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Chapter 1 

Mechanical Oscillations 
In this chapter we consider a very special kind of motion which occurs 

when the force acting on a body is proportional to the displacement of the body 
from some equilibrium position. If this force is always directed toward the 
equilibrium position, repetitive back-and-forth motion occurs about this position. 
Such motion is called oscillation, or vibration (the terms are completely 
equivalent). 

You are most likely familiar with several examples of periodic motion, 
such as the oscillations of a block attached to a spring, the swinging of a child on 
a playground swing, the motion of a pendulum, and the vibrations of a stringed 
musical instrument. In addition to these everyday examples, numerous other 
systems exhibit periodic motion. For example, the molecules in a solid oscillate 
about their equilibrium positions; electromagnetic waves, such as light waves, 
radar and radio waves, are characterized by oscillating electric and magnetic field 
vectors; and in alternating-current electrical circuits, voltage, current, and 
electrical charge vary periodically with time.  

Thus a study of periodic motion gives us an important foundation for 
further study in many different areas of physics. 

1.1   Basic Concepts 

One of the simplest systems that can undergo periodic motion is a block of 
mass m  attached to a spring, as shown in Figure 1.1. The body is attached to one 
end of a spring, and the other end of the spring is held stationary. 

Let x  be the displacement of the body from its equilibrium position. When 
0=x , the spring is neither stretched nor compressed. When the body is displaced 

to the right, x  is positive and the spring stretches. The force F  that the spring 
exerts on the body is toward the left (negative x -direction), toward the 
equilibrium position, and F  is negative. When the body is displaced to the left, x  
is negative and the spring is compressed. The force on the body is toward the 
right (positive x -direction), again toward equilibrium, and F  is positive. Thus 
the sign of F  is always opposite to the sign of x  itself. We call such a force a 
restoring force. 

We know that for some springs the force is directly proportional to the 
deformation, at least for small deformations. This proportionality is called Hook's 
law. Thus in Figure 1.1, if the spring obeys Hook's law, we may represent the 
relationship of F  to x  as 

kxF -= ,     (1.1) 
where k  is the force constant for the spring. This relation is valid for both 
positive and negative x ; in both cases F  and x  have opposite signs. 
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Suppose we displace the body a 
distance A  the right and release it, 
with no initial velocity. The spring 
exerts a force toward the equilibrium 
position, and the body accelerates in 
this direction. The acceleration is not 
constant, because the force decreases 
as the body approaches the 
equilibrium position. 

When the body reaches 0=x , 
the force and acceleration have 
decreased to zero, but the velocity that 
the body has acquired, causes it to 
"overshoot" the equilibrium position 
and continue to move to the left. The 
force then reverses direction, and the 
body's speed starts to decrease. The 
body comes to rest at some point to 
the left of O  and starts back toward 
the equilibrium position. 

The motion is confined to a 
range Ax ±=  on both sides of the 
equilibrium position, and each 
complete back-and-forth trip takes the 
same amount of time. If there were no 

loss of mechanical energy due to friction, the motion would continue forever. 
This specific motion, under the influence of a restoring force proportional to 
displacement and without any friction, is called simple harmonic motion, 
abbreviated SHM. 

Simple harmonic motion is the simplest of all periodic motions to analyze. 
In more complex examples the force may depend on displacement in a more 
complicated way; but only when it is directly proportional to displacement do we 
use the expression "simple harmonic motion." However, many more complex 
periodic motions are approximately simple harmonic, if the displacements are 
small enough. Thus, simple harmonic motion is a model that serves for an 
approximate representation of many periodic motions. 

An experimental arrangement that exhibits simple harmonic motion is 
illustrated in Figure 1.2. A mass oscillating vertically on a spring has a pen 
attached to it. While the mass is oscillating, a sheet of paper is moved 
perpendicular to the direction of the spring motion, and the pen traces out a 
wavelike pattern.  

m
x

x

x

x
x = 0

x = 0

(a)

m

m

0F =
(b)

x
x = 0

(c)

F

F

 
Figure 1.1   A block attached to a spring 
moving on a frictionless surface. (a) When the 
block is displaced to the right of equilibrium 
( 0>x ), the force exerted by the spring acts 
to the left; (b) When the block is at its 
equilibrium position ( 0=x ), the force exerted 
by the spring is zero; (c) When the block is 
displaced to the left of equilibrium ( 0<x ), 
the force exerted by the spring acts to the 
 

right 
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In general, a particle moving 
along the x  axis exhibits simple 
harmonic motion when x , the particle's 
displacement from equilibrium, varies in 
time according to the relationship 

)cos( fw += tAx ,  (1.2) 
where A , w , and f  are constants. To 
give physical significance to these 
constants, we have labeled a plot of x  as 
a function of t  in Figure 1.3a. This is 
just the pattern that is observed with the 
experimental apparatus shown in 
Figure 1.2. The amplitude A  of the 
motion is the maximum displacement of 
the particle in either the positive or 
negative x  direction. The constant w  is 
called the angular frequency of the 
motion and has units of radians per 
second. The constant angle f , called the 
phase constant (or phase angle), is 
determined by the initial displacement 
and velocity of the particle. If the particle is at its maximum position Ax =  at 

0=t , then 0=f  and the curve of x  versus t  is as shown in Figure 1.3b. If the 
particle is at some other position at 0=t , the constants f  and A  tell us what the 
position was at time 0=t . The quantity ( fw +t ) is called the phase of the 
motion. The phase constant f  is important when we compare the motion of two 
or more oscillating objects. Imagine two identical pendulum bobs swinging side 
by side in simple harmonic motion, with one having been released later than the 
other. The pendulum bobs have different phase constants. 

Note from Eq. (1.2) that the trigonometric function x  is periodic and 
repeats itself every time tw  increases by p2  rad. The period T  of the motion is 
the time it takes for the particle to go through one full cycle . We say that the 
particle has made one oscillation. This definition of T  tells us that the value of x  
at time t  equals the value of x  at time Tt + . We can show that wp /2=T  by 
using the preceding observation that the phase ( fw +t ) increases by p2  rad in a 
time T : 

fwpfw ++=++ )(2 Ttt . 
Hence, pw 2=T , or 

w
p2

=T .      (1.3) 

m

Motion
of paper

 
Figure 1.2   An experimental apparatus for 
demonstrating simple harmonic motion. A 
pen attached to the oscillating mass traces 
out a wavelike pattern on the moving chart 
 

paper 
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The inverse of the period is 
called the frequency f  of the motion. 
Frequency represents the number of 
oscillations that the particle makes per 
unit time: 

p
w
2

1
==

T
f .    (1.4) 

The units of f  are cycles per 

second 1-s , or hertz (Hz). 
Rearranging Eq. (1.4), we obtain 

the angular frequency: 

T
f p

pw
22 == .       (1.5) 

We can obtain the linear velocity 
of a particle undergoing simple 
harmonic motion by differentiating Eq. 
(1.2) with respect to time: 

)sin( fww +-== tA
dt
dxv .   (1.6)  

The acceleration of the particle 
is 

)cos(2
2

2
fww +-=== tA

dt
xd

dt
dva . (1.7) 

Because )cos( fw += tAx , we can express Eq. (1.7) in the form 
xa 2w-= .     (1.8) 

From Eq. (1.6) we see that, because the sine function oscillates between ±1, 
the extreme values of v  are Aw± . Because the cosine function also oscillates 
between ±1, Eq. (1.7) tells us that the extreme values of a  are A2w± . Therefore, 
the magnitude of maximum speed and that of the maximum acceleration of a 
particle moving in simple harmonic motion are 

Av w=max ,       (1.9) 
Aa 2

max w= .    (1.10) 
Figure 1.4a represents the displacement versus time for an arbitrary value 

of the phase constant. The velocity and acceleration curves are illustrated in 
Figures 1.4b and c. These curves show that the phase of the velocity differs from 
the phase of the displacement by 2/p  rad, or 90°. That is, when x  is a maximum 
or a minimum, the velocity is zero. Likewise, when x  is zero, the speed is 
maximum. 

A

x

t

(b)

(a)

A

x
T

t

A

A

/

 
Figure 1.3   (a) An tx -  curve for a particle 
undergoing simple harmonic motion. The 
amplitude of the motion is A , the period is 
T  and the phase constant is f ; (b) The 

tx -  curve in the special case in which 
 

Ax =  at 0=t  and hence 0=f  
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Furthermore, note that the phase 
of the acceleration differs from the 
phase of the displacement by p  rad, or 
180°. That is, when x  is a maximum, 
a  is a maximum in the opposite 
direction. 

Summarizing, the following 
properties of a particle moving in 
simple harmonic motion are important: 

1. The acceleration of the 
particle is proportional to the 
displacement but is in the opposite 
direction. This is the necessary and 
sufficient condition for simple 
harmonic motion. 

2. The displacement from the 
equilibrium position, velocity, and 
acceleration all vary sinusoidally with 
time but are not in phase, as shown in 
Figure 1.4. 

3. The frequency and the period 
of the motion are independent of the 
amplitude. 

Example 1.1 
An object oscillates with SHM along the x  axis. Its displacement from the 

origin varies with time according to the equation 

÷
ø
ö

ç
è
æ +=

4
cos4 p

ptx , 

where x  is in metres, t  is in seconds and the angles in the parentheses are in 
radians.  

a) Determine the amplitude, frequency and period of the motion. 
Solution. By comparing this equation with Eq. (1.2), ( )cos( fw += tAx ), 

the general equation for SHM, we see that 4=A  m and pw =  rad/s. Therefore,  
5.02/2/ === pppwf  Hz. 

and 2/1 == fT  s. 
b) Calculate the velocity and acceleration of the object at any time t . 

Solution.              ÷
ø
ö

ç
è
æ +-==

4
sin)m/s4( p

pp t
dt
dxv , 

O t

a

tO

tO
A

x T

(a)

(b)

(c)

iu

ix

max Au w=

2
maxa Aw=

 
Figure 1.4   Graphical representation of 
simple harmonic motion. (a) Displacement 
versus time; (b) Velocity versus time; (c) 
Acceleration versus time. Note that at any 
specified time the velocity is 90° out of phase 
with the displacement and the acceleration is 
 

180° out of phase with the displacement 
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÷
ø
ö

ç
è
æ +-==

4
cos)m/s4( 22 p

pp t
dt
dva . 

c) Determine the position, velocity and acceleration of an object at 1=t  s. 
Solution. Noting that the angles in the trigonometric functions are the 

same, we obtain at 1=t : 

83.2)707.0)(4(
4

5cos)4(
4

cos)4( -=-=÷
ø
ö

ç
è
æ=÷

ø
ö

ç
è
æ +=

pp
px  m, 

89.8)707.0)(4(
4

5sin)π4( =--=÷
ø
ö

ç
è
æ-= p

pv  m/s, 

9.27)707.0)(4(
4

5cos)4( 22 =--=÷
ø
ö

ç
è
æ-= p

p
pa  m/s2. 

d) Determine the maximum speed and maximum acceleration of the object. 
Solution. In the general expressions for v  and a  found in part (b), we use 

the fact that the maximum values of the sine and cosine functions are unity. 
Therefore, v  varies between m/s4p± , and a  varies between m/s4 2p± . Thus, 

6.12m/s4max =±= pv  m/s, 

5.39m/s4 22
max =±= pa  2m/s . 

We obtain the same result using Av w=max  and Aa 2
max w= , where 4=A  m 

and pw =  rad/s. 
e) Find the displacement of the object between 0=t  and 1=t  s. 
Solution. The x  coordinate at 0=t  is  

83.2)707.0)(4(
4

0cos)4( =-=÷
ø
ö

ç
è
æ +=

px  m. 

In part (c), we found that the x  coordinate at 1=t  s is -2.83 m, therefore, 
the displacement between 0=t  and 1=t  s is  

66.5m83.2m83.2 -=--=-=D if xxx  m. 
Because the body’s velocity changes its sign during the first second, the 

magnitude of xD  is not the same as the distance covered in the first second. (By 
the time the first second is over, the object has been through the point 

83.2-=x  m once, traveled to 83.2-=x  m and come back to 83.2-=x  m.) 

Exercises 

1.1. Which of the following is a necessary and sufficient condition for 
SHM? 

a) constant period; 
b) constant acceleration; 
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c) proportionality between acceleration and displacement from equilibrium 
position; 

d) proportionality between restoring force and displacement from 
equilibrium position. 

1.2. For a particle executing SHM which of the following statements is 
valid: 

a) the total energy of the particle always remains the same; 
b) the restoring force is maximum at extreme positions; 
c) the restoring force is always directed towards a fixed point; 
d) the velocity of the particle is maximum at the center of motion of the 

particle. 
1.3. A vibrating object goes through five complete oscillations in 1 s. Find 

the angular frequency and the period of the motion.   (Ans. 4.31=w  rad/s, 
2.0=T  s.) 
1.4. In Figure 1.1 the mass is displaced 0.12 m from its equilibrium 

position and released with no initial velocity. After 2 s its displacement is found 
to be 0.12 m on the opposite side and it has passed the equilibrium position once 
during this interval. Find the amplitude, the period, the frequency and the angular 
frequency. 

1.5. Which of the following relationships between the acceleration a  and 
the displacement x  of a particle involve SHM: xa 5.0= , 2400 xa = , xa 20-= , 

23xa -= ? 
1.6. Given m)cos(5t)2(=x  for SHM and needing to find the velocity at 

2=t  s, should you substitute for t  and then differentiate with respect to t  or vice 
versa? 

1.7. An object of mass 0.01 kg moves with SHM of amplitude 0.24 m and 
period 4 s. The coordinate is +0.24 m when 0=t . Compute 

a) the position of the object when 5.0=t  s. 
b) the magnitude and direction of the force acting on the object when 

5.0=t  s. 
c) the minimum time required for the object to move from its initial 

position to the point where 12.0-=x  m. 
d) the velocity of the object when 12.0-=x  m. 
1.8. An object is vibrating with SHM of amplitude 15 cm and frequency 

4 Hz. Compute 
a) the maximum values of the acceleration and velocity.   (Ans. 2m/s94.7 , 

3.77 m/s); 
b) the acceleration and velocity when the coordinate is 9 cm (Ans.  

–56.8 2m/s , 02.3±  m/s); 
c) the time required to move from the equilibrium position to a point 12 cm 

distant from it.   (Ans. 0.0369 s). 
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1.2   Block-Spring System  

Let us return to the block-spring system (Figure 1.1). Again, we assume 
that the surface is frictionless; hence, when the block is displaced from 
equilibrium, the only force acting on it is the restoring force of the spring. 
Applying Newton’s second law to the motion of the block, together with the 
Hook’s law, we obtain: 

      kxF -= , 
      maF = , 

x
m
ka -= .     (1.11) 

As we saw in Eq. (1.11), when the block is displaced a distance x  from 
equilibrium, it experiences an acceleration xmka )/(-= . If the block is displaced 
a maximum distance Ax =  at some initial time and then released from rest, its 
initial acceleration at this instant is mkA /-  (extreme negative value). When the 
block passes through the equilibrium position 0=x , its acceleration is zero. At 
this instant, its speed is a maximum. Then the block continues to travel to the left 
of equilibrium and finally reaches Ax -= , at this time its acceleration is mkA /  
(maximum positive) and its speed is again zero. Thus, we see that the block 
oscillates between the turning points Ax ±= . 

Recall that 22 // dtxddtdva ==  and so we can express Eq. (1.11) as 

x
m
k

dt
xd

-=2

2
, 

or    02

2
=+ x

m
k

dt
xd . 

If we denote the ratio mk /  with the symbol 2w ,  

m
k

=2w ,      (1.12) 

this equation becomes 

02
2

2
=+ x

dt
xd

w .       (1.13) 

Now we require a solution to Eq. (1.13), that is, a function )(tx  that 
satisfies this second-order differential equation. From the theory of differential 
equations it is known that this solution has form: 

tAx wsin= ,     (1.14a) 
or tAx wcos= ,          (1.14b) 

or )cos( fw += tAx .     (1.14c) 
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To see this explicitly, assume that )cos( fw += tAx . Then  

)sin()cos( fwwfw +-=+= tAt
dt
dA

dt
dx , 

)cos()sin( 2
2

2
fwwfww +-=+-= tAt

dt
dA

dt
xd . 

Comparing this expressions for x  and 22 / dtxd , we see that 
xdtxd 222 / w-= , and Eq. (1.13) is satisfied. We conclude that whenever the 

force acting on a particle is linearly proportional to the displacement from some 
equilibrium position and in the opposite direction, the particle moves in simple 
harmonic motion. 

It can be shown in the same manner that function (1.14a) and (1.14b) are 
the solutions for the differential equation (1.13). We see that the essential 
difference among them is the position of the body at the instant of time we choose 
to call 0=t . 

Equations (1.14) will form the basis of our further description of simple 
harmonic motion. For given values of A  and w , they differ in the position of the 
particle at time 0=t , that is, in the particular point in the cycle at which 0=t . If 
the body is given an initial displacement A  at time 0=t  and released with no 
initial velocity, the motion is described by Eq. (1.14b). If the body is given an 
initial velocity 0v  at the equilibrium position ( 0=x ) at time 0=t , the 
appropriate equation is Eq. (1.14a). In that case, 0v  and A  are related by 

Av w=0 , 
since the velocity at 0=x  is the maximum velocity. 

When the body is given both an initial displacement 0x  and an initial 
velocity 0v  at time 0=t , it is better to use Eq. (1.14c). 

Suppose that at 0=t  the initial position of an oscillator is 0xx =  and its 
initial speed is 0vv = . Under these conditions, Eqs. (1.2) and (1.6) give 

fcos0 Ax = ,       (1.15) 
and 

fw sin0 Av -= .       (1.16) 
Dividing Eq. (1.16) by Eq. (1.15) eliminates A , giving fw tan/ 00 -=xv , 

or  

0
0tan
x

v
w

f -= .                                          (1.17) 

Furthermore, if we square Eq. (1.15) and (1.16), divide the velocity 
equation by 2w , and then add terms, we obtain 

)sin(cos 222
2

02
0 ff

w
+=÷

ø
ö

ç
è
æ+ Avx , 
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or, using the identity 1sincos 22 =+ ff ,  

2
2

02
0 Avx =÷

ø
ö

ç
è
æ+

w
,           (1.18) 

which can be solved for A : 
2

02
0 ÷

ø
ö

ç
è
æ+=

w
vxA .    (1.19) 

The amplitude is not equal to the initial displacement. This is reasonable: if 
at time 0=t  the particle has both an initial displacement 0x  in the positive 
direction and also a positive velocity 0v  in that direction, then it will move farther 
in that direction before returning; hence, A  must be greater than 0x .  

Recall that the period of any simple harmonic oscillator is wp /2=T  and 
that the frequency is the inverse of the period. We know that mk /=w , so we 
can express the period and frequency of the block-spring system as 

k
mT p

w
p 22

== ,   and 
m
k

T
f

p2
11

== .                  (1.20) 

That is, the frequency and period depend only on the mass of the block and 
on the force constant of the spring.  Furthermore, the frequency and period are 
independent of the amplitude of the motion. As we might expect, the frequency is 
greater for a stiffer spring (the stiffer the spring, the greater the value of k ) and 
decreases with increasing mass. 

Example 1.2 
A spring is mounted as in Figure 1.1. By attaching a spring balance to the 

free end and pulling sideways, we determine that the force is proportional to the 
displacement and that a force of 4 N causes a displacement of 0.02 m. We attach a 
2-kg body to the end, pull it aside a distance of 0.04 m, and release it. 

a) Find the force constant of the spring. 

Solution. 200
02.0
4

===
x
Fk  N/m. 

b) Find the period and frequency of vibration.  
Solution. The period is: 

0.628s
5200

222 ====
p

pp
k
mT  s. 

The frequency: Hz59.151
===

pT
f . 

The angular frequency: 102 == fpw  rad/s. 
c) Compute the maximum velocity attained by the vibrating body.  
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Solution. The maximum velocity occurs at the equilibrium position, where 
0=x . For any x , from Eq. (1.18) 

22 xAv -±= w , 
so when 0=x , 

4.0)04.0)(10(max ±==±== Avv w  m/s. 
The same result we obtain, if we use Eq. (1.9). 
d) Compute the maximum acceleration. 
Solution. From Eq. (1.8), 

xx
m
ka 2w-=-= . 

The maximum acceleration occurs at the ends of the path, where Ax ±= . 
Therefore, 

22
max m/s4.0)04.0()10( ±=±=a . 

e) Compute the velocity and acceleration of the body when it has moved 
halfway to the center from its initial position. 

Solution. At this point, 

02.0
2

==
Ax  m, 

346.0
10

32)02.0()04.0()10( 22 -=÷÷
ø

ö
çç
è

æ
-=--=v  m/s, 

222 m/s0.2)02.0()10( -=-=-= xa w . 
f) How much time is required for the body to move halfway to the center 

from the initial position? 
Solution. The position at any time is given by tAx wcos= . From this, 

)10cos(2/ tAA = , 

2
1)10cos( =t , 

32
1arccos)10( p

==t , 

30
p

=t  s. 

Example 1.3  
Consider a mass m  on a frictionless table connected to fixed points A  and 

B  (Figure 1.5) by two springs of equal natural length, negligible mass and spring 
constants 1k  and 2k  respectively. The mass is displaced horizontally and then 
released. What is the period of oscillation? 
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Solution. Let the mass be 
displaced horizontally to the 
position C¢  such that xCC =¢ . The 
spring 1S  is stretched through a 
distance x  and exerts a force xk1-  

along CA . Similarly, the string 2S  is compressed through a distance x  and exerts 
a force xk2-  along BC . If 22 / dtxd  be the acceleration of the block, then from 
the Newton’s second law: 

xkkxkxk
dt

xdm )( 21212

2
+-=--= , 

or      0)( 21
2

2
=

+
+ x

m
kk

dt
xd . 

This equation represents SHM. Hence, the angular frequency and period 
are, corespondingly: 

m
kk 21 +

=w  and 
21

2
kk

mT
+

= p . 

Exercises 

1.9. A block of mass 680=m  g is fastened to a spring whose spring 
constant 65=k  N/m. The block is pulled a distance 11=x  cm from its 
equilibrium position at 0=x  on a frictionless surface and released from rest at 

0=t . 
a) What are the angular frequency, frequency and the period of the resulting 

motion?   (Ans. 8.9=w  rad/s, 6.1=f  Hz, 640=T  ms.) 
b) What is the amplitude of oscillation?   (Ans. 11=A  cm.) 
c) What is the maximum speed maxv  of the oscillating block, and where is 

the block when it occurs?   (Ans. 1.1max =v  m/s.) 
d) What is the magnitude maxa  of the maximum acceleration of the block?   

