
oscillations of ACS which proved to provide
accurate results for typical cases.
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Alexander Mikhaylovich
Lyotov

(1911 — 1974)

A Soviet mathematician. Worked on
the nonlinear automatic control theory
and optimal control theory. In 1960-1962
developed the method of ACS synthesis
for object with one control influence with
the square-law criterion (analytical
regulator designing). This method took
into account the control signal modulo
limitations and servomotor speed limits.

Alexander Aronovich
Feldbaum

(1913 - 1969)

A Soviet mathematician and
electrical engineer, the developer of the
control theory. In 1948 formulated the
problem of optimal control as variation
problem. In 1949-1955 issued a series of
articles where he had solved several
problems on the synthesis of optimally
performed systems having applied the
phase space technique. Proved the n-
range theorem.

Mikhail Vladimirovich
Meyerov

(bornin 1914)

A Soviet mathematician and
electrical engineer. In 1945-1960ies
developed the linear ACS synthesis
technique, systems able to resist
regulator amplification unlimited increase
for objects with one and several

controlled variables.
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Jacov Zalmanovich Tsypkin
(1919 - 1997)

A Soviet mathematician and electrical
engineer. A developer of many branches of
control theory. In 1945-1960ies conducted
research on the theory of the pulse and
relay systems which became fundamental
to the corresponding aspects of ACT.

Richard Ernest Bellman
(1920 — 1984)

An American mathematician. Worked
in the field of calculus mathematics and the
control theory. A founder of the
mathematical theory of optimal processes.
In 1953-1965 suggested the Bellman
principle of optimality and developed a new
approach to solve optimization problems of
technology and economics (dynamic
programming method).

Stanislav Vasilyevich
Yemelyanov

(born in 1929)

The USSR. One of the most
prominent representatives of system theory
and the ACT. An academician of the
Russian Academy of Sciences. In 1970ies
managed the development of the
essentially new synthesis procedures, the
synthesis of systems with variable
structure. In 1980ies worked over the
feedback theory, the results of this
research being published in the
monograph "New Feedback Types" (1997).
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Rudolf Emil Kalman

(born in 1930)

The USA. A representative of the
control theory and the mathematical
automatic control system theory. In early
1960ies offered a new method of the
solving the casual processes filtration
problem (Kalman’s filter) which found
rapidly a wide application to various
areas of engineering. In the same period
developed the linear system synthesis
method which was optimal from the view
of square-law criterion.

The automatic control theory is still far from completion and new
works and problems are developed all the time.
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Lecture Ne 2
THEORY OF AUTOMATIC CONTROL SYSTEM CONSTRUCTION

Light of control principles, as well as
light of beacons, is guiding only for
those, who knows an input in harbour.
The naked principle without means of
its realization means nothing.

Anry Fayol

Lecture outline:
1. Principles of control.
2. Basic laws of control.

2.1. Principles of control

Principle of control is a method of control action formation. There are
three fundamental principles of control: control by reference input, control
by disturbance, and control by deflection.

2.1.1. Control by the reference input

Generally we can present ACS as a combination of two elements (Fig.
2.1).

lf(t)

8@ ACD u(t) ACO (®)

Y

Figure 2.1 - ACS

Where
ACD is an automatic control device,
ACO is the automatic controlled object,
g is the reference input carrying the information about the required output
value y,

u is the control action altering the ACO condition purposefully,
f is disturbance action, an impact the environment has on the ACO.

For this case the control action u(z)= u(g(t)).
16



In the simplest case y(t)=k ,coult)— k'yco f(t).

The control action is generated on the basis of the information about
the reference input and does not depend on disturbance, on output and on
the state of the controlled object. System is open-loop.

Such principle can be apply to construct hierarchical systems (Fig. 2.2)

Figure 2.2 — Hierarchical system

The main advantage of this type of systems is that they are easily
realized.

But such systems do not take into account the state of the object and
the influence of disturbances is not compensated. The control action
generation does not depend on the results of control.

Example 1

Engine speed automatic control system (Fig. 2.3):

SP is a setting potentiometer,

PA is a power amplifier,

EM is an electrical motor,

TG is a tachogenerator,

WM is a working mechanism (e.g. antenna),

V is a voltmeter.
Potentia is force,
Tachos is speed (gr.).

SP u, PA

=i c

Figure 2.3 — Automatic control system of motor rotation velocity

&
2K
—o—

The engine speed and voltage U,;, Up, grows up with the SP slide
moved forward. Voltmeter meterage corresponds to the speed w. The
17



change of the resistance torque T which is generated by the working
mechanism causes the corresponding change of the engine speed which is
an extremely undesirable factor (Fig. 2.4.).

T &
| :
® 4 i 1, sec
|
|
N
0

’r, sec
Figure 2.4 — The velocity rotation response

This principle is widely used for providing control of metal-working
machinery with PNC and in automatic devices.

2.1.2. Control by disturbance (Poncelet principle, compensation
control (compensatio (lat.) - an equilibration)

We enter the compensation block (CB) which measures disturbances
and generates the signal proportional to the disturbance action. It is
introduced to the system in order to compensate the harmful impact the
disturbance produced on the system (Fig. 2.5.).

Compensation
communication

CB
g u y
—» CD ——» 0C —»

Figure 2.5 - The compensation system

The compensation block CB consists of the measuring instrument and
the converter. In this case:

u(t)=u(g(t), £(1)) (2.1)

18



The control action depends not only on the reference input, but also on
the disturbance.
The system is open-loop as well as in the previous case.

Example 1

In this system the output depends not only on the reference input, but
also on the disturbance action (Fig. 2.6).
Without the compensation block:

y(£)=kykyg(t) - ks £ (2). (2.2)

With the compensation block:

()= kykyg(t) - ky f(£)+ keghy £ (2). (2.3)
If keg = k%2 we get y(t)=kk,g(t). (2.4)

The disturbance impact is compensated in this case.

S

kCB kS

«(f) (@)

S(L Lk,

Figure 2.6 — Compensation system
Example 2

Let us introduce the measurer of torque MT to the engine speed control
system. The MT voltage is added to the setting potentiometer voltage:
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Upmr T
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Figure 2.7 — Compensation system of motor speed stabilization

The systems with ideal compensation of disturbance are called the
systems invariant by disturbance action (Fig. 2.8).

T, Nm w, rad/sec
r 1 rF S
r overcompensation
|
q : g o compensation
, rad/sec t i 1, sec
|
1 ~_undercompensation
[ P —
I
0 : > b
t, sec t, sec

Figure 2.8 — Disturbance response Figure 2.9 — Kinds of compensations

Applying this type of ACS we can compensate the disturbances though
only those which could be measured.

The sign and the transfer coefficient of MT should be chosen correctly,
the wrong choice causing have under- or overcompensation (Fig. 2.9).

2.1.3. Control by deviation (the closed-loop control principle, the
feedback principle, Polsunov-Watt principle).

Let us introduce the negative feedback. In this case we get a closed-
loop system (Fig. 2.10).

lf(t)
CD
0 §s(t) b O oo LY
AN negative
feedback

Figure 2.10 — Closed-loop system
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CD is a comparing device.
The control action is an error function u(z)= u(e(z)).

Let g=y,, . then e=g-y=y,, -y is a deflection or error.

The deflection is caused by the reference input or disturbance (load,
change of parameters) actions. The control action depends on the output
signal deflection from the required value and eliminates an error
irrespective of its cause.

All disturbances are highly compensated but the system can become
unstable.

Example

In the closed-loop system (Fig. 2.11) u,(t) = ugp(t) — uyc(2).

While assembling the system we should provide a correct sign of the
feedback otherwise the engine can break into the saturation mode or reach
the point of breakage.

L PA EM o+ TG —
‘ u > %éfb_‘é g: g\P
B uap[ L _\ —
; - %

Figure 2.11 - The closed-loop system

Negative feedback (NFB) is used to get stability. Positive feedback
(PFB) is used to change the state quickly or to generate oscillations.

The given system does not compensate disturbance completely (Fig.
2.12).

T s
I
0 : -
o4 : t, sec
I &
e
0

Figure 2.12 — Compensation of disturbance
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The static error & can be emended by the astatic regulator (e.g. integral
or isodrome (isos (gr.) - equal, dromos (gr.) - run, a place for running).
The best results can be obtained by the combination of the three

principles of control:
u(r)=u(g(t),(t), £ (1)) (2.5)

2.2. Basic control laws

A control law or an algorithm is the kind of subjection of the control
action of the reference input or disturbance action, of the controlled value
deflection or the controlled object parameters.

A control law is a rule according to which the control action is formed:

u= u(g,s,f,p).
Let us use different feedback systems to consider some control laws
(Fig. 2.13): u=u(s).

g() ? &(?) ACD

Figure 2.13 — Closed-loop system

t
u(?) ACO y({;)

Y

There are linear and nonlinear laws. Further we shall consider some of
them.
2.2.1. The relay control law

The simplest nonlinear law is u = Csign(¢), (signum (lat.) - a sign)

It is used in the spacecraft stabilization systems. The engines are
usually established on the opposite sides of the spacecraft. The spacecraft
deviated, one of these engines is started and operates till the sign of
deflection is changed, then the opposite engine is turned on (Fig. 2.14, a).

A

C

u( K
C,at E> 0, - :l I u 1)
>
u=<0,ate=0, ?C J__'+

—C,ate<).

a b

Figure 2.14 — Comparator
22



The system displays the simplicity of realization but it is of small
efficiency. There exists also the threat of the self-oscillations to occur in the
system.

2.2.2. The proportional control law

It is the simplest linear control law
u(t)=ke(t).
The realization of the proportional regulator with the operational

amplifier OA having k :% is shown on Fig. 2.15.
1

R2
LY

u () Rl
uy(?)

Y

Figure 2.15 — P-regulator

The system gains greater efficiency in as compared to the systems
with the relay control law applied and is simple in realization though the
small deflections get not enough control.

The control evidence requires the existence of nonzero error. The
operation of static object cannot occur without an error. The decrease of
the error value and the acceleration of the control process need to increase
the amplification coefficient k& . But meanwhile the system loses stability.

2.2.3. The integral control law

The integral cjntrol law has form

u(t)=li8(‘t)d’t. (2.7)
Tio

The realization of the I-regulator with the OA (Fig. 2.16) is widely used.
Transfer function of I -regulator looks like

23



W(s)= UR—(S) =1/RCs=1/T, s,T; = RC, (2.8)

U.(s)

where T, is integration constant.

!

u() R

ug(7)

Figure 2.16 — I-regulator

We introduce an integral to eliminate the steady-state error under the
constant input actions. The control is changed until the error becomes
equal to zero. The control is stabilized at € = 0.

The integration causes the phase delay, the process of regulation
being thus slowed down and the phase stability margin decreased. The
parameters chosen incorrectly, the system can become unstable.

2.2.4. The proportional - integral control law

The proportional-integral control law has form
1 I
u(t)=kPe(t)+—j8(r)dr. (2.9)
1 0

The realization of the PI -regulator (isodrome) with OA is shown on
Fig. 2.17.

R2 C
—

u(H Rl

~ (1)

Figure 2.17 - Pl-regulator
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Its transfer function looks like

U
W (s)= R(S):R2+1/CS:&+ L, (2.10)
U,(s) R, R, R(Cs Tys
where k=R,/R,, T,=R,C.

The proportional component is introduced to amplify the speed and
stability of the regulation process, the integral component is imposed to
increase the accuracy of the system.

2.2.5. The proportional — differential control law

The derivative is introduced into the control law in order to accelerate
the regulation process. In the steady-state mode the derivative equals to
zero. This component does not influence on steady-state error.

The realization of this law is shown on Fig. 2.18.

R2

—L

‘E’ (9
—

R3

Figure 2.18 — PD-regulator
Equation of the PD -regulator looks like
d
uR(t)=k8(t)+TDd—f_ (2.11)
2.2.6. The proportional-integral-differential control law

This control law looks like

t
u(t)=kP8(t)+k,(j)8(r)d1:+TDg. (2.12)
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The realization of the PID- regulator with OA is shown on Fig. 2.19,

R, C
_ 2 1. _ . —
where kP—R—2+C—2, TI_RICZ’ TD—R2C1 (213)
R2 2
—L I
u (1) e \
uy(t)
— =
ad R3

Figure 2.19 — PID-regulator
Lecture Ne3

THEORY OF ACS CONSTRUCTION

The education of a man should start
with proverbs and end with thoughts.

Lucius Annaeus Seneca
Lecture outline:

1. Functional elements of control systems.
2. Classification of ACS.

3.1. Functional elements of control systems

Let us consider the most typical ACS which is constructed on the
basis of the three principles combination.

The functional diagram of this system is shown on Fig. 3.1.

Forward pathes

Compensation path

A
CB |+ S3 }«—rt

Hi)_Y __ ()
PA2 —{ EM CO H—>

[T S2
Global feedback/ L H |‘7

Figure 3.1- The functional diagram of the ACS, realizing the
three principles control combination
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SD is a setting device which transforms the setting action produced by
a man or other system into the form convenient for comparison. It is used
to set the required value of controlled variable.

CE is a comparison element. It compares an output signal with the
reference action.

PA is a power amplifier.

R is a regulator (analogous or digital). It realizes the control law.

CD is a correcting device. It provides the stability of system and the
required quality parameters (overshoot, swiftness and oscillation).

PA is a power amplifier.

EM is an executive mechanism, actuator (e.g. the aircraft servo unit).
It exerts a desirable influence onto the controlled object.

CO is a controlled object.

S is a sensor (a measuring transformer). It produces the electrical
signal proportional to the measured process value (shift, pressure,
temperature, electric voltage, etc.).

Tr is a transformer. It transforms

the feedback signal into the type & e
convenient for comparison (a voltage

divider, a phase-sensitive rectifier, an 2(f) ()
analog-to-digital converter, etc.). b

CB is a compensation block. 1,(f)

The global feedback transfers a
signal from the system output to the " x,(0) @)
input. %J_r

The local feedback transfers the X (0)
signal from the output of system or one
of the elements to an input of certain g N0 o Y0
element. %

The feedback can be positive or x,(0)
negative, rigid (working both in the [, l
established and in the transitive & [ ’
modes) and flexible (working only in l,

the transitive mode). The elements of
the functional diagram are shown on
Fig. 3.2.

A directional effect link transforms the information without affecting
the work of the previous link (Fig. 3.2, a).

A node is an information branching point (Fig. 3.2, b)

Vi=y.=§8-
A summer (fig. 3.2, ¢) can add and subtract signals y=x, % x,.

27

Figure 3.2- Elements of ACS diagrams



The sector is filled for a case of subtracting corresponding signal (Fig.
3.2,d).

I, =1, + I, is a node of the key chart (Fig. 3.2, e).

The various kinds of the diagrams such as a block-diagram,
functional diagram, key diagrams, etc. are used to represent the control
systems.

A block-diagram as an element of the design documentation is a
graphical representation of the system which indicates the main blocks
and their interconnections, signals and actions.

A functional diagram is the graphical representation of the system
which shows all the blocks, their interconnections, signals and actions.

A key diagram is the graphical representation of system which
indicates all the elements, their marks, nominal values and other
characteristics, the connections between elements and blocks, signals
and actions. The sockets and the wire soldering points are plotted on the
circuit diagrams.

The structural diagram in terms of the control theory is the graphical
representation of the system mathematical model, including links,
summers, communication channels and indication of signals and actions.

3.2. Classification of the ACS

There is wide variety of automatic control systems. Therefore there is
no singular indication which will become a base of division all systems
into the classes totally reflecting the whole mass of properties. Let us
consider ACS classifications based on certain attributes.

The ACS can be divided on the basis of:

1. Their purpose:

- power Fener%y);

- technological;

- transport;

- navigating;

- orientation systems;

- life-support systems;

- s¥nchronizing system, etc.

2. The type of energy:

- mechanical;

- hydraulic;

- pneumatic;

- electric;

- combined.

3. The control principle:

- controlled by setting action;

- controlled by disturbance;
- controlled by deviation;
- combined.
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4. The number of feedbacks:

- open-loop;

- closed-loop;

- single-loop system;

- multiple-loop system.

5. The number of controlled variables:

- single-input/single-output (SISO);

- many-input/many-output (MIMO).

6. The degree of dependence which exists between several inputs
and outputs:

- separated;

- multilinked.

7. The form of the setting action:

- stabilization systems (g(t)= const );

- program systems ( g(¢) —function known beforehand);
- tracking systems (g(t) —time function unknown beforehand);
- terminal systems (value gl¢ ) is given at the final time point ).

8. The amount of the prior information about the controlled object and
disturbance:

- ordinary (with the full information);

- robust (with the incomplete information);

- adaptive (with information minimum):

- self-adjusting;

- self-organizing;

- self-learning (intellectual);

- self-developing.

9. The character of the process:

- continuous (analog);

- discrete:

- relay;

- pulse;

- digital.

10. The degree of definiteness of parameters and structures:

- determined;

- probabilistic (stochastic).

11. The steady-state accuracy:

- static (by setting action, by disturbance);

- astatic (by setting action, by disturbance).

12. The equation character:

- linear;

- nonlinear.
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13. The availability of features:
- without delay;

- with delay;

- stationary;

- non-stationary;

- with concentrated parameters;
- with allocated parameters.
14. Stability:

- stable;

- unstable;

- neutral.

15. On other characteristics:
- controlled;

- uncontrolled;

- observable;

- non-observable;

- sensitive;

- rough;

- identifiable;

- non-identifiable;

- fault tolerance, etc.

Comprehe

nsion questions

1. What elements form a system functional diagram?

2. What is the feedback?
3. What is the block diagram?
4. What is the key diagram?

5. Iltemize the classification ACS attributes.

Lecture Ne4

MATHEMATICAL

Lecture outline:
1. Construction of ACS mathem

DESCRIPTION OF ACS

Analysis is the essence the
intellectualism.
George Zimmel

atical model.

2. ACS mathematical description.
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4.1. Construction of ACS mathematical model

The mathematical model or mathematical description of ACS is the
aggregate of mathematical correlations describing the dynamics of the
system. As correlations we can treat algebraic, differential and difference
equations, tables, graphs, plots, diagrams, algorithms, programs,
matrices, transfer functions, operators.

The mathematical models of ACS are widely used to solve system
analysis and synthesis tasks by mathematical methods. The type of
mathematical model is determined by both system and current task.
Different tasks of automatic control theory require the models of different
accuracy to be applied. As it is impossible to create a model which will
absolutely correspond to the system, we should choose which factors
should be taken into account and which could be ignored in every case.
This task is creative and cannot be solved unambiguously. The more
factors are taken into account to increase the exactness of the model in
the process of modeling the more cumbersome model becomes.
Complicated equations are solved approximately, and therefore the more
difficult the equation is, the less exact the decision can be found. In
addition, cumbersome equations are more difficult to solve and to draw
any conclusions.

The procedure of the input-output equation formation can be as
follows:

1. Divide the system into elements. Determine its input and output
signals (reference, disturbances, control actions, controlled variables).

2. Construct equations which connects the input and output signals
using the physical laws of element operation or the experimental data.

3. Choose an operating point or the system operating mode.
Construct equations of the steady-state element mode.

4. Enter the steady-state mode deviations. Formulate equations of
element dynamics.

5. Subtract the equation of the steady-state mode from the dynamic
equations; get the element dynamic equations for the operating point
deviations.

6. If needed and possible, make linearization of the obtained
equations.

7. Make up the element block diagram; find the linear elements
transfer functions.

8. Make up the system block diagram. Exclude intermediate variables,
get an input-output equation and transfer functions for the linearized
systems.

9. Check up the adequacy of obtained got model, for example, by
comparing experimental characteristics and estimated step responses
(adaequatys (lat.) - equal).

Let us consider for linearization of equations in more detail.
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If a nonlinear function F () does not contain the breaks, fractures or
ambiguities, it can be linearized by a tangent or a Taylor series expansion

(Fig. 4.1).

y - F(g)lk y A
£ Fl@) 5 v / /

/ I -

: > B

gup g g

a b c
y 3 y A

‘

e ¥

d e

Figure 4.1- Static descriptions:
a — link; b—smooth; c—-break; d- fracture; e —ambiguity

It is possible to apply static linearization for the constant signals (Fig.
4.2).

F(g)| _ =k g, k =2 (4.1)
8=8 st st g
y=Fg)
F(g)
Ves [~ i
| k.2
/ :
0 s g

Figure 4.2 - Static linearization

These functions agree in the operating point.
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In the case of small-deflection linearization we can apply a tangent
linearization (Fig. 4.3)

oF(g)
F(g)=y. +k,  Ag, Kk, _=—2 , Ag=g—g. . 4.2
(g) yss tang g tang ag gzgss g g g_s_s ( )
y=F(g) ,
Yss
/ i
0 g.\'.K =g

Figure 4.3 - Tangent linearization

If the function depends on multiple argumentSy=F(g1 gz,y,y,...), it
can be developed into Taylor series (Broke Taylor - 1685-1731),

OF (...)
y = F (glss’ngs’yss’O"")+ Ofy—g,] g;z?zs:q Agl +
OF (...) OF (...) OF (...) .
- > 2 = ss A s e— = Ss A XXX
+ —agz i;?zssss g, t é’y j :’1 y + ﬁy £ :’1 Y+
278255 8278255

Then we keep only the variables of the first infinitesimal order and
neglect the infinitesimals of higher orders

Yy=y¢ t+ aAgl + bAg2 +cAy +dAy + ... .

Thus we obtain a linear equation.
If the working point deflection is considerable, the secant
approximation (the least-squares method) will be applied (Fig. 4.4).
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|
-

0 x % X X

min ap max

Figure 4.4 - Least-squares method

If any oscillating processes occur in the nonlinear systems, we should

apply the harmonic linearization. For the random actions the statistic
linearization is used.

4.2. ACS mathematical description

Fig. 4.5 represents the motor rotation speed stab1i_l(i32ing system.
+ —

+ e TR(0)

@ ) ) l
'ﬂ‘@ g(i’ ACS _mit)

- Q

Figure 4.5 -The motor rotation speed stabilizing system

We divide the system into elements: a setting potentiometer (SP), a
power amplifier (PA), an electrical motor (EM) with excitation winding

(EW), a tachogenerator (TG), a working mechanism (WM) and designate
inputs and outputs signals.

Then we find the dynamics element equations.

SP: us(t)=kspg(t),
CD: ul(t)=usp(t) - upg (1),
PA: uy, (¢)=kpu (1),

EM: uy, ()=Ryy iy (’)“”(’)(ii_q:’

u, (t)=Raia (t)+Ce(D(t)a)(t)=const ,
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_ . do
T,(1)=C,®(t)i (t)-J e

TG:  uyg(t)=kpgo(t).

The nonlinear function (D(ie) is shown on Fig. 4.6.

D 4

I
I
I

/| I

1
0 i
Figure 4.6 — Steady - state characteristic of electrical motor stator

We choose a steady-state mode operation point
D s Digr Urges s Ssss Uiss» ipss » bass » Usss» Ues» 1gs - It COrresponds to steady-

state value of the input signalgss, Trss.

We equate the steady-state mode

uSss =k SPg sS ’ ulss =uSss - uT Gss? ”Wss =k PA uIss ’ ”TGss =kTGw SS ’

qus=RWiWss; ua = Raiass + Ced)sswss; MCD=CMQ)SS .ass; (43)

(Dss =q)(iWss ) .

We introduce the steady-state mode deflections
8=8,tAg,0=0,+A0,0 =D +AD,us; = g, + Ay, uy = uy  + Auy,
iSss = iWss + AiSss’ia = iass + Aia’uss = uSss + Auss’uw = UWss’

T, R =T +AT, R

rss

and obtain the element dynamic equations
dAD

Uggy +A”S =kSP (g ss +Ag) s Uy +AuW =RW (iWss +AiW ) To dt ’
Uy tAU=ug tAugure = urgy + Augg,

=R (i +Ai )+ - +
uass Ra(lass Ala) Ce(CDSS ACI))((DSS AO)),

Upyss +Auw =kPA (ulss +A”I )’ (4 . 5)
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dAw
TI’SS +ATR _Cm (CDSS +Aq))(l +Al )-J7
UTGss +AuTG =kTG ((Dss +AO))’
D +AD=D (i, +Aiy, ).

We subtract the dynamic equations from the steady-state mode
dAD

equations Aug=kgpAg, Aug, =Ry, Aigy, +0)7,

Au;=Aug-Aug, 0= RaAia +C ODOAw+ CeoassA(D + CeA(DAco )

€ss
Attyy, =k p,A AT =C, ® i +C, i &+C, ADAi JI8e 46
A i m-ss'a” “m'ass”  “m o™ g (4.6)
Augpe = kAo, ACI)=(I)(1WSS+A1W)-®(1WSS).

