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1 Fundamental quantities and axioms of mechanics

1.1 Force. System of forces. Rigid body equilibrium

Statics is the branch of mechanics which treats of bodies that are at
rest or in the state of uniform motion. Statics studies the laws of
composition of forces and the conditions of equilibrium of engineering
structures under the action of forces.

Force is a fundamental quantity of mechanics. In mechanics, a force
can be defined as measure of mechanical interaction between bodies. As
a result of this interaction bodies can be accelerated or deformed (i.e.,
bodies change their shape). So when we say “a force acts on the body” we
know that there is another body acting as a source of the force.

The physical nature of forces is not studied in mechanics. We shall
distinguish forces solely by the mode of their interaction. A force may act
through direct contact like the elevating force acting on the airplane wing
in incident flow (close-range interaction), or it may act from a distance
like gravitational or magnetic attraction (long-range interaction).

In mechanics, force is determined by three characteristics: its
magnitude, direction and point of application. So it can be represented by
a vector whose length is equal to the force’s magnitude in scale. This
vector is applied at a given point and directed along the force direction.
Therefore, operations with forces obey the rules of vector algebra.

In the Sl system the unit of force is Newton (1 N); in the MKS system
it is one kilogram-force (1 kgf). The relation between these units can be
defined as follows:

I

S

A set of forces applied to a material object (point, body, system of
bodies) and treated as a group is called a system of forces or force
system.

. 1kgs~ 9,81 N ; IN ~0,102kgs .

Consider a body under the action of force system (FI,FZ,...,Fn).

If the physical state of the body does not change when we replace this

force system with another one Fl,;;Z,...,;;n), these force systems are

said to be equivalent. Equivalence of the force systems is designated as
follows:

(F,,Fz,...,F,,)~(751,752,...,75k) | (1.1)
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If system of force (1_”'.1,77.2,...,77'.") is equivalent to single force 7{. i.e.

[

(F],F2,...,F;:)~R : (1.2)

that force is the resultant of the force system. It means that the resultant force
R has the same effect on the body as the given force system

F] ,FZ,...,Fn ) .

A system of forces is said to be equilibrated (balanced), or
equivalent to zero, if under the action of this system a body is at rest:

(F,,Fz,...,in) ~0. (1.3)

Note, that if two forces are equivalent, then two vectors representlng
these forces are equal. However, the equallty of two vectors (F P)

does not mean that the forces are equivalent (F P)

There are several idealizations used in mechanics. One of these
idealizations is a rigid body. A body is called rigid if the distance between
any two points of the body does not change during its interaction with
other solids. Consequently, the angle between any two straight lines in the
body remains constant.

The following two reasons account for the introduction of the rigid
body model:

in many cases the deformation of a body is negligibly small as
compared with other results of force action, so we can treat the body as
rigid;

the conditions for a rigid body to be at rest, which the forces acting
on it must satisfy, are at the same time the necessary conditions of
equilibrium for any deformable body. So, statements of rigid body statics
can be used to study the equilibrium conditions of real physical bodies.

1.2 Statics axioms

As we know, an axiom is a statement that needs no proof. In statics,
axioms are the simplest and the most general laws, which are valid for
forces acting on the rigid body or applied to interacting bodies.

The first axiom states necessary and sufficient conditions under
which two forces form a balanced system.
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Axiom 1. A rigid body which is acted upon by two forces will be in
equilibrium if and only if the two forces have the same magnitude and the
same line of action but opposite sense. This case is shown in Fig.1.1.

P,

Fig. 1.1

The following two axioms formulate the simplest equivalence
operations with forces.

Axiom 2. The action of a given force system on a rigid body remains
unchanged if another balanced force system is added to, or subtracted
from, the original system. In a special case, in accordance with Axiom 1,
this balanced force system can consist of two equal and opposite forces
acting along the common line (Fig. 1.2).

Fig. 1.2

It follows from Axiom 2 (corollary) that a force may be applied at any
point on its given line of action without altering the resultant effects of the
force external to the rigid body on which it acts. The corollary is named the
principle of transmissibility.

When only the resultant external effects of a force are to be
investigated, the force may be treated as a sliding vector, and it is
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necessary and sufficient to specify the magnitude, direction, and line of
action of the force.
This can be easily proved by the following relations

—

— — —' — — — — —
Fp =FA;(FB,FB)~0;FA""(FA,FB,FB)NFB . (1.4)

But in some cases it is necessary to take into consideration the
position of the force application point. It will become evident when we
study the doctrine of parallel forces center and center of gravity.

Axiom 3 (the parallelogram law). Two forces applied at one point of
a body have as their resultant a force applied at the same point and
represented by the diagonal of a parallelogram constructed with the two
given forces as its sides (Fig. 1.3),

Fig. 1.3

i.e. a force system Fz,ﬁz) is equivalent to its resultant

—

F,,F2)~R | (1.5)

This resultant is denoted according to the rule of vector addition for
two vectors:

—

R=F,+F;, (1.6)

R=\F?+F}+2F,-F,cosa . (1.7)

Note that the first two axioms and principle of transmissibility are
valid only for rigid bodies, while the third axiom is also valid for any
deformable body.

The following axiom determines the relation between the forces of
interaction between two bodies.



Axiom 4 (principle of action and reaction). The forces of action
and reaction existing between contacting bodies are equal in magnitude
and act along the same line in opposite directions.

It means that if body 1 (Fig.1.4) acts on body 2 with the force Fu

and body 2 acts on body 1 with the force F::, these forces satisfy the
equation

FZI = —FIZ (1 _8)

and act along the same line.
It is important to remember that the forces of action and reaction

(e.g. F12 and F1)) do not form a balanced system of forces because
they are applied to different bodies.

Fig. 1.4

Axiom 5 (principle of solidification). If a deformable body is in the
state of static equilibrium, it would also be in static equilibrium if the body
were rigid.

It means that if a deformable body (structure, system of bodies, etc.)
is in the state of equilibrium, the rigid body produced from the deformable
body by solidification is at equilibrium too.

It follows from Axiom 5 that for a system of deformable bodies the
equilibrium conditions of a rigid body system are necessary, but not
sufficient.

1.3 Vector and axial moment of force

When we deal with the problem of equilibrium of a lever as the
simplest mechanism, we come to the notion of force moment. Let us
consider the first sort lever AOB (Fig. 1.5) with O as fulcrum (pivot).

Forces P and Q are applied to the ends of the bar perpendicular to

the AB. The equilibrium condition can be formulated in the following way:
to be in the state of equilibrium, the lever’s fulcrum must be situated at the
point dividing the distance between the points of the force application into
parts so that they are inversely proportional to the forces’ magnitudes.

7



Fig. 1.5

So it must be true that

o4_0 (1.9)
B P
or
P-0A=Q-AB . (1.10)

Thus, it follows from the theory of lever equilibrium that we should
pay attention to the force-by-distance product. Now, we will introduce the
notion of the moment of force about a point to generalize everything
discussed above.

The moment of a force about a center (point) is a vector whose
magnitude is determined as the product of the force magnitude and its
arm. The arm is the shortest (perpendicular) distance between the center
and the force’s line of action. The vector of moment is perpendicular to the

plane of the force and the center. The vector of moment is directed so that
the rotation is counter-clockwise when viewed from the end of the vector.

The moment of a force about the center O is denoted as Mo (F)

The following cross product conforms fully to the definition of a vector of
moment about the center

ﬁo(ﬁ)=7xﬁ, (1.11)

where 1-; is a position vector of the force application point relative to the center
O.



According to the definition of the cross-product the magnitude of
moment ﬁo (F) is equal to

MO(F)=r.F.sina=F-h. (1.12)

Now consider a triangle with a vertex located at the point O and a
base F (Fig. 1.6). The product F -h is equal to the doubled triangular

area; so the magnitude of moment ﬁo (F) can be expressed as

MO(F)=2S, (1.12a)

where S is OAB triangle area.

Fig. 1.6

Let O be the origin of the Cartesian rectangular coordinate system.
Thus, the position vector and force can be expressed as

17=—i.ox+7oy+7c.oz, (1.13)
- F + j-F +k-F,_, (1.14)

and the moment vector is



i ] k
MO(F)=I_;XF= X Yy z =;(sz—sz)+
F, F, F
+f(zFx—sz)+E(xFy—ny). (1.15)

On the other hand, a vector of moment can be resolved into
components along the coordinate axes

Mo(F)=T7 M, (F)+7T M, (F)+%k M, (F), (116

wherein MOx(F), M, (F), MOZ(F) are projections of the vector of

moment on the axes Ox, Oy, Oz respectively.
Comparing the equalities (1.15) and (1.16), we have

MOX(F)=y-Fz—Z°Fy :
M,,(F)=z-F,-2-F,, (1.17)

M, (F)=x-F,-y-F, .

Now let us introduce the notion of a force moment about the axis.
For this purpose we shall write the formulas that determine the moments
of a force about the points O and O, situated on the axis Oz (Fig. 1.7):

Th(?):?x?, (1.18)
Mo, (F):Zx?. (1.19)

Let us prove that the projections of force moments about the points
O and O, onto the axis Oz are equal

M, (F)=m, (F). (1.20)
10



Fig. 1.7

Proceeding from the vector subtraction rule (see vector triangle
00,4), we get

r=r-00; . (1.21)
00 does not have components along axes Ox, Oy. Therefore we
have
r]x = rx =X,
I, =r=y; (1.22)
r,=r,—00,.

By using formula (1.15), we can get the following expression for the

vector moment Mo, (77.)

T Tk

Mo, (75)= x y z-00,. (1.23)
F F F
X y V4

It follows that for the projection of vector Mo, (F) onto Oz
11



MOIZ(F)=x-Fy—y-Fx | (1.24)

Comparing this expression with the third formula from (1.17), we see
that the equality (1.20) holds. As point O, is arbitrarily chosen on axis Oz,

the following conclusion may be drawn: if we project the vector moment of
the force about the center lying on the axis, the result is independent of
the choice of the center on the axis. So, hereinafter we will use denotation

MZ(F) instead of MOZ(F), MOIZ(F). Let us call this projection of
vector moment Mo (F) onto axis Oz the moment of force about the axis
Oz, i.e.

Mz(f)=x-Fy—y-Fx. (1.25)

Analyzing formula (1.25), we may state that the moment of force
about axis Oz is determined by the following parameters: coordinates x

and y of the force application point and the force F projections F_ and

Fy onto axes Ox and Oy respectively. In its turn, the vector-position r and

the force F projections onto plane xOy are equal to

—

Fo=ix+jy, (1.26)
Fo=iF,+jF,. (1.27)
Let us calculate the cross product
7xy xfxy = (?x+7y)x(?Fx +7Fy) =
=k(xF, - yF,)=kM, (F) (1.28)

By termwise multiplication, we take into account the

— ey  enp ey e

equalitesi x j =k, jxi=-—k.
On the other hand (Fig. 1.7), we have
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— — -—

r Xny=k°

Xy

-—

F |-sina=k-

Xy

F

Xy

r
Xy

-h, (1.29)

r
xy

as -sina = h. Here h is the length of the perpendicular dropped from

point O onto the line of action of force ;: i.e. the arm of the projection

F ,, with respect to point O.
Comparing formulas (1.28) and (1.29), we get another formula for

the moment of force F about axis Oz:

MZ(F)=1‘FW‘-h | (1.30)

In accordance with this formula, the moment of force F about the

given axis (for example, Oz), may be obtained in the following three steps:

1) project the force onto a plane that is perpendicular to axis Oz
(plane xQy);

2) determine the arm h of the projection F' ., with respect to the point
of axis and plane intersection;

3) calculate the moment of force about the axis as the positive or
negative product of the magnitude of the force projection and its
arm.