(Ans. 2
max m/s11=a .) 

e) What is the phase constant?   (Ans. 0=f  rad.) 
f) What is the displacement )(tx  for the block-spring system? 

(Ans. )8.9cos(11.0)( ttx = ). 
1.10. At 0=t , the displacement of the block is -9.50 cm. The block’s 

velocity )0(v  is then -0.920 m/s and its acceleration 2m/s0.47)0( =a . 
a) What is the angular frequency of this system?   (Ans. 5.23=w  rad/s.) 
b) What is the phase constant f  and amplitude A?   (Ans. °= 155f  and 
4.9=A  cm.) 

A x B

1S 1k 2k2S

C¢
C

 
Figure 1.5    Mass m  is connected by two springs 
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1.11. A harmonic oscillator has a mass of 0.5 kg and a spring of unknown 
force constant. It is found to have a period of 0.20 s. Find the force constant of the 
spring. 

1.12. A block of unknown mass is attached to a string of force constant 
200 N/m. It is found to vibrate with a frequency of 3.0 Hz. Find the period, the 
angular frequency and the mass.   (Ans. s333.0=T , 8.18=w  rad/s, 

563.0=m  kg.) 

1.3   Block-Spring System in Vertical Plane 

Suppose we turn the system of Figure 1.1 by 90°, so the mass hangs 
vertically from the spring (see Figure 1.6a). The motion does not change in any 
essential way. In Figure 1.6b, a body of mass m  hangs in equilibrium from a 
spring with force constant k . In this position the spring is stretched an amount lD  
just great enough so that the spring's upward vertical force lkD  on the body 
balances its weight mg . In this case, mglk =D . 

When the body is at a distance x  
above its equilibrium position, as in 
Figure 1.6c, the extension of the spring 
is xl -D . The upward force it exerts on 
the body is then )( xlk -D , and the 
resultant force F  on the body is  

kxmgxlkF -=--D= )( , 
that is, a net downward force of 
magnitude kx . Similarly, when the 
body is below the equilibrium position, 
there is a net upward force proportional 
to x . Therefore, the equation of motion 
is the same as Eq. (1.13). Hence, if the 
body is set in vertical motion, it 
oscillates with SHM, with the same 
angular frequency as though it were horizontal, i.e., the motion is described by 
Eq. (1.13) and its angular frequency is 

mk /=w . 

Example 1.4 
Two springs A  and B  each of length l , have a force constants 1k  and 2k . 

Find the force constant k  of the spring system, if they are connected (a) in 
parallel, (b) in series in vertical plane.  

 
Figure 1.6   The restoring force on a body 
suspended by a spring is proportional to the 
coordinate measured from the equilibrium 
 

position 
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Solution. 
Let body of mass m  be suspended from the combination of the springs.  
(a) Springs are connected in parallel. 
Force mgF = , acted on the spring’s system can be resolved into two 

components, 21 FFF += . One of them, 1F , is applied to the spring A , the other – 
to the spring B . Elongations of the both spring x  are the same.  

The tension in A  is xkF 11 =  and tension in B  is xkF 22 = . Hence for the 
system of spring we can write 

kxF =  
where k  the spring constant of the combination. We can rewrite this equation as  

kxFF =+ 21 , ors 
kxxkxk =+ 21 , or 
21 kkk += . 

(b) Springs are connected in series,  
The elongations in springs A  and B , produced by force F , will be 

11 / kFx =  and 22 / kFx = , respectively. The total elongation is  

÷÷
ø

ö
çç
è

æ +
=÷÷

ø

ö
çç
è

æ
+=÷÷

ø

ö
çç
è

æ
+=+=

21
12

2121
21

11
kk

kkF
kk

F
k
F

k
Fxxx . 

And, finally, the force constant of the system is 

12
21

21
12 kk

kk

kk
kkF

F
x
Fk

+
=

÷÷
ø

ö
çç
è

æ +
== . 

Example 1.5 
A body of mass 5 kg is suspended by a string, which stretches 0.1 m when 

the body is attached. The body is then displaced downward an additional 0.05 m 
and released. Find the amplitude, the period and the frequency of the resulting 
SHM. 

Solution. Since the initial position is 0.05 m from equilibrium and there is 
no initial velocity, 05.0=A  m. To find the period we first find the force constant 
of the string. The string is stretched 0.1 m by a force of )m/s8.9)(kg5( 2 , so 

490
m1.0

)8.9)(5(
==

D
=

l
mgk  N/m. 

The period T  is 

635.0
N/m490
kg522 === pp

k
mT  s. 

The frequency of SHM: 

57.11
==

T
f  Hz. 
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Example 1.6 

The vertical motion of a huge piston in a machine is approximately simple 
harmonic with a frequency 5.0=f  Hz. A block of 10 kg is placed on the piston. 
What is the maximum amplitude of the piston’s SHM, for the block and piston to 
remain together? 

Solution.   Here, 5.0=f  Hz, 2m/s8.9=g . When displacement is x , the 
acceleration of SHM is given by  

xfxfxa 2222 4)2( ppw === . 
The acceleration will be maximum at the extreme position Ax = , i.e. 

Afa 22
max 4p= . 

The block will remain in contact with the piston, if maxa  does not exceed 
the acceleration due to gravity, i.e. maxa  is the most equal to g . i.e. 

gAf =224p , 

or 993.0
)5.0(4

m/s8.9
4 22

2

22 ===
pp f

gA  m. 

Exercises 

1.13. Four passengers whose combined mass is 300 kg are observed to 
compress the automobile by 5 cm when they enter the automobile. If the total load 
supported by the string is 900 kg, find the period of vibration of the loaded 
automobile.  

1.14. Choose the answer: Two bodies M  and N  of equal masses are 
suspended from two separate massless spring with spring constants 1k  and 2k  
respectively. If the two bodies oscillate vertically such that their maximum 
velocities are equal, the ratio of the amplitude of M  to that of N  is 

21 / kk , 12 / kk , 21 / kk , 12 / kk . (Recall that Av w=max .) 
1.15. The period of a mass suspended by a spring (force constant k ) is T . 

If the spring is cut in three equal pieces, what will be the force constant of each 
part and what will be the period?   (Ans. 3,3 Tk .) 

1.16. A block of mass 2 kg is suspended from a spring of negligible mass 
and is found to stretch the string 0.20 m. 

a) What is the force constant of the spring?   (Ans. 98.0 N/m.) 
b) What is the period of oscillation of the block if pulled down and 

released?   (Ans. 0.898 s.) 
c) What would be the period of the block of mass 4 kg hanging from the 

same spring?   (Ans. 1.27 s.) 
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1.17. The scale of a spring balance reading from zero to 180 N is 9 cm 
long. A fish suspended from the balance is observed to oscillate vertically at 1.5 
Hz. What is the mass of the fish? Neglect the mass of the spring. 

1.18. A block of mass 5 kg hangs from a spring and oscillates with a period 
of 0.5 s. How much will the spring shorten when the block is removed? 
(Ans. 0.0620 m.) 

1.4   Simple Pendulum 

A simple pendulum is another mechanical system that exhibits periodic 
motion. It consists of a particle-like bob of mass m  suspended by a light string of 
length L  that is fixed at the upper end, as shown in Figure 1.7. The motion occurs 
in the vertical plane and is driven by the force of gravity. We shall show that, 
provided the angle q  is small (less than about 10°) the motion is that of a simple 
harmonic oscillator. 

The forces acting on the bob are 
the force T  exerted by the string and 
the gravitational force mg . The 
tangential component of the 
gravitational force qsinmg  always acts 
towards 0=q , opposite the 
displacement. Therefore, the tangential 
force is a restoring force, and we can 
apply Newton's second law for motion 
in the tangential direction: 

å =-= 2

2
sin

dt
sdmmgF qt , 

where s  is the bob's displacement 
measured along the arc. The minus sign 
indicates that the tangential force acts 
toward the equilibrium (vertical) 
position. Because qLs =  and L  is 
constant, this equation reduces to 

qq sin2

2

L
g

dt
d

-= . 

The right side is proportional to qsin  rather than to q ; hence, with qsin  
present, we would not expect simple harmonic motion because this expression is 
not of the form of Eq. (1.13). However, if we assume that q  is small, we can use 
the approximation qq »sin ; thus, the equation of motion for the simple 
pendulum becomes 

qq
L
g

dt
d

-=2

2
.    (1.21) 

L T

s m

mg

sinmg

cosmg

 
Figure 1.7   When q  is small, a simple 
pendulum oscillates in simple harmonic 
motion about the equilibrium position 0=q . 
The restoring force is qsinmg , the 
component of the gravitational force tangent 
 

to the arc 
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Now we have an expression of the same form as Eq. (1.13), and we 
conclude that the motion for small amplitudes of oscillation is simple harmonic 
motion, therefore, q  can be written as  

)cos(max fwqq += t ,    (1.22) 
where maxq  is the maximum angular displacement and the angular frequency 
w  is 

L
g

=w . 

The period of the motion is 

g
LT p

w
p 22

== .            (1.23) 

In other words, the period and frequency of a simple pendulum depend only 
on the length of the string and the acceleration due to gravity.  Because the period 
is independent of the mass, we conclude that all simple pendulums that are of 
equal length and are at the same location (so that g  is the same), oscillate with 
the same period. 

We emphasize again that the motion of a pendulum is only approximately 
SHM; when the amplitude is not small, the departures from SHM can be 
substantial. But how small is this “small”? The period can be expressed by an 
infinite series; when the maximum angular displacement is maxq , the period T  is 
given by 

÷
÷
ø

ö
ç
ç
è

æ
+

´

´
++= ...

2
sin

42
31

2
sin

2
112 4

22

22
2

2

2 qq
p

g
LT . 

We can compute the period to any desired degree of precision by taking 
enough terms in series. When °= 15maxq , the true period differs from that given 
by the approximate Eq. (1.23) by less than 0.5%. 

The analogy between the motion of a simple pendulum and that of a block-
spring system is illustrated in Figure 1.8. 

The simple pendulum of certain length can be used as a timekeeper because 
its period depends only on its length and the local value of g . It is also a 
convenient device for making precise measurements of the free-fall acceleration. 
Such measurements are important because variations in local values of g  can 
provide information on the location of oil and of other valuable underground 
resources. 
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Simple pendulum was first used by the French physicist Jean Foucault to 

verify the Earth's rotation experimentally. As the pendulum swings, the vertical 
plane in which it oscillates appears to rotate as the bob successively knocks over 
the indicators arranged in a circle on the floor. In reality, the plane of oscillation is 
fixed in space, and the Earth rotating beneath the swinging pendulum moves the 
indicators into the position to be knocked down, one after the other. 

Example 1.7 
A simple pendulum of length L  and mass m  is suspended in a car that is 

traveling with a constant speed v  around a circle of radius r . If the pendulum 
undergoes small oscillations about its equilibrium position, what will be its 
frequency of oscillation? 

Solution. Here the car is an accelerated frame of reference. A fictitious 
force rmv /2  is to be introduced as a centrifugal force (Figure 1.9). 

 
Figure 1.8   Simple harmonic motion for a block-spring system and its relationship to the 
motion of a simple pendulum. The parameters in the table refer to the block-spring system, 
 

assuming that Ax =  at 0=t ; thus, tAx wcos=  
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From Figure 1.9 

mgF =qcos    and   
r

mvF
2

sin =q , 

Hence ÷
÷
ø

ö
ç
ç
è

æ
+= 2

4
2

r
vgmF . 

When the pendulum is slightly displaced such 
that it makes an angle )( qq d+  with the vertical, then 
there will be a restoring force LFxFddF /sin =» qq , 
where qLdx =  is linear displacement. Restoring force 
per unit displacement is LF / . 

The period is:  

2

4
2

2

4
2

22
/

2

r
vg

L

r
vgm

mL
LF

mT

+

=

+

== ppp . 

The frequency of oscillation: 

L
r
vg

T
f

2

4
2

2
11

+
==

p
. 

Exercises 

1.19. A simple pendulum 4 m long swings with amplitude of 0.2 m. 
a) Compute the linear velocity v  of the pendulum at its lowest point. 
b) Compute its linear acceleration a  at the end of its path. 
1.20. Find the length of a simple pendulum whose period is exactly 1 s at a 

point where 2m/s8.9=g     (Ans. 0.248 m.) 
1.21. A simple pendulum has a period of 2.0 s on the Earth. What is its 

period on the Moon, where 2m/s7.1=g ?   
1.22. When period of a simple pendulum is doubled 
a) its length is doubled; 
b) the mass of the bob is doubled; 
c) its length is made four times; 
d) the mass of the bob and the length of the pendulum are doubled? 

 
Figure 1.9    A simple 
pendulum in a car 
 

traveling around a circle 
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1.23. The period of oscillation of a simple pendulum with length L  at the 
Earth surface is T . Its period inside a mine is  

a) greater than T , 
b) less than T , 
c) equals to T , 
d) can not be computed. 
1.24. What is the length of a simple pendulum that marks seconds by 

completing a full swing from left to right and then back again every 2.0 s? 
1.25. A performer seated on a trapeze is swinging back and forth with a 

period of 8.85 s. If he stands up, so that the center of mass of the 
trapeze+performer system rises by 35.0 cm, what will be the new period of 
oscillation of the system? Treat trapeze + performer as a simple pendulum. 

1.26. When a small sphere is hung from the end of an elastic string, the 
length of the simple pendulum obtained is 40 cm. The time for 20 small 
oscillations of this pendulum is 26 s. The bob is then changed to a sphere of the 
same size but different mass. The new time for 20 oscillations is 26.4 s. Calculate 

the ratio of the masses.   (Ans. 602.0
29.3
98.1

2
1 ==

m
m .) 

1.5   Physical Pendulum 

Suppose you balance a small wheel so that it is supported by your extended 
index finger. When you give the wheel a small displacement (with your other 
hand) and then release it, it oscillates. If a hanging object oscillates about a fixed 
axis that does not pass through its center of mass and the object cannot be 
approximated as a point mass, we cannot treat the system as a simple pendulum. 
In this case the system is called a physical pendulum. 

Consider a rigid body pivoted at a 
point O  that is a distance d  from the 
center of mass (Figure 1.10). The force 
of gravity provides a torque about an 
axis through O , and the magnitude of 
that torque is qsinmgd , where d  is as 
shown in Figure 1.10. Using the law of 
motion at I= , where I  is the moment 
of inertia about the axis passig through 
O , 22 / dtd q  is the angular acceleration, 
we obtain 

2

2
sin

dt
dImgd q

q =- . 

The minus sign indicates that the 
torque about O  tends to decrease q . 

mg

CM

d

OPivot

sind q

 
Figure 1.10   A physical pendulum 
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That is, the force of gravity produces a restoring torque. Because this equation 
gives us the angular acceleration 22 / dtd q  of the pivoted body, we can consider it 
the equation of motion for the system. If we again assume that q  is small, the 
approximation qq »sin  is valid, and the equation of motion reduces to 

qwqq 2
2

2
-=÷

ø
ö

ç
è
æ-=

I
mgd

dt
d .   (1.24) 

Because this equation is of the same form as Eq. (1.13), the motion is 
simple harmonic motion. That is, the solution of Eq. (1.24) is 

)cos(max fwqq += t , where maxq  is the maximum angular displacement and  

I
mgd

=w .      (1.25) 

The period of oscillations is  

mgd
IT p

w
p 22

== .           (1.26) 

We can use this result to measure the moment of inertia of a flat rigid body. 
If the location of the center of mass – and hence the value of d  – is known, the 
moment of inertia can be obtained by measuring the period. Finally, note that 
Eq. (1.26) reduces to the period of a simple pendulum when 2mdI = , that is, 
when all the mass is concentrated at the center of mass. 

Sometimes the quantity  

md
ILe = ,      (1.27) 

which is called the effective length of physical pendulum, is used. As it is clear 
from Eq. (1.27), the effective length depends on moment of inertia, that is, 
distribution of mass over the pendulum and its shape. Substituting the expression 
for eL  into the Eq. (1.26), we obtain  

g
LT ep2= , 

that is, the same expression as for the simple pendulum. Therefore, the effective 
length of physical pendulum is the length of simple pendulum which has the same 
period of oscillations as the given physical one. 

Example 1.8 
How can the period of a physical pendulum be used to determine its 

moment of inertia? 
Solution. Eq. (1.26) may be solved for the moment of inertia I , giving 

2

2

4p

mghTI = . 
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The quantities on the right of the equation can all be measured directly. 
Hence the moment of inertia of a body of any complex shape may be found by 
suspending the body as a physical pendulum and measuring its period of 
oscillation. We can find the center of gravity by balancing. Since T , m , g  and h  
are known, we can compute I . 

Example 1.9 
A uniform rod of mass M  and length L  is pivoted about one end and 

oscillates in a vertical plane. Find the period of oscillations if the amplitude of the 
motion is small. 

Solution. Moment of inertia of a uniform rod about an axis through one 

end is 2
3
1 ML . The distance d  from the pivot to the center of mass is 2/L . 

Substituting these quantities into Eq.(1.26) gives 

g
L

Lmg

ML
T

3
22

)2/(
3
1

2
2

pp == . 

Exercises 

1.27. A thin uniform rod of length L  and mass m  is pivoted about a 
perpendicular axis through the rod at a distance 4/L  from one end. 

a) Find the moment of inertia about this axis.  (Ans. 48/7 2mL .) 
b) Find the period of oscillation of the rod.   (Ans. gL 12/72p .) 
1.28. A monkey wrench is pivoted at one end and allowed to swing as a 

physical pendulum. The period is 0.9 s, the pivot is 0.20 m from the center of 
gravity. 

a) What is the ratio of moment of inertia to mass for the wrench, about an 
axis through the pivot? 

b) If the wrench was initially displaced 0.1 rad from its equilibrium 
position, what is the angular velocity of the wrench as it passes through the 
equilibrium position? 

1.29. A meter stick swings about a pivot at one end at distance h  from its 
center of mass. What its period of oscillation T ?   (Ans. 1.64 s.) 

1.6   Torsional Pendulum 

In the Figure 1.11, there is shown an angular version of simple harmonic 
oscillator, the element of springless or elasticity is associated with twisting of 
suspention wire rather than the extension and compression. The divice is called a 
torsional pendulum, with torsion referring to the twisting. Torsional pendulum is 
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a rigid body suspended by a wire attached at the top to a fixed support. When the 
body is twisted through an angle q , the twisted wire exerts a restoring torque on 
the body . The torque is proportional to the angular displacement. That is, 

kqt -= , 
where k  (kappa) is called the torsion constant of the support wire. The value of 
k  can be obtained by applying a known torque to twist the wire through a 
measurable angle q .  
Applying Newton's second law for 
rotational motion, we find 

2

2

dt
dI qkqt =-= , 

qkq
Idt

d
-=2

2
. (1.28) 

Again, this is the equation of 
motion for a simple harmonic oscillator, 
with I/kw =  and a period 

k
p IT 2=      (1.29) 

There is no small-angle restriction 
in this situation as long as the elastic 
limit of the wire is not exceeded.  

 
 
Example 1.10 
A watch has a balanced wheel which performs angular simple harmonic 

motion of period 0.5 s and maximum angular displacement of p  radian. What is 
the maximum angular velocity of the wheel? 

Solution. From 
f

T 1
= , the angular frequency is p

pp
p 4

5.0
222 ===

T
f  and 

the maximum angular velocity 5.39)(42max === ppqpw f  rad/s. 

Example 1.11 
A thin rod of length L  and mass 135=m  g is suspended from a long wire 

at its midpoint. Its period T  of angular SHM is measured to be 2.53 s. An 
irregularly shaped object is then hung from the same wire, and its period 

76.4=oT  s. What is the moment of inertia of object about its suspension axis? 
Solution. The moment of inertia of either the rod or an object is related to 

the measured period by Eq. (1.29). We know that moment of inertia of a thin rod 

P

O

maxq

 
Figure 1.11   A torsional pendulum of a rigid 
body suspended by a wire attached to a 
rigid support. The body oscillates about the 
 

line OP  with an amplitude maxq  
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about a perpendicular axis passing through its midpoint is 2
12
1 mLI = . Thus, we 

have 
2422 mkg1073.1)124.0)(135.0(

12
1

12
1

×´=== -mLI . 

The period of rod is 
k

p rIT 2= , and the period of the object is 

k
p o

o
IT 2= . The constant k , which is the property of the wire, is the same for 

both bodies. Lets square each of equations, divide the second by the first one and 
solve the resulting equation for oI . The result is 

24
2

2
24

2

2
mkg1012.6

)s53.2(
)s76.4()mkg1073.1( ×´=×´== --

r

o
ro

T
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Exercises 

1.30. The balance wheel of a watch vibrates with the angular amplitude of 
p  rad and a period of 0.5 s. 

a) Find its maximum velocity. 
b) Find its angular velocity when the displacement is the one-half 

magnitude. 
c) Find its angular acceleration when the displacement is °45 . 
1.31. An alarm clock ticks four times each second, each tick representing 

half a period. The balance wheel consists of a thin rim of radius 1.5 cm, 
connected to the balance staff by thin spokes of negligible mass. The total mass of 
the balance wheel is 0.8 g. 

a) What is the moment of inertia of the balance wheel? 
(Ans. 27 mkg1080.1 ×´ - .) 

b) What is the torque constant of the hairspring? 
(Ans. 25 m/radN1084.2 ×´ - .) 

1.32. A torsional pendulum is formed by attaching а wire to the center of a 
meter stick with a mass of 2 kg. If the resulting period is 3 min, what is the 
torsion constant for the wire? 

1.33. A clock balance wheel has a period of oscillation of 0.25 s. The wheel 
is constructed so that 20 g of mass  is concentrated around a rim of radius 0.5 cm. 
What are (a) the wheel's moment of inertia and (b) the torsion constant of the 
attached spring?  
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1.7   Energy of Simple Harmonic Oscillator 

Let us examine the mechanical energy of a block-spring system illustrated 
in Figure 1.12. Because the surface is frictionless, we expect the total mechanical 
energy to be constant. We can apply Eq.(1.6) to express the kinetic energy as 

)(sin
2
1

2
1 2222 fww +== tAmmvK .    (1.30) 

As the elastic restoring force is a 
conservative force, we can represent the 
work done by this force in terms of 
potential energy. The elastic potential 
energy stored in the spring of any 

elongation x  is given by 2
2
1 kx . Using 

Eq. (1.2), we obtain 

)(cos
2
1

2
1 222 fw +== tkAkxU .         (1.31) 

We see that K  and U  are always positive quantities. Because mk /2 =w , 
we can express the total mechanical energy of a simple harmonic oscillator as 

[ ])(cos)(sin
2
1 222 fwfw +++=+= ttkAUKE . 