We linearized nonlinear equations, drop the sign A, and introduce the

differential operator =%

ug=kgg, uy, =Ry i, +op®,
”1 =Ug - Uy 0=R,i +C,® 0+Co0 D,
u, =k,, u,, T,=C,i,+C,i,  D-Jpo, 4.7)
oD(iy )

Uy = ko0, O=0 +— W2 Aiy, , ® =aiy, .

ln W s

We eliminate intermediate variables.
For the motor we get

u,=Ri +taopi,;
10=Ri +C,® o+C,o . ai,; (4.8)

\MR = CMq)ssia + CMiassaiW - J
Eliminate i,,,i,
1

Iyy= Uy, = ;uw,where T1=L electric magnetic time
Ry rapw Ry (Typ+l) Ry,

po’

constant of motor,
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CeDgy Cegsa 1

l,= - Uy,
“ R, R, R, (T,p+1) "
2 .
T=_Cecmq)ss o - CeC, D505 1 o+ Coulass® u,, — Jpo.
’ R, R, R, (T,p+1) " R, (T,p+1) "
Thus we obtained a single motor equation.
Let us put down it in more convenient form
2
R R (Tp+1Mz=-C,C, @ “Ry(T,p+1)o~
-C,C, 0 o auy +C i aR uy-R Ry J(Tp+1)po. (4.9)

We move the output signal and its derivatives to the left side of the
deviation, and the input signal with its derivatives to the right side
(T,p+1)(CeCpu® Ry +R, Ry Jp) 0=
=(C piyestR, - CoC,,® 0 )ty - R, Ry, (T, p+1)T. (4.10)

m lass S§8S

We divide both sides of equation by (C, C, @ Ry ). Finally we
obtain the input-output equation for the engine in operator form

(T p+D(T, p+Do(®) = k iy, (0-k (T, p+1)T,.(9), (4.11)
R J , : : :
where T2=+2 is the engine electromechanical time constant;
c,C O
€™~ m = ss
k,= '“”aRz" - O is the engine control action transient
c,2.°R, PRy
coefficient;
k, =L2 is the engine disturbance transient coefficient.
CeCW@ss

We obtain the input-output equation by substituting the differential
operator with the operation of differentiation. The differential form of the
equation is as follows

2
d”o do dT,

The input-output element equations can be presented in diagram form
after the following correlations are taken into account
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u=kspg u;=ug-urg, Uy=kpu;, U=k,
k k
= L uy, - Z_T.
(T, p+1)(T, p+1) (T,p+1)

We can draw an ACS block-diagram (Fig. 4.7).

uglt)  u(f) ()

&) ' al 4&_1__@(0
A e s I
U(1) 7% L
| K |¢

Figure 4.7 — Structural diagram of ACS

Then we eliminate other intermediate variables ug,u,,uy, ,u;; in order
to obtain

oa(t)=klkPA(kSPg(t)_kTGw(t)) 5 1),

- (4.13)
(Lip+)(T,p+1) I,p+1
or
(Lp+ I Gp+ 1) +hikp i) t) =hikp ki spg (1) Fo (T p+ DT, (2)
and in such form
(1) = ikp ks 2(0) - f(hipt1) T,(r). (4.14)
(Lip+1)Tp+ 1)+ kjkp kg (Lip+1)Tp+ 1)+ kikp kg
The system input-output equation short form is
o(?)=0 g(p)g(t) +@ f(p)Tr(t) (4.15)
and the differential form is
dzoo do dT.
T, 2 +(1 + 75); +(+kykp herg)lt) = bk p ke gpg(2)- by (T dt’ +T.(0)).
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Terms:
—  mathematical model;
— mathematical description;
— static linearization;
—  operating point;
— tangent linearization;
—  secant approximation;
— least-squares method;
—  steady-state characteristic.

Comprehension questions

1. What is the mathematical model?

2. What kinds of linearization do you know?

3. What is harmonic linearization?

4. What is system working point?

5. Describe the procedure of obtaining the input - output equation.
6. What kinds of static characteristics do you know?

Lecture Ne 5

MATHEMATICAL DESCRIPTION OF ACS (ENDING)

If we really know something, we know
it due to the study of mathematics.
P. Gassendi

Lecture outline:
1. Forms of ACS equations recording.
2. Static and dynamic characteristics of ACS.

From here on we consider the simplest systems: linear, continuous,
ordinary, stationary, etc.

5.1. Forms of ACS equations recording

The ACS mathematical model can be represented in several forms.

5.1.1. The standard form of the input — output
equation recording

Let the system have a single setting action, a single disturbance and
a single output (Fig. 5.1).
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lﬂt)

t t
g(@) ACS 0]

Figure 5.1 —-The functional diagram of ACS

We set the output signals and their derivatives to the left side of the
input-output equation and the input signals with its derivatives to the right
side of the equation

d! g1
dt{+c1 dt"lf+m+ clf(t). (5.1)

+..+b,g(t)+ ¢,

If this equation divided by factora,, the factors a; /a, will get the

dimension sec i
Odn-) | ldn 1-} | n Od gl ld lg
oo y(t)

n n—1 m m—1
an dt an dt an an dt an dt

ot L g(£) + -0 +-1
#lt) ' a dt'!

a a
n n n

+

C
+ et —lf(t).
an

For the steady-state mode it will be

bm ‘I
Vss =a_gss +a_fss'
n n

A coefficient bm =k
ap

(gain) which has the dimension of [y]/[g].

2 is the system reference action transfer coefficient

A coefficient c_’=k P is the system disturbance transfer coefficient
ap

(gain) which has the dimension of[y]/[f].
The static equation can be easily obtained from the dynamic equation

y=kgg+kff. (5.2)
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If n is an order of the equation, an order of the system, then the model
feasibility conditions are: m<n,/<n.

The direct current motor input - output equation is as follows
d’w dw dT,,
Tsz—dtz +(TI+T2)E+w(t)=kuue(t)-kTr [T,—dt +7, (1) |-

5.1.2. The operator form of the input - output equation recording

Let us introduce the differential operator p Thus we obtain

d

dt’

aop"y(t)+a,p"'1y(t)+...+any(y)=b0pmg(t)+
)

+oth, g () +eop' £ (2)+te, £ (1
or

A(p)y(t)=B(p)g(t)+C(p) £ (1), (5.3)

where
A(p) = aopn + alpn_l + .o + an, B(p) et b()pm + blpm—l + ot bm,
C(p)=cyp' +ce,p" "+t ¢y

After solving the input - output equation (5.3), we get

B(p) o(t)+ C(p)

t)=
Y= ¥ ap)

———=f(t)=W (p)g(t)+W (p)f(t), (5.4)

where Wg( p) is the system reference action transfer operator;

Wf ( p) is the system disturbance transfer operator.

The engine equation is

ky AT, t).
m(t)_( T,p+1)(Typ+1) “ow ()= T pr1 2 l)

(5.5)

5.1.3. The input - output equation image recording
There exist Laplace transformations (Pierre Simon Laplace, 1749 -

1827):
a direct transformation
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Y(s)=Lp()}=[yc)ear (5.6)

an inverse transformation

y(e)=C"{y =5 j Y )eStds, s=a+ jo, (5.7)
Y,

where y(t)— is the original function, ¥(s)— is the image.
Let us apply Laplace transformations to the input - output equation

(5.1) under the zero initial conditions. Thus we obtain the input - output
image equation

aosnY(s)+alsn_1Y(S)+...+anY(s)=
=b,s"G(S)+..+b G(s)+c,s' F(s)+..+c,F(s). (5.8)

In many books the same symbol is used both for the differential
operator p=% and for the complex argument p=a + jo.

To distinguish an operator from a complex argument we should identify
whether we have the original or the image equation. Let us solve the image
equation (5.8). We obtain

Y(s)= bys" +.. +me() s +...+¢ F(s) (5.9)
a,s" +..+a, a,s" +..+a
or Y(s)=W,(s)G(s)+W ,(s)F(s). (5.10)

The equation (5.10) can be presented in diagram form (Fig. 5.2).

Figure 5.2 — The structural diagram of ACS

Wg(s) being the system reference action transfer function,
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Wf (s ) being the system disturbance transfer function.

If f(t)=0,

Y(s)=Wg(s)G(s), (5.11)
then
Y(s)
Wg(s)=W(s)=?s) (=0 (5.12)

$(0)=5(0)=...=y" V=g

By analogy for W (s)

Y(s)
Wf(s)=m g(1)=0, . (5.13)

$(0)=j(0)=..=y(" V=g
For the electrical motor we get

ku kTC
Q(S)z(Tls+1)(T2s+1) U“(S)_T2s+1TC(S)' (514)

The transfer function is the ratio of output signal Laplace
transformation to the input signal Laplace transformation under zero initial
conditions.

5.1.4. Cauchy normal form (Ogusten Cauchy, 1789-1857, a French
mathematician)

Any differential equation of n-order can be replaced by » differential
equations of the first order with the help of additional variables X( 53Xy yeees X, s

named state variables or phase variables.
For example, the engine equation at 7, = 0 looks like

2
T2 (1 + 1) 2+ (1) = s (1),

de’ (5.15)
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Let us thus choose state variables

X, = @
! ’ A
e (5.16)
Then
.X.fl =x2,
) 517
a a a

These equations are called the state equations.

The output equation (it connects a system output signal with a state
variable) is o = x,.

Generally state equations are as follows

X; =a, X +a,px, +..+a;,x,+b8 +..+b,8 +n,fi+..+ nlpfp,

........................................................................................................ (5.18)
X, =a,X +a,,xX,+..+a,,x,+b,8 +..+b,8. +n,f+..+ nnpfp.

The vector-matrix form of the equation (5.18) is the following

x=Ax+ Bg + Nf, (5.19)
where
EN [ 2 | [ f1 ]
X, state g, | reference 2 disturbance
al B vector’ 8= - vector - - vector.
L Xn 8 L fl’ i

Matrixes A, B, N are matrix coefficients |a,},[b, ][n,] the matrix

dimensions are
A-(nxn),B—(nxr),N—(nxp), (5.20)

where n is the system order, r is the number of reference actions, p is the

number of disturbance actions.
The output equation generally looks like

44



y=Cx+ Dg+ Mf . (5.21)
The Cauchy normal form is convenient because of the differential state

equation being of the first order and easily solved and the output equation
being algebraic. If we know x,g and f, we can easily obtain y. The

vector-matrix state equations and output equations have a compact form.
5.2. Static and dynamic characteristics of elements and systems
5.2.1. ACS static characteristics
Let us consider a system having scajlpar input and output (Fig. 5.3).
l

—> ACS |—

Figure 5.3 — The functional diagram of ACS with scalar inputs and output

The static equation for the system of this type is as follows:
y=k,-g+k,-f, k(0. For this equation we can obtain two sets of the

characteristics (Fig. 5.4 and 5.5).

The element or system static characteristic is the dependence of an
output signal on the input signal in the steady-state mode.

All the actual components have nonlinear static characteristics.

=0 £,>0 £>0 AV =B

Jky
/ 0 ,2" \ g< g'_w‘i{
<0 D\

<0 &= 8um

Figure 5.4 — The adjusting characteristics Figure 5.5 — Loading characteristics
5.2.2. ACS dynamic characteristics

There exist two types of the ACS dynamic characteristics, the time
characteristics and the frequency characteristics.

The time characteristics include step response and pulse transitive (or
weight) characteristics.
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The frequency characteristics include the amplitude frequency
characteristic (AFC), phase frequency characteristic (PhFC), amplitude
phase frequency characteristic (APhFC), logarithmical amplitude frequency
characteristic (LAFC), logarithmical phase frequency characteristic
(LPhFC), etc.

5.2.2.1. Time characteristics

A step response is a reaction of an element or system to the unit step
excitation 1(¢) under the zero initial conditions

hg(t)= y(t) is a reference step response;
8(1)=1(),

f(t) = 09
(0),5(0),... sy Do) =0,

hf(f) = y(t) is a disturbance step response.
g(t) =0,

f()=1(),
$(0),es y* D0y = 0.

The step response can be found by the transfer function
1
Y(s)=W(s)G(s), g(t)=1(t), G(s)=—,
s (5.22)

W) ner)= L‘l{m} = j w(t—1)I(t)dr = fw(r I(t =1 )dr.
s 0 0

A

H(s)=

The impulse response is a reaction of an element or system on ¢ -
function under the zero initial conditions l(t) is a Heaviside function (Oliver

Heaviside, 1850 - 1925, an English physicist) (Fig. 5.6)

g0 4
1)

1

0 >
t

Figure 5.6 — Heaviside function
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Hg(£)= y(2) (5.23)
g(t) = §(t)9

f(t) = 09
9(0),s "~ D0y =0,

We(t)=y(@) (5.24)
g(t) =0,

f(®)=5(),
7(0),... ty "~ D) =0,

where h'(t) = w(t) is a unit-pulse response or weight function.
,when t = 0, : , :
o) = 20 WhEll — is a Dirac function (Pol Dirac, 1902 —
0O,when ¢t # 0
1984, an English physicist) (Fig. 5.7).

o(?) ‘

0

tr

Figure 5.7 — Dirac function
The properties of Dirac function:

_L)S(t)dtzl(t), (t)=8(t), _L()p(t)S(t)dt=(p(0),

where @ (t) is any kind of function.
We can find weight function using transfer function

Y(s)=W(s)G(s), g(t)=6(1), G(s)=1,

H'(s)=W(s), K@t)=w()= 1 {W(s)} = %. (5.25)

With applying a weight function we can find the system reaction on any
action

Y(s)=W(s)G(s), (5.26)
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therefore
y(t)= jw(t —1)g(t)dr. (5.27)

We use the originals convolution theorem. The step response and the
unit-pulse response can fully describe the ACS dynamics.
Step and pulse responses can be obtained experimentally (Fig. 5.8).

g(0) — N0)

1(2), 5(2) h(0),h'(2)

Figure 5.8 — Obtaining of step and pulse responses
5.2.2.2. ACS frequency characteristics

An amplitude-frequency characteristic (AFC, A(»)) is a dependence of
the output signal amplitude ratio to an input signal amplitude on frequency
(Fig. 5.9, 5.10)

g(t)z asinot, y(t)= b(co)sin (cot + (p(O))),
b(»)

A@)=—"=,

A(0) =W (jo)|={U(0)+VE(0).

g® W) ¥

VAT Ao

Figure 5.9 — Obtaining of frequency characteristics

A(®)
A(0)
0,707.4(0)

B
y

w, rad/sec

Figure 5.10 — Amplitude-frequency characteristic
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A phase-frequency characteristic (PhFC, (p(oo)) is a dependence of the
output-to-input phase shift on the frequency (Fig. 5.11)

V(o)

(p(oo) =arg W( jo)) = arctgm :

'

o(w),rad 4

-

0 o, rad/sec

Figure 5.11 — Phase-frequency characteristic

When using this formula to calculate the phase we should take into
account signs of imaginary V(@) and real U(w) parts of W (jo).

The amplitude-phase-frequency characteristic (APhFC, W (jo)) is a
trajectory of the vector W (jo) movement at frequency @ change (usually

ranged from 0 up to + «) (Fig. 5.12).

jvi

b
ﬁ -\ w=0
J U
W(jo)

Figure 5.12 = Amplitude-phase-frequency characteristic

A J

The frequency is logarithmically scaled in rad/sec on the abscissa axis.
The segment of axis corresponding to the 10 times frequency changes is
called a decade. The input-to-output signal relation of the device is
expressed in decibels when constructing LAFC on a y-axis:

L(w)=201/g A(o),dB .
LAFC and LPhFC are logarithmic AFC and PhFC (Fig. 5.13).
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Bode Diagram

40 T T Y ol al i il Sl el e ol il Ll
i ' ' I I ] " [ [ RN [

i i i I ] " BB B BB E [

i i i i@ 8 6 B [ [ N [

Magnitude (dB)

Frequency (rad/sec)

Figure 5.13 — LAFC and LPhFC

John Neper (1550 - 1617) was the Scottish nobleman. In 1614 he
issued the book «The Description of the wonderful logarithms table» in
Edinburgh.

Terms:

— transfer function,

— state variables,

— output equation,

— static characteristic,

— step response,

— unit-pulse response,

— amplitude-frequency characteristic,

— phase-frequency characteristic,

— amplitude-phase-frequency characteristic.

Comprehension questions

. What forms of ACS equation recording do you know?
How can we obtain the static equation from the dynamic one?
What is a Laplace transformation?
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4. How can we replace a differential equation of n-th order by n
differential equations of the first order?

5. What is a step response and pulse response?

6. What are of the properties of Dirac function?

7. What kinds of frequency characteristics do you know? What are
their peculiarities?

Lecture N26

TRANSFER FUNCTIONS OF CONTINUOUS LINEAR STATIONARY
ACS

As far as the laws of mathematics
refer to reality, they are not certain,
and as far as they are certain, they do
not refer to reality.

Albert Einstein

Lecture outline:

1. Transfer functions of series, parallel and feedback link connection.

2. ACS block-diagram transformation rules.

3. The system transfer function getting by means of Mason’s formula.

4. The ACS reference and disturbance transfer functions, in respect
to error.

6.1. Transfer functions of series, parallel and feedback links
connection

6.1.1. Series links connection

A series links connection is a type of links connection when the output
signal of the previous link becomes the input signal of the following link

YVi=8in (Fig. 6.1).

G(5)=G(s) S| ¥Yi(s) Y,(s) Y,(5)

( ) Ym—l(s)
I - C ( ) - "i( = Gm-](s)

Gﬂl(s)

Y, (s)=¥(s)

m

H/m— 1 (‘)

Figure 6.1- Series links connection

Let us find a transfer function of the series links connection. The
output signal image is connected with the input signal image by the
transfer function
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Y(s) =W, (s) Ym_l(s) =W, (s) . Wm_l(s)-Ym_z(s) = .=
W, () W_i(s)-W(s) G(s). (6.1)

According to the definition we have W (s)= G(s) From here
S

w()=T1w,(s). (6.2)

l

In the case of series links connection these transfer functions are
multiplied.
Let us consider the series link connection frequency characteristics.

We substitute s = jo in transfer function: W (jw)=T]W,(jw). If to present
i=1

the transfer complex coefficient as

W, (jo)= 4,(0)e™ ), (6.3)

1

m m 'iq’i(“’)
then we get W(jo)=]]4, (o)™ =]] 4, (w)eji=1 = Aw)e@).

Thus,

i=1 i=1

A(0)=TT4,(). (6.4)

0(0)=Y 0,(0). (6.5)

In the case of the series links connection the magnitude-frequency
characteristics are multiplied and the phase-frequency characteristics are
summed. We pass on to the logarithmic magnitude-frequency
characteristics

L(w)=201g A(0)= 201g§ A,(0)= g:L,. (@), (6.6)
L(w)= zL (). 6.7)
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Thus we get the logarithmic magnitude-frequency characteristics
equally summed. This property provides a simple method of LMFC
construction for the series links connection. We should remember that the
ACT is engaged in directed action links, but a transfer function is a
characteristic of the process of the data transformation conducted by the
defined link that is completely different from the electric key diagrams
which are engaged in elements transforming electric processes. For
example, for the circuit containing two series resistors (Fig. 6.2) the
correlation R = R, + R, is correct.

R1 R2

Figure 6.2 — Series connection of resistors
This circuit doesn’t include the directed action links.

On the other hand, if two amplifiers which gain factors are
k, =2, k, =5 connected in series, they will amplify a signal k=10 times.

6.1.2. Parallel links connection

A parallel links connection is a type of links connection when the input
signals of all links are equal, and the connection output signal is equal to
the sum of element output signals (Fig. 6.3).

G(s) |

Figure 6.3 — Parallel links connection

Let us find the transfer function of the parallel link connection. We will
express the output signal image in terms of the input signal image

Y(s) =Y, (s) +Y, (s) +w.t+Y, (s) =W, (s)Gl (s) + W, (s)G2 (s) +..t+t W, (s)Gm (s) =

= (W1 (s) +W, (s) +.wt+ W, (s))G(s).
This implyies
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W(s)= S W,(s). (6.8)

In the case of parallel links connection the transfer functions are
summed.

In the case of parallel links connection it is more useful to express the
frequency characteristics in terms of the rectangular coordinates

W(jw)=§ (Jw)=§l( ()+J’V,~(w))=§llU,(w)+JéVi(w)=U(w)+JV(w),
where
U(0)=20,(0), (6.9)
V(w)=3 V(). (6.10)

For this type of connection the Nyquist system diagram are obtained
by the summation of the Nyquist element diagrams. Do not confuse the
parallel link connection up the parallel element connection.

If two amplifiers which gain factors are k, =2, k, =5 are connected in

parallel, they will amplify the signal seven times.
6.1.3. Feedback links connection

The first link W, (s) is enveloped in the feedback (FB) by means of the
second link W,(s) (Fig. 6.4).

The connection has two paths of a signal transmission: a forward path
which goes from input to output and the feedback line passing a signal
from output to input.

A two-link feedback connection is a type of connection when the
output signal of the first link becomes an input signal of the second link,
and the input signal of the first link is the algebraic sum of an input
connection signal and an output signal of the second link.
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Y(s)

<
«<

G(s) E®) [y ®
EY”’(S) Wy(s)

Figure 6.4 — Feedback links connection

A feedback is considered positive, ife=g+z, and negative, if
E=g-73.
Let us express the connections of all signals images with the link

transfer function
E(s)=G(s)+ be(s),

Y(s)=w,(s)- E(s),
Y

(8)=W,(s) ¥ (s).

Here on the "+" stands for the positive feedback (PFB), and the
means the negative (NFB).
We will exclude the intermediate variables

Y(s)=W,(s)|G(s) £ ¥, (s)| =, (s)[G(s)

oW I ¥ls) 9, 5)

Here on the "-" is for PFB and the "+" is for NFB.
We solve for the transfer function of the feedback connection. The
closing formula is as follows

W, () (s))
G(s).

w(s)= Y6 m) (6.11)

Negative feedbacks are widely used in amplifiers in order to stabilize
the transfer coefficient.

For example, the transfer coefficient of the amplifier changes in the
range k,=100+200. If it is enveloped in the feedback with the factor

k, =0,1, we obtain

ko= 190 g0 - 200
1+100-0,1 1+200-0,1

- 7
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Thus, the 50% gain instability is reduced to less than 5 % but it is
attained at the expense of gain decrease.

6.2. ACS block-diagram transformation rules

Two diagrams are equivalent if the identical input signals cause
identical output signals.

If it is difficult to find pure typical connections, we can apply structural
transformation in order to simplify the complex ACS construction. These
are some rules of block diagram transformation.

Rule 1:
G(s) 1 2 Yi(s) G(s) 2 1 Y(s)
Y,(s) S A0
< Y(s) D Y,(s)
a
Rule 2:
G(s) | (%1 82 ¥s)
A E
G,(s)
G,(s)
b
Rule 3:
G(s) 76 Y,(s _ G(s) o) L Yl(s);
V() T
i L T_]%.()
W(s)
C
Rule 4:

G(s) - Y,(s) G(s) Y,(s)
Yy(s)
- — o —>
d

Figure 6.5 — Block-diagram transformation rules
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G,(s) .:. ¥(s) = G,(s) W(s)
’GZ(S)

e
Rule 6:
G,(s) .x‘ Y(s) — G,(s) ? W) Y(s)
‘Gz(s) Wl(s)
TGz(s)
f
Rule 7:
G,(s) 8 Y\(s) Gls) A Y.(S):
X Yis) = Y:(s)
G,(s) - G.(s)
g

Figure 6.5. Ending

Nodes can be transposed (Fig. 6.5, a)

Adders can be transposed (Fig. 6.5, b).

If a node is transferred through a link with a signal, the inverse link
should be added (Fig. 6.5, c).

If a link is transferred through a node with a signal, the same link
should be added (Fig. 6.5, d).

If a summer is transferred through a link with a signal, the same link
should be added (Fig. 6.5, e).

If a link is transferred through a summer with a signal, the inverse link
should be added (Fig. 6.5, f).

If a node is transferred through a summer with a signal, the one more
summer should be added Fig. 6.5, g).

Example: we obtain a diagram (Fig. 6.6).
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Figure 6.6 — Block diagram of the control system with crossing loops

Let us find the transfer function.
The typical links connections formulae can not be applied as the loops

are crossing. We transfer the node 1 through the link Wz(s) and through
the node 2’ with a signal course. Thus the link % should be introduced
L \S

(Fig. 6.7).

G(s) 1 2 2'1 Y(s)

Wi(s)

Figure 6.7 — Block diagram of the control system with feedbacks

Now we can apply the closing formula and the series connection
formula in series:

O )

_ 1+W, (S)Ws (s) _ W, (S)Wz (s)
W)= . (s) W) L 6 W) (6.12)
1+ Wz(s)Ws(s) ) Wz(s)

6.3. The system transfer function derivation by means of
Mason’s formula

The graph theory allows finding linear system transfer functions by
any input and output of system without any structural transformations. Let
us scrutinize this method with the example. The system is presented on
the Fig. 6.8.
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¥(s !

X(s)

A

W(s)

Figure 6.8 — Block diagram of the control system with crossing loops

A graph is a set of nodes and branches (edges, arches).

Let us build the system signal flow graph (Fig. 6.9), each signal
assigned the graph node, each link assigned the directed graph branch
the weight of which equals to its transfer function.

G(s) X)) W) X,65) | X() Wis) Y(s)

1

Figure 6.9 — Control system graph

The nodes vanish from the graph because we have the same signal in
both input and output. The graph has no summers because of the node
signal being equal to the sum of incoming signals.

The forward path is an open input-output circuit of graph branches.

The loop is a closed circuit of branches in which each node is passed
only once.

The nontouching loops have no common nodes.

The system transfer function between an input g and an output y can

be found by means of Mason's formula
" fp

zWﬁr,i(s)Ai(S)
D (s)="=" NORER (6.13)

where W (s) is a transfer function of i-th forward path;

n_ is a number of forward paths between an input g and an output

fo
Vs

n] 2 n3
Als)=1-2W,(s)+ > W, (s)- D W, (s)+..is a graph determinant;
=1 k=1 =1

Ai(s) is a determinant of graph complement to i-th forward path;
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n,,n,, n,,..is a number of loops, nontouching pairs, nontouching

threes, etc;
W,,(s) is a j-th loop transfer function;
W,,(s) is a transfer function product of k-th nontouching pair;
W, (s) is a transfer functions product of /-th nontouching three.