The rule of axial moment Mz(;:) sign determination is as follows:

if a force tends to rotate a body counterclockwise, then the moment of
force MZ(F) is considered positive. Similarly, if a force tends to rotate a

body clockwise, then the moment of force is negative.

This means that steps 1, 2 and 3 of the procedure stated above are
valid for the axes of any direction irrespective of the frame of reference.

If the axial moment of force is equal to zero, in accordance with

formula (1.30): MZ(F) =0.If ny = (), the force and the axis are parallel;

if h=0, the force ny line of action passes through point O, i.e. the line

intersects the axis.

Evidently, both cases may be combined: the axial moment of a force
is equal to zero if the force and the axis are in the same plane.

In practice, it is convenient to determine a moment of force about
one of the coordinate axes by decomposing the force into two or three
components parallel to the coordinate axes. Then the moment of force

13



about the chosen axis is equal to the sum of the component moments
about this axis. The component arms are equal to the modulus of one of
the coordinates of the force application point:

F=F.+F,+F. (1.31)
M, (F)=m(F,)+m (F.); (1.32)
M,(F)=m,(F.)+m,(F.); (1.33)
M, (F)=m (F.)+m,(F,). (1.34)

Example. Force F is applied to the vertex of the rectangular
parallelepiped with edges a, b, ¢, where the force is directed along the
upper cube face (Fig. 1.8). Determine the moments of the force with
respect to coordinate axes Ox, Oy, Oz.

Fig. 1.8

Let us resolve force F into components along these axes
F=Fx+i:y , Fz =0
At the same time,

‘Fx =F-sina,

=F-.cosa , ‘Fy

14



wherein F is the magnitude of the force F
a b

cos@l=———; Sin@=————
Na® +b° Na®l +b°

Taking into account the conditions for the axial moment to vanish
and equalities (1.32) — (1.34), we obtain:

MX(F)=—Fy -c=—F%;

M, (F)=—[F.|-e=F— 2,

Ja’ +b°

.a:FL_

Ja’ +b°

1.4 Couple. Couple vector moment

w,(F)=IF,

A set of two equal noncollinear parallel forces of opposite sense is
called a couple. The plane containing these two forces is called a couple
plane.

Let us consider couple (?’,;' . IT is the couple plane.

Now we shall determine the sum of the vector moments of couple
forces with respect to the arbitrarily chosen center O (Fig. 1.9).

O




In accordance with the definition of a couple, we have

P'=-P. (1.35)
As we see from Fig. 1.9,
r=r—p. (1.36)

Thus we obtain
Mo(P)+Mo(P) =7 xP+rxP'=

7 xP+(r - 5)x(-F) -

=rxP- rxP+;).xi;=;x7”. (1.37)

The vector ;xf’—mx; does not depend on the location of
center O. It depends on the mutual Iocatlon of appllcatlon pomts of forces

P' (i.e. it depends on vector BA ——AB) Vector px P=BAxP is
caIIed a couple moment

M(T),F):ﬁxﬁ:ﬁx?'. (1.38)
The magnitude of the couple moment vector is

M(F,F;)=AB-P'- sinda=AB-P'-sinff=P"h. (1.39)

In formula (1.39) @ =180°— B and AB-sinf8=h .
The shortest distance between the lines of action of the couple
forces h is called the arm of the couple.

The vector of a couple moment is directed perpendicularly to
the plane of the couple so that, if seen from its head, the rotation of the
plane is anticlockwise (the direction of the vector may be determined by
the right-hand screw rule).

The features of couples and operations with them will be presented
in Chapter 3.
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1.5 Constrains and their reaction

A body is considered free if its displacements are not restricted by
any other bodies; otherwise a body is constrained. The bodies that
prevent the motion of the first body are called constraints imposed upon
the body. Constraints imposed upon a rigid body restrict the body’s
freedom of motion. If we compare the motion of a free body under the
action of a given force system and the motion of a constrained body under
the action of the same force system, we can see that these motions are
different. So, it may be stated that the mechanical effect of a constraint is
the same as the action of a force. Therefore the action of a constraint in
the body may be replaced by the forces that are called reactions.

In the Russian school of mechanics it is assumed that any
constrained body can be considered free if constraints applied to the body
are mentally eliminated and replaced with the corresponding reaction
forces. In real conditions the magnitude and direction of the reaction are
unknown. Moreover, the position of the distributed reaction force resultant
application point is also unknown (the contact between bodies is not
localized, but there is an area contact). All these unknown parameters of
the reaction (magnitude, direction and point of application) depend on
loads applied to the body. These parameters are determined by the
conditions of equilibrium in the equations for the body. These conditions
will be given later. Using some simplification and features of constraints in
problems of statics for a rigid body which is not free, we may determine
the reaction force line of action.

Constraints may be subdivided into two types. The first type
includes constraints imposed on a body under the action of forces that are
in the same plane (coplanar force system). Constrains are referred to the
second type if they are imposed on a body under the action of forces that
are not in the same plane (non-coplanar force system).

Now let us consider some constraints and show their reaction lines
of actions, assuming that contacting surfaces are smooth enough to
neglect friction completely.

By definition, a reaction force may be treated as counteraction to
displacement in some direction. A body under the action of constraints of
the first type can be subject to three types of displacement. These are two
linear, mutually perpendicular displacements of a contact point of the body
and constraint, and a rotational displacement about the axis that passes
through the contact point and is perpendicular to the plane of the forces.
Linear displacements are prevented by reaction forces. Rotational
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displacement is prevented by the reaction couple characterized by its
moment.

Fig. 1.10, a shows a smooth surface. This constraint impedes the
motion of the contact point along the common normal to the contacting
surfaces. So, the smooth surface reaction is directed along the common
normal. Fig. 1.10, g and 1. 10 h show the supporting smooth surfaces as

constraints. Reactions RA, RB, N are directed perpendicularly to the
corresponding surfaces. In Fig. 1.10, e the body is suspended by means
of two ideal cords, which are flexible, weightless, and inextensible. Each
cord counteracts displacements of the attachment points. These

counteractions are effected by forces T 4, T s directed along the cords.

A body is called a two-force body if the following four conditions are

satisfied:

- the body has a negligible weight;

- the body is pinned at only two locations to other objects (in 2D);
- the body can be treated as rigid;

- no active forces are applied to the body’s internal points.

In accordance with Axiom 1, the reaction of the body, as well as that
of the constraint, is directed along the straight line crossing the pin centers
(Fig. 1.10, d)).

The sliding joint and pinned joint are shown in Fig. 1.10,b
and 1.10, c. The sliding joint impedes the motion of the beam end A in the
direction that is perpendicular to the plane where the joint is installed; so
the sliding joint reaction is oriented perpendicularly to the plane that
supports the sliding joint. The pinned joint prevents motion in two
directions: along axis Ax and along aX|s Ay, so the reaction of the pinned

Jomt has two components: XA, YA The resulting reactive force is

Ri=Xu+Y4.

The clamped joint, or fixed support, shown in Fig. 1.10, f, precludes
motion in all directions (along axes Ax and Ay, rotation about axis Az).
Therefore, there should exist two mutually perpendicular components of

reaction forces ?(A, ?A and a couple with moment MAz to replace the

clamped joint. Sliding support is shown in Fig. 1.10, i. This constraint
impedes motion along axis Ay and rotation about axis Az. So, sliding

support may be replaced by reaction force ¥ 4 and couple M , . Double

stage sliding support (Fig. 1.10, j) prevents rotation about axis Az, so in
this case reaction couple M , occurs.

18



Ball and socket joint and footstep bearing (Fig.1.11,a and
1.11, b). The contact of spherical surfaces (external and internal thrust
bearing race) occurs in various points under different loads acting on the

body. In any case, reaction Ro is directed along a common normal to the
contacting surfaces, i.e. its line of action intersects the center of the
spherical surfaces. In solving problems, it is useful to resolve the reaction

force |nto three rectangular components 5(’0, Yo, 70, so that

Ro = Xo + Yo + Zo After a problem is solved and the magnitudes and
direction of these components are known, the magnitude and direction of

resulting reaction Ro may be determined by vector algebra rules. This
reasoning holds for footstep bearing, too.

Fig. 1.11, c shows the fixed support of a body under the action of a
non-coplanar force system. Such a constraint restricts all six motions of
beam end A: linear displacements along axes x, vy, z, and rotatlons about

these axes. So, we have six unknowns: components XA, YA, ZA of a
concentrated reaction Ra and projections of reaction couple vector

moment M on the axes.

It is worth noting that an unknown force may be represented by its
two (Fig.1.10,8,f) or three (Fig.1.11,a,b,c) components along
coordinate axes. There is another way of presenting an unknown reaction.
For example, it is possible to characterize the pin joint reaction force
(Fig. 1.10 B) by the unknown magnitude and angle between the reaction
and axis x. The ball joint reaction may be represented by a magnitude and
angles between the reaction and any two coordinate axes. The third angle

may be determined by the expression cos’ a + cos’ B+ cos’ y=1.

1.6 Problems of statics. Force classification

There are two general problems of rigid body statics. They are:

- the composition of forces and the reduction of the force system
acting on rigid bodies to the simplest possible form;

- the determination of conditions for the equilibrium of the force
system acting on rigid bodies.

In addition to the problems formulated above, in some cases
methods of statics make it possible to solve the following problem: if a
body is partially fixed, it has several equilibrium positions; it is necessary to
find these positions. However, the most general and effective way of
solving this problem is given in analytical mechanics and is not considered
in this book.
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4

N

Fig. 1.11

The first problem deals with a force system applied to a rigid body; it
is not known if the body is at rest or not. So the solution of this problem
and the results obtained are of great importance not only for statics but for
dynamics, too.
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The solution of the second problem provides general balance
conditions for a given force system. If affected by a force system, a body is
fixed by constraints, and we should take into consideration all the forces
applied as well as the reaction forces when calculating equilibrium
conditions. In this case, equilibrium conditions assume a mathematical
form of equations with unknown reaction forces. The determination of
unknown reaction forces can be viewed as a major result of solving the
second general problem of statics.

In mechanics, all forces acting on a body or mechanical system are
divided into two classes in accordance with two principles.

First, forces are divided into active and reactive. Active forces are
independent of constraints and are supposed to be given in the problem
statement.