From the identity 1)(cos)(sin 22 =+++ fwfw tt , we see that the quantity 
in square brackets is a unity. Therefore, this equation reduces to 

22
2
1

2
1 kxmvUKE +=+= .     (1.32) 

The total mechanical energy is equal to the maximum potential energy 
stored in the spring when Ax ±=  because 0=v  at these points and thus there is 
no kinetic energy. At the equilibrium position, where 0=U  because 0=x , the 

total energy, all in the form of kinetic energy, is again 22
max 2

1
2
1 kAmvE == . That 

is, 

constkxmvE =+= 22
2
1

2
1 .   (1.33) 

That is, the total mechanical energy of a simple harmonic oscillator is a 
constant of the motion and is proportional to the square of the amplitude.  Note 
that U  is small when K  is large and vice versa, because the sum must be 
constant. Plots of the kinetic and potential energies versus time is shown in Figure 
1.13, where we have taken 0=f . As already mentioned, both K  and U  are 

always positive, and at all times their sum is a constant equal to 2
2
1 kA , the total 

energy of the system. Energy is continuously transformed between potential 
energy stored in the spring and kinetic energy of the block. 

m

A00 =x

 
Figure 1.12   A block-spring system that 
starts from rest at Ax = . In this case 
 

0=f  and, thus, tAx wcos=  
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horizontally. The curve represents the 

potential energy, 2
2
1 kxU = . As we can 

see, the curve is a parabola. The 
horizontal line at height E  represents 
the constant total energy of the body. 
We see that the body's motion is 
restricted to values of x  lying between 
the points where the horizontal line 
intersects the parabola. If x  were 
outside this range, the potential energy 
would exceed the total energy that is 
impossible. 

If we draw a vertical line at any 
value of x  within the permitted range, 

the length of the segment between the x -axis and the parabola represents the 
potential energy U  at that value of x . The length of the segment between the 
parabola and the horizontal line at height E  represents the corresponding kinetic 
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Figure 1.13   (a) Kinetic energy and potential energy versus time for a simple harmonic 
oscillator with 0=f . (b) Kinetic energy and potential energy versus displacement for a simple 
 

harmonic oscillator. In plot (b), note that constUK =+  
 
We can often see another representation of Eq. (1.32), shown by the graph 

in Figure 1.14, where energy is plotted vertically and the coordinate x   
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energy K . At the endpoints, the energy is all potential, and at the middle points it 
is all kinetic. The speed has its maximum value maxv  at the midpoint: 

Emv =max2
2
1 ,     

m
Ev 2

max = . 

Let’s return to the Figure 1.8 which illustrates the position, velocity, 
acceleration, kinetic energy, and potential energy of the block-spring system for 
one full period of the motion. Most of the ideas discussed so far are incorporated 
in this important figure. 

Finally, we can use the principle of energy conservation to obtain the 
velocity of an arbitrary displacement by expressing the total energy at some 
arbitrary position x  as 

222
2
1

2
1

2
1 kAkxmvUKE =+=+= . 

Then velocity is 

( ) ( )2222 xAxA
m
kv -±=-±= w .   (1.34) 

When we check this equation to see whether it agrees with known cases, 
we find that it substantiates the fact that the speed is a maximum at 0=x  and is 
zero at the turning points Ax ±= . 

Example 1.12 
The system in Fig. 1.1 is given an initial displacement of 0.05 m, and an 

initial velocity of 2 m/s. Find the amplitude, the phase angle and the total energy 
of the motion and write an equation for the position as a function of time. 

Solution 
From Eq. (1.19), 

206.0)s10/m/s)(2()m05.0()/( 2122
0

2
0 =+=+= -wvxA  m. 

From Eq. (1.17), 

33.10.76
)m05.0)(s10(

m/s2arctanarctan 10
0

0 -=°-=
-

=
-

= -x
v

w
q  rad. 

From Eq. (1.32) and the following discussion, 

26.4)m206.0(N/m)200(
2
1

2
1 22 === kAE  J. 

Alternatively, from the initial conditions, 

24.4)m05.0)(N/m200(
2
1)m/s2)(kg2(

2
1

2
1

2
1 222

0 =+=+= kxmvE  J. 

The x  according to Eq. (1.2) is given by  
]rad33.1)s10cos[()m206.0( 1 -= - tx . 
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Example 1.13  
A 0.5 kg cube connected to a light spring for which the force constant is 

20.0 N/m oscillates on a horizontal frictionless track.  
a) Calculate the total energy of the system and the maximum speed of the 

cube if the amplitude of the motion is 3.00 cm. 
Solution 
Using Eq. (1.32), we obtain 

322 109m)103)(N/m20(
2
1

2
1 -- ´=´==+= kAUKE  J. 

When the cube is at 0=x , we know that 0=U  and 2
max2

1 mvE = ; 

therefore, 
32

max 109
2
1 -´== mvE  J. 

b) What is the velocity of the cube when the displacement is zero? 
Solution 
We can apply Eq. (1.19) directly 

141.0])m02.0()m03.0[(
kg5.0

N/m20)( 2222 ±=-±=-±= xA
m
kv  m/s. 

In the expression, the positive and negative signs indicate that the cube 
could be moving either to the right or to the left at this instant. 

c) Compute the kinetic and potential energies of the system when the 
displacement is 2.00 cm. 

Solution 
Using the result of (b), we find that  

J105)m/s141.0)(kg5.0(
2
1

2
1 322 -´=== mvK , 

J.104)m02.0)(N/m20(
2
1

2
1 322 -´=== kxU  

Note, that EUK =+ . 

Exercises 

1.34. An object of mass 4 kg is attached to a string of force constant 
100=k  N/m. The object is given an initial velocity of 120 =v  m/s and an initial 

displacement of 00 =x . Find the amplitude, the phase angle, and the total energy 
of the motion and write the equation for the position as a function of time. 

1.35. A block of mass 4 kg is attached to a coil spring and oscillates 
vertically in SHM. The amplitude is 0.5 m, and at the highest point of the motion, 
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the spring has its natural unstretched length. Calculate the elastic potential energy 
of the spring, the kinetic energy of the body, its gravitational potential energy 
relative to the lowest point of the motion and the sum of these three energies, 
when the body is: 

a) at the lowest point,   (Ans. 39.2 J, 0, 0, 39.2 J.) 
b) at is equilibrium position,   (Ans. 9.8 J, 9.8 J, 9.8 J, 39.2 J.) 
c) at its highest point.   (Ans. 0, 0, 39.2 J, 39.2 J.) 
1.36. A 200-g mass is attached to a spring and undergoes simple harmonic 

motion with a period of 0.250 s. If the total energy of the system is 2 J, find (a) 
the force constant of the spring and (b) the amplitude of the motion. 

1.37. An automobile having a mass of 1 000 kg is driven into a brick wall 
in a safety test. The bumper behaves as a spring of constant 6105´  N/m and 
compresses 3.16 cm as the car is brought to rest. What was the speed of the car 
before the impact, assuming that no energy is lost during the impact with the 
wall? 

1.38. A mass-spring system oscillates with amplitude of 3.5 cm. If the 
spring constant is 250 N/m and the mass is 0.5 kg, determine (a) the mechanical 
energy of the system, (b) the maximum speed of the mass, and (c) the maximum 
acceleration. 

1.39. A 50-g mass connected to a spring with a force constant of 35 N/m 
oscillates on a horizontal, frictionless surface with an amplitude of 4 cm. Find (a) 
the total energy of the system and (b) the speed of the mass when the 
displacement is 1 cm. Find (c) the kinetic energy and (d) the potential energy 
when the displacement is 3.00 cm. 

1.40. A 2.00-kg mass is attached to a spring and placed on a horizontal, 
smooth surface. A horizontal force of 20 N is required to hold the mass at rest 
when it is pulled 0.2 m from its equilibrium position (the origin of the x  axis). 
The mass is now released from rest with an initial displacement of 2.01 =x  m, 
and it subsequently undergoes simple harmonic oscillations. Find (a) the force 
constant of the spring, (b) the frequency of the oscillations, and (c) the maximum 
speed of the mass. Where does this maximum speed occur? (d) Find the 
maximum acceleration of the mass. Where does it occur? (e) Find the total energy 
of the oscillating system. Find (f) the speed and (g) the acceleration when the 
displacement equals one third of the maximum value. 

1.41. A 1.5-kg block at rest on a tabletop is attached to a horizontal spring 
having a force constant of 19.6 N/m. The spring is initially unstretched. A 
constant 20-N horizontal force is applied to the object causing the spring to 
stretch. (a) Determine the speed of the block after it has moved 0.3 m from 
equilibrium, assuming that the surface between the block and the tabletop is 
frictionless. (b) Answer part (a) for a coefficient of kinetic friction of 0.200 
between the block and the tabletop.  
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1.42. The amplitude of a system moving in simple harmonic motion is 
doubled. Determine the change in (a) the total energy, (b) the maximum speed, (c) 
the maximum acceleration, and (d) the period. 

1.8   Circle of Reference 

We can gain additional insight into simple harmonic motion through a 
geometric representation called the circle of reference. This representation makes 
use of a close relationship between SHM and uniform circular motion, which we 
studied earlier. The basic idea is shown in Figure 1.15. Point Q  moves 
counterclockwise around a circle with a radius A  that is equal to the amplitude of 
the actual simple harmonic motion, with the constant angular velocity w  
(measured in rad/s). Thus, w  is the rate of change of the angle q ; dtd /qw =  . 

The vector from O  to Q  is the position vector of point Q  relative to O . 
This vector has the constant magnitude A  and at time t  is at an angle q , 
measured counterclockwise from the positive x -axis. As Q  moves, this vector 
rotates counterclockwise with the constant angular velocity dtd /qw = . The 
horizontal component of this vector represents the actual motion of the body 
under study. Such a rotating vector is called a phasor. This representation is also 
useful in many other areas of physics where we encounter quantities that vary 
sinusoidally with time, including ac-circuit analysis and interference phenomena 
in optics. 

In Figure 1.15, point P  lies on the 
horizontal diameter of the circle, directly 
below Q . We call Q  the reference 
point, the circle – the reference circle, 
and P  – the projection of Q  onto the 
diameter. The location of P  can be 
treated as a shadow of Q  on the x -axis, 
cast by a light beam perpendicular to the 
x -axis. As Q  revolves, P  moves back 
and forth along the diameter, staying 
always directly below (or above) Q . 
Now we’ll show that the motion of P  is 
simple harmonic motion. 

The displacement of P  from the origin O  at any time t  is the distance OP , 
or x . From Figure 1.15, we see that 

qcosAx = . 
If point Q  is at the extreme right end of the diameter at time 0=t , then 

0=q  when 0=t , and the time variation of q  is given by 
twq = . 

O

A
Q

PcosAx
x

 
Figure 1.15   Coordinates of a body in SHM 
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Hence, 
tAx wcos= .      (1.35) 

Now w , the angular velocity of Q  in radians per second, is related to f , 
the number of complete revolutions of Q  per second, by 

fpw 2= , 
since there are p2  radians in one complete revolution. Furthermore, the point P  
makes one complete back-and-forth vibration for each revolution of Q . Hence f  
is also the number of vibrations per second, or the frequency of vibration of point 
P . Thus Eq. (1.35) may also be written as 

fAx p2cos= . 
We can find the instantaneous velocity of P  with the aid of Figure 1.16. 

The reference point Q  moves with a tangential velocity given by  
fAAv pwt 2== . 

Since point P  is always directly below or above the reference point, the 
velocity of P  at each instant must equal the x -component of the velocity of Q . 
That is, from Figure 1.16 

tAv ww sin-=            (1.36) 
The minus sign is needed because   

the velocity is directed toward the left. 
When Q  is below the horizontal 
diameter, the velocity of P  is toward the 
right; but since qsin  is negative at such 
points, the minus sign is still needed. 
Eq. (1.36) gives the velocity of point P  
at any time. 

We can also find the acceleration 
of the point P  by making use again of 
the fact that since P  is always directly 
below or above Q , its acceleration must 
equal the x -component of the 
acceleration of Q . As point Q  moves in 
a circular path with the constant angular 
velocity w , at every instant it has an 
acceleration toward the center given by 

xa 2w-=^ . 
From Figure 1.17, the x -component of this acceleration is 

qcos^-= aax , 

tAax ww cos2-= .            (1.37) 

Q

P
x

tu

quu t sin=

 
Figure 1.16   Velocity in SHM 
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The minus sign is needed because 
the acceleration is directed toward the 
left. When Q  is to the left from the 
center, the acceleration of P  is directed 
toward the right; but since qcos  is 
negative at such points, the minus sign is 
still required. Eq. (1.37) gives the 
acceleration of P  at any time. 

Now comes the final step in 
showing that the motion of P  is simple 
harmonic. We combine Eqs. (1.35) and 
(1.37), obtaining 

xa 2w-= .  (1.38) 
As w  is constant, the acceleration a  at each instant equals a negative 

constant times the displacement x  at this instant. But this is the essential feature 
of simple harmonic motion: Force and acceleration are proportional to the 
displacement from equilibrium. Hence, the motion of P  is indeed simple 
harmonic. 

In order to make Eqs. (1.12) and (1.38) agree precisely, we must choose an 
angular velocity w  for the reference point Q  such that mk /2 =w . Thus, the 
angular velocity of point P  is identical to the angular frequency of the motion 
defined by Eq. (1.12). 

Throughout this discussion we have assumed that the initial position of the 
particle (at time 0=t ) is its maximum positive displacement A , but this is not an 
essential restriction. Different initial positions of the particle correspond to 
different initial positions of the reference point Q . For example, if at time 0=t  
the phasor OQ  makes an angle 0q  with the positive x -axis, then the angle q  at 
time t  is given not by twq =  as before but by twqq += 0 . 

The only change in the discussion is to replace tw  in Eqs. (1.35), (1.36), 
and (1.37) by )( 0qw +t . These equations become then 

)cos( 0qw += tAx , 
)sin( 0qww +-= tAv , 

xtAax
2

0
2 )cos( wqww -=+-= . 

The initial position 0x  and initial velocity 0v  (at time 0=t ) are then given 
by 

0cosqAx =    and   00 sinqwAv -= ., 
correspondingly. 

P

Q

qcos^= aa

^a

x

 
Figure 1.17   Acceleration in SHM 



 35

Example 1.14    
A particle rotates counterclockwise in a circle of radius 3.0 m with a 

constant angular speed of 8.0 rad/s. At 0=t , the particle has an x  coordinate is 
equal to 2.0 m and is moving to the right. 

a) Determine the x -coordinate as a function of time. 
Solution 
Because the amplitude of the particle's motion equals the radius of the 

circle and 8=w  rad/s, we have 
)8cos(3)cos( ffw +=+= ttAx . 

We can evaluate f  by using the initial condition that 2=x  m at 0=t : 
)0cos(32 f+= , 

÷
ø
ö

ç
è
æ= -

3
2cos 1f . 

If we were to take our answer as °= 2.48f , then the coordinate 
)2.488cos(3 °+= tx  would be decreasing at time 0=t  (that is, moving to the 

left). Because our particle is first moving to the right, we must choose 
41.02.48 =°-=f  rad. The x  coordinate as a function of time is then 

)841.08cos(3 -= tx . 
Note that f  in the cosine function must be in radians. 
b) Find the x  components of the particle's velocity and acceleration at any 

time t . 
Solution.  

m/s)841.08sin(24)841.08sin()8)(3( --=--== tt
dt
dxvx  , 

2m/s)841.08cos(192)841.08cos()8)(24( --=--== tt
dt

dva x
x . 

From these results, we conclude that 24max =v  m/s and that 
2

max m/s192=a . Note that these values also equal the tangential speed Aw  and 

the centripetal acceleration A2w . 

Exercises 

1.43. An object is undergoing SHM with period 4.0=T  s. Use the circle of 
reference to calculate the time it takes the object to go from 0=x  to 4/Ax = . 

1.44. An object is undergoing SHM with period ( 2/p ) s and amplitude 
2.0=A  m. At 0=t  the object is at 0=x . How far is the object from the 

equilibrium position when 10/p=t    (Ans. 0.19 m.) 
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1.45. The motion of the piston in a car is almost simple harmonic with 
amplitude of 40 mm and the frequency of 120Hz. Calculate (a) the maximum 
acceleration and (b) the maximum speed of the piston.   (Ans. (a) 4 22.27 10 m/s´ , 
(b) 30.2 m/s.) 

1.46. A vertical rod is fixed to the rim of a horizontal turntable of diameter 
4 cm. A horizontal beam of light casts a shadow of the rod on a screen. (a) The 
turntable rotates at a uniform angular velocity w . Show that the motion of the 
shadow of the rod on the screen is simple harmonic. (b) If the turntable rotates at 
0.5 revolutions per second, what is the maximum speed of the shadow of the 
vertical rod and at which point does it occur?   (Ans. (a) 6.28 cm/s, (b) At the 
midpoint) 

1.47. While riding behind a car that is traveling at 3.00 m/s, you notice that 
one of the car tires has a small hemispherical boss on its rim. (a) Explain why the 
boss, from your viewpoint behind the car, executes simple harmonic motion, (b) 
If the radius of the car tire is 0.3 m, what is the boss' period of oscillations? 

1.48. Consider the simplified single-piston engine.If the wheel rotates with 
the constant angular speed explain why the piston rod oscillates in simple 
harmonic motion. 

1.9    Phasor Addition of Oscillations 

There are a lot of problems 
concerning superposition of several 
oscillations. Unfortunately, analytical 
procedure becomes cumbersome when 
we must add them. Because we are 
interested in combining a large number 
of oscillations, we now describe a 
graphical procedure for this purpose. 

Let us consider the addition of 
two oscillations of the same direction 
and equal frequencies. The resulting 
displacement x  of the oscillating body 
is the sum of displacements 1x  and 2x : 

)cos( 111 qw += tAx , 
)cos( 222 qw += tAx . 

These oscillations can be 
represented graphically by phasors of 
magnitudes 1A  and 2A  rotating about 
the origin counterclockwise with an 
angular frequency w , as shown in 
Figure 1.18.  

A

x0
2x

x
1x

2A

2A

1A

1q2q
)( 12 qq -

 
Figure 1.18    Phasor addition of the 
oscillations )sin( 111 qw += tAx  and 

)sin( 222 qw += tAx . The  resultant 
oscillation x  has amplitude A  and phase 
 

costant q  
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We can obtain the resultant oscillation, which is the sum of 1x  and 2x , 
graphically by redrawing the phasors as shown in Figure 1.18, where the tail of 
the second phasor is placed at the tip of the first one. According to vector 
addition, the resultant phasor A  runs from the tail of the first phasor to the tip of 
the second one. Furthermore, A  rotates about the origin simultaneously with the 
initial phasors with the same angular frequency w . The projection of A  along the 
horizontal axis equals the sum of the projections of the two phasors: 

21 xxx += . 
From Figure 1.18, it is clear that the amplitude of the resulting vector, can 

be found from cosine theorem as 
=---+= )](cos[2 1221

2
2

2
1

2 qqpAAAAA )cos(2 1221
2
2

2
1 qq -++ AAAA ,    (1.39) 

and the initial phase of the resultant oscillation is 

2211
2211

coscos
sinsintan

qq
qq

q
AA
AA

+
+

= .    (1.40) 

Example 1.15 
Two oscillations of the same period T  have amplitudes 41 =A  mm and 

31 =A  mm, and their phase constants are 0  and 3/p  rad, respectively. What are 
the amplitude A  and phase constant q  of the resultant oscillation? Write the 
equation of the resultant oscillation. 

Solution. The oscillations can be represented by phasors rotating about an 

origin at the same angular speed 
T
p

w
2

= . The phase constant is by 3/p  greater 
for the second oscillation than for first one, that is why phasor 1 must lag phasor 2 
by 3/p  rad in their counterclockwise rotation, as shown in Figure 1.19a. The 
resultant oscillation can be represented by a phasor that is the vector sum of 
phasors 1 and 2. 

To simplify the vector 
summation, we draw phasors 1 and 2 
in Figure 1.19a at the instant when 
phasor 1 lies along the horizontal 
axis. Then we drew lagging phasor 1 
at positive angle 3/p  rad. In Figure 
1.19b, we shift phasor 2 so that its 
tail is at the head of phasor 1. We can 
draw the phasor A  of the resultant 
oscillation from the tail of phasor 1 to 
the head of phasor 2. The phase 
constant q  is the angle it makes with 
phasor 1. 

To find values of A  and q , we can add phasors 1 and 2 by components. 
For the horizontal components we have 

5.53/cos343/cos0cos 21 =+=+= ppAAAx  mm. 

(a)

3/ 3/

(b)
1A 1A

2A
2AA¢

 

Figure 1.19   (a) Two phasors of magnitudes 
1A  and 2A  and with phase difference 3/p ; 

(b) Vector addition of these phasors at any 
instant during their rotation gives the magnitude 
 

A  of the phasor for the resultant oscillation 
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For vertical components we get 
6.23/sin343/sin0sin 21 =+=+= ppAAAy  mm. 

Thus, the resultant oscillation has amplitude of: 
1.6)6.2()5.5( 22 =+=A  mm 

and phase constant q  of 

44.0
mm5.5
mm6.2arctan ==q  rad. 

From Figure 1.19b, phase constant q  is a positive angle relative to phasor 
1, Thus, the resultant oscillation leads oscillation 1 in their travel by phase 
constant 44.0+  rad. From Eq. (1.39), we can write the resultant oscillation as 

)44.0sin()mm1.6()( += ttA w . 

1.10   Addition of Mutually Perpendicular Oscillations 

Assume that a particle can be set into oscillations both along x  and y  axes. 
When both types of oscillations are generated, particle moves, in general, along a 
curved trajectory and form of the trajectory depends on the phase difference of the 
two oscillations.  