In the example we had

n,=1,n,=0,n,=0 ..,
Wll(s)=—W1(s)-W4(s),
le(s) —Wz(s)-W3(s)),

Al(s)—l,
_ Y(S) _ Wl(s)' W, S)
2= TTm meme e O

Thus we obtain the same answer as in the previous example.

6.4. The ACS reference and disturbance transfer functions,
in respect to error

Let us consider the system with the single unit negative feedback
(Fig. 6.10).

Y(s

Figure 6.10 — Control system with unit feedback

We can distinguish six transfer functions:
1. The open- loop transfer function by the setting action

W)= () W)Wy ()= (). (615)
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2. The open-loop transfer function by the disturbance action

=W,(s). (6.16)

3. The feedback transfer function by the reference action

Y| wmem(s) W)
CDyg (S)_ G(S) f ~0 = 1+ Wl (S)Wz (S) = 1+ Wﬁ, (S)ij (S). (61 7)
4. The feedback transfer function by the disturbance action
_ Y(s) _ Wy (s) _ Wf(s)
2 ()= F (W e=0" Tem () 1w ©1®)

5. The feedback transfer function in respect to the error caused by
reference action

_ 1 _ 1
1+ W, (S)W2 (s) 1+ w, (s)

s)

©.(9-2.0)- 1) 6.19)

fEO=1—CD(s)

6. The feedback transfer function in respect to the error, caused by
the disturbance (for the given diagram it coincides with the closed-loop
transfer function by the disturbance action to a single sign)

@, (s)= - P_VT;)(;V)Z 6 (6.20)

On the basis of the superposition principle we can put down

Y(s) = CD(s)- G(s) +@, (s) F(s);

E(s)=@ (s)- G(s)- @ ,(s)- F(s). (6.21)

The (6.21) helps to construct input-output and error original equations.

Terms:

—series links connection,
—parallel links connection,
—feedback links connection,
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—graph,

—Mason’s formula,
—nontouching loops,
—phase-frequency characteristic,
—open-loop system,

—feedback system.

Comprehension questions

What is a series links connection?

What is a parallel links connection?

How can we find a transfer function of series links connection?
How can we find a transfer function of parallel links connection?
What is a purpose of the negative feedback?

Which diagrams are equivalent?

Which are the ACS block-diagram transformation rules?

Why do we use the Mason’s formula?

What transfer functions has the closed-loop system?

OCONOORWN =

Lecture Ne7

THE APPLICATION OF THE STATE SPACE METHOD FOR
CONTINUOUS LINEAR ACS

Lecture outline:

1. The state and output equations for continuous linear automatic
control systems.

2. The solving of the state and output equations.

3. The vector-matrix block diagram and the matrix transfer functions
for continuous linear ACS.

The method belongs to the modern automatic control theory. It
allows finding response to any action under any initial conditions and
evaluating stability, controllability and observability.

7.1. The state and output equations for continuous linear
automatic control systems

The continuous linear system with r inputs and [ outputs can be
described by n differential state equations of the 1% order (Fig. 7.1)
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fl(t)l lﬁ(’)

g »(D
71 ACS g

Figure 7.1- ACS

X=a,X + Xy + et @y Xy + 018 + oo+ by p gy My fi + ot mpfps

(7.1)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

X, =Xyt apyXy + et Uy Xp + by 8y + ebpp gy + My fi t et mpy f

1],
where x=| ... | is a state vector;

Xn

8
g=| ... |is a reference action vector;

8

f =| ... | is adisturbance vector;

and by the algebraic output equations

yl =111 + 12%2 +...+ Un¥n + dllgl +...+ dlrgl’ + I’lllfl +...+ nlpfp,
(7.2)

yl =c11x1 +...+Clle +...+clnxn +dllg1 +...+dlrgr +l’ll fl +...+nlpfp,

A%
where y=| ... | is an output vector.

Vi

These equations in the vector-matrix form look like
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11
where A=| ...
anl
by
B=| ..
_bnl
‘11
Cc=| ..
‘n
41y
D=| ..
9
M
M =
ma
"1
N =
"n

Eventually the

x = Ax+ Bg + Mf, x(t(,),
y=Cx+ Dg+ Nf,

(7.3)

a
1n
is the state n-by-n matrix,

Ann

b
1r
... |is areference input n-by-r matrix,
bnr
“1n
... | is an output I-by-n matrix,
“In
dlr
... | is a reference I-by-r by-pass matrix,
dln
mlp
.. | is a disturbance input n-by-p matrix,
mnp
nlp
.. |is a disturbance I-by-p by-pass matrix.
"ip

state vector x moves through n-dimensional

Euclidean space and describes the phase trajectory. x(z) is the

representation point which characterizes the ACS state or the certain
phase of system movement at any instant (Fig. 7.2).
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x,(0)
x(t,)

0 x,(f)
x,(9) x(7)

Figure 7.2 — State space

The state space method performs the ACS dynamics by the
representation point motion in the n-dimensional Euclidean space.

The state variable characterizes the system element energy content.
We can choose the variables corresponding to the element energy content
or their linear combinations in the capacity of state variables (e.g.
capacitor voltage or charge, inductor current, angular speed and linear
velocity, mass shift, spring expansion, etc. as well as their linear
combinations).

So, if Xy =U. > Xy =U,, WE Can choose and other sets of state

variables Xy ZU T U, Xy = Zuc1 + 3”c2’ etc.

The state vector formal definition: The state vector is the minimal set
of variables x;,x,,..,x, knowledge of which in the initial time point

t,together with knowledge of input actions g (¢), ---» g (¢)s £,(t)s - f,(2),

inaninterval £, < t < t,, allows to determine all output signals J’l(t)’ ey
y,(¢) at any moment ¢ in the range (1, , t,).

7.2. The soluving of the state and output equations

Let f(r)=0, then the state and output equations took the form of
x=Ax+B g, x(to),
y=C x+D g.

Let us solve the homogeneous state equation with specified initial
conditions

(7.4)

x=Ax, x(t,). (7.5)
Let 7,=0. The scalar differential equation x=ax, x(0) has the
solution
x(t)=CeM,

65



where A is the characteristic equation root A =a, C is the constant of
integration determined by the initial conditions C = x(0).

Thus x(¢)= x(())eat.

The exponential function can be expanded in power series

X(1)=x(0) § (‘”)

We assume that the solution of the vector-matrix state equation is of
the following form by the analogy to the scalar case

x(t)=i(f‘z (). (7.6)

i=0

We check the assumption by substituting the prospective solution into
the homogeneous state equation x = Ax

o glji—1 o 4Kk © (Ar)
i§1 i! x(0)—Ak2=10 k! x(0)= A,E() i! x(0).

We introduce a new variable k=i-1.
Thus we obtain the identity. The solution of the homogeneous
differential equation is as follows

0= £ 4 1),

i!

We introduce a designation

i
O(1) = 3 (At)” _ At

i=0 i/

(7.7)

then x(z)=®(t)x(0).
®(¢) is the fundamental or transitive matrix.
If =0 it becomes a unit matrix ®(0)=1.
We solve the equation (7.5) with the help of Laplace transformation

x = Ax, x(0) (sI-4) X (s)=x(0),
sX (s) - x(0)= 4X(s), X (5)=(s1-4) " x(0),
sX(s)—AX(s)zx(O), x(t)=L'1{(SI-A)-1}><x(0).

If we compare both solutions, we obtain an equality
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dD(t)zL_l{(sI—A)_l} . (s)=(s1-4)". (7.8)

The fundamental matrix can be determined with the help Sylvester
formula (for aliquant roots)

@(t)=Y Fe"i', where F, =] ,
i=1 =1 ;“i _7"j

jEi

(7.9)

where A; and A ; being the roots of the system characteristic equation

det(\.I — 4)=0.
Now we solve the state equation (7.3) with the help of Laplace

transformation
x=Ax+ Bg, x(0),

sX(s)— x(0)= AX(s)+ BG(s),
sX(s)— AX(s) = x(0)+ BG(s),
(sl — A)X(s)= x(0)+ BG(s),

X(s)=(sT — A) L x(0)+ (sT - A"V BG(s),
X(8)=D(s)x(0)+ D(s)BG(s),

(1) = 0(e)x(0) + icp(t —1)Bg(c)dr.

The output equation y = Cx + Dg has the solution

»(e)= CCD(t)x(O)+Cjzd)(t—r)Bg(r)dr. (7.10)

The free component does not depend on the reference action g(z)
and is defined by initial conditions x(0) and properties of system alone.
The forced component depends on the input action g(z) and the system

properties and does not depend on initial conditions. This formula (7.10)
allows finding an output signal at any initial conditions and any input
actions.

For instance, we can find the step response

h(t)=c(;’)q>(t_f)3dr+m(t). 7.11)
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7.3. The vector-matrix block diagram and the matrix transfer
functions for continuous linear ACS

The state and output equations have the following form
x=Ax+Bg+ Mf,x(to),

y=Cx+Dg+ Nf.

(7.12)

We can present (7.12) with the block diagram (Fig. 7.3).
)

AU) VAU

\/ 1

Y [N ]

x(t,)
Mft) ﬂ Nfo)
{ Bg(®) V. x(t { Cx(f
g 5 g()g x(?) ya x()| o | X()é AXY)
Ax(?) [
Dg(v)

(5]

Figure 7.3—-Block diagram of ACS

The circuit contains the n-dimensional integrator with the specified
initial conditions.

Double lines indicate the vector signal paths. This circuit can be
submitted in the scalar form as well.

Example 1. Create a system block diagram presented by equations

{xl =2x, +3x, +4g,, {yl =3x, + g,

)2:2=5x1 +6x,+7g,, |y, =4x,.

Let us write out values of matrixes A, B, C, D:
2 3] 4 0
A= ;B = ;
_5 - {O 7}
3
0

i i 1 0
C= ;D= .
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ACS block diagram corresponding to the set of equations is shown on
Fig. 7.4.

[ 2 I
x,(t)

g/t v X,(0) x,(0) + 1,0

I o T e ey B

».(0)

Figure 7.4 — Example of block diagram

Example 2. Using the block diagram find the state and output
equations (Fig. 7.5).

The integrator outputs become state variables x, and x,, these
variables characterizing the block energy content. Other elements
(summers, amplifiers) do not store the energy.

f)

&

Figure 7.5 — Block diagram for example 2

X, =x,+3g,
Thus {.1 278 y=x1+2g+f,
x2=g,
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1 o]

c=[1 0], p=[2],

M=m, N =[1].

Now we can find transfer functions (e.g. using Mason formula).

We apply Laplace transformations to the state and output equations

under zero initial conditions and solve them
(s) = AX(s) + BG(s) + MF(s),
s)=®(s)BG(s)+®(s)MF(s),
=CX(s)+ DG(s)+ NF(s),

~ x &

S

(s)
¥(s)

(CO(s)B+D)G(s)+NF(s).

Thus W (s)=®(s)B=(sI — A)"' B is a system matrix transfer function

of the state caused by reference action,

W (s)=C®(s)B+ D= C[(sI —A)" ]B +D

is a system matrix output transfer function,

W.;(s) is a system transfer function between j-th an input and i-th
state variable,

W (s) is a system transfer function between j-th an input and i-th
output.

Terms:

— state variable,

— state equation,

— output equation,

— state matrix,

— input matrix,

— output matrix,

— by-pass matrix,

— fundamental matrix,

— block diagram,

— matrix transfer function.
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Comprehension questions

What is state variable?
What is state?
What is state equation?
What is output equation?
What isstate matrix?
What is input matrix?
What is output matrix?
What is by-pass matrix?
What is fundamental matrix?
. What is block diagram?
. What is matrix transfer function?

TN RWON =

- O

Lecture Ne 8

THE APPLICATION OF THE STATE SPACE METHOD FOR
CONTINUOUS LINEAR ACS (ENDING)

The mind can be almighty if it will not
serve for humanity.
Sophocles

Lecture outline:

1. The derivation of the state and output equations for continuous
linear ACS with the help of a controlled canonic representation method.

2. The controllability and observability of continuous linear ACS.

8.1. The getting of the state and output equations for continuous
linear ACS with the help of a controlled canonic representation
method

During the previous lecture we specified, that having chosen
corresponding state variables we can describe system by the » differential
state equations of the first order and the [ algebraic output equations. If
we have the ACS basic circuit, the signals describing the ACS element
energy content or the linear combinations of the elements can be chosen
as state variables. We shall consider the problem of choosing state
variable without the ACS basic circuit but with the transfer function
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Y(s) _bys" +b;s" "+t b, o, (8.1)
G(s) a,s"+ a;s" o+ a,
or the input — output equation

W(s)=

n n-—1 m m —1
aody+ald y+...+ay(t)=b0d—g+bd7g+...+bg(t),
dt" de" ! " dt™ Y™ ! "
m<n.

The announced problem is considered by the example of the ACS
having single input and single output (Fig. 8.1).

g W) »@®

Figure 8.1 — Block diagram of the ACS with one input and one
output

This problem has a number of solutions, e.g. to decompose the
transfer function into simple fractions and then to connect the elements
corresponding with the certain fractions in parallel (a parallel programming
method); to decompose the transfer function numerator and denominator
into simple factors and then to connect the elements corresponding to the
first order fractions in series (a consecutive programming method);
identification canonic representation of the system, etc.

Let us consider one of these methods, namely the controlled canonic
representation method (CCRM).

The output Laplace image is equal to

m m-1
Y(s)= bys” +bs" " +..+b

. - m.G(s) m=sn.
a0s +a1s +o--+an

If we introduce an auxiliary variable z(r), we get

Z(S)Z G(S)

’

iy
a,s" +as" "+..+a,

Y(s)=(bs" +..+b )Z(s)
or

a, 2" (t)+a,z"(t)+..t+a z(t)=g(t) .
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We solve the last equation relative to the senior derivative

d(t)=— =Dy 82 =90y iy L ogr) (82)
a4y ay a,y a4y

The dependence of the output y(r) on the variable z(r) is expressed
by the following equality
y(t)=b,2"(t)+b ™ V(t)+..+b (1) (8.3)
On the basis of the equations (8.2) and (8.3) we build the circuit for
the state variables in the most common case m =n (Fig. 8.2). The output
integrator is chosen for the state variable Xx;.

(n)

" t— &
4

Figure 8.2 — The block diagram in state variables

Now we get integrators inputs are equal to the corresponding
derivatives.

Let us construct the state equations for a, =1, b, =0
X=X, ,

f2 =5 (8.4)

xn—l =xn’

X, =—a,X; — A, _ Xy — . —a;X, + 8
or
x=Ax+ Bg,

73



0 0
0 0 0 0 0
where A=| 0 0 0 1 0 |, B=|0]|. (8.5)
1 :
|~ a, -a,_ , —a,_, -a, - al_ _1_

There is a unit matrix 1 in a right top corner of the matrix 4. The last
line of the matrix 4 contains transfer function denominator coefficient,
signed "-". Such matrix 4 is called the Frobenius matrix. The matrix B
contains a single nonzero element — the last one.

Now we write the output equation

y=bx,+b,_,x,+..+b,x,_,+bx,.

We get a single equation because the considered system has only
one output. The matrix form of this equation is

y=Cx+Dg, (8.6)

where C=[b, b, ,..b, b,], D=]0].

The particular case:

If the transfer function numerator does not contain s or the input —
output differential equation has no derivatives of an input signal, the block
diagram (Fig.8.2) has a single amplifier with factor 5, in the top line. Then

the output signal y is equal to b,x,, the other state variables are
proportional to derivatives of an output y. In this case an output signal

(x,=y)and (n—1) its derivatives (xz = Pyesx, =y " 1)) can be chosen

for the state variables.
Example: To find 4,B,C,D,®(t) for the electrical motor.

The motor input — output equation goes as follows

2
T.T, ‘27‘2” +(T, + Tz)‘fl—c;) +o(t)= ku, (8.7)

or

o(t)+a,o(t)+ a,o(t)=bu(t),
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where a, = u 1 k

We choose an output signal @ and its derivative ® for state variables
X, =0, X,=0.
Let us find the state and output equations using variables x, and x,
and the input — output equation

{xl = X,;
x, = — a,x, —a,x, + bu;

Yy =Xx = O.
Then we get

A=[fa2 _Ia} B=m, c=[1 0], p=[o]

The block diagram (Fig. 8.3) corresponds to the state and output
equations.

u X, [ Pa=X1 |n=w
—» b, —b{?—b — -
s S
a a,

b-

Figure 8.3 — The motor block diagram in state

variables
Let us find a fundamental matrix ®(z) with the help of the Sylvester
formula.

@(t)= S, Fe"i
i=1
n A — N1
F; = H—J, (8.8)
i A
j=1 J
i#j

where xl. i are roots of the characteristic equation det(Al—A4)=0.

b

The characteristic equation of the engine has the form
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AN+ahk+a,=0.
We find its roots using the formula

2
a a
A,=——2=%,-+—a,.
1,2 2 4 2

Leta,=6, a,=5, b=0.1. Then A, =-1, A,=-5.

0 1 10
I
Leti=1,j=2then p A=A.1 _|=5 -6 0 I]_| 4
! )\'1_)\'2 _1_(_5) i

4

0 I 10
A-AT |-5 -6 _(_1)0 1l |-
Fori=2,j=1 F,= L =

1

_ 4
}\'2_}\'1 _5_(_1) i
4

ée—t le— 5¢ le—t le_ 5¢
4 4 4
O e
-Ze ' + Ze —e '+ Ze
4 4 4

It is natural, that at =0 it is equal to unit matrix

@) = ' =1.

The home task: find the step responsen(t) = Cfd)(t — 1)Bd~.
0

8.2. The controllability and observability of continuous linear
ACS

The system, the state of which can be changed from any initial state
x(t,) to any final state x(tf) within a limited period of time (tf —t0)<oo

and at the limited input action |g|<oo (Fig. 8.4), is called a system
controlled on the state.
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Figure 8.4 — The state space

The system, the output of which can be changed from any initial value
¥(t,) to any final value y(tf) within a limited period of time ¢, —#, <« and
at the limited input action \g(t)\<oo, is called a system controlled on the

output.
Let us consider the ACS (Fig. 8.5).

8@ (CS y(®)

Figure 8.5 — The functional diagram of the ACS
For it we have
x =Ax + Bg,
y = Cx + Dg.

Now we form a matrix of controllability on the state
U,=|B:4B:--:4"'B|.

The theorem. For the continuous linear ACS to be thoroughly
controlled on the state the rank of a controllability matrix on the state

should be equal to the order of the system rank(U )= n.
Now we form a matrix of controllability on the output

U, =|CB:CAB:---iCA"'B|

The theorem. For the ACS to be thoroughly controlled on the output
the rank of a controllability matrix on the output should be equal to the

number of outputs rank(Uy)= l.
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System observability is an opportunity to define all the state variables
X1,X,,..., X, ON the measured input and output signals.

We can form a system observability matrix
N=|cTid"cT i iy,

where T is a matrix transposition symbol.
The theorem. The system is thoroughly observable if the observability

matrix rank is equal to the order of the system rank(N)=n.

Example. We have a system (Fig. 8.6). Estimate the system
controllability and observability if the order of the systemis n=2.
We introduce state variables x, and x,.

L)
2
— >
£ |
X
3,

Figure 8.6 - The block diagram in state
variables

Then we set up state and output equations

.x.:z =3g,

el
B=_ﬂ, c=[1 1], D=J0],

U, = 2 0}, U,=[5 0], N= E g}.

and get matrixes




Now we can determine the matrixes U_,U,, N ranks

rankU, =1#n, rankUy:I:l, rank N =1+ n.

The system is not thoroughly controlled on the state, is controlled on
the output and is not thoroughly observable.

Terms:

— a system controlled on the state,
— a system controlled on the output,
— a system observability.

Comprehension questions

1. Name the methods to solve the problem of choosing the state
variables for the ACS transfer function.

2. What kind of system is called a system controlled on the state?

3. What kind of system is called a system controlled on the output?

4. Name the necessary and sufficient conditions of the controllability

on the state.
5. Name the necessary and sufficient conditions of the controllability

on the output.
6. Name the definition of system observability.

Lecture N2 9
THE ACS STABILITY

Let be strong not versus truth, but
stronger than truth.

The Apostle Paul

Lecture outline:

1. Concept of ACS stability.

2. The estimation of continuous linear system stability by the roots of
characteristic equations.

3. Routh criterion of stability.

4. Hurwitz criterion of stability.

5. Mikhaylov criterion of stability.

9.1. Concept of ACS stability
In this lecture we will discuss the dynamic but not the structural

stability.
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A stable system is a system which being deranged returns to the
initial state or the undisturbed movement after the elimination of the
disturbance action. The stability is the main ACS attribute. The unstable
system is disabled.

We distinguish stability of the balance state, stability of undisturbed
movement and the system stability (Fig. 9.1).

&I ]

Stable Unstable Neutral Stable Unstable Neutral
balance balance balance undisturbed undisturbed undisturbed
state state state movement movement movement

Figure 9.1 - Examples of stability

System dynamics can be described by the state equations

A solution 4(t) corresponds to some initial condition 9(0) (Fig. 9.2).

9 A

n

Lo

/7’\1 (1)

0) >0,

9,

Figure 9.2 — The disturbed movements
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One of the solutions (either rated or required) is called an undisturbed
movement$'(t) .. All other solutions 4(t) are disturbed movements.

We introduce the deviation x(t) from the undisturbed movement:

The deviation undisturbed movement x"(¢)=9"(¢)-9 (¢)=0 goes
into the state space zero point.

The state of object is represented on Fig. 9.3.

A .X”

X,
Figure 9.3 — State of object

The Lyapunov's definition of the undisturbed movement stability

The undisturbed movement x"(¢) is stable if for any arbitrarily small
g>0 there is the 6 >0 depending on &, so that if the condition |x(7, )|<&
is satisfied, the inequality |x(7)|< ¢ is performed for any instant ¢ from the
range {H<t<scoo .
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_J

X

Figure 9.4 — Stability of system

If besides the given
conditions the |x(z)|— 0 satisfied

at tr—> o, then the undisturbed

movement x(t) is called

asymptotically stable. The system
stability is shown on Fig. 9.4.

The system is considered stable
if all its undisturbed movements are
asymptotically stable. We can
distinguish a stability «in the small»,

«in the large», «as a whole» and an absolute stability.
For linear systems the problem of the stability evaluation becomes
easier, because even if one undisturbed movement is stable the rest of

the movements are stable also.

9.2. The estimation of continuous linear system stability by the
roots of characteristic equations

Let the system be described by the input — output equation

dny dn_ly

ay—-+a e +...+any(t):b0dt—m-|—b1

dt

dmg dm—lg

= +...+b,,g(t). (9.1)

We shall derange it (y(0)=0) and remove the input action (g(t)=0).
Now the system is described by the homogeneous equation

dt" T dt" 1

a,

The solution has the form

Fota,y() =0, p(0), 70),..., " V(0). (9.2)

wy= 2", (9:3)

where C; is an integration constant determined by initial conditions,
ﬂl. is an nonmultiple root of the system characteristic equation.

If i-th root is r-multiple, then
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y;i(t) = (Ciy + Cppt + oot Cpt"™ ) i (9.4)

The solution y(t)—>0 at t—> «, if all the constituents y.(z)— 0 at
t > . Now we can present roots A. =a, + jw, and substitute them into
(9.4).

Let us consider all possible variants of values A, .

1) A real root:

A= oy yi(t) = Nie' (9.5)

The solution y,(¢)—>0 at t > «, if a; <0 (Fig. 9.5).
2) A complex root:

Any complex root A, =a«,+ jw, corresponds to the conjugate root

A =0 = jO,.
A7
A
o, >0
Cf/ a =0
a, <0 '
0 >

Figure 9.5 — The solution of the equation

If we have the pair of complex-conjugate roots, the solution is
yi(t) = Gl ¢, Qi) - Co®i sin (@it+y). (9.7)

The solution y;(¢) > 0 at t > o, if a; <0 (Fig. 9.6).

For the linear continuous ACS to be stable it is necessary and
sufficient for all the roots of characteristic equation (pole transfer function)
to lie in the left half plane. The system can be stable, unstable or neutral.
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a <0 t

N
\Y
o

L
I
o

Figure 9.6 — Complex — conjugate root

n=la| . is the degree of stability for the stable system (Fig. 9.7).

To estimate the ACS stability we should find the roots of its
characteristic equation.

9.3. Routh criterion of stability

There is the characteristic of the ACS stability estimation which does
not demand the root calculation. Such characteristic is called a stability

criterion.
() (0] ()]
X TJ pl.A X TJ pl.A ﬁj pl.A
* > b3 '3 > 7 >
n o oL o
X X
Stable Unstable Stability
system system border
v jo %jm %jm
plX pl.A pl.A
* > »% % > re3 .
(01 (87 a
x L
Aperiodic stability Oscillatory stability The third stability
border border border (a, =+ c ) at

n=4
Figure 9.7 — Degree of stability

There are algebraic and frequency criteria.
The algebraic Routh criterion was developed in 1877 by an English
mathematician.
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The Routh tables are constructed on the basis of the input-output
equations or the transfer function. If a,<0, then all the factors are
multiplied by -1.

In the first table line we write factors with even indexes starting with
a,.

In the second table line we write factors with odd indexes starting
witha, .

