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Lecture №1 
 

INTRODUCTION TO THE AUTOMATIC CONTROL THEORY 
 

To operate – means to expect, and to 
expect means – to know much.  

Marcus Tullius Cicero 
Lecture outline: 

1. Basic concepts of the automatic control theory (ACT). 
2. Examples of the automatic control systems (ACS). 
3. Concise history of the automatic control theory. 

 
1.1. Basic concepts of the automatic control theory 

 
Automatic control theory studies automatic control systems, their 

properties and ACS designing methods. 
The mechanization and automation of human productive and 

cognitive activities form the core of scientific and technical progress. 
Mechanization is the process of replacing a person by the machinery in 
working process. Automation is the process of replacing a person by the 
machinery in both the operating and control processes. 

To date most of the processes are automatized inclusive of 
technological, power-generating, transporting, designing, planning, 
calculating, and exploratory operations, information processing, troops 
and armoury supervision, etc. The automation of these processes results 
in productivity and work efficiency increase; product quality improvement; 
scheduling and control optimization and releases the person from 
monotonous work, labour under harmful and hazardous (to health) 
conditions and excessive toil. 

Theoretically the process of automatization is based on the 
cybernetics, a complex science studying general principles of data 
acquisition, storage, transmission, processing and application to the 
systems of any kind. The cybernetics ideas and techniques are applied to 
engineering, medicine, soldiery, agriculture, criminalistics, etc. The 
technical cybernetics is engaged in the principles of technical control 
systems development. 

Cybernetics has been first defined by the American mathematician 
Norbert Wiener (1894-1964) in his book named "Cybernetics or the control 
and communication in an animal and a machine". It included the automatic 
control theory, information theory, finite automata theory, theory of 
algorithms, operation study, the theory of mass service, the theory of the 
big systems, etc. 
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Technically the automatization is based on the possibility to integrate 
various electromechanical, electronic, hydraulic, pneumatic and other 
devices into the control systems (CS). 

Control is a set of activities providing arranged systems structure 
preservation or purposeful exchange, operation modes maintenance, 
programme and purport organization. In other words, control is the 
process of transforming 'what it is' into 'what it should be'. 
The main stages of control are: 

1. To define control purpose. The purposes of control may include 
certain process parameter stabilization, input signal monitoring, a control 
object state-to-state, etc. The purpose should be positive, topical and real. 

2. To evaluate the possibility, methods, means, time and cost of 
control purpose achievement. 

3. To analyze the controlled object properties (to identify the object 
structure and parameters, to estimate object linearity and stationarity, to 
evaluate control efficiency, limitation, controllability, observability, etc) and 
environmental interaction (the analysis of reference action and 
disturbance, system-with-environment interference). 

4. To select the control process quality criteria (e.g. accuracy, 
operation speed, power and fuel consumption, cost, etc. 

5. To organize control procedure, that is to select control system 
structural pattern, equipment, energy source, necessary data, action 
programme, control principle, control systems production, etc. 

6. To provide control system survivability (operability monitoring, 
failure diagnosis and counteraction, operation modes maintenance, etc). 

7. To evaluate current and future conditions: to rate and calculate 
state variables, disturbances, to estimate quality criteria, to forecast 
course of events, to compare the obtained values with expected ones. 

8. To make a decision and to provide its performance that is to 
regard all the factors, actions and effort and controlled object influences. 

9. To estimate control outcome: to compare the obtained results with 
those expected, to ascertain mistakes, to elaborate the control process 
improvements. 

10. To develop the control system applying new methods of CS, 
facilities and components construction. 

In the control process we should revert to separate stages, some of 
them carried out simultaneously. At all stages the system approach 
should be applied, i.e. the system should be considered bodily in the 
whole spectrum of its interactions with the environment. 

The automatic control system is a set of controlled objects, the 
measuring, computing, amplifying, executive and control equipment, 
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incorporated in order to execute the task assigned without direct human 
participation. 

Controlled object is a controlled and observable part of the 
environment, able to carry out the intended goal. An aircraft, a ship, a 
machine tool, a process installation, a shell of any kind, etc. including their 
combination can be regarded as a controlled object. 

Semi-automatic systems and automated control systems (ACS) do 
not excluded a person completely from the control process. Such systems 
are still named ergatoid. For example, the air traffic control system 
includes the person - operator. 

Regulation is the specific case of control. 
Regulation means the maintenance of a constant physical value or its 

transformation according to the required principle. The altitude, velocity or 
flight course stabilization, signal level change monitoring, missile 
guidance, aircraft group maneuvering synchronization, plane glide path 
conduction, generator voltage and frequency stabilization, etc., can serve 
as the examples of regulation. 

The elementary automatic control systems are automatic regulation 
systems (ARS), the principles of ARS construction studied by the ACT 
component, the automatic regulation theory (ART).  

Generally the ACS could be resented as combination of automatic 
controlled object (ACO) and device of automatic control (DAC) (that is a 
regulator). Such scheme is presented on Fig. 1.1. 

 

 
 
E is the ACS supply energy. E usually is not specified on the block 

diagrams because of the power supply energy content being essentially 
higher than the amount of energy consumed by the system. Signal E is 
designated only in the systems of energy regulation 
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The vector of reference action ( )tg  (the input signal) initializes the 

information of required, desirable output value, i.e. the purpose of control 
(e.g. the required value of the flight altitude and speed, the course of the 
aircraft, its roll and pitch); r  — a number of reference actions. The 
reference action is introduced to the system by a person or higher level 
system, it is equal or proportional to the required output value: 
( ) ( )tytg req=  or ( ) ( )reqg t ay t= . 

The vector of control action ( )tu  (control action, control) is produced 
by the device of automatic control (DAC) and renders purposeful influence 
on the automatic controlled object (ACO). The process of moving the 
elevator, rudder or ailerons can be an example of the vector of control 
action. l is a number of control actions. 

The vector of disturbance action f(t) (disturbance) is an influence the 
environment exerts to the controlled object and the control device. It 
shows, e.g. how the flaws influence the plane, waves effect the ship, the 
load biases on the engine and power supply, or the impact the 
measurement mistake, ACS parameter change, noise, temperature 
change can have. p is a number of disturbance actions. 

Vector of controlled variables ( )ty  (the controlled variables, output) is 
a variable linked to the state of controlled object (e.g., speed and altitude 
of the aircraft), m – a number of controlled variables. 

Besides that the mathematical description includes a state vector ( )tx  
(state), n being the order of system. The signals describing energy in the 
system elements could be selected in the capacity of state variables 
(linear and angular speeds, capacitor voltage, inductance current, etc.). 

 

1.2. Examples of ARS 

The plane autopilot course channel (Fig. 1.2). 
1 .  Controlled object, a plane. 
2. Sensitive element, a gyroscope. 
3. Amplification-transformation device. 
4. Executive mechanism, a steering machine. 
5. Control device, the rudder. 
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The gyroscope (2) keeping constant the space direction of the axis of 
rotation while the plane (1) deviates from the required flight direction reqψ , 

the sensor output voltage Su  is proportional to a deviation ψ∆  . 
This signal ψ∆= SS ku  is intensified in (3) and transmitted to the 

steering machine (4) which shifts a rudder (5). The plane keeps turning 
around until the deviation ψ∆  is eliminated. 

 

The rotation velocity stabilization system of the lathe motor 
spindle (Fig. 1.3) 

 
Any working mechanism (WM) (a lathe spindle, the radar aerial, etc) 

can be regarded as a controlled object. 
The difference between setting potentiometer (SP) voltage and 

feedback potentiometer (FBP) voltage is delivered to the input of the 
amplification-transformation device (ATD): FBS uuu −=∆ . 

The tachogenerator transducer (TG) generates voltage TGU  which is 

proportional to the velocity ω  of electrical motor (EM) rotation. 
We specify setting voltage Su  by shifting a slider of the setting 

potentiometer. The increase of the load torque T  causes the engine 
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velocity drop, the feedback voltage decrease and the 
voltage FBS uuu −=∆  growth. 

 
 

This results in the gain of the engine shaft rotation velocity due to the 
greater voltage coming from the amplifier. Thus we obtain the 
compensation of disturbance influence on the controlled object which 
remains incomplete in the described system. To obtain the full 
compensation we need an astatic regulator. 

 
1.3. Concise history of automatic control 

 
Certain automatic regulators have appeared long time ago.  
At the urn of our era the Arabs provided a water clock with a floating 

level regulator.  
In 1657 a Dutch scientist Christians Guygens (1629 - 1695) has built a 

pendulum rate governor into watch. 
The plenty of regulators has been developed at the edge of the XVIII-

XIX centuries during the industrial revolution in Europe. In 1765 a Russian 
heating engineer I.I. Polzunov (1728 - 1766) put forward a steam engine 
feed-water regulator. In 1784 an Englishman James Watt (1736 – 1819) 
developed a steam engine speed centrifugal governor.  The first loom 
control timing unit based on punched cards was constructed by 
Frenchman Joseph Jacquard (1752 – 1834) in 1804. These regulators 
had opened the gates to the gush of new inventions. 

But the development of complex machines with regulators required 
deep theoretical research. 

A Russian scientist I.A. Vyshnegradsky (1831 – 1895) has become 
the founder of the automatic control theory, having published the work 
«About the general theory of regulators» in 1876. This study treated a 
regulator and a steam engine as an integrated system, and it introduced 
the methods of stability and regulation quality analysis.  Unfortunately the 
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paper "About regulators" (1866) written by an English physicist James 
Maxwell (1831 – 1879) remained unnoticed by his contemporaries as the 
author dealt with the highly specific telescope driving mechanism. 

 A Russian mathematician A.M. Lyapunov (1857 – 1918) in 1892 
developed the strict modern theory of mechanical systems balance and 
movement stability. His methods gave birth to some ideas of the modern 
automatic control theory. C.Ye.Tsiolkovsky (1857 – 1935) suggested 
applying plane rudder electric control (i.e. the first autopilot) in 1898. The 
first Russian textbook on the automatic control theory was written in 1909 
by N.Ye. Zhukovsky (1847 – 1921). 

The considerable contribution to the modern ACT was made by 
E. Routh, A. Gurwitz, A. V. Mikhaylov, H. Nyquist (stability criteria), 
V. V.  Solodovnikov, Y. P. Popov (frequency methods of system analysis 
and synthesis), L. S. Pontryagin, A. A. Feldbaum, N. N. Krasovsky (1924) 
(optimal control), A. A. Krasovsky (1921), A. S. Kuhtenko (adaptive 
systems), N. Wiener (probabilistic approach), J. Tue, E. Jury (discrete 
systems) and a number of  other scientists. 

James Watt 
(1736 – 1819) 

An English inventor, the founder of the 
first universal thermal engine. He invented 
(1774 - 84) the steam engine with the 
double-acting cylinder which was equipped 
with the centrifugal governor in order to 
stabilize rotation velocity. 

  
  

Ivan Alekseevich Vyshnegradsky 
(1831 – 1895) 

A Russian mathematician. Worked in 
the field of mechanical engineering. He 
investigated the dynamics of automatic 
control systems in terms of linearized 
equations. He exposed the impact the 
inertia moment of a flywheel working shaft, 
governor ball weight and force of viscous 
friction in the coupling have on the system 
stability. Vyshnegradsky was the first 
scientist who had solved the important 
problem of the industrial automatic control 
engineering on the basis of the linear theory 
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Nikolay Yegorovich Zhukovsky 
(1847 – 1921) 

A Russian mathematician who worked in the 
field of the gas and fluid mechanics, mechanics of 
rigid body, the aircraft theory. He was the author of 
classical works on aerodynamics. His lectures 
"Theory of machine running adjustment" were 
published by students in 1909 and became the first 
Russian textbook on automatic control where the 
description of regulator design was combined with 
mathematical research of system "machine - 
regulator" dynamics. 

 

 

Alexander Mikhaylovich Lyapunov 
(1857 – 1918) 

A Russian mathematician. In the 1890ies 
developed the theory of ordinary differential 
equations solving stability. The ideas and methods 
of his classical works have been widely used in the 
control theory since the end of 1940ies. He 
developed the first and the second methods of 
nonlinear systems stadility analysis. Special 
functions, which he had proposed, have his name. 

  

 

Aurel Stodola 
(1859 – 1942) 

Austria-Hungary, Switzerland. An industrial 
engineer. He developed the scientific basis of 
steam and gas turbine design. In middle 1890ies 
he summarized the ideas suggested by A. 
Vyshnegradsky and investigated the complicated 
turbine rotational velocity automatic control system 
in terms of linearized equations the theoretical 
calculations being followed by experimental check. 
The linearized equations became widely applied 
for industrial development of automatic control 
systems. 
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Norbert Wiener 
(1894 – 1964) 

An American mathematician. Obtained 
fundamental results in the theory of random 
processes and other mathematical sciences. 
One of the founders of stochastic 
communication and control theory. In middle 
1940ies developed the method of stationary 
casual processes filtration (Wiener filter). 
The author of the book "The Cybernetics" 
(1948) where he had suggested the idea of 
universal control science based on the 
principle of negative feedback and the 
theory of random processes. 

 

  

Harry Nyquist 

(1889 – 1976) 
An American telecommunication 

engineer. Obtained fundamental 
achievements in the wire communication 
theory and technology and the theory of 
electronic amplifiers. In 1932 issued a paper 
where had suggested the analysis of linear 
feedback system stability based on the 
amplitude-phase characteristic of open-loop 
system. This research initiated the 
development of frequency methods in the 
automatic control theory.  

Alexander Aleksandrovich 
Andronov 
(1901 – 1952) 

A Soviet physicist, worked on the 
fluctuation theory and the automatic control 
theory. The founder of nonlinear automatic 
control theory. The author of the phase 
space nonlinear system analysis. In 1940ies 
together with some of his students and 
collaborators developed the method of 
“point transformations”. Was a remarkable 
teacher, so that a lot of his students became 
outstanding scientists and made a 
considerable contribution to the 
development of the automatic control theory.  
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Anatoly Isakovich Lurie 
(1901 – 1980) 

The USSR. Graduated from the 
department of mathematics the Leningrad 
polytechnic institute. A founder of nonlinear 
automatic control theory. Was the first to 
apply the A.M. Lyapunov's stability theory 
to the nonlinear system analysis. 
Developed Lyapunov functions building 
technique, the functions enabling the 
efficient solution of the nonlinear automatic 
control systems stability problem. 
Formulated the problem of absolute 
stability and found the solution of some 
ACS classes. 

 

Lev Semyonovich Pontryagin 
(1908 – 1988) 

A Soviet mathematician. In 1930ies 
obtained fundamental results in topology. 
From the beginning of 1950ies worked in 
the field applied mathematics and the 
control theory. A founder of the 
mathematical theory of optimal processes. 
Together with V.G. Boltyansky and R.V. 
Gamkrelidze developed essentially new 
technique of solving the control theory 
variational problems. 

  

 

Lev Semyonovich Goldfarb 
(1910 – 1960) 

A Soviet electrical engineer. A creator 
of the first electronic controllers for high-
powered alternating current generators. In 
1940ies suggested using frequency 
analysis based on harmonic linearization of 
nonlinear elements to study self-
oscillations of ACS which proved to provide 
accurate results for typical cases. 
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Alexander Mikhaylovich 
Lyotov 

(1911 – 1974) 
A Soviet mathematician. Worked on 

the nonlinear automatic control theory 
and optimal control theory. In 1960-1962 
developed the method of ACS synthesis 
for object with one control influence with 
the square-law criterion (analytical 
regulator designing). This method took 
into account the control signal modulo 
limitations and servomotor speed limits. 

 
  

Alexander Aronovich 
Feldbaum 
(1913 - 1969) 

A Soviet mathematician and 
electrical engineer, the developer of the 
control theory. In 1948 formulated the 
problem of optimal control as variation 
problem. In 1949-1955 issued a series of 
articles where he had solved several 
problems on the synthesis of optimally 
performed systems having applied the 
phase space technique. Proved the n-
range theorem.  

  

Mikhail Vladimirovich 
Meyerov 
(born in 1914) 

A Soviet mathematician and 

electrical engineer. In 1945-1960ies 

developed the linear ACS synthesis 

technique, systems able to resist 

regulator amplification unlimited increase 

for objects with one and several 

controlled variables. 
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Jacov Zalmanovich Tsypkin 
(1919 – 1997) 

A Soviet mathematician and electrical 
engineer. A developer of many branches of 
control theory. In 1945-1960ies conducted 
research on the theory of the pulse and 
relay systems which became fundamental 
to the corresponding aspects of ACT. 

  

 

Richard Ernest Bellman 
(1920 – 1984) 

An American mathematician. Worked 
in the field of calculus mathematics and the 
control theory. A founder of the 
mathematical theory of optimal processes. 
In 1953-1965 suggested the Bellman 
principle of optimality and developed a new 
approach to solve optimization problems of 
technology and economics (dynamic 
programming method). 

  

 

Stanislav Vasilyevich 
Yemelyanov 

(born in 1929) 
The USSR. One of the most 

prominent representatives of system theory 
and the ACT. An academician of the 
Russian Academy of Sciences. In 1970ies 
managed the development of the 
essentially new synthesis procedures, the 
synthesis of systems with variable 
structure. In 1980ies worked over the 
feedback theory, the results of this 
research being published in the 
monograph "New Feedback Types" (1997).
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Rudolf Emil Kalman 
(born in 1930) 

The USA. A representative of the 
control theory and the mathematical 
automatic control system theory. In early 
1960ies offered a new method of the 
solving the casual processes filtration 
problem (Kalman’s filter) which found 
rapidly a wide application to various 
areas of engineering. In the same period 
developed the linear system synthesis 
method which was optimal from the view 
of square-law criterion. 

 

  
 
The automatic control theory is still far from completion and new 

works and problems are developed all the time. 
 
 



 16

Lecture № 2 
 

THEORY OF AUTOMATIC CONTROL SYSTEM CONSTRUCTION 
 

Light of control principles, as well as 
light of beacons, is guiding only for 
those, who knows an input in harbour. 
The naked principle without means of 
its realization means nothing. 

Anry Fayol 
 
Lecture outline: 
1. Principles of control. 
2. Basic laws of control. 
 

2.1. Principles of control 
 

Principle of control is a method of control action formation. There are 
three fundamental principles of control: control by reference input, control 
by disturbance, and control by deflection. 

 
2.1.1. Control by the reference input 

 
Generally we can present ACS as a combination of two elements (Fig. 

2.1). 
 

 
Where 

ACD is an automatic control device, 
ACO is the automatic controlled object, 
g   is the reference input carrying the information about the required output 
value y , 
u   is the control action altering the ACO condition purposefully, 
f  is disturbance action, an impact the environment has on the ACO. 

 
For this case the control action ( ) ( )( )tgutu = . 
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In the simplest case ( ) ( ) ( ).tfktukty ACOACO ′−=  
The control action is generated on the basis of the information about 

the reference input and does not depend on disturbance, on output and on 
the state of the controlled object. System is open-loop. 

Such principle can be apply to construct hierarchical systems (Fig. 2.2)  
 

 
 
The main advantage of this type of systems is that they are easily 

realized. 
But such systems do not take into account the state of the object and 

the influence of disturbances is not compensated. The control action 
generation does not depend on the results of control.  

Example 1 
Engine speed automatic control system (Fig. 2.3): 

SP is a setting potentiometer, 
PA is a power amplifier, 
EM is an electrical motor, 
TG is a tachogenerator, 
WM is a working mechanism (e.g. antenna), 
V is a voltmeter. 
Potentia is force,  
Tachos is speed (gr.). 

 
 
The engine speed and voltage 1U , PAU  grows up with the SP slide 

moved forward. Voltmeter meterage corresponds to the speed ω . The 
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change of the resistance torque T  which is generated by the working 
mechanism causes the corresponding change of the engine speed which is 
an extremely undesirable factor (Fig. 2.4.). 

 

 
 
This principle is widely used for providing control of metal-working 

machinery with PNC and in automatic devices.  
 

2.1.2. Control by disturbance (Poncelet principle, compensation 
control (compensatio (lat.) - an equilibration) 

 
We enter the compensation block (CB) which measures disturbances 

and generates the signal proportional to the disturbance action. It is 
introduced to the system in order to compensate the harmful impact the 
disturbance produced on the system (Fig. 2.5.). 

 

 
Figure 2.5 - The compensation system 

 
The compensation block CB consists of the measuring instrument and 

the converter. In this case: 
 

( ) ( ) ( )( ).tf,tgutu =                                      (2.1) 
 

 

CD OC

СB

g u y

Compensation 
communication f
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The control action depends not only on the reference input, but also on 
the disturbance.  

The system is open-loop as well as in the previous case. 
 
Example 1 
 
In this system the output depends not only on the reference input, but 

also on the disturbance action (Fig. 2.6).  
Without the compensation block:  
 

( ) ( ) ( ).tfktgkkty 321 −=                                  (2.2) 
 
With the compensation block: 
 

( ) ( ) ( ) ( ).tfkktfktgkkty СВ 2321 +−=                     (2.3) 
 

If                             
2

3
СВ k

kk =  we get ( ) ( )tgkkty 21= .                    (2.4) 

 
The disturbance impact is compensated in this case. 
 

 
 
Example 2 
 
Let us introduce the measurer of torque MT to the engine speed control 

system. The MT voltage is added to the setting potentiometer voltage: 

MTSP uuu +=1  (Fig. 2.7). 
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The systems with ideal compensation of disturbance are called the 

systems invariant by disturbance action (Fig. 2.8). 
 

 
 
Applying this type of ACS we can compensate the disturbances though 

only those which could be measured. 
The sign and the transfer coefficient of MT  should be chosen correctly, 

the wrong choice causing have under- or overcompensation (Fig. 2.9). 
 

2.1.3. Control by deviation (the closed-loop control principle, the 
feedback principle, Polsunov-Watt principle). 

 
Let us introduce the negative feedback. In this case we get a closed-

loop system (Fig. 2.10). 
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CD  is a comparing device. 
The control action is an error function ( ) ( )( ).tutu ε=  
Let reqyg =  , then yyyg req −=−=ε  is a deflection or error. 
The deflection is caused by the reference input or disturbance (load, 

change of parameters) actions. The control action depends on the output 
signal deflection from the required value and eliminates an error 
irrespective of its cause. 

All disturbances are highly compensated but the system can become 
unstable. 

Example 
In the closed-loop system (Fig. 2.11) ( ) ( ) ( )tututu TGRP −=1 . 
While assembling the system we should provide a correct sign of the 

feedback otherwise the engine can break into the saturation mode or reach 
the point of breakage.  

 

 
 
Negative feedback (NFB) is used to get stability. Positive feedback 

(PFB) is used to change the state quickly or to generate oscillations.  
The given system does not compensate disturbance completely (Fig. 

2.12). 
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The static error εf can be emended by the astatic regulator (e.g. integral 
or isodrome (isos (gr.) - equal, dromos (gr.) - run, a place for running). 

The best results can be obtained by the combination of the three 
principles of control: 

( ) ( ) ( ) ( )( ).tf,t,tgutu ε=                                   (2.5) 
 

2.2. Basic control laws 
 
A control law or an algorithm is the kind of subjection of the control 

action of the reference input or disturbance action, of the controlled value 
deflection or the controlled object parameters. 

A control law is a rule according to which the control action is formed: 
( ).p,f,,guu ε=  

   Let us use different feedback systems to consider some control laws 
(Fig. 2.13): ( )ε= uu . 

 

 
 
There are linear and nonlinear laws. Further we shall consider some of 

them. 
2.2.1. The relay control law 

 
The simplest nonlinear law is ( )u Csign= ε , (signum (lat.) - a sign) 
It is used in the spacecraft stabilization systems. The engines are 

usually established on the opposite sides of the spacecraft. The spacecraft 
deviated, one of these engines is started and operates till the sign of 
deflection is changed, then the opposite engine is turned on (Fig. 2.14, a). 

 

⎪
⎩

⎪
⎨

⎧

<ε−
=ε
>ε

=
.at,C

,at,
,at,C

u
0

00
0

 
Figure 2.14 – Comparator 
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The system displays the simplicity of realization but it is of small 
efficiency. There exists also the threat of the self-oscillations to occur in the 
system. 

 
2.2.2. The proportional control law  

 
It is the simplest linear control law 

( ) ( )u t k tε= . 
 

The realization of the proportional regulator with the operational 

amplifier OA having Rk
R

2

1
=  is shown on Fig. 2.15. 

 

 
 
The system gains greater efficiency in as compared to the systems 

with the relay control law applied and is simple in realization though the 
small deflections get not enough control.  

The control evidence requires the existence of nonzero error. The 
operation of static object cannot occur without an error. The decrease of 
the error value and the acceleration of the control process need to increase 
the amplification coefficient k . But meanwhile the system loses stability. 

 
2.2.3. The integral control law 

 
The integral cjntrol law has form 
 

.d)(
T

)t(u
t
∫ ττε=
0

1
I

                                     (2.7) 

The realization of the l-regulator with the OA (Fig. 2.16) is widely used. 
Transfer function of I -regulator looks like 
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( ) ( )
( )

R
I I

U s
W s RCs T s T RC

U s
1 1 , ,

ε
= = = =                     (2.8) 

where IT  is integration constant. 
 

 
 
We introduce an integral to eliminate the steady-state error under the 

constant input actions. The control is changed until the error becomes 
equal to zero. The control is stabilized at ε = 0.  

The integration causes the phase delay, the process of regulation 
being thus slowed down and the phase stability margin decreased. The 
parameters chosen incorrectly, the system can become unstable. 

 
2.2.4. The proportional - integral control law 

 
The proportional-integral control law has form 

∫ ττε+ε=
t

d)(
IT

)t(Pk)t(u
0

1
.                         (2.9) 

 
The realization of the PI -regulator (isodrome) with OA is shown on 

Fig. 2.17. 
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Its transfer function looks like 
 

( )
( )

RU s R Cs RW s k
U s R R R Cs T s

2 2

1 1 1 I

1/ 1 1( )
ε

+= = = + = + ,              (2.10) 

 
where                                Ik R R T R C2 1 1, .= =  

 
The proportional component is introduced to amplify the speed and 

stability of the regulation process, the integral component is imposed to 
increase the accuracy of the system. 

 
2.2.5. The proportional – differential control law 

 
The derivative is introduced into the control law in order to accelerate 

the regulation process. In the steady-state mode the derivative equals to 
zero. This component does not influence on steady-state error. 

The realization of this law is shown on Fig. 2.18. 
 

 
 
Equation of the PD -regulator looks like 

( )R
du t k t T
dtD( ) ε

= ε + .                             (2.11) 

 
2.2.6. The proportional-integral-differential control law 

 
This control law looks like 
 

( )P I

t du t k t k d T
dt
ε

= ε + ε τ τ +∫ D( ) ( )
0

.                      (2.12) 
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The realization of the PID- regulator with OA is shown on Fig. 2.19, 

where                  12D21
2
1

2
2 CRT;CRIT;

C
C

R
R

Pk ==+= .               (2.13) 

 

 
 

Lecture №3 
 

THEORY OF ACS CONSTRUCTION 
 

The education of a man should start 
with proverbs and end with thoughts.  

Lucius Annaeus Seneca 
Lecture outline: 
1. Functional elements of control systems. 
2. Classification of ACS. 
 

3.1. Functional elements of control systems 
 
Let us consider the most typical ACS which is constructed on the 

basis of the three principles combination. 
The functional diagram of this system is shown on Fig. 3.1. 
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SD is a setting device which transforms the setting action produced by 
a man or other system into the form convenient for comparison. It is used 
to set the required value of controlled variable. 

CE is a comparison element. It compares an output signal with the 
reference action. 

PA is a power amplifier. 
R is a regulator (analogous or digital). It realizes the control law. 
CD is a correcting device. It provides the stability of system and the 

required quality parameters (overshoot, swiftness and oscillation). 
PA is a power amplifier. 
EM is an executive mechanism, actuator (e.g. the aircraft servo unit). 

It exerts a desirable influence onto the controlled object. 
CO is a controlled object. 
S is a sensor (a measuring transformer). It produces the electrical 

signal proportional to the measured process value (shift, pressure, 
temperature, electric voltage, etc.). 

 
Tr is a transformer. It transforms 

the feedback signal into the type 
convenient for comparison (a voltage 
divider, a phase-sensitive rectifier, an 
analog-to-digital converter, etc.). 

CB is a compensation block.  
The global feedback transfers a 

signal from the system output to the 
input. 

The local feedback transfers the 
signal from the output of system or one 
of the elements to an input of certain 
element. 

The feedback can be positive or 
negative, rigid (working both in the 
established and in the transitive 
modes) and flexible (working only in 
the transitive mode). The elements of 
the functional diagram are shown on 
Fig. 3.2. 

A directional effect link transforms the information without affecting 
the work of the previous link (Fig. 3.2, a). 

A node is an information branching point (Fig. 3.2, b) 
gyy 21 == . 

A summer (fig. 3.2, c) can add and subtract signals 21 xxy ±= . 
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The sector is filled for a case of subtracting corresponding signal (Fig. 
3.2, d). 

321 III +=  is a node of the key chart (Fig. 3.2, e). 
The various kinds of the diagrams such as a block-diagram, 

functional diagram, key diagrams, etc. are used to represent the control 
systems. 

A block-diagram as an element of the design documentation is a 
graphical representation of the system which indicates the main blocks 
and their interconnections, signals and actions. 

A functional diagram is the graphical representation of the system 
which shows all the blocks, their interconnections, signals and actions. 

A key diagram is the graphical representation of system which 
indicates all the elements, their marks, nominal values and other 
characteristics, the connections between elements and blocks, signals 
and actions. The sockets and the wire soldering points are plotted on the 
circuit diagrams. 

The structural diagram in terms of the control theory is the graphical 
representation of the system mathematical model, including links, 
summers, communication channels and indication of signals and actions. 

 
3.2. Classification of the ACS 

 
There is wide variety of automatic control systems. Therefore there is 

no singular indication which will become a base of division all systems 
into the classes totally reflecting the whole mass of properties. Let us 
consider ACS classifications based on certain attributes. 

The ACS can be divided on the basis of: 
1. Their purpose: 
- power (energy); 
- technological; 
- transport;  
- navigating;  
- orientation systems;  
- life-support systems; 
- synchronizing system, etc. 
2. The type of energy: 
- mechanical; 
- hydraulic; 
- pneumatic; 
- electric; 
- combined. 
3. The control principle: 
- controlled by setting action; 
- controlled by disturbance; 
- controlled by deviation; 
- combined. 
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4. The number of feedbacks: 
- open-loop; 
- closed-loop; 
- single-loop system; 
- multiple-loop system. 
5. The number of controlled variables: 
- single-input/single-output (SISO); 
- many-input/many-output (MIMO). 
6. The degree of dependence which exists between several inputs 

and outputs: 
- separated; 
- multilinked. 
7. The form of the setting action: 
- stabilization systems ( ( ) consttg = ); 
- program systems ( ( )tg  –function known beforehand); 
- tracking systems ( ( )tg  –time function unknown beforehand); 
- terminal systems (value ( )ftg  is given at the final time point ft ). 
8. The amount of the prior information about the controlled object and 

disturbance: 
- ordinary (with the full information); 
- robust (with the incomplete information); 
- adaptive (with information minimum): 
 - self-adjusting; 
 - self-organizing; 
 - self-learning (intellectual); 
 - self-developing. 
9. The character of the process:  
- continuous (analog);  
- discrete: 
 - relay;  
 - pulse;  
 - digital. 
10. The degree of definiteness of parameters and structures: 
- determined; 
- probabilistic (stochastic). 
11. The steady-state accuracy: 
- static (by setting action, by disturbance);  
- astatic (by setting action, by disturbance). 
12. The equation character: 
- linear; 
- nonlinear. 
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13. The availability of features: 
- without delay; 
- with delay; 
- stationary; 
- non-stationary; 
- with concentrated parameters; 
- with allocated parameters. 
14. Stability:  
- stable; 
- unstable; 
- neutral. 
15. On other characteristics: 
- controlled; 
- uncontrolled; 
- observable; 
- non-observable; 
- sensitive;  
- rough; 
- identifiable; 
- non-identifiable; 
- fault tolerance, etc. 
 