Let’s chose the initial moment of time in such a way that the initial phase 
constant of the first oscillation is zero. Then equations of oscillations can be 
written as 

tAx wcos=  ,    (1.41) 
)cos( qw += tBy ,    (1.42) 

where q  is the phase difference between oscillations. 
Expressions (1.41) and (1.42) represent the equation of trajectory in the 

parametric form. To obtain an equation of trajectory as an equation of a curved 
line, we have to eliminate the parameter t  from them. From the first equation, it 
follows that  

A
xt =wcos .     (1.43) 

Therefore, 

2

2
2 1cos1sin

A
xtt -±=-±= ww .   (1.44) 

Now, using trigonometric identity  
bababa sinsincoscos)cos( -=+ , 

we represent )cos( fw +t  in Eq. (1.42) as 

2

2
1sincos)cos(

A
x

A
xt -±=+ qqqw ; 
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and rewrite Eq. (1.42) 

2

2
1sincos

A
x

A
x

B
y

-±= qq . 

After several transformations, the latest equation can be represented as 

qq 2
2

2

2

2
sincos2

=-+
AB
xy

B
y

A
x      (1.45)  

Eq. (1.45) is the equation of ellipse with semi–axis which are turned 
relatively coordinate axes x  and y . Orientation of the ellipse and magnitude of 
its semi–axes depend on the amplitudes A  and B  and phase difference q  in a 
rather complicated way. 

Special cases 

1. The phase difference q  equals zero. In this case, Eq. (1.45) takes the 
form 

0
2

=÷
ø
ö

ç
è
æ -

B
y

A
x , 

and it reduces to the equation of straight line: 

x
A
By = .      (1.46) 

The resulting motion is the harmonic oscillation along this straight line 
with the frequency w  and amplitude 22 BA +  (Figure 1.20). 

2. Phase difference is pq ±= . Eq. (1.45) has the form: 

0
2

=÷
ø
ö

ç
è
æ +

B
y

A
x , 

and the resulting motion is SHM along the straight line (Figure 1.21) 

x
A
By -= .     (1.47) 
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Figure 1.20   The phase difference 0=q  Figure 1.21   Phase difference pq ±=  
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3. At 
2
p

q ±= , Eq. (1.45) transforms into 

12

2

2

2
=+

B
y

A
x ,     (1.48) 

that is, into the equation of ellipse with a semi–axis oriented along coordinate 
axes x  and y  correspondingly which are equal to the amplitudes A  and B . 
When amplitudes A  and B  are equal to each other, the ellipse reduces into 
circumference. 

Two cases 2/pq +=  and 2/pq -=  differ in the direction of the motion 
along the ellipse or circumference. If 2/pq += , Eqs. (1.41) and (1.42) can be 
written as 

tAx wcos=    and   tBy wsin-= . 
At 0=t , the particle is in the point 1 (Figure 1.22). When some time elapses, the 
coordinate x  decreases whereas the coordinate y  becomes negative. Therefore, 
the body moves along the clockwise direction. 

When 2/pq -= , the equations of oscillations have the form 
tAx wcos=    and   tBy wsin=  

and the motion occurs counterclockwise. 
It follows from the discussion 

above, that the uniform motion along 
the circle of radius R  with the angular 
velocity w  can be represented as a sum 
of two mutually perpendicular 
oscillations:  

tRx wcos= ,   tRy wsin±= . 
In the expression for y  the plus sign 
corresponds to the motion in the 
anticlockwise direction, whereas the 
minus sign corresponds to the clockwise 
direction. 

When the frequencies of mutually 
perpendicular oscillations differ in very 
small amount wD , they can be treated 

as oscillations of equal frequency but with a slowly varying phase difference. 
Indeed, their equations can be represented as 

tAx wcos= , )](cos[ qww +D+= ttBy , 
and the expression )( qw +D t  can be treated as the phase difference which slowly 
varies according to the linear law. The resulting motion occurs along the slowly 

1A

B
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y

x

2
p

q -=

2
p
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Figure 1.22   Phase difference is 

2
p

q ±= . 

Two cases 2/pq +=  and 2/pq -=  
differ in the direction of the motion along the 
 

ellipse or circumference 
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varying trajectory which consequently takes forms, inherent to change of a phase 
difference from p-  to p .  

When frequencies of oscillations are not the same, the trajectory of the 
resulting oscillation has the form of rather complex curves called the Lissagy 
figures. When the ratio of frequencies is 1:2 and the phase difference is 2/p , the 
resulting trajectory is a curve represented in Figure 1.23. In this case, the 
equations of oscillation have the form: 

tAx wcos= , ÷
ø
ö

ç
è
æ +=

2
2cos p
wtBy . 

During the time interval, when 
the particle displaces from one extreme 
position to the other along the x –axis, it 
has time to reach the extreme position 
and return back into the initial point 
along y –axis. 

When the ratio of frequencies is 
1:2 and the phase difference is 0, the 
trajectory transforms into an open curve 
in Figure 1.24 along which particle 
moves back and forth. 

When the ratio of frequencies of 
oscillations approaches to the unity, the 
Lissagy figures become more and more 
complex. As an example, the trajectory 
corresponding to the ratio 3:4 and phase 
difference 2/p  is shown in Figure 1.25. 
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Figure 1.23   The ratio of frequencies is 1:2 
 

and phase difference is 2/p  
Figure 1.24   The ratio of frequencies is 1:2 
 

and phase difference is 0 

x0
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Figure 1.25   The ratio of frequencies is 3:4 
 

and phase difference is 2/p  
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Exercisers 
1.49. Determine the amplitude of the resultant oscillation when two 

oscillations having the same frequency and same direction are combined if their 
amplitudes are 3.0 cm and 4.0 cm, and they have phase constants of 0 and 2/p  
rad respectively. 

1.50. Two oscillations of the same period with amplitudes of 5.0 and 7.0 
mm produce a resultant oscillation with аn amplitude of 9.0 mm. The phase 
constant of the 5.0 mm oscillation is 0. What is the phase constant of the 7.0 mm 
oscillation? 

1.51. Three oscillations of the same frequency and direction have 
amplitudes A , 2/A  and 3/A  and their phase constants are 0, 2/p , and p  
respectively. What are (a) the amplitude and (b) the phase constant of the 
resultant oscillation? 

1.11   Damped Oscillations 

In the idealized oscillating systems we have discussed so far, there is no 
friction. Thus, the systems are conservative; the total mechanical energy is 
constant, and a system once set into motion continues oscillating forever with no 
decrease in amplitude. 

Real systems always have some friction, however, and oscillations do die 
out with time unless some means is provided for replacing the mechanical energy 
lost to friction. A pendulum clock continues to run because the potential energy 
stored in the spring is used to replace the mechanical energy lost due to friction in 
the pendulum and the gears. But when the spring "runs down", and no more 
energy is available, the pendulum swings decrease in amplitude and stop. 

The decrease in amplitude caused by dissipative forces is called damping, 
and the corresponding motion is called damped oscillation. The simplest case to 
analyze in detail is that of a frictional damping force directly proportional to the 
velocity of the oscillating body. This behavior occurs in systems involving 
viscous fluid flow, such as sliding between oil-lubricated surfaces, shock 
absorbers, and many other systems of practical importance. Then we have an 
additional damping force on the body due to friction, bvFd -= , where dtdxv /=  
is the velocity and b  is a damping constant that describes the strength of the 
damping force. In SI system, b  has the unit of kilogram per second. The minus 
sine indicates that dF  opposes the motion. 
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The total force on the body is then 
bvkxF --=  

and the Newton's-second-law formulation becomes 
mabvkx =-- ,    (1.49) 

or 

       2

2

dt
xdm

dt
dxbkx =--  

or  02

2
=++ kx

dt
dxb

dt
xdm , 

or  02

2
=++ x

m
k

dt
dx

m
b

dt
xd .      (1.50) 

Finding solutions to the Eq. (1.50) is a straightforward problem in 
differential equations, but we will not go into the details here. If the damping 
force is relatively small and the body is given an initial displacement 0A , the 
motion is described by 

teAx tmb w¢= - cos)2/(
0 ,              (1.51) 

where the frequency of oscillation w¢  is given by 

2

2

4m
b

m
k

-=¢w .                          (1.52) 

This motion differs from that of the undamped case in two ways. First, the 
amplitude  

tmbeAtA )2/(
0)( -=                              (1.53) 

is not constant but decreases with time because of the exponential factor 
tmbe )2/(- . The larger the value of b , the more quickly the amplitude decreases. 

For an undampted oscillator, the mechanical energy is constant and is given by 
2

2
1 kAE = . If the oscillator is damped, the mechanical energy is not constant but 

decreases exponentially with time. 
Second, the angular frequency of oscillation is no longer equal to mk /  

but is somewhat smaller. Figure 1.26 shows graphs of Eq. (1.51) for two different 
values of the constant b . If 0=b  (there is no damping), then Eq. (1.52) reduces 
to Eq. (1.12) )/( mk=w  for the angular frequency of an undamped oscillations, 
and Eq. (1.51) reduces to Eq. (1.2) for the displacement x  of an undamped 
oscillations. 
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It is convenient to express the 
angular frequency of a damped 
oscillation in the form of  

2

2
2

4m
b

-=¢ ww , 

where mk /=w  represents the 
angular frequency in the absence of a 
retarding force (the undamped 
oscillator) and is called the natural 
frequency of the system. When the 
magnitude of the maximum retarding 
force kAbvR <= maxmax , the system 
is said to be underdamped. As the 
value of R  approaches kA , the 
amplitudes of the oscillations decrease 
more and more rapidly. 

Note that in Eq. (1.52) the 
frequency becomes zero when b  
becomes so large that 

0
4 2

2
=-

m
b

m
k   or   kmb 4= .          (1.54) 

When b  exceeds this value, the system no longer oscillates, when it is 
displaced and released, but returns to its equilibrium position without oscillation. 
If Eq. (1.54) is satisfied, the condition is called critical damping. If the medium is 
so viscous that the retarding force is greater than the restoring force – that is, if 

kAbv >max  and w>mb 2/  – the system is over-damped. Again, the displaced 
system, when free to move, does not oscillate but simply returns to its equilibrium 
position. As the damping increases, the time it takes the system to approach 
equilibrium also increases. The nonoscillating motion that occurs when b  is even 
larger corresponds to overdamping. In these cases, the solutions of Eq. (1.50) are 
the decreasing exponential functions without any sinusoidal factors. When b  is 
smaller than the critical value, the situation corresponds to underdamping . 

In all cases, both overdamping and underdamping, the mechanical energy 
of the system continuously decreases, approaching zero. The lost of mechanical 
energy dissipates into internal energy in the retarding medium. 

The ratio 

T
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)(       (1.55) 
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Figure 1.26   Graphs of damped harmonic 
motion. The period when there is no damping 
( 0=b ) is 0T . The grey curve shows the 

motion when kmb 1.0= , and the black 

curve is for kmb 4.0= . The broken lines 

show the exponential factor tmbeA )2/(
0

-  for 
each case. The amplitude decreases more 
rapidly for the larger value of b . Close 
inspection of the points where the curves cross 
the t -axis also shows that the period 
increases slightly with the increasing b . The 
 

critical-damping condition is kmb 2=  
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is called the damping decrement and its natural logarithm 

T
TtA

tA
bl =

+
=

)(
)(ln        (1.56) 

is called the logarithmic damping decrement. In both expressions we denote 
mb 2/=b . 

To characterize the oscillating system we as ordinarily use the logarithmic 
damping decrement l . Let the amplitude of oscillation decreases e  times during 
time t . Then,  

ee
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Hence, 1=bt . As the logarithmic damping decrement Tbl = , then 
T/lb =  and, on the other hand, tb /1= . Therefore, tl /T= , but during time t  

the system fulfills TNe /t=  oscillation. Hence, the logarithmic decrement of 
damping is an inverse of the number of oscillations during which amplitude 
decreases by a factor of e . 

Another often used characteristic is a so-called Q -factor: 

eNQ p
l
p

== .     (1.57) 

According to its definition, the Q -factor is proportional to the number of 
oscillation eN  during which the amplitude decreases by a factor e . 

The suspension system of an automobile is a familiar example of damped 
oscillations. The shock absorbers provide a velocity-dependent damping force so 
that when the car goes over a bump, it does not continue bouncing forever. For 
optimal passenger comfort, the system should be critically damped or, perhaps, 
slightly underdamped. As the shocks get old and wear off, the value of b  
decreases and the bouncing persists longer. Not only is this nauseating, but it is 
bad for the steering because the front wheels have less positive contact with the 
ground. Thus, damping is an advantage for this system. Conversely, in a system 
such as a clock or an electrical oscillating system of the type found in radio 
transmitters, it is usually desirable to minimize damping. 

Example 1.16 
A damped oscillator consists of 250=m  g, 85==k  N/m, and the damping 

constant 70=b  g/s. 
a) What is the period of motion? 
Solution. 
When 6.4=<< kmb  kg/s, the period is approximately that of undamped 

oscillations: 

s34.0
N/m85

kg25.022 === pp
k
mT . 

b) How long does it take the amplitude of the damped oscillations to drop 
to half its initial value? 
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Solution. At time t , the amplitude in Eq. (1.53) is mbteA 2/
0

- . It has value 

0A  at 0=t . Thus, we must find the value of t  for which 22/
0

0 =
- mbteA
A . 

Canceling 0A  and taking the natural logarithm of the remaining equation we get 

2
1ln  on the right side and 

mbte mbt 2/ln 2/ -=-  
on the left side. Thus, 

kg/s070.0

)
2
1)(lnkg25.0(2

2
1ln2 -

=
-

=
b

m
t . 

Because 34.0=T  s, this is about 15 periods of oscillation. 
(c) How long does it take for the mechanical energy to drop to one-half its 

initial value? 

Solution. The mechanical energy at time t  is mbt
mekx /2

2
1 - . It has the value 

2
2
1

mkx  at 0=t . Thus, we must find the value of t  for which 

÷
ø
ö

ç
è
æ=- 2/2

2
1

2
1

2
1

m
mbt

m kxekx . 

It is clear that 

2
1/ =- mbte , or 

2
1lnln/ =- embt , or 

5.2
2
1ln

07.0
25.0

2
1ln =-=-=

b
mt  s. 

Exercises 

1.52. A mass of 0.4 kg is moving on the end of a spring of force constant 
N/m300=k  and is acted on by a damping force bvF -= . (a) If the constant b  

has the value 5 kg/s, what is the frequency of oscillation of the mass?   (Ans. 4.24 
Hz.); (b) For what value of the constant b  will the motion be critically damped?   
(Ans. 21.9 kg/s.) 

1.53. A mass of 0.2 kg is attached to the end of a spring of force constant 
N/m250=k  moves with an initial displacement of 0.3 m. There is a damping 

force bvF -=  acting on the mass. It is observed that the amplitude of the motion 
has decreased to 0.1 m within 5 s. Calculate the magnitude of the damping 
constant. 



 47

1.54. The amplitude of oscillation of a simple pendulum decreases with 
time. How does the total energy of the pendulum vary with time? 

A. It decreases in a steady rate. 
B. It decreases exponentially. 
C. It remains constant. 
D. It oscillates with the same frequency as the pendulum. 
1.55. With the aid of suitable graphs, explain what is meant by 
(a) free oscillations, 
(b)  underdamped oscillations, 
(c)  critically damped oscillations, 
(d)  overdamped oscillations. 
1.56. Show that the time rate of the change of the mechanical energy for a 

damped, undriven oscillator is given by 2/ bvdtdE -=  and, hence, is always 
negative. (Hint: Differentiate the expression for the mechanical energy of an 
oscillator.) 

1.57. A pendulum with the length of 1 m is released from the initial angle 
of 15º. After 1 000 s, its amplitude is reduced by friction to 5.5°. What is the 
value of mb 2/ ? 

1.58. Show that Eq. (1.51) is a solution to Eq. (1.50) provided that 
mkb 42 < . 
1.59. (a) Describe the energy transformation in a complete cycle for a 

simple pendulum under free oscillation. Sketch suitable graphs to support your 
answer; (b) Explain why the amplitude of a damped oscillation decreases. 

1.60. A car with bad shock absorbers bounces up and down with a  period of 
1.5 s after hitting a bump. The car has a mass of 1 500 kg and is supported by four 
springs of equal force constant k . Determine the value of k . 

1.61. A large passenger with a mass of 150 kg sits in the middle of the car 
described in Exercise 1.60. What is the new period of oscillation? 

1.12   Forced Oscillations 
There are many real situations where we would like to maintain oscillations 

of constant amplitude in a damped oscillating system. A familiar example is a 
child sitting on a swing. We set the system into motion by pulling the child back 
from the straight-down equilibrium position and releasing it. If that is all we do, 
the system oscillates with the decreasing amplitude and eventually comes to rest. 
But by giving the system a little push once each cycle, we can maintain a nearly 
constant amplitude. More generally, we can maintain a constant-amplitude 
oscillation in a damped harmonic oscillator by applying an oscillating force, that 
is, a force that varies with time in a periodic or cyclic way. We call this additional 
force a driving force. 

Furthermore, the frequency of the force variation need not to be the same as 
the natural oscillation frequency of the system. If we apply a periodically varying 
driving force to the mass of the harmonic oscillator, the mass undergoes a 
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periodic motion with the same frequency as that of the driving force. We call this 
motion a forced oscillation, or a driven oscillation; it is different from the motion 
that occurs when the system is simply set into motion and then left alone to 
oscillate with a natural frequency determined by m , k , and b . 

When the driving force varies according to the harmonic law, the 
differential equation of oscillations has the form 

tfx
dt
dx

dt
xd

dwwb cos2 0
2

2

2
=++ .    (1.58) 

Here b  is the damping coefficient, w  – is a natural frequency, mFf /00 =  ( 0F  is 
the amplitude of the driving force), dw  is a frequency of a driving force. 

Eq. (1.58) has the nonzero right part. According to the theory of differential 
equations, the solution of nonhomogeneous equation equals the sum of a general 
solution of a corresponding homogeneous equation and a specific solution of a 
given nonhomogeneous equation. The general solution we have already got. It has 
the form 

)cos(0 qwb +¢= - teAx t , 

where 22 bww -=¢ , 0A  and q  are the arbitrary constants. 
The specific solution can be found using phasors. Suppose that the specific 

solution has the form: 
)cos( qw -= tAx d      (1.59) 

Then, 

)
2

cos()sin( p
qwwqww +-=--= tAtA

dt
dx

dddd    (1.60) 

)cos()cos( 22
2

2
pqwwbww +-=--= tAtA

dt
xd

dddd    (1.61) 

Substituting Eqs. (1.61) and (1.60) into Eq. (1.58), we obtain: 
++-++- )2/cos(2)cos(2 pqwbwpqww tAtA dddd  

tftA ddd wpqww cos)cos( 0
2 =+-+ .   (1.62) 

From (1.62) it follows that constants A  and q  must have such values that 
harmonic function tf dwcos0  is equal to the sum of three harmonic functions of 

left part in equation (1.58). If we represent the function )cos(2 qww -tA dd  with 

phasor of length Ad
2w  directed to the right, then the function 
)2/cos(2 pqwbw +-tA dd  will be represented by the phasor Adbw2  placed at 

angle 2/p  counterclockwise with respect to the phasor A2w . (Figure 1.27)  
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Figure 1.27   Phasor diagram of forced oscillations for (a) 0ww <d  and (b) 0ww >d  

 
The function )cos(2 pqww +-tA dd  is represented by the vector Ad

2w , 

placed at the angle p  relative to the vector A2w . To satisfy Eq. (1.58) the sum of 
these three phasors must coincide with the phasor tf dwcos0 . It is clear from 
Figure 1.27, that such a situation can be valid only at amplitude A  satisfying the 
following equation: 

2
0

222222 4)( fAA dd =+- wbww     (1.63) 
The amplitude A  is the solution of Eq. (1.63): 

22222
0

4)(

/

dd

mFA
wbww +-

=      (1.64) 

Figure 1.27a describes the situation when ww <d , and Figure 1.27b 
corresponds the case 0ww >d . 

When the frequency of the driving force is equal to the natural frequency of 
the system, we would expect the amplitude of the resulting oscillation to be larger 
than when the two are extremely different, and this expectation is borne out by 
more detailed analysis and experiment. The easiest case to analyze is that of a 
sinusoidally varying force, say tFF dwsinmax=  where dw  is not necessarily 
equal to the natural frequency w  of the system. If we vary the frequency dw  of 
the driving force, the amplitude of the resulting forced oscillation varies in a 
rather specific way, as shown in Figure 1.28. When there is very little damping, 
the amplitude goes through a sharp peak as the driving frequency passes through 
the natural oscillation frequency. For increased damping, the peak becomes 
broader and smaller in height and shifts toward lower frequencies. 
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The fact that there is an amplitude peak at driving frequencies close to the 

natural frequency of the system is called resonance. Physics is full of examples of 
resonance; oscillations of a child on a swing is one of them. A vibrating rattle in a 
car that occurs only at a certain engine speed is another familiar example. You 
have probably heard of the dangers of a band marching across a bridge; if the 
frequency of their steps is close to a natural frequency of the bridge, dangerously 
large oscillations can build up. A tuned circuit in a radio or television receiver 
responds strongly to waves having frequencies near to its resonant frequency, and 
this is used to select a particular station and reject the others. 

Example 1.17 
A car is driven at a constant speed over a road on which the surface height 

varies sinusoidally. The shock absorber which normally damps vertical oscillation 
is not working. 

a) Explain why at a critical speed of the car, the amplitude of vertical 
oscillation of the car becomes very large. 

Solution. 
When the car moves over a road with sinusoid-like surface, it is forced into 

vertical oscillation. The frequency of the forced oscillations is 
l
vf = , where v  is 

the speed of the car. When the speed v  increases, the frequency of the driving 
force increases as well. At the critical speed, the frequency of the driving force is 
the same as the natural frequency of the car suspension system. Resonance 
occurs, and the amplitude of vertical oscillations of the car is maximum. 

b) In terms of the quantities listed below, deduce a formula for  
i) the natural frequency of vertical oscillation of the car. 

0 0.5 1.0 1.5 2.0

0.2

0.4

0.7

1.0
2.0

ww /d

A

kF /max

kF /2 max

kF /3 max

kF /4 max

kF /5 max

 

Figure 1.28   Graph of the amplitude A  of 
forced oscillation of a damped harmonic 
oscillator, as a function of the frequency 

dw  of the driving force, plotted on the 

horizontal axis as the ratio of dw  to the 

angular frequency mk /=w of an 
undamped oscillator. The highest curve 

has kmb 2.0= , the next has 

kmb 4.0= , and so on. As b  
increases, the peak becomes broader and 
less sharp and shifts toward lower 
frequencies. When b  is as large as 
 

km2 , the peak disappears completely 
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Solution. 
i) The suspension system of the car is represented by the spring 

system shown in Figure 1.29. 
When the car is stationary 

(Figure 1.29b), MgR =  and kxR =     
(using Hook's law), where k  is the 
force constant of spring. 0x  is the 
equilibrium compression of the 
spring.  