Non-existent factors are substituted by zeros

a, a, a, a 0
a a; as a 0
€31 €3 0
‘a Cn 0

0

All the next lines are filled by the factors calculated by the formula
L Ci1,1%-2,j+1 " Ci-2,16i-1,j+1 | 9.8)
v Ci-11

e.g.
o = a,a,—a,a,
31 — a, .

The table is filled until it has only one nonzero element in the line.
For system to be stable it is necessary and sufficient if all the first
elements in any line of the Routh table were positive: ¢;; > 0,i =1,2,... .

9.4. Hurwitz criterion of stability

The algebraic criterion was developed in 1895 by the German
mathematician A. Hurwitz.

The criterion consists of two conditions.

In the first place the positive property of all the characteristic
polynomial factors should be verified (Stodola criterion)

D(s)=ays" +a;s" ' +..+a ;a.>0,i=0,1,...n. (9.9)
0 1 i

n’
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If this condition is not satisfied, the system cannot be stable. If this
condition is satisfied, the Hurwitz n-by-n matrix will be formed:

al a3 as cer 0 0

a, a, ay,

0 a a, 0 0

0 0 0 a,, 0
|0 0 0 e @,y a4, |

The characteristic polynomial factors from a@; to @, we write on the

matrix main diagonal. The factors with increasing indexes we write over
the diagonal, the factors with decreasing indexes we write under the
diagonal. Non-existent factors are substituted by zeros.

In the second place all the diagonal minors of the Hurwitz matrix
should be positive

A;>0,i=1,...,n,
A =a, Ay =aja, —ayay, ... ,A,=a,A,_;.

For the ACS to be stable it is necessary and sufficient for all the

characteristic polynomial factors a; >0,i=0,1, ... ,n and all the diagonal

minors A; >0,i=1, ... ,n to be positive.
For the first- and second-order systems it is sufficient to check only
the first condition a, >0, a; >0, a, >0. If it is satisfied, the second

condition A; =a, >0, A, =a,a, >0 is satisfied automatically. For the third-
order systems the Hurwitz criterion has a form:

1. ay>0, a;,>0, a, >0, a;>0.

If both these conditions are satisfied, the system is stable, as all the
other conditions A, =a, > 0,A; =a;A, > 0 are also satisfied automatically.

In general for systems of any order it is sufficient to check the
positivity of barely even or odd minors in general. If one of these
conditions is satisfied the other condition is satisfied automatically
(Lyenar-Shipar criterion, 1914).
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Example. We have a system (Fig. 9.8) with transfer function

Y(s
W(s)= GES; T s(Ts+1)(Tys+1)

k=10; T, =0.1; T, =0.01.

—»(?)—» W (s) >

Figure 9.8 — The given system

Determine the stability of the open-loop and closed loop systems.
Solution. The open-loop system stability is easily estimated by the
roots of its characteristic equation (Fig. 9.9)

1 1
T, T,
Jjo
pl.A
X >
o

Figure 9.9 — Root of the characteristic
equation

Open-loop system is on the aperiodic stability border.
Let us find the transfer function of the closed loop system

k
() = ST+ T)(Tys+ Dk - (9.10)

The characteristic equation looks like
D(s)=s(Tys+1)(T,s +1)+ k=0. (9.11)

It is not so easy to find the roots of the equation. We apply the Hurwitz
criterion and write down the characteristic polynomial
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D(s)=TiT,s> + (T, + T,)s* + s+ k. (9.12)
Then we calculate the characteristic polynomial factors
aO = T}TZ = 0,001, al = ]} + T2 = 0,11, a2 = 1, a3 = k = 10. (913)

The first condition of the Hurwitz criterion is satisfied

a,>0,i=0,1,2,3.

The system is stable because a,a, > ayaz, 0,11 > 0,01.

It is obvious from the last formula, that the system can become
unstable if & grows.
If we introduce the characteristic polynomial D(s) with the new

variable D(s—n), we can find out, whether the given system possesses
the degree of stability ».

9.5. Mikhaylov criterion of stability

The algebraic criterion was developed in 1938 year.
We have the closed loop ACS transfer function

o(s) = Y(s) _bys"+bs" " +.tb,, _ B(s)

= : 14
G(s) ays"+a;s"'+.+a, D(s) (914)

We build a Mikhaylov curve for 0<®<
D(jo)=a,(jo)" +a,(jo)" " +..+a,=X(0)+j¥(0), (9.15)
D(0)=a

n"

A hodograph is the motion trajectory of the terminus of D(ja)) in the
complex plane (X, j¥) under the frequency variation 0< <o (Fig. 9.10).

For the ACS to be stable it is necessary and sufficient for the Mihaylov
curve D(jw) to begin on positive real semi axis (at @ =0) and to bypass

88



successively in a positive direction at @ >« n quadrants under the
frequency variation 0<®w< .

jY
0
It is stable at Unstable Oscillatory Aperiodic The third
n=3 border border border

Figure 9.10 — Movement trajectory of the end of vector

It is possible not to build a curve D(jw) but only to check the root
alternation of X ()= 0 and ¥ (o) =0 equations.
The characteristic polynomial D(s) can be expressed by the roots

D(s)=a,(s—S,)(5—S,)..(S—5,). (9.16)

If we go from s to jw, we obtain
Dijow)=a,(jo—s )jo—s,).(jo-s,). (9.17)

Let us estimate the argument (phase) change of a vector D(jo)
under the frequency variation —o < ®< .

The increment of the jo-s; vector in the case of s; lying in the left

half plane is equal to
Aarg (jo-—s;)=m. (9.18)
—00< (M0

The increment of the jw—s, vector in the case of s; lying in the right

half plane is equal to

Aarg (jo—s;)=-m. (9.19)
—00< M0

If the right half plane has [ roots, and the left one has n—1 roots,
then

Aarg D(s)=(n—1)n—In=(n-2I)n. (9.20)
—00<M<00

If all the n roots are in the left half of the plane, we get
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or

Aarg D(jo)=nr (9.21)

—00<@W<00
Aarg D(ja))=n%. (9.22)
0<@<o0

All this factors mean that roots either lie on the real axis, or are
located in pairs symmetrically to the real axis.

Terms:

DO RN =

stability,

stability criterion,
stable state,
unstable state,
neutral state,
stable motion,
unstable motion,
neutral motion,
stable system,
neutral system,
Routh criterion,
Hurwitz criterion,
Mikhaylov’s criterion,
aperiodical border,
oscillatory border.

Comprehension questions

What is the stability? List the kinds of stability.

How to estimate stability by the characteristic equation?
What is Routh criterion?

What is the degree of stability?

What is Hurwitz criterion?

What is Mikhaylov’s criterion?

Lecture Ne10

THE ACS STABILITY (ENDING)

Only the first step is difficult.
Voltaire (1694 -1778)

Lecture outline:
1. Nyquist stability criterion.
2. The logarithmic stability criterion.

3. Zubov stability criterion.
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10.1. Nyquist stability criterion

It is developed by the American amplifier expert in 1932. It is applied
to the unit negative feedback systems. It allows assessing the closed
system stability at the open-loop systems MPFC.

The closed ACS block diagram should be reduced to the Fig. 10.1: it
should have a unit feedback.

G(s) Y(s)

—»(?—» W (s) >

Figure 10.1 - The block diagram of the closed ACS

Let
Y(s) bs" +bs"" +..+b, B(s)
G(s) ays"+as"" +..4+a, A(s)

Wi(s)= (10.1)

From the closing formula we obtain

B(s/

_ W(s) A(s) _ B(s) _ B(s)

cI)(S)_erW(s)_,JrB(s/ ~ A(s)+B(s) D(s)’
A(s)

where D(s)=A(s)+ B(s).

Now we proceed to the Fourier transformation. For this purpose we do
the substitution s = jo

Wijo) (10.2)

)= Wije)

Let us consider the change of the 1+W(jw) vector argument

changes provided by the frequency ® change from 0 to «

. B(jo
Aarg (1+W(jo))= Aarg (1+ (J. ))=
0< W< 0< <00 A(jo)

A(jw)+ B(jo) . .
= Aarg JA ; 120 = Aarg D(jo)— Aarg A(jo). (10.3)
0<w<oo (jo) 0<w<oo <<
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According to the Mikhaylov stability criterion for the closed-loop
system it should be

Aarg D(jo)=n"/,. (10.4)
0<w<©

The open-loop system can have [ roots in the right half-plane.
Then

Aarg A(jo)=(n=21)". (10.5)
0<@<oo

We can observe the possible variants.
1) The open-loop system is stable, so it has no poles in the right half-
plane, (I=0). Then
Aarg (1+W(jo))= Aarg D(j@)— Aarg A(ja))=n%—n%=0. (10.6)
0<w<oo 0<w<o 0<@w=<oo

The vector 1+ W ( jw) should not cover the origin of coordinates and
the W (jw) vector should not cover the point (-1, j0) (Fig. 10.2).

iv. v
Tm u ,rimm y

1+W(jo) W(jo)

Figure 10.2 — The APFC of open-loop system
Theorem.
If the open-loop system has no poles in right half-plane then for the
closed-loop system to be stable it is necessary and sufficient that the
open-loop system APFC does not cover the point (-1,j0) under the

frequency change from 0 to « .
If the open-loop system is neutral and lies at the aperiodic stability
border then we get
bos™ +bs™ 1L 4p bos™ +bs™ VL 4p

n n—1 n—1 n—1
ays” +agsT +..tsa, o s(aOS tagst C+..ta, o )

and a, =0,A4(s) has one zero root, W(s) has a zero pole, the system
contains an integrator. It is astatic by the reference action (Fig. 10.3).
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If the open-loop system has v integrators then the system is said to
have the v-th order of astatism and a, =a, ,=a, =0, A(s) has v

zero roots and the open-loop system transfer function can represented as

Wols) _ o Wa(s)

W(s)=—<— . 10.7
(s) sV oc—)()(s+oc)v ( )
jo
st
X . >
5 § jee8 O
XS5

Figure 10.3 — The roots of the open-loop system

We consider the integrators being an extreme case of aperiodic links.
We go to jo
W, (j W, (j
LC\?): lim LCO)V (10.8)
(jo)*  @20(jo+a)

The open-loop system APFC has a gap at the frequency @ =0. In this
case we supplement the APFC by the part of the infinite radius arch,
beginning from the real axis to the angle —v%, as every integrator

W(jo)=

introduces the phase delay for —% radians.
The Nyquist diagram is represented on the Fig. 10.4.

AV
v=2 () e=0
v=1
To=0

Figure 10.4 — The APFC of then open-loop system with delay —vx/2
radians
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If the open-loop system is neutral and lies on the oscillatory limit of
stability then the system APFC has a gap at the frequency w,,. In this

case we do the similar limiting process which causes the necessity to
supplement the APFC with the infinite radius arch for the angle -7 at the
frequency o=w,,,. After the supplementation we use the same Nyquist

formulation (Fig. 10.5).

Figure 10.5 — The APFC of then open-loop system

2) If the open-loop system is not stable then /=0 and

. . . l
Aarg (1+W(jo))= Aarg D(j®)— Aarg A(JOJ):”%—("—ZU%:ZTCE-
<< << <<

Consequently, the vector 1+W(jo) should cover the origin of

coordinates é times in the positive direction.

Theorem.
For the closed-loop system to be stable in case of the open-loop

system instability it is necessary and sufficient if at the frequency o
changing from 0 to o« the open-loop system APFC (the supplementary

APFC) W ( jo) covers the point with coordinates (-1, jo0) % times in the

positive direction, where [ is a number of the poles of the open-loop
system lying in the right half-plane.

The advantage of the Nyquist criterion is that we can estimate the
system stability by the experimental open-loop system APFC without

building its mathematical model (Fig. 10.6)
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VA vt

/Q =0 m=w(> F=0
DA

a b

Figure 10.6 — The APFC of closed -loop system at /=2, a — the

closed-loop system is stable, b — the closed-loop system is unstable
If we have a stable system, we can introduce the margin of stability at
the amplitude A, and at the phase y,.The margin of stability at the

amplitude A4 is determined at the frequencyw_n, at which

m

o(ow_g )=-n(Fig. 10.7)
A, =1=-W(jo_z)=1-A(o_z). (10.9)

The margin of stability at the phase y, is determined at the cutoff
frequency ®,, at which A(e,)=1

V=T @,). (10.10)
JjV A

Y
A

Figure 10.7 — The gain and phase margins of the stable system

10.2. The logarithmic stability criterion

The logarithmic stability criterion follows from the Nyquist criterion.
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If the open-loop system is stable, the APFC should not cover the point
(-1,0) (Fig. 10.8, a).

. L(o), 0B
VoA — A
® =00 'MH‘“\HM I
— \-‘“"-‘..___ ' | (D—‘.lt
: B — -
0 0=0 0 [ A+ Ilgw, 1/sec
AR S
LB T |
2 \\R |
T 1w
e lgw, 1/sec
a b

Figure 10.8 — The APFC and LPFC of the stable open-loop system

Generally it is necessary to determine how many times the
point(-1, j0) has been covered (Fig. 10.9).

jV
em 0 =0
ME M

Figure 10.9 — Nyquist diagram of then open-loop system

This is calculated by the number of positive 7z, and negative 7_

crossings of the open-loop system APFC with the real axis segment
(-1,—). The crossing is considered positive if the point moves through

the APFC downwards and negative if the point moves upwards. For the
ACS to be stable it is necessary and sufficient for the equality to be
satisfied

l
-7 =—. 10.11
T.—7 5 ( )

+ -

Theorem.
For the closed-loop system to be stable it is necessary and sufficient if
at L(w)>0 the open-loop system LPFC (the supplementary LPFC)

crosses the lines —n+2kn, k=0,1,.... downwards % times less than
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upwards ( I being the number of poles of the open-loop system lying in
right half-plane (Fig. 10.10).

L(®), dB A .
60 l
|
L(®w)>0 | L(w)<0
0 o, -
\ lgo, 1/sec
|
i
o(w) |
0 /—\ | =
-90 |
-180 - - =
10" 10" 10" 10° 10° 10* 10° ! 10°

Figure 10.10 — The LAFC and LPFC of open-loop system
10.3. Zubov stability criterion

This algebraic criterion is applied for the matrix description of the ACS

x=Ax+ Bg;
(10.12)
y=Cx+ Dg.
The auxiliary matrix V=7I+2(A- I)_1 is introduced.
For the ACS to be stable it is necessary and sufficient if
HV"H—m at k. (10.13)

Terms:

— Mikhaylov criterion,

— the stable open-loop system,

— the poles of the open-loop system,

— an integrator,

— the infinite radius arch,

— the gain margin and phase margin of stability,
— Nyquist criterion,
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— Zubov stability criterion.
Comprehension questions

1. What is the Nyquist stability criterion?

2. How can we find the zero roots of open-loop system?

3. What is the logarithmic stability criterion?

4. List the Fourier transformation formulae.

5. What is the Zubov stability criterion?

6. How can we find the gain and the phase margins for the closed-
loop system?

Lecture Ne 11

THE METHOD OF D -DIVIDING

Lecture outline:

1. Finding of the ACS stability field with the help of the method of one
parameter plane D -dividing.

2. Finding of the ACS stability field with the help of the method of two
parameter plane D -dividing.

11.1. Finding of the ACS stability field with the help of the
method of D -dividing one parameter plane

We should know what parameter values make the system stable. It
can be found out if in the parameter space we mark out the areas which
have the same number of the characteristic equation roots located in the
left half plane.

As the parameters a,B,y,... we can choose element or system

transfer coefficients k;, time constants 7T;, etc. Such division of the
parameter space is called D-dividing. The D, [rn—1,I] note means, that in
D, area at any «,B,y,.. parameter value the characteristic polynomial
D(s) has n—1 roots in the left half plane and I roots in the right half
plane. The stability domain is designated by D[n, 0].

The D -dividing of the parameter space can be executed if we reflect
the stability border of the plane s (Fig. 11.1) into the parameter space. We
should form the border using the equations D(jo)=0 at ©=0, i.e.a, =0

is the aperiodic stability border, D(jw)=0 at =0 is the oscillatory
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stability border, a0=0 is the third stability border. If these equations

contains parameters a, B, v, etc., the corresponding borders will appear

in the parameter space. If the equation contains only one adjustable
parameter o, we shall D-divide the plane of one parameter, the
parameter is considered complex a = x + jy.

YA

3["_3:3]

el /

[n,0]
o

Let the system transfer function have the following form

Y(s) bys" + blsm_l +ot by A(s)

G(S) aosn +alsn_1 + ..t ay D(S)

,m<n. (11.1)

The characteristic polynomiaID(s) coefficients depend on the system
parameters a; = al-(oc,B,...). Let o.=var, B,y,...= const .

Any parameter o is included to the polynomial D( jw) so that

D(jo) = ag(jo)" +ay(jo)" L + ..+ ay =0. (11.2)

We choose the components which contain the parameters of our
interest

D(jw)=ocQ(joo)+R(j0))=0:>a=—282;=X(oo)+j-Y(oo)=a(co), (11.3)

where X (o) is the real component and even function, ¥ () is the odd
function.

We build a curve a(oa) for the frequency o changing from —o to +.
The D-dividing curve a(w) reflects an imaginary axis of the s plane,
therefore we shade its left part as well as the imaginary axis for the
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frequency changing from —owo to +o. The D -dividing curve is symmetrical
against the X axis. This curve divides the a parameter plane into three
areas. The most shaded area D, can be a stability domain. We choose

any o parameter value (e.g. a=0) from this domain and check the
system stability by one of the criteria. If the system is stable at the given a
parameter value, it is stable at the any parameter value from this domain.
The domain under consideration is the stability domain. We designate it by
D, [n,0]. Other domains are designated asD,[n-2,2], D; [n-1,1]
(Fig. 11.2).

JY A o=
m

Dl [H—Z,Z% Dz[nsO]
/'7777-7)
D;[n—1,1]
Llssspy,

® =00

Figure 11.2 — D-dividing of parameter plane

If the system turns out unstable at the chosen parameter value, it is
unstable at any parameter value. These systems are called structurally
unstable. The maintenance of their stability demands not only to change
the parameter value but also to introduce a corrector, i.e. to change
structure of the system.

Example 1
We have a follow-up system (Fig. 11.3),

OM

PhSR [| > #}g-_-:zj-

Figure 11.3 — Follow-up system

where
S$S — a setting selsyn;
SR — a receiving selsyn ;
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PhSR — a phase-sensitive rectifier;

PA — a power amplifier;

M — a motor;

Red — a reducer;

OM - an operational mechanism.

The structural diagram of this system has the following form
(Fig. 11.4).

6,(s)i i !
‘E‘T W.(s) _r““WPnSR(S )W p(s) W (s) W rea (s
| | |_____________J

Figure 11.4 — Structural diagram of the system

Let us find the transfer functions of this system:

Wi(s)= gjgi; = (T1s+1)z€T2s+ l)s is an open-loop system transfer
function,
_6,(s) k - i
D(s)= Gl(s) = (T1s+1)(T2s+1)s+k is a closed-loop system transfer
function.

k is a variable, T, =0,1sec, T, = 0,6 sec .
We should obtain the parameter values k at which the system is
stable

D(s)=T,Tys> +(T, +Ty)s* +s+k =0,

(11.4)
We have three equations for three stability borders
D(jo)=T,T,(jo)’ +(T, +T,)(jo)’ + jo+k=0 (11.5)

Therefore,

k=(T+ )0’ + j(T 10’ -0) = k(o).
X(0) ¥(o)
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Now we proceed to calculating the D -dividing curve (Table 11.1).

Table 11.1
@ 0 0.1 1 N o
X 0 0,007 0,7 -
d 0 0,1 -0,94 "

As the D-dividing curve is symmetrical against the real axis X, the
calculation is provided only for positive values ® and we can build the
second part of a curve symmetrically (Fig. 11.5).

jY A ® =00

D,[3, 0]
D 2,11 03[1;2]

0 1 X
11,

® = —00
Figure 11.5 — D-diving of k-plane

We can find the intersection of D -dividing curve and the X axes

1
— 2:_
Y((o)—O, ) T1Tz’
1 01+0.6
X(0)=(I+T,)- T, 01.06 =117.

We shade the left part of the curve.

We check the system stability at £ =1 using Hurwitz criterion
1. ay=TT,>0,a,=T,+T,>0,a,=1>0,a; =k >0.

The first Stodola theorem is satisfied.

2. Hurwitz matrix is

al a3 0
ao (lz 0.
0 al a3
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Let us check
(T, +T,)-1>T,T,k-?
0.1+0.6>0.1%0.6 .

The second Hurwitz condition also is satisfied.
The system is stable at k=1 and at any k from the range 0< k <11.7.
Let us designate the domains: D,[2,1],D,[3,0],D,[1,2].

Finding of the ACS stability field with the help of the method of
two parameter plane D -dividing

We have a closed-loop system transfer function

Y(s)=b05m+b1sm_1+...+bm _ (S),mSn. (11.6)

G(S) aosn+alsn_1+...+an D(S)
o, are variables, v,9,... are constants.

To find the a and B parameter values at which the system is stable we
write the stability border equations

ay=0,a,=0, D(jo)=0. (11.7)
The parameter plane («,3) contains the curves reflecting the stability
borders. The oscillatory border equation has the following form

D(s)=

D(jo)=a,(jo)" +a,(jo)"" +..+a,=0. (11.8)

We choose the components which contain the parameters of our
interest. At first we write components which have the first, e.g. «

D(jo)=aP(jo)+ p0(jo)+ R(jo)=0. (11.9)

Then we divide this equation into real and imaginary parts
aP, (a)) + SO, (a)) + R, (a)) =0, P,0,,R, — real parts,
aP, (a)) + p0, (a)) + R, (a)) =0, P,,0,,R, — imaginary parts.

We solve the obtained equations set against the parameters with the
help of the Kramer rule (Gabriel Kramer (1704 — 1752), a Swiss
mathematician)

(11.10)
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a=A°°(O))= & 2 =o(®
A(0) " [B(0) ooy M D
P(0) 0,(o)
o [r@) e
p- f((:;)‘PZ(w) o) pe). a2

We build the curve B(a) on the a and B parameter plane at the

frequency change - co<m<wo.

The functions Aq(w), Ag(w), A(w) are determinants, and A(w) is the
main determinant. The equations set will have a solution if determinants
do not vanish simultaneously (Fig. 11.6).

}}’ "
2eor ﬁg‘% a
®=0 special

straight line

Figure 11.6 — D-diving of parameters plane

The functions a(®) and B(®) are even, therefore the curve B(a) is
covered twice, once for both positive and negative frequencies, and
double-hatched. If A(w)>0, the D-dividing curve is left-hatched. If
A(0)<0, the D-dividing curve is right-hatched. At the point M there
A, =Ag=A=0 we get a specific straight line. If in critical point M the
determinant A(co) reverses its sign, the specific straight line is hatched

otherwise it is not. If the specific straight line appears at =0, it is
hatched once. If it the specific strait line appears at w#0, it is double-
hatched. The specific line hatching direction coincides with the hatching
direction of the D -dividing curve in the critical point M .
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Example 2

For the same follow-up system (Example 1) we have

D(s)=T,T,s*+(T;+T,) s +s+k, kT,

are the variables, T, =0.6 is a constant. At what parameter values k£ and
T, the system is stable?

Let £ be the first parameter, and T, be the second one. We write the
equations of three stability borders

a4y=T,T,=0,a;=0, D( joo)=T,T, (jo)’ +(T,+T,)( jo)’ +jo+k=0.
Then we choose parameters

D(jo)=k- 1 +Ty I(Tz(joa)3 +(jo)b)+ Tz(jm)z + jo=0.
P(jo) 0(jo) R(jo)

We divide this equation into real and imaginary parts

k—-Tio’ - o' =0, 1 - 3
= A(w)= J|=—Tho,
k-0-T,T,0’ + =0, 0 -Tho
Ap(®) Tro®+1 Lo' -o
P K@ _To + :L+(D2T2, Ay@)=| 2 — T’ o,
A@) T, T -0 T’
Ap (@) 1 1 Tyo
Al@ T,o -

These equations are easily solved without determinants. But main
determinant A(w) is necessary to draw the hatching. We build curves T;(k)

for all three stability borders.
At ® = 0 the determinants vanish

Ap(0)=Az (0)=A0)=0. (11.13)

There is a special straight line (kK =0) at the frequency w=0. The
special straight line coincides with the aperiodic stability border (Fig. 11.7).
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Oscillatory border

of stability

|
|
D,[2,1] :Dz 3, Dy[1, 2]

0
VIDIIIIIIII VIV ,0)=i°0
D.[1, 2]

The third border |
of stability \eperiodic border of

stability

Figure 11.7 — D-diving of parameters plane

We hatch the right side of the D-dividing curve at the frequency
change from 0 up to « because of A(oa)=—T2033 < 0. We hatch the left

side of the D-dividing curve at the frequency change from -0 up to O
because of A(w) = —T2m3 >0, i.e. the curve is double-hatched.

The specific straight line is single-hatched as it appears at ®=0 and
the determinant A(w) reverses the sign in the critical point. The third
border is above-hatched as the system is stable only at a; > 0,i=0,1,2,3.

ay, =T, T, > 0 > T, > 0. We designate the domains D,,...,D;.

We choose the most hatched domain D, and check the system
stability atk =1, T, =0.1. Consequently D,[3,0] is the stability domain. We
mark other domains by transition from D, in D,,in D, andin D, from D,
we go to Dy.