Comprehension questions 
 

1. What elements form a system functional diagram? 
2. What is the feedback? 
3. What is the block diagram? 
4. What is the key diagram? 
5. Itemize the classification ACS attributes. 

 
Lecture №4 

 
MATHEMATICAL DESCRIPTION OF ACS 

 
Analysis is the essence the 
intellectualism. 

George Zimmel 
 
Lecture outline: 
1. Construction of ACS mathematical model. 
2. ACS mathematical description. 
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4.1.  Construction of ACS mathematical model 
 
The mathematical model or mathematical description of ACS is the 

aggregate of mathematical correlations describing the dynamics of the 
system. As correlations we can treat algebraic, differential and difference 
equations, tables, graphs, plots, diagrams, algorithms, programs, 
matrices, transfer functions, operators. 

The mathematical models of ACS are widely used to solve system 
analysis and synthesis tasks by mathematical methods. The type of 
mathematical model is determined by both system and current task. 
Different tasks of automatic control theory require the models of different 
accuracy to be applied. As it is impossible to create a model which will 
absolutely correspond to the system, we should choose which factors 
should be taken into account and which could be ignored in every case. 
This task is creative and cannot be solved unambiguously. The more 
factors are taken into account to increase the exactness of the model in 
the process of modeling the more cumbersome model becomes. 
Complicated equations are solved approximately, and therefore the more 
difficult the equation is, the less exact the decision can be found. In 
addition, cumbersome equations are more difficult to solve and to draw 
any conclusions. 

The procedure of the input-output equation formation can be as 
follows: 

1. Divide the system into elements. Determine its input and output 
signals (reference, disturbances, control actions, controlled variables). 

2. Construct equations which connects the input and output signals 
using the physical laws of element operation or the experimental data. 

3. Choose an operating point or the system operating mode. 
Construct equations of the steady-state element mode. 

4. Enter the steady-state mode deviations. Formulate equations of 
element dynamics. 

5. Subtract the equation of the steady-state mode from the dynamic 
equations; get the element dynamic equations for the operating point 
deviations. 

6. If needed and possible, make linearization of the obtained 
equations. 

7. Make up the element block diagram; find the linear elements 
transfer functions. 

8. Make up the system block diagram. Exclude intermediate variables, 
get an input-output equation and transfer functions for the linearized 
systems. 

9. Check up the adequacy of obtained got model, for example, by 
comparing experimental characteristics and estimated step responses 
(adaequatys (lat.) - equal). 

Let us consider for linearization of equations in more detail. 
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If a nonlinear function F (·) does not contain the breaks, fractures or 
ambiguities, it can be linearized by a tangent or a Taylor series expansion 
(Fig. 4.1). 

 
 
It is possible to apply static linearization for the constant signals (Fig. 

4.2). 
y

F g k g kg g st gss
= ==

ss( ) , .st
ss

                           (4.1) 

 

 
 
These functions agree in the operating point.  
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In the case of small-deflection linearization we can apply a tangent 
linearization (Fig. 4.3) 

 

ss tangF g y k g= + ∆( ) ,     tang
F(g)k g gg ss
∂

= =∂
,    .ggg ss−=∆          (4.2) 

 

 
 
If the function depends on multiple arguments ,...)y,y,2g,1g(Fy = , it 

can be developed into Taylor series (Broke Taylor - 1685-1731),  
 

 
Then we keep only the variables of the first infinitesimal order and 

neglect the infinitesimals of higher orders 
 

....ydycgbgassyy +∆+∆+∆+∆+= 21  

 
Thus we obtain a linear equation. 
If the working point deflection is considerable, the secant 

approximation (the least-squares method) will be applied (Fig. 4.4). 
 

( ) ( )

( ) ( ) ( )

g gss ss ss ss
g g ss

...

g g g gss ssg g ss
g g ss g g g gss ss...

... ...

F ...y F g , g , y , , ... gg

F ... F ... F ...g y y ... .g y y

=
=

= =
=
= = =

+

= + ∆ +

∆ + ∆ + ∆ +

1 2 11 1
1 2 2

1 1 1 121 1
22 2 2 2 2 2

0 ∂
∂

∂ ∂ ∂
∂ ∂ ∂

 



 34

 
 
If any oscillating processes occur in the nonlinear systems, we should 

apply the harmonic linearization. For the random actions the statistic 
linearization is used. 

 
4.2. ACS mathematical description 

 
Fig. 4.5 represents the motor rotation speed stabilizing system. 

 
 
We divide the system into elements: a setting potentiometer (SP), a 

power amplifier (PA), an electrical motor (EM) with excitation winding 
(EW), a tachogenerator (TG), a working mechanism (WM) and designate 
inputs and outputs signals. 

Then we find the dynamics element equations. 
 
  SP: ( ) ( )u t =k g t ,sps   

  CD:  ( ) ( ) ( ) sp TG1
u t =u t  - u t ,  

  PA: ( ) ( )W PA 1
u t =k u t , 

  EM: ( ) ( ) ( )W W W
dФu t =R i t +ω t
dt

, 

( ) ( ) ( ) ( )u t =R i t +C Ф t ω t =consta a a е , 



 35

( ) ( ) ( )  r m
dT t =С t i t - Ja dt
ω

Φ . 

  TG: ( ) ( )ТG TGu t =k tω . 

  The nonlinear function ( )Ф ie  is shown on Fig. 4.6. 

 

 
 
We choose a steady-state mode operation point 

ss ss ТGss ss 1ss Wss ass Sss Wss ss, , u , g , u , i , i , u , u ,Tω Φ . It corresponds to steady-
state value of the input signal g ,Tss rss . 

We equate the steady-state mode 
 

 
      Sss SP ss 1ss Sss ТGss Wss PA 1ss TGss ТGu =k g ; u =u -u , u =k u , u =k ω ;ss  

Wss W Wssu =R i ;    ;ssωssФеС+assiaR=au   CD М ss assM =C Ф i ;        (4.3) 

( )ss WssФ =Ф i . 
 
We introduce the steady-state mode deflections 

ss ss ss TG TGss TG ss

Sss Wss Sss a ass a ss Sss ss w Wss

g g g, , ,u u u ,u u u ,
i i i ,i i i ,u u u ,u U ,
= + ∆ ω=ω + ∆ω Φ=Φ + ∆Φ = + ∆ = + ∆

= + ∆ = + ∆ = + ∆ =
1 1 1  

R rss RT =T + T∆  
 

and obtain the element dynamic equations  

Sss S SP ss Wss W W Wss W
du + u =k (g + g), u + u =R (i + i )+

dt
∆Φ

∆ ∆ ⋅ ∆ ∆ ω , 

1ss 1 Sss S TG TGss TGu + u =u + u u u u ,∆ ∆ = + ∆  
),+ss)(+ss(еC+)ai+ass(iaR=assu ω∆ω∆ΦΦ∆  

Wss PA 1ss 1u + u =k (u + u ),w∆ ∆                               (4.5) 
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R m
dT + T =C ( + )(i + i )-J ,rss ss ass a dt
∆ω

∆ Φ ∆Φ ∆  

TGss TG TG ssu + u =k ( + ),∆ ω ∆ω  
ss Wss W+ = (i + i ).Φ ∆Φ Φ ∆  

 
We subtract the dynamic equations from the steady-state mode 

equations  S SPu =k g,∆ ∆            
dt

d+WiWR=Wu ∆Φ
ω∆∆ , 

1 S TGu = u - u ,∆ ∆ ∆     ω∆Φ∆∆ΦωωΦ∆∆ еС+ssеС+
ssеС+aiaR=0 , 

W PA 1u =k u ,∆ ∆       dT =С i +C i Φ+C i -J ,r m ss a m ass m a dt
∆ω

∆ Φ ∆Φ∆      (4.6) 

TG TGu k∆ = ∆ω ,            )Wssi(-)WiWssi( Φ∆+Φ=∆Φ . 

 
We linearized nonlinear equations, drop the sign ,∆  and introduce the 

differential operator dp= dt  
 

We eliminate intermediate variables. 
For the motor we get 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Φ

ωωΦ

ω

ω .JaiiC+iC=M

;aiC+C+iR=0
;ipa+iR=u

pWassMassMR

Wssesseaa

wzwww

-

                             (4.8) 

1
1

i ,iw a
1 1 ai =  u =  u ,  T =w w wR +ap R (T p+1) Rw w wω

    Eliminate

where electric magnetic  time 

constant of motor, 

,gku SPS =            ,p+iR=u WWW Φω  
TGS1 u-u=u           ,еC+еC+iR=0 ssssaa ΦωωΦ  

,u k=u 1PAW           R m ss a m assT =С i +С i -Jp ,Φ Φ ω                                     (4.7) 

,k=u TGTG ω  W
ss W W

W Wssn

(i )= + i , =ai
i =ii

∂Φ
Φ Φ ∆ Φ

∂
. 
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1

C С а 1е ss е ssi =  - ω  - u ,a wR R R (T p+1)a a w

Φ ω
⋅  

-   -    m m m
r

1 1

2С С С С а C i a1е ss е ss ss assT = ω u + u Jp .w wR R R (T p+1) R (T p+1)a a w w

Φ Φ ω
⋅ − ω  

Thus we obtained a single motor equation. 
Let us put down it in more convenient form 

 R WR R (T p )M - C C R (T p )a w е m ss1 1
21 1+ = Φ + ω −  

m W W W-C C au C i aR u -R R J(T p )p .е ss ss m ass a a 1 1Φ ω + + ω          (4.9) 
We move the output signal and its derivatives to the left side of the 

deviation, and the input signal with its derivatives to the right side 
 

( )( )m ss W a WT p+1 C C R +R R Jp =е Φ ω2
1  

( ) ( )  m ass a m ss ss W a W R= C i aR - C C a u - R R T p+1 Tе Φ ω 1 .            (4.10) 
 
We divide both sides of equation by ( m ss WC C Ф Re

2 ). Finally we 
obtain the input-output equation for the engine in operator form 

 
1 2 1 W 2 2 r(T p+1)(T p+1) (t) k u (t)-k (T p+1)T (t),ω =              (4.11) 

 

where a
2

m ss

R JT = 2C Cе Φ
 is the engine electromechanical time constant; 

Wss

ss

Wss

aass
1 R

a-
R2

еC
aRi=k

Φ
ω

Φ
  is the engine control action transient 

coefficient; 

2ФСеС
R=k

ssW

a
2  is the engine disturbance transient coefficient. 

We obtain the input-output equation by substituting the differential 
operator with the operation of differentiation. The differential form of the 
equation is as follows 

( ) ( ) ( ) ( )  r
1 2 1 2 1 W 1 r

2 dTd dT T + T +T + t =k u t - k T +T t22 dt dtdt
ω ω ⎛ ⎞ω ⎜ ⎟

⎝ ⎠
.       (4.12) 

 
The input-output element equations can be presented in diagram form 

after the following correlations are taken into account 
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s 1 s TG W PA 1 TG TG

1 2
W r

1 2 2

u =k g, u =u - u , u =k u , u =k ω,sp
k kω= u - T .

(T p+1)(T p+1) (T p+1)
 

 
We can draw an ACS block-diagram (Fig. 4.7). 
 

 
 
Then we eliminate other intermediate variables TGWS u,u,u,u 1  in order 

to obtain 
 

( ) ( ) ( )( ) ( )- PA SP T
r

k k k g t k G t kt T t
T p T p T p

− ω
ω =

+ + +
1 1

1 2 2( 1)( 1) 1
,                   (4.13) 

 
or  

( ) ( ) ( )PA TG PA SP rT p T p k k k t k k k g t -k T p T t1 2 1 1 2 1(( 1)( 1) ) ( 1)+ + + ω = +  
 
and in such form 
 

  PA SP
r

PA TG PA TG

k k k k T pt g t - T t
T p T p k k k T p T p k k k

1 2 1

1 2 1 1 2 1

( 1)( ) ( ) ( ).
( 1)( 1) ( 1)( 1)

+
ω =

+ + + + + +
 (4.14) 

 
The system input-output equation short form is 
 

rt p g t p T tfgω = Φ + Φ( ) ( ) ( ) ( ) ( )                   (4.15) 

and the differential form is 
 

 r
PA TG PA SP r

dTd dTT T T k k k t k k k g t - k T T t
dt dtdt

ω ω
+ + + + ω = +1 2 1 2 1 1 2 1

2
( ) (1 ) ( ) ( ) ( ( )).2  
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Terms: 
– mathematical model; 
– mathematical description; 
– static linearization; 
– operating point; 
– tangent linearization; 
– secant approximation; 
– least-squares method; 
– steady-state characteristic. 

 
Comprehension questions 

 
1. What is the mathematical model? 
2. What kinds of linearization do you know? 
3. What is harmonic linearization? 
4. What is system working point? 
5. Describe the procedure of obtaining the input - output equation. 
6. What kinds of static characteristics do you know? 
 

Lecture № 5 
 

MATHEMATICAL DESCRIPTION OF ACS (ENDING) 
 

If we really know something, we know 
it due to the study of mathematics.  

P. Gassendi 
 
Lecture outline: 
1. Forms of ACS equations recording. 
2. Static and dynamic characteristics of ACS. 
 
From here on we consider the simplest systems: linear, continuous, 

ordinary, stationary, etc. 
 

5.1.  Forms of ACS equations recording 
 
The ACS mathematical model can be represented in several forms.  
 

5.1.1. The standard form of the input – output  
equation recording 

 
 Let the system have a single setting action, a single disturbance and 

a single output (Fig. 5.1). 
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We set the output signals and their derivatives to the left side of the 

input-output equation and the input signals with its derivatives to the right 
side of the equation 

n n m m

nn n m m
d y d y d g d ga a ... a y t b b
dt dt dt dt

1 1

0 1 0 11 1

− −

− −+ + + = + +( )  

l l

m l l
d f d f... b g t c c ... c f t .ldt dt

1

0 1 1

−

−+ + + + + +( ) ( )               (5.1) 

 
If this equation divided by factor na , the factors naia  will get the 

dimension n isec −  
n n m m

n n m m

l l

l l
n

a a ba bd y d y d g d gn... y t
a a a a adt dt dt dtn n n n n

b c ccd f d fm l... g t ... f t .
a a a adt dtn n n

− −

− −

−

−

+ + + = + +

+ + + + + +

1 1

1 1

1

1

0 01 1

0 1

( )

( ) ( )
 

 
For the steady-state mode it will be 
 

ssf
na
lc

ssg
na
mb

ssy += . 

A coefficient gk
na
mb

=  is the system reference action transfer coefficient 

(gain) which has the dimension of [ ] [ ].gy  

A coefficient fk
na
lc
=  is the system disturbance transfer coefficient 

(gain) which has the dimension of [ ] [ ].fy  
The static equation can be easily obtained from the dynamic equation 
 

.ffkggky +=                                        (5.2) 
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If n is an order of the equation, an order of the system, then the model 
feasibility conditions are: nl,nm ≤≤ . 

The direct current motor input - output equation is as follows 

( ) ( ) ( ) ( )r

2

1 2 1 2 u e T 12

dTd ω dω rT T + T +T +ω t =k u t -k T +T t .rdt dtdt
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
5.1.2. The operator form of the input - output equation recording 

 
Let us introduce the differential operator .dt

dp =  Thus we obtain 

( ) ( ) ( ) ( )
( ) ( ) ( )

n n-1 m
0 1 n 0

l
m 0 l

a p y t +a p y t +...+a y y =b p g t +

+...+b g t +c p f t +...+c f t
 

or 
( ) ( ) ( ) ( ) ( ) ( )A p y t =B p g t +C p f t ,                           (5.3) 

where  
n n m m

n m
l l

l

A p a p a p a B p b p b p b

C p c p c p c

− −

−

= + + + = + + +

= + + +

1 1
0 1 0 1

1
0 1

( ) ... , ( ) ... ,

( ) ... .
 

 
After solving the input - output equation (5.3), we get 
 

),t(f)p(W)t(g)p(W)t(f
)p(A
)p(C)t(g

)p(A
)p(B)t(y fg +=+=        (5.4) 

 
where )p(gW  is the system reference action transfer operator; 

   )p(fW  is the system disturbance transfer operator. 

The engine equation is 
 

( ) ( )( ) ( ) ( )T
EW R

k kut u t T t .
T p T p T p

ω = −
+ + +1 2 21 1 1

           (5.5) 

 
5.1.3. The input - output equation image recording 

 
There exist Laplace transformations (Pierre Simon Laplace, 1749 - 

1827): 
a direct transformation 
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{ } ,dtste)t(y)t(yL)s(Y ∫ −==
∞

0
                            (5.6) 

 
an inverse transformation 
 

( ) ( ){ } ( )∫
∞+

∞−
ω+α=

π
== −

jc

jc
,js,dsstesY

j
sYLty

2
11           (5.7) 

 
where −)t(y  is the original function, −)s(Y  is the image. 

Let us apply Laplace transformations to the input - output equation 
(5.1) under the zero initial conditions. Thus we obtain the input - output 
image equation 

 
=+++ − )s(Ya...)s(Ysa)s(Ysa n

nn 1
10  

).s(Fc...)s(Fsc)s(Gb...)s(Gsb l
l

m
m +++++= 00            (5.8) 

 
In many books the same symbol is used both for the differential 

operator 
dt
dp =  and for the complex argument .jp ω+α=  

To distinguish an operator from a complex argument we should identify 
whether we have the original or the image equation. Let us solve the image 
equation (5.8). We obtain 

 

)s(F
a...sa
c...sc)s(G

a...sa
b...sb)s(Y

n
n

l
l

n
n

m
m

++
++

+
++
++

=
0

0

0

0               (5.9) 

 
or                                  ).s(F)s(W)s(G)s(W)s(Y fg +=                    (5.10) 

 
 The equation (5.10) can be presented in diagram form (Fig. 5.2). 
 

 
 

)s(gW  being the system reference action transfer function, 
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)s(fW  being the system disturbance transfer function. 

If  ,)t(f 0≡  
 

)s(G)s(gW)s(Y = ,                               (5.11) 

 
then 

f t

ny y y

Y sW s W sg G s ≡

−= = = =

= = ( ) 0

( 1)(0) (0) ... 0

( )( ) ( ) .
( )

         (5.12) 

 
By analogy for ( )sW f  

g( t ) ,

( n )y( ) y( ) ... y

Y ( s )W ( s ) .f F( s ) ≡

−= = = =

= 0

10 0 0

          (5.13) 

 
For the electrical motor we get 
 

( ) ( )( ) ( ) ( )Tu c
e c

kks U s T s
T s T s T s

Ω = −
+ + +1 2 21 1 1

.         (5.14) 

 
The transfer function is the ratio of output signal Laplace 

transformation to the input signal Laplace transformation under zero initial 
conditions. 

 
5.1.4. Cauchy normal form (Ogusten Cauchy, 1789-1857, a French 

mathematician) 
 
Any differential equation of n -order can be replaced by n  differential 

equations of the first order with the help of additional variables nx , x ,..., x1 2 , 
named state variables or phase variables. 

For example, the engine equation at rT = 0  looks like 
 

( ) ( ) ( )exc

в

d dT T T T t k u t ,
dtdt

 a a k u .

ω ω
+ + + ω =

ω + ω + ω =

2

1 2 1 2 12

0 1 1or
         (5.15) 
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Let us thus choose state variables 
 

⎩
⎨
⎧

=
=

.x
,x

2

1

ω
ω

                                     (5.16) 

 
Then 

e

x x ,
a kx x x u

a a a

=⎧
⎪
⎨ = − − +⎪
⎩

1 2

1 1
2 1 2

0 0 0

1 .                         (5.17) 

 
These equations are called the state equations. 
The output equation (it connects a system output signal with a state 

variable) is 1x=ω . 
Generally state equations are as follows 
 

n n r r p p

n n n nn n n n

x a x a x ... a x b g ... b g n f ... n f ,

........................................................................................................
x a x a x ... a x b g ... b

= + + + + + + + + +

= + + + + + +

1 11 1 12 2 1 11 1 1 11 1 1

1 1 2 2 1 1 r r n np pg n f ... n f .

⎧
⎪
⎨
⎪ + + +⎩ 1 1

(5.18) 

 
The vector-matrix form of the equation (5.18) is the following 
 

,NfBgAxx ++=                             (5.19) 
 

where 

pn r

fx g
fx gstate reference disturbance

x , g , f
....vector vector vector..... ....
fx g

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= − = − = −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

11 1

22 2  

 
Matrixes A, B, N are matrix coefficients [ ] [ ] [ ],n,b,a ilikij  the matrix 

dimensions are 
)pn(N),rn(B),nn(A ×−×−×− ,                 (5.20) 

 
where n  is the system order, r  is the number of reference actions, p  is the 
number of disturbance actions. 

The output equation generally looks like 
 



 45

MfDgCxy ++= .                                   (5.21) 
 
The Cauchy normal form is convenient because of the differential state 

equation being of the first order and easily solved and the output equation 
being algebraic. If we know g,x  and f , we can easily obtain y . The 
vector-matrix state equations and output equations have a compact form. 

 
5.2. Static and dynamic characteristics of elements and systems 

 
5.2.1. ACS static characteristics 

 
Let us consider a system having scalar input and output (Fig. 5.3). 

 
 
The static equation for the system of this type is as follows: 

fkgky fg ⋅+⋅= , 0〈fk . For this equation we can obtain two sets of the 
characteristics (Fig. 5.4 and 5.5). 

The element or system static characteristic is the dependence of an 
output signal on the input signal in the steady-state mode. 

All the actual components have nonlinear static characteristics. 
 

 
 

5.2.2. ACS dynamic characteristics 
 
There exist two types of the ACS dynamic characteristics, the time 

characteristics and the frequency characteristics. 
The time characteristics include step response and pulse transitive (or 

weight) characteristics. 
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The frequency characteristics include the amplitude frequency 
characteristic (AFC), phase frequency characteristic (PhFC), amplitude 
phase frequency characteristic (APhFC), logarithmical amplitude frequency 
characteristic (LAFC), logarithmical phase frequency characteristic 
(LPhFC), etc. 

 
5.2.2.1. Time characteristics 

 
A step response is a reaction of an element or system to the unit step 

excitation ( )t1  under the zero initial conditions 
 

h t y tg
g t t
f t

ny y y

( ) ( )
( ) 1( ),
( ) 0,

( 1)(0), (0),..., (0) 0,

=
=
=

− =

is a reference step response; 

 
h f y tf g t

f t t
ny y

( ) ( )
( ) 0,
( ) 1( ),

( 1)(0),..., (0) 0.

=
=
=

− =

is a disturbance step response. 

 
The step response can be found by the transfer function 

( ) .d)t()(wd)t(w
s

)s(WL)t(h,
s

)s(W)s(H

,
s

)s(G),t()t(g),s(G)s(W)s(Y

t t

ττ−τ=τττ−=
⎭
⎬
⎫

⎩
⎨
⎧==

===

∫ ∫− 11

11

0 0

1

(5.22) 

 
The impulse response is a reaction of an element or system on δ - 

function under the zero initial conditions ( )t1  is a Heaviside function (Oliver 
Heaviside, 1850 - 1925, an English physicist) (Fig. 5.6) 
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h t y tg
g t t
f t

ny y

δ
′ =

=
=

− =

( ) ( )
( ) ( ),
( ) 0,

( 1)(0),..., (0) 0,

                 (5.23) 

 
h t y tf g t

f t t
n 1y y

δ

′ =
=
=

−+ =

( )
( ) 0,
( ) ( ),

( )(0),..., (0) 0,

( )                  (5.24) 

 
where )()( twth =′  is a unit-pulse response or weight function. 

when
when

 t
t

 t
∞ =⎧

= ⎨ ≠⎩

, 0,
( )

0, 0
δ  – is a Dirac function (Pol Dirac, 1902 – 

1984, an English physicist) (Fig. 5.7). 
 

 
The properties of Dirac function: 

∫
∞

∞−
ϕ=δϕδ=∫

∞

∞−
=δ ),(dt)t()t(),t(

dt
)t(d),t(dt)t( 011  

 
where ϕ (t) is any kind of function. 

We can find weight function using transfer function 
 

Y s W s G s g t t G s= = =( ) ( ) ( ), ( ) ( ), ( ) 1,δ  
 

{ } dhH s W s h t w t L W s
dt

−′ ′= = = =1( ) ( ), ( ) ( ) ( ) .            (5.25) 

 
With applying a weight function we can find the system reaction on any 

action 
 

Y s W s G s=( ) ( ) ( ),                                    (5.26) 
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therefore 
 

( ) ( ) ( )∫ τττ−=
t

.dgtwty
0

                                    (5.27) 

 
We use the originals convolution theorem. The step response and the 

unit-pulse response can fully describe the ACS dynamics. 
Step and pulse responses can be obtained experimentally (Fig. 5.8). 
 

 
 

5.2.2.2. ACS frequency characteristics 
 
An amplitude-frequency characteristic (AFC, ( )ωA ) is a dependence of 

the output signal amplitude ratio to an input signal amplitude on frequency 
(Fig. 5.9, 5.10) 

( ) ( ) ( ) ( )( )ωϕ+ωω=ω= tsinbty,tsinatg , 

bA
a
ω

ω =
( )( ) , 

 

)(V)(U)j(W)(A ω+ω=ω=ω 22 . 
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A phase-frequency characteristic (PhFC, ( )ϕ ω ) is a dependence of the 
output-to-input phase shift on the frequency (Fig. 5.11) 

 

( ) ( ) ( )
( )ω
ω

=ω=ωϕ
U
VarctgjWarg . 

 

 
 

When using this formula to calculate the phase we should take into 
account signs of imaginary ( )ωV  and real ( )ωU  parts of ( )ωjW . 

The amplitude-phase-frequency characteristic (APhFC, ( )ωjW ) is a 

trajectory of the vector ( )ωjW  movement at frequency ω  change (usually 

ranged from 0  up to ∞+ ) (Fig. 5.12). 
 

 
 
The frequency is logarithmically scaled in rad/sec on the abscissa axis. 

The segment of axis corresponding to the 10 times frequency changes is 
called a decade. The input-to-output signal relation of the device is 
expressed in decibels when constructing LAFC on a y-axis:  

 
( ) ( ) dB,AlgL ω=ω 20 . 

LAFC and LPhFC are logarithmic AFC and PhFC (Fig. 5.13). 
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Figure 5.13 – LAFC and LPhFC 

 
John Neper (1550 - 1617) was the Scottish nobleman. In 1614 he 

issued the book «The Description of the wonderful logarithms table» in 
Edinburgh. 

 
Terms: 
– transfer function,  
– state variables,  
– output equation,  
– static characteristic,  
– step response,  
– unit-pulse response,  
– amplitude-frequency characteristic,  
– phase-frequency characteristic,  
– amplitude-phase-frequency characteristic. 
 

Comprehension questions 
 

1. What forms of ACS equation recording do you know? 
2.  How can we obtain the static equation from the dynamic one? 
3. What is a Laplace transformation? 
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4. How can we replace a differential equation of n-th order by n 
differential equations of the first order? 

5. What is a step response and pulse response? 
6. What are of the properties of Dirac function? 
7. What kinds of frequency characteristics do you know? What are 

their peculiarities? 
 

Lecture №6 
 
TRANSFER FUNCTIONS OF CONTINUOUS LINEAR STATIONARY 

ACS 
 

As far as the laws of mathematics 
refer to reality, they are not certain, 
and as far as they are certain, they do 
not refer to reality. 

Albert Einstein 
 
Lecture outline: 
1. Transfer functions of series, parallel and feedback link connection. 
2. ACS block-diagram transformation rules. 
3. The system transfer function getting by means of Mason’s formula. 
4. The ACS reference and disturbance transfer functions, in respect 

to error. 
 

6.1. Transfer functions of series, parallel and feedback links 
connection 

 
6.1.1. Series links connection 

 
A series links connection is a type of links connection when the output 

signal of the previous link becomes the input signal of the following link 
1+= ii gy  (Fig. 6.1). 

 

 
 
Let us find a transfer function of the series links connection. The 

output signal image is connected with the input signal image by the 
transfer function 
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( ) ( ) ( ) ( ) ( ) ( )m m m m mY s W s Y s W s W s Y s− − −= ⋅ = ⋅ ⋅ = =1 1 2 ...  

( ) ( ) ( ) ( )m mW s W s W s G s−= ⋅ ⋅1 1... .                        (6.1) 
 

According to the definition we have ( ) ( )
( )sG
sYsW = . From here 

( ) ( )∏
=

=
m

i
i sWsW

1
.                                    (6.2) 

 
In the case of series links connection these transfer functions are 

multiplied. 
Let us consider the series link connection frequency characteristics. 

We substitute ω= js  in transfer function: ( ) ( )∏
=

ω=ω
m

i
i jWjW

1
. If to present 

the transfer complex coefficient as 
 

( ) ( ) ( )ωϕω=ω ij
ii eAjW ,                               (6.3) 

 

then we get  ( ) ( ) ( ) ( )
( )

( ) ( )∏ ∏
= =

ωϕ=
ωϕ

ωϕ ω=ω=ω=ω
∑m

i

m

i

j

m

i
ij

i
ij

i eAeAeAjW
1 1

1 .  

Thus, 
 

( ) ( )∏
=

ω=ω
m

i
iAA

1
,                                    (6.4) 

 

( ) ( )∑
=

ωϕ=ωϕ
m

i
i

1
.                                      (6.5) 

 
In the case of the series links connection the magnitude-frequency 

characteristics are multiplied and the phase-frequency characteristics are 
summed. We pass on to the logarithmic magnitude-frequency 
characteristics 

 

( ) ( ) ( ) ( )∏ ∑
= =

ω=ω=ω=ω
m

i

m

i
ii LAlgAlgL

1 1
2020 ,                 (6.6) 

( ) ( )∑
=

ω=ω
m

i
iLL

1
.                                     (6.7) 
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Thus we get the logarithmic magnitude-frequency characteristics 
equally summed. This property provides a simple method of LMFC 
construction for the series links connection. We should remember that the 
ACT is engaged in directed action links, but a transfer function is a 
characteristic of the process of the data transformation conducted by the 
defined link that is completely different from the electric key diagrams 
which are engaged in elements transforming electric processes. For 
example, for the circuit containing two series resistors (Fig. 6.2) the 
correlation 21 RRR +=  is correct. 

 

 
 

This circuit doesn’t include the directed action links. 
On the other hand, if two amplifiers which gain factors are 

52 21 == k,k  connected in series, they will amplify a signal  10=k  times.  
 