Hence, 0kxMg = .   (i) 
Figure 1.29c shows the 

displacement x  of the car, when it is 
oscillating vertically. Using MaF = , 
second Newton’s law we write as 

MaRMg =- 1 , MaxxkMg =+- )( 0 , 
Makx =- . 

Hence, the acceleration                 xx
M
ka 2w-=-= , 

M
k

=w , 
M
kf

pp
w

2
1

20 == , ksmg = , 
s

mgk = . 

and the natural frequency, 
Ms
mg

M
kf

pp 2
1

2
1

0 == . 

ii) the critical speed of the car is when the amplitude of vertical oscillations 
is maximum. Calculate this speed from the data provided: mass of the car and the 
passengers, 2000=M  kg, vertical rise of the car when the passengers get out, is 

1.0=s  m, mass of the passengers, 500=m  kg and the wavelength of the road 
surface corrugations is 20=l  m. 

Solution, 
If 0v  is the critical speed of the car when resonance occurs, then lfv =0  

and the driving frequency 
l
0vf = . When the resonance occurs, 

driving frequency = natural frequency, i.e. 

Ms
mgv

pl 2
10 = ,   8.15

101102
8.9105

2
20

2 13

2
0 =

´´´

´´
== -pp

l
Ms
mgv  m/s. 

(c) Discuss the behavior of the car when the shock absorber mechanism is 
working properly. Give suitable sketch graphs. 

R

M
M

Mg
Mg

(a) (b) (c)

+x

0x
xx +0

1R

 
Figure 1.29   The suspension system of the 
 

car 
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Solution. 
When the suspension of the system is working properly, the vertical 

oscillations are slightly below the critical dumping. After going over each hump, 
the car does not perform under damped oscillations. (Figure 1.30), but quickly 
returns to the equilibrium position. (Figure 1.31) 

 

Exercises 

1.62. Describe the energy transformation in a complete cycle for a simple 
pendulum. Sketch on the same axes to show how the amplitude of forced 
oscillations varies with the frequency of the driving force for 

a) underdamping, 
b) moderate damping, 
c) overdamping. 
Mark the resonance frequency 0f  on the graph,. What is the effect of 

damping on the resonance frequency? 
1.63. (a) Explain the terms forced oscillation and resonance, (b) State the 

condition for resonance to occur. 
1.64. (a) What is meant by the natural frequency of an oscillatory system?  
(b) The suspension system of a car consists of a spring under compression 

and a shock absorber which damps the vertical oscillations of the car. Sketch 
graphs to illustrate how the vertical height of the car above the road varies with 
time after the car has just passed over a bump if the shock absorber is (i) not 
functioning, (ii) functioning normally 

(c) When the driver of mass 80 kg steps into the car of mass 920 kg, the 
vertical height of the car above the road decreases by 20 cm. (i) Explain why 
when the car is driven over a series of equally spaced bumps, the amplitude of the 
vertical oscillations of the car becomes large for one particular speed. (ii) 
Calculate the speed of the car if the separation between successive humps is 15 m. 

Time

Vertical
displacement

0  
Time

Vertical
displacement

0  
Figure 1.30   Suspension system faulty Figure 1.31   Suspension system functions 

 

properly 
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1.65. A baby rejoices in the day by crowing and jumping up and down in 
her crib. Its mass is 12.5 kg, and the crib mattress can be modeled as a light spring 
with the force constant of 4.30 kN/m. (a) The baby soon learns to bounce with 
maximum amplitude and minimum effort by bending its knees at what frequency? 
(b) It learns to use the mattress as a trampoline – losing contact with it for part of 
each cycle – when her amplitude exceeds what value? 

1.66. A 2.00-kg mass attached to a spring is driven by an external force 
)2cos()3( tF p= . If the force constant of the spring is 20.0 N/m, determine (a) the 

period and (b) the amplitude of the motion. (Hint: Assume that there is no 
damping – that is, that 0=b  and use Eq. (1.64).) 

1.67. A weight of 40 N is suspended from a spring that has a force constant 
of 200 N/m. The system is undamped and is subjected to a harmonic force with  a 
frequency of 10 Hz, which results in the forced-motion amplitude of 2 cm. 
Determine the maximum value of the force. 

1.68. Damping is negligible for a 0.150-kg mass hanging from light 6.30–
N/m spring. The system is driven by a force oscillating with amplitude of 1.7 N. 
At what frequency will the force make the mass vibrate with amplitude of 0.44 
m? 

Summary 

A motion that repeats itself over and over again after a regular time interval 
is called a periodic motion. A motion that repeats itself over and over again about 
its mean position, such that it remains confined within the well defined limits 
(called extreme positions) on either side of the mean position is called oscillation 
or vibrational motion. 

One oscillation (vibration) is the to and fro motion of a particle between 
any two consecutive passages in the same direction. 

Characteristics of SHM:  
The displacement of a particle, executing SHM, at any time is defined as 

the distance of the particle from the mean position at that time. 
)cos( qw += tAx , 

where x  is called displacement of SHM and q  is the phase constant of SHM.  
The amplitude of a SHM is defined as the maximum displacement on either 

side of the mean position. 

Velocity 2222 2)sin( xA
T

xAtA
dt
dxv -=-=+-==

p
wqww . 

The velocity at the mean position is wAv =max  (maximum). The velocity at the 
extreme position is 0=v . 

Acceleration )cos(22
2

2
qwww +-=-== tAx

dt
xda . 
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The negative sign shows that the acceleration of a SHM is always directed 
towards the mean position of the SHM Acceleration at the mean position 0=a . 
The acceleration at the extreme position is Aa 2

max w-= . 
Time period (T ) is the time taken by the particle executing SHM. to 

complete one oscillation. 
Frequency ( f ) is the number of oscillations completed per second by the 

particle executing SHM 

T
f 1

= . 

The unit of frequency is 1-s  or cycle per second (c.p.s.) or hertz (Hz). For high 
frequencies, the units such as kilohertz (kHz) or megahertz (MHz) are used. 

Block–spring system. When a mass m  is attached to a massless spring and 
pulled aside or downwards, it executes SHM. If x  is extension in the spring on 
attaching the mass m  and k  is its force constant, then time period of SHM 
executed the spring 

k
mT p2= . 

A simple pendulum is a point mass suspended by a weightless, inextensible 
string of length L  from a rigid support about which it can oscillate freely. When 
the mass is displaced from its mean position, it executes SHM. 

Time period, 
g
LT p2= . 

Period does not depend on mass.  
A physical pendulum is a body suspended from an axis of rotation a 

distance d  from its center of gravity. If the moment of inertia about the axis of 
rotation is I , the period is given by 

mgd
IT p2= . 

Conservation of energy leads to the following relation among the position 
and velocity at any time and the amplitude and total energy: 

constmvkxkAE === 222
2
1

2
1

2
1 . 

If the body is given an initial displacement A  and released with no initial 
velocity, the position is given as a function of time by 

tAx wcos= . 
If it is given an initial velocity 0v  and no initial displacement, the position 

is given as a function of time by 
tAx wsin= , 

with A  given by w/0vA = . If the body is given an initial displacement 0x  and an 
initial velocity 0v , the position is given by 

)cos( qw += tAx  



 55

with A  and q  given by 
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w

vxA +=    and   ÷
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q 0arctan . 

The circle-of-reference construction uses a rotating vector, called a phasor, 
which have a length equal to the amplitude of the oscillation and angle q  with x  
axis equal to the phase constant of oscillations. Its projection on the horizontal 
axis represents the actual motion of the body. When we add several oscillations, 
the resultant oscillation can be determined as sum of phasors.  

When a damping force bvF -=  proportional to velocity is added to a 
simple harmonic oscillator, the motion is described as a damped oscillation: 

teAx tmb wcos)2/(
0

-= , 
provided that kmb 42 < . This condition is called underdamping. When kmb 42 = , 
the system is critically damped and no longer oscillates. When b  is still larger, 
the system is overdamped. 

When a sinusoidally varying driving force is added to a damped harmonic 
oscillator, the resulting motion is called a forced oscillation. Its amplitude reaches 
a peak at driving frequencies close to the natural oscillation frequency of the 
system. This behavior is called resonance. 

Key Terms 
periodic motion – периодическое движение   
oscillation – колебание 
simple harmonic motion (SHM) – гармоническое колебание    
cycle – цикл    
period – период    
frequency – частота    
amplitude – амплитуда   
angular frequency – круговая частота 
phase angle – угол сдвига фаз, фазовый угол  
simple pendulum – математический маятник 
physical pendulum – физический маятник 
torsional pendulum – крутильный маятник    
damping – затухание    
damped oscillation – затухающие колебания 
critical damping – критическое затухание 
overdamping – апериодическое затухание, сильное затухание 
underdamping – слабое затухание 
driving force – вынуждающая сила    
forced oscillation – вынужденные колебания  
resonance – резонанс 
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Mechanical   Waves   
Particle and wave are the two important physical concepts, in the sense that 

we are able to associate almost every branch of the subject with one of them. 
However, these two concepts are completely different. The concept particle 
suggests a tiny concentration of a matter capable of transmitting energy. The 
concept wave suggests just the opposite - namely, a broad distribution of energy 
filling the space which it passes. 

The world is full of waves. Sound, light, ocean waves, earthquakes, radio 
and television transmissions are all wave phenomena. A wave is any disturbance 
from an equilibrium position that travels or propagates with time from one area 
to another. There are three main types of waves: 

Mechanical waves. These waves are most familiar because we deal with 
them almost constantly; common examples include water waves, sound waves 
and seismic waves. They are governed by Newton's laws and they can exist only 
within a material medium, such as water, air or rock. 

Electromagnetic waves. These waves are less familiar but we use them 
constantly; common examples include visible and ultraviolet light, radio and 
television waves, X-rays. These waves require no material medium to exist. For 
example, light waves from stars travel through the space to reach us. 

Matter waves. Although these waves are commonly used in modern 
technology, this type is probably very unfamiliar. These waves are associated 
with electrons, protons and even atoms and molecules. As we commonly think of 
these things as constituting matter, such waves are called matter waves. 

Chapter 2.1 

Traveling Mechanical Waves 
In this chapter we study only mechanical waves. Mechanical waves always 

travel within some material substance called the medium for the wave. When we 
observe what we call a water wave, what we see is a rearrangement of the water 
surface. Without water, there would be no wave. It’s important to emphase that 
the medium itself does not travel through space; its individual particles undergo 
back-and-force motions around their equilibrium positions. 

The mechanical waves require (1) a source of disturbance, (2) a medium 
that can be disturbed, and (3) some kind of physical connection through which the 
adjacent portions of the medium can influence each other.  

All traveling waves carry energy. The amount of energy transmitted 
through the medium and the mechanism responsible for this transport of energy 
differ from case to case. For instance, the power of ocean waves during a storm is 
much greater than the power of sound waves generated by a single human voice. 
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Some waves are periodic: in these the particles in the medium undergo 
periodic motions during wave propagation. If the periodic motion is sinusoidal, 
the result is a sinusoidal wave, a type of periodic wave of special importance.  

2.1.1 Basic Characteristics of Wave Motion 

Imagine you are floating in a boat in a large lake. You move slowly up and 
down as waves move past you. As you look out over the lake, you may be able to 
see the individual waves approaching. The point at which the displacement of the 
water from its normal level is the highest is called the crest of the wave. The point 
at which the displacement of the water from its normal level is the lowest is called 
the trough of the wave. The distance between two adjacent crests is called the 
wavelength l  (Greek letter lambda). More generally, the wavelength is a 
minimum distance between any two adjacent identical points (such as crests) of 
the wave, as shown in Figure 2.1.1. 

If you count the number of 
seconds between the arrivals of two 
adjacent identical points of wave, you 
are measuring the period T  of the 
wave. In general, we define the period 
of oscillation T  of a wave to be the 
time any element of medium takes to 
move through one full oscillation.  

The inverse of the period, which 
is called the frequency f  and 
measured in Hz in SI, is often used. In 
general, the frequency of a periodic 
wave is the number of crests (or 
troughs, or any other point on the wave) that passes a given point in a unit time 
interval. Since the waveform, traveling with constant speed v , advances a 
distance of one wavelength in a time interval of one period, it follows that 

f
T

v l
l

== .       (2.1.1) 

The maximum displacement of a particle of the medium from its 
equilibrium level is called the amplitude A  of the wave. For our water wave, it 
represents the highest distance of a water molecule above the undisturbed surface 
of the water as the wave passes by. 

Waves travel with a specific speed, and this speed depends on the 
properties of the medium being disturbed. For instance, sound waves travel 
through room temperature air with a speed of about 343 m/s, whereas they travel 
through most solids with a speed much greater than that 343 m/s. 

y

x

 
Figure 2.1.1   The wavelength l  of a wave is 
the distance between two adjacent identical 
 

points 
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Example 2.1.1  
What is the wavelength of a sound wave having a frequency of 262 Hz (the 

approximate frequency of the note "middle C" on the piano)?  The speed of sound 
in air at 20°C is 344 m/s. 

Solution. 
From Eq. (2.1.1), 

31.1
s262
m/s344

1- ===
f
v

l  m. 

For comparison, the "high C" sung by coloratura sopranos is two octaves 
above the middle C. The corresponding frequency is four times as large, 

Hz1048)Hz262(4 ==f , and the wavelength is one-fourth as large, 
0.328m)/431.1( ==l  m. 

Exercises 

2.1.1. If you shake one end of a taut rope periodically, three times each 
second, what is the period of the sinusoidal waves set up in the rope? 

2.1.2. Which property is common to all types of mechanical waves? 
2.1.3. The speed of sound waves in the air depends on temperature, but the 

speed of light does not. Why? 
2.1.4. The speed of sound in air is 343 m/s at 20°C. What is the wavelength 

of a sound wave of frequency 32 Hz, the lowest pedal note of the medium-sized 
pipe organs? What is the frequency of a wave having a wavelength of 1.22 m, 
corresponding approximately to the note D above the middle С of the piano? 

2.1.5. Provided the amplitude is sufficiently large, the human ear can 
respond to longitudinal waves over the range of frequencies from about 20 Hz to 
about 20,000 Hz. Compute the wavelengths corresponding to these frequencies 

a) for waves in air ( 343=v  m/s); 
b) for waves in water ( 1480=v  m/s). 
2.1.6. What is the wavelength of the wave in Figure 2.1.2, where each 

segment of the wave has length d ? 
2.1.7. Figure 2.1.3a gives a 

snapshot of a wave traveling in the 
direction of positive x  along a string 
under tension. Four string elements are 
indicated by the lettered points. For 
each of these elements, determine 
whether, at the instant of the snapshot 
the element is moving upward or 

downward or is momentarily at rest? (Hint: Imagine the wave as it moves through 
the four string elements.). Figure 2.1.3b gives the displacement of a string 
element located at 0=x  as a function of time. At the lettered times, is the element 
moving upward or downward or is momentarily at rest? 

d

 
 
Figure 2.1.2    Wavelength is the minimum 
distance between any two identical points 
 

(such as the crests) 
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2.1.8. For a certain transverse wave, the distance between two successive 
crests is 1.20 m, and eight crests pass a given point along the direction of travel 
every12.0 s. Calculate the wave speed. 

2.1.9. A sinusoidal wave is traveling along a rope. The oscillator that 
generates it completes 40.0 vibrations in 30.0 s. The given maximum travels 425 
cm along the rope in 10.0 s. What is the wavelength? 

2.1.10. For a certain transverse wave, the distance between two successive 
crests is 1.20 m, and eight crests pass a given point along the direction of travel 
every 12.0 s. Calculate the wave speed. 

2.1.2   Transverse and Longitudinal Waves 
Let’s tie one end of a long flexible rope to a stationary object and held the 

other end, stretching the rope tight. Then we give this end some transverse 
(sideways) motion. If we give a single “flip”, the result is a single wave pulse 
which travels down the length of the string (Figure 2.1.4). 

This pulse and its motion can 
occur because the string is under tension. 
When you pull your end of the string 
upward, it begins to pull upward on the 
adjacent section of the string via tension 
between two sections. As the adjacent 
section moves upward, it begins to pull 
the next section upward and so on. 
Meanwhile, you have pulled down on 
your end of the string. As each section 
moves upward, in turn, it begins to be 
pulled back downward by neighboring 
sections that are already on the way 
down. The net result is that a distortion in 
the string shape (the pulse) moves along 
the string at some velocity vr . 

y

x
a d

b c
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y

e

f g

h
t

(b)  
Figure 2.1.3 (a) Wave traveling in the direction of positive x ; (b) Displacement of a string 
 

element as a function of time 

 
Figure 2.1.4   A wave pulse traveling down a 
stretched rope. The shape of the pulse is 
approximately unchanged as it travels along 
 

the rope 
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This type of disturbance is called a traveling wave, and Figure 2.1.5 
represents four consecutive "snapshots" of the creation and propagation of the 
traveling wave pulse. The rope is the medium through which the wave travels. 
Such a single pulse, in contrast to a train of pulses, has no frequency, no period, 
and no wavelength. However, the pulse does have definite amplitude and definite 
speed. As we shall see later, the properties of this particular medium that 
determine the speed of the wave are the tension in the rope and it’s mass per unit 
length. The shape of the wave pulse changes very little as it travels along the rope. 
(Strictly speaking, the pulse changes its shape and gradually spreads out during 
the motion. This effect is called dispersion and is common to mechanical waves, 
as well as to electromagnetic waves.) As the wave pulse travels, each small 
segment of the rope, as it is disturbed, moves in a direction perpendicular to the 
wave motion. Note that no part of the rope ever moves in the direction of the 
wave. 
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Figure 2.1.5   A sinusoidal transverse wave traveling toward the right. The shape of the 
 

string is shown at intervals of one-eighth of a period 
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A more interesting situation develops when we give the free end of the rope 
a repetitive or periodic motion. In particular, suppose we move it back and forth 
with simple harmonic motion of amplitude A , frequency f , and period T , 
where, as usual, Tf /1=  (Figure 2.1.5). A continuous succession  of transverse 
sinusoidal waves then advances along the string. The shape of a portion of the 
string near the end, at intervals of 1/8 period, is shown in Figure 2.1.5 for a total 
time of one period. The waveform advances steadily toward the right, as indicated 
by the short arrow pointing to one particular wave crest, while any one point on 
the string (black dot) oscillates back and forth about its equilibrium position with 
simple harmonic motion. We distinguish between the motion of a waveform, 
which moves with the constant speed along the string, and the motion of a 
particle of the string, which moves with simple harmonic motion transverse to the 
string. A traveling wave that causes the particles of the disturbed medium to move 
perpendicular to the wave motion is called  a transverse wave. 

Compare this with the another type of wave – one moving down a long, 
stretched spring, as shown in Figure 2.1.6. The left end of the spring is pushed 
briefly to the right and then pulled briefly to the left. This movement creates a 
sudden compression of a region of the coils. The compressed region travels along 
the spring (to the right in Figure 2.1.6). The compressed region is followed by a 
region where the coils are extended. Notice that the direction of the displacement 
of the coils is parallel to the direction of propagation of the compressed region. A 
traveling wave that causes the particles of the medium to move parallel to the 
direction of wave motion is called a longitudinal wave. 

 

 
Sound waves, which we shall further discuss, are another example of 

longitudinal waves. The disturbance in a sound wave is a series of high-pressure 
(condensation) and low-pressure (rarefaction) regions that travel through air or 
any other material medium. 

In nature some waves exhibit a combination of transverse and longitudinal 
displacements. Surface water waves are a good example. When a water wave 
travels on the surface of deep water, the water molecules at the surface move in 
nearly circular path, as shown in Figure 2.1.7.  

Compressed Compressed

Stretched Stretched
 

Figure 2.1.6   A longitudinal wave travels along a stretched spring. The displacement of the 
coils is in the direction of the wave motion. Each compressed region is followed by a stretched 
 

region 
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Note that the disturbance has both transverse and longitudinal components.  
An important property of transverse waves is polarization. When we 

produce a transverse wave on a string, we can choose between moving the end up 
and down or sideways; in either case, the wave displacements are perpendicular, 
or transverse, to the length of the string. If the end moves up and down, the 
motion of the entire string is confined to a vertical plane; if the end moves 
sideways, the wave moves in a horizontal plane. In either case, the wave is said to 
be linearly polarized because the individual particles move back and forth in 
straight lines perpendicular to the string. 

Longitudinal waves, unlike transverse waves, do not exhibit polarization. 
This concept has no meaning for a longitudinal wave. 

Figures 2.1.4 and 2.1.5 show the oscillations of particles those equilibrium 
positions are located along x -axis. In reality, not only particles of x -axis oscillate 
but neighboring particles too. Propagating from the origin of oscillation, wave 
process involves new and new regions of space. The locus of points oscillating 
with the same phase is called a wave surface. Wave surface can be constructed 
through any point of space which is involved in wave process. The boundary 
wave surface which separates the space, already involved in wave process, from 
the space which the wave process hasn’t reach yet is called wave front. The wave 
surfaces are constructed through equilibrium positions of particles, oscillating 
with the same phase. The wave front moves in the direction of propagation of 
wave all the time. Therefore, there are a lot of wave surfaces, whereas there is 
only one wave front. 

Wave surfaces can have different forms. In simplest cases, they have a 
form of a plane or a sphere. The waves in such cases are called plane or spherical 
ones, correspondingly. In a plane wave, wave surfaces represent a set of planes, 
parallel to each other (Figure 2.1.8); in a spherical one, they are concentric 
spheres.  

Trough

Wave motion

Crest

 
Figure 2.1.7   The motion of water molecules on the surface of deep water in which a wave is 
 

propagating is a combination of transverse and longitudinal displacement 
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Spherical waves are represented 
with a series of circular arcs concentric 
with the source, as shown in 
Figure 2.1.9. Each arc represents a wave 
surface. The distance between adjacent 
wave surfaces equals the wavelength l . 
The radial lines pointing outwards from 
the source are rays. 