Terms:

— D-dividing method,

— one parameter plane D -dividing,
— two parameter plane D -dividing,
— parameter space,

— stability domain,

— D-dividing curve,

— specific straight line.

Comprehension questions
1. What is the meaning of the D -dividing method?
2. What is the meaning of one parameter plane D -dividing?
3. What is the sense of the two parameter plane D -dividing?
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Lecture Ne 12
THE CONTROL QUALITY EVALUATION

Lecture outline:

1. The control quality evaluation by the step response.

2. The control quality evaluation by the frequency characteristics.

3. The control quality evaluation by the poles and zeros of transfer
function.

12.1. The control quality evaluation by the step response

There are direct and indirect control quality measures. The direct
measures are introduced by the step response and the indirect are
introduced by other characteristics.

Let us consider the direct quality measures.

We can distinguish monotonous, aperiodic and oscillatory step
responses (Fig. 12.1).

Figure 12.1 — Kinds of step responses

Let
2(£) = 1(1), G(s) =§, (12.1)

(12.2)

v

G(s) ay"+..+a, s

We shall study the direct measures by the example of the oscillatory
step response at the reference action (Fig. 12.2).
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{1 t

i “ml

Figure 12.2 — Oscillatory step response

s

The direct measures are divided into the basic and additional ones.

The basis measures include:
1) The steady-state value hgg = lim h(t).
t—0

This value can be read off from the principle limiting value theorem

W(s) 1 ﬁ, if ACS isstatic (v=0),

he = lim_H(s)s = lim @Xs)G(s)s = lim
s—0 s=0 s=0 1+W1s)s 1, if ACS is astatic (v=0).

As
Tott VO i 0 gk (12.3)

(
W(s)= 0 , then lim =1l = lim —
SV s—=0 1+ W(s) s—0 SV + WO(S) s20s’ +k

Wos) &

At v=0 we obtain im — ,
520 sV +Wy(s) 1+k

Andat v£0 lim M: 1,
§s—0 s +W0(s)

where k = lim W(s)sv = bﬂ
g7
bm
or (at a, = 0),
L7 |
or b (at ap = a,_1 = 0).

ay_2
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2) The steady-state static error

£y =&y = lime(t). (12.4)

{—00

This error can be read off from the limiting value theorem as well

1
= lim E = lim & = lim ———=
Egs sltmo (s)s sltmO E(S)G(S)S shmﬂl (s)

1 .
) sV —— , v=0 ( static system ),
=lim ———=

)V 1+k
50 s +W0(s) 0 , v# 0 (astatic system ).

The steady-state error can be obtained by the step response

1 .
, ifv=0,
3(t)=g(t)—y(t):>8ss=1—h =4q1+k
0

ss .
,ifv#0.

h —h
3) The overshoot: ¢ = %‘”-100%.
SS
It is usually considered normal o =10+30% . However the overshoot

is not admitted for some systems, e.g. the docking system of the
spacecraft and the orbital station, the cutter to the lathe supply control
system, etc.

4)The setting time ¢, is the shortest period of time after which the

deviation h(¢) from h, does not exceed the given value A. Usually
A =0.05h
The additional measures include:
1. The number of oscillations N during the period of time ¢, Usually
N=15+2.

2. The rise time ¢, is a time of the first steady-state value

achievement.
3. Time of the first maximum ¢,,, .

4. The degree of damping

for precisional systems A =0.014,, .

ss ?

— E — hmaxl _hss 12 5
X b hmax2_hss. ( . )

5. The oscillation period T .
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6. The angular oscillation frequency @w=2x/T, the cyclic frequency

f:%,etc.

The step response can be obtained experimentally, according to the
input — output equation, by the transfer function, by the weight function, by
the of state space method matrixes, by the Heaviside formula, by the state
equation, by the output equations, etc.

Having the transfer function

B(s)= Z(S) _B(s) (12.6)

we can calculate the output by solving the input — output equation
D(p)y(t)=B(p)s(). (12.7)
At the zero conditions and the single step input we get
g(t)=1, p(0)=..=y" (o). (12.8)

The input-output equation can be solved by the Laplace
transformation

D(s)Y(s)—YO(s):B(s)G(s). (12.9)
We represent the input image as
Gy (s)
G(s)=—L1-, (12.10)
(s) &, ()

then we obtain

(12.11)

and
yiiy= & Bi)Gls) s L Bsi)Glss) sy a Tolsi) st (12.12)
S10(s;)G(si) JFID(s)ey(s;) A1 (k)

where s;,s, are the transfer function poles;
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s; are the poles of an input action image,

dD(s) dG,(s)
/ _ / —
D(s)=="smy, . Gafs;)=—2 = (12.13)
For the step response (1) = y(t) . we have:
8\t~
G(s)=1,G,(s)=1,G (s)=s,0=1,5;=0,G; (s)=1-y(0)=...=y("_1)(0)=0
S’ 1 ’ 2 ’ ’ 1 ’ 2 » ’
ht)= 3" B(,si) esit+w (12.14)
i=15;D'(s;) D(0)
is the Heaviside expansion for nonmultiple roots.
The step response can be obtained:
— by the state space method
t
h(@®)=C [ Dt —)Bdr + D-1(t); (12.15)
0
— by the weight function
t t
h)=[w(t—r)dr = [w(r)-1(t —7)dr; (12.16)
0 0
— by the Laplace transformation
_1|P
h(t)=L l{ﬁ} (12.17)
A

In addition to reproducing the reference action g(t) any ACS should
suppress the disturbance, therefore the control quality is estimated also by
the step response at the disturbance action ,(z) (Fig. 12.3).
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I, (1) I, (1) A

Figure 12.3 - Step response on disturbance action

12.2. The control quality evaluation by the frequency

characteristics

The closed-loop system estimation by AFCh (Fig. 12.4):

@(jo)h @(jo),..
Pl
o0 |
0,707@(O) - -~ 1 ---
0 O, 0.)5 (;, 1/sec

Figure 12.4 — AFCh of the closed - loop system

1. The steady-state value can be calculated by the limiting value
theorem
W(s) _k for static system;
hes =P (0)= lim =1k +1 (12.8)
SO0+ (s) 1 — for astatic system
or

2. The oscillatory measure is
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_‘di(jw)‘
_W';mx. (12.10)

M =1,2+1,7 is usually admitted.

3. The frequency range (0, @, ) is a bandwidth. The wider is the system

bandwidth, the higher is its swiftness. On the other hand, the wider is the
bandwidth, the more disturbances pass through the system.

4. The resonance frequency o, - It should not coincide with the aircraft

resonance frequency.
The open-loop system AFCh estimation of the gain and phase margins

A4,,,Y,, and setting time estimation are shown in Fig. 12.5, a, b.

P —

3045 60 T degree

a b
Figure 12.5 — Stability esmitation by AFCh of open-loop system
At the cutoff frequency A(w, )=1; tg=(1...2)2n/0.; tl ™ L
®c

The open-loop system Bode diagram (Fig. 12.6) allows to get estimation
of gain and phase margins of the closed loop system.
By the inclination of LAFCh low-frequency asymptote we can determine

v (quantity of integrators). If v=0, the system is static and ¢, :L. If

1+ k
v =0, thene, =0. Value 20/og(k) is at ® =1, cutoff frequency is at L(w)=0.
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L(w), AdB

~N
< [20/gk : Lo
y 0, ’
LT e
0 L% lgw 1/sec 60+
A | 40+
o(®)
| Lm| 207
0 | > 020 30 4560 =
| Ilgo, 1/sec

b

Figure 12.6 - Estimation by open - loop system diagramm

12.3. The control quality evaluation by the poles and zeros
of transfer function

Let the closed-loop system transfer function is

B(s) bOSm +b1sm_1 +...+by, _ b()(s —SOj)...(S _Sﬂm)
n

i = , m<nm, (12.11)
n— +...+ay ao(s_ 1)'--(S_Sn)

where s; are the transfer function poles, s, ; are the zeros of transfer function.

.t
The free component y; ()= Cies’ corresponds to each pole. The poles

nearest to the imaginary axis are called the dominating poles.
Value m is the degree of stability (Fig. 12.7).

jo A
X s — plane
"%
X pllle
§

Figure 12.7 - Control quality estimation by poles and zeros of
transfer function
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If the dominating pole is real, then it corresponds to the constituent
ait

Ce
k
Example: w(s)= ,
P (s) Ts+1
h(t):k(l—eat):k(l—e_”t): 1 :k(l—e_t/T).
T

Fort=tg h(t5)=0.95-hg,,

k(l—e_"’s):o.%k, s —o0s, 1, =23 ar

n n

For the aperiodic link t, ~3T. If the dominating poles are complex,

tg gi. The desired zone of the pole disposition is shown on Fig. 12.8.
n

Figure 12.8 - Transfer function poles desired zone

We can find out, whether the system possesses the given degree of
stability, in the following way. We take the transfer function denominator
D(s):aos” -I—alsn_l +...+ay,, (12.12)
then we introduce the substitution s = ¢ —n and obtain

D(q)=a6qn+aiqn_1+...+a;1. (12.13)

Further we check whether the new system is stable. If the system is

stable, the initial system possesses the given degree of stability.
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The system oscillatory measure is the ratio

.
u=| ot (12.14)

l

max

If the system includes the zeros s,;, it results in the bandwidth
expansion, the swiftness increase, the gain margin L,, and phase margin

o,, increase, if ‘SOj‘<wb'

Fig. 12.9 presents the LAFCh for two systems described by the
transfer functions

W, (s) _ k and w, (s): k(T3s+1) _
(Tys +1)(Tys +1) (Tys +1)(Tys +1)
A
—_— ~_20dB | dec
: N\—40dB | dec
-
: | \ . —20dB/dec
| | | ~
| | | -
0 1 1 1 \ N lgo, 1/ sec
?I ?2 ?3 mcl < ch
12.9 LAFCh

Zeros, which are located near poles, compensate the influence of
these poles. Let transfer function of the closed-loop system have the
following form

b()(s_s()l)"'(s_sﬂj)'“(s_s()m)

(12.15)
aO(s—sl)...(s—si)...(s—sn)

D(s)=

Then, if st R S; the multipliers (S_SOj) and (s—sl-)are reduced.

The geometric mean root is

155y ..., =n/ 1. (12.16)



Terms:
— steady-state value,
— steady-state static error,
— overshoot,
— setting time,
— oscillatory measure,
— bandwidth,
— cutoff frequency,
— resonance frequency,
— @gain margin,
— phase margin,
— stability degree.

Comprehension questions

How can we read off the steady-state value?
How can we read off the steady-state static error?
How can we obtain the overshoot?

How can we obtain the setting time?

How can we obtain the oscillatory measure?
How can we obtain the bandwidth?

How can we obtain the cutoff frequency?
How can we obtain the resonance frequency?
How can we obtain the gain margin?

How can we obtain the phase margin?

How can we obtain the stability degree?

ST20ooNOoORON =

- O

Lecture Ne13
THE ANALYSIS OF THE ACS ACCURACY

When you study sciences, the examples
are more useful then the rules.
I. Newton (1643 — 1727)

Lecture outline:

1. The control quality analysis by the integral estimates.

2. The steady state ACS accuracy estimation at the power-mode input
actions.
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3. The steady state ACS accuracy estimation at the input actions
changing slowly.

4. The ACS accuracy estimation at the harmonic input actions.

13.1. The control quality analysis by the integral estimates
Let us consider the following system (Fig. 13.1).

U( )F(s)
A
Gy &G W,(s) W, (s) res)

Y 5(5)

Wepg(s)e—

Figure 13.1 — Feedback system

We have the loop transfer functions W, (s) =W, (s)W,(s)Wgg(s).

At Weg(s)=1; ypg(t)=p(¢); g(r) is a reference action,
8= yFBreq = YFBdes

f is a disturbance action,

u is a control action,
€=8— Ypp = VFBreg — Yrg 1S @N error (a deviation),

VrBreg 1S the required value of yppg,
VrBaes 1S the desirable value of ypp

The error ¢ depends both on the reference action g and on the
disturbance f. Applying the superposition principle for linear systems we
can present the error ¢ as the sum of two constituents, ¢, being an error

caused by the reference action and &, being an error caused by the
disturbance

E=g, t&,, (13.1)
that is in the image form
E(s) = E,(s) + E;(s) = @,,(5)G(s) + D, (s)F(s). (13.2)
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Let f(t): 0. So we consider an error caused by the reference action

only. Let the transient function be of the monotonous character. An error
can be represented as the sum (Fig. 13.2)

8(’) = Str(t) + ig ’ 8tr(t) = 8(’) - &g
transcient steady - state
component component
toie) o / s(0) / fs
! /

y(t) = h(z)

6, (¢

—
0 t, sec

Figure 13.2 Presentation an error as the sum

If we introduce the linear integral estimates for the process quality

regulation 1, = [ (t)t"dt, m = 0,1, 2,.., then at m=0 we receive
0

I,y = [&,(t)dt, thatis an area under the curve ¢, (¢) (Fig. 13.3).

0
8",(1) A
1
-
0 f, sec

Figure 13.3 The curve ¢, (t)

119



The smaller this area is, the more accurate and swift the system
becomes. Having synthesized the systems, we achieve the I, estimation

decrease. To increase the system swiftness the integral estimates 1, I,,
etc. are minimized. The integral linear quality estimation of 1, is convenient

because it can be calculated without the h(f)or ¢, () step response

computation.
The Laplace transformation of the error Str(t) transient component has

the form of
E,(s)=|e&,(t)e"dt. (13.3)

At s =0 this formula coincides with the linear integral quality estimation
Iy = Ea®)|,_y = E,(0) = [8c()G(6) — Eg®)]|;—y- (134)

Thus,

I = lim {CDS—(S) — E (s )}—for static system,

0o s >0 S

for astatic system,
1,, = lim [—‘Ds(’)} - Y

50| s becausee,, =0andv = 0.

However the linear integral estimations cannot be applied to the
oscillatory step responses. In this case the area under the curve 8tr(t) can

be small because of the positive and negative values compensation, and the
system regulation quality can become unacceptable. For the oscillatory step
responses the quadratic integral quality estimations can be applied
(Fig.13.4).

® de, \’ ame )
I, = [|e&@) + 12 Cor + L4 & dt. 13.5
1m J(; tr( ) 1 ( dt J m dt" ( )
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2(1) y(7) = h(z)
v b _# SVA N (I
a
£t) &(2)
0 >
t, sec
.ﬁ;”,(t)A
1%‘ I, = [
g, 0
b )\ ///\ ;’77}\ ATr . >
0 \// YM X t, sec

> II(] =If;r2(f)df

)

0 f, sec

Figure 13.4 — Quadratic integral estimations of quality

At m =0 we get
Ly=[e.(t)dt. (13.6)
0

The integral square estimate (ISE) 1,, also can be calculated without the

step response h(t). Let us write down the Fourier image for transient

component of the error ¢,,.(¢)
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E,(jo) = [&,(t)e /®dt. (13.7)
0
The original function is of the following form

1 ®
£, () = > [ E, (o)’ do. (13.8)
T o

If we substitute the last expression into the integral square estimate
(13.6), we get

I = js,,(t)i [ E, (jo)e’ dodt. (13.9)
0 2n —00
After simple transformations we obtain

ho = o [ EnGo) x [e,0e™d xdo,  (13.10)
T _» 0

_—
Fourier transformation

for argument (- jo)

ICD

I, = [ E,.(j®o)E,. (- jo)do. (13.11)

2n
Finally we can write the result formula down
1 ® NV
Iy = - [ |E, (jo)| do. (13.12)

The error image can be expressed in terms of the transfer function

I, = %jﬂq)g(joo)G(joa)‘z do - for astatic systems, (13.13)

I, = %_‘f | @ (jo)G(jo)- E( jco)\zdco—forstatic systems, (13.14)

2
1 ® 1 1

I, = — || ——— — E_(i do, 13.15

0 on {o 1+W(jo) jo s(@) do ( )
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where W(jo) = W,(o)W,(o)W 4(o).
To calculate the integral square estimate we use the standard integral

byG®)™" ™ + b (o) + ..

* 2 g (13.16)
ay(jo)" + a;jo)"" + ... + a

] ®
0 =51
n

The book [4] presents the formulae forn=1,2, ..., 10.

In general case

(—=1)"" der(V)

= 13.17
10 2aydet(M) ( )
a, a, 0] b, b, . b,
M= a, a, 0 , N= a, a, 0
0 a, | 0 a

13.2. The steady state ACS accuracy estimation
at the power-mode input actions

We consider the same system (Fig. 13.1).

Let f(r)=0, g(t) =g,t", r is the order of the input action.
Atr=0:g(@) = g, = const,

Atr = 1: g(t) = g = Vt = Qt — rampinput.

2
Atr= 2: g(t) = gzt2 = % — quadratic input.

The Laplace representation of the input power-mode action has the
following form

!
G(s) = L{grtr} = f;:l. (13.18)

On the basis of the original limiting value theorem we have
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G(s)s, (13.19)

li t) = lim E = lim s)G(s)s = lim
ti>moo€() sl—’1>10 (S)S s—>0(I)€() () s—>01+W(S)

Y(s) _ bys™ 4+ bs" N 4+ .+ b, W)
E(s) aps" + as" ' + ...+ a, sV
v=0,1,2,... is the number of integrators in the open-loop

system transfer function at the reference action.
After the substitution we obtain

where W(s) =

v

1 ! v !
lim <(f) = lim 8y = lim S -l
t— o0 s —0 1 + W()(S) s"+ s—0gY + WO(S) s’
SU
or
s'gr!

lim €(t) = lim
t > o s>0 s¥ +k
where k is the open-loop system transfer coefficient at the reference

action;

, (13.20)

V is the ACS astatism order at the reference action;
r is the input action order.
As follows from the formula
1) At v > r ( the ACS astatism order is higher than the input signal

order), e, =0;

8o
. gr! 1+k
;= lim —>—=

S s—>0sv+k_ gl’! 1
2L~ of v#0 (astatic system);

of v=0 (static system);
2)Aty =1, ¢

3)Atv < r, g, =00.

Note: in all cases V is the ACS astatism order at the reference action.
Examples of the transient characteristics are presented at Fig. 13.5.

Now we shall estimate the ACS accuracy under the disturbance. Let
g) = 0, f(t) 0.
Let f(#)= f.t" be a power-mode disturbance, r be the order of the

disturbance.
Then
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a v=0;r=0 b v=Lr=0 C v=2r=0
g()h & ¢ 2(f) gt gt/ \
e o IR AW AN U R N
/ T )
’ t 0 g =0 % g0 I
d € y=Lr=1 f v=2r=1
g(r) g(ra g(rh
»(1) »(1) »(1)
gz 8z
»(1) »(1)
0 R % L 0 g
& = & = 0
k
J v=0;r=2 k v=Lr=2 [ v=2r=
g(r)h (A g(A
»(7) »(1) »(7)
(1)
8l ) 4y 89V / )
—0 E\\ = m r 0 ESN = m ] r 0 —_ a .;L
Es.\' - ;

Figure 13.5 — Examples of transient characteristics

W (s)W 4 (s
lim Sf(t) = lim Ef(s)s = lim @:(5s)F(s)s = lim f() ﬂ;()
s—>0 s >0

. (13.22
t > © s—>0 1+W(S) F(S)S ( )

Both transfer functions W, (s)=W,(s) and W (s) can have integrators.
We shall allocate them

W) = 209 ) =

W,y (s)
st v

where p is a number of the integrators of the open-loop system transfer
function at the disturbance;
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v is a number of integrators of the open-loop system transfer
function at the reference action.
After the substitution we obtain
sV Wk kg for!
lim € ,(t) = lim rkpl: , (13.23)

t > o s >0 sV +k
where k, is the open-loop system transfer coefficient at the disturbance.

As follows from this formula:
1) At v—u>0system is astatic at the disturbance, i.e. € 4, =0;

2) At v—u=0system is static at the disturbance

(k k., f
o™ fJ0
LIl At v =p=r o= 0;
. kfbkffrr! 1+ k H
s = Tk T kk, for!
s S LT

3) At v — u < r the steady state error € fos = 0.

The ACS astatism order at the disturbance is equal to v —p . For the
system to become astatic at the disturbance, v > p.

13.3. The steady state ACS accuracy estimation at the input
actions changing slowly

We consider the same system. Let g(r) be the slowly changing
signal, g’ ~0, f(r)=0.
Let us expand the image @.(s) in the formula E(s)=®.(s)G(s) into

the Taylor series in the neighbourhood of s=0.
Thus we get

E(s) = {q%(o) , 42:(s)

s + l—dzq)s(s)
s=0 2! dsz

ds s=0

st + ...:|G(s). (13.24)

Now we go to the original functions

ng
—s Tt
s=0 dt

d®(s)
ds

dg | 1d'@()

&) = @,(0)g(®) +

or
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d 1 d? 1
&(f) = cog(t) + cld—f + Eczﬁ’ T Fc,.gﬂ(t) +..., (13.25)

d'®_(s)

dSl s=0

where ¢; = are error coefficients;

c, is a position error coefficient;
¢, is a velocity error coefficient;
c, is an acceleration error coefficient, etc.
In this series there is a final number of components for the slowly
changing signal g(¢).
Often we can introduce the error constants:

1 . ,
D, = — isavelocity error constant,
G

2 . :
D, =— is an acceleration error constant,
)

!
D,é=i is the 3th differencial error constant, etc.

€3
The error coefficients ¢; can be calculated in the following way.
If
W) = bys" + bys" "' 4.+ b, _ B(s)
aps" + a;s" "+t a,  Al)
then

1 B A(s)
1+W(s)  A(s)+ B(s)

Q)S(S) =

Let us equate this expression with the Taylor series.

A(s) 1, _ o)

) = ———— =¢, + ¢S + — ¢S +...
0:(5) A(s) + B(s) 0 ! 21 2

As follows from this equation A(s) = [A(s) + B(s)]C(s). The factors at
the identical powers s° should be equal in the expression
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as" +as" + ... +a, :(aos" +as" " 4.4 a, + " + b 4.+ bm)x

X|cy + s + ;s +]
Ati=0:a, =(an +bm)co, whence

a, 1 1/ A+ k)if a, = 0 ( static system),

Chn = =
0 a,+b, 1+b, / a, 0if a, = 0 (astatic system).

Ati=1:a,_,=(a,+b,)+(a,_,+b, _)c,, whence

—an —l(an + bm) _ (an —1 + bm —l)an
@, +b,)°

at a, =0,(v=0),

cl — n—1 _(an_l +bm_1)c0 :<an_1/bm = l/kV at an:(')(u = 1)’Where kV: VVO(S) ]}:1,
s=0

0 at a,=a,_,=0,v=2).

Ati=2:ifv=2,a, = a,_, = 0 and
1
a, _, = mecz + b, ¢ +(@,_, + b, _,);

¢, =2a,_,/b, =2/k, .

At v=1: Dy =k, is the velocity error constant. At v=2: D_ =k_ is the
acceleration error constant.

Example: g(r) = Vi, v = 1.

de 1 d*g dg
) =cyg®) + c;— + —cy,— + ..., &) =c¢c—,
@) 08 () Vg 212 42 @) 1
that's why ¢ —Oand&—‘ﬁ—g— =0
0 > a7

1
€T = 7 d_g: ’

k dt

e(t) = g, = %— result is coincede with example of previous part.
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13.4. The ACS accuracy estimation at the harmonic input actions

Let g(t) = g, sinot, f(t) = 0.

Then
yss(t) = bmSin((Dlt + (P)’
and
e (t) = g, sin(o;f + @),
. 1 Em
where g, =| @.(o,) |g, = 1+ W (jo,) Bm = W

If we need ¢,, <& at om=w,, we choose LAFC in the following way:
L(w) should go above the point L' = (o,, 20/g(g,, / 3)) (Fig.13.6). The error
amplitude at the frequency is w,

L(0)1)
5, (0) =~ g, /10 20

- Em _ ; Em.
As g, = W Gon)] <8, L(w) = 20ig| W(jo,)| = 20Ig .

Figure 13.6 — LAFC

Terms:

- integral square estimate (ISE),
— integral linear estimation,
—  the astaticism order.

Comprehension questions

1. Give the superposition principle.
2.  Why is the integral linear estimation convenient?
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3. When is it impossible to use the integral linear estimations? What
should we do in this case?

4. Give the limiting value theorem.

5. How can we produce the steady state ACS accuracy estimation at
the power-mode input actions?

6. How can we produce the steady state ACS accuracy estimation at
the input actions changing slowly?

7. How can we produce the ACS accuracy estimation at the harmonic
input actions?

Lecture Ne14
THE ANALYSIS OF THE ACS ACCURACY (ENDING)

Life requires motion.
Aristotle

Lecture outline:

1. The ACS accuracy estimation at the random input actions.

2. The example of the ACS accuracy estimation at the random input
actions.

14.1. The ACS accuracy estimation at the random input actions

Let us consider the ACS (Fig. 14.1)

n(t)
(7) u(t) :
80) o W (s) W, (s) |2 (1)

Figure 14.1 — The ACS with random actions

Let g(¢), €(¢), n(¢), y(¢r) be centered stationary random processes
(n(?) - noise).
A random process is the time change of a variable, it being a random

variable at any specific instant.
Let us give the basic characteristics of the random processes.