6.1.2. Parallel links connection 
 
A parallel links connection is a type of links connection when the input 

signals of all links are equal, and the connection output signal is equal to 
the sum of element output signals (Fig. 6.3). 

 

 
 
 Let us find the transfer function of the parallel link connection. We will 

express the output signal image in terms of the input signal image 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =+++=+++= sGsW...sGsWsGsWsY...sYsYsY mmm 221121  
( ) ( ) ( )( ) ( )mW s W s W s G s= + + +1 2 ... .  

This implyies 
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( ) ( )∑
=

=
m

i
i sWsW

1
.                                       (6.8) 

 
In the case of parallel links connection the transfer functions are 

summed. 
In the case of parallel links connection it is more useful to express the 

frequency characteristics in terms of the rectangular coordinates 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ,jVUVjUjVUjWjW
m

i

m

i

m

i

m

i
iiiii∑ ∑ ∑ ∑

= = = =
ω+ω=ω+ω=ω+ω=ω=ω

1 1 1 1

 
where 

( ) ( )∑
=

ω=ω
m

i
iUU

1
,                                    (6.9) 

 
( ) ( )∑

=
ω=ω

m

i
iVV

1
.                                  (6.10) 

 
For this type of connection the Nyquist system diagram are obtained 

by the summation of the Nyquist element diagrams. Do not confuse the 
parallel link connection up the parallel element connection. 

If two amplifiers which gain factors are 52 21 == k,k  are connected in 
parallel, they will amplify the signal seven times. 

 
6.1.3. Feedback links connection 

 
The first link ( )W s1  is enveloped in the feedback (FB) by means of the 

second link ( )sW2  (Fig. 6.4). 
The connection has two paths of a signal transmission: a forward path 

which goes from input to output and the feedback line passing a signal 
from output to input. 

A two-link feedback connection is a type of connection when the 
output signal of the first link becomes an input signal of the second link, 
and the input signal of the first link is the algebraic sum of an input 
connection signal and an output signal of the second link. 
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A feedback is considered positive, if zg +=ε , and negative, if 

zg −=ε . 
Let us express the connections of all signals images with the link 

transfer function 
( ) ( ) ( )sYsGsE fb±= , 
( ) ( ) ( )sEsWsY ⋅= 1 , 
( ) ( ) ( )sYsWsY fb ⋅= 2 . 

 
Here on the "+" stands for the positive feedback (PFB), and the "–" 

means the negative (NFB). 
We will exclude the intermediate variables 
 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ( ) ( ) ( ).sGsWsYsWsW

,sYsWsGsWsYsGsWsY fb

⋅=⋅

±=±=

121

211

1∓
 

 
Here on the "–" is for PFB and the "+" is for NFB.  
We solve for the transfer function of the feedback connection. The 

closing formula is as follows 
 

( ) ( )
( )

( )
( ) ( ) .

sWsW
sW

sG
sYsW

21

1

1 ⋅
==
∓

                       (6.11) 

 
Negative feedbacks are widely used in amplifiers in order to stabilize 

the transfer coefficient.  
For example, the transfer coefficient of the amplifier changes in the 

range 2001001 ÷=k . If it is enveloped in the feedback with the factor 
102 ,k = , we obtain 

 

529
102001

200099
101001

100 ,
,

k;,
,

k maxmin =
⋅+

==
⋅+

= . 
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Thus, the 50% gain instability is reduced to less than 5 % but it is 
attained at the expense of gain decrease. 

 
6.2. ACS block-diagram transformation rules 

 
Two diagrams are equivalent if the identical input signals cause 

identical output signals. 
If it is difficult to find pure typical connections, we can apply structural 

transformation in order to simplify the complex ACS construction. These 
are some rules of block diagram transformation. 

 
Rule 1: 

 
 
       a 
 
Rule 2: 

 
 
       b 
Rule 3: 
 

 
 
c 

 
Rule 4: 
 

 
       d 

Figure 6.5 – Block-diagram transformation rules 
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Rule 5: 
 

 
       e 
 
Rule 6: 
 

 
       f 
 
Rule 7: 
 

 
 
       g 

 
Figure 6.5. Ending 

 
Nodes can be transposed (Fig. 6.5, a) 
Adders can be transposed (Fig. 6.5, b). 
If a node is transferred through a link with a signal, the inverse link 

should be added (Fig. 6.5, c). 
If a link is transferred through a node with a signal, the same link 

should be added (Fig. 6.5, d). 
If a summer is transferred through a link with a signal, the same link 

should be added (Fig. 6.5, e). 
If a link is transferred through a summer with a signal, the inverse link 

should be added (Fig. 6.5, f). 
If a node is transferred through a summer with a signal, the one more 

summer should be added Fig. 6.5, g). 
Example: we obtain a diagram (Fig. 6.6). 
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Let us find the transfer function. 
The typical links connections formulae can not be applied as the loops 

are crossing. We transfer the node 1′ through the link ( )sW2  and through 

the node 2′ with a signal course. Thus the link ( )sW2

1  should be introduced 

(Fig. 6.7). 
 

 
 

Now we can apply the closing formula and the series connection 
formula in series: 

 

( )
( ) ( )

( ) ( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )sWsWsWsW

sWsW

sW
sW

sWsW
sWsW

sWsW
sWsW

sW
4132

21

2
4

32

21

32

2
1

11
1

1

1
++

=
⋅

+
+

+
= .  (6.12) 

 
6.3. The system transfer function derivation by means of 

Mason’s formula 
 

The graph theory allows finding linear system transfer functions by 
any input and output of system without any structural transformations. Let 
us scrutinize this method with the example. The system is presented on 
the Fig. 6.8. 
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A graph is a set of nodes and branches (edges, arches). 
Let us build the system signal flow graph (Fig. 6.9), each signal 

assigned the graph node, each link assigned the directed graph branch 
the weight of which equals to its transfer function. 

 

 
 
The nodes vanish from the graph because we have the same signal in 

both input and output. The graph has no summers because of the node 
signal being equal to the sum of incoming signals. 

The forward path is an open input-output circuit of graph branches. 
The loop is a closed circuit of branches in which each node is passed 

only once. 
The nontouching loops have no common nodes. 
The system transfer function between an input g  and an output y  can 

be found by means of Mason's formula 

( )
( ) ( )

( )s

ssW
s

fpn

i
ii,fp

yg ∆

∆
=Φ
∑
=1 ,                           (6.13) 

 
where ( )sW ifp  is a transfer function of i-th forward path; 

fpn  is a number of forward paths between an input g  and an output 
y ; 

( ) ( ) ( ) ( )∑ ∑ ∑
= = =

+−+−=∆
1

1

2

1

3

1
3211

n

j

n

k

n

l
lkj ...sWsWsWs is a graph determinant; 

)s(i∆  is a determinant of graph complement to i-th forward path; 
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...,n,n,n 321 is a number of loops, nontouching pairs, nontouching 
threes, etc; 

( )sW j1  is a j-th loop transfer function; 
( )sW k2  is a transfer function product of k-th nontouching pair; 
( )sW l3  is a transfer functions product of l-th nontouching three. 

In the example we had  
 

...n,n,n fp 001 32 === , 

( ) ( ) ( )W s W s W s11 1 4 ,= − ⋅  
( ) ( ) ( )W s W s W s12 2 3 ,= − ⋅  
( ) ( ) ( )fpW s W s W s1 1 2 ,= ⋅  

( ) ( ) ( ) ( ) ( )
( )
s W s W s W s W s

s
1 4 2 3

1

1 ,

1,

∆ = + ⋅ + ⋅

∆ =
 

 

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( ) .

sWsWsWsW
sWsW

sG
sYsyg

3241

21

1 ⋅+⋅+
⋅

==Φ            (6.14) 

 
Thus we obtain the same answer as in the previous example. 
 

6.4. The ACS reference and disturbance transfer functions,  
in respect to error 

 
Let us consider the system with the single unit negative feedback 

(Fig. 6.10). 
 

 
 
We can distinguish six transfer functions: 
1. The open- loop transfer function  by the setting action 
 

( ) ( )
( ) ( ) ( ) ( ) ( )yg fp

Y s
W s W s W s W s W s

G s f
= = ⋅ = =

≡ 1 20
.             (6.15) 
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2. The open-loop transfer function by the disturbance action 
 

( ) ( )
( ) ( ).sW

gsF
sYsW yf 20

=
≡

=                                 (6.16) 

 
3. The feedback transfer function by the reference action 
 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( ) ( ) .

sWsW
sW

sWsW
sWsW

fsG
sYs

fbfp

fp
yg +

=
+

=
≡

=Φ
110 21

21             (6.17) 

 
4. The feedback transfer function by the disturbance action 
 

( ) ( )
( )

( )
( ) ( )

( )
( )

f
yf

W sY s W s
s

F s W s W s W sg
= = =

+ +≡
2

1 2
.

1 10
Φ             (6.18) 

 
5. The feedback transfer function in respect to the error caused by 

reference action 
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) .

sWsWsW
s

fsG
sEss

op
g +

=
+

=Φ−=
≡

=Φ=Φ εε 1
1

1
11

0 21

   (6.19) 

 
6. The feedback transfer function in respect to the error, caused by 

the disturbance (for the given diagram it coincides with the closed-loop 
transfer function by the disturbance action to a single sign) 

( ) ( )
( ) ( )sWsW

sW
sf

21

2

1 +
−

=Φε .                                (6.20) 

 
On the basis of the superposition principle we can put down 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ).sFssGssE

;sFssGssY

f

f

⋅Φ−⋅Φ=

⋅Φ+⋅Φ=

ε

                     (6.21) 

 
The (6.21) helps to construct input-output and error original equations. 
 
Terms: 
– series links connection, 
– parallel links connection, 
– feedback links connection, 
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– graph, 
– Mason’s formula, 
– nontouching loops, 
– phase-frequency characteristic, 
– open-loop system, 
– feedback system. 
 

Comprehension questions 
 

1. What is a series links connection? 
2. What is a parallel links connection? 
3. How can we find a transfer function of series links connection? 
4. How can we find a transfer function of parallel links connection? 
5. What is a purpose of the negative feedback? 
6. Which diagrams are equivalent? 
7. Which are the ACS block-diagram transformation rules? 
8. Why do we use the Mason’s formula? 
9. What transfer functions has the closed-loop system? 

 
 

Lecture №7 
 

THE APPLICATION OF THE STATE SPACE METHOD FOR 
CONTINUOUS LINEAR ACS 

 
Lecture outline: 
1. The state and output equations for continuous linear automatic 

control systems. 
2. The solving of the state and output equations. 
3. The vector-matrix block diagram and the matrix transfer functions 

for continuous linear ACS. 
 
 The method belongs to the modern automatic control theory. It 

allows finding response to any action under any initial conditions and 
evaluating stability, controllability and observability. 

 
7.1. The state and output equations for continuous linear 

automatic control systems 
 
 The continuous linear system with r  inputs and l  outputs can be 

described by n  differential state equations of the 1st order (Fig. 7.1) 
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x a x a x a x b g b g m f m fn n r r p p

x a x a x a x b g b g m fn n nn n n nr r nn

= + + + + + + + + +

= + + + + + + +

11 1 12 2 1 11 1 1 11 1 1

1 1 2 2 1 1 1 1

... ... ... ,

.............................................................................................
... ... ... m fnp p

⎧
⎪
⎨
⎪ +⎩ ,

(7.1) 

 

where   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

nx
...
x

x
1

 is a state vector; 

 

      
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

rg
...
g

g
1

is a reference action vector; 

 

     
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

pf
...
f

f
1

 is a disturbance vector; 

 
and by the algebraic output equations 
 

y c x c x c x d g d g n f n fn r pn r p

y c x c x c x d g d g n fn rl l l ln l lr l

= + + + + + + + + +

= + + + + + + + +

... ... ... ,11 1 12 2 1 11 1 1 11 1 11
...............................................................................................

... ... ...1 1 1 2 1 1 n f plp

⎧
⎪⎪
⎨
⎪ + +⎪⎩

... ,1

   (7.2) 

 

where  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

ly
...
y

y
1

 is an output vector. 

 
These equations in the vector-matrix form look like 
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( )x Ax Bg Mf x t
y Cx Dg Nf
= + +

= + +
0, ,

,
                              (7.3) 

 

where  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

nna...na
.........
na...a

A

1

111
is the state n-by-n matrix, 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

nrb...nb
.........
rb...b

B

1

111
is a reference input n-by-r matrix, 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

lnc...lc
.........
nc...c

C

1

111
 is an output l-by-n matrix, 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

lnd...ld
.........

rd...d
D

1

111
 is a reference l-by-r by-pass matrix, 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

npm...nm
.........

pm...m
M

1

111
 is a disturbance input n-by-p matrix, 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

lpn...ln
.........

pn...n
N

1

111
is a disturbance l-by-p by-pass matrix. 

 
Eventually the state vector x  moves through n -dimensional 

Euclidean space and describes the phase trajectory. ( )tx  is the 
representation point which characterizes the ACS statе or the certain 
phase of system movement at any instant (Fig. 7.2). 
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The state space method performs the ACS dynamics by the 
representation point motion in the n -dimensional Euclidean space. 

The state variable characterizes the system element energy content. 
We can choose the variables corresponding to the element energy content 
or their linear combinations in the capacity of statе variables (e.g. 
capacitor voltage or charge, inductor current, angular speed and linear 
velocity, mass shift, spring expansion, etc. as well as their linear 
combinations). 

So, if ,сux,сux 2211 ==  we can choose and other sets of statе 
variables 23122211 сuсux,сuсux +=′+=′ , etc. 

The state vector formal definition: The statе vector is the minimal set 
of variables nx x x1 2, , ...,  knowledge of which in the initial time point 

0t together with knowledge of input actions ( )tg1
, …, ( )tgr

, ( )tf1
, …, ( )tf p , 

in an interval 10 ttt ≤≤ , allows to determine all output signals ( )ty1
, …, 

( )tyl  at any moment t  in the range ( 10 t,t ). 
 

7.2. The soluving of the state and output equations 
 
Let ( ) 0=tf , then the state and  output equations took the form of 

( )x=A x+B g , x t ,
y=C x+D g.

0                              (7.4) 

Let us solve the homogeneous state equation with specified initial 
conditions 

( )x=Ax, x t .0                                                  (7.5) 
Let 00 =t . The scalar differential equation ( )x a x, x= 0  has the 

solution 
( ) tx t Ceλ= ,  
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where λ is the characteristic equation root a Cλ = ,  is the constant of 
integration determined by the initial conditions ( )C x= 0 . 

Thus ( ) ( ) atextx 0= . 
The exponential function can be expanded in power series 

∑
∞

=
=

0
0

i !i

i)at()(x)t(x . 

We assume that the solution of the vector-matrix state equation is of 
the following form by the analogy to the scalar case 

 

( ) ( ) ( )∑
∞

=
=

0
0

i

i

x
!i

Attx .                                       (7.6) 

 
We check the assumption by substituting the prospective solution into 

the homogeneous state equation Axx =  
 

 
We introduce a new variable 1−= ik . 
Thus we obtain the identity. The solution of the homogeneous 

differential equation is as follows 

( ) ( ) ( )∑
∞

=
=

0
0

i
x

!i
Attx

i

. 

 
We introduce a designation 

∑
∞

=
==Φ

0i
Ate

!i

i)At()t(                              (7.7) 

then )(x)t()t(x 0Φ= . 
( )tΦ  is the fundamental or transitive matrix. 

If 0=t  it becomes a unit matrix ( ) 10 =Φ . 
We solve the equation (7.5) with the help of Laplace transformation 

( )
( ) ( ) ( )
( ) ( ) ( )

x Ax, x

sX s x AX s ,

sX s AX s x ,

=

− =

− =

0

0

0

  
( ) ( ) ( )

( ) ( ) ( )

( ) ( ){ } ( )

sI-A X s =x ,
-X s = sI-A x ,

--x t =L sI-A ×x .

0
1 0

11 0

 

If we compare both solutions, we obtain an equality 

( ) ( ) ( ) ( )
ii i k k AtA it A tx A x A x .

i ! k! i!k ii

−∞ ∞ ∞
= =∑ ∑ ∑

= ==

1
0 0 0

0 01
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( ){ } ( ) ( )-Φ s = sI-A−−Φ = − 1 11(t) L sI A , .                 (7.8) 

 
The fundamental matrix can be determined with the help Sylvester 

formula (for aliquant roots) 
 

( ) λ

= =
≠

− λ
Φ = =

λ − λ
∑ ∏i
n n jt

i i
i 1 j 1 i j

j i

A I
t F e , Fwhere ,                       (7.9) 

 
where iλ  and jλ  being the roots of the system characteristic equation 

 
( ) 0=−λ AIdet . 

Now we solve the state equation (7.3) with the help of Laplace 
transformation 

x Ax Bg x
sX s x AX s BG s
sX s AX s x BG s
sI A X s x BG s

X s sI A x sI A BG s
X s Ф s x Ф s BG s

= +
− = +
− = +

− = +
− −= − + −

= +

, (0),
( ) (0) ( ) ( ),
( ) ( ) (0) ( ),

( ) ( ) (0) ( ),
1 1( ) ( ) (0) ( ) ( ),

( ) ( ) (0) ( ) ( ),

 

( ) ( ) ( ) ( ) ( ) .dBgtxttx
t

τττ−Φ+Φ= ∫
0

0  

The output equation DgCxy +=  has the solution 

( ) ( ) ( ) ( ) ( ) .dBgtCxtCty
t

τττ−Φ+Φ= ∫
0

0                   (7.10) 

The free component does not depend on the reference action ( )tg  
and is defined by initial conditions ( )0x  and properties of system alone. 
The forced component depends on the input action ( )tg  and the system 
properties and does not depend on initial conditions. This formula (7.10) 
allows finding an output signal at any initial conditions and any input 
actions. 

For instance, we can find the step response 

( ) ( ) ( )
t

h t C t Bd D t .= − +∫ 1
0
Φ τ τ                           (7.11) 
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7.3. The vector-matrix block diagram and the matrix transfer 
functions for continuous linear ACS 

 
The state and output equations have the following form 

( )x A x B g Mf , x t ,
y C x D g Nf .
= + +

= + +
0                             (7.12) 

 
We can present (7.12) with the block diagram (Fig. 7.3). 
 

 
 
The circuit contains the n -dimensional integrator with the specified 

initial conditions. 
Double lines indicate the vector signal paths. This circuit can be 

submitted in the scalar form as well. 
 
Example 1. Create a system block diagram presented by equations 
 
 
 
 
 
Let us write out values of matrixes A, B, C, D: 
 

2 3 4 0
5 6 0 7

3 0 1 0
0 4 0 0

A B

C D

; ;

; .

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

⎩
⎨
⎧

=

+=

⎪⎩

⎪
⎨
⎧

++=

++=

.xy
,gxy

,gxxx

,gxxx

22

111

2212

1211

4
3

765

432
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ACS block diagram corresponding to the set of equations is shown on 
Fig. 7.4. 

 

 
 
Example 2. Using the block diagram find the state and output 

equations (Fig. 7.5). 
The integrator outputs become state variables 1x  and 2x , these 

variables characterizing the block energy content. Other elements 
(summers, amplifiers) do not store the energy. 

 
 

Thus           
x x g,

y x g f
x g ,

= +⎧
= + +⎨ =⎩

1 2

2

3
21 , 
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[ ] [ ]

[ ].1N,
0
0M

,2D,01C

,
1
3B,

00
10A

==

==

==

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

 

 
Now we can find transfer functions (e.g. using Mason formula). 
We apply Laplace transformations to the state and output equations 

under zero initial conditions and solve them 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

sX s AX s BG s MF s

X s s BG s s MF s

Y s CX s DG s NF s

Y s C s B D G s NF s

,

,

,

.

= + +

= Φ + Φ

= + +

= Φ + +

 

 
Thus ( ) ( ) ( ) BAsIBssWx

1−−=Φ=  is a system matrix transfer function 
of the state caused by reference action, 

 

( ) ( ) ( )[ ] DBAsICDBsCsW y +−=+Φ= −1  
 
is a system matrix output transfer function, 

)s(Wxij  is a system  transfer function between j-th an input and i -th 
state variable, 

)s(W yij  is a system transfer function between j -th an input and i-th 
output. 

 
Terms: 
– state variable,  
– state equation,  
– output equation,  
– state matrix,  
– input matrix,  
– output matrix,  
– by-pass matrix,  
– fundamental matrix,  
– block diagram,  
– matrix transfer function. 
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Comprehension questions 
 

1. What is state variable? 
2. What is state? 
3. What is state equation? 
4. What is output equation? 
5. What isstate matrix? 
6. What is input matrix? 
7. What is output matrix? 
8. What is by-pass matrix? 
9. What is fundamental matrix? 
10. What is block diagram? 
11. What is matrix transfer function? 
 

 
Lecture № 8 

 
THE APPLICATION OF THE STATE SPACE METHOD FOR 

CONTINUOUS LINEAR ACS (ENDING) 
 

The mind can be almighty if it will not 
serve for humanity. 

Sophocles 
 
Lecture outline: 
1. The derivation of the state and output equations for continuous 

linear ACS with the help of a controlled canonic representation method. 
2. The controllability and observability of continuous linear ACS. 
 
8.1. The getting of the state and output equations for continuous 

linear ACS with the help of a controlled canonic representation 
method 

 
During the previous lecture we specified, that having chosen 

corresponding state variables we can describe system by the n  differential 
state equations of the first order and the l  algebraic output equations. If 
we have the ACS basic circuit, the signals describing the ACS element 
energy content or the linear combinations of the elements can be chosen 
as state variables. We shall consider the problem of choosing state 
variable without the ACS basic circuit but with the transfer function  
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n
1 - n

1
n

0

m
1 - m

1
m

0

a  ...  sa  sa
b  ...  sb  sb  

)s(G
)s(Y  )s(W

+++
+++== , nm ≤                   (8.1) 

or the input – output equation 
n n  m m  

n  mn n  m m  
d y d y d g d ga   a   ...  a y t )  b   b   ...  b g t
dt dt dt dt

− −

− −
+ + + = + + +

1 1

0 1 0 11 1
( ( ) , 

 nm ≤ . 
The announced problem is considered by the example of the ACS 

having single input and single output (Fig. 8.1). 
 

 
 
This problem has a number of solutions, e.g. to decompose the 

transfer function into simple fractions and then to connect the elements 
corresponding with the certain fractions in parallel (a parallel programming 
method); to decompose the transfer function numerator and denominator 
into simple factors and then to connect the elements corresponding to the 
first order fractions in series (a consecutive programming method); 
identification canonic representation of the system, etc. 

Let us consider one of these methods, namely the controlled canonic 
representation method (CCRM). 

The output Laplace image is equal to 

)s( G  
a  ...  sa  sa
b...s b  sb  )s(Y

n
1 - n

1
n

0

m
1 - mm

0 ⋅
+++
+++= 1 ,  n  m ≤ . 

 
If we introduce an auxiliary variable ( )tz , we get 
 

)s(Z)b  ...  sb(  )s(Y

, 
a  ... sa  sa

)s(G  )s(Z

m
m

0

n
1  n

 
n

0

++=

+++
=

−  

or 
 

)t(g)t( za  ...  )t(za  )t(za n
1)  n(

1
)n(

0 =+++ −  . 
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We solve the last equation relative to the senior derivative 
 

)t(g
a
1  )t(z

 a
a  ...  )t(z

a
a  )t(z

a
a   )t(z

00

n 2) n(

0

21)  n(

0

1)n( +−−−−= −− .    (8.2) 

 
The dependence of the output ( )ty  on the variable ( )tz  is expressed 

by the following equality 
)t(zb  ...  )t(zb  )t(zb  )t(y m

1)  m(
1

)m(
0 +++= − .                          (8.3) 

On the basis of the equations (8.2) and (8.3) we build the circuit for 
the state variables in the most common case m n=  (Fig. 8.2). The output 
integrator is chosen for the state variable ix . 

 

 
 
Now we get integrators inputs are equal to the corresponding 

derivatives.  
Let us construct the state equations for a b= =0 01, 0  

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−

−

+−−−−=

=

=
=

; g x a ...  x a x a  x
,  x x

............
,  x x

,  xx

n2 n nn

n  n

2

111

1

32

1

                   (8.4) 

or                            
,BgAxx +=  
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where         . B, 

 a a a a a

A

 n  n n

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−−

=

−−
1

0
0
0

1
01000
00100
00010

1211

          (8.5) 

 
There is a unit matrix I  in a right top corner of the matrix A . The last 

line of the matrix A  contains transfer function denominator coefficient, 
signed "-". Such matrix A  is called the Frobenius matrix. The matrix B  
contains a single nonzero element – the last one. 

Now we write the output equation 
 

.xbxb...xbxb  y n11  n2  21  n1n ++++= −−  
 
We get a single equation because the considered system has only 

one output. The matrix form of this equation is 
 

DgCx y += ,                                                  (8.6) 
 

where  [ ] [ ] .0 D,bb...bb  C 121  nn == −  
The particular case:  
If the transfer function numerator does not contain s or the input – 

output differential equation has no derivatives of an input signal, the block 
diagram (Fig.8.2) has a single amplifier with factor nb  in the top line. Then 
the output signal y  is equal to nb x1 , the other state variables are 
proportional to derivatives of an output y . In this case an output signal 

( x y=1 ) and (n − 1) its derivatives ( )n  1)
2 nx y x y −= = (, ... ,  can be chosen 

for the state variables. 
Example: To find ( )A,B,C ,D, tΦ  for the electrical motor. 
The motor input – output equation goes as follows 
 

( ) ( ) , ku t  dt
dT  T  

dt
dTT 212

2

21 =ω+ω++ω                         (8.7) 

 
or 

 
( ),tbu)t(a)t(a)t( 21 =ω+ω+ω  
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where                 1 2
1 2

1 2 1 2 1 2

T   T 1 ka   , a   , b  
T T T T Т Т

.+
= = =  

 
We choose an output signal ω  and its derivativeω  for state variables 

ω=ω= x,x 21 . 
Let us find the state and output equations using variables x1  and x2  

and the input – output equation 

 

x   x
x    a x   a x   bu

y  x  

=⎧
⎨ = − − +⎩

= = ω

1 2

2 2 1 1 2

1

;
;

.
 

Then we get 
 

[ ] [ ].0D,01C,
b
0  B,a a 

10  A
12

===
−−

= ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡  

 
The block diagram (Fig. 8.3) corresponds to the state and output 

equations.  

 
Let us find a fundamental matrix ( )tΦ  with the help of the Sylvester 

formula. 

( )
n t i

i
i   1

n j
i

i jj   1

i j

Ф t F e ,

A  I
F   

 

λ

=

=

≠

= ∑

− λ
= ∏

λ − λ
,                                        (8.8) 

where j,iλ  - are roots of the characteristic equation 0=−λ )AI(det . 

The characteristic equation of the engine has the form 
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. a  a   21 02 =+λ+λ  

 
We find its roots using the formula 

2

2
11

 ,  a 4
a  2

a  −±−=λ 21 . 

 
Let .,  ..b,a,a 511056 2121 −=λ−=λ=== Then  

Let 21 == j,i  then 
( )

( ) .

4
1

4
5

4
1

4
5

  5    1
10
01

5    
65
10

    
I  A  F
21

2
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
=

−−−

−−
−−

=
λ−λ
λ−=  

 

For 12 == j,i  
( )

( ) .

4
5

4
5

4
1

4
1

  1   5 
10
01

1    
65
10

  
I  A  F
12

1
2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

=
−−−

−−
−−

=
λ−λ
λ−=  

 
Now we can write down a motor fundamental matrix  
 

( )
t  t  t  t

 t  t  t  t 

e   e e   e
t   .

 e   e  e  e

− − − −

− − − −

⎡ ⎤− −⎢ ⎥
= ⎢ ⎥

⎢ ⎥− + − +⎢ ⎥⎣ ⎦

5 5

5 5

5 1 1 1
4 4 4 4Ф
5 5 1 5
4 4 4 4

 

 
It is natural, that at 0=t  it is equal to unit matrix 

 
Att   e  I= =Ф( ) . 

The home task: find the step response ( )
t

h t   C Ф t   Bd= − τ τ∫
0

( ) . 

 
8.2. The controllability and observability of continuous linear 

ACS 
 

The system, the state of which can be changed from any initial state  
x t0( )  to any final state fx t( )  within a limited period of time ( )ft t− < ∞0  

and at the limited input action g < ∞  (Fig. 8.4), is called a system 
controlled on the state. 
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The system, the output of which can be changed from any initial value 

y( t )0  to any final value ( )fy t  within a limited period of time ft t− < ∞0  and 

at the limited input action g t < ∞( ) , is called a system controlled on the 
output. 

Let us consider the ACS (Fig. 8.5). 
 

 
 
For it we have 

x  Ax  Bg,
y  Cx  Dg.
= +
= +

 

 
Now we form a matrix of controllability on the state 
 

[ ]BAABBU 1  n
x

−= . 
 
The theorem. For the continuous linear ACS to be thoroughly 

controlled on the state the rank of a controllability matrix on the state 
should be equal to the order of the system xrank U n=( ) .  

Now we form a matrix of controllability on the output 
 

[ ]BCACABCB yU 1  n −= . 
The theorem. For the ACS to be thoroughly controlled on the output 

the rank of a controllability matrix on the output should be equal to the 
number of outputs l)yU(rank = . 
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System observability is an opportunity to define all the state variables 
nx , x ,..., x1 2  on the measured input and output signals. 

We can form a system observability matrix 
 

T T T T n  1 TN  C A C (A ) C ,−⎡ ⎤= ⎣ ⎦  
 

where T  is a matrix transposition symbol. 
The theorem. The system is thoroughly observable if the observability 

matrix rank is equal to the order of the system   rank N n=( ) .  
 
Example. We have a system (Fig. 8.6). Estimate the system 

controllability and observability if the order of the system is n = 2 . 
We introduce state variables x1  and x2 . 
 

 
 
Then we set up state and output equations 
 

1

2

2 ,
3 ,

x g
x g
=⎧

⎨ =⎩
 

1 2y x x= +  
 
and get matrixes 

0 0
,

0 0
A

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

[ ] [ ]B C D
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

2
, 1 1 , 0 ,

3
 

[ ]2 0 1 0
 ,  5 0 ,  .

3 0 1 0x yU U N
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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Now we can determine the matrixes N,U,U yx  ranks 
 

.nN rank,lrankU,nrankU yx ≠===≠= 111  
 

The system is not thoroughly controlled on the state, is controlled on 
the output and is not thoroughly observable. 

 

Terms: 
– a system controlled on the state,  
– a system controlled on the output, 
– a system observability. 
 

Comprehension questions 
 

1. Name the methods to solve the problem of choosing the state 
variables for the ACS transfer function. 

2. What kind of system is called a system controlled on the state? 
3. What kind of system is called a system controlled on the output? 
4. Name the necessary and sufficient conditions of the controllability 

on the state. 
5. Name the necessary and sufficient conditions of the controllability 

on the output. 
6. Name the definition of system observability. 

 
Lecture № 9 

 
THE ACS STABILITY 

 
Let be strong not versus truth, but 
stronger than truth. 

The Apostle Paul 
 
Lecture outline: 
1. Concept of ACS stability. 
2. The estimation of continuous linear system stability by the roots of 

characteristic equations. 
3. Routh criterion of stability. 
4. Hurwitz criterion of stability. 
5. Mikhaylov criterion of stability. 
 