Secondly, forces are divided into external and internal ones.

Forces are called external with respect to a given object (body or
mechanical system) if they are produced by particles and other bodies are
not included into this object (i.e. external objects). Interaction forces
between particles or parts of the given object are called internal.

As all forces, internal forces act in pairs and obey the action and
reaction equality principle, which states that to every action, there is an
equal and opposite reaction.
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2 Concurrent force system

If lines of action of all forces of a system intersect at the same point,
the force system is called concurrent. Research into concurrent force
systems is of prime theoretical and practical importance. The results are
used in designing trusses (railway bridges, tangent towers, etc.). In
addition, data obtained will be used in the general force system analysis.

2.1 Concurrent force system resultant

The following theorem has to be proved to answer the question
formulated in the first problem of statics (theorem about resultant).

A concurrent force system is equivalent to a single force (resultant).
The resultant equals the vector sum of the system forces with its line of
action passing through the point where all the lines of action of the system
forces intersect.

Proof. Consider a concurrent force system applied to a rigid body

1_‘7'.1,;:2,...,77'.,.) . Lines of action intersect at point O (Fig. 2.1, a).
Az

Fig. 2.1

In accordance with the corollary of Axiom 2, we can transpose each
force along its line of action to point O. We obtain a force system acting at
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point O (Fig. 2.1 b). Applying Axiom 3 (parallelogram law) and summing
forces F1,F 2,...,F » sequentially, we obtain

Ezz =F1 +F2; (2.1)

Ris=Ri+F;=F+F; +F3; (2.2)

ﬁm =R =§1,n—l +Fn =F1 +7':2 +...+Fn =2Fk : (2.3)

k=1

All previous operations were performed on the basis of statics
axioms, so equalities (2.1) — (2.3) can be supplemented with the relations
of equivalence:

R: ~(F1,Fz) ; (2.4)
EB ~(F1,F2,F3) X (2.5)
~(?1,F2,...,;:n) . (2.6)

Relations (2.3), (2.6) prove the theorem.

The sequence of operations executed to prove the theorem is called
the geometrical method of calculating the concurrent force system.

In practice, the geometrical method of calculating the force system
resultant can be used in some particular cases. The procedure for
constructing a coplanar concurrent force system resultant consists of the
following four steps:

Step 1. Draw forces F] to a chosen scale at point O (the point
where the lines of action mtersect)

Step 2. Draw to scale force F » from the tip of force F 1 in a head-to-
tail fashion.

Step 3. The process of adding forces F,-, i =3,...,n, continues until
all the forces are joined head-to-tail.

Step 4. Draw a vector from the tail of the first vector F] to the head

of the last vector, F.. This vector drawn to a chosen scale is a force
system resultant.
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Thus, for example, we examine the method described above for a
system consisting of five forces (Fig. 2.2) lying in the plane of Fig. 2.2:
F,=20N , F,=35N , F,=40N , F,=30N , F;,=25N .

N — —
Choose a scale coefficient g=1—— Draw forces Fi,...,Fs
mm

(Fig. 2.2, a) to a chosen scale. For convenience, further tracings are given
separately (Fig. 2.2, b).

Drawn to a chosen scale, vector R represents the resultant of the

—

force system 1_”'.1,77.2,...,1_7.5). Multiplying the length of vector R

measured in mm by scale coefficient g4, we obtain the resultant
magnitude.

R=|0OE|-p=11-1=1I(N) .

C F,
B
F, - —
D “R13 RIZ I .
R 4 F,
A S N
\\ v 7
E A
R F,
O
a b

Fig. 2.2

The vector R direction is determined by tracing. The broken line
OABCDE is called the polygon of forces or diagram of forces. If the head
of the last force (point E) coincides with the tail of the first one (point O),
the polygon of forces is said to be closed.

The graphical method of finding a force system resultant based on
polygon construction and measuring the length of its segments gives only
rough approximation, while the exact value of the resultant force can be
obtained by the analytical method of vector addition. Consider a
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rectangular coordinate system with its origin at point O (see Fig. 2.1, b). By
projecting the left and right sides of equality (2.3) onto axes x, y, z, we
obtain expressions for the resultant projections onto these axes:

N

R.=F, +F, +..+F, =) F_;
k=1

Y

R =F, +F, +..+F, =;Fky; (2.7)

R =F,_+F, +.+F, =) F,_.
k=1 J

With the help of these projections we can find the resultant
magnitude:

R= /R’ +R’+R’ =\/(2Fkx) +(zn:Fky) +(zn:sz) . (2.8)

—

The resultant R direction can be determined by using direction
cosines

— R
cos R,x)=—x;
R
(Té &, (2.9)
cos\R,y)|=—;¢ :
Y R
- R
cos R,z)——z.
R P

So the resultant of the given force system (FI,FZ,...,?n)Can be

obtained from expressions (2.7) — (2.9) by performing some analytical
calculations.

The graphical and analytical methods described above can be used
to solve the first problem of rigid body statics. The theorem of the resultant
of a concurrent force system gives us an answer to this problem.
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2.2 Equilibrium conditions for the concurrent force system

As we know, a rigid body under the action of a force system is in the
state of equilibrium (at rest) if the force system is equivalent to zero. On
the other hand, a concurrent force system is always equivalent to its
resultant. So, to be balanced, any concurrent force system must have a
zero resultant, i.e.

R=N'F.=0, (2.10)

k=1

where n is the number of forces the system consists of.

Equality (2.10) is a vector form of the equilibrium condition for a
concurrent force system.

Condition (2.10) in its geometrical form (Fig. 2.1 b, 2.2 b) can be
formulated as follows: the closure of the polygon of forces is a necessary
and sufficient condition for the concurrent force system to be in balance.

Analytical equilibrium conditions for a concurrent force system can
be obtained from equalities (2.8), (2.10)

iFkx =0;
k=1

n

<2Fky=0; (2.11)
k=1

$ 5 o0

k=1

The algebraic sum of the force components lying along any three
axes that do not belong to the same plane or to parallel planes (non-
coplanar axes) is equal to zero. Usually, three mutually perpendicular axes
(the Cartesian rectangular coordinate system) are chosen.

2.3 The static indeterminacy of the problem of equilibrium

Both analytical and geometrical equilibrium conditions allow us to
answer the question whether the force system under consideration is in
equilibrium or whether the body situated in a given position is in
equilibrium under the action of the given force system.

In practice we often use equality (2.11) in order to determine the
unknown reaction forces.
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When determining the equilibrium conditions of a rigid body, we
should take into consideration the forces acting on it, both active (or given)
and constraint reactions (for constrained bodies). If a body under
consideration is a constrained one, we should replace the constraints
acting upon it by their reactions according to the constraint eliminating
axiom. If the equilibrium conditions are formulated only for a free body,
equalities (2.11) can be treated as equilibrium equations in order to find
the unknown reactions. To be soluble, the problem must have not more
than three unknowns in three equations (for a noncoplanar concurrent
force system) and not more than two unknowns in two equations (for a
coplanar concurrent force system). If the number of unknowns is greater
than the number of equilibrium equations the problem is called statically
indeterminate and can not be solved solely by means of rigid body
statics.
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3 The system of couples

Notions concerning couples and their vector moments were
introduced in Section 1.4. It was shown that the sum of vector moments of
couple forces does not depend on the choice of the center about which the
moments are calculated. Thus, a couple vector moment is a free vector
which can be applied to any point without changing its magnitude and
direction.

We know that any force acting upon a rigid body can be shifted
along the line of action of the force (corollary from Axiom 2). So we can
suppose that segment AB connecting the tails of the vectors of couple
forces is perpendicular to their lines of action. For the further analysis of
couple features, we need to find the sum of two parallel forces applied to a
rigid body.

The following two statements are assumed without proof.

The arrangement of two parallel forces is equivalent to the resultant
force, i.e. to the vector sum of the original forces and the line of action that
divides the segment between the lines of action of original forces into parts
inversely proportional to the force magnitudes (Fig. 3.1, a) and belongs to
the segment.

The arrangement of two nonparallel unequal forces is equivalent to
their resultant force, i.e. to the vector sum of the original forces and the
line of action that divides the segment between the lines of action of
original forces into parts inversely proportional to the force magnitudes
(Fig. 3.1, b) and lies beyond the segment:

|

1:‘1>F2 F1<F2

‘I F, B C
A

B R

FZ

<= >
i
<= T

Fig. 3.1
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F,,Tv’z)m, (3.1)

R=F, +F2, (3.2)
. n (3.3)
BC F,

Relations (3.1) — (3.3) are valid for both cases and unambiguously

R
determine the resultant vector of magnitude R, direction E and

application point C.

3.1 Couple features

1)  Let us consider equations (3.2), (3.3) and Fig. 3.1, b. Taking into
consideration that BC = AC — AB, the distance AC can be found from
equality (3.3):

F
=—2 .AB. (3.4)
FI_FZ

AC

Executing the limiting process, provided that F, — F,, we get R=0

from equality (3.2). Simillarly, we get AC =0 from equality (3.4) (the
limiting value of the resultant magnitude and distance AC). Thus, after

limiting, the arrangement of forces (FI,F2) is transformed into a couple.

This limiting process implies that a couple has no resultant and can
not be reduced any more. Alongside with a force, a couple is a self-
dependent element of statics.

2)  Couple characteristics (the arm and magnitude of a force) can be
changed provided the couple moment remains constant.

Consider two couples (F,?') and (7’.,7’.' with the arms AB and

CD correspondingly (Fig. 3.2). Let us prove that the couple equivalence
(F,F') ~ (T’,F' | (3.5)
3

0



meets the condition
F-AB=P-CD . (3.6)

According to Axioms 1 and 2, we can apply two equal and opposite
forces Q, Q' at the middle point O of the arm AB (or CD). The magnitude

ofé

O=P-F . (3.7)
(_j' I5'| —’"
=
A C O

ﬂ_, I H D B
F . .
P Q

Fig. 3.2

—

It is obvious that P is the resultant force of I and Q In its turn, P’

is the resultant force of F' u Q'. Indeed, in accordance with (3.7), we
have

— @ e

P=F+0=F+P-F=P. (3.8)

Condition (3.2) holds.
The same is valid for the forces ' n Q"

InFig.3.2 AC=DB ,CD=AB-2-AC.
Thus, we have

(FF)-(FF0.0)~(F&FD). 69

So, in accordance with equation (3.8), the sum of forces F Q is

force P and the sum of F' u Q" is force P'.
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From equality (3.3) and Fig. 3.1, a we get (Fig. 3.2)

£=2=H_ (3.10)
oC F F

Therefore, condition (3.3) for F Q holds. It means that force P is

—

the resultant of F', Q.
F,0)~P. (3.11)
If we repeat the same reasoning for F' n Q’, we get
F','Q")~T)'. (3.12)

Moreover, (3.9) and (3.7) conform to condition (3.5). Considering

that é,_Q" ~ 0 we finally come to the following relation:
( ) F,F',0,0 ) F,Q;?',Q')~(?,T>' . (3.13)
3) The couple effect on a given rigid body remains unchanged if it is

translated (is shifted by parallel translation).