130



A centered random process is the process, which mathematical

expectation is equal to zero (;,2 )-
A mathematical expectation

M x(e)]=my(£) = j;x(t) F(s0) o 3 x(0) (14.1)

is the realization assembly average value.
For stationary processes we have

M[x(t)]—tgnéoﬁ f x(t)dt (14.2)

is the time average.
The random process distribution function is

F(x(t))=P(x(t)<x;)- (14.3)
The random process distribution density is
f(%’)=%- (14.4)

The random process correlation function is
Ry (17)= M[;(t);(r)]. (14.5)

A stationary random process is the process which mathematical
expectation does not depend on time M|x(t)]=m,=const and the

correlation function depends on a single argument
R.(t,1)=R.(t-7)=R.(}).

o

Avarianceis D, = M|x*(1)|.

A standard deviation

Oy =+/Dy (14.6)
characterizes a deviation of a random variable from the average value
(Fig. 14.2).

A spectral density is

Sx (C‘)) = F{Rx (T)} ;



Re(1)=5- | Se(0)eido,
-
Dx—Rx(0)=E_£OSx(m)d0)
h(t)A ol
o k() 8(1)
TREA % g
e o] o Lty
0 ’
a b

Figure 14.2 — Determined (a) and Random (b) processes

The spectral density characterizes the frequency distribution variance.
To estimate the ACS at the determined actions we can introduce the
parameters ¢, o, t,, M, ®,, ¥, A4,, ... At the random actions these

parameters become pointless.
In this case they apply such parameter, as the standard error
deviation.

The problem of estimating the ACS accuracy at the random actions
includes the following. We get the Wl(s), w, (s) system transfer functions,

the probabilistic characteristics of the setting g(¢) and disturbance n(z)
actions, R, (1), S,(®), R,(1), S,(®), R, (1), 5, (0), R,(7), S,,(@).
To find the probabilistic characteristics of the output signal y(t) and the error
e(r): R, (1), S, (), S, (0), o,.

The solution.

According to the superposition property which is possessed by any

linear system, we consider the output signal to be the sum of the system
responses to the input signals

Y (5) = 2(5)G(s) + B (5) N s),
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where

B(s)= lﬁy(:():;/;/(:()s) (14.11)
05
one R T ARTAR)

Let LV @ (s)=k(e), L@, (5)}=kn(1).
We find the correlation characteristic of an output signal

Ry(t):M[y(t),y(t+1:):|: lim 1 ? y(O)y(t+7)ar, (14.12)

T—>02T T
w(0)= T g(t-2)k(R)dh+ [ n(t-D)ky(A)dr,  (14.13)
y(t+1:)=_OEOg(t+1:—n)k(n)dn+_oj;n(t+1:—n)kn(n)dn. (14.14)

Let's substitute these expressions into the correlation function (14.12)

) 1 T © 00
Ry(r)—Tlt_r)nooﬁ_jT_{Dg(t—X)k(?»)d?»_joog(t+1:—n)k(n)dndt+
. 1 T o 00
+T121)zooﬁ_fT_£on(t—7u)kn(l)d?»_{)on(t+t—n)kn(n)dndt+
. 1 T o 00
+le)nooﬁ_jT_£og(t—l)k(%)d%_{)on(t+r—n)kn(n)dndt+
m LT T A A }\’oo 14.15
+le1)1wﬁ_jT_£on(t— Vkn(2)d _£og(t+1:—n)k(n)dndt (14.15)
and change the order of integration
o 0 1 T
R (t)= 1| [ tim — [ g(t—A)g(¢t+t—m)dr-k(L)k(n)drdn+
Y —oo—ooT—>°°2T—T
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cT T tim T n(e-a)n(est—m)drok (L) (n)dhdn+

—0—ool >~ _1

0 0 1 T
+ [ [ lim — [ g(¢=A)n(t+t-n)de-k(L)k (n)drdn+
—oo—ooT—)002 -T

+O.F OJO lim ZL?n(t—?»)g(t+r—n)dt-kn(l)k(n)dxdn. (14.16)

—0—ool > o<t _1

From this follows

+ 1T Ryg (Mtr-n)kyy (1) k (n) drdn, (14.17)

If the reference and disturbance inputs are independent, the last two
components disappear from the expression (14.17).

Now we shall find the output signal spectral density. To do this we apply
the Fourier transformation to the previous expression

Sy(@)=F{Ry(1)}=2(jo)®(—jo)Sg(o)+ B, (jo)®,(—jo)Sy(0) (14.18)

or
2 2

Sy (@) =|® (o) Sg(0) +|@, (o) Sy (o). (14.19)

By analogy we obtain the error spectral density

‘2

Se(0) = |05 (jo)|* Sg(0)+ [0y (jo) Sy (o). (14.20)

If the disturbance n(t) is imposed to the system input,
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(). (14.21)

S () =[5 (jo) Sg () +/o(jo)

Now we find the error standard deviation

oy =Dy - JL?[@( jo)? 5 g (@)+|@n jm)‘zsn(m)}d(ﬂ. (14.22)

27 —00
If the spectral density ss(@) is presented in the form of

)2n—2 +by (jco)zn_4 +et b,

nol, (14.23)

s, ()= 20l

a (jco)n +ag (joa)n +..tay,

o0
the dispersion D8 =2L ) Ss(oo)doo corresponds to the standard integral
T —0

n—1
p (S detNu (14.24)
€ ZaOdetMn

bp b, b, .. b

n—1

a, a, a; .. 0 - Hurwitz's matrix, in
where Nuy=|0 a a3 .. 0 | whichinstead of firstrow
factors b,, by, ..., b,_, are;
0 0 0 a,
a; a, 0
a, a, .. 0 o :
M, = — Hurwitz's matrix.
0 0 a,
by
Thus, for n=1 we get D =
2aya,
For n=2 we get D= ayby = byt
2aya,a,

2a4a, (a1a2 — a0a3)

For n=3 we get D=
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"The ACS Designing Atlas" by Topcheev J.l. gives the formulae to
provide the calculation of this integral up to n=10.

14.2. The example of the ACS accuracy estimation at the random
input actions

We have the aerial target tracking follow-up system (Fig.14.3) and the
probabilistic characteristics (Fig 14.4):

n(tr)

()
g(1) W (s) )

Figure 14.3 — Tracking system

Rg(1)= De *Tis a correlation function of the useful signal,

Sg(0)= 2 +(:02 is a spectral density of the useful signal,

Ry(7)= 028(1:) is a correlation function of the noise,

S, (@)= c? is a spectral density of the a white noise.

We have

Kk
s(Ts+1)'

We should find the mathematical expectation, the ¢(t) system error
signal dispersion at the steady-state mode and the o, error standard
deviation.

The solution.
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2D/«
R, (1) S, (@)
> >
0| T, sec 0| o, 1/sec
a b
b DA
R"(T) C2 SJ:((D)
> >
0] T, sec 0 o, 1/sec
c d

Figure 14.4 — Probabilistic characteristics

We find the Laplace image of the error E(s)

E(s) = g (5)G(s) - @p (s) N (s) )=#(S)G(s)— 1in(Vs()s) N(s)=Eg(s)+Ep(s).

If M[g(1)]=M|n(t)]=0then M[e(r)]=0.

Then we find the signal variance ¢, (¢)

1 a0
Dgg = E_L)Sgg(()))d(ﬂ ’

where
. \2
Seg(0)= ‘(DS (JO))‘ Sg(o),

or

2(,2 2
jo(Tjo +1) |2 2a 2Do® (T ® +1)

Seg (‘D)=

j‘”(Tj‘D"'l)"'k‘ a? + o’ _\jco(TjO)+1)+k\2-\a+joo\2.

We can present the error spectral density ssg(w) caused by the
reference action ¢, (¢) as
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2Da[T2( j(o)4 —( j(o)2 } _ 2Da|:b0( jo)t + by( 1‘0))2]

2’

‘T(jw)3+(aT+1)(j0))2+(oc+k)(j0))+ak‘2 ap(joo)” +ay (o) +ay( jo) + ay

where

by=T% b, =-1,b,=0,ay=T,a, =0T +1,a,=a+k,a;=ak,n=3.

Applying the standard integral we obtain

2
@by — agayby + agah, 2Da[(a +k)okT* +Tok+T(aT +1)- 0} )

D = =
&8 2aa; (a1a2 - a0a3) * 2T ok [(aT + 1)(oc + k) - Tak]
_ Do(1+aT +Tk)
© aT+o+k

The error variance caused by the disturbance is calculated by
analogy

= k2 cz =
‘jco(Tjoa+ 1)+ k‘z

Sen(0) = |0 (jo)| S, (o)

B k*c* B b,

2 2
T(jo) + jo+ k| |ay(jo) +ay(jo)+a,

where by =0,b, = k*c*,ay=T,a;=1,a, =k,n=2.

. b — 22 2

At n=2 we obtain Dy, =21 bty _Thc” _ke”
2aya,a, 2Tk 2

As the signals g(¢) and n(¢) are noncorrelated, then the system
error variance D, is equal to the sum of the signal variances ¢, and ¢,

_Do(1+0aT+kT) | e

o’T +a+k 2

€

The error standard deviation (ESD) is

2
ngJFS:\/Da(1+aT+kT)+kc .

2T +o+k 2
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To reduce the ESD £, We should increase k.

To reduce the ESD £, We should reduce k.

To minimize the full error standard deviation we choose k&
get the problem of the ESD optimization (Fig. 14.5).

ope DUt thus we

|
| en (K)
D (k)
Dsg(k)
DaT - ———————--
|
1 » k
0 kﬂp}‘

Figure 14.5 — The ACS dispersion as a function of the gain

Terms:
— random process,
—  centered random process,
— mathematical expectation,
— distribution function,
— distribution density,
— correlation function,
—  stationary random process,
— variance (dispersion),
—  standard deviation,
—  spectral density.

Comprehension questions

How can we estimate the output signal spectral density?
How can we estimate the error spectral density?

How can we estimate the output signal standard deviation?
How can we estimate the error standard deviation?

N~
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Lecture Ne15

THE CONNECTION BETWEEN THE LINEAR ACS FREQUENCY AND
TIME CHARACTERISTICS

The planet is a cradle of the human
mind but it is impossible to live in a
cradle eternally.

K. E. Tsiolkovsky

Lecture outline:
1. The connection between the open and closed-loop ACS frequency

characteristics.

2. The calculation of the ACS time characteristics by its frequency
characteristics.

3. The estimation of the ACS step response properties by the closed-
loop system RFC.

15.1. The connection between the open and closed-loop ACS
frequency characteristics

Let us consider the closed-loop system (Fig. 15.1).

G(s) ~E Y(s
(s)g (s) Wis) (s:)

Figure 15.1 — Closed-loop system

The input and output are connected by the equation

W(s) _Y(s)
1+W(s) G(s)’

D(s)= (15.1)

Y(s)=®(s)G(s), Y(jo)=D(jo)G(jo).

Thus, the closed-loop system AFFC can be constructed by the given
open-loop system AFFC (Fig. 15.2.), having applied the formula
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(15.2)

Figure 15.2 — The open-loop system AFFC

At ® =0 we obtain

k

@(0)={m

1, if v#0 (astatic system).

, if v=0 (static system), (15.3)

At @#0 ‘W(_]a))‘ is divided by [1+W (jw)and a phase of the vector

1+ W (jw) is subtracted from a phase of the vector W( jw).
The closed-loop system AFFC can be constructed in a different way

_ Ule)+ V(o)  Ul@)1+U(o)+V:ie) . V(o)
O(jo)= Vo) 2 2, T 2 2 "
1+U(0)+jV(0)  (a+U)?+Viw) ~ (+U@)?*+V(o)
= P(0)+ jO(0)=|@( jo)e V() (15.4)
where P(w)=|D(jw)|cosy (w);

Q(0) =|®(jo)|siny(w);

(o)

\|1(0)) = arctgm.
At @ =0we obtain ®(0)=P(0), Q(0)=0, y(0)=0.
At =0 we get P(0)=0Q(x)=0,at m<n W(oo):(m—n)-ﬂ/z.

The examples of the frequency characteristics are shown in Fig. 15.3.
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b ?\P(CO) d ,Q(®)
- vl;/seco w, 1/sec
m-—n)— — — e
( )2 ‘

Figure 15.3 — Frequency characteristics of the closed-loop system

15.2. The calculation of the ACS time characteristics by its
frequency characteristics

The system output signal can be calculated by its image applying the
inverse Laplace transformation

y(@)= LYY (s)}= L H{®D(5)G(s)} as Y(s)=D(s)G(s). (15.5)
At g(t)=5(r) we get G(s)=1 and y(t)=L YD(s)}=H ().

At g(r)=1(¢) we obtain G(s)—1 and y(@#)=L {¥}=h(t).

s
The result of the inverse Laplace transformation depends on the poles
of the image Y (s) which can lie both in the left and in the right half plane (Fig.
15.4). We present ¥ (s) as the sum of two components, Yr(s) being the

regular component (the poles lie only in left the half plane), and Y,,(s) being

the irregular component (the poles lie on the imaginary axis and in the right
half plane): Y(s)=Y,(s)+Y,(s).

jor s-plane

SNE
LAY

x 0 o

Figure 15.4 — An s-plane pole plot

Correspondingly the original consists of two components
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Y(@) =y, (1) + y,(2).

The inverse Fourier transformation can be applied to the regular
component Y,.(s), and the Laplace transformation can be applied to the

irregular one

1 ® jot 1 cHj® st 15.6
y(t)—E_I Y, (jo)e dw+2njc JJOOY n(9)estds . (15.6)

Let us consider the regular component Y, (jo)= R(®)+ jS(®), where
R(®)=Re[Y,(jo)|, S(®)=Im|[Y,(jo)].

We obtain
1 % jot
yr®)==— [ [R(@)+ jS(0)]e/* do =
T —c0
1 OO
- 2— | [R(0)+ jS(@)](cosot + jsinot)don =
o0
j [R(oa)cosoat — S(0)sinot |do +
even ﬁ;nction
+]L | [R(co)smcot + S(co)coscot]dco =
27 —oo ™
oddjhncnon
1 0
== [ [R(w)cosot — S(w)sinot]|do. (15.7)
T
At <0

(0 0]
y(®)=0. y.()=0= % [ [ R(®)cosot + S(w)sinot |do . (15.8)
0
By summing and subtracting two last expressions we obtain
2 o0 2 0
yp(t)= e | R(w)cosotdwn or y,.(t)= - [ S(w)sinot do. (15.9)
0 0
Thus, there exists the unequivocal communication of the output signal

with the ACS frequency characteristics for minimal-phase systems.
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Let us find the pulse transitive characteristic h’(t). For this we put
g(t)=8(¢). Thus G(s)=1 and¥(s)= H'(s) = D(s).

For the stable system we have ®(s)=®,.(s) as all the poles lie in the left
half plane. Therefore the irregular component is absent

H'(jo)=Y(jo)=Y,(jo)=P(jo)= P(®)+ jO(®)= R(®)+ jS(®). (15.10)

By substituting the values R(®) and S(w) into expressions for y, (¢)
(15.9), we get

h’(t)=%o(j:P(oa)cosoat do, (15.11)

, 2% .
h(t)=—E(j)Q(0))s1ncotdo). (15.12)

Thus, the system weight characteristic 4’(¢) can be calculated by these

formulae, if the closed-loop system RFC or IFC are given.
The minimal-phase system RFC and IFC cohere by the Hilbert double
transformation
(0 0]
1 I P(co)d
oolU—O®
To calculate the step response h(t) we put g(¢)=1(¢) then
G(s)=1/s and G(jo)=1/ jo. We have
H(s)=Y(5)=D(s)G(s)=D(s)/ s =Y, (s)+ 1, (s). (15.14)
The image of G(s)=1/s has a zero pole lying on the imaginary axis.

Therefore we have the irregular component. We shall find it.
The steady-state signal value corresponds to the zero pole

P@=-1 1 2, 0)- (15.13)

k
llm y(t) V()= ltm Y(s)s— IT;O(D( )s O0)=P0)=< k+ latv 0, (15.15)

lat v+0.
So y,(t)=P(0) and Y, (t)=P(0)/s. As Y(s)=Y,.(s)+Y,(s) then

CI)(S) P@O) _ D(s)— P(O)
S s

Y,(s)=Y(s)—Y,(s)= (15.16)

We can apply the Fourier transformation to the irregular component
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¥, oy = @(jw]); P(0) _ P(0)+ j%oa)— PO)_0) , ;PO-P@)_

= R(®)+ jS(®). (15.17)

Thus we obtain R(m)=%, S(m)=w. We substitute these

expressions in the y,.(¢) formula (15.9) and we add the irregular component
to calculate h(¢)

nity=P0)+ 2 2 cos0t do, (15.18)
(" 0 Q)]
n(e)= )27 PO=P© ot do =
I 0 ()
= PO)-2 P(0)] S 4ot + 2T PO vt do.  (15.19)
T 0 T 0 ()
2
Thus,
h(t)=%°§%smm do, (15.20)

i.e. the step response is unequivocally determined by the real frequency
characteristic (RFC) P(w) of the closed-loop system.

15.3. The estimation of the ACS step response properties by the
closed-loop system RFC

The formulae

2P P(w)

H(s)=@.

Imply the following properties of the step response:
1) The step response finite value (Fig. 15.5) is equal to the initial RFC
value h(w)= P(0).
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h(®)

0 Ao— 0
N o, 1/sec t, sec

Figure 15.5 — The step response finite value
The proving:
(o) = lim h(e)= lim H(s)s= lim S PB)S _ p(0)= P(0).
%

2) The RFC finite value is equal to the step response initial value
h(0)=P(x)=0atm<n.
The proving:
D(s)s
A

h(O)= lim h(t)= lim H(s)s= lim_ — D)= P(0) at m<n,

() =0.
3) The approximately identical step responses correspond to the
approximately identical RFC. It follows from the integral property to smooth

functions. Under this property we can replace the complexed exact RFC by
the piecewise linear polyline which integral can be easier calculated (Fig.

15.6).
P(Q)I/\ P(Q)P\
0 > >

-

o, 1/sec
P(o P(m)
( )‘% ot Py(©)
0
o, 1/sec f
Py(® P3(m)

h()A

Y

hy@)  hy(0)

Figure15.6 — Ratio between P(») and h(t)
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4) If the RFC is as the sum of several characteristics, then h(z) also
becomes the sum of the step responses corresponding to the certain RFC

m m
P(w)= )y Pl.(co) — h(t) =2 hi(t)'
i=1 i=1

This is implied by the integration linearity which is the basis for the step
responses construction method elaborated by V.V.Solodovnikov (trapezium
method)

P(®)=P(0)+ Py(0) + Py(0) = h(t) = hy () + hy (1) + hy(2).

5) If two RFC differ only in the ordinate axis scale, then the
corresponding h(¢) differ only in the ordinate axis scale as well (Fig. 15.7).

Py (o) h(),

me 1/sec 0

Figure 15.7 — The scaling of the RFC value

P(®) h(9)

A J

1)1(0))9 PZ(CO) =mP, (w),

o0
LT

sinot do =

o0
= 2 Wﬁnwt do=mh,/(?).

6) If two RFC differ only in the abscissa axis scale, then the
corresponding k() also differ only in the abscissa axis scale (Fig. 15.8). The

wider is the RFC, the narrower the h(t) becomes

P (w), P,(w)=F(mo),
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27 B () 2 B (mw) 27HR

h,(t)= (I) sinot do= (j) _— ) Sin(mo-— ) dmo= (I) 1}(3»)8”17b dh= hl( ’; )
Py(®) h(?) ha0)

. : | :
| \Bé o, 1/sec t, sec

Figure 15.8 — The scaling of the RFC width

The wider is the bandwidth, the swifter is the system. There exist the h
- function tables in which the step responses calculated for unit trapeze (Fig.
15.9) are given.

P(w),
1

N

0 1 o, 1/sec

Figure 15.9 — The unit RFC

These characteristics make it possible to calculate the step responses
corresponding to the trapezia of any height and width, applying the properties
4 and 5.

7) If RFC is a positive decreasing convex function, i.e.
P(w)>0, d’;("’) 0,4 P(®)

d 2
5 =0 (Fig. 15.10).

>0, then h(¢) is the monotonous function, i.e.

P(® h(t)

o),:i/sec
Figure 15.10 — Monotonous h()
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8) If RFC can be replaced by the trapezium, then c<18% and

g <t <4—n, where o, is the positivity frequency (Fig. 15.11).

n p

P(®), h(?)

0' N A

0, 0, 1/sec t, t, sec

Figure 15.11 — Positive RFS

9) If the positve RFC has the P, > P(0) overshoot,

_1.18P,, ;.. — P(0)
- P(0)

schedules.
10)  If RFC has break at @ =0, k(z) tends to « (Fig. 15.12). The

(¢)

100%. The setting time ¢  is calculated by the

N

system lies on the aperiodic stability border.

P(0) h(t)

0 o, 1/sec 0 t, sec

Figure 15.12 — Break at =0

11) If RFC has break at @ #0, the system lies on the oscillatory
stability border (Fig. 15.13).

P(w)T _/ h(?)
0‘ /— (!:), 1/sec 0 t, sec

Figure 15.13 — Break at ©#0
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Terms:
— real frequency characteristic RFC,
— imaginary frequency characteristic IFC.

Comprehension questions

1. Explain the AFFC connection of the closed-loop and open
systems.

2. Calculate the initial and final values of the RFC, IFC, AFC and
FFC for the closed-loop system.

3. How can we calculate the step response having the RFC?

4. What properties of the closed-loop system step response can
be estimated by the RFC?

5. What is the Solodovnikov method based on?

Lecture Ne 16
THE ROOT LOCUS METHOD

Lecture outline:
1. The bases of the root locus method.
2. The example of the root locus building.

16.1. The bases of the root locus method

The root locus is a set of the trajectories of the closed-loop system
characteristic equation roots on complex s-plane when one of the system
parameters is changed, e.g. 0<k <o Oor-wo<k <.

The method has suggested by the Russian scientists Teodorchik K. F.,
Bendrikov G. A., Strelkov S. P. (1948 — 1949) and the US scientist W.R.
Evans (1948).

The root locus method allows to carry out the system analysis and to
choose the parameter &, providing the most profitable location of poles.

Let us consider the system (Fig. 16.1).
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G Y(s

(S)TE(S) LR
Z(:
) Wi(s)

Figure 16.1 — The closed-loop system

The transfer function of this system is

Y(s W, (s) /4 (S)
cp(s)zGES%=1+W1(1s)W2(s)=1+iV(s)' (16.1)

The open-loop transfer function

_ bys™ +bs™ Vs 4 by,

= %= M) = aps" +as" Vv, msn (16:2)
can be presented as
m
e e P
_Hl(S =5;)

]:

where s;,i=1,2,..,m are the zeroes of the open-loop system transfer

function;
Sjs j=1,2,...,n are the poles of the open-loop system transfer

function.
The closed-loop system characteristic equation is
1+W(s)=0. (16.4)
The roots of this equation s, , k=1,2,...,n are the poles of the closed-
loop system transfer function. When the parameter £ changes, the poles

move through the complex s-plane and describe the paths (Fig. 16.2). The

set of n of such paths (trajectories) forms root locus.
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jo)n

- s-plane

a

T

Figure 16.2 — The root locus

From the characteristic equation (16.4) we get W(s) =—1. This complex

expression can be divided into two expressions
W (s)|=1, (16.5)
argW(s)=+m(2i +1),i=0,1,2,..... (16.6)
We write expression for module W (s)|

m m

ka [T |s - sq;] ka T1 ly;
i=1 _ i= _
ﬁ =1 or?_l, (16.7)
s—S.
j=1 7 j=17
where loiz‘sk_soi ,lj= sk—sj‘ (Fig. 16.3). We select the parameter &

from the previous expression

(16.8)



= 0, s-plane
5 —
//j< \’2 .
So1

Sz

Y

Figure 16.3 — The calculation of the W(s) modulus and phase

Let us write an expression for the vector W(s) argument
m n
argW(s)=arg [ (s—sp;)—arg II (s—sj)=i(2i+1)7|:,i =012,...
i=1 Jj=1

This implyies

m
2 091 Z 9 =+n(2i+1),i=0,1,2,. (16.9)
i=1 j=1

Any point A on s-plane which satisfies the equation (16.9), belongs to
the root locus, so it is a pole of the closed-loop system for a certain value of
the parameter k. This value is calculated by the formula (16.8).

0,; is a phase of the vector which is drawn from i-th zero of the open-

loop system to the researched point s, .

0 j is a phase of the vector which is drawn from j-th pole of the open-

loop system to the researched point s, .

The equation (16.9) is convenient because it doesn'’t include the value
of the parameter k& .

The equation (16.9) makes it possible to build the root locus. We choose
the most suitable location of the closed-loop system poles and using the
equation (16.8) estimate the value of the parameter which provides the
required pole locations.

When building the root locus manually, we choose the point A on s-plane
and check whether it satisfies the equation (16.9). If yes, then this point
belongs to the root locus. If no, we move the point horizontally or vertically and
check the condition (16.9) again. To build the root locus in the MATLAB
you should use the command rlocus.
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Let us consider the root locus properties, resulting from the equation
(16.9) and the characteristic equation.

1.  Root locus has n branches, n being the order of the system.

2. The root locus branches are symmetrical against the real axis.

3. The root locus branches at k = 0begin from the poles of the open-
loop system.

The closed-loop system characteristic equation is

" kB, (s)
A(s)

1 =0 or A(s)+kB,(s)=0. (16.10)

If k=0 then A(s)=0.

So the closed-loop system characteristic equation at k=0 coincides
with the open-loop system characteristic equation. Therefore the poles of the
closed-loop system at k=0 coincide with poles of the open-loop system.
Sk =S j=12,..,n.