Now consider a small portion of a 
wave front far from the source, as shown 
in Figure 2.1.10. In this case, the rays 
passing through the wave front are 
nearly parallel to one another, and the 
wave front is very close to being planar. 
Therefore, at distances from the source 
that are great compared with the 
wavelength, we can approximate a wave 
front with a plane. Any small portion of a spherical wave far from its source can 
be considered a plane wave. 
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Figure 2.1.8   A plane wave moving in the 
positive x  direction with a speed v . The 
 

wave front is plane 

Source

Wave front

Ray

 

Rays

Wave front  

Figure 2.1.9   A spherical wave propagating 
radially outward from an oscillating spherical 
body. The intensity of the spherical wave 
 

varies as 2/1 r  

Figure 2.1.10   Spherical waves emitted by a 
point source. The circular arcs represent the 
spherical wave fronts that are concentric with 
 

the source 
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Exercises 

2.1.11. What is the difference between longitudinal and transverse waves? 
2.1.12. Why is a wave pulse traveling on a string considered a transverse 

wave? 
2.1.13. Is it possible to have a longitudinal wave on a stretched string? 
2.1.14. Is it possible to have a transverse wave on a steel rod?  
2.1.15. A solid can transport both longitudinal wave and transverse waves, 

but a fluid can transport only longitudinal waves. Why? 
2.1.16. What is the distance between compression and its nearest 

rarefaction in a longitudinal wave? 
2.1.17. State definition of wavelength and frequancy of a wave. 
2.1.18. What phenomenon is exhibited by transverse waves but not by 

longitudinal waves? 

2.1.3 Wave Functions of Plane and Spherical Waves 

To make the analysis of wave motion complete, we need a mathematical 
language that provides a detailed description of the motion of the medium during 
wave propagation. A central element of this language is the concept of wave 
function which is a function that describes the position of an arbitrary particle in 
the medium as a function x  of its coordinates x , y , z  and time t : 

),,,( tzyxxx = . 
This function must be periodic both with respect to time t  and coordinates 

x , y , z . In this discussion, we’ll concentrate primarily on sinusoidal waves in 
which each particle of the medium undergoes simple harmonic motion about its 
equilibrium position. 

As an example, we look first at waves on a stretched string. If we ignore 
the sag of the string due to gravity, the equilibrium position of the string is along a 
straight line. We take this to be the x -axis of a coordinate system. Waves on a 
string are transverse: During wave motion, a particle with equilibrium position x  
is displaced some distance y  to the direction perpendicular to the x -axis. The 
value of y  depends on the particle (that is, on x ) as well as on the time t , when 
we look at it. Thus, y  is a function of x  and t ; ),( txfy = . If we know this 
function for a particular wave motion, we can use it to predict the position of any 
particle at any time. From this we can determine the velocity and acceleration of 
any particle, the shape of the string, its slope at any point, and anything else 
related to the position and motion of the string at any time. 

Thus, the wave function ),( txfy = , once it is known, contains a complete 
description of the motion. Let us now consider wave functions for sinusoidal 
waves. Suppose a wave travels from left to right along the string (the direction of 
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increasing x ). We can compare the motion of any particle of the string with the 
motion of a second particle to the right of the first one. We find that the second 
particle moves in the same way as the first one, but after a time lag that is 
proportional to the distance between the particles. If one end of a stretched string 
oscillates with simple harmonic motion, all other points on it oscillate with simple 
harmonic motion of the same amplitude and frequency. The phase of the motion 
is, however, different for different points. This means that the cyclic motions of 
different points are out of step with each other by various fractions of a cycle. For 
example, if, at the same time, one point has its maximum positive displacement, 
and another has its maximum negative displacement, the two are a half-cycle out 
of phase. A phase angle of p  (180°) corresponds to 1/2 cycle, 2/p  to 1/4 cycle, 
and so on.  

Suppose the displacement of a particle at the left end (at 0=x ), where the 
motion originates, is given by 

tAy wsin= .     (2.1.2) 
The time required for the wave disturbance to travel from 0=x  to some 

point x  to the right of the origin is given by vx / , where v  is the wave speed. The 
motion of the point x  at time t  is the same as the motion of point 0=x  at the 
earlier time )/( vxt - . Thus the displacement of the point x  at time t  is obtained 
simply by replacing t  by )/( vxt - , in Eq. (2.1.2) and we have 
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xtAtxy pw 2sinsin),( .   (2.1.3) 

The notation ),( txfy =  is a reminder that the displacement y  is a function 
of both the location x  of the point and the time t . Eq. (2.1.3) can be rewritten in 
several alternative forms, conveying the same information in different ways. In 
terms of the period T  and wavelength l , we get: 
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T
tAtxy 2sin),( .   (2.1.4) 

Another convenient form is obtained by defining a quantity k , called the 
propagation constant,  or the wave number: 

l
p2

=k .      (2.1.5) 

In terms of k  and the angular frequency w , the wavelength-to-frequency 
relation fv l=  becomes 

vk=w      (2.1.6) 
and we can rewrite Eq. (2.1.4) as 

( )kxtAtxy -= wsin),( .    (2.1.7) 
Which of these various forms we use is a matter of convenience for a 

specific problem; they all say the same. 
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The phase of the wave is the argument ( kxt -w ) of the sine in Eq. (2.1.7). 
As the wave sweeps through a string element at a point at a particular position x , 
the phase changes linearly with time t . This means that its sine also changes, 
oscillating between +1 and -1. Its extreme positive value (+1) corresponds to a 
peak of the wave moving through the element; then, the value of y  at position x  
is A . This extreme negative value (-1) corresponds to a valley of the wave 
moving through the element; then, the value of y  at x  is A- . Thus, the sine 
function and the time-dependent phase of a wave correspond to the oscillation of 
a string element, and the amplitude of the wave determines the extremes of the 
element displacement. 

For any given time t , Eqs.(2.1.3), (2.1.4) or (2.1.7) give the displacement 
y  of a particle from its equilibrium position, as a function of the coordinate  x  of 
the particle. If the wave is a transverse one on a string, the equation represents the 
shape of the string at a certain instant, as if we have taken a photograph of the 
string. Thus, at time 0=t  

( )
l

p xAkxAkxAtxy 2sinsinsin),( -=-=-= . 

This curve is plotted in Figure 2.1.11. 
At the same time, at any given coordinate x , Eqs. (2.1.3), (2.1.4) or (2.1.7) 

give the displacement y  of the particle at that coordinate, as a function of time. 
That is, it describes the motion of the particle. Thus, at the position 0=x , 

T
tAtAtxy pw 2sinsin),( == . 

This curve is plotted in Figure 2.1.12. 
 

 
The above formula may be used to represent a wave traveling in the 

negative x -direction by making a simple modification. In this case, the 
displacement of a point x  at time t  is the same as the motion of point 0=x  at the 
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Figure 2.1.11   Waveform at 0=t  Figure 2.1.12   Waveform at 0=x  
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later time )/( vxt + . In Eq. (2.1.2) we must therefore replace t  by )/( vxt + . 
Thus, for a wave traveling in the negative x -direction, 

)sin(2sin2sin),( kxtAx
T
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T
xtfAtxy +=÷
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pp .  (2.1.8) 

We must be careful to distinguish between the speed of propagation v  of 
the waveform and the particle speed u  of a particle of the medium in which the 
wave is traveling. The wave speed v  is given by 

k
fv w

l == .       (2.1.9) 

For general case of the wave propagating along arbitrary direction, the 
wave function can be written as follows: 

)sin(),( fwx +-= rktAtr rrr ,    (2.1.10) 
where x  is displacement, f  is an initial phase (or phase constant) and vector k

r
 is 

a so-called wave vector. The wave vector k
r

 equals in magnitude to the wave 
number lp /2=k  and is directed along the perpendicular to the wave surface. 

When we derived the above equations, we have suggested that the 
amplitude of oscillations does not depend on x . For a plane wave, this 
assumption is valid if the medium does not absorb energy of the wave. But if the 
wave propagates in the absorbing medium, the intensity of wave decreases with 
the distance from the origin, and the wave damps. Experiments show that in 
homogenous and isotropic medium, such damping occurs according to the 
exponential law: xeAA g-= 0  and the wave function of plane wave becomes: 

)sin(0 kxteAy x -= - wg .     (2.1.11) 
Here 0A  is the amplitude of wave in plane 0=x . 

Now let’s derive expression of the wave function for spherical wave. In 
isotropic and homogenous medium, wave from point source will be spherical. Let 
the phase of oscillation of the source be )( fw +t . Then points at the wave surface 
of radius r  will oscillate with the phase ])/([ fw +- vrt , because it takes time 

vr /=t  for a wave to cover the distance r . In this case, the amplitude of 
oscillations would not be constant even if there is no absorption: It decreases with 
distance as r/1 . Hence, the wave function of the spherical wave has the form: 

)cos( rkt
r
A rr

-= wx ,         (2.1.12) 

In the above equation, A  is the amplitude of the wave at the unit distance from 
the source. Dimension of A  is determined by the product of oscillating quantity 
and dimension of length. It should be mentioned that Eq. (2.1.12) is valid only for 
distances r  which is much greater than the size of the source. 
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Although we have introduced the concept of wave function with reference 
to transverse waves on a string, the concept is valid for longitudinal waves as 
well. The quantity y  still measures the displacement of a particle of the medium 
from its equilibrium position; the only difference is that in a longitudinal wave 
this displacement is parallel to the x -axis instead of being perpendicular to it in 
transverse wave.  

Example  2.1.2  
A sinusoidal wave traveling in the positive x  direction has an amplitude of 

15 cm, a wavelength of 40 cm, and a frequency of 8.00 Hz. The vertical 
displacement of the medium at 0=t  and 0=x  is also 15.0 cm, as shown in 
Figure 2.1.13. (a) Find the angular wave number k , period T , angular frequency 
w , and speed v  of the wave. 

 
Solution. 
a) Using Eqs. (2.1.5) and (2.1.9), 

we find the following: 
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40
22

===
p

l
pk  rad/cm, 

3.50)8(22 === ppw f  rad/s, 
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T  s, 

320)8)(40( === fv l  cm/s. 
b) Determine the phase constant 

f , and write a general expression for the 
wave function. 

Solution. 
As 15=A  cm and because 15=y  cm at 0=x  and 0=t , substitution into 

Eq. (2.1.7) gives 
fsin1515 =    or    1sin =f . 

We may take the principal value 2/pf =  rad (or 90º). Hence, the wave 
function is of the form 

)cos()
2

sin( tkxAtkxAy w
p

w -=+-= . 

By inspection, we can see that the wave function must have this form, 
noting that the cosine function has the same shape as the sine function displaced 
by 90º. Substituting the values for A , k , and w  into this expression, we obtain 

)3.50157.0cos()15( txy -= . 

y(cm)

x(cm)

40.0 cm

15.0 cm

 
Figure 2.1.13   A sinusoidal wave of 
wavelength 40=l  cm and amplitude 

15=A  cm. The wave function can be 
 

written in the form )cos( tkxAy w-=  
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Example 2.1.3 
A wave traveling along the string is described by 

)1.7272.2sin(00327.0),( xttxy -= , 
in which the numerical constants are in SI units. 

a) What is the amplitude of the wave? 
Solution. 
The equation of this wave is of the same form as Eq. (2.1.7), 

)sin( kxtAy -= w , 
so we have a sinusoidal wave. By comparing the two equations, we see that the 
amplitude is 

mm 3.27m00327.0 ==A . 
b) What are the wavelength, period, and frequency of this wave? 
Solution. 
By comparing equations, we see that the angular wave number and angular 

frequency are 
1.72=k  rad/m     and     72.2=w  rad/s. 

Now we relate the wavelength l  to the wave number k : 

71.8m0871.0
rad/m1.72
rad22

====
pp

l
k

 cm. 

Next, we relate T  to w  via equation: 

31.2
rad/s72.2
rad22

===
p

w
pT  s. 

and the frequency is 

433.0
s31.2

11
===

T
f  Hz. 

c) What is the speed of this wave? 
Solution. 
The speed of the wave is given by 

77.3m0377.0
rad/m1.72
rad/s72.2

====
k

v w  cm/s. 

Because the phase of wave contains the position variable x , the wave is 
moving along the x  axis. Also, the minus sing in front of the kx  term indicates 
that the wave is moving in the positive direction of the x  axis. (Note that the 
quantities calculated in (b) and (c) are independent of the amplitude of the wave). 

d) What is the displacement y  at 5.22=x  cm and 9.18=t  s? 
Solution. 
The Eq. (2.1.7) gives the displacement as a function of position x  and time 

t . Substituting the given values into the equation yields 
92.1)225.01.729.1872.2sin(00327.0 =´-´=y  mm. 

Displacement is positive. (Don’t forget express the phase in radians before 
calculating the sine function). 



 

 

70

Exercises 

2.1.19. In Figure 2.1.14, five points are indicated on a snapshot of a 
sinusoidal wave. What is the phase difference between point 1 and (a) point 2, (b) 
point 3, (c) point 4, and (d) point 5? Answer in radians and in terms of the 
wavelength of the wave. The snapshot shows a point of zero displacement at 

0=x . In terms of the period T  of the wave, when will (e) a peak and (f) the next 
point of zero displacement reach 0=x ? 

 
2.1.20. A sinusoidal wave train 

is described by the equation 
)0.4030.0sin()m25.0( txy -= , 

where x  and y  are in meters and t  is 
in seconds. Determine for this wave 
the (a) amplitude, (b) angular 

frequency, (c) angular wave number, (d) wavelength, (e) wave speed, and (f) 
direction of motion. 

2.1.21. A transverse wave on a string is described by the expression 
t)4/8m)sin(12.0( pp += xy . 

Determine the transverse speed and acceleration of the string at 0.2=t  s 
for the point on the string located at 60.1=x  m. (b) What are the wavelength, 
period, and speed of propagation of this wave? 

2.1.22. (a) Write the expression for y  as a function of x  and t  for a 
sinusoidal wave traveling along a rope in the negative x  direction with the 
following characteristics: 0.8=A  cm, 0.80=l  cm, 0.3=f  Hz and 0),0( =ty  at 

0=t . (b) Write the expression for y  as a function of x  and t  for the wave in part 
(a), assuming that 0)0,( =xy  at the point 0.10=x  cm.  

2.1.23. Show that Eq. (2.1.7) may be written as: 

)(2sin vtxAy --=
l
p . 

2.1.24. The equation of a certain traveling transverse wave is 

÷
ø
ö

ç
è
æ -=

3001.0
2sin2 xty

l
p , 

where x  and y  are in centimeters and t  is in seconds. What are the wave’s 
amplitude, wavelength, frequency, speed of propagation? 

x

y
1

2

3

4

5

 
Figure 2.1.14 Sinusoidal wave 
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2.1.4   Wave Equation 

The wave function of any wave is a solution of the differential equation, 
called wave equation. To obtain this equation, we take wave function (2.10) for a 
plane wave and compare second partial derivative of the displacement x  with 
respect to coordinates x , y , z  and second partial derivative with respect to 
time t : 

xfw
x 22
2

2
)sin( xx krktAk

x
-=+--=

¶

¶ vs , 

xfw
x 22
2

2
)sin( yy krktAk

y
-=+--=

¶

¶ vs , 

xfw
x 22
2

2
)sin( zz krktAk

z
-=+--=

¶

¶ vs , 

xwfww
x 22
2

2
)sin( -=+--=

¶

¶ rktA
t

vs . 

By summing the derivatives with respect to coordinates x , y , z  we get: 

xxxxx 2222
2

2

2

2

2

2
)( kkkk

zyx
zyx -=++-=

¶

¶
+

¶

¶
+

¶

¶ . 

After comparing this equation with the second time derivative and 
substitute 22 /wk  with 2/1 v , we obtain 

2

2

22

2

2

2

2

2 1
tvzyx ¶

¶
=

¶

¶
+

¶

¶
+

¶

¶ xxxx .    (2.1.13) 

The equation can be written in the form: 

2

2

2
1

tv ¶

¶
=D

x
x ,    (2.1.14) 

where 2

2

2

2

2

2

zyx ¶

¶
+

¶

¶
+

¶

¶
=D  is the so-called Laplas’s operator. This equation is 

one of the most important equations in all physics. It is called the wave equation, 
and whenever it appears, we can conclude immediately that the disturbance 
described by the function x  propagates as a traveling wave with a speed of wave 
v . In a particular case, when wave propagates along x -axis, Eq. (2.1.14) reduces 
to: 

2

2

22

2 1
tvx ¶

¶
=

¶

¶ xx .    (2.1.15) 
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This expression can be applied to various types of traveling waves. For 
waves on strings, x  represents the vertical displacement of the string. For sound 
waves quantity x  corresponds to displacement of air molecules from equilibrium 
or variations in either pressure or density of the gas through which the sound 
waves are propagating. In the case of electromagnetic waves x  corresponds to 
electric or magnetic field components. 

Alternative Derivation from the Newton’s Second Law. Alternative way of 
the wave equation derivation is the application of the Newton’s second law. 
Suppose a traveling wave is propagating along a string that is under a tension T . 
Let us consider one small string segment of length xD  (Figure 2.1.15). Ends of 
the segment make small angles Aq  and Bq  with the x  axis. The net force acting 
on the segment in the vertical direction is 

)sin(sinsinsin ABABy TTTF qqqq -=-=å . 
As the angles are small, we can 

use the small-angle approximation 
qq tansin »  to express the net force as 

)tan(tan ABy TF qq -»å . 
However, at A  and B  the 

tangents of the angles are defined as the 
slopes of the string segment at these 
points. Because the slope of a curve is 
given by xy ¶¶ / , we have 

ú
û

ù
ê
ë

é
÷
ø
ö

ç
è
æ

¶
¶

-÷
ø
ö

ç
è
æ

¶
¶

»å
AB

y x
y

x
yTF .  (2.1.16) 

We now apply Newton's second law to the segment, with the mass of the 
segment given by xm D= m , where m  is mass per unit length. 

å ÷
÷
ø

ö
ç
ç
è

æ

¶

¶
D== 2

2

t
yxmaF yy m .       (2.1.17) 

Combining Eq. (2.1.16) with Eq. (2.1.17), we obtain: 
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2m .                               (2.1.18) 

The right side of this equation can be expressed in other form if we note 
that the partial derivative of any function is defined as 

x
xfxxf

x
f

x D
-D+

=
¶
¶

®D
)()(lim 0 . 

T

T

B

A

x

Aq

Bq

 
 

Figure 2.1.15   The segment of a string 
under tension T .  At points A  and B  the 
slopes are given by Aqtan  and Bqtan , 
 

respectively 
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If we associate )( xxf D+  with Bxy )/( ¶¶  and )(xf  with Axy )/( ¶¶ , we see 
that, in the limit 0®Dx , Eq.(2.1.18) becomes 

2

2

2

2

x
y

t
y

T ¶
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=÷

÷
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¶

¶
2

2

22

2 1
t

y
vx

y ,        (2.1.19) 

where  

m
Tv =2 .     (2.1.20) 

This is the linear wave equation as it applies to waves on a string. 
Now we show that the sinusoidal wave function (Eq.2.1.7) represents a 

solution of the linear wave equation. If we take the sinusoidal wave function to be 
of the form )sin(),( kxtAtxy -= w , then the appropriate derivatives are 

)sin(2
2

2
kxtA

t
y

--=
¶

¶
ww ,   (2.1.21a) 

)sin(2
2

2
kxtAk

x
y

--=
¶

¶
w .   (2.1.21b) 

Substituting these expressions into Eq. (2.1.19), we obtain 

)sin()sin( 2
2

kxtkkxt
T

--=-- ww
mw . 

This equation must be true for all values of the variables x  and t  in order 
for the sinusoidal wave function to be a solution of the wave equation. Both sides 
of the equation depend on x  and t  through the same function )sin( kxt -w . 
Because this function divides out, we do indeed have an identity, provided that 

T
k

2
2 mw

= . 
Using the relationship kv /w=  in this expression, we see that 

m
w T
k

v == 2

2
2 , 

and, finally 

m
Tv = .     (2.1.22) 

In this section, we have shown that the sinusoidal wave function is a 
solution of the linear wave equation (Eq. 2.1.14). Although we do not prove it 
here, the linear wave equation is satisfied by any wave function having the form 

)( vtxf ±=x . Furthermore, we have seen that the linear wave equation is a direct 
consequence of the Newton's second law applied to any segment of the string. 
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Exercises 

2.1.25. Show that the wave function )( vtxbey -=  is a solution of the wave 
equation (Eq. 2.1.13), where b  is a constant. 

2.1.26. Show that the wave function )](ln[ vtxby -=  is a solution to Eq. 
(2.1.13) where b  is a constant. 

2.1.27. Show that the function 222),( tvxtxy +=  is a solution to the wave 
equation. 

2.1.28. A wave on a string is described by the wave function 
)]2050.0sin()m10.0( txy -= . 

(a) Show that a particle in the string at 0.2=x  m executes simple harmonic 
motion; (b) Determine the frequency of oscillation of this particular point. 

2.1.5   Sound Waves 

Sound waves are the most important example of longitudinal waves. 
Seismic prospecting teams use such waves to probe Earth's crust for oil. Ships 
carry sound-ranging gear (sonar) to detect underwater obstacles. Submarines use 
sound waves to stalk other submarines, largely by listening for the characteristic 
noises produced by the propulsion system. Sound waves can be used to explore 
the soft tissues of the human body. 

Sound waves are divided into three categories that cover different 
frequency ranges: 

1) Audible waves are waves that lie within the range of sensitivity of the 
human ear. The ear is sensitive to range of sound frequencies from about 20 Hz to 
about 20,000 Hz. The corresponding wavelength range is from about 17 m, 
corresponding to a 20-Hz, to about 1.7 cm, corresponding to 20,000 Hz. 

2) Infrasonic waves are waves having frequencies below the audible range. 
Elephants can use infrasonic waves to communicate with each other even when 
separated by many kilometers.  

3) Ultrasonic waves are waves having frequencies above audible range. 
You may have used “silent” whistle to retrieve your dog. The ultrasonic sound it 
emits is easily heard by dogs, although humans cannot detect it at all. Dolphins 
and bats use high-frequency sound waves for navigation. For bat a typical 
frequency is 100,000 Hz; the corresponding wavelength in air is about 3.5 mm, 
small enough to permit detection of flying insects useful as food. Ultrasonic 
waves are also used in medical imaging. 