9.1. Concept of ACS stability 
 

In this lecture we will discuss the dynamic but not the structural 
stability. 
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A stable system is a system which being deranged returns to the 
initial state or the undisturbed movement after the elimination of the 
disturbance action. The stability is the main ACS attribute. The unstable 
system is disabled. 

We distinguish stability of the balance state, stability of undisturbed 
movement and the system stability (Fig. 9.1).  

 

 

 
System dynamics can be described by the state equations 
 

 
A solution )(tϑ  corresponds to some initial condition ( )ϑ 0  (Fig. 9.2). 

 

 

( )

( )
( )

n

n n n

f , , ..., ,
................................

f , , ..., ,

.

⎧ϑ = ϑ ϑ ϑ
⎪
⎨
⎪ϑ = ϑ ϑ ϑ⎩

ϑ

1 1 1 2

1 2

0
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One of the solutions (either rated or required) is called an undisturbed 
movement )(* tϑ . All other solutions )(tϑ  are disturbed movements. 

We introduce the deviation )(tx  from the undisturbed movement:  

 

( ) ( ) ( )*x t t t= ϑ − ϑ . 

 
ACS is described by the deviation state equations.  
 

 
The deviation undisturbed movement ( ) ( ) ( )* * *x t t t= ϑ − ϑ = 0  goes 

into the state space zero point. 
 
The state of object is represented on Fig. 9.3. 

 
 

The Lyapunov's definition of the undisturbed movement stability 
 
The undisturbed movement ( )x t*  is stable if for any arbitrarily small 

ε > 0  there is the 0>δ  depending on ε, so that if the condition δ<)t(x 0  
is satisfied, the inequality ε<)t(x  is performed for any instant t from the 
range  t0≤ t≤ ∞  . 

( )

( ) ( )

n

n n n

x x ,x ,...,x ,
........... ,

x x ,x ,...,x ,  .

⎧ = ϕ
⎪
⎨
⎪ = ϕ ϕ⎩

1 1 1 2

1 2 0
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If besides the given 
conditions the 0)t(x →  satisfied 
at ∞→t , then the undisturbed 

movement ( )x t*  is called 
asymptotically stable. The system 
stability is shown on Fig. 9.4. 

 
The system is considered stable 

if all its undisturbed movements are 
asymptotically stable. We can 
distinguish a stability «in the small», 

«in the large», «as a whole» and an absolute stability. 
For linear systems the problem of the stability evaluation becomes 

easier, because even if one undisturbed movement is stable the rest of 
the movements are stable also. 

 
9.2. The estimation of continuous linear system stability by the 

roots of characteristic equations 
 
Let the system be described by the input – output equation  

n n m m

n mn n m m
d y d y d g d ga a a y t b b b g t
dt dt dt dt

1 1

0 01 11 1
− −

− −+ + + = + + +... ( ) ... ( ) .  (9.1) 

 
We shall derange it ( )( )00 ≠y  and remove the input action ( )( )0≡tg . 

Now the system is described by the homogeneous equation 
  

n n
n

nn n
d y d ya a a y t y y y
dt dt

1
1

0 1 1 0 0 0 0
−

−
−+ + + = ( )... ( ) , ( ), ( ),..., ( ).       (9.2) 

 
The solution has the form 
 

λ tn i
iiy(t) C e1=

∑= ,                                 (9.3) 

 
where  iC  is an integration constant determined by initial conditions,  
            iλ  is an nonmultiple root of the system characteristic equation. 

If i -th root is r -multiple, then 
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tr i
i i i iry t C C t C t eλ−= + + + 1

1 2( ) ( ... ) .                  (9.4) 
 
The solution 0)t(y →  at ∞→t , if all the constituents 0)t(yi →  at 
∞→t . Now we can present roots iii jωαλ +=  and substitute them into 

(9.4). 
Let us consider all possible variants of values iλ . 
1) A real root: 
 

i iλ = α ti
i iy t Ñ eα=( ) .                              (9.5) 

 
The solution 0)t(yi →  at ∞→t , if iα < 0  (Fig. 9.5). 
2) A complex root:  
 

i i ijλ = α + ω .                                       (9.6) 
 
Any complex root  iii jωαλ +=  corresponds to the conjugate root 

ii1i jωαλ −=+ . 
 

 
 
If we have the pair of complex-conjugate roots, the solution is 
 

( )j t j t ti i i i i ii i iy t C e C e Ce sin tα + ω α − ω α
+= + = ω +ϕ01

( ) ( )( ) .            (9.7) 
 
The solution iy t → 0( )  at ∞→t , if iα < 0  (Fig. 9.6). 
For the linear continuous ACS to be stable it is necessary and 

sufficient for all the roots of characteristic equation (pole transfer function) 
to lie in the left half plane. The system can be stable, unstable or neutral. 
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minαη =  is the degree of stability for the stable system (Fig. 9.7). 

To estimate the ACS stability we should find the roots of its 
characteristic equation. 
 

9.3. Routh criterion of stability 
 
There is the characteristic of the ACS stability estimation which does 

not demand the root calculation. Such characteristic is called a stability 
criterion.  

 
 
There are algebraic and frequency criteria.  
The algebraic Routh criterion was developed in 1877 by an English 

mathematician. 
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The Routh tables are constructed on the basis of the input-output 
equations or the transfer function. If a0 0< , then all the factors are 

multiplied by  -1. 
In the first table line we write factors with even indexes starting with 

a0 . 
In the second table line we write factors with odd indexes starting 

witha1 . 
Non-existent factors are substituted by zeros 
 

0 2 4 6

1 3 5 7

31 32

41 42

0
0
0
0
0

a a a a
a a a a
c c .
c c

… …
… …

… … … …
… … … …

… … … … … …

 

 
All the next lines are filled by the factors calculated by the formula 

i , i , j i , i , j
ij i ,

c c c c
c c

− − + − − +

−

−
= 1 1 2 1 2 1 1 1

1 1
,                                (9.8) 

e.g. 
a a a a

c a
−

= 1 2 0 3
31 1

. 

 
The table is filled until it has only one nonzero element in the line. 
For system to be stable it is necessary and sufficient if all the first 

elements in any line of the Routh table were positive: ic i> =1 0 1 2, , ,...  . 
 

9.4. Hurwitz criterion of stability 
 
The algebraic criterion was developed in 1895 by the German 

mathematician A. Hurwitz.  
The criterion consists of two conditions. 
In the first place the positive property of all the characteristic 

polynomial factors should be verified (Stodola criterion) 
 

n n
nD( s ) a s a s ... a−= + + +1

0 1 ; ia ,i , , ...,n> =0 0 1 .             (9.9) 
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If this condition is not satisfied, the system cannot be stable. If this 
condition is satisfied, the Hurwitz n-by-n matrix will be formed: 

 

n

n n

a a a
a a a

a a

a
a a

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 3 5

0 2 4

1 3

1

2

0 0
0 0

0 0 0

0 0 0 0
0 0 0

. 

 
The characteristic polynomial factors from a1  to na   we write on the 

matrix main diagonal. The factors with increasing indexes we write over 
the diagonal, the factors with decreasing indexes we write under the 
diagonal. Non-existent factors are substituted by zeros.  

In the second place all the diagonal minors of the Hurwitz matrix 
should be positive 

i , i , ...,n∆ > =0 1 ,  
n n na , a a a a , ... , a −∆ = ∆ = − ∆ = ∆1 1 2 1 2 0 3 1 . 

For the ACS to be stable it is necessary and sufficient for all the 
characteristic polynomial factors ia i   n> =0 0 1, , , ... ,  and all the diagonal 
minors i , i , ... ,n∆ > =0 1  to be positive. 

For the first- and second-order systems it is sufficient to check only 
the first condition a  a  a> > >0 1 20 0 0, , .  If it is satisfied, the second 
condition a , a a∆ = > ∆ = >1 1 2 1 20 0  is satisfied automatically. For the third-
order systems the Hurwitz criterion has a form: 

 
1. a ,  a ,  a , a .> > > >0 1 2 30 0 0 0  
2. a a a a∆ = − >2 1 2 0 3 0 , or a a a a>1 2 0 3 . 
 
If both these conditions are satisfied, the system is stable, as all the 

other conditions a , a∆ = > ∆ = ∆ >1 1 3 3 20 0  are also satisfied automatically. 
In general for systems of any order it is sufficient to check the 

positivity of barely even or odd minors in general. If one of these 
conditions is satisfied the other condition is satisfied automatically 
(Lyenar-Shipar criterion, 1914). 
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Example. We have a system (Fig. 9.8) with transfer function 
 

( ) ( )
( ) ( )( )

Y s kW s ,
G s s T s T s

= =
+ +1 21 1

 

 
k  T  T= = =1 210 0 1 0 01; . ; . . 

 

 
 
Determine the stability of the open-loop and closed loop systems. 
Solution. The open-loop system stability is easily estimated by the 

roots of its characteristic equation (Fig. 9.9) 
 

s ,  s ,  s
T T

= = − = −1 2 3
1 2

1 10 . 

 

 
 
Open-loop system is on the aperiodic stability border.  
Let us find the transfer function of the closed loop system 
 

( ) ( 1)( 1)1 2
ks s T s T s kΦ = + + + .                        (9.10) 

 
The characteristic equation looks like 
 

1 2( ) ( 1)( 1) 0D s s T s T s k= + + + = .                   (9.11) 
 
It is not so easy to find the roots of the equation. We apply the Hurwitz 

criterion and write down the characteristic polynomial 
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3 2
1 2 1 2( ) ( )D s T T s T T s s k= + + + + .                     (9.12) 

 
Then we calculate the characteristic polynomial factors  
 
a T T a T T a a k= = = + = = = =0 1 2 1 1 2 2 30 001 0 11 1 10, , , , , .                (9.13) 
 
The first condition of the Hurwitz criterion is satisfied 
 

.3,2,1,0i,0ai =>  
 

The system is stable because a a a a> >1 2 0 3 0 11 0 01, , , .  
It is obvious from the last formula, that the system can become 

unstable if k  grows. 
If we introduce the characteristic polynomial ( )sD  with the new 

variable ( )η−sD , we can find out, whether the given system possesses 
the degree of stability ŋ. 

 
9.5. Mikhaylov criterion of stability 

 
The algebraic criterion was developed in 1938 year.  
We have the closed loop ACS transfer function  

( ) ( )
( )

( )
( )

m m
m

n n
n

B sY s b s b s ... b
s

D sa s a s ... aG s

−

−
+ + +

Φ = = =
+ + +

1
0 1

1
0 1

.                          (9.14) 

 
We build a Mikhaylov curve for  ≤ ω ≤ ∞0  
  

( ) ( ) ( ) ( )n n
nD( j ) a j a j ... a X jY−ω = ω + ω + + = ω + ω1

0 1 ,       (9.15) 
 

( ) nD a=0 . 
 
A hodograph is the motion trajectory of the terminus of ( )ωjD  in the 

complex plane ( )jY,X  under the frequency variation ≤ ω ≤ ∞0  (Fig. 9.10). 

For the ACS to be stable it is necessary and sufficient for the Mihaylov 
curve D jω( )  to begin on positive real semi axis (at ω = 0 ) and to  bypass 
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successively in a positive direction at ∞→ω  n  quadrants under the 
frequency variation ≤ ω ≤ ∞0 .  

 
 
It is possible not to build a curve )j(D ω  but only to check the root 

alternation of ( )X ω = 0  and ( )Y ω = 0  equations. 
The characteristic polynomial ( )sD  can be expressed by the roots  
 

)ss)...(ss)(ss(a)s(D n210 −−−= .                  (9.16) 
 
If we go from s to jω , we obtain 

)sj)...(sj)(sj(a)j(D n210 −−−= ωωωω .                (9.17) 
 
Let us estimate the argument (phase) change of a vector D jω( )  

under the frequency variation −∞ ≤ ω ≤ ∞ . 
 
The increment of the ij sω−  vector in the case of js  lying in the left 

half plane is equal to 
ij s∆ ω− = π

−∞≤ω≤∞
arg ( ) .                                  (9.18) 

 
The increment of the isj −ω  vector in the case of is  lying in the right 

half plane is equal to 
jj s∆ ω − = −π

−∞≤ω≤∞
arg ( ) .                                 (9.19) 

 
If the right half plane has l  roots, and the left one has n l−  roots, 

then 
arg D( s ) ( n l ) l ( n l )∆ = − π − π = − π

−∞≤ω≤∞
2 .                 (9.20) 

If all the n  roots are in the left half of the plane, we get 
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πω
ω

∆ n)j(Darg =
∞≤≤∞−

                             (9.21) 

or 

2n)j(D
0

arg πω
ω

∆ =
∞≤≤

.                           (9.22) 

 
All this factors mean that roots either lie on the real axis, or are 

located in pairs symmetrically to the real axis. 
 

Terms: 
– stability,  
– stability criterion,  
– stable state,  
– unstable state,  
– neutral state,  
– stable motion,  
– unstable motion,  
– neutral motion,  
– stable system,  
– neutral system, 
– Routh criterion, 
– Hurwitz criterion,  
– Mikhaylov’s criterion,  
– aperiodical border,  
– oscillatory border. 
 

Comprehension questions 
 

1. What is the stability? List the kinds of stability. 
2. How to estimate stability by the characteristic equation? 
3. What is Routh criterion? 
4. What is the degree of stability? 
5. What is Hurwitz criterion? 
6. What is Mikhaylov’s criterion? 
 

Lecture №10 
 

THE ACS STABILITY (ENDING) 
 

Only the first step is difficult.  
Voltaire (1694 -1778) 

 
Lecture outline: 
1. Nyquist stability criterion. 
2. The logarithmic stability criterion. 
3. Zubov stability criterion. 
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10.1. Nyquist stability criterion 
 
It is developed by the American amplifier expert in 1932. It is applied 

to the unit negative feedback systems. It allows assessing the closed 
system stability at the open-loop systems MPFC. 

The closed ACS block diagram should be reduced to the Fig. 10.1: it 
should have a unit feedback. 

 

 
 
Let  

( )
( )

m m
m

m m
n

Y s b s b s ... b B( s )W ( s ) .
G s a s a s ... a A( s )

1
0 1

1
0 1

−

+

+ + +
= = =

+ + +
              (10.1) 

 
From the closing formula we obtain 

B( s )
W ( s ) B( s ) B( s )A( s )( s ) ,B( s )1 W ( s ) A( s ) B( s ) D( s )1 A( s )

Φ = = = =
+ ++

 

D( s ) A( s ) B( s ).= +where  
 
Now we proceed to the Fourier transformation. For this purpose we do 

the substitution s j= ω  

W ( j )( j )
W ( j )

ω
Φ ω =

+ ω1
.                           (10.2) 

 
Let us consider the change of the W ( j )+1 ω  vector argument 

changes provided by the frequency ω  change from 0  to ∞  
B( j )( 1 W ( j )) ( 1 )arg arg A( j )0 0

+ = + =∆ ∆
≤ ≤∞ ≤ ≤∞

ωω
ωω ω

 

A( j ) B( j ) D( j ) A( j ).arg arg argA( j )0 0 0

+
= = −∆ ∆ ∆

≤ ≤∞ ≤ ≤∞ ≤ ≤∞

ω ω ω ω
ωω ω ω

   (10.3) 
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According to the Mikhaylov stability criterion for the closed-loop 
system it should be 

.2n)j(Darg
0

πω∆
ω

=
∞≤≤

                                   (10.4) 

 
The open-loop system can have l  roots in the right half-plane. 
Then 
 

    A( j ) ( n l )arg = −∆
≤ ≤∞

2 2
0

πω
ω

.                               (10.5) 

 
We can observe the possible variants. 
1) The open-loop system is stable, so it has no poles in the right half-

plane, ( l = 0). Then 
( W( j )) D( j ) A( j ) n narg arg arg+ = − = − =∆ ∆ ∆

≤ ≤∞ ≤ ≤∞ ≤ ≤∞
1 02 20 0 0

π πω ω ω
ω ω ω

.  (10.6) 

 
The vector W ( j )+1 ω  should not cover the origin of coordinates and 

the W j( )ω  vector should not cover the point ( )j−1, 0  (Fig. 10.2). 
 

 
Theorem. 
If the open-loop system has no poles in right half-plane then for the 

closed-loop system to be stable it is necessary and sufficient that the 
open-loop system APFC does not cover the point  ( , j )−1 0  under the 
frequency change from 0  to ∞  . 

If the open-loop system is neutral and lies at the aperiodic stability 
border then we get 

)

m m m mb s b s ... b b s b s ... bm mW ( s ) n n n na s a s ... sa s a s a s ... an n

− −+ + + + + +
= =− − −+ + + + + +− −

1 1
0 1 0 1

1 1 1(0 1 1 0 1 1
 

and a , A( s )n = 0  has one zero root, W ( s )  has a zero pole, the system 
contains an integrator. It is astatic by the reference action (Fig. 10.3). 
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If the open-loop system has ν integrators then the system is said to 
have the ν-th order of astatism and a a an n n= = =− −ν+ 01 1  , ( )sA  has ν  
zero roots and the open-loop system transfer function can represented as 

 
W ( s ) W ( s )W ( s ) lim .

s ( s )
= =ν να→ + α

0 0

0
                        (10.7) 

 

 
 
We consider the integrators being an extreme case of aperiodic links.  
We go to jω  

( ) ( )
( )

( )
( )

W j W j
W j lim .

j j
ω ω

ω = =ν να→ω ω+ α
0 0

0
                  (10.8) 

The open-loop system APFC has a gap at the frequency ω = 0 . In this 
case we supplement the APFC by the part of the infinite radius arch, 
beginning from the real axis to the angle π−ν 2 , as every integrator 
introduces the phase delay for π− 2  radians. 

The Nyquist diagram is represented on the Fig. 10.4. 
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If the open-loop system is neutral and lies on the oscillatory limit of 
stability then the system APFC has a gap at the frequency resω . In this 

case we do the similar limiting process which causes the necessity to 
supplement the APFC with the infinite radius arch for the angle -π  at the 
frequency resω= ω . After the supplementation we use the same Nyquist 

formulation (Fig. 10.5). 

 
2) If the open-loop system is not stable then l ≠ 0  and  

l( W ( j )) D( j ) A( j ) n ( n l ) .arg arg arg π π+ ω = ω − ω = − − = π∆ ∆ ∆
≤ω≤∞ ≤ω≤∞ ≤ω≤∞

1 2 22 2 20 0 0
 

 
Consequently, the vector W ( j )+ ω1  should cover the origin of 

coordinates  l
2  times in the positive direction. 

Theorem.  
For the closed-loop system to be stable in case of the open-loop 

system instability it is necessary and sufficient if at the frequency ω  
changing from 0  to ∞  the open-loop system APFC (the supplementary 

APFC) W ( j )ω  covers the point with coordinates ( ), j−1 0  l
2  times in the 

positive direction, where l  is a number of the poles of the open-loop 
system lying in the right half-plane. 

The advantage of the Nyquist criterion is that we can estimate the 
system stability by the experimental open-loop system APFC without 
building its mathematical model (Fig. 10.6) 
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If we have a stable system, we can introduce the margin of stability at 

the amplitude mA  and at the phase mγ .The margin of stability at the 
amplitude mA  is determined at the frequencyω−π , at which 

( )ϕ ω = −π−π (Fig. 10.7) 
 

( )mА W ( j ) A .= − ω = − ω−π −π1 1                      (10.9) 
 
The margin of stability at the phase mγ  is determined at the cutoff 

frequency cω , at which ( ) 1cA ω =  

( )m c .γ =π+ϕ ω                               (10.10) 

 
 

10.2. The logarithmic stability criterion 
 
The logarithmic stability criterion follows from the Nyquist criterion. 
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If the open-loop system is stable, the APFC should not cover the point 
( ), j−1 0 (Fig. 10.8, a). 

 

 
 
Generally it is necessary to determine how many times the 

point ( ), j−1 0  has been covered (Fig. 10.9). 

 
 

This is calculated by the number of positive +π  and negative −π  
crossings of the open-loop system APFC with the real axis segment 
− −∞( 1, ) . The crossing is considered positive if the point moves through 

the APFC downwards and negative if the point moves upwards. For the 
ACS to be stable it is necessary and sufficient for the equality to be 
satisfied 

l
+ −− =

2
π π .                                          (10.11) 

Theorem. 
For the closed-loop system to be stable it is necessary and sufficient if 

at L( )ω > 0  the open-loop system LPFC (the supplementary LPFC) 
crosses the lines k ,   k , , ... .−π ± π =2 0 1  downwards l

2  times less than 
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upwards  ( l  being the number of poles of the open-loop system lying in 
right half-plane (Fig. 10.10). 

 
10.3. Zubov stability criterion 

 
This algebraic criterion is applied for the matrix description of the ACS 
 

x Ax Bg;
y Cx Dg.
= +
= +

                                          (10.12) 

 
The auxiliary matrix V I ( A I )−= + − 12  is introduced.  
For the ACS to be stable it is necessary and sufficient if 

kV k→ →∞0 at .                                  (10.13) 

 
Terms: 
– Mikhaylov criterion,  
– the stable open-loop system,  
– the poles of the open-loop system,  
– an integrator,  
– the infinite radius arch,  
– the gain margin and phase margin of stability,  
– Nyquist criterion,  
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– Zubov stability criterion.  
 

Comprehension questions 
 

1. What is the Nyquist stability criterion? 
2. How can we find the zero roots of open-loop system?   
3. What is the logarithmic stability criterion? 
4. List the Fourier transformation formulae. 
5. What is the Zubov stability criterion? 
6. How can we find the gain and the phase margins for the closed-

loop system? 
 

Lecture № 11 
 

THE METHOD OF D -DIVIDING 
 
Lecture outline: 
1. Finding of the ACS stability field with the help of the method of one 

parameter plane D -dividing. 
2. Finding of the ACS stability field with the help of the method of two 

parameter plane D -dividing. 
 

11.1. Finding of the ACS stability field with the help of the 
method of D -dividing one parameter plane 

 
We should know what parameter values make the system stable. It 

can be found out if in the parameter space we mark out the areas which 
have the same number of the characteristic equation roots located in the 
left half plane. 

As the parameters , , , ...α β γ  we can choose element or system 
transfer coefficients ik , time constants iT , etc. Such division of the 
parameter space is called D -dividing. The  iD [ ]n l ,l−  note means, that in 

iD  area at any , , , ...α β γ  parameter value the characteristic polynomial 
( )D s  has n l−  roots in the left half plane and l  roots in the right half 

plane. The stability domain is designated by [ ]D n, 0 . 
The D -dividing of the parameter space can be executed if we reflect 

the stability border of the plane s  (Fig. 11.1) into the parameter space. We 
should form the border using the equations D( j ) , anω = ω = =0 0 0at i.e.  
is the aperiodic stability border, D( j )    ω = ω ≠0 0at  is the oscillatory 
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stability border, a =
0

0  is the third stability border. If these equations 
contains parameters α , β , γ , etc., the corresponding borders will appear 
in the parameter space. If the equation contains only one adjustable 
parameter α , we shall D -divide the plane of one parameter, the 
parameter is considered complex х jyα = + . 

 

 
 
Let the system transfer function have the following form  
 

( ) ( )
( )

( )
( )

m mb s b s ... bY s Â sms , m n.n nG s D sa s a s ... an

−+ + +
Φ = = = ≤−+ + +

1
0 1

1
0 1

          (11.1) 

 
The characteristic polynomial ( )D s  coefficients depend on the system 

parameters а а ( , , ...).i i= α β  Let var, , , ... constα = β γ = . 
Any parameter α  is included to the polynomial ( )D jω  so that 
 

n nD j a j a j an
−ω = ω + ω + + =1( ) ( ) ( ) ... 0.0 1              (11.2) 

 
We choose the components which contain the parameters of our 

interest 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )R j

D j Q j R j X j Y
Q j

ω
ω =α ω + ω = ⇒α= − = ω + ⋅ ω =α ω

ω
0 , (11.3)      

where ( )X ω  is the real component and even function, ( )Y ω  is the odd 
function. 

We build a curve ( )α ω  for the frequency ω  changing from −∞  to +∞ . 
The D -dividing curve ( )α ω  reflects an imaginary axis of the s  plane, 
therefore we shade its left part as well as the imaginary axis for the 
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frequency changing from −∞  to +∞ .  The D -dividing curve is symmetrical 
against the X  axis. This curve divides the α  parameter plane into three 
areas. The most shaded area D2  can be a stability domain. We choose 
any α  parameter value (e.g. α = 0) from this domain and check the 
system stability by one of the criteria. If the system is stable at the given α  
parameter value, it is stable at the any parameter value from this domain. 
The domain under consideration is the stability domain. We designate it by  
D2  [ ]n,0 . Other domains are designated as D1 [ ]n ,− 2 2 , D3  [ ]n ,− 1 1  
(Fig. 11.2). 

 
 
If the system turns out unstable at the chosen parameter value, it is 

unstable at any parameter value. These systems are called structurally 
unstable. The maintenance of their stability demands not only to change 
the parameter value but also to introduce a corrector, i.e. to change 
structure of the system. 

 
Example 1 
We have a follow-up system (Fig. 11.3), 
 

 
where 

SS  – a setting selsyn; 
SR  – a receiving selsyn ; 
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PhSR  – a phase-sensitive rectifier; 
PA  – a power amplifier; 
M  – a motor; 
Red  – a reducer; 
OM  – an operational mechanism. 
The structural diagram of this system has the following form 

(Fig. 11.4). 
 

 
 
Let us find the transfer functions of this system: 

( )
( ) ( )( )

s kW ( s )
s T s T s s

θ
= =
θ + +

2

1 1 21 1
 is an open-loop system transfer 

function, 
( )
( ) ( )( )

s k( s )
s T s T s s k

θ
Φ = =

θ + + +
2

1 1 21 1
 is a closed-loop system transfer 

function. 
k  is a variable, T , sec, T , sec= =1 20 1 0 6 . 
We should obtain the parameter values k at which the system is 

stable 
( )D( s ) T T s T T s s k ,

a T T , a T T , a , a k .
= + + + + =

= = + = =

2
1 2 1 2

1 2 1 1 2 2 3

3 0
10

                (11.4) 

 
We have three equations for three stability borders 

( ) ( ) ( )( )D j T T j T T j j kω = ω + + ω + ω+ =3 2
1 2 1 2 0            (11.5) 

Therefore, 
( )

( )
( )

( )
( )k T T j T T k .

X Y

= + ω + ω − ω = ω

ω ω

2 3
1 2 1 2  
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Now we proceed to calculating the D -dividing curve (Table 11.1). 
 

Table 11.1 
 

ω 0 0.1 1 … ∞ 
=
x  0 0,007 0,7 … ∞ 

=
y  

0 -0,1 -0,94 … ∞ 

 
As the D -dividing curve is symmetrical against the real axis X , the 

calculation is provided only for positive values ω  and we can build the 
second part of a curve symmetrically (Fig. 11.5).  

 

 
 
We can find the intersection of D -dividing curve and the X  axes 
 

( )Y , ,
T T

ω = ω =2

1 2

10  

( ) ( ) . .X T T . .
T T . .

+
ω = + ⋅ = =

⋅1 2
1 2

1 0 1 0 6 11 7
0 1 0 6

 

 
We shade the left part of the curve.  
 We check the system stability at k = 1  using Hurwitz criterion 
1.  a T T , a T T , a , a k0 1 2 1 1 2 2 30 0 1 0 0= > = + > = > = > . 
The first Stodola theorem is satisfied. 
2. Hurwitz matrix is 

a a

a a

a a

01 3
00 2

0 1 3

. 
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Let us check 

( )
a a a a ?

T T T T k ?

∆ = − > −

+ ⋅ > −
2 1 2 0 3

1 2 1 2

0

1
 

. . . * .+ >0 1 0 6 0 1 0 6  . 
 
The second Hurwitz condition also is satisfied. 
The system is stable at k = 1 and at any k  from the range k . .< <0 11 7  
Let us designate the domains: [ ] [ ] [ ]D , ,D , ,D , .1 2 32 1 3 0 1 2  
 
 Finding of the ACS stability field with the help of the method of 

two parameter plane D -dividing 
 
We have a closed-loop system transfer function  
 

( )
( )

( )
( )

m mb s b s ... bY s B sm( s ) , m n.n nG s D sa s a s ... an
Φ

−+ + +
= = = ≤−+ + +

1
0 1

1
0 1

      (11.6) 

α β,  are variables, γ δ, , ...  are constants. 
To find the α and β parameter values at which the system is stable we 

write the stability border equations 
( )na , a , D jω .0 0 0 0= = =                               (11.7) 

The parameter plane ( ),α β  contains the curves reflecting the stability 
borders. The oscillatory border equation has the following form 

 

( ) ( ) ( )n n-
nD jω =a jω +a jω +...+a = .1

0 1 0                 (11.8) 
 
We choose the components which contain the parameters of our 

interest. At first we write components which have the first, e.g. α  
 

( ) ( ) ( ) ( )D j P j Q j R jω α ω β ω ω= + + = 0 .         (11.9) 
 
Then we divide this equation into real and imaginary parts 

( ) ( ) ( )
( ) ( ) ( )

P Q R , P ,Q ,R real parts ,

P Q R , P ,Q ,R imaginary parts.

⎧ + + = −⎪
⎨

+ + = −⎪⎩

1 1 1 1 1 1

2 2 2 2 2 2

0

0

α ω β ω ω

α ω β ω ω
    (11.10) 

We solve the obtained equations set against the parameters with the 
help of the Kramer rule (Gabriel Kramer (1704 – 1752), a Swiss 
mathematician) 
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( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

R Q
R Q

( )
P Q
P Q

− ω ω
− ω ω∆ ωαα = = = α ω

∆ ω ω ω
ω ω

1 1

2 2

1 1

2 2

,              (11.11) 

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

P R
P R
P Q
P Q

−
−

= = =

1 1

2 2

1 1

2 2

ω ω
∆ ω ω ωββ β ω
∆ ω ω ω

ω ω

.             (11.12) 

 
We build the curve ( )β α  on the α  and β  parameter plane at the 

frequency change - ∞≤ω≤∞. 
The functions ∆α(ω), ∆β(ω), ∆(ω) are determinants, and ∆(ω) is the 

main determinant. The equations set will have a solution if determinants 
do not vanish simultaneously (Fig. 11.6). 