So the poles of the open-loop system s; are the initial points for the root

locus of the closed-loop system.

4. When k=o m branches of the root locus end in the zeros of the
open-loop system.

The equation

A(s)

+B,(s)=0, (16.11)

follows from the characteristic equation A(s)+ kB,(s)=0, hence at k = we
have  B,(s)=0, S = Sojok =1,2,...,m and the closed-loop system

characteristic equation has a roots, coinciding with the zero of the open-loop

system, so zeroes of the open-loop system s,; are the finite points of the

root locus.

5. Other n—m branches of the root locus at £ = go to infinity along
the asymptotes.

6. As the branches are symmetrical the asymptote centre lies on the
real axis and its coordinates (Fig. 16.4) can be found by the formula

S si- %

S+ — S .

DALY BRI

=471 =l (16.12)
n—m
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jﬁ) A

Y

"0

N )

Figure 16.4 — The asymptote centre

7. The asymptotes divergence angle are calculated by the formula

/I

®i=

(2i+1),i=0,1,.... (16.13)

n—m

8. Any point of the real axis which has the odd number of the zeroes
and the poles of the open-loop system on its right belongs to the root
locus (Fig. 16.5).

Figure 16.5 — Parts of the real axis, belonging to the root locus

This property follows from the equation (16.9). We choose the parts of
the real axis which belong to the root locus, and put the arrows from the pole
to the zero.

9. The poles can coincide at some value of the parameter k. Thus
appears a multiple point which coordinates can be calculated by the equation
(16.9), written for the angle tangents (Fig. 16.6)

$ o g0 g% 1 1 o 4614
sl At ] Ay



Jjo

0 o
o

Figure 16.6 — Coincide point a

10. When k increases, the poles disperse from multiple point at the
angles

0; =§(2i+1),i= 0,1,.... (16.15)
11. The pole angles of departure 8, from the complex initial points S;

and the branch angles of the entry 0, to the complex final points s,; are

calculated from expressions which follow from the equation (16.9)

5 0g;— 3 - Lo 2 1. (16.16)
0,=2 0p; - Zej—n(21+1), 0= X ej_ 3 0g; —m(2i +1). :
=1 j=1 =17 =1
J#l i#r

12. The intersection of the root locus branches with the imaginary axis
of plane s can be calculated by one of the stability criteria.

13. The step response corresponds to the given location of the closed-
loop system poles on the root locus

_BO & By

h(t) = kgt =
D) k=15,D(s;)
m j"§n190i
goy n ol s =suife e
——+ : e’ (16.17)
D(0) k=1 26 '
0 n =1
|sk|e’ kay T1 ‘sk —sj‘e ek
j=1
Jj#k
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16.2. The example of the root locus building

We have the system (Fig.16.7) which transfer functions are

k(s+3) kB, (s)
V()= s(s+4)(s2 +2s+2) B A(S) ’
k(s+3) k(s+3)

a(s) = = .
s(s+4)(s> +25+2)+k(s+3) s*+6s +10s> +(8+k)s+3k

The closed-loop system characteristic polynomial is

D(s)=s*+6s> +10s> + (8 + k)s + 3k.

G Y
() ? W) )

Figure 16.7 — Closed-loop system

The open-loop system characteristic polynomial is
A(s)=s(s +4)(s* + 25 +2).

We build the root locus for the closed-loop system at the parameter &
changing within the range of 0< k <o (Fig. 16.8).

JL0Y

53 /:' pl.s
S2 S %"1
P v *———»>
4 -3 2 -&__11 2«
S4

Figure 16.8 — Root locus
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We find the initial and finite points of the root locus and put them to the
plane s

B(5)=0—>5);=-3, A()=0->5=0,5,=—4,5;=—1+j,5,=-1-.

We mark the parts of the real axis o which belong to the root locus. The
arrows go from the poles to the zero. Then we find the asymptote star centre
coordinate

n m
s AT AN 0+(A)+(1+)+(1-H-(3) __
- n—m B 4-1 -

From the centre mn—m=3 asymptotes disperse at the angles

Sn

T (2i+1),i=0,1,..., at i=0 e;‘:g, at i=1, 0 =n, at i=2, ej‘=?.

0; =
i~ n—m
At the further growth of i the angles will repeat. The angles of the root

locus branches coming out of the complex initial points s, and s, can be
calculated by the formula

m n
0;= 3 6,;— X +m=25"—-135"-20"-90° +180° =—40°, 6,4=40".
i=1 i—1
J=1

Jj#3

We form the Hurwitz matrix and the equation of the oscillatory stability
border

6 8+k 0 . 0
1 10 3k . 0
0 6 8+k . 0y,

0 1 10 - 3k
Ar_ =Ay=0,
—3k(6-6)+(8+k)(6-10—(8+k))=0—>k=>5.95.

We substitute the obtained ‘&’ to the polynomial D( jw)
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D(jo) = (jo)* + 6(jo)> +10(jw)* +13.95j0 +17.85=0
And find @ =1.525, s; = -1.87, 5, —4.13, 5; = j1.525, 5, = — j1.525.

Terms:
— root locus,
— asymptote star,
— multiple point.

Comprehension questions

What are properties of the root locus?

What is the root locus procedure?

Where do the initial points of the root locus lie?
Where do the finite points of the root locus lie?
Where does the star of the asymptotes lie?

How can we find the center of the asymptote star?
How can we calculate the angles of the asymptotes?

NOoO oA LDN =~

Lecture Ne 17
THE SENSITIVITY OF THE AUTOMATIC CONTROL SYSTEM

The sensitivity is the system attribute which describes the changes of
its output, transfer function, the gain, a state vector, the quality criterion
under the influence of the parametric variation and the changes of
characteristic and environment conditions.

The ACS parametric variation can cause the loss of the system stability
and serviceability.

Let us consider the process described by the transfer function Wpr(s)
(Fig. 17.1).

u(?) (@)
—» Process —»

Figure 17.1 — The process
The output image in the open-loop system is
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Y(s)szr(s)-U(s). (17.1)
The parameters and the transfer function W, (s) change under the
influence of the environmental alterations and the operational component
deterioration. Let the transfer function possess the value
Wp,,(s)=Wp,.(s)+AW(s). (17.2)
Then the output image is equal

Y(s):(Wp,, (s)—I—AW(s))-U(s). (17.3)

We get the output image deviation
AY(s)=Y (s)=¥(s)=AW(s)-U(s). (17.4)

Thus, the parametric variation directly affects the output change.
Let us close the system (Fig. 17.2).

G(s)U(s) (o) Y(s) R
T pr
Wi(s)

Figure 17.2 — The closed-loop system

A

At the nominal parameters the output image has the form

¥(s)= 1+W:ry(lj)f2ﬁ 5760 (17.5)

And after the parametric variation we obtain
' Wor (s)-l— AW(S)

Vis)= 1+(W i () + A(5)) - 4 (s)

-G (). (17.6)

Let us find the image of the output changes at
1+ Wp,(s)Wfb(s) >1,
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AY(s)=Y (s)-¥(s)=
([ wls)ram(s) Ab
(W (5) + AW())- W (5) LPn(5) Was) |
_ W (5)+ AW (5)+ Wy (s)- Wy () + AW (s)- PZV,,r(s) (8)=Wp(s)-
(1+Wpr( )'Wfb(s))
W ()W 5 (5) = AW (5)- W, (5) - W g (s ).G(s): AW () G(s). (177)
(1+Wpr(s).Wﬂ,(s))2 (1+Wpr(s)'Wfb(s))2

To compare the qualities of closed- and open-loop systems we find
relative changes of their output images.
For the open-loop system we get

AY(s) 3 AW(s)-U(s) 3 AW(S)
Y(s) Wpr(5)U(s) Wpe(s) 1rs)

For the closed-loop system we obtain

AY(s) AW(s)-G(s )'(”W ()'Wfb(s)) AW () Wpr(s)  (17.9)

Y(s) (1+W () (S)) pr(s)°G(s) (1+W ()Wﬂ’( ))

Thus, the relative change of the output image for the closed-loop

system is (1+W ( ) ij( )) times less than for the open-loop system.

So the closed-loop system is less sensitive to the parametric variations
than the open-loop system.

To reduce the closed-loop system sensitivity to the parametric
variation we the following condition be satisfied in the whole range of the
operating frequencies

(19,1 (5)W 3 (5)) > 1. (17.10)

How can the sensitivity be estimated in terms of quantity?
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The sensitivity function V' was first formally determined in 1945 by the
American researcher H.W. Bode in order to estimate the influence of the
resistor R resistance value on the amplifier gain &

x _ OK
Vi =R (17.11)

The sensitivity function can become the quantitative estimation of the
ACS as the sensitivity function is a particular derivative of the observable
quality parameter J at the parameter p, which changes under the

environmental influence
oJ
Vi=—_—.
P ap
Along with the sensitivity function V the relative sensitivity §
determined by the formula

(17.12)

g7 AT 1713
P Ap/p ( )

can be used.
At small deviations of the parameter p and at the transition to the limits

we obtain

oJ/p

sy =12 17.14

Pl ( )
Now we calculate the sensitivity of the open-loop system transfer

function to the parametric variation

s =—2L prol g, (17.15)

Thus, all the open-loop system parametric variations affect its output
directly. To compensate the open-loop system output variations we should
know its parameters (both old and new) precisely.

Now we calculate the sensitivity of the closed-loop system transfer
function

Wpr(s)
q)(s)=1+Wp,.(ps)-Wfb(s)

(17.16)

to the parametric variations S;‘;pr by the definition

o _ 0(s)/a(s)
W pr 8Wp,,(s)/Wp,,(s)
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(14 W1 (5) W (5) =W 13 (5)- W, (5)) - W, (5)- (14 W, () - W 1 (5))

(190() W 1 (5)) e (5

1 (17.17)
1+W r(5)- Wﬂ,( s)

We can see from the last expression, that the closed-loop system

sensitivity S;‘;pr can be reduced in comparison with the open-loop system

w
sensitivity Sy, by increasing W,,.(s), Wg(s) in the whole range of the
Wpr pr o

operating frequencies. The process parameter values can be determined
less precisely for the closed-loop system.

Let us calculate the closed-loop system sensitivity to the change of the
feedback transfer function

o (s)/d)() ~
SWfb o, S/Wfb ~—1. (17.18)

The feedback changes affect the output changes directly. Thus it is
very important to use such feedback components which change little
during the utilization.

If transfer function is submitted as a fraction

®(s)= 38, (17.19)

then the sensitivity to the p parametric variation can be calculated as follows

S(D 6CD(S)/CD( ) _ 6lnCD(s,p) _

(s)/p(s) - Olnp

_ 6lnB(s,p) _ 6lnD(s,p)
- Olnp Olnp

=sB_g?P (17.20)



Example 1

We have the inverting amplifier based on the operation amplifier (OA)
(Fig. 17.3).

Rl |7

—L
U,’,, — >—'_° Urmr
1 =1

Figure 17.3 — The inverting amplifier

The gain of the modern operational amplifier is 4> 104,
The OA input current is negligibly small because of the high input
resistance. Therefore for the inverting input of OA we can write down

Uin—Ua _ Ya=U s 3
R = R, s U our=—AUq,.

We exclude the potential of a point U, from these equations

U, Uout U U
+ = —

in out _ = out

The output signal can be expressed in terms of the input

or Uyt =— U. =>Uye~—=-U.
out R +R,+ AR, in out R, in
. R2
R, +R A-R
Uout == g Vin »®=~ .
R, + R,

The equivalent block diagram of the inverting amplifier looks like
(Fig. 17.4).
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Uin (t ) R 2 Uam’(t )
— A

Rl
R, +R,

Figure 17.4 — The equivalent diagram

We can calculate the system sensitivity to the parameter 4 at

A=10%; R, =0,1 MOhm ; R, =1 MOhm .
o O0D/® 1 ~
47 04/4 1+ Wy W g,

1 1
= = ~0,001.
1+ AR 10°-10° 7

+7
R, + R, 10° +10°

Thus, the inverting amplifier is almost tolerant to the change of the
parameter A4.

We calculate the system sensitivity to the change of the feedback
element R, by the formula

o _ 0D/P :(—A-(R1+R2+A-R1)+A-R2)R2: R+A4-R,
“2 " oR, /R, (R1+R2+A-R1)2-(—A-R2) R+ R, +A4-R,

The feedback resistance R, change affect the inverting amplifier output

change directly.

The concept of sensitivity is now applied to the ACS analysis,
identification and synthesis. We can consider the sensitivity of the output, the
transfer function, the quality criterion to the parametric, disturbance and
controlled variations.

We form the sensitivity equation to the change of the parameter p for

the system
x= f(x,ut,p). (17.21)

We introduce the sensitivity function V px = Z—x and differentiate the
D
state equation of system by the parameter p
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(17.22)

odx__of ox  of
op-dt ox op op’
pr-L oy I (17.23)
ox 6p
From this equation we can find V.
We write down the scalar form of the system equation
)'ci=fi(x,u,t,p),i=1,2,...,n. (17.24)
Then we introduce the sensitivity function to the vector parameter
o]
p=| 72|, Vi —aai, i=1,2n; k=1,2,....m. (17.25)
Pk
| P4 ]
The scalar form of the sensitivity equation is the following
V,i= § Z’ Vpli aaf' yi=1,2u,m; k=1,2,..,m. (17.26)
J=p Pk
Xi
Pr - By

These equations are linear against the sensitivity function 4
solving them we obtain the sensitivity function of any state variable
1,2,..,n) to any parameter P (k=1,2,..,m)

For linear systems we have

i=Ax+Bou, Vieavys 2, 08, (17.27)
Pop  op
Or in the scalar form
pli 17.28
= 16pk = 16pk ( )

n
; ij ]+ zbllul’

Example 2.
To find the output sensitivity function to the change of parameters &

and T for the object which has the transfer function
Y(s) k

W(s)= U(s) T,+1°

We write the input-output equation

%1 y(0)=kU(0)
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) 1 k
Then d_yz—ly(t)+£u(t) or x=——x+—u, A=—l; B=£.
dt T T T T T T
We introduce two sensitivity functions

x oy _ox x

6_y_6x

oT oT’

We differentiate the object equation by the parameter &k
1 t

. 1 —
ka=_? k+?U and get ka(t)z[l—e TJU" at U(0)="U,.

We differentiate the object equation on the parameter T:

and get

The output deviation at the change of both parameters is
Ay=V](t)- Ak +V{ (¢)-AT .
The frequency characteristics has the following form

k 04 _ 1 % _,

—— (p(oa) =—arctgT - o; VkA == V===
72 .02 +1 Ok 72 .02 +1 Ok
The sensitivity functions of these characteristics to the parameter T are
as follows

A(oa)=

VA=6A(60)=_ ka?
T aT (T2.0)2+1)3/2’
V<P=6(P((D)= @
! or 2.2 +1
1 kao? ®
AM(®)=—F— Ak - ‘AT, A =———>—AT.
() T? o?+1 (TZ.(,)2+1)3/2 o) T’ 0’ +1
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Terms:
— sensitivity,

— relative sensitivity,
— sensitivity function.

Comprehension questions

What is the sensitivity of the system?
How can we estimate the sensitivity quantitatively?
How can we estimate the relative sensitivity quantitatively?

W=

Lecture Ne 18
METHODS OF PROVIDING THE REQUIRED ACS ACCURACY

Lecture outline:
1. The providing of the required ACS astatism order.
2. The selection of the required open-loop system gain.
3. The scaling of the reference action and the feedback signal.
4. The combined control.

18.1. The providing of the required ACS astatism order

The accuracy of the automatic control system is determined by its
structure, parameters and input actions g(¢) and f(z).

The error formula caused by the reference and disturbance actions
have been earlier obtained for the systems which have one input, one
output and the single negative feedback (Fig. 18.1)

v—r
. S r!
Eg = llmﬁ,
>0 sV + K

(18.1)

s MK fr!
>0 s+ K
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¢ [
8 _ &) y()

—> Regulator ——» Actuator ——» Plant ——® Sensor Tb

Figure 18.1 — A system with one reference input, one output and the
unit negative feedback

These formulae imply the possibility to increase the accuracy by
increasing the astatism order, i.e. by the introduction of integrators. The
integrators should be introduced to the system till the point of the disturbance
application is reached in order not to raise the p-number that is the
number of integrators in the open-loop system transfer function at the
reference action. v, is defined by the permissible static e, and velocity

E,, €ITOrS:

—if &g perm 20, then v, =0;
—if &g perm =0, then v, =1;
—if &0t perm =0, then v, =2.

Let the astatism order v be equal to zero, i.e. the system has no
integrators. We do not change the transfer coefficientK vy, =1. We

introduce the integrator % v=1. The logarithmic phase-frequency
characteristic lowers on—%. The inclination of the logarithmic amplitude-
frequency characteristic raises on—ZOd%ec. The bandwidth decreases.
The line ¢(w)=-r intersects with the logarithmic phase-frequency
characteristic at the inclination—60+—40d%ec. The process becomes

oscillating. The setting time ¢, increases. The quality parameters

deteriorate. The system can become unstable (Fig.18.2).
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L(®),dB A

~0 dB/dec
~ .

\0 \\ lg(w), 1/sec
— o
N :

| o(w)
N\ — — /

Yo -7
(P;S((O) = (anr(m) N \
| \
N\

Figure 18.2 — Bode diagrams

The introduction of an isodrome link is a more suitable way to
increase the astatism order

T,s+1

We(s)=k; (18.3)

S

This link changes the system logarithmic amplitude-frequency
characteristic and logarithmic phase-frequency characteristic at the low
frequencies and does not introduce changes at the middle and high
frequencies, what allows raising the steady-state ACS accuracy without
aggravating the system quality parameters in a transient mode (Fig. 18.3).
To eliminate the velocity error &,, one more isodrome link should be

e

introduced.
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Lc((ﬂ) Igo
} >
¢ j
lgo
>

Figure 18.3 — Bode diagram for the isodrome link

18.2. The selection of the required open-loop system gain

The simplest way to increase the ACS accuracy is increase the open-
loop system gaink. As it follows from the error formula, the transfer
coefficient should be increased for those blocks which are located
between the comparing device and the point of the disturbance

application £ (¢).
The required value k,, can be obtained from the conditions

E,S€ and &, <&, ,,, and (18.1), (18.2). The greater value k,,, is

perm
chosen from the two obtained.

If the k is increased, the open-loop system LAFC rises, the w,,,, the

bandwidth and the swiftness of system are enhanced. But this results in
the increase of o, M and the reduction of y,,L,. The system can

ut ’

become unstable. The correcting device should be introduced to provide
the required quality measures o,M,y,,,L,, .

18.3. The scaling of the reference action and the feedback signal
18.3.1. The scaling of the reference action

We introduce the correcting device W,(s) to scale the reference

action (Fig.18.4). In this case the comparing device output signal is not
equal to the error

171



s Gi(s
S s a?i'(” A e

Figure 18.4 — The scaling of the reference action

I=8 —V#&. (18.4)

We calculate the transfer function of the correcting device W,(s)
which provides the increase of the ACS accuracy

E(s :G(s)—Y(s), (18.5)

()= 1= 1w (s) (18.6)
If we choose
Wc(s):H—W(s)—l 1 (18.7)

=14+ —-,
W (s) W (s)
then CDS(s) =0 and the system has no error ¢ at any reference action. The

system, for which cl)s(s) =0, is called absolutely invariant at the reference
action.

However, the transfer function 1+

L cannot always be realized.
W (s)

_ bys"™ +bys" T 4.t b,

aps" +a;s" '+ ta,

then the order of the W, (s) transfer function numerator turns out is higher

So if

W (s) , m<n, (18.8)

than that of the denominator, and the function is unrealizable. In this case
transfer function Wc(s) is realized approximately so that the order of

numerator was not higher than the denominator. In this case we say that
the system is invariant to ¢, i.e. it has an error. In the elementary case we
choose
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Wc(s):l—l—% (18.9)
then the steady-state error ¢, at the constant action g=const will be
absent. The system became astatic without introducing the integrator.

18.3.2. The scaling of the feedback signal

We introduce the correcting device W, (s) to the feedback (Fig. 18.5).

In this case the comparing device output signal is not equal to the error ¢
because =8 -1 #€.

G 0y s
(5) ~Z(s) W(s) Y(s) .
Y’(”E W,(s)

Figure 18.5 — The scaling of the feedback signal

A

We calculate the system transfer function by the error

E(s):G(s)—Y(s),

_ 1+ W(S)WC(S)—W(S)

T IOLAD (18.10)
If we choose
_—1—|—W(s)_ _L
Wc(s) W(s) =1 W(s)’ (18.11)

then @, (s)=0.

The system will be absolutely invariant at the reference action. Such
correcting device can be realized at m =n and becomes unrealizable at
m<n.

The transfer function can be realized accurately within ¢
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W, (s) 1 — (18.12)

W (s)

In the elementary case we choose W (s):l—% to eliminate the

static error €.

Example.
We introduce the correcting device W,(s) to the ACS which structure

is shown at the Fig. 18.6 for the static and velocity errors to be absent in
the system, i.e. e,=0 and ¢, =0. It is equivalent to the requirement of

providing the astatism order v =2 without introducing the integrators.

G(s) k, k, Y(s)
(T) "| Ts+1 | Ts+1 -
W(s)

_—
-

/

Figure 18.6 — The scaling of the feedback

We write down the system transfer function by the error

Es Wi(s)W,(s
()= ) =1 T ()
and choose Wc(s):T:‘iH_
Then ‘
@, (s)=1- kiky(T.s+1)

(Tys+1)(Tys +1)(Ts+ 1)+ kikok,
(Tys+1)(Tys +1)(T,s+1) = kyhey (T,s + 1) + kyfeyk,
- (Tys +1)(Tys +1)(T,s + 1) + kykyk, '

The absolutely invariant system in this case is not realized, as
m<n,m=0and n=2.
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To provide g, =0 it is necessary to secure the equality ¢, =0 in the
transfer function

n n-1
o, (5)= CoS" +¢8" +atc, S+,
€ - — ’
aps" +a;s" M+ ta,

We choose &, —I—L.

k1k2
To provide ¢, =0 we secure the equality c,_; =0.

Therefore, we choose T, from the condition

=T+ + T, — kk, T, =0.

Thus we get T, :M.
ki, —1
18.3.3. The scaling of both the reference and feedback signals

We introduce two compensating devices W, (s) and W,(s)
(Fig.18.7).

G(s)

—> W.(s) 4>%—~ W(s)

W c2 (5‘) “

Y(s)

Figure 18.7 — The scaling of both the reference and feedback signals

We calculate the system transfer function by the error

Wi (s)W (s)
W,

Q. (s)=1-@(s)=1- 1+W(S ()

_ LW (5)Wer (5)=War ()W (5)
_ 1+W(S)Wc2(s) . (18.13)
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If we choose the correcting devices W, (s) and W,_,(s) which satisfy
the equality

, (18.14)

then the system is absolutely invariant at the reference action. To
eliminate the static error we choose

1
kc2:kc1_;'

18.4. The combined control
18.4.1. The combined control at the reference action

Let us introduce the parallel correcting device (Fig. 18.8) and
calculate the system transfer function by the error

1-W_ (s)W,(s
®q(s)= 1+W1§S§W2§S§.

(18.15)

\ J

W)
y E Ul Y(s
G(i)a-?—»(s) 20 1@—@ wae) s

Figure 18.8 — The parallel correcting

We introduce the correcting device W,(s) to provide the control at
both the deviation and at the reference action, i.e. u= u(s,g).

1

W, (s)
: 1

the reference action. In the elementary case we choose k, = to secure
2

If we choose W, (s)= , the system will be absolutely invariant at

€y =0.
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18.4.2. The combined control at the disturbance action

We introduce the compensating device Wc(s) to secure the equality
u= u(e,f) (Fig. 18.9).

{ i

”/f(v) W, 4(S)

Gs) , E ¥(s
—(2(?—(2 Wi(s) ~><§)—> Wa(s) >$ > o e

Figure 18.9 — The compensation control

To get the absolutely invariant system at the disturbance action we
should secure & ,(s)=0.

Let us calculate the system transfer function at the disturbance
_Y(s) _ =Wy (s)W5(s)+ W (s)W,(s)Ws(s)

IR I TS LA C T R

This implies the following condition

(18.17)

If it is impossible or difficult to realize this condition, we choose

c

k
k,=—2 to secure g, = 0.

k2
w,
Let us estimate the system error ¢, if Wc(s)iW“—Es; by calculating
2\

the closed-loop system transfer function at the disturbance

A A0 LA C L ACLACLADN
finv 1+ W, (s)W,(s)W5(s)
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__ Wa(s)Ws(s)
1+ Wl(s)Wz(s)W3(s)

1_ C

=& ,(s)®,(s). (18.18)

We designate L' {®,(s)} =o,(t).
l.e. the system can be presented as at the Fig. 18.10.

F (S) Y(S) Y inv(s)
—> Dfs) | D) >

Figure 18.10 — The equivalent presentation of the system

Then
Yinv(s):fI)f(s)i)c(s)F(s)z‘I)c(s)Y(s). (18.19)
We go to the originals

y,-,,,,(t) = 't[(pc(r)y(t— r)dr = 't[|:y(t)+ yT+ %:}512 + ..t l,y(r)rr + R}(pc (T)d’t
0 0 . r!
(18.20)
and introduce the coefficients
1L .
¢; =.—’.[1:’(pc(r)d1:. (18.21)
iy
Subject to these designations we get

r . t
Pim (1) = T i) + [ Ro, (1) d. (18.22)

i=0 0

If all ¢;=0,i=0,1,2,..., then y,,, (#)=0 and the system is absolutely

invariant at the disturbance action.
If not every ¢; =0, system is invariant to «.
At 0020 sttzo-
At COZCIZO stt=8fvel=0'
It is convenient to increase of the astatism order by introducing the
combined control as this method does not change the poles of the initial

system but adds the pole of the compensating device. So the introduction
of the stable compensating device preserves the stability of the initial system.
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Terms:
—  isodrome link,

— invariant system,
— scaling of the reference action,
— scaling of the feedback signal,
—  combined control.