Let us consider a couple, F,F'), in the plane IT. We will now

4

prove that a couple (;,P in the plane IT1' parallel to the plane IT is

equivalent to the original couple F,F') if 7’.=l_5’. i’.'=l_5’.', and
CD=AB (Fig. 3.3).

We add the couple (Q,Q' to the couple, (7’.,;’.' on the same arm
CD where é=—?’, §'=—j’.'. In the plane IT' we get the balanced

force system because Q,P)~0, (Q',P')~0 in accordance with

Axiom 1.
Based on the construction, polygon ACDB is a parallelogram (AB
and CD are equal in magnitude and parallel). O is the point where its
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diagonals intersect, so the point O divides the diagonals in halves. For the
resultant of the forces F', Q we obtain

F'+Q=2F" (3.14)

Fig. 3.3

The resultant goes through O (O is the middle point of segment BC so that as
F'= Q) Then the resultant of F Q' is

— —

and passes through O, too.
It is evident that (ZF,ZF') ~ 0 because the magnitudes of couple

forces areequal: F'=F .
Finally, we get

~(2F',2F;75,75')~(75,75'). (3.16)

The statement is proven.
4)  The action of a couple on a given rigid body remains unchanged if
the couple is turned through an orbital angle in the plane of the couple.
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First, we rotate the couple (F,F’ about O (O is the middle point of
AB) through an orbital angle. Now we will prove that couple (F,i”’ is

equivalent to the original couple F,l_‘:') (Fig. 3.4).

Fig. 3.4

Let us move forces F and ﬁ along their lines of action to the point

of their intersection M. Similarly we move F' to point N. In accordance
with the corollary from Axiom 2 the force system obtained is equivalent to
the original force system.

Consider triangles OAM and OCM. They are equal because they are

rectangular (4A=4C=90°), have equal catheta (OA=0C) and a

common hypotenuse, OM. The equality of angles ZAOM = LZCOM =%

follows from the equality of the triangles. Reasoning similarly for triangles
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ODN n OBN, we get the equality of angles: ADON=ABON=%.

Therefore, line MN goes through pomt @) and d|V|des Za in half.

Add forces 0, Q' to forces F P F' P They are equal in
magnitude and opposite in direction along the line MN

(FQ Q) (3.17)
P = F+Q pP'= F'+Q' (3.18)
0,0')~0. (3.19)

The equivalence relations are:
( ) F,F' Q,“) F,Q;?',Q')~(T),T>' . (3.20)

So, we proved the equivalence of the original couple and the couple
rotated through an arbitrary angle about the middle point of the original
couple arm.

To prove that a couple can be rotated in its plane about an arbitrary
point, O, (Fig. 3.4) it is sufficient to rotate the couple about point O (the

equivalence of this motion was proven above) and use the parallel
translation O — O, (the equivalence of this motion was proven in

Chapter 3).

3.2 Couple equivalence and addition

As shown above, a couple moment is its comprehensive
characteristic and takes full account of its static effect on a rigid body. It
means that operations with couples may be substituted for the operation
with the vectors of couple moments.

The following statements (corollaries) follow from the couple features
2, 3, and 4.

Corollary 1. Two couples applied to a rigid body and having the
same vector moment are equivalent.

It means that if the following equality is valid for couples (?,75 ') and (Q,Q')
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M T),?):]Tl Q,Q') (3.21)

then
(F,F') ~ (Q,Q') | (3.22)
Corollary 2. Two couples applied to a rigid body may be replaced by

a single couple with a vector moment equal to the sum of vector moments
of the original couples.

— — — p—— |
It means that if we add couples (FI,F] ) and (Fz,Fz ) to vector

moments M1 and ﬁz correspondingly, we get couple (Q,Q’) with the

moment that is the geometrical sum of ﬁz and Mz:

(= =1 — —= =1\ —
M(F],F1)=M1;M(F2,FZJ=M2; (3.23)
—_ = — - —
Fi,Fi;F:,F: |~(0,0'); (3.24)
M(Q,Q' —M=M,+M: . (3.25)

Since a couple moment |s a free vector, it is possible to combine the

tails of moments M; and M by parallel translation and add vectors
according to the parallelogram law.

3.3 Solution to the main problems of statics for a couple system

Reduction of a couple system to a simpler equivalent.
A couple system is applied to a rigid body

— —— | — -— !
(FI,FI ,Fz,Fz seees Fn, Fy ) with vector moments

—= =) —
M(Fk,Fk)=Mk,k=1,n. (3.26)

36



Determine a simpler couple system that is equivalent to the original
one.
By sequentially applying corollary 2 to the original couples, we get

—_— ! —_— ! —
(FI,FI ,FZ,FZ, ,Fn,Fn)N Q,Q' ; (327)

N

M(Q,@)=M= M . (3.28)

1

=~
Il

It means that a system of n couples applied to a rigid body is
equivalent to a single couple with a vector moment equal to the
geometrical sum of vector moments for the original couple system.

The equilibrium of a couple system.

It is evident that a system of n couples applied to a rigid body is in
balance if a single couple to which the original system may be reduced is
equivalent to zero. The vector form of the equilibrium condition for a
system of n couples follows from relations (3.26), (3.27), and (3.28):

ZM(E,E’) = zn:ﬁk =0 (3.29)
k=1
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4 General force system
4.1 Total vector and total moment

Let us consider a force system (Fz, Fz,..., Fn)

The vector sum of the system forces is called a total vector
F=;:I+752+...+Fn =2Fk : 4.1)

The vector sum of the forces moments about a given center is called
a total moment about the center O:

Mo =;ﬁo (Fk)=;;k X;:k , (4.2)

wherein ;':k is the position vector of the force Fk relative to the center O.
There are two main determination methods of the total force F and

total moment Mo.

The first method is geometrical.

Since a total vector of a force system is not related to any center, so
it can be constructed from an arbltrary point.

To find the total force F and the total moment Mo in accordance
with formulas (4.1), (4.2), we can use the method which was earlier
applied to determine a resultant of the concurrent force system
(Chapter 2). Let us consider this procedure when used to determine the
total moment about the chosen center O.

The vector MO(F1) is laid off to some convenient scale. We

should remember that a force moment about a center is a vector applied to
the center.

Then the vector ﬁo(ﬁz)is drawn from the tip of the vector
Mo (;:1) in a head-to-tail fashion, the vector Mo (Fg) starts from the

tip of the previous vector, and so on. The last vector ]Tlo (Fn) is drawn

on the chosen scale so that its tail coincides with the head of the vector
38



]Tio (Fn—]). The vector drawn from the tail of the first vector ]Tio (Fz) to

the head of the last vector ﬁo (i’.n) represents to the scale the total

moment of the force system (F], Fz,..., Fn) The magnitude of the

total moment on the scale is determined by the length of the obtained

vector.

—

The second determination method of the total force F and total

moment Mo of the force system.

If we project left and right sides of the following one expressions
(4.1) and (4.2) onto axes of the Cartesian rectangular coordinate system
with the origin in the center O, we obtain expressions for the calculating

components of the system total vector F:

k=1
Fy = Fky
k=1
F,=)F,
k=1
and total moment Mo :
MOx = MOx(

k=1

The total vector magnitude is determined from the following:
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n

F=\/Fx2+Fy2+Fz2=\/(zn:Fkx) +(Zn:Fky) "‘(Zsz) . (4.5

k=1

Its direction is determined with the help of direction cosines

cos(F, x)=% , cos(F, y)=% : cos(F, z)=% , (4.6)

where (F, x), (F, y), (F, z) are the angles between the total vector

direction and the positive X, y, z direction.
Similarly, we determine the magnitude and direction of the system

(Fz, Fz,..., Fn) total moment Mo about the center O:

_ 2 2 2
M, =M} + M, + M, wn)

M

0z

cos(MO, x)=i cos(MO, y)= % cos(MO, z)=
M M M | (4.8)

M

wherein "7 ox, M , . M, are set by expressions (4.4).

4.2 The simplest equivalent of general force system

To form the simplest force system equivalent to a general force
system, it is necessary to place all forces of the system at a chosen
center. We can do it easily in accordance with the corollary of Axiom 2, if
line of action of the force passes through the center O. But if the line of
action of the force does not pass through the center, we have to use the
rule (lemma) of the force translation to a parallel position: the force applied
at the point O of a rigid body is equivalent to the same force applied at
another point of the body and a couple with the moment equal to the
moment of the original force with respect to the new center (Fig. 4.1).

Proof. Let us assume that a force F applied at the point A of a rigid
body has to be moved to the point B. In accordance with Axiom 2, a
balanced force system can be applied to the rigid body at the point B, the

forces forming the balanced system beings F'=F, F''=-F .
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Fig. 4.1

A new force system is equivalent to the original force, i.e.
F, F/', F")~F. On the other hand, the new force system can be

regrouped and represented as a set of two elements: force F' applied at
the point B and equal to the initial force and a couple (F', F"). The

couple moment is equal to the moment of the initial force about the point
B:

M(F, Fr)=FixF =.(F)
- (4.9)

So, F ~(i’.'; 77.,77.") and the lemma is proven.

Using this result (lemma) we can prove the main theorem of statics.

Theorem. General force system applied to a rigid body can be
reduced to an equivalent force-couple system acting at a given point O.
The force is equal to the total vector. The couple has a vector moment
equal to the total moment of original force system about the point O.

If point O is a chosen center of reduction; and the reduction force

——p

system is (F}, l_‘:z,..., Fn) then

(E, Fryo F) ~(F0 ; 0,0), (4.10)
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n

Fo=YF: (4.11)

k=1
M(Q,’Q’Q:Zn:ﬁo(ﬁk)=ﬁo . (4.12)
k=1

It is a mathematical form of the theorem stated above.

Proof. Assume that forces FI, Fz, _1-7.3,..., fn are applied to a
rigid body (general force system). Apply the lemma of the force translation
to a parallel position to the force F]. Then (Fig. 4.2)

F. N(F'I; E',F]’”); F'=F; (F, E”) is a couple with the moment

equal to A—I(E, FI." =rxF,=Mo (E) wherein ;; is a position vector

of the force Fz point of application with respect to the chosen center O.

Fig. 4.2

In the same manner the other forces can be translated (Fig. 4.2

illustrates the application of the lemma to the force Fz only).
So, for any k from 1 to n, the following relations are true:
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F =F,; M(F,, F})=rxF,=Mo(F,)  k=Tn. (413)

As a result, we have

— —_— —_— — —

(F,F-yes F.)~(F; F,F Fj; F,Fj; ., F/; F,,F)) . (4.14)

1

After regrouping the forces at the right side of the relation, we obtain

—

(FI, FZ,..., Fn)"‘

—"——

" FL Y FF’) (4.15)

n

Tt It . T
~(F, 7, .. F; F,

On the other hand, the set of forces (FI.', Fz;’ veo FZ) form a

concurrent force system applied at the point O and, in accordance with the
theorem about the resultant of such a force system the system can be
replaced by a single force equal to the total vector of the system, i.e.