 
 

 
 
The functions ( )α ω  and ( )β ω  are even, therefore the curve ( )β α  is 

covered twice, once for both positive and negative frequencies, and 
double-hatched. If ( )∆ ω > 0 , the D -dividing curve is left-hatched. If 
( )∆ ω < 0 , the D -dividing curve is right-hatched. At the point M  there 

α β∆ = ∆ = ∆ = 0  we get a specific straight line. If in critical point M  the 
determinant ( )∆ ω  reverses its sign, the specific straight line is hatched 
otherwise it is not. If the specific straight line appears at ω = 0 , it is 
hatched once. If it the specific strait line appears at ω ≠ 0 , it is double-
hatched. The specific line hatching direction coincides with the hatching 
direction of the D -dividing curve in the critical point M . 
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Example 2 
 
For the same follow-up system (Example 1) we have 

 

( ) ( )1 2 1 2D s =T T s + T +T s +s+k, k,T3 2
1
 

 
are the variables, 602 .T =  is a constant. At what parameter values k  and 

1T  the system is stable? 
Let k  be the first parameter, and 1T  be the second one. We write the 

equations of three stability borders 
 

( ) ( ) ( )( )2 3а =Т Т = ,а = , D jω =Т Т jω + Т +Т jω +jω+k=0.3 2
0 1 1 2 1 20 0  

 
Then we choose parameters 
 

D j k Т Т j j Т j j
P j Q j R j

ω = ⋅ + ω + ω + ω + ω =
ω ω ω

3 2 2( ) 1 ( ( ) ( ) ) ( ) 0.1 2 2
( ) ( ) ( )

 

 
We divide this equation into real and imaginary parts 
 

k T T
T

Tk T T

TTkk T TkT T T

⎧ − ω − ω = −ω⎪ ⇒ ∆ ω = = − ω⎨
− ω⋅ − ω +ω=⎪⎩

∆ ω ω −ωω +
= = = +ω ∆ ω = = − ω −ω

∆ ω −ω − ω

2 2 2
2 3

233
21 2

2 22 2
22 2 5 32

2 23
2 2 2

0, 11 ( ) ,
00 0,

( ) 1 1 , ( ) ,
( )

 

T
T

TT
T

∆ ω ω
= = ∆ ω = = −ω

∆ ω ω −ω
1

1 2 1
2

2( ) 11 2, ( ) .
( ) 0

 

These equations are easily solved without determinants. But main 
determinant ∆(ω) is necessary to draw the hatching. We build curves ( )kT1  
for all three stability borders. 

At ω = 0  the determinants vanish 
 

Tk∆ = ∆ = ∆ =
1

(0) (0) (0) 0 .                             (11.13) 
 
There is a special straight line (k = 0 ) at the frequency ω = 0 . The 

special straight line coincides with the aperiodic stability border (Fig. 11.7). 
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We hatch the right side of the D -dividing curve at the frequency 

change from 0 up to ∞ because of T∆ ω = − ω <3( ) 02 . We hatch the left 
side of the D -dividing curve at the frequency change from -∞ up to 0 
because of T∆ ω = − ω >3

2( ) 0 , i.e. the curve is double-hatched. 
The specific straight line is single-hatched as it appears at ω = 0  and 

the determinant ( )∆ ω  reverses the sign in the critical point. The third 
border is above-hatched as the system is stable only at а ii > =0 0 1 2 3, , , , .  
a T T T= > → >0 1 2 10 0.  We designate the domains 51 D,,D … . 

We choose the most hatched domain 2D  and check the system 
stability at 101 1 .T,k == . Consequently  [ ]032 ,D  is the stability domain. We 
mark other domains by transition from 2D  in 1D , in 3D  and in 4D , from 4D  
we go to 5D . 

 
Terms: 
– D -dividing method, 
– one parameter plane D -dividing,  
– two parameter plane D -dividing,  
– parameter space,  
– stability domain,  
– D -dividing curve,  
– specific straight line. 
 

Comprehension questions 
1. What is the meaning of the D -dividing method? 
2. What is the meaning of one parameter plane D -dividing? 
3.  What is the sense of the two parameter plane D -dividing? 



 107

Lecture № 12 
 

THE CONTROL QUALITY EVALUATION 
 
Lecture outline: 
1. The control quality evaluation by the step response. 
2. The control quality evaluation by the frequency characteristics. 
3. The control quality evaluation by the poles and zeros of transfer 

function. 
 

12.1. The control quality evaluation by the step response 
 
There are direct and indirect control quality measures. The direct 

measures are introduced by the step response and the indirect are 
introduced by other characteristics. 

Let us consider the direct quality measures.  
We can distinguish monotonous, aperiodic and oscillatory step 

responses (Fig. 12.1).  
 

 
 
Let  

g t t G s
s

( ) ( ), ( ) ,11= =                            (12.1) 

 

( ) ( )
( )

( )m
m

n
n

Y s W sb s bW s
G s a s a s

...

... ν
+ += = =
+ +

00

0
.                 (12.2) 

 
We shall study the direct measures by the example of the oscillatory 

step response at the reference action (Fig. 12.2). 
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The direct measures are divided into the basic and additional ones. 
The basis measures include: 

1) The steady-state value h lim h tss t
( )=

→∞
. 

This value can be read off from the principle limiting value theorem  

 
As  

s s s

W s W sW s kW s then  lim  lim lim
W s s ks s W s0 0 0

( ) ( )( )0 0( ) , .
1 ( ) ( )0

ν→ → →
= = =

ν ν+ ++
(12.3) 

 
At ν = 0  we obtain W s klim

ks s W s
( )0

10 ( )0
=ν +→ +

, 

And at ( )
( )

W s
lim ,

s s W s
00 1

0 0
ν ≠ =ν→ +

 

where                        ( ) bν mk lim W s s
an

= =  

( )

( )

bm anan
bm    a a .n nan

0
1

01
2

at

at

or

or

,=
−

= =−
−

 

 

( )

( )

k ,  0 , W s kh H s s Ф s G s s lim sss s s W s ss 1,    0 . 

( ) 1 1lim ( ) lim ( ) ( )
0 0 1 ( )0

⎧⎪⎪ =⎪ += = = =⎨⎪→ → +→ ⎪ ≠⎪⎩

ν

ν

if  ACS  is static

if  ACS  is аstatic
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2) The steady-state static error 
 

( )ss st t
lim t .
→∞

= =ε ε ε                            (12.4) 

 
This error can be read off from the limiting value theorem as well 

( ) ( ) ( )

( )

SS lim E s s lim Φ s G( s )s lim
W ss s s

   , ν  ( statiс system ),slim k
s s W s 0        , ν 0 ( astatic system ).

= = = =
+→ → →

⎧ =⎪= = +⎨
→ + ⎪ ≠⎩

1
10 0 0

1 0
1

0 0

ε ε

ν
ν

 

 
The steady-state error can be obtained by the step response 

, if ν , 
( t ) g( t ) y( t ) h kss ss

0        , if ν 0 .

⎧ =⎪= − ⇒ = − = +⎨
⎪ ≠⎩

1 0
1 1ε ε  

3) The overshoot:  SS

SS

h hmaxσ
h

0100 0
−

= ⋅ . 

It is usually considered normal %σ = ÷10 30  . However the overshoot 
is not admitted for some systems, e.g. the docking system of the 
spacecraft and the orbital station, the cutter to the lathe supply control 
system, etc. 

4) The setting time st  is the shortest period of time after which the 

deviation ( )h t  from ssh  does not exceed the given value ∆. Usually 

ss. h∆= 0 05 , for precisional systems ss. h∆= 0 01 . 

The additional measures include: 
1. The number of oscillations N during the period of time st  Usually 

N ,1 5 2= ÷ . 
2. The rise time rt  is a time of the first steady-state value 

achievement. 
3. Time of the first maximum mt 1 . 
4. The degree of damping 

max ss

max ss

h haχ
b h h

−
= =

−
1

2
.                                     (12.5) 

5. The oscillation period T . 
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6. The angular oscillation frequency Т/2πω = , the cyclic frequency 
f T= 1 , etc. 

The step response can be obtained experimentally, according to the 
input – output equation, by the transfer function, by the weight function, by 
the of state space method matrixes, by the Heaviside formula, by the state 
equation, by the output equations, etc. 

Having the transfer function 
 

 ( )
( )

( )
( )

Y s B s
Φ( s ) ,

G s D s
= =                                 (12.6) 

 
we can calculate the output by solving the input – output equation 

 
( ) ( ) ( ) ( )D p y t B p g t= .                               (12.7) 

 
At the zero conditions and the single step input we get 
 

( ) ( ) ( )( )ng t , y ... y .−= = = 11 0 0                     (12.8) 
 
The input-output equation can be solved by the Laplace 

transformation 
 

( ) ( ) ( ) ( ) ( )D s Y s Y s B s G s .− =0                           (12.9) 
 
We represent the input image as  

( )
( )
( )

G s
G s ,

G s
= 1

2
                                     (12.10) 

then we obtain 
( ) ( )
( ) ( )

( )
( )

Y sB s G s
Y ( s )

D s G s D s
01

2
= +                             (12.11) 

 
and  

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

B s G s s tn l nB s G s Y ss t s tj j ji i ki ky( t ) e e e ,
D s G s D si j kD s G si i kj j

= + +∑ ∑ ∑
′ ′′= = =

11 0
1 1 12 2

    (12.12) 

where   i ks ,s  are the transfer function poles; 
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js  are the poles of an input action image, 
 

( ) ( ) ( ) ( )dG sdD s
D s , G s .s s s si ji jds ds
′ ′= == =2

2             (12.13) 

For the step response ( )
( )

h(t)  y t
g t

=
=1

 we have: 

 

( ) ( ) ( ) ( )( )
n

G( s ) ,G ( s ) ,G s s,l ,s ,G s ; y y ,
s

11 1 1 0 1 0 0 01 2 1 2
−

′= = = = = = = = =…  

 
( )
( )

( )
( )

n B s s t Bi ih( t ) e
Ds D si i i

= +∑
′=

0
01

                             (12.14) 

 
is the Heaviside expansion for nonmultiple roots. 

The step response can be obtained: 

– by the state space method 

 

( )
t

h(t) C Φ(t τ)Bdτ D t ;1
0

= − + ⋅∫                        (12.15) 

 
– by the weight function 
 

( ) ( ) ( )
t t

h(t) w t τ dτ w τ t τ dτ ;1
0 0

= − = ⋅ −∫ ∫                   (12.16) 

 
– by the Laplace transformation 
 

( ) ( )Φ s
h t L .

s

⎧ ⎫⎪ ⎪− ⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

1                               (12.17) 

 
In addition to reproducing the reference action ( )g t  any ACS should 

suppress the disturbance, therefore the control quality is estimated also by 
the step response at the disturbance action ( )fh t  (Fig. 12.3). 
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12.2. The control quality evaluation by the frequency 
characteristics 

 
 The closed-loop system estimation by AFCh (Fig. 12.4): 
 

 
 

1. The steady-state value can be calculated by the limiting value 

theorem 

 

( ) ( )
( )SS

k for static system;W s
h Φ lim k

W ss 1 for astatic system
0 1

10

⎧⎪⎪ −⎪= = = +⎨⎪+→ ⎪ −⎪⎩

           (12.8) 

or 
 

( )SS Φε = −1 0 .                                    (12.9) 
 
2. The oscillatory measure is 
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( )

( )
Φ jω maxM

Φ
=

0
.                              (12.10) 

 

M , ,1 2 1 7= ÷  is usually admitted. 

3. The frequency range ( )b,ω0  is a bandwidth. The wider is the system 

bandwidth, the higher is its swiftness. On the other hand, the wider is the 

bandwidth, the more disturbances pass through the system. 

4. The resonance frequency resω . It should not coincide with the aircraft 

resonance frequency. 

The open-loop system AFCh estimation of the gain and phase margins 

m mA ,γ  and setting time estimation are shown in Fig. 12.5, a, b. 

At the cutoff frequency A( ) ; t ( ) / ; t .с s с m с
1 1 2 2 1

π
ω = = π ω ≈

ω
…  

The open-loop system Bode diagram (Fig. 12.6) allows to get estimation 
of gain and phase margins of the closed loop system. 

By the inclination of LAFCh low-frequency asymptote we can determine 

ν  (quantity of integrators). If 0ν = , the system is static and stε k
=

+
1

1
. If 

st,0 0ν ≠ ε =then . Value ( )log k20  is at ,ω = 1 cutoff frequency is at ( )L .0ω =  
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12.3. The control quality evaluation by the poles and zeros  
of transfer function 

 
Let the closed-loop system transfer function is 

1
0 0 00 1

1
0 10 1

m m b (s s ) (s s )b s b s bm j mΦ(s) , m n,n n a (s s ) (s s )a s a s a nn

− − −+ + +
= = ≤− − −+ + +

……
……

  (12.11) 

where is  are the transfer function poles, 0 js  are the zeros of transfer function.  

The free component 
s tiy (t) С ei i=  corresponds to each pole. The poles 

nearest to the imaginary axis are called the dominating poles. 
Value η  is the degree of stability (Fig. 12.7). 
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If the dominating pole is real, then it corresponds to the constituent 
α ti

iС e . 

Example: ( ) kW s
Ts 1

=
+

 ,  

( ) ( ) ( ) ( )α t ηt t/Th t k e k e k e
η T

− −= − = − = = −
=

1 1 11 . 

For ( )t t h t . hs s ss0 95= = ⋅ , 

( )s
s

lnηt ηtsk e . k, e . , t T.
η η

− −− = = = ≈ =20 31 0 95 0 05 3  

For the aperiodic link   st T≈ 3 . If the dominating poles are complex, 
3ts η

≤ . The desired zone of the pole disposition is shown on Fig. 12.8. 

 

 
 

We can find out, whether the system possesses the given degree of 

stability, in the following way. We take the transfer function denominator 

 
n nD(s) a s a s a ,n

−= + + +1
0 1 …                       (12.12) 

 
then we introduce the substitution s q= −η  and obtain 

 
( ) n nD q a q a q a .n

−′ ′ ′= + + +1
0 1 …                       (12.13) 

 
Further we check whether the new system is stable. If the system is 

stable, the initial system possesses the given degree of stability. 
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The system oscillatory measure is the ratio 

ωiµ
i max

=
α

.                                      (12.14) 

 
If the system includes the zeros 0 js , it results in the bandwidth 

expansion, the swiftness increase, the gain margin mL  and phase margin 

mϕ  increase, if 0s ωj b< . 

Fig. 12.9 presents the LAFCh for two systems described by the 
transfer functions 

( )
( )( )

kW s
T s T s

=
+ +1

1 21 1
 and ( ) ( )

( )( )
k T s

W s
T s T s

+
=

+ +
3

2
1 2

1
1 1

. 

 

 
 

12.9 LAFCh 
Zeros, which are located near poles, compensate the influence of 

these poles. Let transfer function of the closed-loop system have the 
following form 

 
0 0 001

0 1

b (s s ) (s s ) (s s )j mΦ(s) .
a (s s ) (s s ) (s s )ni

− − −
=

− − −

… …

… …
                  (12.15) 

 
Then, if 0s sj i≈  the multipliers ( ) ( )s s   s s0j i− −and are reduced. 

The geometric mean root is 
 

1 2
0

ann s s s .nn a
=…                                (12.16) 
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Terms: 

– steady-state value, 
– steady-state static error, 
– overshoot, 
– setting time, 
– oscillatory measure, 
– bandwidth, 
– cutoff frequency, 
– resonance frequency, 
– gain margin, 
– phase margin, 
– stability degree. 

 
Comprehension questions 

 
1. How can we read off the steady-state value? 
2. How can we read off the steady-state static error? 
3. How can we obtain the overshoot? 
4. How can we obtain the setting time? 
5. How can we obtain the oscillatory measure? 
6. How can we obtain the bandwidth? 
7. How can we obtain the cutoff frequency? 
8. How can we obtain the resonance frequency? 
9. How can we obtain the gain margin? 
10. How can we obtain the phase margin? 
11. How can we obtain the stability degree? 

 
Lecture №13 

 
THE ANALYSIS OF THE ACS ACCURACY 

 
When you study sciences, the examples 
are more useful then the rules. 

I. Newton (1643 – 1727) 
 
Lecture outline: 
1. The control quality analysis by the integral estimates. 
2. The steady state ACS accuracy estimation at the power-mode input 

actions. 
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3. The steady state ACS accuracy estimation at the input actions 
changing slowly. 

4. The ACS accuracy estimation at the harmonic input actions. 
 

13.1. The control quality analysis by the integral estimates 
Let us consider the following system (Fig. 13.1). 
 

 
 
We have the loop transfer functions ( ) ( ) ( ) ( )l FBW s W s W s W s= 1 2 . 
At ( ) ( ) ( ) ( )FB FBW s ; y t y t ; g t= =1  is a reference action, 

FB req FB desg y y= = ; 
f  is a  disturbance action,  
u  is a control action,  

FB FB req FBg y y yε = − = −  is an error (a deviation),  

FB reqy  is the required value of  FBy , 

FB desy  is the desirable value of  FBy  
The error ε  depends both on the reference action g  and on the 

disturbance f . Applying the superposition principle for linear systems we 
can present the error ε   as the sum of two constituents, gε  being an error 
caused by the reference action and fε  being an error caused by the 
disturbance 

 
g fε = ε + ε  ,                                              (13.1) 

 
that is in the image form 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )g f g fE s   E s   E s   s G s   s F sε ε= + = Φ + Φ .    (13.2) 
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Let ( )f t = 0 . So we consider an error caused by the reference action 

only. Let the transient function be of the monotonous character. An error 
can be represented as the sum (Fig. 13.2) 

 
( ) ( ) ( ) ( )tr ss tr ss

steady - statetranscient
componentcomponent

t   t  ; t   t   ε = ε + ε ε = ε − ε . 

 

 
 

Figure 13.2 Presentation an error as the sum 
 
If we introduce the linear integral estimates for the process quality 

regulation m
0m tr

0
I   ( t )t dt,  m  0 , 1, 2,...

∞
= ε =∫ , then at m = 0  we receive 

00 tr
0

I   (t )dtε
∞

= ∫ , that is an area under the curve ( )tr tε  (Fig. 13.3). 

 

 
 

Figure 13.3 The curve ( )tr tε  
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The smaller this area is, the more accurate and swift the system 
becomes. Having synthesized the systems, we achieve the 00I  estimation 
decrease. To increase the system swiftness the integral estimates 01 02I , I ,  
etc. are minimized. The integral linear quality estimation of 00I  is convenient 
because it can be calculated without the ( )h t or ( )tr tε  step response 
computation.  

The Laplace transformation of the error ( )tr tε  transient component has 
the form of 

 

∫=
∞

−

0

st
trtr dt.e)t(  )s(E ε                                         (13.3) 

 
At 0s =  this formula coincides with the linear integral quality estimation 
 

tr sstrs sI s E s G s sE E= =⎡ ⎤= = = −Φε⎣ ⎦00   0   0  ( )   (0)  ( ) ( )  ( ) .      (13.4) 
 
Thus, 
 

oo sss  0

(s )I   lim   E (s ) ,
s
ε

→

⎡ ⎤Φ= − −⎢ ⎥⎣ ⎦
for static system  

 

s 

tI lim
soo  0 ss

( )    
0 0.

ε

→

⎡ ⎤Φ= −⎢ ⎥ ε = ν ≠⎣ ⎦

for astatic system,
because and

 

 
However the linear integral estimations cannot be applied to the 

oscillatory step responses. In this case the area under the curve ( )tr tε  can 

be small because of the positive and negative values compensation, and the 
system regulation quality can become unacceptable. For the oscillatory step 
responses the quadratic integral quality estimations can be applied 
(Fig.13.4). 

 
m

mtr tr
m tr m m

d dI t dt.
dt dt

∞ ⎡ ⎤⎛ ⎞ε ε⎛ ⎞⎢ ⎥= ε + τ + + τ ⎜ ⎟∫ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

22
2 2 2

1 1
0

  ( )       …           (13.5) 



 121

 
 
At 0m =  we get  
 

( )2
trI t dt

∞
= ε∫10

0
.                                  (13.6) 

 
The integral square estimate (ISE) 10I  also can be calculated without the 

step response ( )h t . Let us write down the Fourier image for transient 

component of the error tr t( )ε   

 



 122

j t
tr trE j t e dt .

0
( )  ( )

∞
− ωω = ε∫                        (13.7) 

The original function is of the following form  
j t

tr trt Е j e d
∞

ω

−∞
ε = ω ω∫

π
1( )  ( )

2
.                     (13.8) 

 
If we substitute the last expression into the integral square estimate 

(13.6), we get 
j t

tr trI t E j e d dt.10
0

1( ) ( )
2

∞ ∞
ω

−∞
= ε ω ω∫ ∫

π
                (13.9) 

 
After simple transformations we obtain  
 

( )

j t
tr tr

j

I E (j ) t e dt d ,
∞ ∞

ω

−∞

− ω

= ω × ε × ω∫ ∫
π

 10
0

 

1  ( )
2

Fourier transformation 

for argument

       (13.10) 

10 tr tr
1 I     E (j )E ( j )d .

2

∞

−∞
= ω − ω ω∫

π
                   (13.11) 

 
Finally we can write the result formula down 
 

( ) 2
10 tr

1I   E j d
2

∞

−∞
= ω ω∫

π
.                          (13.12) 

 
The error image can be expressed in terms of the transfer function 
 

( ) ( ) 2
 10

1I  j G j d    , 2

∞

−∞
= ω ω ω −Φ∫ επ

for astatic systems   (13.13) 

 

( ) ( ) ( ) 2
10 ss

1I     j G j E j d ,
2

∞

−∞
= ω ω − ω ω −Φ∫ επ

for static systems (13.14) 

 
2

10 ss
1 1 1I      E (j ) d ,

2 1 W(j ) j

∞

−∞
= − ω ω∫

π + ω ω
           (13.15) 
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fbW j W j W j W j .1 2  ( )    ( ) ( ) ( )ω = ω ω ωwhere  
To calculate the integral square estimate we use the standard integral 
 

2 2 2 4
0 1 0

10 21
0 1

1
2

n n
 

n n
n

b (j )   b (j )     bI  d .
a (j )   a (j )     a

− −∞

−−∞

ω + ω + +
= ω∫

π ω + ω + +

…

…
          (13.16) 

 
The book [4] presents the formulae for n = 1,2, …, 10 . 

In general case 

 
( )n det N

I ,
a det M

−−
=

1

 10
0

1 ( )
  

2 ( )
                           (13.17) 

 

,

a..0
....
0.aa
0.aa

M

n

20

31

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=    .

a..0
....
0.aa

b.bb

N

n

20

1n10

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

=  

 
13.2. The steady state ACS accuracy estimation  

at the power-mode input actions 
 
We consider the same system (Fig. 13.1). 

Let r
rf t , g t g t≡ =( ) 0   ( ) , r  is the order of the input action. 

At 0r : g t g= = =0( )    const . 

At r g t g t Vt t= = = = Ω −1  1:  ( )        .ramp input  

At 
atr g t g t .= = = −

2
2

2 2: ( )        
2

quadratic input  

 

The Laplace representation of the input power-mode action has the 
following form 

{ }r r
r r

g r!G s L g t
s += = 1( )        .                        (13.18) 

 
On the basis of the original limiting value theorem we have  
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t s s s
lim t lim E s s lim s G s s lim G s s

W s→ ∞ → → →
ε = = =Φε +    0   0   0

1( ) ( )  ( ) ( )  ( )
1 ( )

,  (13.19) 

 

where  
m m

m
n n

n

b s b s b W sY sW s
E s a s a s a s

−

− ν
+ + +

= = =
+ + +

1
0 1 0

1
0 1

      ( )( )( )      
( )       

…
…

,  

             0 1 2, , , ...ν=  is the number of integrators in the open-loop 
system transfer function at the reference action.  

After the substitution we obtain  

1
0

r r
r rt  s s  

g r ! g r !slim t  lim s limW ( s ) s s W ( s ) s
s

ν

+ ν→∞ → →
ν

ε = =
++  0 0 0

1( )    
  1  

 

or 

( )
r

r
t   s 0

s g r!lim t lim
s k

ν−

ν→ ∞ →
ε =

+
,                        (13.20) 

where k  is the open-loop system transfer coefficient at the reference 
action; 

     ν  is the ACS astatism order at the reference action;  
          r  is the input action order. 
As follows from the formula 
1) At     rν >  ( the ACS astatism order is higher than the input signal 

order), ssε = 0 ; 

2) At ,r    =ν  
0

r
ss s 0 r

g
of 0  (static system);g r 1 klim

g r!s k of 0  (astatic system);
k

!
ν→

⎧ ν =⎪⎪ +ε = = ⎨
+ ⎪ ν ≠

⎪⎩

 

3) At   <  rν , ss .ε =∞  

Note: in all cases ν  is the ACS astatism order at the reference action. 
Examples of the transient characteristics are presented at Fig. 13.5. 

 
Now we shall estimate the ACS accuracy under the disturbance. Let 

( )    0,g t ≡  0   )t(f ≠ . 
Let r

rf t f t( )=  be a power-mode disturbance, r  be the order of  the 
disturbance.  

Then  
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f fb
f ft   s   0 s   0 s   0

W (s )W (s )
lim (t ) lim E (s )s lim (s )F(s )s lim F(s )s.Ф 1 W (s )ε
→ ∞ → → →

−
ε = = =

+
 (13.22) 

 
Both transfer functions ( ) ( )2fW s W s=  and ( )W s  can have integrators. 

We shall allocate them 
 

0 0( ) ( )( )  ( )  f
f

W s W sW s , W s
s sµ ν= = , 

 
where µ  is a number of the integrators of the open-loop system transfer 
function at the disturbance; 
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     ν is a number of integrators of the open-loop system transfer 
function at the reference action.  

After the substitution we obtain  
r

f fb r
ft   s   0

s k k f r!
lim (t ) lim

s k

ν−µ−

ν→ ∞ →
ε =

+
,                  (13.23) 

where fk  is the open-loop system transfer coefficient at the disturbance.  
As follows from this formula: 
1)  At 0>− µν system is astatic at the disturbance, i.e. fst 0ε = ; 
2)  At 0=− µν system is static at the disturbance 

fb f 0

fb f r
fss

s fb f r

k k f
,   r   ;k k f r! 1 klim

k k f r!s k
 ,    ;

k

ν→

ν = µ = =
+= =ε

+
ν ≠

⎧
⎪
⎨
⎪
⎩

0

0

0

a t

a t

 
3) At r<− µν  the steady state error f ssε = ∞ . 
The ACS astatism order at the disturbance is equal to ν−µ . For the 

system to become astatic at the disturbance, ν>µ . 
 

13.3. The steady state ACS accuracy estimation at the input 
actions changing slowly 

 
We consider the same system. Let ( )g t  be the slowly changing 

signal, 0, ( ) 0.g f t′ ≈ ≡  
Let us expand the image ( )sФε  in the formula E s s G s( ) ( ) ( )Фε=  into 

the Taylor series in the neighbourhood of 0s = . 
Thus we get 

( ) ( ) ( ) ( ) ( )
s s

d s d s
E s s s G s

ds ds

2
2

2
  0   0

1Ф Ф  0       Ф 2!
ε ε

ε
= =

⎡ ⎤
= + + +⎢ ⎥

⎢ ⎥⎣ ⎦
… .  (13.24) 

 
Now we go to the original functions 
 

ss

d s dg d s d gt g t
ds dt ds dt

2 2

2 2
  0  0

( ) 1 ( )Ф Ф( )  (0) ( )     Ф 2!
ε ε

ε
==

ε = + + +… , 

or 
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i
i

dg d gt c g t c c c g t ,
dt idt

ε = + + + + +
2

( )
0 1 2 2

1 1( )  ( )      ( ) 
2! !

… …      (13.25) 

 

where 
i

i i
s

d s
c

ds
ε

=

Φ
= 

  0

( )
   are error coefficients;  

           0c    is a position error coefficient;  

                 1c   is a velocity error coefficient; 

                  2c  is an acceleration error coefficient, etc.  

In this series there is a final number of components for the slowly 
changing signal ( )g t . 

Often we can introduce the error constants: 

1

1    D
cΩ =  is a velocity error constant,  

D
cε =

2

2  is an  ,acceleration error constant  

D
cε =

3

3!  is the th3 differencial error constant , etc. 

The error coefficients  ic  can be calculated in the following way.  
If 
 

m m
m

n
n

b s b s b B sW s
A sa s a s a

−

−
+ + +

= =
+ + +

  1
0 1

n  1
0 1

    ( )( )    ,
( )    

…
…

 m n,≤  

 
then 
 

A ss .
W s A s ) B sε = =Φ

+ +
1 ( )( )    

1 ( ) ( ( )
 

 
Let us equate this expression with the Taylor series. 

A ss c c s c s C s
A s B sε = = + + + =Φ

+
2

0 1 2
( ) 1( )           ( ).

( ) ( ) 2!
…  

 
As follows from this equation [ ]( )  ( )  ( ) ( ).A s A s B s C s= +  The factors at 

the identical powers is  should be equal in the expression 
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( )1 1 1
0 1 0 1 0 1

22
0 1

                 

     
2!

n n n n m m
n n ma s a s a a s a s a b s b s b

cc c s s .

− − −+ + + = + + + + + + + ×

⎛ ⎞⎜ ⎟× + + +⎜ ⎟⎜ ⎟⎝ ⎠

… … …

…
 

 
At 0i = : ( ) 0n n ma a b c= + ,  whence 
 

nn

nn m m n

k aa
c

aa b b / a

⎧ + ≠⎪⎪= = = ⎨⎪ =+ + ⎪⎩
0

1 / (1 ) 0 ( ),1      
0 0 ( ).1   

if static system
if astatic system

 

At 1i = :   1 1   1   1 0( ) ( )n n m n ma a b c a b c− − −= + + + , whence  
 

   1   1   1
2

  1   1   1 0  1 1

  1

(  )  (   ) at 0 ( 0),
  

  (   )    1   at 0 (   1) where   ( )   1,
 0

0 at 0 ( 2).

n n m n m n
n

n m

n n m
n m V n V 0

n m

n n

a a b a b a a ,
(a b )

a a b c c a / b / k a , ,  k W s
a b

s
a a ,

− − −

− − −
−

−

⎧ + − +⎪⎪ ≠ ν=⎪ +⎪⎪⎪⎪⎪⎪⎪− + ⎪= = = = ν = =⎨ ν=+
=

= = ν=

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
 

At 2i = : if ν = 2 ,   1    0n na a −= =  and 

 2 2   1 1   2   2 0
1      (   )
2n m m n ma b c b c a b c− − − −= + + + ; 

2   2  2  /   2 / n m aс a b k−= =  . 
 
At 1ν= : D kΩ ν=  is the velocity error constant. At ν = 2 : D kε ε=  is the 

acceleration error constant. 
 
Example: g t Vt= ν =( )  ,    1.  

ss

dg d g dgt c g t c c t c
dt dtdt

d g d gс
dt dt

dgc V
k dt

Vt
k

ε = + + + ε =

= = = =

= =

ε = ε = −

2

0 1 2 12

2 3

0 2 3

1

1( )  ( )      , ( )  ,
2 !

    0       0,

1  ,   ,

( )    

…

…that's why and

result is coincede with example of previous part.
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13.4. The ACS accuracy estimation at the harmonic input actions 
 
Let  mg t g sin t f t= ω ≡1( )  , ( )  0.  
Then  

ss my t b sin t= ω + ϕ1( )  (   ) , 
and   

ss mt sin tε = ε ω + ϕ1 0( )  (   ) , 

where m
m m m

g
j g g

W j W jεε = ω = ≈Φ
+ ω ω1

1 1

1( )       . 1 ( )  ( ) 
 

 
If we need mε ≤δ  at ω = ω1 , we choose LAFC in the following way: 
)(L ω  should go above the point mL lg g′ = ω δ1 ( , 20 (  / ))  (Fig.13.6). The error 

amplitude at the frequency is 1ω  

( )
L

m mg
ω

δ ω ≈
( )1
20   / 10 . 

As m
m

g
W j

ε = ≤ δ
ω1

    
  ( ) 

,  mg
L lg W j lgω = ω ≥

δ1 1( )  20  ( )   20 . 

 

 
 
Terms: 
– integral square estimate (ISE),  

– integral linear estimation, 
– the astaticism order. 