Comprehension questions

1. What devices should be introduced to increase the accuracy?

2. What permissible errors the required astatism order is determined
by?

3. How should we change the system gain in order to increase its
accuracy?

4. How does the LAFC change at the increase of the coefficient k ?

5. What device should be applied for scaling the reference action?

6. Is the comparing device output signal equal to error?

Lecture Ne 19
THE ACS CORRECTION

Lecture outline:
1. Correcting devices.

2. Synthesis of the serial corecting devices with help of logarithmic
amplitude - frequency characteristic.

19.1. Correcting devices
19.1.1. Kinds of correcting devices

We introduce the correcting devices to the system in order to secure
the ACS stability and the required quality parameters (Fig. 19.1).

According to the point of connection the correcting devices are
divided into following kinds:

- serial (CD1);
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- feedback (CD2);
- parallel (CD3).

 J

CD3

u(‘ﬂ.’(f "(r} * ﬂf)
CD1 A '

8@ e(r)
—»{ RD > R

PA

»(t)

) J
)

A
y
=
|
\
~

CD2

S1

S2 |«

Figure19.1 — The automatic control system

In Fig. 19.1 the following marks are used:

RD is a reference device;

R is a regulator;

PA is a preliminary amplifier;

CD1, CD2, CD3 are correcting devices;

A is an amplifier;

M is a motor;

P is a plant;

S1, S2 are sensors.

A serial CD1 is connected after the comparing device or after the
preliminary amplifier.

A feedback CD2 covers the power amplifier A and/or the motor M

oo U(s) _ Wa(s)Wr (5)
Wey (5) Ucpi(s)  1+W (8)War (s)Wepa (s)Wsi (s)

~
~

~ . 19.1
WCDZ(S)WSI(S) ( )

By the form of describing equations correcting devices are divided
into linear and nonlinear.

The correcting devices can be passive (without the additional source
of energy) and active (with the additional source of energy), continuous
and discrete (depending on the nature of process).

By the type of the current correcting devices are divided into the
devices of direct current and the devices of alternating current. The active
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linear serial and feedback continuous devices of direct current are used
the most widely.

19.1.2. The ACS stabilization and damping by introducing the
phase lead

Let us consider the system (Fig.19.2) which has the transfer function

Y(s) k

=
~~~

%)
~—

I

I

. (19.2)

G(s) ¥(s)

4>§)—> W(s) >

Figure 19.2 — Considered system

This system has the frequency characteristics shown at the Fig. 19.3.

I
| |
| ] | I
_l!"A - -1 OA : 1 \2 lgo
N o) |
\\ 9(0) : | \
) | e >
‘ -1 o| | 1 2 N Igo
a :Tf/j |
|

Figure 19.3 — Nyquist and Bode diagrams
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This system has ¢, =0,¢,, = % . to decrease the velocity error ¢,
V

we should increase the system gain. Thus, the amplitude-phase frequency
characteristic extends and can cover the point (—l,jo). The system can

become unstable. To provide the required stability we introduce the phase

lead correcting element, e.g. the phase lead proportional-differential link
(Fig. 19.4).

1€
ey
R1
Um(‘) R2 U(Jm'(r)
O O

Figure 19.4 — Phase leading link

The correcting device transfer function is determined by the formula

§)= - Zz(s) - s -
ch( ) Uin(s) Zl(S)+Zz(s) (Rr%jy +R
(Ri+Yg)

Ry (RCs+1)  ky(T,ys+1)
(R + R (R Cs+1)  Ts+1

C

, (19.13)

R R R,C
2 s Tyt =RC, T,y = 1—2

R, + R, R, + R,

where k ; = sy T.n> Ty, -

The Bode diagram of this link is shown at the Fig. 19.5.
The system regains stability. Thus we increase the cutoff frequency
o, and the system swiftness but the noise immunity goes down.
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Figure 19.5 — Bode diagram of the phase-leading link

19.1.3. The ACS stabilization and damping by suppressing the
middle frequencies

We can secure stability with the help of proportional integral-
differential link (Fig. 19.6)

Wep(s) = (T1s+1)(T2s+1). (19.4)
b (T3s+1)(T4s+1)
jV A
Ha L(e)y
1 | |
o ’_:’_"_o =1 " > 1/T; | |1/T4 .
R 4 Oo=>y ur, | /lurdege
R2 \ | 1 | | 4108
Uin Uom‘ |
2 |
[0, T O
0=0
a b c

Figure 19.6 - Proportional integral-different link
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Let T, > T, > T, > 1,.
This link suppresses the middle frequencies and provides the
noncoverage of the points (-1,0) by the amplitude — phase frequency

characteristic.

19.1.4. The increase of the ACS swiftness by applying the feedback
to the inertial elements

We consider the aperiodic link (Fig. 19.7),

U,..(5) Ui(s) ~ UG  k Uou(s)
—»  k,, —>-
‘ T-s+1
kF B

Figure 19.7 — Feedback using

which has the transfer function

Uput (8
Wis)= U(g))szk+1'

Let us cover it by the negative feedback with the help of the
proportional link k g, . After the correction we get

U w
W,(s)= our(3) _ (s) k : (19.5)
U(s) 1+W(s)ky Ts+1+kgk
Let us present the transfer function of the correcting link in the
standard form

k T
= 1 ’k1= k ’Iiz .
Iis+1 1+ kpk 1+ kpk

Wi(s) (19.6)
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Figure 19.8 — Results of feedback using

During such correction the nature of the link isn't changed. The link
remains aperiodic but the time constant and the gain of the link decreased
when the negative feedback was introduced. To compensate the gain

decrease we use the preliminary amplifier with k,,=1+kgk.

The link swiftness is increased at the expense of the gain increase or
the input increase. The coverage of the aperiodic link by the negative
feedback is equal to introducing the serial proportionally - differential link.
With the help of the feedback we can change not only parameters but the
nature of the link as well. For example, the integrator can be transformed
into the aperiodic link.

19.2. Synthesis of the serial compensating devices with help of
logarithmic amplitude - frequency characteristic

The part of system (the controlled object, the power amplifier, the
actuator, sensors, etc.) is usually given before designing the ACS. The set
of the quality parameters ¢,,¢,,,c,M,v,,,L,,,t, is made the demand to

the system. We should determine, what compensating device should be
introduced to the system to implement the requirements to the control
quality. There are some methods of solving this problem.
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Let's consider the method of synthesizing the serial correcting devices
with help of the open-loop system logarithmical amplitude frequency
characteristics (LAFC).

1. Using the preset values ¢,¢,,,€,,.,» Which describe the system

accuracy at the steady-state mode we determine the required order of
astatism and v,,, the open-loop system gain &

req

The required astatism order v,,

req *

, at the reference action is provided

by introducing the necessary number of integrators to W(s). The required

astatism order at the disturbance action (v-pn) is provided be introducing

integrators up to the point of the disturbance application. The required
gain k,,, is secured by the preliminary amplifier located before the point

of the disturbance application.
If the input action g(¢)=asin(w,t) and permissible harmonical error

€narm are given, we should find the control point L' on the open-loop

system LAFC (Fig.19.9). The system of the required astatism order and
the required gain is called the available system. Its transfer function is

W, (s)=teeal) (19.7)

ay Vv
sV ()

2. Knowing the transfer function W, (s) we build the asymptotic
LAFC of the available system Lav(co). It should go over the control point
L.

3. According to the requirements o,z,,M, which determine the

transient performance, we build the middle frequency segment of the
desirable LAFC L,(®).

A low-frequency segment of the desirable LAFC is superposed with the
low-frequency segment of the available LAFC. The high-frequency segment
of the LAFC lies far below the axis Igw. The transfer coefficient at the high

frequencies is small; therefore the signal does not pass through system.
Consequently the LAFC form at the high frequencies does not influence the
ACS quality parameters. We draw a high-frequency segment of the desirable

LAFC combining it with L,, (o) or parallel to the L,,(®) in order to simplify

the required correcting device.
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4. We find the LAFC of the serial correcting device Lc,(®) by
subtracting the LAFC of the available system L,, (o) from the LAFC of the

desirable system L,(w). According to L., (®) we write down the transfer
function (Fig. 19.10).

L(w)A
i L@ T T T T

L’ (m) |_ ”/a'(‘s) _i
S 0le| & EGs) | W ¥(s)
Jow iy B8

- _

0 Igmy \!gm
Figure 19.9 — Control point Figure 19.10 — Desired system
W, (s)= W, ()W, (), W,y (5) = s) (19.8)
d cd ay s " ed Wav(s)’

Ly(0)=L,(0)-L, (o). (19.9)

5. In the tables of the correcting links we find the circuit of the
correcting device which has the required LAFC L, (®) and calculate the

parameters of the resistors and the capacitors which secure the necessary
time constants.

6. We build the step responses of the corrected closed-loop system
and check whether the system satisfies the requirements. If it does not,
we find out, which exactly parameter does not satisfy and change the
correcting device.

Example
We have

W(s) B (T1s+ 1)k(T2s+ 1)

, k=50, T, =0.5sec, T, = 0.0S sec,
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£y =0,8,, <00 if g=ve,V =1V/ & <0.020 if
g(t)=asin(c01t),
a=0.04, 0, =574/  G<30%,1,<lsec.
sec

We should find the circuit and the parameters of the serial correcting
device which secures the given quality parameters.

The solution.

To provide the required accuracy in the steady-state mode the system
must have one integrator: v, =1.

The required gain k,,

, is calculated by the relation

4 4 1
_ _ 1 o0l
Bret = S E o Kreg 2 ——= 0 =100/ .

perm

: _ . : kiey 100
We introduce the preliminary amplifier with k,,=2,as % 50 2
and obtain W, (s)= reg :
‘ s(Tys+1)(Tys +1)

We build the asymptotic LAFC of the available system L, (®) (Fig.
19.11).
L(o)A
-20 dB/dec 00 T

Figure 19.11 - LAFC
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We construct the desirable LAFC using the Solodovnikov homograms
(Fig.19.12) and check it. If it does not satisfy us, we lift the LAFC.

(Dc Zz.—nz9
ts
>
Pma/\'
a
L1, dBA
L, =20
16 M -1
M
L, =20lg——.
2 S M1
>
30 S, %
b

Figure 19.12 — Nomograms of Solodovnikov

We subtract L, (») from L, (o) and find L., (o). Thus, we get

(T4s+ 1)(T1s+ 1)(T2s+ 1)
(T3s+ 1)(T5s+ 1)2

WCD(S)=

The circuit of such device is not in the table. We piece it of two and
connect them in series through the preliminary amplifier (Fig. 19.13).

(]fﬂ PA Uf)h‘f
T

o L

Figure 19.13 — Correcting device
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Terms:

0o NOoO Ok WDN -~

—  correcting device,

—  serial, parallel, feedback correcting devices,
— differential link,

— aperiodic link,

—  preliminary amplifier.

Comprehension questions

. Why do we introduce the correcting devices?

. What kinds of correcting devices do you know?

. Why do we need to increase the gain of the system?

. Which link can provide stability?

. What system is called available?

. How can we calculate the required number of the integrators?

. How can we calculate the required the open-loop system gain?
. How can we build the available LAFC?

9.

How can we build the desirable LAFC?

10. How can we build the LAFC of the required correcting serial
device?
11. How can we find the transfer function of the correcting device?

Lecture Ne20

THE SYNTHESIS OF THE MODAL CONTROL SYSTEMS

Lecture outline:

1.
2.
3.

The standard forms of the ACS characteristic polynomial.
The modal control at the measurable state vector.
The modal control by the part of the poles at the partly measurable

state vector.

1. The standard forms of the ACS characteristic polynomial

One of the ACS designing methods is the method of modal control. The
point of method is that the regulator is executed as a set of proportional
connections at every state variable (Fig. 20.1). The coefficients &, are

chosen so that the poles of the closed-loop system are arranged as it is
desired. A mode is the system constituent, determined by a certain pole. The
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unchangeable part (UP) of the system consist of the plant, actuator, the
power amplifier and the sensors.

g(@) u(?) (9

@ » UP |—>»

xn‘(tj : X7 (t)
g
I

Figure 20.1 — Modal control system

Thus, the desired characteristic polynomial of the synthesized system
will have the known coefficients, e.g.

i _n—i
a;0,s" ",

_ n n—-1 n_
Ddes(s) =apS" +a0yST + et a0y = .

1

Il M=

where o, is a parameter which determines the real time of transitive
process. The greater is o,, the faster the process progresses.

There are different approaches to choose the desired location of the
roots of the closed-loop system characteristic equation. If the chosen roots
are real and identical (s; =—®,), the characteristic polynomial becomes

the Newton binomial
Ddes(s)=(s+030)n =Y a0is" a4, =cl,i=0,n. (20.1)
i=0

The binomial coefficients are determined by the formula
; "’ In particul
Cn=m. n partcuiar, a0=an=1.
The standard forms of this kind are called binomial.
The closed-loop system transfer function is in this case as follows

Y A
®(s)= (s) __A(s)_ (20.2)
U(s) D,, (s)
The step responses of such systems for the relative time t=w,¢ are
presented at the Fig. 20.2.
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Jo s
Sy, s-plane
>
-0 0 a
0 5 10 15 1
a b

Figure 20.2 — Standard step responses (a), Newton root location (b)

The transfer function determining algorithm.
1. To determine the system order n.
2. To find the setting relative time 1 for n.

3. To calculate

@y = — (20.3)

by the permissible setting time ¢, ,,,,, -

4. To find a;,D,,,(s),®(s) (Table 20.1).

The other well-known root location (suggested by Butterworth) is
shown at the Fig. 20.3. The poles are disposed in the semicircumference
of the radius o, in the left half plane (Fig. 20.3). The angle between the

imaginary axis and the ray which goes through the nearest root ¢, is

equal to the half of angle between the neighbour rays o, : ¢, = (P%.
jo A
P

02
s-plane

-
_(1)0 a
n=4

Figure 20.3 — Butterworth root location
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The coefficients of the standard characteristic polynomials are shown
at the Table 20.1, 20.2.

Table 20.1 — Binomial standard coefficient

Order of Coefficients of binomial form

systems n ag a a as ay as ag a; | ag

1 1 1 - - - - - - -

2 1 2 1 - - - - - -

3 1 3 3 1 - - - - -

4 1 4 6 4 1 - - - -

5 1 5 10 | 10 1 - - -

6 1 6 15 | 20 | 15 6 1 - -

7 1 7 21 35 | 35 | 21 7 1 -

8 1 8 28 | 56 | 70 | 56 | 28 8 1

Table 20.2 — Butterworth standard coefficient
Order of Coefficients of the Butterworth form

SyStemS nj| ag a; do as ay as dg ay dg
1 1 1 - - - - - - -
2 1 1.4 1 - - - - - -
3 1 2 1 - - - - -
4 1 2.6 3.4 2.6 1 - - - -
5 1| 3.24| 524 | 524 | 3.24 1 - - -
6 1| 3.86| 746 | 913 | 7.46 | 3.86 1 - -
7 1 45 | 101 146 | 146 | 10.1 4.5 1 -
8 1| 518 | 1314 | 2184 | 2569 | 21.84 | 1314 | 518 | 1

Butterworth standard step responses are presented in Fig. 20.4.

Figure 20.4 — Butterworth standard step responses

193




The great number of other standard root locations is developed.
20.2. The modal control at the measurable state vector

All state variables can be measured. We should remove all » poles to
the desired points.
We have the unchangeable part described by the equations

x = Ax+ Bu, y=Cx, (20.4)
[g]=[u]=r:[y]=m.
Then

D(s)=det[sI—A]=s" +as" " +.ta (20.5)

n-

Let us suppose the dynamic matrix 4 has the controllable canonical
form

[0 0 0 | 0]
0 0 1 0 0
A=| ! S5 Sy B=|0]. (20.6)
0 0 0 1 '
| —a, -a,; - - —a] 1

If we close the system wu=-kx+g. The desired characteristic

polynomial is determined by the desired root location

Dy (5)=s"+718" "+t v, (20.7)

We should calculate K, which will secure the required coefficients of
the characteristic polynomial (Fig. 20.5).

194



ﬂx(fﬂ)

Figure 20.5 — Block diagram of the modal control system

If r=1, the problem has a single solution.

If, » >1, there are several solutions.

We will present the closed system in the form of controllable
canonical presentation (see Lecture Ne7)

5c=Ax—ka+Bg=(A—Bk)x+Bg=Ac,x+Bg, (20.8)

where A4, = A— Bk.
Let’s find derided determinant

D, (s) =D, (s) = det(sI —A+ Bk) = det(sl - Ac,), (20.9)

0 0 0
0 0 0
Acl =A-Bk= : : : 1 o [kl k2 kn]:
|4, —a4,4 —a | _1_
_ 0o 1T 0
0 0 B 0 0 _ 4, (20
B 1 s 1 | e '
| —a4, — ky —a, -k, -+ —a;- kn_ | =Y Y1 o Y1
10)

Thus,
—a, — kl = Y psees™ — kn =Y1s kl =Yn—4a, "“’kn Y14
or
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ki =Yn_i+1_an_l-+1,i=1,2,...,n. (2011)

Example
We have

)‘Cl = xz,
a,=-3;a,=2;
D(s)= 52 —35s+2;

S1=1,S2=2.

The location of the UP poles does not satisfy the requirements as the
system is unstable (Fig. 20.6).

u i’z ] xz .X-fl l x[
— — > .
s S JoA
X—H—>
3 0 1 2 a
-2 |-
a b

Figure 20.6 — Given system (a) and its poles (b)

We should find k,, k, which secure the poles of the closed-loop
system A, =-3 and A,=-1.
We determine the desired characteristic polynomial

Dy (5)=D,(s)=(s—(=3))(s—(-1))=5"+4s5+3.

Its coefficients are y, =4, y, =3.
We calculate the coefficients of the regulator
ki=Y,—ay=3-2=1,ky=y,—a;=4-(-3)=7.

The system which provides the required location of the poles is
shown in Fig. 20.7.
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I
| -
Re

k]=l |

Figure 20.7 — Synthesized system

20.3. The modal control by the part of the poles at the partly
measurable state vector

It is possible to control all the poles using the state feedback if all n
state variables are measurable. If some of them are not, the special
devices are applied to determine nonmeasurable state variables by the
measured signals u and y. These devices solve the task of observing

and are called observers, assessment filters or estimators
We consider the system (Fig. 20.8)

ﬂx(fo)
u(?) ; x(?) y(t
c=)\ B :t Is Yy C
A |
1%, o
B :E Is? )
A K

Figure 20.8 — Given system and simpliest observer

x = Ax+ Bu; y=Cx, (20.12)
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where u is an r-metrical vector, y is an m-metrical vector. Both of them

are accessible for measuring.
Matrices A4,B,C are known.

We shall construct the model of the system with all the state variables
x(t) measurable.

The input signal u(t) is the same. We have
x(t)= A%(¢)+ Bu. (20.13)

The state variables in a model J‘c(to) correspond to the state variables
x(¢) if the initial conditions are established properly (x(z,)=%(z))).

The disadvantage of this simplest observer is that it is operated in the
open-loop mode. As the A, B,C system matrices and its initial state are not
known exactly, and the system input deformations can not be introduced

to the model accurately, the estimation of the state vector :‘c(t) after a
certain period of model operation will strongly differ from the vector x(t).

The simplest estimator does not use all present information about the
system. The output vector y(¢) does not participate in the £(¢) formation.

We will improve the simplest estimator (Fig. 20.9).

_ ﬂx(fo)

u(?) X x(?) ()
c—)\ B :)?:: Is” ) C /F—
A K

L &
X 't(l ~ ~
[Ls O g 50)
) B :}()_9:,‘ Is ) C /—
X(7)
A )

Figure 20.9 — System with Kalman observer
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The system output signal y(¢) is compared with the output signal of
the estimator j;(t) and their difference is given to the estimator input

| x(t)=A%(t)+ Bu(t)+ L[ y(1)- 5(¢)],
x(t)=[A—- LC]x(t)+ Bu(t)+ LCx(?),
x(t)= Ax(t)+ Bu(t).

This filter is called Ljuenberger, or Kalman, filter.

We obtain the dynamic equation of the state vector evaluation error
by subtracting the estimator equation from the system equation

(20.14)

X(t)=(4-LC)x(2). (20.15)

If the proper values of the 4— LC matrix have negative real parts
then %(z) will be equal to x(¢) after the end of the estimator transitive

process

lim fc(t)=x(t). (20.16)

t—o

The estimator dynamic properties depend on the L matrix selection.
By choosing the L matrix elements, we can provide any desired set of the
proper poles s;,s,,...s,, of the matrix observer 4 - LC.

If the initial system is observed, the estimator evaluates all n state
variables x,.(t). If system is not fully observed, we can estimate only the

observed part of the state vector.

An estimating filter, in which x(z)—%(z) — 0, is called asymptotic, its
dimension equal to n. Therefore, it is called the filter of complete order. If
some state variables are measurable, and we should estimate only the
missing state vector variables, we can construct the estimating filter of
incomplete order.

Subject to the estimator application, the system of modal control has
the following form (Fig. 20.10).

199



g ul) i J:_lx(to)

B :)ﬁ Is” C =—
A K
o L&) .
—\ B :)Q:():,‘ Is” C /——
X
A I\ | :)
k

Figure 20.10 — Closed-loop system

The feedback matrix & is chosen so that the characteristic polynomial
of the matrix (A4 — Bk ) coincides with the desired

Dy (5)=s"+715" "+t v,
The estimator is as follows
x=(A-LC)%+ Ly+ Bu. (20.17)

Its characteristic polynomial
-1
Dest(s) = Sn + Blsn tot Bn = Destdes (S)

can have any desired form.
The control u=g—kx.

We shall consider the questions: Is it possible to obtain the desired
characteristic polynomial in the closed-loop system? How does the
estimator affect the system?

We choose the matrix &k so that characteristic polynomial
D[A_Bk](s)=Ddes(s), and we choose the L matrix so that

D[A_Lc](s)=Destdes(S)- Then the characteristic polynomial of the closed-
loop system
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X = Ax+ Bg — Bkx,
x=(A-LC-Bk)%+ Bg+LCx

has the form D, ()= D, (5) D,y ().
To prove this we go to the new state variable x=x-x,

x=[A- Bk]x+ Bkx + Bg,
x¥=[A-LC]%

HE e i

or

Therefore,

sl — A+ Bk —Bk
Dc,(s)zdet(sI—Ac,)zdet{ }:

0 sl —A+ LC
=det(SI_A+Bk)'det(SI_A+LC)=D[A—Bk](S)D[A—LC](s)=Ddes()\')Destdes ()")

Thus, the feedback chain and the estimator can be constructed
independently.
Example. We have the system (Fig. 20.11)

U 1 X, 1
]
A A
Yi Y
ST 1
A h
Figure 20.11 — Example of unchangeable part
x=Ax+ Bu,
y=0Cx,

201



1
0

canonical form of the identification canonic presentation by the
transformation matrix
)'Cl=u,

I
Lz[;} ~2,a,=0,0,=0. Dyp(s)=s".
2

If the characteristic polynomial is given, we get
Lh=y,—0, =Yy L=y =7,

0 0
where A={0 },B=[J,C=[l 0]. We reduce the system to the

x=(A4-LC)%+L(y)+Bu
or

Terms:
—  standard characteristic polynomial,
—  Newton root location,
—  Butterworth root location,
— modal control,
—  observer (estimator).

Comprehension questions

What is the Newton root location?

What is the Butterworth root location?

What is a modal control?

How can we find the feedback coefficients?

What is an estimator?

How can we find the Kalman estimator coefficients?

2R e ol
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Appendix A. Table of Laplace transform theorems

Number Theorem Original Image
m m
1 Linearity > ax;(t) 2.8, %(s)
i=1 i=1
2 Lagging x(t-t),t>0 X(s)e™
3 Multiplication by t x(t)t _dxd_(s)
S
4 Multiplication by €@ | x(t)e™,a>0 X (s+a)
: 1 S
5 Scaling x(at), a>0 ax(aJ
6 Differentiation 2—1( sX (s)-x(0)
t
7 Integrating [x(t)dz X (S)
0
8 Initial value X(O)—!I_F)TCI)X( )—Sll_)rg)SX(S)
9 Final value X(oo)—tll_)rgx(t)—lsl_l’)l’(l)SX(S)
t
10 Convolution [ X (t) %, (t=7)dt | Xi(S)X5(5)
0

203




Appendix B. Table of Laplace transforms

Number | Time function x(t), t>0 | Laplace transform X(s)
1 5(t) 1
z 11 .
1
3 t 2
n!
4 t" Sn+1
1
5 e s+a
1
6 te™ (s+a)
n!
7 the @ (s+ a)”+1
—at a
8 1-e s(s+a)
) (Q))
9 Sln(cot) 82 + (02
s
10 cos(et) Z 1 o2
(0))
11 e sin(ot) (s+ a)2 P
s+a
12 e cos(wt) (s+a)°+w?
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