(F, F, ... F})~Fo, (4.16)
wherein
Fo=YF =YF, . (4.17)
k=1 k=1

4.3 Total vector and total moment dependence on the center
of reduction position

It follows from the definition of the total vector (4.1) that for any
chosen reduction center, the total vector is equal to the vector sum of the
system forces. So the total vector is independent of the reduction center
position, i.e. the total vector is invariant with respect to the center of
reduction.

Let us consider the relation between the total moments of force
system determined about two different centers.

Assume that a general force system (Fz, Fz,..., Fk,..., Fn) is

applied to a rigid body. The system’s total moment about point O is
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M() = M() (Fk) = Z;k Xﬁk . (4.20)
k=1

k=1

The system’s total moment about point O7 is
ﬁo, =Zﬁo, (Fk)=27k;)(i:k : (4.21)
k=1 k=1

——

Here F is a force with arbitrary number (k =1, n), i is position

vector of the force Fk point of application relative to the center O, ;,;7 is

the position vector of force Fk application point with respect to the center
O1 (Fig. 4.3):

=00+, . (4.22)
If we put expression (4.22) in to expression (4.21,) we obtain

Mo, =§(@+;k)><ﬁk =

—

O,0xFi+Y rixFi=0,0xY Fi+Mo.  (4.23)
k=1 k=1

n

k=1

Fig. 4.3

Since ZF]( is the total vector of the system, the vector product at
k=1
the right side of the equality (4.23) can be represented as a moment about
the center O, of the total vector applied at the center O, i.e.
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10)( ?k = OIOXFO = ﬁo, (;:0) . (4.24)

k=1

Finally if we take into account expression (4.24), the equality (4.23)
will have the following form

Mol = Mo +M01 (Fo) = Mo +TO.XFO , (4.25)

where Mo, is a total moment of the system about the center O,, Mo is a

total moment of the system about the center O, Mo, (1_”"0) was described

above by (4.24).

So if the reduction center is changed, the total vector of the system
will not change but the total moment of the system will be changed by a
vector equal to the moment of the total vector applied to the initial center )

about the new center O, .

4.4 Force system invariants

Some value is called invariant with respect to the some parameter
(argument) if the value does not vary when the parameter changes.

As was stated above the total vector does not change when the
center of reduction changes its position. So the total vector is invariant with
respect to the center of reduction position.

The total vector magnitude is called the first invariant of statics:

3 F.
k=1

The dot product of the total vector and the total moment is called the
second invariant of statics

I,=‘F0

= \/ij +F, +F, . (4.26)

I,=Fo-Mo. (4.27)

If we calculate the dot product with respect to the reduction center
O, using equalities (4.24), (4.25), we obtain

F01°M01 =F0°(M0 +@XFO)=F0°M0 : (4.28)
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In (4.28) Fo -(0,0xﬁo) = () because it is a triple scalar product involving

two equal factors.
Equality (4.28) shows that for arbitrarily chosen centers O and O,

the dot product of the total vector and the total moment are identical.
Using expression (4.28) in scalar form and taking into consideration

that F, =F, we obtain

FOI.MOI.COS(FOI’ MOI)=FO~M0°COS(FO) MO) (429)

from which

M, -cos(l_”:o,, ]i_.lo,)= M, -cos(f:o, J\_.lo) : (4.30)

Since for any reduction center the total vector is the same, equality
(4.30) means the following: for a general force system the projection of the
total moment onto the line of action of the total vector is constant at any
reduction center.

4.5 The simplest equivalent of a special force system

The main theorem of statics states that a general force system
applied to a rigid body is equivalent to a set of forces and a couple (see

(4.10) — (4.12)) equal to the total vector Fo and the total moment of the

——

system Mo about a chosen reduction center. If one of these parameters
(77.0 or ]‘—lo) is equal to 0, the equivalent set (Fo,' 0, Q') can be

reduced.

Let us consider different combinations of the total vector and total
moment values as special cases of the general force system reduction
described by expressions (4.10) — (4.12).

1. Fo#0; Mo=0. (4.31)
It follows from (4.12) that M Q, Q')=0. Therefore, the couple

Q, Q’ ~ 0, and from expression (4.10) the following conclusion may be
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drawn: the initial force system is equivalent to a single force called a
resultant

(F;, Faye, F,,)~§ | (4.32)
R=F,=YF, . (4.33)
k=1

The line of action of the resultant intersects the reduction center O.
2. F, =0 ; Mo=#0. (4.34)
In this case, expression (4.10) has the following form:

(Fl, Fryo, Fn)~ 0,0). (4.35)

The system is equivalent to a couple with the vector moment equal
to the total moment of the system about the center O

M (0, @') =Mo . (4.36)
3. 1_'7; =0:Mo=0.
In this case, (4.10) becomes:
(Fl, Fry, TV,,) ~0, (4.37)
i.e. the force system is balanced.
4. F, 20 ; Mo#0. (4.38)

Let us decompose the vector Mo into two components: 1) M*

collinear with the vector F, and 2)M** perpendicular to the vector F,
(Fig. 4.4)

Mo=M"+M" (4.39)



— —

We shall consider two special cases: a) M =0 ,and b) M #0

Fq
M* Il M,
|
0O m**
Fig. 4.4
In case a) we have:
da. F, #0 ; Mo #0; Mo 1L F, . (4.40)

In relation (4.10) the couple Q, 67 lies in the plane perpendicular

to Mo, i.e. in the same plane as the total vector 1_7;. Let us denote the

plane by [ (Fig. 4.5).
In accordance with the properties of a couple, it is possible to
transform the couple in any way if its moment remains invariant. We

choose a couple of forces (é, Q; equal in magnitude to the total vector

F, and apply one of the couple forces Q Q:—T’; at the given

reduction center. Then E,Q ~ 0, and therefore the initial force system is

equivalent to the single force a equal to the total vector F,. In

accordance with the definition of a couple moment, its magnitude is
determined by the following expression:

m(0, 0')=0'"h, (4.41)
whence
M0, O
h= Q,Q)=M" . (4.42)
0 F,

So the force system resultant is
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(4.42a)

Fig. 4.5

If conditions (4.40) are fulfilled the force system is equivalent to the
resultant equal to the total vector of the system. The distance between the
resultant line of action and the initial reduction center is equal to the
quotient of the total moment by the total vector (4.42). We can draw the
reduced force system resultant in the following way.
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The plane I1 perpendicular to the total moment must be drawn at
point O.
In the plane II, the total vector is moved to another line of action

placed at a distance h determined by expression (4.42), so that the vector
of the system total moment and the vector moment of a resultant R

relative to the initial reduction center (Fig. 4.5, a,b) were of the same
sense:

(F:, Fyos F)~R, (4.43)
R=F,=Y'F, . (4.44)
k=1

In general case, when the total vector and total moment are non-
zero and not mutually perpendicular, the force system can be substituted
for a wrench.

Consider this case in detail

4. F,#0; Mo#0; F,-Mo#0. (4.45)

Angles between the total vector and the total moment about different
reduction centers are random. On the other hand, for a given force
system, the projection of the total moment onto the direction of the total
vector is an invariant value (4.30). Remember that the total vector of the
system is the same for all reduction centers. It means that if condition

(4.45) is fulfilled there is such a reduction center O that the total vector
and the total moment of the system are directed along a common line

intersecting the point O". At the same time, the magnitude of the total
moment is minimal, i.e. in decomposition (4.39) F=0 and therefore
M=

So, if condition (4.45) is fulfilled, the following relations hold for the
force system

(F:, Fe,. F)~(Fo; 0, 0). (4.46)
Fo =F,=) F,, (4.47)
k=1
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M(0, 0')=Mm" =Zn:ﬁo* (Fk’) (4.48)
k=1

i.e. the initial force system is equivalent to the force equal to the total vector of

the system and applied at the center O"; the couple lying in the plane
perpendicular to the total vector; and the couple moment equal to the total

moment of the system with respect to the reduction center o
A set of forces equal to the total vector of the system and a couple
with the couple plane perpendicular to the total vector is called a wrench.

So the point O’ is such that the total moment of the system relative
to O° has a minimal in magnitude and is collinear with the total vector.
The location of O can be determined proceeding from the condition for

the total vector and the total moment to be collinear about Q" .
Let us choose a Cartesian rectangular system with an origin at an

arbitrary point O (Fig. 4.6). Let O’ be the required center where the total

moment of the force system under consideration is minimal, r’ is the

position vector of O’ relative to the origin of the coordinate system. The
total vector of the force system and the total moment about the reference

origin as well as their projections F, , F, , F_, M, , M , M, onto the

ox’ oy’ oz’ ox’ oy’
chosen coordinate axes are determined by expressions (4.3), (4.4). Using
expression (4.25) the total moment we get

M =Mo=Mo+0O0xF,=Mo-r xF .  (449)

— —

Remember that F~ = F,, i.e. the total vector of the system is the

same for different reduction centers. The collinearity condition for vectors

—p

F,

o

reduction center O where the system can be reduced to a wrench. This
condition can be shown as

and M can be used to determine analytically the location of the

*

pF, =M, (4.50)

where p is a scalar coefficient measured in the units of length and called a
wrench parameter.
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Az =

Fig. 4.6

After substituting the value of M~ from (4.49) into (4.50), we get the
following expression

pF,=Mo-r xF . (4.51)

The position vector r specifies the location of the center O ina

chosen coordinate system. Equation (4.51) where the position vector r~ is
unknown has an infinite number of solutions, because for any point on the

line intersecting 0" and parallel to the total vector F the cross-product

rxF’ =A—40(F*) is the same. Therefore, the locus of the points O

where the system is equivalent to the wrench is a straight line intersecting
O and parallel to the total vector f:,. This line is called central axis of
the force system or principal screw axis.

Let us designate the coordinates of the vectors 1_7;, Mo, r (their

projections onto coordinate axes) as

Fo(Fx’ Fy’ FZ) ’ MO(Mx’ My’ MZ) ’ r*(x’ V> z)’
and then write vector equation (4.51) in a scalar form

52



ik
p(?Fx+7Fy+7€Fz)=Z’Mx+7My+%Mz—x y z|. (452
F, F, F

If we expand the determinant in terms of its first row elements and
equate the coefficients of the same unit vectors in both sides of the
expressions we shall have the following equations

rp.Fx =Mx_(y.Fz_z.Fy),
p-F,=M, —(z-F,—-x-F), (4.53)

A

p-F =M, —(x-Fy—y-Fx).
This implies

M( Pt B) My(eFimxE)

F F

x y

=Mz_(x°§y_y°F")=p. (4.53a)

Z

It is obvious that the double equality is equivalent to two equations
(for example, the equality of the first and the second fractions and the
equality of the second and the third fractions). It is the equation of central
axis of force system.

Though simple transformations of (4.43), we have

x-F,-F,+y-F,-F,-z(F +F})=F,M ,-FM,,
(4.54)
x-F,-F,—y-(F+F])+z-F,-F,=F.M,-FM,.