 
Comprehension questions 

 
1. Give the superposition principle. 
2. Why is the integral linear estimation convenient? 
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3. When is it impossible to use the integral linear estimations? What 
should we do in this case? 
4. Give the limiting value theorem. 
5. How can we produce the steady state ACS accuracy estimation at 
the power-mode input actions? 
6. How can we produce the steady state ACS accuracy estimation at 
the input actions changing slowly? 
7. How can we produce the ACS accuracy estimation at the harmonic 
input actions? 
 
 

Lecture №14 
 

THE ANALYSIS OF THE ACS ACCURACY (ENDING) 
 

Life requires motion. 
Aristotle 

 
Lecture outline: 
1. The ACS accuracy estimation at the random input actions. 
2. The example of the ACS accuracy estimation at the random input 

actions. 
 
14.1. The ACS accuracy estimation at the random input actions 

 
Let us consider the ACS (Fig. 14.1) 
 

 
 
Let ( )g t , ( )tε , ( )n t , ( )y t  be centered stationary random processes 

( ( )n t  - noise). 
A random process is the time change of a variable, it being a random 

variable at any specific instant.  
Let us give the basic characteristics of the random processes. 
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A centered random process is the process, which mathematical 

expectation is equal to zero ( x,g
ο ο

).  
A mathematical expectation 

( ) ( ) ( ) ( ) ( )
n

M x t m t x t f x,t x tx in i
1

1

∞
⎡ ⎤ = = ≈ ∑∫⎣ ⎦ =−∞

                  (14.1) 

is the realization assembly average value. 
 For stationary processes we have 

( ) ( )
T

M x t lim x t dt
t T T

1
2

⎡ ⎤ = ∫⎣ ⎦ →∞ −
                         (14.2) 

is the time average. 
The random process distribution function is 
 

( )( ) ( )( )F x t P x t x1= ≤ .                            (14.3) 
 
The random process distribution density is 
 

( ) ( )( )dF x t
f x ,t

dx
= .                                (14.4) 

 
The random process correlation function is 

( ) ( ) ( )R t , M x t xx
⎡ ⎤
⎢ ⎥τ = τ
⎢ ⎥⎣ ⎦

.                           (14.5) 

A stationary random process is the process which mathematical 
expectation does not depend on time ( ) xM x t m const⎡ ⎤ = =⎣ ⎦  and the 
correlation function depends on a single argument 

( ) ( ) ( )x x xR t , R t Rτ = − τ = λ .  
 

 A variance is  ( )D M x tx
2

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

A standard deviation 
 xDx =σ                                      (14.6) 

characterizes a deviation of a random variable from the average value 
(Fig. 14.2). 

A spectral density is 
( ) ( ){ }S F Rx xω = τ , 
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( ) ( ) jS R e d ,x x
∞ − ωτω = τ τ∫
−∞

 

( ) ( ) jR S e d ,x x
∞ ωττ = ω ω∫

π −∞

1
2

 

( ) ( )D R S d .x x x
∞

= = ω ω∫
π −∞

10
2

 

 

 
 

The spectral density characterizes the frequency distribution variance. 
To estimate the ACS at the determined actions we can introduce the 

parameters εss, σ, st , M , rω , mγ , mA , … At the random actions these 

parameters become pointless.  
In this case they apply such parameter, as the standard error 

deviation. 
The problem of estimating the ACS accuracy at the random actions 

includes the following. We get the ( )1W s , ( )2W s  system transfer functions, 
the probabilistic characteristics of the setting ( )g t  and disturbance ( )n t  
actions, ( )gR τ , ( )gS ω , ( )nR τ , ( )nS ω , ( )ngR τ , ( )gns ω , ( )ngR τ , ( )ngS ω . 
To find the probabilistic characteristics of the output signal ( )y t  and the error 
( )tε : ( )yR τ , ( )yS ω , ( )Sε ω , εσ . 

The solution. 
According to the superposition property which is possessed by any 

linear system, we consider the output signal to be the sum of the system 
responses to the input signals 

 
( ) ( ) ( ) ( ) ( )Y s s G s s N s ,n=Φ +Φ  

 



 133

where 
( ) ( )
( ) ( )

1 2
1 1 2

W s W s
 ( s )    

W s W s
Φ =

+
                                 (14.11) 

 

and                             ( ) ( )
( ) ( )
2

1 1 2

W s
s .n W s W s

Φ =
+

 

 
Let ( ) ( ) ( ) ( )L { s } k t , L { s } k tn n

− −Φ = Φ =1 1 . 
We find the correlation characteristic of an output signal 

( ) ( ) ( ) ( ) ( )
T

R M y t , y t lim y t y t dt ,y TT T
1

2
⎡ ⎤τ = + τ = + τ∫⎣ ⎦ →∞ −

      (14.12) 

 

( ) ( ) ( ) ( ) ( )y t g t k d n t k d ,n
∞ ∞

= − λ λ λ + − λ λ λ∫ ∫
−∞ −∞

        (14.13) 

 

( ) ( ) ( ) ( ) ( )y t g t k d n t k dn
∞ ∞

+ τ = + τ − η η η+ + τ − η η η∫ ∫
−∞ −∞

.   (14.14) 

 
Let's substitute these expressions into the correlation function (14.12) 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
R lim g t k d g t k d dty TT T

T
lim n t k d n t k d dtn nTT T

T
lim g t k d n t k d dtnTT T

∞ ∞
τ = − λ λ λ + τ − η η η +∫ ∫ ∫

→∞ −∞− −∞
∞ ∞

+ − λ λ λ + τ − η η η +∫ ∫ ∫
→∞ −∞ −∞−

∞ ∞
+ − λ λ λ + τ − η η η +∫ ∫ ∫

→∞ −∞ −∞−

1
2

1
2

1
2

 

( ) ( ) ( ) ( )
T

lim n t k d g t k d dtnTT T

∞ ∞
+ − λ λ λ + τ − η η η∫ ∫ ∫

→∞ −∞ −∞−

1
2

   (14.15) 

 
and change the order of integration 
 

( ) ( ) ( ) ( ) ( )
T

R lim g t g t dt k k d dy TT T

∞ ∞
τ = − λ + τ − η ⋅ λ η λ η+∫ ∫ ∫

→ ∞−∞−∞ −

1
2
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( ) ( ) ( ) ( )
T

lim n t n t dt k k d dn nTT T

∞ ∞
+ − λ + τ − η ⋅ λ η λ η+∫ ∫ ∫

→ ∞−∞−∞ −

1
2

 

( ) ( ) ( ) ( )
T

lim g t n t dt k k d dnTT T

∞ ∞
+ − λ + τ − η ⋅ λ η λ η+∫ ∫ ∫

→ ∞−∞−∞ −

1
2

 

( ) ( ) ( ) ( )
T

lim n t g t dt k k d d .nTT T

∞ ∞
+ − λ + τ − η ⋅ λ η λ η∫ ∫ ∫

→ ∞−∞−∞ −

1
2

       (14.16) 

 
From this follows 

( ) ( ) ( ) ( )R R k k d dy gτ λ+τ−η λ η
∞ ∞

= λ η +∫ ∫
−∞−∞

 

( ) ( ) ( )R k k d dn n nλ+τ−η λ η
∞ ∞

+ λ η +∫ ∫
−∞−∞

 

( ) ( ) ( )R k k d dgn nλ+τ−η λ η
∞ ∞

+ λ η +∫ ∫
−∞−∞

 

( ) ( ) ( )R k k d d .ng nλ+τ−η λ η
∞ ∞

+ λ η∫ ∫
−∞−∞

              (14.17) 

 
If the reference and disturbance inputs are independent, the last two 

components disappear from the expression (14.17). 
Now we shall find the output signal spectral density. To do this we apply 

the Fourier transformation to the previous expression 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )S F{ R } j j S j j Sy y g n n nω τ ω ω ω ω ω ω= =Φ Φ − +Φ Φ −   (14.18) 
 

or  

 ( ) ( ) ( ) ( ) ( )j j .S S Sy g n nω ω ω ω ω= Φ + Φ
22

                       (14.19) 
 
By analogy we obtain the error spectral density  
 

( ) ( ) ( ) ( ) ( )S j S j S .g n nω = Φ ω ω + Φ ω ωε ε
2 2              (14.20) 

 
If the disturbance ( )n t  is imposed to the system input, 
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( ) ( ) ( ) ( ) ( )S j S j Sg nω = Φ ω ω + Φ ω ωε ε
2 2 .                 (14.21) 

 
Now we find the error standard deviation  

( ) ( ) ( ) ( )D j S j S dg n n
∞ ⎡ ⎤σ = = Φ ω ω + Φ ω ω ω∫ε ε ⎢ ⎥π ⎣ ⎦−∞

2 21
2

.  (14.22) 

If the spectral density ( )Sε ω  is presented in the form of 
 

( ) ( ) ( )

( ) ( )

n nb j b j ... bnS
n na j a j ... an

− −ω + ω + + −ω =ε −ω + ω + +

2 2 2 4
0 1 1

21
0 1

,            (14.23) 

the dispersion ( )D S d
∞

= ω ω∫ε επ −∞

1
2

 corresponds to the standard integral  

( )n det NnD
a det Mn

−−
=ε

11
2 0

,                            (14.24) 

 

where                   

n

n

n

b b b ... b
a a a ...

N a a ...  n
... ... ... ... ... b , b , ..., b ;

... a

0 1 2 1

0 2 4

1 3

0 1 1

0
0 0

0 0 0

−

−

=
- Hurwitz's matrix, in

which instead of first row 
factors are

 

 

n

a a ...
a a ...

M .n ... ... ... ...
... a

1 3

0 2

0
0

0 0

= −Hurwitz's matrix  

Thus, for n 1=  we get bD
a a

0

0 12
= . 

 

For n 2=  we get a b b aD
a a a

0 1 0 2

0 1 22
−

= . 

 

For n 3=  we get 
( )

a a b a a b a a bD
a a a a a a

2 3 0 0 3 1 0 1 2

0 3 1 2 0 32
− +

=
−

. 
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"The ACS Designing Atlas" by Topcheev J.I. gives the formulae to 
provide the calculation of this integral up to n 10= . 

 
14.2. The example of the ACS accuracy estimation at the random 

input actions 
 
We have the aerial target tracking follow-up system (Fig.14.3) and the 

probabilistic characteristics (Fig 14.4): 
 

 
 

( )R Deg
−αττ = is a correlation function of  the useful signal, 

( ) DSg
α

ω =
α + ω

2
2 2  is a spectral density of the useful signal,  

( ) ( )R cn τ = δ τ2  is a correlation function of the noise, 

( )S cn ω = 2  is a spectral density of the a white noise. 

We have 
 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

M g t ,       R R ,       g y ,gn ng
kM n t ,      S S ,     W s .gn ng s Ts

⎡ ⎤ = τ = τ = ε = −⎣ ⎦

⎡ ⎤ = ω = ω = =⎣ ⎦ +

0 0

0 0
1

 

 
We should find the mathematical expectation, the ε(t) system error 

signal dispersion at the steady-state mode and the σε error standard 
deviation. 

The solution. 
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We find the Laplace image of the error ( )E s  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )W s

s s G s s N s ) G s N s s s .n g nW s W s
Ε = Φ −Φ = − = Ε + Εε + +

1
1 1

 
 
If ( ) ( )M g t M n t⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ 0 ,then ( )M t⎡ ⎤ε =⎣ ⎦ 0 . 
 
Then we find the signal variance ( )g tε  
 

( )D S dg g
∞

= ω ω∫ε επ −∞

1
2

, 

 
where  

( ) ( ) ( )S j S ,g gω = Φ ω ωε ε
2  

or 

( ) ( )
( )

( )D Tj Tj DS .g j Tj k j ( Tj ) k j

αω ω +ω ω + α
ω = ⋅ =ε ω ω + + α + ω ω ω + + ⋅ α + ω

2 2 22 2 11 2
2 2 2 21 1

 

 
We can present the error spectral density ( )gSε ω  caused by the 

reference action ( )g tε  as 
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( )
( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) ( )

D T j j D b ( j ) b ( j )
S ,g

T j T j k j k a j a j a j a

⎡ ⎤ ⎡ ⎤α ω − ω α ω + ω⎢ ⎥⎣ ⎦ ⎣ ⎦ω = =ε
ω + α + ω + α+ ω +α ω + ω + ω +

4 22 4 22 2 0 1
2 23 2 3 21 0 1 2 3

 

 
where  

b T , b , b , a T , a T , a k , a k , n= = − = = = α + = α + = α =0 1 2 0 1 2 3
2 1 0 1 3 . 

Applying the standard integral we obtain 
 

( )
( ) ( )

( )( )
D k kT T k T Ta a b a a b a a bD Dg a a a a a a T k T k T k

⎡ ⎤α α + α + α + α + ⋅− + ⎣ ⎦= α = =ε − ⎡ ⎤α α + α + − α⎣ ⎦
2 3 0 0 3 1 0 1 2

0 3 1 2 0 3

22 1 0
2

2 2 1
 

( )D T Tk
T k

α + α +
=

α + α +2
1 . 

 
The error variance caused by the disturbance is calculated by 

analogy 

( ) ( ) ( )
( )

( ) ( ) ( )

kS j S cεn n
j Tj k

bk c ,
T j j k a j a j a

ω = Φ ω ω = =
ω ω+ +

= =
ω + ω + ω + ω +

22 2

2 2
1

2 22 2
0 1 2

2
1

 

 
where b , b k c , a T , a , a k , n .2 2

0 1 0 1 20 1 2= = = = = =  

At n= 2  we obtain a b b a Tk c kcD .n a a a Tk
−

= = =ε
2 2 2

0 1 0 2

0 1 22 2 2
 

As the signals ( )g t  and ( )n t  are noncorrelated, then the  system 
error variance Dε  is equal to the sum of the signal variances gε  and nε , 

 
( )D T kT kcD

T k
α + α +

= +ε α + α +

2

2
1

2
. 

 
The error standard deviation (ESD) is 

 
( )D T kT kcD

T k

α + α +
σ = = +ε ε

α + α +

21
2 2

. 
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To reduce the ESD gε  we should increase k . 
To reduce the ESD gε  we should reduce k . 
To minimize the full error standard deviation we choose optk  but thus we 

get the problem of the ESD optimization (Fig. 14.5). 
 

 
 

Terms: 
– random process,  
– centered random process, 
– mathematical expectation,  
– distribution function, 
– distribution density, 
– correlation function, 
– stationary random process, 
– variance (dispersion), 
– standard deviation, 
– spectral density. 

 
Comprehension questions 

 
1. How can we estimate the output signal spectral density? 
2. How can we estimate the error spectral density? 
3. How can we estimate the output signal standard deviation? 
4. How can we estimate the error standard deviation? 
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Lecture №15 
 

THE CONNECTION BETWEEN THE LINEAR ACS FREQUENCY AND 
TIME CHARACTERISTICS 

 
The planet is a cradle of the human 
mind but it is impossible to live in a 
cradle eternally. 

 K.  E. Tsiolkovsky 
 
Lecture outline:  
1. The connection between the open and closed-loop ACS frequency 

characteristics. 
2. The calculation of the ACS time characteristics by its frequency 

characteristics. 
3. The estimation of the ACS step response properties by the closed-

loop system RFC. 
 

15.1. The connection between the open and closed-loop ACS  
frequency characteristics 

 
Let us consider the closed-loop system (Fig. 15.1). 
 

 
 

 
 
The input and output are connected by the equation 
 

W ( s ) Y ( s )( s ) W ( s ) G( s )1Φ = =
+

,                           (15.1) 

 
Y ( s ) ( s )G( s ),  Y ( j ) ( j )G( j )ω ω ω= Φ = Φ . 

 
Thus, the closed-loop system AFFC can be constructed by the given 

open-loop system AFFC (Fig. 15.2.), having applied the formula 

Figure 15.1 – Closed-loop system  
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W ( j )( j ) W ( j )1
ωΦ ω =

+ ω
.                                   (15.2) 

 

 
 

Figure 15.2 – The open-loop system AFFC 

 
At 0ω =  we obtain 
 

( )
k ,   if  ( ),

k
,   if  ( ).

⎧
⎪
⎨
⎪⎩

=
Φ = +

≠

00 1
1 0

ν

ν

static system

astatic  system
                  (15.3) 

 
At ( )W j0ω ω≠  is divided by ( )W j1 ω+ and a phase of the vector 

( )W j1 ω+  is subtracted from a phase of the vector W ( j )ω . 
The closed-loop system AFFC can be constructed in a different way 
 

U( ) jV( ) U( )( U( )) V ( ) V( )( j ) j
U( ) jV( ) ( U( )) V ( ) ( U( )) V ( )
ω + ω ω + ω + ω ω

Φ ω = = + =
+ ω + ω + ω + ω + ω + ω

21
2 2 2 21 1 1

 

j ( )P( ) jQ( ) ( j ) e ,ψ ω= ω + ω = Φ ω                       (15.4) 
 
where                                     ( ) ( ) ( ) ;P j cos   ω ω ψ ω= Φ  

 
( ) ( ) Q j sinω = Φ ω ψ ω( ) ; 

( ) ( )
( )

Q
arctg .

P
ω

ψ ω =
ω

 

 
At 0ω = we obtain ( ) P( ),0 0Φ =  Q( ) ,0 0=  (0) 0ψ = . 
At ω = ∞  we get P( ) Q( )∞ = ∞ = 0 , at m n<  ( ) ( )m n /ψ π∞ = − ⋅ 2 . 
The examples of the frequency characteristics are shown in Fig. 15.3. 
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Figure 15.3 – Frequency characteristics of the closed-loop system 
 

15.2. The calculation of the ACS time characteristics by its 
frequency characteristics 

 
The system output signal can be calculated by its image applying the 

inverse Laplace transformation 
( )y t L Y s L s G s− −= = Φ1 1( ) { ( )} { ( )}  as Y s s G s= Φ( ) ( ) ( ).         (15.5) 

At g t t= δ( ) ( )  we get G s =( ) 1  and y t L s h t− ′= Φ =1( ) { ( )} ( ).   

At ( ) ( )g t t=1  we obtain ( )G s
s

= 1  and     
sy t L h t

s
Φ⎧ ⎫−= =⎨ ⎬

⎩ ⎭

( )1( ) ( ). 

The result of the inverse Laplace transformation depends on the poles 
of the image ( )Y s  which can lie both in the left and in the right half plane (Fig. 

15.4). We present ( )Y s  as the sum of two components, ( )Y sr  being the 

regular component (the poles lie only in left the half plane), and Y sn( )  being 

the irregular component  (the poles lie on the imaginary axis and in the right 
half plane): Y s Y s Y sr n= +( ) ( ) ( ) . 

 

 
 

Figure 15.4 – An s-plane pole plot 

 
Correspondingly the original consists of two components 
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y t y t y tr n= +( ) ( ) ( ).  
 
The inverse Fourier transformation can be applied to the regular 

component Y sr ( ) , and the Laplace transformation can be applied to the  
irregular one 

 
c jj t sty t Y j e d Y s e dsr nj c j

+ ∞∞ ω= ω ω+∫ ∫π π−∞ − ∞

1 1( ) ( ) ( )2 2
.         (15.6) 

 
Let us consider the regular component  Y j R jSr ω = ω + ω( ) ( ) ( ),  where  

R Re Y j S Im Y jr r⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ω = ω ω = ω( ) ( ) , ( ) ( ) . 
We obtain 
 

[ ]

[ ]

[ ]

[ ]

j ty t R jS e dr

R jS cos t jsin t d

R cos t S sin t d
even function

j R sin t S cos t d
odd function

∞ ω= ω + ω ω =∫
π −∞

∞
= ω + ω ω + ω ω =∫

π −∞
∞

= ω ω − ω ω ω +∫
π −∞

∞
+ ω ω + ω ω ω =∫

π −∞

1( ) ( ) ( )
2

1 ( ) ( ) ( )
2

1 ( ) ( )
2

1 ( ) ( )
2

 

[ ]R cos t S sin t d
∞

= ω ω − ω ω ω∫
π
1 ( ) ( ) .

0
                             (15.7) 

 
At t < 0  

y t y t R cos t S sin t dr r ⎡ ⎤⎣ ⎦
∞

= = = ω ω + ω ω ω∫π
1( ) 0. ( ) 0 ( ) ( )

0
.       (15.8) 

 
By summing and subtracting two last expressions we obtain 

 

y t R cos t dr
∞

= ω ω ω∫π
2( ) ( )

0
 or y t S sin t dr

∞
= − ω ω ω∫π

2( ) ( ) .
0

        (15.9) 

 
Thus, there exists the unequivocal communication of the output signal 

with the ACS frequency characteristics for minimal-phase systems. 
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Let us find the pulse transitive characteristic ( )h t′ . For this we put 
( ) ( )g t t= δ . Thus ( )G s = 1  andY s H s s′= = Φ( ) ( ) ( ).  

For the stable system we have s srΦ = Φ( ) ( )  as all the poles lie in the left 
half plane. Therefore the irregular component is absent 

 
H j Y j Y j j P jQ R jSr′ ω = ω = ω = Φ ω = ω + ω = ω + ω( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).  (15.10) 

 
By substituting the values ( )R ω  and S ω( )  into expressions for ( )ry t  

(15.9), we get 
 

h t P t d
∞

′ = ω ω ω∫π
2( ) ( )cos

0
,                           (15.11) 

 

h t Q t d
∞

′ = − ω ω ω∫π
2( ) ( )sin

0
.                         (15.12) 

 
Thus, the system weight characteristic ( )h t′  can be calculated by these 

formulae, if the closed-loop system RFC or IFC are given. 
The minimal-phase system RFC and IFC cohere by the Hilbert double 

transformation 
Q PP du Q du
u u

∞ ∞ω ωω = − ω =∫ ∫π −ω π −ω−∞ −∞
1 ( ) 1 ( )( ) , ( ) .           (15.13) 

To calculate the step response ( )h t  we put ( ) ( )g t t= 1  then 
G s s=( ) 1/  and G j jω = ω( ) 1/ . We have 

H s Y s s G s s s Y s Y sr n= =Φ =Φ = +( ) ( ) ( ) ( ) ( ) / ( ) ( ) .         (15.14) 
The image of G s s=( ) 1/  has a zero pole lying on the imaginary axis. 

Therefore we have the irregular component. We shall find it.  
The steady-state signal value corresponds to the zero pole 

k atslim y t y t lim Y s s lim s P kn st s s at

⎧
⎪
⎨
⎪⎩

ν=Φ= = = =Φ = = +→∞ → → ν≠

0,( )( ) ( ) ( ) (0) (0) 1
0 0 1 0.

    (15.15) 

So y t Pn =( ) (0)  and Y t P sn =( ) (0) / . As Y s Y s Y sr n= +( ) ( ) ( )  then  
 

s P s PY s Y s Y sr n s s s
Φ Φ −= − = − =( ) (0) ( ) (0)( ) ( ) ( ) .                (15.16) 

 
We can apply the Fourier transformation to the irregular component 
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j P P jQ P Q P PY j jr j j
Φ ω − ω + ω − ω − ωω = = = + =

ω ω ω ω
( ) (0) ( ) ( ) (0) ( ) (0) ( )( )  

R jS= ω + ω( ) ( ) .                                     (15.17) 
 
Thus we obtain Q P PR Sω − ωω = ω =

ω ω
( ) (0) ( )( ) , ( ) . We substitute these 

expressions in the y tr ( )  formula (15.9) and we add the irregular component 
to calculate ( )h t  

 
Qh t P t d

∞ ω= + ω ω∫π ω
,2 ( )( ) (0) cos

0
               (15.18) 

 
P Ph t P sin t d

∞ − ω= − ω ω=∫π ω
2 (0) ( )( ) (0)

0
 

sin t PP P d t sin t dt
∞ ∞ω ω= − ω + ω ω∫ ∫π ω π ω

π

2 2 ( )(0) (0) .
0 0

2

      (15.19) 

 
Thus,  

Ph t sin t d
∞ ω= ω ω∫π ω

2 ( )( )
0

,                          (15.20) 

 
i.e. the step response is unequivocally determined by the real frequency 
characteristic (RFC) ( )P ω  of the closed-loop system. 

 
15.3. The estimation of the ACS step response properties by the 

 closed-loop system RFC 
 
The formulae 
 

h t sin t d
∞Ρ ω= ω ω∫π ω

2 ( )( ) ,
0

 

sΗ s s
Φ= .( )( )  

 
Imply the following properties of the step response: 
1) The step response finite value (Fig. 15.5) is equal to the initial RFC 

value h P∞ =( ) (0) .  
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Figure 15.5 – The step response finite value 

The proving:  
s sh lim h t lim H s s lim Pst s s

Φ∞ = = = = Φ =
→∞ → →

( )( ) ( ) ( ) (0) (0).
0 0

 

 
2) The RFC finite value is equal to the step response initial value 

( ) ( )h P= ∞ =0 0  at m n< . 
The proving: 
 

s sh lim h t lim H s s lim Ps s st
Φ= = = = Φ ∞ = ∞→∞ →∞→∞

( )(0) ( ) ( ) ( ) ( )  at m n< , 

( )Φ ∞ = 0 . 
 
3) The approximately identical step responses correspond to the 

approximately identical RFC. It follows from the integral property to smooth 
functions. Under this property we can replace the complexed exact RFC by 
the piecewise linear polyline which integral can be easier calculated (Fig. 
15.6). 

 

 
 

Figure15.6 – Ratio between P(ω) and h(t) 
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4) If the RFC is as the sum of several characteristics, then ( )h t  also 
becomes the sum of the step responses corresponding to the certain RFC 

 
m m

P h t h ti ii i
( ) ( ) ( ) ( ).

1 1
ω = Ρ ω → =∑ ∑

= =
 

 
This is implied by the integration linearity which is the basis for the step 

responses construction method elaborated by V.V.Solodovnikov (trapezium 
method) 

P P P P1 2 3( ) ( ) ( ) ( )ω = ω + ω + ω → h t h t h t h t1 2 3( ) ( ) ( ) ( )= + + . 
 

5) If two RFC differ only in the ordinate axis scale, then the 
corresponding ( )h t  differ only in the ordinate axis scale as well (Fig. 15.7).  

 

 
 

Figure 15.7 – The scaling of the RFC value 
 

P P mP1 2 1( ), ( ) ( ),ω ω = ω  
 

Ph t sin t d

mP sin t d mh t

∞ ω= ω ω=∫π ω

∞ ω= ω ω=∫π ω

2
2

1
1

( )2( )
0

( )2 ( ).
0

 

 
6) If two RFC differ only in the abscissa axis scale, then the 

corresponding ( )h t  also differ only in the abscissa axis scale (Fig. 15.8). The 
wider is the RFC, the narrower the ( )h t  becomes 

 
  P P P mω ω = ω1 2 1( ), ( ) ( ) , 
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P P m Pt t th t sin t d sin m dm sin d h
m m m m

2 1 1
2 1

( ) ( ) ( )2 2 2( ) ( )
0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

∞ ∞ ∞ω ω λ= ω ω= ω ω= λ λ =∫ ∫ ∫π ω π ω π λ
. 

 

 
 

Figure 15.8 – The scaling of the RFC width 
 

The wider is the bandwidth, the swifter is the system. There exist  the h  
- function tables in which the step responses calculated for unit trapeze (Fig. 
15.9) are given. 

 

 
 

Figure 15.9 – The unit RFC 
 
These characteristics make it possible to calculate the step responses 

corresponding to the trapezia of any height and width, applying the properties 
4 and 5. 

7) If RFC is a positive decreasing convex function, i.e. 
dP d PP d d

2

2
( ) ( )( ) 0, 0, 0ω ωω > < >
ω ω

, then ( )h t  is the monotonous function, i.e. 

0σ =  (Fig. 15.10). 
 

 
Figure 15.10 – Monotonous ( )h t  
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8) If RFC can be replaced by the trapezium, then 18%σ <  and 

s p
n p

t 4 ,π π< < ω
ω ω

where  is the positivity frequency (Fig. 15.11). 

 

 
 

Figure 15.11 – Positive RFS 

 

9) If the positive RFC has the P Pmax (0)>  overshoot, 

P Pmax
P

1.18 (0)100%.(0)
−

σ =  The setting time  st  is calculated by the 

schedules. 
10)  If RFC has break at 0,ω =  ( )h t  tends to ∞ (Fig. 15.12).  The 

system lies on the aperiodic stability border. 
 

 
 

Figure 15.12 – Break at ω=0 
 

11) If RFC has break at 0ω ≠ , the system lies on the oscillatory 
stability border (Fig. 15.13). 

 

 
 

Figure 15.13 – Break at ω≠0 
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Terms: 
– real frequency characteristic RFC,  
– imaginary frequency characteristic IFC. 

 
Comprehension questions 

 
1.  Explain the AFFC connection of the closed-loop and open 

systems. 
2.  Calculate the initial and final values of the RFC, IFC, AFC and 

FFC for the closed-loop system. 
3.  How can we calculate the step response having the RFC? 
4.  What properties of the closed-loop system step response can 

be estimated by the RFC? 
5.  What is the Solodovnikov method based on? 
 
 

Lecture № 16 
 

THE ROOT LOCUS METHOD 
 
Lecture outline:  
1. The bases of the root locus method. 
2. The example of the root locus building. 

 
16.1. The bases of the root locus method 

 
The root locus is a set of the trajectories of the closed-loop system 

characteristic equation roots on complex s -plane when one of the system 

parameters is changed, e.g. k0 ≤ ≤ ∞  or k−∞ ≤ ≤ ∞ . 

The method has suggested by the Russian scientists Teodorchik K. F., 

Bendrikov G. A., Strelkov S. P. (1948 – 1949) and the US scientist W.R. 

Evans (1948). 

The root locus method allows to carry out the system analysis and to 

choose the parameter k , providing the most profitable location of poles. 

Let us consider the system (Fig. 16.1). 
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Figure 16.1 – The closed-loop system 

 
The transfer function of this system is 
 

( )
( )

( )
( ) ( )

( )
( )

W s W sY s
s

G s W s W s W s
1 1( )

1 11 2
Φ = = =

+ +
.                (16.1) 

 
The open-loop transfer function  

 
( )
( ) ( ) ( )

m mZ s b s b s bmW s W s W s m nn nG s a s a s an
0 1

1 2
0 1

1
( ) ,1

−+ + +
= = = ≤−+ + +

…
…

     (16.2) 

 
can be presented as 
 

m
ka s s ika s s s s s skB sB s m iW s nA s A s s s s s s sn s s jj

0
01 02 01

1 2

( )( )( ) ( )( )( ) 1( )
( ) ( ) ( )( ) ( ) ( )

1

−∏− − − == = = =
− − − −∏

=

…
…

,(16.3) 

 
where s i mi0 , 1,2,...,=  are the zeroes of the open-loop system transfer 
function; 

             s j nj , 1,2,...,=  are the poles of the open-loop system transfer 

function. 
The closed-loop system characteristic equation is 
 

( )W s1 0+ = .                                            (16.4) 

 The roots of this equation ks , k n1,2,...,=  are the poles of the closed-

loop system transfer function. When the parameter k  changes, the poles 

move through the complex s -plane and describe the paths (Fig. 16.2). The 

set of n  of such paths (trajectories) forms root locus. 
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Figure 16.2 – The root locus 
 
From the characteristic equation (16.4) we get ( )W s 1= − . This complex 

expression can be divided into two expressions  

 

W s( ) 1,=                                             (16.5) 

 

argW s i i( ) (2 1), 0,1,2,=±π + = ….                        (16.6) 

 

We write expression for module W s( )  

 
m

ka s s ii
n

s s jj

01 1

1

−∏
= =

−∏
=

 or 

m
ka l ii

n
l jj

01 1

1

∏
= =
∏
=

,                        (16.7) 

 

where k kl s s l s si i j j0 0 ,= − = −  (Fig. 16.3). We select the parameter k  

from the previous expression  

 
n

l jjk m
a l ii 0

1

1

∏
==
∏
=

 .   (16.8) 
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Figure 16.3 – The calculation of the W(s) modulus and phase 
 
Let us write an expression for the vector ( )W s  argument 
 

m n
argW s arg s s arg s s i i  0,1,2,  i ji j

= − − − =± + π = …∏ ∏
= =

( ) ( ) ( ) (2 1) ,01 1
. 