Sound waves can travel through any material with a speed that depends on 
the properties of the medium. As the waves travel, the particles in the medium 
vibrate to produce changes in density and pressure along the direction of motion 
of the wave. These changes result in a series of high-pressure and low-pressure 
regions. If the source of the sound waves vibrates sinusoidally, the pressure 
variations are also sinusoidal.  
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In this discussion, we have ignored the molecular nature of a gas and have 
treated it as a continuous medium. Actually, we know that a gas is composed of 
molecules in random motion, separated by distances that are large compared with 
their diameters. The vibrations that constitute a wave in a gas are superposed on 
the random thermal motion. At atmospheric pressure, a molecule travels an 
average distance of about 510-  cm between collisions while the displacement 
amplitude of a faint sound may be only a few ten-thousandths of this amount. 

The simplest sound waves are sinusoidal waves with definite frequency, 
amplitude and wavelength. When such a wave arrives at the ear, the air particles 
at the eardrum vibrate with definite frequency and amplitude. This vibration may 
also be described in terms of the variation of air pressure  at the same point. The 
pressure fluctuates above and below atmospheric pressure with a sinusoidal 
variation having the same frequency as the motions of the air particles.  

A sinusoidal sound wave in an elastic medium is described by a wave 
function of the form: 

)sin( kxtAy -= w , 
where y  is the displacement from equilibrium of a point in the medium, and the 
amplitude A  is, as usual, the maximum displacement from equilibrium. From a 
practical standpoint, it is nearly always easier to measure the pressure  variations 
in a sound wave than to measure the displacements, so it is worthwhile to develop 
a relation between the two. Let p  be the instantaneous pressure fluctuation at any 
point; that is, the amount by which the pressure differs  from normal atmospheric 
pressure. If the displacements of two neighboring points x  and xx D+  are the 
same, the air between these points is neither compressed nor expanded, there is no 
volume change, and consequently 0=p . Only when y  varies from one point to a 
neighboring one, there is a change of volume and, therefore, of pressure. 

The fractional volume change VV /D  in a volume element near point x  
turns out to be given simply by xy ¶¶ / , which is the rate of change of y  with x  
as we go from one point to a neighboring point. To see why this is so, consider an 
imaginary cylinder of air, (as in Figure 2.1.16), with the cross-sectional area A  
and the axis along the direction of propagation. The grey cylinder shows the 
undisplaced position, and the dashed lines show the displaced position. When no 
sound disturbance is present, the cylinder's length is xD  and its volume is 

xAV D= . When a wave is present, the end of the cylinder (initially at x ) is 
displaced a distance ),(1 txyy = , and the end initially at xx D+  is displaced a 
distance ),(2 txxyy D+= . The change in volume VD  of this element is 

)],(),([)( 12 txytxxyAyyAV -D+=-=D , 
and in the limit as 0®Dx , the fractional change in volume VV /D  is given by 

x
y

x
txytxxy

V
V

¶
¶

=
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D ),(),( . 
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Now from the definition of the 
bulk modulus B , VVBp /D-= , we 
find that 

÷
ø
ö

ç
è
æ

¶
¶

-=
x
yBp . (2.1.23) 

The negative sign arises 
because, when xy ¶¶ /  is positive, the 
displacement is greater at xx D+  than 
at x  corresponding to an increase in 
volume and a decrease in pressure. For 
the sinusoidal wave of Eq. (2.1.7), we 
find 

)cos( kxtBkAp -= w .  (2.1.24) 
This expression shows that the 

quantity BkA  represents the maximum 
pressure variation. This maximum is 
called the pressure amplitude and is 
denoted by maxp . Thus, 

BkAp =max .    (2.1.25) 
The pressure amplitude is directly proportional to the displacement 

amplitude A , as might be expected, and it also depends on wavelength. Waves of 
shorter wavelength (larger k ) have greater pressure variations for a given 
amplitude because the maxima and minima are squeezed closer together. 

Ultrasound Waves 

Ultrasonics cover a frequency range from 20 000 Hz upwards. Compared 
with sonics (i.e. sound waves we can hear), ultrasonics have shorter wavelengths 
because their frequencies are higher.  

Ultrasonics is widely used. For example, ultrasonics of frequency 40 kHz is 
used for industrial cleaning. In air where the speed of sound is approximately 340 
m/s, the wavelength of these ultrasonic waves is 8.5 mm. By comparison, sound 
waves of frequency 1000 Hz have in air wavelength of 0.33 m. Equipment to be 
cleaned by ultrasonics is placed in a tank of water which ultrasonics pass through. 
The ultrasonic waves pass through the water, agitating and loosening particles of 
dirt and grease. 

Another use of ultrasonics is in medical imaging. For example, they are 
used in prenatal care to give an image of a baby inside the womb (Figure 2.1.17).  

Ultrasonic scans do not harm the baby, and are much safer than X-ray scans 
in this situation.  

A

x
x

xx

x

),(1 txyy = ),(2 txxyy D+=

 
Figure 2.1.16   A cylindrical volume of gas with 
the cross-sectional area A . The length in the 
undisplaced position is xD . During wave 
propagation along the axis, the left end is 
displaced to the right a distance 1y , and the 
right end is displaced a different distance 2y . 
The resulting change in volume is 
 

)( 12 yyA -  
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To produce the ultrasonic 
waves, an ultrasonic transducer is 
used. (Figure 2.1.18). 

It converts electrical energy into 
ultrasonic energy by applying an 
alternating voltage across a quartz 
crystal. Quartz is used because it 
changes length slightly when a voltage 
is applied across it. So an alternating 
voltage makes the quartz vibrate. By 
making the applied frequency equal to 
the natural frequency of vibration of 
the crystal, the vibrations become very 
large: the crystal resonates. So, the 
crystal produces ultrasonic waves of 
frequency equal to its natural 
frequency. The frequency is in the 
megahertz (MHz) range, so the 
ultrasonics passes directly into the 
body when the transducer is placed on 
the body surface. Inside the body, 
tissue boundaries reflect part of the incoming ultrasonic energy, and the 
transducer can be used to detect the reflected ultrasonics. The transducer converts 
ultrasonic energy back into the electrical energy, thus enabling an image at an 
oscilloscope to be built up showing the internal boundaries.  

For medical imaging purposes, 
ultrasonics is used at frequencies 
between about 1 and 10 MHz. This 
frequency range represents a 
compromise between lower 
frequencies which would diffract and 
spread out too much and higher 
frequencies which would be absorbed too easily by tissues. The higher the 
frequency the smaller the wavelength and, hence, the greater the detail of the 
image. Since the frequency used depends on the depth and density of the organ to 
be imaged, low density organs near the surface (e.g. the eye) can be imaged in 
more detail than higher density internal structures (e.g. a baby in the womb). 

Producing ultrasonics. An ultrasonic probe contains a piezoelectric 
transducer in the shape of disc which vibrates when an alternating voltage is 
applied across its surfaces (Figure 2.1.19). When the applied frequency is equal to 
the natural frequency of vibration of the transducer disc, the disc vibrates at 

 
Figure 2.1.17   Ultrasonic imaging of a baby in 
 

the womb 
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Figure 2.1.18   An ultrasonic  transducer 
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resonance and creates sound waves at the same frequency as the alternating 
voltage in the surrounding medium. The thickness of the disc determines its 
resonant frequency on the same principle as the resonance in a pipe. An absorber 
block behind the disc prevents ultrasonic waves created at two surfaces of the disk 
canceling each other. Normaly, the alternating voltage is supplied in pulses so the 
disc produces ultrasonic pulses. The backing block is made of epoxy resin which 
damps the disc vibrations rapidly at the end of  each pulse before the next pulse is 
produced. 

An ultrasonic scanning system . The probe is connected to a control system 
which includes a visual display unit. In operation, the probe is held in contact 
with the body surface via a gel so that ultrasonic pulses are directed into the body. 
These pulses reflect at the surface of internal organs and at tissue boundaries and 
are detected by the transducer, which acts as a receiver when it is not producing 
pulses. 

 
Piezoelectric disc

Insulated wires Absorber block

Protective
cover fixed
to disc

(a) Probe construction

Probe Ultrasonic pulses

(b) Ultrasonic pulses

Electrical pulses

 
 

Figure 2.1.19   An ultrasonic probe 
 
The speed of ultrasound in tissue is about 1500 m/s so it takes an ultrasonic 

pulse less than 1 millisecond to travel across the body and back. In operation, the 
probe must therefore produce pulses at a rate of no more than one per millisecond 
to allow received pulses to return before the next pulse  is transmitted. Also, the 
pulses must last no more than a few microseconds to ensure the end of a pulse is 
clearning the probe before the reflection of the front end returns. 
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Each boundary in the body is a partial reflector of ultrasonics, so each pulse 
from the transducer produces a series of reflected pulses which return to the 
transducer. These reflected pulses are received by the transducer when it is in the 
“receiver” mode to produce a pulsed signal from the transducer. This signal is 
amplified and displayed (the A-scan) or used to modulate the brightness of an 
image built up on a VDU (the B-scan) as the probe is moved  across the body 
surface.  

In the A-scan system, the spacing of each reflected pulse at the oscilloscope 
screen from the transmitted pulse is proportional to the time taken by each 
ultrasonic pulse to travel from the probe to the reflecting boundary and return 
back (Figure 2.1.20). The A-scan system is used when precise locations are to be 
measured. 

 

In the B-scan system position sensors attached to the probe provide signals 
to control the direction of the electron beam in the VDU as it moves across the 
screen. Received pulses control the beam current. The B-scan system therefore 
gives a two-dimensional image (Figure 2.1.21). 

Reflection of ultrasound. The intensity of an ultrasonics beam reflected at a 
boundary between two substances is given by the equation 
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Figure 2.1.20   The A-scan system 
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where 0I  is the incident intensity, 1r  
and 2r  are the densities of the incident 
substance and the transmitted 
substance, 1v  and 2v  are the speeds of 
ultrasonics in the two substances. 

The reflection coefficient R  of a 
boundary is defined as 0/ II . The 
acoustic impedance of a substance is 
defined as vr . 

Typical values of densities, 
speeds, and acoustic impedances, for 
different types of tissue in the body, are 
given in Table 2.1.1. These values may 
be used to calculate the reflection 
coefficient for different tissue 
boundaries. Several implications follow 
from these calculations: 

– Almost 100% reflection occurs 
at an air-skin boundary. This is why the 

probe is applied to the body via a gel or a water bag so that most of the ultrasound 
energy enters the body. 

– Ultrasonics reflects at the boundaries between different soft tissues in the 
body. Hence an ultrasonic imaging system can detect and display such boundaries 
unlike an X-ray imaging system which cannot. Note that the strength of a 
reflected pulse depends on the distance travelled by the ultrasonic pulse in the 
body as well as the reflection coefficient. 

 
Table 2.1.1   Typical values for densities, speeds and acoustic impedances for different 

types of tissue in the body 
Substance type Speed, 1m s-  Density, 3k gm-  Acoustic 

impedance, 2 1kg m s- -  
Air 1.2 340 410 
Water 1000 1500 61.5 10´  
Soft tissue 1050 1550 61.6 10´  
Fat 900 1450 61.3 10´  
Muscle 1080 1600 61.7 10´  
Bone 1900 4000 67.8 10´  
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Figure 2.1.21   The B-scan system 
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Example 2.1.4.   Measurement of sound waves show that maximum 
pressure variations in the loudest sound, that the ear can tolerate without pain are 
of the order of 30 Pa (above and below atmospheric pressure, which is about 
100,000 Pa). Find the corresponding maximum displacement if the frequency is 
1000 Hz and 350=v  m/s. 

Solution. 
We have  

1(2 )(1000Hz) 6283 sw p -= =  and 
16283 18 m

350
k

v
w -= = = . 

For air the adiabatic bulk modulus is 
55 1042.1)Pa1001.1)(4.1( ´=´== pB g  Pa. 

From Eq. (2.1.25) we find 

0118.0
)mPa)(181042.1(

)Pa30(
1-5

max =
´

==
Bk

pA  mm. 

Thus, the displacement amplitude of even the loudest sound is extremely 
small. The maximum pressure variation in the faintest audible sound of frequency 
1000 Hz is only about 5103 -´  Pa. The corresponding displacement amplitude is 
about 3106 -´  cm. Thus, the ear is an extremely sensitive organ.  

Exercises 

Note: The equilibrium density of air is 3kg/m29.1=r ; the speed of sound 
in air is 343=v  m/s. Pressure variations PD  аге measured relative to atmospheric 
pressure, 510013.1 ´  Pa. 

2.1.29. In air a sound wave has pressure amplitude equal to 3104 -´  Pa. 
Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz. 

2.1.30. A sinusoidal sound wave is described by the displacement 
])s858()m7.15cos[()μm0.2(),( 11 txtxy -- -= . 

(a) Find the amplitude, wavelength, and speed of this wave; (b) Determine the 
instantaneous displacement of the molecules at the position 05.0=x  m at 3=t  
ms; (c) Determine the maximum speed of a molecules oscillatory motion. 

2.1.31. As a sound wave travels through the air, it produces pressure 
variations (above and below atmospheric pressure) that are given by 

)340sin(27.1 txP pp -=D  in SI units. Find (a) the amplitude of the pressure 
variations; (b) the frequency of the sound wave; (c) its wavelength in air, and (d) 
its speed. 
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2.1.32. Write an expression that describes the pressure variation as a 
function of position and time for a sinusoidal sound wave in air, if 100.0=l  m 
and 20.0=DP  Pa. 

2.1.33. Write the function that describes the displacement wave 
corresponding to the pressure wave in Ex. 2.32. 

2.1.34. In a traveling sound wave the pressure is given by the equation  
])s315()m9.0[(sin)P5.1( 11 txap -- -=D p . 

Find (a) the frequency; (b) the pressure amplitude; (c) the wavelength; and (d) the 
speed of wave. 

2.1.35. Calculate the pressure amplitude of a 2.0-kHz sound wave in air if 
the displacement amplitude is equal to 8102 -´  m. 

2.1.36. (1) Calculate the wavelength of ultrasonics of frequency 2 MHz in 
(a) air, (b) water. The speed of sound in air = 340 m/s; in water = 1500 m/s.   
(Ans. (a) 0.17 mm; (b) 0.75 mm.) 

(2) Calculate the reflection coefficient at (a) an air-tissue boundary, (b) a 
water-tissue boundary, (c) a boundary between fat and tissue. Use the data from 
Table 2.1.   (Ans. (a) 0.995; (b) 0.04; (c) 0.10.) 

(3) The diagram shows an A-scan trace. (a) Explain why there are several 
pulses on the display after each transmitted pulse. (b) Calculate the distance from 
the probe to the boundary that caused pulse X on the display. See Table 2.1.1 for 
the speed of sound in the body. (Ans. 0.18 m) 

2.1.37. (1) With the aid of a 
diagram (Figure 2.1.22), describe and 
explain the construction of an 
ultrasonic transducer. 

(2) (a)   With the aid of a 
diagram, describe an ultrasonic B-scan 
system. (b) Why is it necessary to use 
a gel where the ultrasonic probe is 
applied? (c) What advantage does an 
ultrasonic scanner have in medicine in 
comparison with X-ray imaging? 

2.1.38. Bats can ascertain 
distances, directions, and size of the 
obstacle without any eyes. Explain, 
why. 
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Figure 2.1.22.   The diagram shows an A-scan 
 

trace 
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2.1.6   Phase Speed and Group Speed of a Traveling Wave 

Figure 2.1.23 shows two snapshots of the wave taken a small time interval 
tD  apart. The wave is traveling in the positive x -direction (to the right in the 

Figure 2.1.23), the entire wave pattern moves a distance xD  in the direction 
during the time interval tD . The ratio tx DD /  (or, in the differential limit dtdx / ), 
is the wave speed v . How can we find it’s value? 

As the wave in the Figure 2.1.23 
moves, each point of the moving wave 
form (such as the point A  marked on a 
peak) retains its displacement y . (Points 
on the string do not retain their 
displacement, but points on the wave 
form do). If the point A  retains its 
displacements as it moves, the phase 
which ensures the displacement must be 
constant: 

consttkx =- w       (2.1.26) 
Note that although this argument 

is constant, both x  and t  are changing. 
In fact, as t  increases, x  must as well, to keep the argument constant. This 
confirms that the wave pattern is moving in the positive x -direction. 

If we take the derivative dtdx / , we obtain the speed with which the given 
phase propagates. This speed is known as the phase speed of wave. 

0=- w
dt
dxk ,  or    

k
v

dt
dx w

== .        (2.1.27) 

Using lp /2=k , we can rewrite the phase speed of the wave as  

f
Tk

v l
lw

=== .    (2.1.28) 

The equation Tv /l=  tells us that the phase speed of a wave is one 
wavelength per period; the wave moves a distance of one wavelength in one 
period of oscillation. 

When we deal with a packet of waves with different wavelength and so-
called dispersion medium (that is, medium in which speed of wave propagation 
depends on its wavelength), it is useful, as Rayleigh showed, to introduce 
additional speed, a group speed. We shell not discuss the dispersion phenomena 
in this book; we only mention that the group speed u  is defined as  

l
l

d
dvvu -= .    (2.1.29) 

x

y

A

Wave at  = 0t
ttatWave

x
v

 
Figure 2.1.23   Two snapshots of the wave 
at time 0=t  and then at tt D= . As the 
wave moves to the right at velocity v , the 
entire curve shifts a distance xD  during 

tD . Point A  “rides” with the wave form but 
  

the string elements move only up and down 
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From Eq. (2.1.29), we can see, that group speed is greater than phase speed 

( vu > ) if 0<
ld

dv  or less ( vu < ) if 0>
ld

dv . Hence, group speed can be smaller or 

greater than phase speed. When 0>
ld

dv , i.e. when waves with longer wavelength 

propagate faster, we speak about normal dispersion; when 0<
ld

dv , i.e. when 

waves with shorter wavelength propagate faster, dispersion is called abnormal. 

When there is no dispersion, 0=
ld

dv , all waves of the packet propagate with equal 

speeds, and then the phase and the group speeds are equal. 

Exercises 

2.1.39. A wave has an angular frequency of p  rad/s and a wavelength of 
1.80 m. Calculate (a) the angular wave number and (b) the speed of the wave. 

2.1.40. The ocean floor is underlain by a layer of basalt that constitutes the 
crust, or uppermost layer, of the Earth in that region. Below the crust is found 
denser peridotite rock, which forms the Earth's mantle. The boundary between 
these two layers is called the Mohorovicic discontinuity ("Moho" for short). If an 
explosive charge is set off at the surface of the basalt, it generates a seismic wave 
that is reflected back out at the Moho. If the speed of the wave in basalt is 6.50 
km/s and the two-way travel time is 1.85 s, what is the thickness of this oceanic 
crust? 

2.1.41. A traveling wave is represented by the equation 
)206000sin(25.0 xty -= . (a) Calculate the wave frequency, wavelength, and 

speed of the wave. (b) Write the equation to represent a similar wave of twice the 
amplitude and frequency and traveling with the same speed but in the opposite 
direction.  

2.1.42. The wave in a ripple tank is represented by the equation 
)420sin(6.0 xty -= , where x  and y  are in cm and t  in second. Calculate the 

speed of the wave. Write an equation to represent a wave in the ripple tank which 
has half the amplitude and twice the frequency but travels with the same speed. 

2.1.7   Speed of a Transverse Wave on Strings 

How is the speed of propagation v  of a transverse wave on a string related 
to the mechanical properties of the system? The relevant physical quantities are 
the tension in the string and it’s mass per unit length. Intuition suggests that the 
speed should grow with the increase of tension, and should decrease with the 
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growing mass. We now develop this relationship by two different methods. The 
first is simple and considers a specific type of waveform; the second is more 
general but also more formal. 

For our first development, we consider a perfectly flexible string, as shown 
in Figure 2.1.24 having linear mass density (mass per unit length) m  and 
stretched with the tension T . Initially the string is at rest. At time 0=t , a constant 
transverse force F

r
 is applied at the left end of the string. We might expect that 

the end would move with the constant acceleration; this would certainly occur if 
the force were applied to a point mass. But here the effect of the force is to set 
successively more and more mass in motion. The wave travels with constant 
speed, so the division point P between moving and nonmoving portions also 
travels with definite speed. Hence, the total mass in motion is proportional to the 
time the force actied and, thus, to the impulse of the force. This, in turn, is equal 
to the total momentum mu  of the moving part of the string. The total momentum 
thus must increase proportionately with time, so the change of momentum must 
be associated entirely with the increasing amount of mass in motion, not with the 
increasing velocity of an individual mass element. Force is the rate of change of 
momentum mu , and mu  changes because m  changes, not u . Hence, the end of 
the string moves upward with the constant velocity  u . 
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Figure 2.1.24   Propagation of transverse disturbance in a string 

 
Figure 2.1.24 shows the shape of the string after the time t  has elapsed. All 

particles of the string to the left of the point P  move upward with the speed u , 
while all particles to the right of the point P  are still at rest. The boundary point 
P  between the moving and the stationary portions is traveling to the right with 
the speed of propagation v . The left end of the string has moved up a distance ut , 
and the boundary point P  has advanced a distance vt  along the string. 

The tension at the left end of the string is the vector sum of the forces T
r

 
and F

r
. As no motion occurs in the direction along the length of the string, there 

is no unbalanced horizontal force, so T , the magnitude of the horizontal 
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component, does not change when the string is displaced. As a result of the 
increased tension, the string clearly stretched somewhat. It can be shown that, for 
small displacement, the amount of stretch is approximately proportional to the 
increase in tension, as we would expect from Hook’s law. 

We can obtain an expression for the speed v  of propagation by applying 
the impulse-momentum relation to the portion of the string in motion at time t : 
that is the darkly shaded portion in Figure 2.1.24. We set the transverse impulse 
( timeforsetransverse ´ ) equal to the change of transverse momentum of the 
moving portion ( velocitytransversemass ´ ). The impulse of the transverse force 
F  in time t  is Ft . By similar triangles, 

vt
ut

T
F

= ,     
v
uTF = . 

Hence, transverse impulse t
v
uTFt = . 

The mass of the moving portion of the string is the product of mass per unit 
length m  and the length vt . (In its displaced position, the section of string is 
stretched, making its mass per unit length somewhat less than m  and its length 
somewhat greater than vt . But the mass of the section is still vtm , the same as in 
the undisplaced position.) Hence, transverse momentum 

vtumu m= . 
Note again that the momentum increases with time not because the mass 

moves faster, but because more mass is brought into motion. Nevertheless, the 
impulse of the force F  is still equal to the total change in momentum of the 
system. Applying this relation, we obtain 

vtut
v
uT m= , 

and therefore we obtain the same equation as Eq. (2.1.21)  

m
Tv = .            (transverse wave) 

Hence the speed of propagation of a transverse pulse in a string depends 
only on the tension (a force) and the mass per unit length. Although this 
calculation of the wave speed considered only a very special kind of pulse, it can 
be shown that any shape of wave disturbance can be considered as a series of 
pulses with different rates of transverse displacement. Thus, although derived for 
a special case, Eq. (2.1.21) is valid for any transverse wave motion on a string, 
including, in particular, the sinusoidal and other periodic waves.  