Either equation (4.54) is linear relative to the current coordinates
X, y,Z , and specifies a plane. These equations specify a straight line (the

intersection line of two planes). This line is the central axis of a force
system.
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The line position in space (in the coordinate system Oxyz) is given if

we know the coordinates of the two points at the line or the coordinates of
a single point and the direction of the line. In the first case, the coordinates
of two points where the line intersects the coordinate planes are defined.
For example, to find the point where the line intersects the plane xOy we

suppose that z =0 in (4.54) and then solve the system of equations with
respect to x and y. As a result, we have some x,, y, which are the

coordinates of the point A.

In a similar manner we can determine the point where the line
intersects another coordinate plane. For example, to determine the point
where the line intersects the plane y0Oz suppose that x =0 in (4.54) and

then solve the obtained system of equations relative to y and z. As a
result, we have some y,, z, which are the coordinates of the point B. The

central axis of the force system passes through the points A (xA, yA,0)

and B (0,yA,zA).

It is possible to define the central axis of the force system as a line
passing through the point where the axis intersects one of the coordinate
planes (see the determination procedure described above) and parallel to

the total vector F o of the force system.
The wrench is distinguished by the relative position of the total vector

Fo and the minimal total moment ﬁ* . If the total vector and the minimal

total moment have the same direction, the wrench is said to be right. If the
total vector and the minimal total moment have opposite directions, the
wrench is said to be left.

Obviously (see Fig. 4.4),the conditions under which a force system
can be reduced to the right wrench can be written as

FO °ﬁo >0 . (4.55)

Similarly, the conditions under which a force system can be reduced
to the left wrench ca be presented as

Fo-Mo<0. (4.56)

In Fig. 4.7,a the right wrench is shown as a set of the total vector

Fo of the force system and the minimal total moment M* acting in the
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same direction. The left wrench consists of the same vectors having the
opposite directions as shown in Fig. 4.7, b.

Fo | : |
- | |
. | = _
MO F0 F0
M*
O i O
Ry e
RN s
N e
o* | o*
| | M, Jl
| | M
a b

Fig. 4.7
A right wrench can be graphically presented as a set of forces
applied to the right-hand screw. If we apply a couple with the moment

M directed along the axis to the screw, we obtain the motion of the screw

in the direction of the total vector Fo . In this case the total vector and the
total moment have the same directions (Fig. 4.8, a, b).




The Table 4.1 presents all possible cases of the force system

—

(Fz, 752, ceny Fn) reduction (all combinations of the total vector and the

total moment of the force system under consideration).
Table 4.1

— —_—

N| F, Mo |I,=F,-Mo The simplest equivalent force

system

. The resultant R=F, passing
LI Fo#0 | Mo=0 I,=0 through the chosen reduction center

o
. . The couple (Q, Q') :
21 F,=0 | Mo#0 I,=0 R, .
M(Q, Q’) =M,
3 T:; =0 | My=0 I,=0 A balanced force system
The resultant R = f’; with the line
4| F,#0 | Mo=#0 I,=0 |of action determined by the

—_—

equation E(R) =M,

45| F, 20 | Mo =0 I1,#0 A wrench

o

So the first main problem of statics, i. e. the problem of replacing the
given force system by a simple equivalent, can be solved with the help of
the main theorem of statics both for a general force system and in special
cases described above.

Problem 4.1. The system of three forces F,, F,, F, is applied to

the corners of a rectangular parallelepiped as shown in Fig. 4.9. It must be
reduced to the simplest possible force system. The sides of the
parallelepiped are a=0,3m,b=0,5m, c=0,4m, the force magnitudes

are F,=10N,F,=20N, F,=15N .
Let the origin of the coordinate system O be a reduction point. We
have to find sina and cosa to determine the total vector Fo and total

moment Mo of the system:
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C a

sina=ﬁ=0,8 ;cosa=—=0,6 .
va‘+c

va® +c?

The projections of the total vector onto the coordinate axes are
F, =-F,+F,-cosa=2N;
Fy =F;=15N;
F, =—F,-sina=-16 N.

The magnitude of the total vector is

F,=\|FL+F2+F.=22N.

We can use the values of the vector projections F,, , F, , F, to

= N
draw the total vector Fo atthe scale K, =0,5 —.
mm

The projections of the total moment ﬁo onto the coordinate axes
are

M, =-F,-sina-b=—8 N-m;
M0y=—FI-c+F2-cosa-c=0,8 N-m;
M, =-F,-cosa-b+F,-a=-1,5N-m.

The magnitude of the total moment of the force system with respect
to the origin O is

My= Ml +M, +M, =818 N-m .

In Fig. 4.9, we see the total moment of the system about the

, N-m
reduction center O drawn at the scale K, =0,08 ——. Let us make
mm

sure that the total vector and total moment are not mutually perpendicular.
For this purpose we calculate the dot product of these two vectors

Fo-Mo=F, M, +F, -M, +F, -M, =20 .
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principal screw axis

Fig. 4.9

So we have the case 4b: Fo#0, Mo #0, IZ=F0-T40¢0.
Therefore, the force system (Fz,F;j@)is equivalent to the right

wrench because fo 'Mo > () . Let us obtain an equation for the central

axis of the force system under consideration by substituting the values of
F Foy,...,M for Fx,Fy,...,Mz correspondingly into (4.54)

Ox? (04

32x+240y+229z=121.6,
30x—260y—240z =—-131.

To find out where the central axis intersects the yOx plane, we
consider x=0 in this system and y=42 m, z=0,09 m. Analogously, we find

58



where the central axis intersects the xOy-plane (z=0, x=0,01 m,
y=0,51 m). So the central axis intersects the coordinate plane yOz at the

point A(0; 0,42; 0,09) and the coordinate xOy plane at the point
B(0,01;0,51; 0).

—

Conclusion: The system of forces (Fz, Fz,F3) is equivalent to

the wrench, i.e. to the set of the force Fo and the couple with the vector

moment M, with the force and the moment lying at the line called the
central axis of the system or the principal screw axis, and passing through
points A and B.

The magnitude of the minimal total moment of the system is

wmr = oMo =20=0,91 N-m .
F, 22

4.6 The equilibrium conditions for a general force system

Special reduction cases for a general force system were presented
in the previous chapter. It was stated in case 3 that a force system is

equivalent to zero (balanced) if its total vector Fo is zero and the total
moment M o about a chosen center O is zero. The requirements are:

Fo =Zn:Fk =0, (4.57)
k=1
Mo=% Mo (Fk) =0, (4.58)
k=1

therefore both sufficient conditions for the equilibrium of a rigid body under the

action of a general force system (F:, Fz, ceey Fn) . As we know, the total

vector remains invariant when the reduction centre is displaced while the total
moment of the system will be changed by a vector equal to the moment about
a new different centre. On this basis, if (4.57) and (4.58) are valid for the
chosen reduction center, they are valid for any other reduction center.
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At the same time, equations (4.57), (4.58) are necessary equilibrium
conditions for a general force system. Assume that a body affected by a

——

force system (Fz,ﬁz, ceey Fn) is in the state of equilibrium but one of

the vectors Fo and ﬁo is not equal to zero. Thus, one of the conditions

(4.57) — (4.58) is not valid. We arrive at a contradiction because a body
can not be in the state of equilibrium under the action of a single force or a

single couple with the moment Mo.

Hence, a necessary and sufficient condition for a general force
system to be in equilibrium is that the total vector and the total moment
about a chosen center are equal to zero (see (4.57) — (4.58)) as a vector
form of these condition. If we bring the chosen center O to the origin of the
coordinate system, we obtain the general force system equilibrium
conditions in the analytical (coordinate) form:

\

F, =)'F, =F, +F, +..+F, =0,

k=1
F, =) F, =F, +F, +..+F, =0,
k=1
F, =) F, =F +F, +..+F, =0,
L 3 3 3 > (4.59)
M, (F.)=M (F:)+ M (F:)+..+ M, (F.)=0,

n

<
I

b

S

1

=
™M

M, (F.)=m,(F.)+M,(F:)+..+ M, (F.)=0,

=
Ul

1

E (7

=1

X

<

MZ(F1)+MZ (752)+...+ M, (75) = 0.

J

A rigid body can be at equilibrium under the action of a general force
system in three cases:
. the body is free;

=~

the body is partially restricted;
the body is completely fixed.

60



In the first case, a free body under the action of forces can move
arbitrarily in space. Only active forces can form in the set of forces under
the action of which a rigid body is in balance in the position of interest. So,
in this case, (4.59) can be used to verify if a body can be in the state of
equilibrium in the given position:

to determine a force or a couple that balance all other loads;

to define the positions of equilibrium.

In other worlds, a body is in the state of equilibrium if equalities
(4.59) are valid in the position of our interest. If at least one equality from
(4.59) is not valid it means that the body is not in balance in the position of
our interest.

It is possible to secure the body equilibrium in the position of our
interest by changing the loads acting up on it.

In the second case (if a body partially restricted), the constraints do
not always guarantee its univalent equilibrium in the position of our
interest. Remember that to generate correct equilibrium equations, we
should take into consideration all the forces (active and reactive) acting on
a partially restricted body. So equilibrium equations of a partially restricted
body must contain the following unknowns: reactive forces, unknown loads
(forces or couples) equilibrating given loads, and geometrical parameters
determining the equilibrium position of the body.

In the third case, the constraints applied to the body provide its
equilibrium in the given position under the action of any force system. In
this case, the equilibrium equations (4.59) are used to determine the
unknown reactive forces only.

4.7 Categories of equilibrium

It is possible to obtain equilibrium conditions for a specific force
system as a special case of a general situation. An appropriate coordinate
system must be used for each case.

1. The three-dimensional system of parallel forces.

Choose a rectangular Cartesian coordinate system so that one of the
axes is parallel to the lines of action. We denote this axis as Oz. The

projections of the forces onto the axes Ox and Oy are zero, and the force

moments about Oz are zero too. It means that equations 1, 2 and 6 from
system (4.59) are arithmetic identities 0 = 0.

So, for a rigid body to be at equilibrium under the action of the three-
dimensional system of parallel (to the O, axis) forces there are three
necessary and sufficient conditions:
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n

F, =0,

4

o

S |
~

Mx(i:k)=0,

A4

(4.60)

b

S
~

M, (Fk)= 0.

P

o
~

2. The two-dimensional system of parallel forces.
Combine a force plane with the coordinate plane xOz of the

coordinate system (see the previous case). For this force system, we have
two equilibrium equations

> F, =0,
k=1
;My (Fk) = 0:

The force moments about the axis Ox are equal to zero (the force and an axis
are in the same plane) the second equation in (4.60) is an identity 0 = 0.

3. The three-dimensional concurrent force system.

Let the coordinate system origin O be at the point of concurrency.
Then the moment of each force about any axis is zero and therefore the
last three equations in (4.59) are identities 0= 0.