 
This implyies 
 

m n
i iji j

(2 1), 0,1,2,...011 1
θ − θ = ±π + =∑ ∑

= =
 .   (16.9) 

 
Any point ∆ on s -plane which satisfies the equation (16.9), belongs to 

the root locus, so it is a pole of the closed-loop system for a certain value of 
the parameter k . This value is calculated by the formula (16.8). 

i0θ  is a phase of the vector which is drawn from i -th zero of the open-
loop system to the researched point ks . 

jθ  is a phase of the vector which is drawn from j -th pole of the open-

loop system to the researched point ks . 
The equation (16.9) is convenient because it doesn’t include the value 

of the parameter k . 
The equation (16.9) makes it possible to build the root locus. We choose 

the most suitable location of the closed-loop system poles and using the 
equation (16.8) estimate the value of the parameter  which provides the 
required pole locations. 

When building the root locus manually, we choose the point ∆ on s -plane 
and check whether it satisfies the equation (16.9). If yes, then this point 
belongs to the root locus. If no, we move the point horizontally or vertically and 
check the condition (16.9) again. To build the root locus in the MATLAB 
you should use the command rlocus. 
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Let us consider the root locus properties, resulting from the equation 
(16.9) and the characteristic equation. 

1. Root locus has n  branches, n  being the order of the system. 
2. The root locus branches are symmetrical against the real axis. 
3. The root locus branches at k 0= begin from the poles of the open-

loop system. 
The closed-loop system characteristic equation is 
 

 kB s
A s

1( )1 0
( )

+ =  or A s kB s1( ) ( ) 0+ = .                 (16.10) 

 
If k 0=  then ( )A s 0= . 
So the closed-loop system characteristic equation at k 0=  coincides 

with the open-loop system characteristic equation. Therefore the poles of the 
closed-loop system at k 0=  coincide with poles of the open-loop system. 

k js s j n, 1,2,...,= = . 
So the poles of the open-loop system js  are the initial points for the root 

locus of the closed-loop system. 
4. When k = ∞  m  branches of the root locus end in the zeros of the 

open-loop system. 
The equation 
 

A s B s
k 1
( ) ( ) 0+ = ,                                   (16.11) 

 
follows from the characteristic equation A s kB s1( ) ( ) 0+ = , hence at k = ∞  we 
have B s s s k mk i1 0( ) 0, , 1,2, ,= = = … and the closed-loop system 
characteristic equation has a roots, coinciding with the zero of the open-loop 
system, so zeroes of the open-loop system s i0  are the finite points of the 
root locus. 

5. Other n m−  branches of the root locus at k = ∞  go to infinity along 
the asymptotes. 

6. As the branches are symmetrical the asymptote centre lies on the 
real axis and its coordinates (Fig. 16.4) can be found by the formula 

 
n m

s sj ij ia
n m

01 1* .
−∑ ∑

= ==
−

                              (16.12) 
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Figure 16.4 – The asymptote centre 

 

7. The asymptotes divergence angle are calculated by the formula 

 

i ii n m
π

Θ = + =
−

(2 1), 0,1,… .                      (16.13) 

 
8. Any point of the real axis which has the odd number of the zeroes 

and the poles of the open-loop system on its right belongs to the root 
locus (Fig. 16.5). 

 

 
 

Figure 16.5 – Parts of the real axis, belonging to the root locus 
 
This property follows from the equation (16.9). We choose the parts of 

the real axis which belong to the root locus, and put the arrows from the pole 
to the zero. 

9. The poles can coincide at some value of the parameter k . Thus 
appears a multiple point which coordinates can be calculated by the equation 
(16.9), written for the angle tangents (Fig. 16.6) 

 
m n

s si ji i0

0
1 1

ω ω
− =∑ ∑

α − α −= =
 or 

m n

s si ji i0

1 1 0
1 1

− =∑ ∑
α − α −= =

.   (16.14) 
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Figure 16.6 – Coincide point α 
 
10. When k  increases, the poles disperse from multiple point at the 

angles 
 

i ii (2 1), 0,1,...
2
π

θ = + = .                          (16.15) 

 
11. The pole angles of departure lθ  from the complex initial points js  

and the branch angles of the entry rθ  to the complex final points is0  are 

calculated from expressions which follow from the equation (16.9) 
 

m n
il i ji j

j l

(2 1),01 1
θ = θ − θ − π +∑ ∑

= =
≠

        n m
ir j ij i

i r

(2 1).01 1
θ = θ − θ − π +∑ ∑

= =
≠

    (16.16) 

 
12. The intersection of the root locus branches with the imaginary axis 

of plane s  can be calculated by one of the stability criteria. 
13. The step response corresponds to the given location of the closed-

loop system poles on the root locus 

s tk

k k k

n B sB kh t e
D s D s=

= + =∑
′1

( )(0)( )
(0) ( )

 

m
j i
i

s tk
n

j j
j

j j kk

k

k k j
j

j k

m
b s s einB i e

D k
n

s e a s s e

θ∑
=

θ∑
=

θ ≠

=

≠

−∏
=+ ∑

=

−∏

0
1

1

0

0
1

0(0) 1
(0) 1 .             (16.17) 
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16.2. The example of the root locus building 
 
We have the system (Fig.16.7) which transfer functions are 
 

( )
( )( )

( )
( )

k s kB s
W s

A ss s s s
1

2

3
( ) ,

4 2 2
+

= =
+ + +

 

 
k s k ss

s s s s k s s s s k s k
+ +

Φ = =
+ + + + + + + + + +2 4 3 2

( 3) ( 3)( ) .
( 4)( 2 2) ( 3) 6 10 (8 ) 3

 

 
The closed-loop system characteristic polynomial is 

 

D s s s s k s k4 3 2( ) 6 10 (8 ) 3 .= + + + + +  
 

 
 

Figure 16.7 – Closed-loop system 
 
The open-loop system characteristic polynomial is 

 
A s s s s s2( ) ( 4)( 2 2)= + + + . 

 
We build the root locus for the closed-loop system at the parameter k  

changing within the range of k0 ≤ ≤ ∞  (Fig. 16.8). 
 

 
 

Figure 16.8 – Root locus 
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We find the initial and finite points of the root locus and put them to the 
plane s  

 
B s s A s s s s j s ji= → = − = → = = − = − + = − −1 1 2 3 40( ) 0 3, ( ) 0 0, 4, 1 , 1 .  

 
We mark the parts of the real axis α which belong to the root locus. The 

arrows go from the poles to the zero. Then we find the asymptote star centre 
coordinate  

 
n m

s sj i j jj ia
n m

0 0 ( 4) ( 1 ) ( 1 ) ( 3)1 1* 1
4 1

−∑ ∑
+ − + − + + − − − −= == = = −

− −
. 

 
From the centre n m 3− =  asymptotes disperse at the angles 

i ii n m
* (2 1), 0,1,...π
θ = + =

−
, at i 0

*0 ,
3
π

= θ =  at i 1
*1, ,= θ = π  at i 1

5*2, .
3
π

= θ =  

At the further growth of i  the angles will repeat. The angles of the root 
locus branches coming out of the complex initial points s3  and s4  can be 
calculated by the formula 

 
m n

ii j
j

θ = θ − +π = − − − + = − θ =∑ ∑
= =

≠

3 0 25 135 20 90 180 40 , 4041 1,
3

. 

 
We form the Hurwitz matrix and the equation of the oscillatory stability 

border 

 
T 1 03−∆ = ∆ = , 

 
95.5k0))k8(106)(k8()66(k3 =→=+−⋅++⋅− . 

 
We substitute the obtained ‘k ’ to the polynomial ( )D jω  

k
k
k

k

+

+
⋅

⋅

6 8 0 . 0
1 10 3 . 0

,0 6 8 . 0
. . . .
0 1 10 3
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D j j j j j4 3 2( ) ( ) 6( ) 10( ) 13.95 17.85 0ω = ω + ω + ω + ω+ =  
And find s s s j s j* * * *

1 2 3 41.525, 1.87, 4.13, 1.525, 1.525.ω = = − − = = −  
 

Terms: 
– root locus, 
– asymptote star, 
– multiple point. 

 
Comprehension questions 

 
1. What are properties of the root locus? 
2. What is the root locus procedure? 
3. Where do the initial points of the root locus lie? 
4. Where do the finite points of the root locus lie? 
5. Where does the star of the asymptotes lie? 
6. How can we find the center of the asymptote star? 
7. How can we calculate the angles of the asymptotes? 

 
Lecture № 17 

 
THE SENSITIVITY OF THE AUTOMATIC CONTROL SYSTEM 

 
The sensitivity is the system attribute which describes the changes of 

its output, transfer function, the gain, a state vector, the quality criterion 
under the influence of the parametric variation and the changes of 
characteristic and environment conditions. 

The ACS parametric variation can cause the loss of the system stability 
and serviceability. 

Let us consider the process described by the transfer function ( )prW s  
(Fig. 17.1). 

 

 
 

Figure 17.1 – The process 
 
The output image in the open-loop system is 
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( ) ( ) ( )Y s W s U spr .= ⋅                                (17.1) 
 
The parameters and the transfer function ( )prW s  change under the 

influence of the environmental alterations and the operational component 
deterioration. Let the transfer function possess the value  

 
( ) ( ) ( )W s W s W spr pr

' .= + ∆                          (17.2) 
 
Then the output image is equal 
 

( ) ( ) ( )( ) ( )Y s W s W s U s .pr= +∆ ⋅                       (17.3) 
 
We get the output image deviation 

( ) ( ) ( ) ( ) ( )Y s Y s Y s W s U s' .∆ = − = ∆ ⋅                    (17.4) 
 
Thus, the parametric variation directly affects the output change. 
Let us close the system (Fig. 17.2). 
 

 
 

Figure 17.2 – The closed-loop system 
 
At the nominal parameters the output image has the form 
 

( )
( )

( ) ( ) ( )
pr

W sрrY s G s
W s W sfb

= ⋅
+ ⋅

.
1

                          (17.5) 

 
And after the parametric variation we obtain 

( )
( ) ( )

( ) ( )( ) ( )
( )

W s W spr'Y s G s .
W s s W spr fb1

+∆
= ⋅

+ +∆ ⋅
              (17.6) 

 
Let us find the image of the output changes at  

( ) ( )pr fbW s W s1 1+ , 
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( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

pr pr

pr fbpr fb

pr fb pr fb pr

fb

Y s Y s Y s

W s W s W s
G s

W s W sW s W s W s

W s W s W s W s W s W s W s W sрr

W s W sрr

∆ = − =

⎛ ⎞+∆⎜ ⎟= − ⋅ =
+ ⋅⎜ ⎟+ +∆ ⋅⎝ ⎠

+∆ + ⋅ +∆ ⋅ ⋅ − −
=

+ ⋅

2

'

11

2
1

 

( ) ( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )

( ) ( )( )
( )pr fb pr fb

pr fb pr

W s W s W s W s W s W s
G s G s

W s W s W s W sfb

− − ∆ ⋅ ⋅ ∆
⋅ = ⋅

+ ⋅ + ⋅

2

2 2 .
1 1

 (17.7) 

 
To compare the qualities of closed- and open-loop systems we find 

relative changes of their output images. 
For the open-loop system we get 
 

( )
( )

( ) ( )
( ) ( )

( )
( )

Y s W s U s W s
Y s W s U s W spr pr

.
∆ ∆ ⋅ ∆

= =
⋅

                      (17.8) 

 
For the closed-loop system we obtain 
 

( )
( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( ) ( )
( ) ( )( )

prW s G s W s W s W s W sY s fb pr
Y s W s W sW s W s W s G s pr fbpr prfb

2

1
.

11

∆ ⋅ ⋅ + ⋅ ∆∆
= =

+ ⋅+ ⋅ ⋅ ⋅

  (17.9) 

 
Thus, the relative change of the output image for the closed-loop 

system is ( ) ( )( )W s W spr fb1+ ⋅  times less than for the open-loop system. 

So the closed-loop system is less sensitive to the parametric variations 
than the open-loop system. 

To reduce the closed-loop system sensitivity to the parametric 
variation we the following condition be satisfied in the whole range of the 
operating frequencies 

 
  ( ) ( )( )W s W spr fb1 1.+ ⋅                  (17.10) 

 
How can the sensitivity be estimated in terms of quantity? 
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The sensitivity function V  was first formally determined in 1945 by the 
American researcher H.W. Bode in order to estimate the influence of the  
resistor R  resistance value on the amplifier gain k   

.
R
KV K

R ∂
∂=                                       (17.11) 

The sensitivity function can become the quantitative estimation of the 
ACS as the sensitivity function is a particular derivative of the observable 
quality parameter J  at the parameter p , which changes under the 
environmental influence  

.
p
JV J

p ∂
∂=                                        (17.12) 

Along with the sensitivity function V  the relative sensitivity S  
determined by the formula  

J
p

J JS
p p

∆
=
∆

                                     (17.13) 

can be used. 
At small deviations of the parameter p  and at the transition to the limits 

we obtain 
J
p

J pS
p J
∂

=
∂

.                                     (17.14) 

Now we calculate the sensitivity of the open-loop system transfer 
function to the parametric variation 

 

 ( ) ( )
( ) ( )

Wрr
Wрr

W s W spr prS
W s W spr pr

∂ ⋅
= =
∂ ⋅

1.                        (17.15) 

 
Thus, all the open-loop system parametric variations affect its output 

directly. To compensate the open-loop system output variations we should 
know its parameters (both old and new) precisely. 

Now we calculate the sensitivity of the closed-loop system transfer 
function 

( )
( )

( ) ( )
W sprs

W s W spr fb1
Φ =

+ ⋅
                       (17.16) 

 
to the parametric variations W pr

SΦ  by the definition 

( ) ( )
( ) ( )W pr

s s
S

W s W spr pr
Φ ∂Φ Φ

= =
∂
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

fb fb pr pr pr fbW s W s W s W s W s W s W spr

W s W s W spr prfb

1 1
2

1

+ ⋅ − ⋅ ⋅ ⋅ + ⋅
= =

+ ⋅ ⋅

 

( ) ( )W s W spr fb

1 .
1

=
+ ⋅

                                 (17.17) 

 
 
We can see from the last expression, that the closed-loop system 

sensitivity Ф
Wpr

S  can be reduced in comparison with the open-loop system 

sensitivity 
W pr
W pr

S  by increasing ( ) ( )W s W spr fb,  in the whole range of the 

operating frequencies. The process parameter values can be determined 
less precisely for the closed-loop system. 

Let us calculate the closed-loop system sensitivity to the change of the 
feedback transfer function 

 
( ) ( )
( ) ( )

Ф
W fb

fb fb

s s
S

W s W s
∂Φ Φ

= ≈ −
∂

1.                        (17.18) 

 
The feedback changes affect the output changes directly. Thus it is 

very important to use such feedback components which change little 
during the utilization. 

If transfer function is submitted as a fraction  
 

( ) ( )
( )

B s
s

D s
,Φ =                                       (17.19) 

 
then the sensitivity to the p  parametric variation can be calculated as follows  

 
( ) ( )
( ) ( )

( )Ф
p

s s ln s p
S

p s p s lnp
∂Φ Φ ∂ Φ

= = =
∂ ∂

,
 

 
( ) ( ) B D

p p
lnB s p lnD s p

S S
lnp lnp

∂ ∂
= − = −

∂ ∂
.

, ,
               (17.20) 
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Example 1 
 
We have the inverting amplifier based on the operation amplifier (OA) 

(Fig. 17.3). 

 
 

Figure 17.3 – The inverting amplifier 
 
The gain of the modern operational amplifier is 410A ≥ . 
The OA input current is negligibly small because of the high input 

resistance. Therefore for the inverting input of OA we can write down  
 

U UaU U outain U AUaoutR R1 2
, .

−−
= = −  

 
We exclude the potential of a  point aU  from these equations 
 

outin out outU U UU
R A R A R R

+ = − −
⋅ ⋅1 1 2 2

. 

 
The output signal can be expressed  in terms of the input 
 

R U R Uout A R U A R Uout out in2 1 1 2⋅ + ⋅ + ⋅ ⋅ = − ⋅ ⋅  

or                    A R RU U U Uout outin inR R A R R
2 2

1 2 1 1

⋅
= − ⋅ → ≈ − ⋅

+ + ⋅
, 

RA
R R A RU Uout inA R R R A R
R R

2

1 2 2

1 1 2 1

1 2

,
1

⋅
+ ⋅

= − ⋅ Φ = −
⋅ + + ⋅+
+

. 

 
The equivalent block diagram of the inverting amplifier looks like 

(Fig. 17.4). 
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Figure 17.4 – The equivalent diagram 
 
We can calculate the system sensitivity to the parameter A  at 
 

A 410= ; R MOhm1 0,1= ; R MOhm2 1= . 

АS
А А W Wpr fb

A R
R R

Φ ∂Φ Φ
= = =
∂ + ⋅

= = ≈
⋅ ⋅+ ++ +

4 5
1

5 61 2

1
1

1 1 0,001.
10 101 1
10 10

 

 
Thus, the inverting amplifier is almost tolerant to the change of the 

parameter A . 
We calculate the system sensitivity to the change of the feedback 

element R2  by the formula 
 

( )( )
( ) ( )R
A R R A R A R R R A RS

R R R R A RR R A R A R
1 2 1 2 2 1 2

22
2 2 1 2 11 2 1 2

1.Φ − ⋅ + + ⋅ + ⋅ + ⋅∂Φ Φ
= = = ≈
∂ + + ⋅+ + ⋅ ⋅ − ⋅

 

 
The feedback resistance R2  change affect the inverting amplifier output 

change directly. 
The concept of sensitivity is now applied to the ACS analysis, 

identification and synthesis. We can consider the sensitivity of the output, the 
transfer function, the quality criterion to the parametric, disturbance and 
controlled variations. 

We form the sensitivity equation to the change of the parameter p  for 
the system 

 ( )x f x u t p= , , , .                               (17.21) 

We introduce the sensitivity function x
p

xV
p

∂
=

∂
 and differentiate the 

state equation of system by the parameter p  
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  dx f x f
p dt x p p
∂ ∂ ∂ ∂

= ⋅ +
∂ ⋅ ∂ ∂ ∂

,                                    (17.22) 

x
p

f fV V
x p
∂ ∂

= ⋅ +
∂ ∂

.                                       (17.23) 

From this equation we can find V .  
We write down the scalar form of the system equation 

( )x f x u t p i ni i , , , , 1,2, ..., .= =                          (17.24) 
Then we introduce the sensitivity function to the vector parameter  

p

p
p

p

1

2
...

4

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, xi
pk

xiV   i n   k m
pk

, 1,2,..., ; 1,2,..., .
∂

= = =
∂

         (17.25) 

The scalar form of the sensitivity equation is the following 
xi
pk

n f fxi iiV V i n k mpkx pj p j k
, 1,2,..., ; 1,2,..., .

∂ ∂
= ⋅ + = =∑

∂ ∂=
    (17.26) 

These equations are linear against the sensitivity function 
xi
pk

V . By 

solving them we obtain the sensitivity function of any state variable 
( )ix i n1,2,...,=  to any parameter ( )kp k m1,2,...,= . 

For linear systems we have 
 

x x
p p

A Bx A x B u   V A V x u
p p

, .∂ ∂
= ⋅ + ⋅ = ⋅ + +

∂ ∂
               (17.27) 

 
Or in the scalar form 

xxn r n n rjij ili
i ij j il l ij j lp pk kj l j j lk k

a b
x a x b u ,   V a V x u

p p= = = = =

∂ ∂
= + = + +∑ ∑ ∑ ∑ ∑

∂ ∂
.

1 1 1 1 1
       (17.28) 

 
Example 2. 
To find the output sensitivity function to the change of parameters k  

and T  for the object which has the transfer function 

( ) ( )
( ) s

Y s kW s
U s T

.
1

= =
+

 

We write the input-output equation 
 

( ) ( )tkUty
dt
dyT =+  . 
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Then ( ) ( )dy ky t u t
dt T T

1
= − +  or kx x u

T T
1 ,= − + kA    B

T T
1 ; .= − =  

 
We introduce two sensitivity functions 
 

yx x y
k k T T

y x y xV V V V
k k T T

, .∂ ∂ ∂ ∂
= = = = = =

∂ ∂ ∂ ∂
 

 
We differentiate the object equation by the parameter k  

x
kV V UkT T

1 1
= − +  and get ( )x

k

t
TV t e U01

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 at ( )U U00 = . 

We differentiate the object equation on the parameter Т: 
 

( ) ( ) ( )ty2T
1tU2T

ktTV
T
1V x

T ⋅+⋅−⋅−=  

and get  

( ) ⎟
⎠

⎞
⎜
⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ⋅−⋅
−

−=
T
Uk

T
yT

t
e1tV x

T
. 

 
The output deviation at the change of both parameters is 
 

( ) ( )y y
k Ty V t k V t T∆ = ⋅ ∆ + ⋅ ∆ . 

 
The frequency characteristics has the following form 
 

( ) ( ) A
k k

k AA arctgT    V V
k kT T

ϕ∂ ∂ϕ
ω = ϕ ω = − ⋅ω = = = =

∂ ∂⋅ ω + ⋅ω +

1; ; ; 0.
2 2 2 21 1

 

The sensitivity functions of these characteristics to the parameter T  are 
as follows 

 
( )

( )
A

T
A kV

T T

2

3 22 2
,

1

∂ ω ω
= = −

∂ ⋅ ω +
 

( )
TV

T T
,2 2 1

ϕ ∂ϕ ω ω
= =

∂ ⋅ ω +
 

( )
( )

kA k T   
T T

2

3 22 2

1 ,
2 21 1

ω
∆ ω = ⋅ ∆ − ⋅ ∆

⋅ ω + ⋅ω +
( ) T

T 2 2 .
1

ω
∆ϕ ω = ⋅ ∆

⋅ ω +
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Terms: 
– sensitivity,  
– relative sensitivity,  
– sensitivity function. 

 
Comprehension questions 

 
1. What is the sensitivity of the system? 
2. How can we estimate the sensitivity quantitatively? 
3. How can we estimate the relative sensitivity quantitatively? 

 
 

Lecture № 18 
 

METHODS OF PROVIDING THE REQUIRED ACS ACCURACY 
 
Lecture outline: 

1. The providing of the required ACS astatism order. 
2. The selection of the required open-loop system gain. 
3. The scaling of the reference action and the feedback signal. 
4. The combined control. 

 
18.1. The providing of the required ACS astatism order 

 
The accuracy of the automatic control system is determined by its 

structure, parameters and input actions ( )g t  and ( )f t . 

The error formula caused by the reference and disturbance actions 
have been earlier obtained  for the systems which have one input, one 
output and the single negative feedback (Fig. 18.1) 
 

r
r

g s

s g r !lim ,
s K

ν

νε
−

→
=

+0
                                    (18.1) 

 
M r

f r
f s

s K f r !
lim

s K

ν

νε
− −

→
=

+0
.                                     (18.2) 
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Figure 18.1 – A system with one reference input, one output and the 
unit negative feedback 

 
These formulae imply the possibility to increase the accuracy by 

increasing the astatism order, i.e. by the introduction of integrators. The 
integrators should be introduced to the system till the point of the disturbance 
application is reached in order not to raise the µ-number  that is the 
number of integrators in the open-loop system transfer function at the 
reference action. reqν  is defined by the permissible static stε  and velocity 

velε  errors: 

 
– if st .perm ,ε ≠ 0  then req ;ν = 0  

– if st .perm ,ε = 0  then req ;ν = 1  

– if vel .perm ,ε = 0  then req .ν = 2  

 
Let the astatism order ν  be equal to zero, i.e. the system has no 

integrators. We do not change the transfer coefficient K , reqν = 1 . We 

introduce the integrator s1  ν = 1. The logarithmic phase-frequency 

characteristic lowers on π− 2 . The inclination of the logarithmic amplitude-

frequency characteristic raises on dB
dec

20− . The bandwidth decreases. 

The line ( )ϕ ω π= −  intersects with the logarithmic phase-frequency 

characteristic at the inclination dB
dec60 40− ÷− . The process becomes 

oscillating. The setting time st  increases. The quality parameters 

deteriorate. The system can become unstable (Fig.18.2). 
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Figure 18.2 – Bode diagrams 
 

The introduction of an isodrome link is a more suitable way to 
increase the astatism order  

 

( ) is
C is

T sW s k .
s

1+
=

                                     
(18.3) 

 
This link changes the system logarithmic amplitude-frequency 

characteristic and logarithmic phase-frequency characteristic at the low 
frequencies and does not introduce changes at the middle and high 
frequencies, what allows raising the steady-state ACS accuracy without 
aggravating the system quality parameters in a transient mode (Fig. 18.3). 
To eliminate the velocity error velε  one more isodrome link should be 

introduced. 
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Figure 18.3 – Bode diagram for the isodrome link 

 
18.2. The selection of the required open-loop system gain 

 
The simplest way to increase the ACS accuracy is increase the open-

loop system gaink . As it follows from the error formula, the transfer 
coefficient should be increased for those blocks which are located 
between the comparing device and the point of the disturbance 
application ( )f t .  

The required value reqk  can be obtained from the conditions  

g permε ε≤  and f f permε ε≤  and (18.1), (18.2). The greater value reqk   is 

chosen from the two obtained.  
If the k  is increased, the open-loop system LAFC rises, the cutω , the 

bandwidth and the swiftness of system are enhanced. But this results in 
the increase of Mσ,  and the reduction of m m, Lγ . The system can 

become unstable. The correcting device should be introduced to provide 
the required quality measures m m,M , ,Lσ γ . 

 
18.3. The scaling of the reference action and the feedback signal 

 
18.3.1. The scaling of the reference action 

 
We introduce the correcting device ( )cW s  to scale the reference 

action (Fig.18.4). In this case the comparing device output signal is not 
equal to the error 
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Figure 18.4 – The scaling of the reference action 
 

z g y .= − ≠1 ε                                             (18.4) 
 
We calculate the transfer function of the correcting device ( )cW s  

which provides the increase of the ACS accuracy  
 

( ) ( ) ( )E s G s Y s ,= −                                  (18.5) 

( ) ( )
( ) ( )E s

s s ,
G sεΦ = = − Φ1  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

c cW s W s W s W s W s
s .

W s W sε
+ −

Φ = − =
+ +

1
1

1 1
            (18.6) 

 
If we choose 
 

( ) ( )
( ) ( )c

W s
W s ,

W s W s
1 11
+

= = +                        (18.7) 

then ( )sεΦ = 0  and the system has no error ε  at any reference action. The 
system, for which ( )sεΦ = 0 , is called absolutely invariant at the reference 
action. 

However, the transfer function 
( )W s
11+  cannot always be realized. 

So if 

( )
m m

m
n n

n

b s b s ... bW s , m n,
a s a s ... a

−

−
+ + +

= <
+ + +

1
0 1

1
0 1

                (18.8) 

then the order of the ( )cW s  transfer function numerator turns out is higher 
than that of the denominator, and the function is unrealizable. In this case 
transfer function ( )cW s  is realized approximately so that the order of 
numerator was not higher than the denominator. In this case we say that 
the system is invariant to ε , i.e. it has an error. In the elementary case we 
choose 
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( )cW s
k

= + 11                                         (18.9) 

 
then the steady-state error stε  at the constant action g const=  will be 
absent. The system became astatic without introducing the integrator. 

 
18.3.2. The scaling of the feedback signal 

 
We introduce the correcting device ( )cW s  to the feedback (Fig. 18.5). 

In this case the comparing device output signal is not equal to the error ε  
because z g y= − ≠ ε1 . 

 

 
 

Figure 18.5 – The scaling of the feedback signal 
 
We calculate the system transfer function by the error 

 
( ) ( ) ( )E s G s Y s ,= −  

( ) ( )
( ) ( ) ( )

( ) ( )c

E s W s
s s

G s W s W sεΦ = = − Φ = − =
+

1 1
1

 

( ) ( ) ( )
( ) ( )

c

c

W s W s W s
.

W s W s
+ −

=
+

1
1

                            (18.10) 

 
If we choose 
 

( ) ( )
( ) ( )c
W s

W s ,
W s W s

1 11
− +

= = −                      (18.11) 

 
then ( )s .εΦ = 0  

The system will be absolutely invariant at the reference action. Such 
correcting device can be realized at m n=  and becomes unrealizable at 
m n< . 

The transfer function can be realized accurately within ε  
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( )
( )cW s .

W s
≈ − 11                                   (18.12) 

In the elementary case we choose ( )cW s
k

= − 11  to eliminate the 

static error stε . 
Example. 
We introduce the correcting device ( )cW s  to the ACS which structure 

is shown at the Fig. 18.6 for the static and velocity errors to be absent in 
the system, i.e. stε = 0  and vel 0ε = . It is equivalent to the requirement of 

providing the astatism order v = 2  without introducing the integrators. 
 

 
 

Figure 18.6 – The scaling of the feedback 
 
We write down the system transfer function by the error 
 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )c

E s W s W s
s s

G s W s W s W sεΦ = = − Φ = −
+

1 2

1 2
1 1

1
 

 

and choose ( ) c
c

c

kW s
T s

=
+1

. 

Then 
 

( ) ( )
( )( )( )

( )( )( ) ( )
( )( )( )

c

c c

c c c

c c

k k T s
s

T s T s T s k k k

T s T s T s k k T s k k k
.

T s T s T s k k k

ε
+

Φ = − =
+ + + +

+ + + − + +
=

+ + + +

1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2

1
1

1 1 1

1 1 1 1
1 1 1

 

 
The absolutely invariant system in this case is not realized, as 

m n, m< = 0  and n= 2 . 
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To provide stε = 0  it is necessary to secure the equality nc 0=  in the 
transfer function 

 

( )
n n

n n
n n

n

c s c s ... c s cs ,
a s a s ... a

−
−

ε −
+ + + +

Φ =
+ + +

1
0 1 1

1
0 1

 

 
where n cc k k k k k= − +1 2 1 21 . 

We choose ck
k k

= −
1 2

11 .  

To provide velε = 0  we secure the equality nc − =1 0 . 

Therefore, we choose cT  from the condition 

 

n c cc T T T k k T− = + + − =1 1 2 1 2 0 . 
 

Thus we get c
T TT
k k

+=
−

1 2

1 2 1
.  

 
18.3.3. The scaling of both the reference and feedback signals 
 
We introduce two compensating devices ( )cW s1  and ( )cW s2  

(Fig.18.7). 
 