So in a three-dimensional space, equilibrium conditions for the
forces concurrent at the point are the following:

3 F, =0,
k=1

3 F, =0,
k=1

D F, =0
k=1 J

The same results were obtained when we studied a concurrent force
system (see (2.2)).

> (4.61)

v

(4.62)
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4. The two-dimensional concurrent force system.

Suppose that a force plane coincides with the coordinate plane xOy
described in case 3. Then

SF, =0,
k=1

$E -0
k=1 )

5. The two-dimensional general force system (coplanar force
system).

Suppose that all forces of the system are in the plane xOy of a
rectangular Cartesian coordinate system. So the projections of the forces
onto the axes Oz and the force moments about axes Ox and Oy are zero.
It means that equations 3, 4 and 5 in (4.59) are arithmetic identities 0 = 0.
Therefore in the coordinate system described above, the sufficient and
necessary equilibrium conditions for a coplanar force system are

> F, =0,

k=1

Sk -

k=1

M (F)=o.
2 (Fi)=0.

Conditions (4.64) can be used to determine unknown reactions. In
this case, in order to be statically definable the system (4.64) must include
no more than three unknowns.

In turn, if the system includes three unknowns it must be
simultaneous and have a single solution. It means that none of the
equations of this system is a consequence of the other two. Under the
conditions formulated above any three equations are sufficient and
necessary equilibrium conditions for a planar force system.

Along with conditions (4.64), we get
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F, =0,
k=1
M, (Fk) =0, (4.65)
k=1 )
M, (F.)=0.
k=1 ) J
The segment AB is not perpendicular to the axis Ox
ZMA (Fk) =0,
k=1 )
Y M, (Fk) =0, (4.66)
k=1

gMCz (Fk)=0.J

Points A, B, C belong to different lines. Let us prove that conditions
(4.65) and (4.66), after fulfilling the appropriate requirements for the points
A, B, C, are sufficient and necessary equilibrium conditions for a planar
force system.

Conditions (4.65). Necessity. Force system (FI,FZ,...,Fn) ~0 .

We have to prove that all conditions (4.65) hold. For a balanced force

system, the resultant force F' and the resultant moment about any center
(e. 9. A, M ,) are equal to zero (see (4.57), (4.58)), i.e.

F=YFi.=0, (4.67)
k=1
MA = Z[TIA Fk =0 . (4.68)
k=1

After projecting equality (4.67) onto the axis Ox, we have the first
equation in (4.65).
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The resultant moments of the force system relate to the two centers
A and B as

MB =MA +Ezixf_ (4.69)
According to equations (4.67), (4.68), MB=0 Therefore the
prOJectlons of the resultant moments onto the axis Az are zero, i.e.

MA =0, MB = () . Hence conditions (4.65) are necessary.

Sufficiency. We need to prove that under condition (4.65) the force
system is balanced (equal to zero), i.e. the resultant force and the
resultant moment about any point are zero.

Projecting equality (4.69) onto the axis z perpendicular to the force
plane (plane xAy), we obtain

M, =M, + Ex?)z | (4.70)
Using (4.65) we get
Zn:Fkx =F. =0, (4.71)
=
Eixﬁ)z = 0. (4.72)

Equalities (4.71) and (4.72) are sufficient equilibrium conditions if the
axis X is not perpendicular to the segment AB. If the segment AB is
perpendicular to the axis X, both (4.71) and (4.72) are valid for a non-zero

resultant force F perpendicular to the axis x and collinear to the vector

BA. In this case, the force system is equivalent to the resultant force and
conditions (4.60) are necessary but not sufficient for the force system to be
in equilibrium.

Conditions (4.66). Their necessity immediately follows from
equalities (4.68). To prove their sufficiency of the conditions (4.66) let us
apply the relations between the projections of the force system resultant
moments about the points A, B, C onto the axis z perpendicular to the
force plane

M, =M, +(BAxF) . (4.73)
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M, =M, +(CixF) . (4.74)

4

Since A, B, C are chosen arbitrarily in the force plane and the vector

moments MA, MB, Mc are perpendicular to the plane, we see that for
the force system under consideration, a resultant moment about any point
is zero.

After multiplying equalities (4.74) by a nonzero scalar coefficient &
in accordance with (4.66) and subtracting the result from equality (4.73),
we get

[(BA—a-CA)xF] =0. (4.75)

Z

If the vectors BA and a are non collinear (it means that points A,
C belong to different lines), then equation (4.75) has a unique solution

B,
F = () for any . Otherwise,
BA-a-CA=0, (4.76)

and equality (4.75) is true for a nonzero resultant force F .

In this case, equalities (4.66) are necessary but not sufficient
conditions for the force system equilibrium, and this force system can be
reduced by the resultant force.

The sufficiency of conditions (4.66) is proven.

So, to solve a problem, we can use the basic form of equilibrium
equations for a coplanar force system (4.64) as well as their forms (4.65)
or (4.66).

4.8 Solving problems on the equilibrium of system of bodies

Equilibrium conditions for a general force system (4.59) or
equilibrium conditions for a coplanar force system (4.64) — (4.66) are
formulated as necessary and sufficient for a rigid body. For deformable
bodies including joined ones, these conditions are necessary but not
sufficient.

Indeed, by using the principle of solidification to solve the problem of
a deformable body equilibrium (or the equilibrium of a system of
deformable bodies) we shall treat this body as rigid and write appropriate
equilibrium conditions.
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There is no one-side action of force in nature, i.e. there is a reaction
to every action. In a deformable body or in connected bodies (system of
bodies), the forces of interaction between different parts are internal if we
view the body (system) as a whole. These internal forces act in pairs, so in
accordance with the principle of action-and-reaction the forces in a pair are
equal in magnitude and act along the same line in opposite directions. The
sum of these forces is always equal to zero. The sum of vector moments
about any center of interaction of two separated parts of a body is zero.

Therefore, for a set of internal forces (F) in any mechanical system, the

resultant force and the resultant moment about any center are equal to
zero:

F =Y F.=0, (4.77)
k=1
Mo =>"Mo FZ)=0. (4.78)
k=1

It means that in accordance with the principle of solidification and
equalities (4.77), (4.78), only external forces must be included in the
equilibrium conditions for a system of bodies.

For a general force system, the equilibrium conditions have the
following vector form

F =) Fi=0, (4.79)
k=1
Mo=Y Mo FZ)=0. (4.80)
k=1

The equilibrium conditions stated above for a specific force system
are valid for an appropriate body system (general, coplanar etc.). The
external forces must be included in equilibrium equations.

When we analyze the rest (or motion) of a mechanical system we
must determine the internal forces acting in the system.

To determine all the unknown reactions, it is not enough to know the
equilibrium conditions for a mechanical system even if this system is
statically definable. Moreover, the unknown internal reactions are not
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included into these equations because they belong to internal forces. So it
is impossible to construct a set of equations sufficient for the determination
of all unknown forces (both external and internal) if we consider only
equilibrium equations for the mechanical system. So to determine all
unknown forces (both external and internal) when solving on the body
system equilibrium, we use the method of section, which consists of the
following — divide the system of bodies into parts by cutting the internal
constraints between the bodies of the system.

For each adjacent part at the section, apply the reactive forces
corresponding to the type of the destroyed constraint. For the whole
system these forces are internal and must have the features of internal
forces ((4.77), (4.78)), but for any separate part, these forces are external.

For each part, write equilibrium equations, taking into consideration
all the forces acting on the part (including the reactions of destroyed
internal constraints).

Add the mathematical expression of the features for internal forces
to the conditions of equilibrium. If the original material system is statically
definable, then the number of equations obtained is sufficient to find all
unknown reactions.

The following example illustrates the method of section. Let us
consider a plane hinge-rod structure consisting of two rods AC and CD
connected with the help of a pin joint C. The fixed pin support A and rollers
B and D maintain the structure in the state of equilibrium.

Section is made in the internal pin C. It is possible to write a set of three
equilibrium equations for each part (Fig. 4.10). The FBD on sketch a) illustrates
the principle of solidification, FBD on sketch b) and c) illustrates the method of
sections, FBD on sketch b) and d) represents the method of sections too.

We do not need to write all the equations because in this case they
are dependent or repeated. It is enough to form six equilibrium equations
and two additional ones for the relations between the reactions in the pin
C such as:

three equations for the FBD a) and three equations for the FBD b);

three equations for the FBD a) and three equations for the FBD c);

three equations for the FBD b) and three equations for the FBD c)
and additional equations:

X, =X, Yo=Y - (4.81)

three equations for the FBD b) and three equations for the FBD d)
and additional equations:
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X, +x.=0,y.+y.=0. (4.82)

The last set of equations (including additional conditions (4.82)) is
universal because it holds for pin connections with any number of rods, but
the third set of equations (including (4.81)) works only for a pin connection
of two rods. For example, for a pin connection of three rods (Fig. 4.11) the
additional equations are

Xe +Xe +Xx0 =0, yc +yc +y. =0. (4.83)

Fig. 4.10
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Fig. 4.11

In conclusion, let us note that when constructing a free-body
diagram, we direct the reactions arbitrarily along the line of action (for
example, in the positive direction of the appropriate coordinate axis). The
assigned direction may prove to be wrong after the algebraic signs of
components are calculated. If the sign of the component turn out negative,
this means that a component actually acts in the direction opposite to the
original one.
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5 The center of parallel forces. The gravity center of a rigid
body

In this chapter, we will consider a parallel force system
FI,FZ,...,Fn) acting on a rigid body. It is supposed that the system can

be reduced to an equivalent one consisting of a resultant force. For this to
be true it is necessary and sufficient that the total vector is not zero:

F=YFi#0. (5.1)
k=1

The necessity follows from condition (5.1) since the resultant force
coincides with the total vector in magnitude and direction

R=F=Zn‘fk . (5.2)

To prove the sufficiency of condition (5.1), consider the special
cases of the force system reduced to the simplest form (see Chapter 4.5).
In cases 1 and 4a mentioned above, the system is reduced to the resultant
force:

NVF#0, Mo=0": (5.3)
4a)F#0, Mo#0,F 1L Mo . (5.4)

For a parallel force system, the total vector F is collinear with the

system of forces. The total moment Mo about a chosen center O is equal
to the resultant couple moment and perpendicular to the couple plane.
Therefore, if the total moment about the center O is not zero, it is

perpendicular to the total vector F.
So the parallel force system under consideration is equivalent to the
resultant force and the condition (5.1) holds

(FI,FZ,...,Fn)N—R. . (5.5)

Varignon’s theorem. If a force system acting upon a rigid body is
equivalent to the resultant force, the resultant force moment about any
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chosen center is equal to the sum of the moments of the system forces
about the same center.

There are several ways to prove this theorem. For example, we can
prove it by analyzing conditions 4.5 (see Chapter 4.5, the special cases of
the force system reduction to the simplest form).

Here the simplest proof of the theorem is presented. Let the general
force system be equivalent to the resulting force (5.5). If the vector
opposite to the resultant force is added to the original force system, the
obtained force system is equivalent to zero:

Fi1,F2y., Fu,—R)~0 . (5.6)
( )

So the total moment of a new system about any point O should be
zero

Mo (F1)+ﬁo (F2)+ ...+ﬁ0 (Fn)"‘MO (——R.) = Zﬁo (Fk)—
k=1
—Mo(ié) =0,

since

—

Mo (—ﬁ):?x —T{):—?xﬁ:—Mo (—ﬁ), (5.7)

where r is a position vector of the application point of the resulting force with

respect to the center O.
It follows from equation (5.7)

Mo(R)=3 70 (Fs). 58)
k=1

This completes the proof of the Varignon theorem.
5.1 The center of parallel force system

Let the set of parallel forces (FI,FZ,...,Fn) be applied to the body.

This force is equivalent to resultant force E If we draw parallel lines at the
force application points and then rotate each point by the angle & about
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its axis in the same direction, the new set of forces is parallel and has a
resultant force collinear with new forces. If the force system rotates by an
arbitrary angle about the parallel axes, the resultant force should rotate the
same angle about the axis parallel to the axes of the forces of system. The
axis of rotation of the resultant intersects some specific point that is called
as center of the parallel force.

z A

Fig. 5.1

Let us take in consideration the unit vector -é collinear with the forces
of system. Then for any force the next would be true

Fi=e-F' . k=1,n, (5.9)

where F, is projection onto the unit vector e of force with number k. It is clear

that F, > 0 if the force has the same direction with unit vector eand F/>0

in opposite case.
It is clear from definitions of the center of parallel force system that

its position does not depend on the unit vector e direction. This feature
may be used for the determination of the center’s coordinates with respect
to the chosen coordinate system Oxyz. Let point C (Fig. 5.1) is the center

of a parallel force system. Assuming that the force system is equivalent to
the resultant force only (it means the Varignon’s theorem condition hold)
we can say
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Mc (})=iﬁc (Fk) : (5.10)
k=1

Obviously,
Mc(fé)=0, (5.11)
Mc(Fk)=;kka k=1,n, (5.12)
p.=ri—r , k=1,n, (5.13)

where ;k, ;k are the position vectors of the force Fk point of application

with respect to the points O and C; r is a required position vector of the
parallel force center C.

Using equation (5.13) to make substitutions in (5.12) and (5.11) in
(5.10), we get

Zn:(?k—?)xfk =0 . (5.14)
k=1

In accordance with (5.9), the latter equation takes the form

(z;k.pk*_;.sz*)x;‘:o. 5.15)
k=1 k=1

This equation is true for the unit vector -é of any direction and any
angle of rotation of the forces about the parallel axes. So it follows from
equation (5.15) that the expression in brackets is equal to zero

Zn:?k.Fk—?.zn:Fk*=0. (5.16)
k=1 k=1

This equation can be used to determine a required vector position of
the center of the parallel force system. From (5.16) we have

74



P (5.17)

k=

~

Projecting both sides of equality (5.17) onto the axes of the
rectangular coordinate system (see Fig. 5.1), we get formulas for the
coordinates of the center:

n
*
Zxk°Fk
X = k=1 .

sz - Fy
= - .Y =k
2F
k=1

Zyk °Fk*
=&z .

Z Fk* Fk*
k=1

k=1

(5.18)

The expression Z;k -Fk* in equation (5.17) is called the first static

k=1

moment of a parallel force system (E, Fz, cons Fn) with respect to the center
O; and the expressions Zxk -F, Zyk -F, sz - F; in (5.18) are
k=1 k=1 k=1

called the first static moment of a parallel force system (F 1, Fz, ceny Fn) with

respect to the coordinate planes y0z , x0z , xOy respectively.

5.2 The center of gravity of a rigid body

Gravitational force is the force exerted on the body by the earth. The
numerical value of this force is equal to the body weight. The vector of the
gravitational force is directed along the cord with the help of which the
body is suspended to a fixed point. This direction is called vertical; the
plane perpendicular to the vertical is called horizontal.

If we mentally decompose a body into elementary particles, the force
of gravity acting on each particle should act through the point coinciding
with the particle. The set of gravitational forces of elementary particles can
with sufficient accuracy be considered a system of parallel forces (for
example, if we have two particles located one kilometer apart on the
surface of the Earth, the angle between two forces of gravity is 32°).
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It is clear that this force system is equivalent to the resultant force
only if all forces of the system have the same direction.

The resultant of the gravitational forces of the elementary particles
forming a rigid body acts through a point called the parallel force center.
The center of parallel gravitational forces of the rigid body particles
coincides with the center of gravity. The location of the center of gravity
can be determined with the help of equation (5.17)

Zr AP,

r. = , (5.19)

:ZAP

where r, is a position vector of the elementary particle k; AP, is its weight, n

is the number of the elementary volumes (particles) forming the body.

Equation (5.19) determines the approximate value of the center of
gravity position vector for a rigid body. The accuracy of the result will
increase if the volume of elementary particles diminishes.

When n— o (APk —)0), the sums of the numerator and the
denominator of formula (5.19) are integral and we can write

Y 74P limY AP,

—

A k=1 —_ n—oo k=]
re=lim", =
= AP, [imY AP,
k=1 n—o k=]
j 7-dP
=2 —— | r.dpP, (5.20)
[ ap (i )r

(P)

-—

where P is a body weight, r is a position vector of the point with the

coordinates X, y, z; dP is the weight of an infinitesimal particle.
If the body is not homogeneous, its specific weight is a function of
the point coordinates

y=r(x,»,2);dP=y(x, y, z)-dV , (5.21)
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where dVis an infinitesimal value, and the formula (5.20) can be rewritten as

7=%m7y(x, y,z)-dv . (5.22)
V)

After projecting both sides of equation (5.20) onto the axes x, y, z of
a Cartesian coordinate system, we obtain expressions for the center of

gravity coordinates:

N

X, =%‘!“!‘!‘x-7(x,y,z)dV,

! (5.23)

v

JIy-y(x,y,z)dV,
V)

.Hz-}'(x,y,z)dV.

V) )

Ye

P
1
ZC=;‘

For a homogeneous body, y,(x,y,z)=1Y, =const and relations
(5.23) can be simplified:

N

1
Xp=— I x - dxdydz,

V)

1
Ve = ;‘I y-dxdydz, ¢ . (5.24)

V)

z = ; mz.dxdydz. |

Note that P=y-V, dV =dxdyd;. The center of gravity of a

homogeneous body is called the centroid of volume.
It is known that a body is called a plate, shell, or two-dimensional

body if one of its character sizes (for example, thickness) is substantially

smaller than the other two.
For a uniform surface, we have AP =y dS, P=y,-S (S is the

area of the surface under consideration).
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So the coordinates of the center of gravity of a uniform shell are

xc=§;'1xds;yc=é£{de;zC=ég)zdS. (5.25)

The center of gravity of a uniform shell is called the centroid of a surface.
For a thin uniform plate, the infinitesimal area is defined as
dS = dxdy . Here it is supposed that the plate lies in the coordinate plane

xO0y so for expressions (5.25) we get:

X, = é(];_[)xdxdy Ve = é(];j)ydxdy : (5.26)

If one of the character sizes of a body is substantially greater than
the other two dimensions, the body is called a uniform rod. Let us consider
a rod element enclosed between two sections perpendicular to the axial

line of the rod. The weight of the element AP, is proportional to the length
A/ of the axial line arc. Hence AP, =y, A4¢,, P=y,L where L is the

rod length, ¥, is linear weight (the rod unit length weight). The coordinates
of rod center of gravity are

1 1 1
xc=—IXd/,yc=—Iyd/,zC=—Izd!. (5.27)
L(L) L(L) L(L)

The center of gravity of a uniform rod is called the centroid of a line.

The terms centroid of volume, surface, or line are used because only
the geometrical features of a body are used to define the centre of gravity,
while volume, surface, and line integrals are evaluated.

5.3 The coordinates of the center of gravity

To determine the coordinates of the gravity center for a rigid body,
we must evaluate the volume, surface and line integrals. But under some
conditions, the location of the gravity center can be determined by very
simple methods. Let us consider some of them.

Theorems of symmetry:

Theorem 1. If a body is uniform and symmetric with respect to a
plane, the body’s centroid lies in this plane.
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Theorem 2. If a body is uniform and symmetric with respect to a line,
the body’s centroid lies in this axis.

Theorem 3. If a body is uniform and symmetric with respect to a
center O, the body’s centroid coincides with O.

A body is said to be symmetric with respect to a plane, axis, or
center if for every particle on one side of the plane, axis, or center there
exists a particle of equal weight on the other side of the plane so that the
segment of the line connecting these two points is perpendicular to the
plane and is divided into two equal parts by this plane, axis, or center).

Method of dividing body into n parts

To determine the position of the center of gravity a body can be
divided into parts with a known (or easily found) weight and gravity center.
For a body divided into n parts, we have

— PP +PF,+..+PF
r,=—"1 “P (5.28)

where 7. is a position vector of the whole body center of gravity,

-

weights of the parts, P is the body weight.

The expressions used to determine the coordinates of the gravity
center follow from equation (5.28). It is supposed that the origin of the
position vector coincides with the origin of the coordinate system):

1 1
=;Zpkxk ,yc=;z Yo Te = Z . (5.29)
k=1 k=

For a uniform plate that lies in the coordinate plane xOy, from (5.29)
we have

F,, .., F, are position vector's of different parts P, P,,..., P, are

1 & 1 &
=S 2 Sk s Ve =g XS s 2 =0, (5.30)
k=1 k=1

where S is the plate area, x,, y, (k =1,2,.. n) are the gravity center

coordinates of the separated parts; S, (k =1,2,.., n) are the areas of
the parts.
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Method of negative weights

This method is used to determine the centre of gravity of a body with
holes. The method of dividing the body into n parts can be applied, but the
holes are assumed to have negative weight, i.e.

. _P-F-PF-PF-..—PF, 5.31)
¢ P-P-P,—..-P

Here 7. is a required position vector of the centre of gravity of a
body with holes; P is the weight of the body without holes; 7,, 7,, ...,

P, P,, ..., P, are position vectors of the gravity centers and the weights of
the body parts equivalent to the holes, respectively.

Method based on the Pappus-Guldinus theorems

Theorem 1. The area of a surface of revolution is equal to the
product of the arc length and the length of the circle generated by the
gravity centre. It is supposed that the surface is generated by rotating a
plane curve about an axis external to the plane curve and lying in the
same plane:

S=2nx.-L, (5.32)

where S is the area of the surface of revolution, L is the arc length of a
plane curve, x. is a coordinate of the curve centre of gravity (it is

supposed that the curve lies in the plane xOy and rotates about the
axis Qy).

Theorem 2. The volume of a body of revolution generated by
rotating a plane figure about an external axis is equal to the product of the
area of a plane figure and the distance travelled by its geometrical
centroid:

V=2rx.-S . (5.33)

where V is the volume of a body of revolution, S is the area of the plane
figure, x, is the abscissa of the gravity centre of the figure laying in the

plane xOy and rotating about the axis Oy.
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