 
 

Figure 18.7 – The scaling of both the reference and feedback signals 
 
We calculate the system transfer function by the error 
 

( ) ( ) ( ) ( )
( ) ( )

c

c

W s W s
s s

W s W sεΦ = − Φ = − =
+

1

2
1 1

1
 

( ) ( ) ( ) ( )
( ) ( )

c c

c

W s W s W s W s
.

W s W s
+ −

=
+

2 1

2

1
1

                       (18.13) 
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If we choose the correcting devices ( )cW s1  and  ( )cW s2  which satisfy 
the equality 

 

( ) ( ) ( )
( )

( )
( )

c
c c

W s W s
W s W s

W s W s
−

= = −1
2 1

1 1 ,           (18.14) 

 
then the system is absolutely invariant at the reference action. To 
eliminate the static error we choose 
 

c ck k
k

= −2 1
1 . 

 
18.4. The combined control 

 
18.4.1. The combined control at the reference action 

 
Let us introduce the parallel correcting device (Fig. 18.8) and 

calculate the system transfer function by the error 
 

( ) ( ) ( )
( ) ( )

cW s W s
s

W s W sε
−

Φ =
+

2

1 2

1
1

.                              (18.15) 

 

 
 

Figure 18.8 – The parallel correcting 
 
We introduce the correcting device ( )cW s  to provide the control at 

both the deviation and at the reference action, i.e. ( )u u ,g= ε . 

If we choose ( )
( )cW s

W s
=

2

1 , the system will be absolutely invariant at 

the reference action. In the elementary case we choose ck
k

=
2

1  to secure 

st 0ε = .  
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18.4.2. The combined control at the disturbance action 
 
We introduce the compensating device ( )cW s   to secure the equality 
( )u u , f= ε  (Fig. 18.9). 

 

 
 

Figure 18.9 – The compensation control 
 
To get the absolutely invariant system at the disturbance action we 

should secure ( )f sΦ = 0 . 
Let us calculate the system transfer function at the disturbance 
 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

c
f inv

Y s W s W s W s W s W s
s .

F s W s W s W s
− +

Φ = = =
+

4 3 2 3

1 2 3
0

1
    (18.16) 

 
This implies the following condition 
 

( ) ( )
( )c

W s
W s

W s
= 4

2
.                                         (18.17) 

 
If it is impossible or difficult to realize this condition, we choose 

c
kk
k

= 4

2
 to secure f st .ε = 0  

Let us estimate the system error fε  if ( ) ( )
( )c

W s
W s

W s
≠ 4

2
 by calculating 

the closed-loop system transfer function at the disturbance 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

c
f inv

W s W s W s W s W s
s

W s W s W s
4 3 2 3

1 2 31
− +

Φ = =
+
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( ) ( )
( ) ( ) ( )

( ) ( )
( )

( ) ( )c
f c

W s W s W s W s
s s .

W s W s W s W s
4 3 2

1 2 3 4
1

1

⎡ ⎤
⎢ ⎥=− − =Φ Φ⎢ ⎥+ ⎢ ⎥⎣ ⎦

    (18.18) 

 
We designate ( ){ } ( )c cL s t− Φ = ϕ1 . 
I.e. the system can be presented as at the Fig. 18.10. 
 

 
 

Figure 18.10 – The equivalent presentation of the system 
 
Then 

( ) ( ) ( ) ( ) ( ) ( )inv f c cY s s s F s s Y s .=Φ Φ =Φ             (18.19) 
We go to the originals 

( ) ( ) ( ) ( ) ( ) ( )
t t

r r
inv c cy t y t d y t y y ... y R d

! r !
⎡ ⎤= ϕ τ − τ τ = + τ + τ + + τ + ϕ τ τ⎢ ⎥⎣ ⎦

∫ ∫ 2

0 0

1 1
2

  

(18.20) 
and introduce the coefficients 
 

( )
t

i
i cc d

i ! 0

1
= τ ϕ τ τ∫ .                               (18.21) 

 
Subject to these designations we get 
 

( ) ( ) ( )
tr i

inv i c
i

y t c y R d .
=

= + ϕ τ τ∑ ∫
0 0

                     (18.22) 

 
If all ic , i , , , ...,= =0 0 1 2  then ( )invy t = 0  and the system is absolutely 

invariant at the disturbance action. 
If not every ic = 0 , system is invariant to ε . 
At c =0 0  f st .ε = 0  
At c c= =0 1 0  f st f vel .ε = ε = 0  

It is convenient to increase of the astatism order by introducing the 
combined control as this method does not change the poles of the initial 
system but adds the pole of the compensating device. So the introduction 
of the stable compensating device preserves the stability of the initial system. 
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Terms: 
– isodrome link, 
– invariant system,  
– scaling of the reference action, 
– scaling of the feedback signal, 
– combined control. 

 
Comprehension questions 

 
1. What devices should be introduced to increase the accuracy? 
2. What permissible errors the required astatism order is determined 

by? 
3. How should we change the system gain in order to increase its 

accuracy? 
4. How does the LAFC change at the increase of the coefficient k ? 
5. What device should be applied for scaling the reference action? 
6. Is the comparing device output signal equal to error? 
 
 

Lecture № 19 
 

THE ACS CORRECTION 
 
Lecture outline: 
1. Correcting devices. 
2. Synthesis of the serial corecting devices with help of logarithmic 

amplitude - frequency characteristic. 
 

19.1. Correcting devices 
 

19.1.1. Kinds of correcting devices 
 
We introduce the correcting devices to the system in order to secure 

the ACS stability and the required quality parameters (Fig. 19.1). 
According to the point of connection the correcting devices are 

divided into following kinds: 
- serial (CD1); 
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- feedback (CD2); 
- parallel (CD3). 

 
Figure19.1 – The automatic control system 

 
In Fig. 19.1 the following marks are used: 
RD is a reference device; 
R is a regulator; 
PA is a preliminary amplifier;  
CD1, CD2, CD3 are correcting devices; 
A is an amplifier; 
M is a motor; 
P is a plant; 
S1, S2 are sensors. 
A serial CD1 is connected after the comparing device or after the 

preliminary amplifier. 
A feedback CD2 covers the power amplifier A and/or the motor M 
 

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

A M
eq

CD A M CD S

U s W s W s
W s

U s W s W s W s W s
= = ≈

+1 2 11  

( ) ( )CD S
.

W s W s
≈

2 1

1                                          (19.1) 

 
By the form of describing equations correcting devices are  divided 

into linear and nonlinear. 
The correcting devices can be passive (without the additional source 

of energy) and active (with the additional source of energy), continuous 
and discrete (depending on the nature of process).  

By the type of the current correcting devices are divided into the 
devices of direct current and the devices of alternating current. The active 
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linear serial and feedback continuous devices of direct current are used 
the most widely. 

19.1.2. The ACS stabilization and damping by introducing the 
phase lead 

 
Let us consider the system (Fig.19.2) which has the transfer function 

 

( ) ( )
( ) ( )( )

Y s kW s .
G s S T s T s

= =
+ +1 21 1

                        (19.2) 

 

 
 

Figure 19.2 – Considered system 

 

This system has the frequency characteristics shown at the Fig. 19.3. 
 

 
Figure 19.3 – Nyquist and Bode diagrams 
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This system has st vel
V

V, .kε = ε =0  to decrease the velocity error velε  

we should increase the system gain. Thus, the amplitude-phase frequency 
characteristic extends and can cover the point ( ), j− 01 . The system can 

become unstable. To provide the required stability we introduce the phase 
lead correcting element, e.g. the phase lead proportional-differential link 
(Fig. 19.4). 

 
 

Figure 19.4 – Phase leading link 
 

The correcting device transfer function is determined by the formula 

 

( ) ( )
( )

( )
( ) ( ) ( )

( )

out
cd

in

U s Z s RW s
U s Z s Z s R Cs R

R Cs

= = = =
+ ⋅

+
+

2 2

1 2 1
2

1

1

1
 

( )
( )( )

( )cd cd

cd

k T sR R Cs
,

R R R Cs T s
++

= =
+ + +

12 1

1 2 1 2

11
1 1

                  (19.13) 

 

where cd
Rk ,

R R
=

+
2

1 2
 cdT R C ,=1 1  cd

R R CT ,
R R

=
+

1 2
2

1 2
 cd cdT T>1 2 . 

 
The Bode diagram of this link is shown at the Fig. 19.5. 
The system regains stability. Thus we increase the cutoff frequency 

cω  and the system swiftness but the noise immunity goes down. 
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Figure 19.5 – Bode diagram of the phase-leading link 
 

19.1.3. The ACS stabilization and damping by suppressing the 
middle frequencies 

 
We can secure stability with the help of proportional integral-

differential link (Fig. 19.6) 
 

( ) ( )( )
( )( )CD
T s T s

W s .
T s T s

+ +
=

+ +
1 2

3 4

1 1
1 1

                          (19.4) 

 

 
 

Figure 19.6 - Proportional integral-different link 
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Let T T T T .> > >3 1 2 4   

This link suppresses the middle frequencies and provides the 
noncoverage of the points ( ), j−1 0  by the amplitude – phase frequency 

characteristic. 
 

19.1.4. The increase of the ACS swiftness by applying the feedback 
 to the inertial elements 

 
We consider the aperiodic link (Fig. 19.7), 
 

 
 

Figure 19.7 – Feedback using 
 

which has the transfer function 
 

( ) ( )
( )

outU s kW s
U s Ts

= =
+ 1

. 

 
Let us cover it by the negative feedback with the help of the 

proportional link fbk . After the correction we get 

 

( ) ( )
( )

( )
( )

out

fb fb

U s W s kW s .
U s W s k Ts k k

= = =
+ + +1

1 1 1
         (19.5) 

 
Let us present the transfer function of the correcting link in the 

standard form 
 

( )
fb fb

k k TW s , k , T .
T s k k k k

= = =
+ + +
1

1 1 1
1 1 1 1

             (19.6) 
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Figure  19.8 – Results of feedback using 
 

During such correction the nature of the link isn't changed. The link 
remains aperiodic but the time constant and the gain of the link decreased 
when the negative feedback was introduced. To compensate the gain 
decrease we use the preliminary amplifier with pa fbk k k= +1 .  

The link swiftness is increased at the expense of the gain increase or 
the input increase. The coverage of the aperiodic link by the negative 
feedback is equal to introducing the serial proportionally - differential link. 
With the help of the feedback we can change not only parameters but the 
nature of the link as well. For example, the integrator can be transformed 
into the aperiodic link. 

 
19.2. Synthesis of the serial compensating devices with help of 

logarithmic amplitude - frequency characteristic 
 
The part of system (the controlled object, the power amplifier, the 

actuator, sensors, etc.) is usually given before designing the ACS. The set 
of the quality parameters st vel m m s, , , M , , L , tε ε σ γ  is made the demand to 

the system. We should determine, what compensating device should be 
introduced to the system to implement the requirements to the control 
quality. There are some methods of solving this problem. 
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Let's consider the method of synthesizing the serial correcting devices 
with help of the open-loop system logarithmical amplitude frequency 
characteristics (LAFC). 

1. Using the preset values st vel harm, ,ε ε ε  which describe the system 
accuracy at the steady-state mode we determine the required order of 
astatism and reqν  the open-loop system gain reqk . 

The required astatism order reqν  at the reference action is provided 
by introducing the necessary number of integrators to ( )W s . The required 
astatism order at the disturbance action (ν-µ ) is provided be introducing 
integrators up to the point of the disturbance application. The required 
gain reqk   is secured by the preliminary amplifier located before the point 
of the disturbance application. 

 If the input action ( ) ( )kg t a sin t= ω  and permissible harmonical error 

harmε  are given, we should find the control point L′  on the open-loop 
system LAFC (Fig.19.9). The system of the required astatism order and 
the required gain is called the available system. Its transfer function is 

 

( ) ( )
( )req

req
av

k ...
W s .

s ...ν=                                 (19.7) 

2. Knowing the transfer function ( )avW s  we build the asymptotic 
LAFC of the available system ( )avL ω .  It should go over the control point 
L′ . 

3. According to the requirements s,t ,M ,σ  which determine the 
transient performance, we build the middle frequency segment of  the 
desirable LAFC ( )dL ω . 

A low-frequency segment of the desirable LAFC is superposed with the 
low-frequency segment of the available LAFC. The high-frequency segment 
of the LAFC lies far below the axis lgω .  The transfer coefficient at the high 

frequencies is small; therefore the signal does not pass through system. 
Consequently the LAFC form at the high frequencies does not influence the 
ACS quality parameters. We draw a high-frequency segment of the desirable 
LAFC combining it with ( )avL ω   or parallel to the ( )avL ω   in order to simplify 

the required correcting device. 
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4. We find the LAFC of the serial correcting device ( )CDL ω  by 

subtracting the LAFC of the available system ( )avL ω  from the LAFC of the 

desirable system ( )dL ω . According to ( )CDL ω  we write down the transfer 

function (Fig. 19.10). 
 

 
 

Figure 19.9 – Control point 

 
 
 

Figure 19.10 – Desired system 
 

( ) ( ) ( ) ( ) ( )
( )

d
d cd av cd

av

W s
W s W s W s ,W s ,

W s
= =               (19.8) 

( ) ( ) ( )cd d avL L L .ω = ω − ω                          (19.9) 

 
5. In the tables of the correcting links we find the circuit of the 

correcting device which has the required LAFC ( )CDL ω  and calculate the 

parameters of the resistors and the capacitors which secure the necessary 
time constants. 

6. We build the step responses of the corrected closed-loop system 
and check whether the system satisfies the requirements. If it does not, 
we find out, which exactly parameter does not satisfy and change the 
correcting device. 

 
Example 
We have 
 

( ) ( )( )
kW s

T s T s
=

+ +1 21 1
, k , T . sec, T . sec,= = =1 250 0 5 0 05  
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st vel, . Vε = ε ≤0 0 01  if Vg Vt ,V , . Vsec= = ε ≤11 0 02  if 

( ) ( )g t a sin t ,= ω1  

s
rada . , , %, t secsec= ω = σ ≤ ≤10 04 5 30 1 . 

We should find the circuit and the parameters of the serial correcting 
device which secures the given quality parameters. 

The solution. 
To provide the required accuracy in the steady-state mode the system 

must have one integrator: reqν = 1. 

The required gain reqk  is calculated by the relation 

vel perm req
perm

V V, k seck .
ε = ≤ ε ≥ = =

ε
1 1100

0 01
. 

We introduce the preliminary amplifier with pak = 2 , as reqk
k

= =
100 2
50

 

and obtain ( ) ( )( )
req

av
k

W s
s T s T s

=
+ +1 21 1

. 

We build the asymptotic LAFC of the available system ( )avL ω  (Fig. 

19.11). 

 
Figure 19.11 - LAFC 
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We construct the desirable LAFC using the Solodovnikov nomograms 
(Fig.19.12) and check it. If it does not satisfy us, we lift the LAFC. 

 
Figure 19.12 – Nomograms of Solodovnikov 

 
We subtract ( )alL ω  from ( )dL ω  and find ( )CDL ω . Thus, we get 
 

( ) ( )( )( )
( )( )CD

T s T s T s
W s

T s T s

+ + +
=

+ +
4 1 2

2
3 5

1 1 1

1 1
. 

 
The circuit of such device is not in the table. We piece it of two and 

connect them in series through the preliminary amplifier (Fig. 19.13). 
 

 
 

Figure 19.13 – Correcting device 
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Terms: 
– correcting device, 
– serial, parallel, feedback correcting devices, 
– differential  link, 
– aperiodic  link, 
– preliminary amplifier. 

 
Comprehension questions 

 
1. Why do we introduce the correcting devices? 
2. What kinds of correcting devices do you know? 
3. Why do we need to increase the gain of the system? 
4. Which link can provide stability? 
5. What system is called available? 
6. How can we calculate the required number of the integrators? 
7. How can we calculate the required the open-loop system gain? 
8. How can we build the available LAFC? 
9. How can we build the desirable LAFC? 
10. How can we build the LAFC of the required correcting serial 

device? 
11. How can we find the transfer function of the correcting device? 

 
Lecture №20 

 
THE SYNTHESIS OF THE MODAL CONTROL SYSTEMS 

 
Lecture outline:  
1. The standard forms of the ACS characteristic polynomial. 
2. The modal control at the measurable state vector. 
3. The modal control by the part of the poles at the partly measurable 

state vector. 
 

1. The standard forms of the ACS characteristic polynomial 
 
One of the ACS designing methods is the method of modal control. The 

point of method is that the regulator is executed as a set of proportional 
connections at every state variable (Fig. 20.1). The coefficients ik  are 
chosen so that the poles of the closed-loop system are arranged as it is 
desired. A mode is the system constituent, determined by a certain pole. The 
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unchangeable part (UP) of the system consist of the plant, actuator, the 
power amplifier and the sensors.  

 
 

Figure 20.1 – Modal control system 
 
Thus, the desired characteristic polynomial of the synthesized system 

will have the known coefficients, e.g. 
 

( ) 1
0 1 0 0 0

0
n n i n i

n i

nnD s a s a s ... a a sdes
i

− −= + ω + + ω = ω∑
=

, 

 
where ω0  is a parameter which determines the real time of transitive 
process. The greater is ω0 , the faster the process progresses. 

There are different approaches to choose the desired location of the 
roots of the closed-loop system characteristic equation. If the chosen roots 
are real and identical ( is = −ω0 ), the characteristic polynomial becomes 
the Newton binomial 

 

( ) ( )
nn i n i i

des i i n
i

D s s a s ,a c ,i ,n−

=
= + ω = ω = =∑0 0

0
0 .           (20.1) 

 
The binomial coefficients are determined by the formula 

( )
i
n

n!c
i ! n i !

=
−

. In particular, na a= =0 1. 

The standard forms of this kind are called binomial. 
The closed-loop system transfer function is in this case as follows 

( ) ( )
( )

( )
( )des

Y s A s
s

U s D s
Φ = = .                              (20.2) 

The step responses of such systems for the relative time tτ = ω0  are 
presented at the Fig. 20.2. 
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Figure 20.2 – Standard step responses (a), Newton root location (b) 
 
The transfer function determining algorithm. 
1. To determine the system order n . 
2. To find the setting relative time sτ  for n . 
3. To calculate  

s

s permt
τ

ω ≥0                                              (20.3) 

 
by the permissible setting time s permt . 

4. To find ( ) ( )i desa ,D s , sΦ  (Table 20.1). 
The other well-known root location (suggested by Butterworth) is 

shown at the Fig. 20.3. The poles are disposed in the semicircumference 
of the radius ω0  in the left half plane (Fig. 20.3). The angle between the 
imaginary axis and the ray which goes through the nearest root ϕ1  is 

equal to the half of angle between the neighbour rays ϕ2 : ϕϕ = 2
1 2 .  

 

 
 

Figure 20.3 – Butterworth root location 
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The coefficients of the standard characteristic polynomials are shown 
at the Table 20.1, 20.2. 

 
Table 20.1 – Binomial standard coefficient 

 
Coefficients of binomial form Order of 

systems n    a0 a1 a2 a3 a4 a5 a6 a7 a8 
1 1 1 - - - - - - - 
2 1 2 1 - - - - - - 
3    1 3 3 1 - - - - - 
4  1 4 6 4 1 - - - - 
5  1 5 10 10 5 1 - - - 
6  1     6 15 20 15 6 1 - - 
7  1     7 21 35 35 21 7 1 - 
8  1     8 28 56 70 56 28 8 1 

 
Table 20.2 – Butterworth standard coefficient 

 

 
Butterworth standard step responses are presented in Fig. 20.4. 
 

 
 

Figure 20.4 – Butterworth standard step responses 
 

Coefficients of the Butterworth form Order of 
systems n a0 a1 a2 a3 a4 a5 a6 a7 a8

1 1 1 - - - - - - - 
2 1 1.4 1 - - - - - - 
3 1 2 2 1 - - - - - 
4 1 2.6 3.4 2.6 1 - - - - 
5 1 3.24 5.24 5.24 3.24 1 - - - 
6 1 3.86 7.46 9.13 7.46 3.86 1 - - 
7 1 4.5 10.1 14.6 14.6 10.1 4.5 1 - 
8 1 5.18 13.14 21.84 25.69 21.84 13.14 5.18 1
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The great number of other standard root locations is developed. 
 

20.2. The modal control at the measurable state vector 
 
All state variables can be measured. We should remove all n  poles to 

the desired points. 
We have the unchangeable part described by the equations  
 

x Ax Bu, y Cx= + = ,                                     (20.4) 
 

[ ] [ ] [ ]g u r ; y m= = = . 
 

Then  
 

( ) [ ] n n
nD s det sI A s a s ... a−= − = + + +1

1 .                       (20.5) 

 
Let us suppose the dynamic matrix A  has the controllable canonical 

form 
 

n n

A ; B .

a a a−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦1 1

0 1 0 0 0
0 0 1 0 0

0
0 0 0 1

1

            (20.6) 

 
If we close the system u kx g= − + . The desired characteristic 

polynomial is determined by the desired root location  
 

( ) n n
des nD s s s ... .−= + γ + + γ1

1                        (20.7) 
 
We should calculate K , which will secure the required coefficients of 

the characteristic polynomial (Fig. 20.5). 
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Figure 20.5 – Block diagram of the modal control system 
 

If r = 1 , the problem has a single solution.  
If, r > 1 , there are several solutions.  
We will present the closed system in the form of controllable 

canonical presentation (see Lecture №7) 
 

( ) clx Ax Bkx Bg A Bk x Bg A x Bg,= − + = − + = +            (20.8) 
 

where clA A Bk .= −  
Let’s find derided determinant 
 

( ) ( ) ( ) ( )des cl clD s D s det sI A Bk det sI A ,= = − + = −          (20.9) 
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⎢ ⎥ ⎢ ⎥
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1 1
(20.

10) 
 
Thus, 

n n n n n na k ,..., a k ; k a ,...,k a− − = −γ − − = −γ = γ − = γ −1 1 1 1 1 1  
or 
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 i n i n ik a , i , , ...,n.− + − += γ − =1 1 1 2                          (20.11) 
 
Example 
We have 
 

x x ,
x x x u,

=

= − + +
1 2

2 1 22 3
 

( )
a ; a ;

D s s s ;

= − =

= − +
1 2

2

3 2

3 2
 

s , s .= =1 21 2  
 
The location of the UP poles does not satisfy the requirements as the 

system is unstable (Fig. 20.6). 
 

 
 

Figure 20.6 – Given system (a) and its poles (b) 
 
We should find k , k1 2  which secure the poles of the closed-loop 

system λ = −1 3   and  λ = −2 1 . 
We determine the desired characteristic polynomial 
 

( ) ( ) ( )( ) ( )( )des clD s D s s s s s= = − − − − = + +23 1 4 3 . 
 
Its coefficients are , .γ = γ =1 24 3  

We calculate the coefficients of the regulator  
( )k a , k a= γ − = − = = γ − = − − =1 2 2 2 1 13 2 1 4 3 7 . 

The system which provides the required location of the poles is 
shown in Fig. 20.7. 
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Figure 20.7 – Synthesized system 
 

20.3. The modal control by the part of the poles at the partly 
measurable state vector 

  
It is possible to control all the poles using the state feedback if all n  

state variables are measurable. If some of them are not, the special 
devices are applied to determine nonmeasurable state variables by the 
measured signals u  and y . These devices solve the task of observing 

and are called observers, assessment filters or estimators 
We consider the system (Fig. 20.8) 

 
 

Figure 20.8 – Given system and simpliest observer 
 

x Ax Bu; y Cx,= + =                                (20.12) 
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where u  is an r -metrical vector, y  is an m -metrical vector. Both of them 
are accessible for measuring.  

Matrices A,B,C are known. 
We shall construct the model of the system with all the state variables 

( )x̂ t  measurable. 

The input signal ( )u t  is the same. We have 
 

( ) ( )ˆ ˆx t Ax t Bu= + .                                (20.13) 

 
The state variables in a model ( )x̂ t0  correspond to the state variables 

( )x t  if the initial conditions are established properly  ( ( ) ( )ˆx t x t=0 0 ). 

The disadvantage of this simplest observer is that it is operated in the 
open-loop mode. As the A, B,C system matrices and its initial state are not 
known exactly, and the system input deformations can not be introduced 
to the model accurately, the estimation of the state vector ( )x̂ t  after a 

certain period of model operation will strongly differ from the vector ( )x t . 
The simplest estimator does not use all present information about the 

system. The output vector ( )y t  does not participate in the ( )x̂ t  formation.  

We will improve the simplest estimator (Fig. 20.9). 
 

 
 

Figure 20.9 – System with Kalman observer 
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The system output signal ( )y t  is compared with the output signal of 
the estimator ( )ŷ t  and their difference is given to the estimator input  

 
( ) ( ) ( ) ( ) ( )ˆ ˆ ˆx t Ax t Bu t L y t y t ,⎡ ⎤= + + −⎣ ⎦  

( ) [ ] ( ) ( ) ( )
( ) ( ) ( )

ˆ ˆx t A LC x t Bu t LCx t ,

x t Ax t Bu t .

= − + +

= +
                          (20.14) 

This filter is called Ljuenberger, or Kalman, filter. 
We obtain the dynamic equation of the state vector evaluation error 

by subtracting the estimator equation from the system equation  
 

( ) ( ) ( )ˆx t x t x t ,= −  
( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )ˆ ˆ ˆx t x t x t A x t x t LC x t x t= − = − − −  

 
or 

 
( ) ( ) ( )x t A LC x t .= −                          (20.15) 

 
If the proper values of the A LC−  matrix have negative real parts 

then ( )x̂ t  will be equal to ( )x t  after the end of the estimator transitive 
process 

 
( ) ( )

t
ˆlim x t x t

→∞
= .                                  (20.16) 

 
The estimator dynamic properties depend on the L  matrix selection. 

By choosing the L  matrix elements, we can provide any desired set of the 
proper poles ns ,s ,...s1 2  of the matrix observer A LC− . 

If the initial system is observed, the estimator evaluates all n  state 
variables ( )ix t . If system is not fully observed, we can estimate only the 
observed part of the state vector. 

An estimating filter, in which ( ) ( )ˆx t x t− → 0 , is called asymptotic, its 
dimension equal to n . Therefore, it is called the filter of complete order. If 
some state variables are measurable, and we should estimate only the 
missing state vector variables, we can construct the estimating filter of 
incomplete order. 

Subject to the estimator application, the system of modal control has 
the following form (Fig. 20.10). 
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Figure 20.10 – Closed-loop system 
 

The feedback matrix k  is chosen so that the characteristic polynomial 
of the matrix ( A Bk− ) coincides with the desired 

 
( ) n n

des nD s s s ...−= + γ + + γ1
1 . 

 
The estimator is as follows 
 

( )ˆ ˆx A LC x Ly Bu= − + + .                                (20.17) 
 
Its characteristic polynomial 

( ) ( )n n
est n est desD s s s ... D s−= + β + + β =1

1  
 
can have any desired form.  

The control ˆu g kx= − . 
We shall consider the questions: Is it possible to obtain the desired 

characteristic polynomial in the closed-loop system? How does the 
estimator affect the system? 

We choose the matrix k  so that characteristic polynomial 

[ ] ( ) ( )desA BkD s D s− = , and we choose the L  matrix so that 

[ ] ( ) ( )est desA LCD s D s− = . Then the characteristic polynomial of the closed-

loop system 
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( )
ˆx Ax Bg Bkx,

ˆ ˆx A LC Bk x Bg LCx

= + −

= − − + +  
 
has the form ( ) ( ) ( )cl des estD s D s D s= .  

To prove this we go to the new state variable ˆx x x ,= −  
 

[ ]
[ ]

x A Bk x Bkx Bg,

x A LC x

= − + +

= −  
or 
 

x A Bk Bk x B
g.

A LC xx
⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ 0 0
 

 
Therefore,  

 

( ) ( )

( ) ( ) [ ] ( ) [ ] ( ) ( ) ( )

cl cl

des est desA Bk A LC

sI A Bk Bk
D s det sI A det

sI A LC

det sI A Bk det sI A LC D s D s D D .− −

− + −⎡ ⎤
= − = =⎢ ⎥− +⎣ ⎦

= − + ⋅ − + = = λ λ

0

 
 
Thus, the feedback chain and the estimator can be constructed 

independently. 
Example. We have the system (Fig. 20.11) 
 

 
 

Figure 20.11 – Example of unchangeable part 
 

x Ax Bu,
y Cx,
= +
=
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where [ ]A , B , C
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

0 1 0
1 0

0 0 1
. We reduce the system to the 

canonical form of the identification canonic presentation by the 
transformation matrix 

x u,
x x ;

=⎧
⎨ =⎩

1

2 1
 

( )UP
l

L ?, , . D s s .
l
⎡ ⎤

= − α = α = =⎢ ⎥
⎣ ⎦

1 2
1 2

2
0 0  

If the characteristic polynomial is given, we get 
l , l= γ − α = γ = γ − α = γ1 2 2 2 2 1 1 1 , 

 
 ( ) ( )ˆ ˆx A LC x L y Bu= − + +  

or  
ˆ ˆx x l

u
x̂ lx̂

⎡ ⎤ −γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−γ ⎣ ⎦⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

1 2 1 1

1 2 22

0 1
1 0

. 

 
Terms: 

– standard characteristic polynomial,  
– Newton root location,  
– Butterworth root location, 
–  modal control,  
– observer (estimator). 

 
Comprehension questions 

 
1. What is the Newton root location? 
2. What is the Butterworth root location? 
3. What is a modal control? 
4. How can we find the feedback coefficients? 
5. What is an estimator? 
6. How can we find the Kalman estimator coefficients? 
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Appendix A. Table of Laplace transform theorems 
 

Number Theorem Original Image 

1 Linearity  ( )
m

i i
i

a x t
1=
∑  ( )

m

i i
i

a X s
1=
∑  

2 Lagging ( )x t , 0− τ τ >  ( ) sX s e−τ  

3 Multiplication by t  ( )x t t  ( )dX s
ds

−  

4 Multiplication by ate−  ( ) atx t e , a 0− >  ( )X s a+  

5 Scaling  ( )x at , a 0>  
sX

a a
1 ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

6 Differentiation  
dx
dt

 ( ) ( )sX s x 0−

7 Integrating ( )
t
x d

0
τ τ∫  ( )X s

s
 

8 Initial value ( ) ( ) ( )
t s

x lim x t lim sX s
0

0
→ →∞

= =  

9 Final value ( ) ( ) ( )
t s

x lim x t lim sX s
0→∞ →

∞ = =  

10 Convolution  ( ) ( )
t
x x t d1 2

0
τ − τ τ∫ ( ) ( )X s X s1 2  
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Appendix B. Table of Laplace transforms 
 

Number Time function ( )x t , t 0>  Laplace transform ( )X s  

1 ( )tδ  1 

2 ( )t1  
s
1  

3 t  
s2
1  

4 nt  n
n!

s 1+  

5 ate−  s a
1
+

 

6 atte−  ( )s a 2
1
+

 

7 n att e−  ( )n
n!

s a 1++
 

8 ate1 −−  ( )
a

s s a+
 

9 ( )sin tω  
s2 2

ω
+ ω

 

10 ( )cos tω  
s

s2 2+ ω
 

11 ( )ate sin t− ω  ( )s a 2 2
ω

+ + ω
 

12 ( )ate cos t− ω  ( )
s a

s a 2 2
+

+ + ω
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