Here is an alternative derivation of Eq. (2.1.21). Instead of the sinusoidal 
wave, let us consider a single symmetrical pulse such as that of Figure 2.1.25, 
moving from left to right along the string with speed v . For convenience, we 
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choose a reference frame in which the pulse remains stationary; that is, we run 
along with the pulse, keeping it constantly in view. In this frame, the string 
appears to move past us, from right to left with speed v . 

Consider a small string element of 
length lD  within the pulse, forming an 
arc of a circle of radius R  and 
subtending an angle q2  at the center of 
that circle. A force T

r
 with a magnitude 

equal to the tension in the string pulls 
tangentially on this element at each end. 
The horizontal components of these 
forces cancel, but the vertical 
components add to form a radial 
restoring force F : 

»= )sin(2 qTF
R
lTT D

=)2( q ,   (2.1.24) 

where we approximated qsin  as q  for small angles q  in Figure 2.1.25. From that 
figure, we have also used Rl /2 D=q . 

The mass of the element is given by 
lm D=D m ,      (2.1.25) 

where m  is the string mass linear density. 
At the moment shown in Figure 2.1.25, the string element lD  is moving in 

an arc of a circle. Thus, it has a centripetal acceleration toward the center of that 
circle, given by 

R
va

2
= .      (2.1.26) 

Eqs. (2.1.24), (2.1.25), and (2.1.26) contains the elements of Newton’s 
second law. Combining them in the form 

onacceleratimassforce ´=  
we get 

R
vl

R
lT 2

)( D=
D

m . 

After solving this equation for the speed v ,  

m
Tv = .           (2.1.27) 

Example 2.1.5  
A uniform cord has a mass of 0.30 kg and a length of 6.0 m (Figure 2.1.26). 

The cord passes over a pulley and supports a 2.0-kg object. Find the speed of a 
pulse traveling along this cord. 

R Ov

l
T T

 
Figure 2.1.25   A symmetric pulse, viewed 
from a reference frame in which the pulse is 
stationary and the string appears to move 
 

right to left with speed v  
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Solution. 
The tension T  in the cord is 

equal to the weight of the suspended 
2.0-kg mass: 

6.19)m/s kg)(9.80.2( 2 === mgT  N. 
(This calculation of the tension 

neglects the small mass of the cord. 
Strictly speaking, the cord can never be 
exactly horizontal, and therefore, the 
tension is not uniform.) The mass per 
unit length m , of the cord is 

050.0
m6.0
kg30.0

===
l
m

m  kg/m. 

Therefore, the wave speed is 
19.6 N 19.8m/s

0.050kg/m
Tv
m

= = = . 

Exercises 

2.1.43. A transverse traveling wave on a taut wire has an amplitude of 
0.20 mm and a frequency of 500 Hz. It travels with a speed of 196 m/s. (a) Write 
an equation in SI units of the form )]sin( tkxAy w-=  for this wave; (b) The mass 
per unit length of this wire is 4.10 g/m. Find the tension in the wire.  

2.1.44. A phone cord is 4.0 m long and of mass of 0.20 kg. A transverse 
wave pulse is produced by plucking one end of the taut cord. The pulse makes 
four trips down along the cord and returnes in 0.80 s. What is the tension in the 
cord? 

2.1.45. Transverse waves with a speed of 50.0 m/s are to be produced in a 
taut string. A 5.0-m length of string with a total mass of 0.06 kg is used. What is 
the required tension? 

2.1.46. A piano string having a mass per unit length 32000.5 -´  kg/m is 
under the tension of 1 350 N. Find the speed with which a wave travels on this 
string. 

2.1.47. A sinusoidal wave of wavelength 2 m and amplitude 0.1 m travels 
on a string with the speed of 1 m/s to the right. Initially, the left end of the string 
is at the origin. Find (a) the frequency and the angular frequency; (b) the angular 
wave number; and (c) the wave function for this wave. Determine the equation of 
motion for (d) the left end of the string and (e) the point on the string at 50.1=x  
m to the right of the left end. (f) What is the maximum speed of any point on the 
string? 

 
Fig. 2.1.26.   The tension T  in the cord is 
maintained by the suspended object. The 
speed of any wave traveling along the cord is 
 

given by m/Tv =  
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2.1.48. The linear density of the string is 4106.1 -´  kg/m. A tranverse wave 
on the string is described by the equation 

]302sin[021.0 txy += . 
What is (a) the wave speed and (b) the tention in the string? 

2.1.8   Speed of a Longitudinal Wave in Solids 

To obtain the expression for speed of longitudinal wave in solids we 
consider a medium with the plane sinusoidal wave propagating along x -axis. 
Let’s choose the cylindrical volume element with the cross section A  and the 
height xD  in the medium (Figure 2.1.27). The plane wave, as usual, is described 
by the equation 

)cos(max fwxx +-= kxt , 
where x  is the displacement of particle. 

The graph of this function is represented in Figure 2.1.28. If the base of the 
cylinder with the coordinate x  has displacement x  in a certain moment of time, 
then the base with the coordinate xx D+  has the displacement xx D+ . Hence, the 
volume becomes deformed – it obtains the elongation xD . We call the ratio of 
variation of the displacement xD  to the initial separation xD  the percent 
elongation xDD /x . Quantity xDD= /xe  determines the average relative 
elongation of the cylinder. As x  changes with x  nonlinearly, real deformation in 
the different cross-section of the cylinder would not be the same. To obtain 
deformation e  in a particular cross-section x , we use approximation 0®Dx , i.e. 
take derivative  
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Figure 2.1.27   Relative deformation in 
 

different cross–section 
Figure 2.1.28   Deformation of cylinder 
when longitudinal wave is propagating 
 

through it 

x¶
¶

=
x

e . 

We use the partial derivative because x  depends not only on x , but on t  as 

well. When 0>
¶
¶

=
x
x

e , the distance between points increases.This situation 
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corresponds to elongation of a medium. When 0<
¶
¶

=
x
x

e , the distance between 

points decreases and such kind of e  describes the compression of a medium. As 
)cos(max fwxx +-= kxt , the deformation is: 

)sin()]cos([ maxmax fwxfwx
x

e +-=+-
¶
¶

=
¶
¶

= kxtkkxt
xx

. 

It is clear from the above equation, that deformation has its maximum value 

in the same points where speed )sin(max fwwx
x

+-=
¶
¶

= kxt
t

v  reaches its 

maximum, i.e. in points of equilibrium. 
To obtain the speed of wave, recall Hook’s law for deformation of the 

elastic medium, according to which the elastic force is proportional to the 

deformation of medium: A
t

F ÷
ø
ö

ç
è
æ

¶
¶

=
x

a
1  where a  is the elastic coefficient. For 

cylindrical element this coefficient equals 
E
1

=a  where E  is the Young’s 

modulus. 
Let’s return to the cylindrical volume with a longitudinal wave of 

Figure 2.1.27 and consider forces exerted by the cylinder. The force exerted by 

the left base of cylinder is 
xx

AEF ÷
ø
ö

ç
è
æ

¶
¶

=
x

1 , and the force at the right base is 

xxx
AEF

D+
÷
ø
ö

ç
è
æ

¶
¶

=
x

2 . As forces 1F  and 2F  are directed in opposite directions, the 

resulting force is 21 FFF -= . Now we are ready to write the equation of motion 
for cylinder. Let’s take the small element xD  in the cylinder so small that 
projections of acceleration for all its points are the same and equal to 22 / t¶¶ x . 
The mass of the cylinder we can be express as xADr  where r  is the density of 
the nondeformed medium, the resulting force is: 

ú
û

ù
ê
ë

é
÷
ø
ö

ç
è
æ

¶
¶

-÷
ø
ö

ç
è
æ

¶
¶

=
D+ xxx

x xx
AEF xx . 

As xD  is small, we assume that 

x
xxx

xxxx
D÷

÷
ø

ö
ç
ç
è

æ

¶

¶
+÷

ø
ö

ç
è
æ

¶
¶

=÷
ø
ö

ç
è
æ

¶
¶

D+
2

2xxx . 

Hence, for the resultant force, we obtain: 

x
x

AEFx D
¶

¶
= 2

2x . 
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Now we substitute expressions, obtained for acceleration, mass, and force 
into Newton’s second law: 

x
x

AE
t

xA D
¶

¶
=

¶

¶
D 2

2

2

2 xx
r . 

Dividing out xAD , we obtain the wave equation:  

2

2

2

2

tEx ¶

¶
=

¶

¶ xrx .    (2.1.28) 

Comparing Eqs. (2.1.28) and (2.1.13), we conclude that the phase speed of 
a longitudinal wave in solids is 

r
Ev = .     (2.1.29) 

It can be shown in the similar way that the speed of the transverse wave in 
solids is 

r
Gv = ,     (2.1.30) 

where G  is the modulus of rigidity. 
Typical value for the speed of sound in solids is much greater than the 

speed of sound in gases, as Table 2.1.2 shows. This difference in speeds makes 
sense because the molecules of a solid are bound together into a much more rigid 
structure than those in a gas and hence, respond more rapidly to a disturbance. 

 
Table 2.1.2 Speeds of sound in various media  

Medium Speed of sound, (m/s)u  
Gases  

Hydrogen (0 C)°  1286 
Helium (0 C)°  972 

Air (20 C)°  343 
Air (0 C)°  331 

Oxygen (0 C)°  317 
Liquids at 25 C°   

Glycerol 1984 
Sea water 1533 

Water 1493 
Mercury 1450 
Kerosene 1324 

Methyl alcohol 1143 
Carbon tetrachloride 926 
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Table 2.1.2 (continued) 
Medium Speed of sound, (m/s)u  
Solids  

Diamond 12000 
Pyrex glass 5640 

Iron 5130 
Aluminum 5100 

Brass 4700 
Copper 3560 
Gold 3240 

Lucite 2680 
Lead 1322 

Rubber 1600 
 

In solids, a combination of longitudinal waves can propagate, for example 
during earthquakes. The three-dimensional waves that travel from the point under 
the Earth surface at which an earthquake occurs are of both types, transverse and 
longitudinal. Longitudinal waves are faster of the two, and travel at speeds in the 
range of 7 to 8 km/s near the surface. These are called P  waves with " P " 
standing for primary because they travel faster than the transverse waves and 
arrive at a seismograph first. The slower transverse waves called S  waves (with 
" S " standing for secondary), travel through the Earth at 4 to 5 km/s near the 
surface. By recording the time interval between the arrivals of these two sets of 
waves at a seismograph, the distance from the seismograph to the point of origin 
of the waves can be determined. A single measurement establishes an imaginary 
sphere centred at the seismograph, with the radius of the sphere determined by the 
difference in arrival times of the P  and S  waves. The origin of the waves is 
located somewhere on that sphere. Imaginary spheres from three or more 
monitoring stations located far apart intersect at one region of the Earth, and this 
region is where the earthquake occurred.  

Example 2.1.6     
If a solid bar is struck at one end with a hammer, a longitudinal pulse 

propagates down the bar with the speed r/Ev =  where E  is the Young's 

modulus for the material, 10107 ´=E  N/m2 for aluminum. Find the speed of 
sound in an aluminum bar. 

Solution. 
Density of aluminum 3107.2 ´=r  kg/m3. Therefore, 

1.5
107.2

107
3

10
=

´

´
==

r
Ev  km/s. 
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Exercises 

2.1.49. A wire of density 9 gm/cm3 is stretched between two damps 1 m 
apart while subjected to an extension of 0.05 cm. What is the lowest frequency of 
vibrations in the wire? Assume Young's modulus 10 29 10 N/mE = ´ .   
(Ans. 35.3 Hz.) 

2.1.50. Earthquakes generate sound waves inside Earth. Unlike a gas, Earth 
can experience both transverse (S) and longitudinal (P) sound waves. Typically, 
the speed of S waves is about 4.5 km/s, and that of P waves 8.0 km/s. A 
seismograph records P and S waves from an earthquake. The first P waves arrive 
3.0 min before the first S waves (Figure 2.29). Assuming the waves travel in a 
straight line, how far away does the earthquake occur? 
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Figure 2.1.29   The first P waves arrive 3.0 min before the first S waves 

 
2.1.51. The tensile stress in a thick copper bar is 99.5% of its elastic 

breaking point of 10 213 10 N/m´ . A 500-Hz sound wave is transmitted through 
the material. (a) What displacement amplitude will cause the bar to break? (b) 
What is the maximum speed of the particles at this moment? 

2.1.52. The speed of sound in a certain metal is v . One end of a long pipe 
of this metal of length L  is struck a hard blow. A listener at the other end hears 
two sounds, one from the wave that travels along the pipe and the other from the  
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wave that travels through the air. (a) If av  is the speed of sound in air, what time 
interval t  elapses between the arrivals of the two sounds? (b) Suppose that 1=t  s 
and the metal is steel. Find the length L .  

2.1.53. A steel pipe 100 m long is struck at one end. A person at the other 
end hears two sounds as a result of two longitudinal waves, one traveling in the 
metal pipe and the other traveling in the air. What is the time interval between the 
two sounds? Take Young's modulus of steel to be 11102´  Pa, the density of steel 
to be 7800 3kg/m , and the speed of sound in air to be 345 m/s. 

2.1.9   Speed of a Longitudinal Wave in Fluids 

Propagation speed of longitudinal as well as transverse waves is determined 
by the mechanical properties of the medium, and we can derive relation for speed 
of longitudinal waves, analogous to Eq. (2.1.21) for transverse waves on a string. 
Here is an example of such a derivation for longitudinal waves in a liquid in a 
tube.  

Figure 2.1.30 shows a fluid with the density r  in a tube with the cross-
sectional area A . In the equilibrium state, the fluid is under a uniform pressure p . 
In Figure 2.1.30a, the fluid is at rest. At time 0=t , we start the piston at the left 
end moving toward the right with the constant speed u . This initiates a wave 
motion that travels to the right along the length of the tube in which successive 
sections of fluid begin to move and become compressed at successively later 
times. 

Figure 2.1.30b shows the fluid 
after a time t  has elapsed. All portions 
of fluid to the left of the point P  are 
moving with the speed u , and all 
portions to the right of P  are still at 
rest. The boundary between the 
moving and stationary portions travels 
to the right with the speed equal to the 
speed of propagation v . At time t , the 
piston has moved a distance ut , and 
the boundary has advanced a distance 
vt . As with a transverse disturbance in 
a string, we can compute the speed of 
propagation from the impulse-
momentum theorem. 

The quantity of fluid set in motion at time t  is the amount that originally 
occupied a volume of length vt  and of cross-sectional area A . The mass of this 
fluid is therefore, pvtA , and the longitudinal momentum it has acquired is 

Longitudinal momentum pvtAu= . 

pA

(a)

P
pA

At restMoving

ut

(b)

App )(
u u
u u

 
 

Figure 2.1.30   Propagation of a longitudinal 
 

disturbance in a fluid confined in a tube 
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Next we compute the increase of pressure, pD , in the moving fluid. The 
original volume of the moving fluid, Avt , has decreased by the amount Aut . 
From the definition of bulk modulus B , 

AvtAut
pB
/volumeinchangeFractional

pressureinChange D
== . 

Therefore, 

v
uBp =D . 

In the moving fluid, the pressure is pp D+ , and the force exerted on it by 
the piston is App )( D+ . The net force on the moving fluid (see Figure 2.1.30) is 

pAD , and the longitudinal impulse is 

At
v
uBpAt =D=impulsealLongitudin . 

Applying the impulse-momentum theorem, we find 

vtAuAt
v
uB r= . 

Hence, 

r
Bv =    (longitudinal wave). (2.1.31) 

Therefore, the speed of propagation of a longitudinal pulse in a fluid 
depends only on the bulk modulus and the density of the medium. The form of 
this relation is similar to that of Eq. (2.1.21); in both cases, the numerator is a 
quantity characterizing the strength of the restoring force, and the denominator is 
a quantity describing the inertial properties of the medium.   

Example 2.1.6 

(a) Find the speed of sound in water which has a bulk modulus of 9101.2 ´  
N/m2 and a density of 310  kg/m3. 

Solution. 
Using Eq. (2.1.31), we find that 

4.1
10

101.2
3

9
=

´
==

r
Bv  km/s. 

In general, sound waves travel slowlier in liquids than in solids because 
liquids are more compressible than solids. 

(b) Dolphins use sound waves to locate food. Experiments have shown that 
a dolphin can detect a 7.5-cm target 110 m away, even in murky water. For a bit 
of dinner at that distance, how much time passes between the moment the dolphin 
emits a sound pulse and the moment the dolphin hears its reflection and, thereby, 
detects the distant target? 
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Solution. 
The total distance covered by the sound wave as it travels from dolphin to 

the target and return is 2201102 =´  m. From Eq. (2.1.2), we have 

16.0
1400
220

==
D

=D
v
xt  s. 

Exercises 

2.1.54. Find the speed of sound in mercury, which has a bulk modulus of 
approximately 10108.2 ´  N/m2 and a density of 13 600 kg/m3. 

2.1.55. Diagnostic ultrasound of frequency 4.5 MHz is used to examine 
tumors in soft tissue. (a) What is the wavelength in air of such a sound wave?; (b) 
If the speed of sound in tissue is 1500 m/s, what is the wavelength of this wave in 
tissue? 

2.1.56. Provided the amplitude is sufficiently great, the human ear can 
respond to longitudinal waves over a range of frequencies from about 20 Hz to 
about 20,000 Hz. Compute the wavelengths corresponding to these frequencies 

a) for waves in air ( 345=v  m/s); 
b) for waves in water ( 1480=v  m/s). 
2.1.57. When sound travels from air into water, does the frequency of the 

wave change? The wavelength? The speed? 
2.1.10   Speed of a Sound Wave in Gases 

In Section 2.1.9, we have derived the expression for calculating the speed 
of sound in a fluid in a pipe, in terms of its density r  and bulk modulus B . We 
have learned that when a gas is compressed adiabatically, its temperature rises; 
when it expands adiabatically, its temperature drops. Does this also happen when 
a wave travels through a gas, or does enough heat conduction occur between the 
adjacent layers of gas to maintain a nearly constant temperature throughout? This 
is a crucial question because it determines what we use for the bulk modulus B  in 
Eq. (2.1.27). The bulk modulus is defined in general as: 

dV
dpVB -= . 

If the temperature is constant, then according to Boyle’s law, the product 
pV  is constant, and we can use it to evaluate dVdp / . But if the process is 

adiabatic, then gpV  is constant, and we get a different result for B . 
Experiments show that for ordinary sound frequencies, say 20 to 20000 Hz, 

the thermal conductivity of gases is so small that the propagation of sound is, in 
fact, very nearly adiabatic. Thus we must use the adiabatic bulk modulus  adB  
derived from the assumption 

constpV =g .          (2.1.32) 
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We take the derivative of Eq. (2.1.32) with respect to V  

01 =+ -gg gpVV
dV
dp . 

Dividing out it by 1-gV  and rearranging, we find that the adiabatic bulk 
modulus for an ideal gas is simply 

pB
dV
dpV ad g==- .    (2.1.33) 

For an isothermal process, however, constpV = , and the isothermal bulk 
modulus is 

pBist = . 
In each case, the bulk modulus (characterizing the material's resistance to 

compression) is proportional to the pressure, but the adiabatic modulus is larger 
than the isothermal by a factor g . 

Combining Eqs. (2.1.31) and (2.1.33), we obtain 

r
gpv = .   (ideal gas)   (2.1.34) 

an alternative form can be obtained by using the relation 

M
RTp

=
r

, 

where R  is the gas constant, M  is the molar mass, and T  is the absolute 
temperature. Therefore, 

M
RTv g

= .     (2.1.35) 

For a given gas, g , R , and M  are constants, so the speed of propagation is 
proportional to the square root of the absolute temperature.  

The speed of sound also depends on the temperature of the medium. For 
sound traveling through air, the relationship between wave speed and medium 
temperature is 

C
Ctv
°

°
+=

273
1)m/s331( ,   (2.1.36) 

where 331 m/s is the speed of sound in air at 0ºC, and CT  is the temperature in 
Celsius degrees. Using this equation, we can find that at 20°C, the speed of sound 
in air is approximately 343 m/s. 

This information provides a convenient way to estimate the distance to a 
thunderstorm. During a lightning flash, the temperature of a long channel of air 
rises rapidly as the bolt passes through it. This temperature increase causes the air 
in the channel to expand rapidly, and this expansion creates a sound wave. The 
channel produces sound throughout, its entire length at essentially the same 
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instant. If the orientation of the channel is such that all of its parts are 
approximately the same distance from you,  sounds from the different parts reach 
you at the same time, and you hear a short, intense thunderclap. However, if the 
distances between your ear and different portions of the channel vary, sounds 
from different portions arrive at your ears at different times. If the channel were a 
straight line, the resulting sound would be a steady roar but the zigzag shape of 
the path produces variations in loudness. 

Example 2.1.7 
Compute the speed of longitudinal waves in air at an absolute temperature 

of 300 K. 
Solution 
The mean molecular mass of air is 

kg/mol108.28g/mol8.28 3-´= . 
Also, 4.1=g  for air, and KJ/mol314.8 ×=R . At 300=T  K, we obtain  

348
)kg/mol108.28(

)K300)(KJ/mol314.8)(4.1(
3 =

´

=×
= -

Tv  m/s. 

This result agrees with the measured speed at this temperature to within 
0.3%. 

Exercises 

2.1.58. What is the difference between the speeds of longitudinal waves in 
air at – 3°C and at 57°C? 

2.1.59. Use the definition )/( dVdpVB -=  and the relation between p  and 
V  for an adiabatic process to derive Eq. (2.35). 

2.1.60. If the propagation of sound waves in gases were characterized by 
isothermal rather than adiabatic expansions and compressions, and assuming that 
the gas behaves as an ideal gas, show that the speed of sound would be given by 

m/RT . What is the speed of sound in air at 27°C in this case?  
2.1.61. At a temperature of 27°C, what is the speed of longitudinal waves 

in argon? hydrogen? Compare your answers to (a) and (b) with the speed in air at 
the same temperature. 

2.1.62. What is the difference between the speeds of longitudinal waves in 
air at – 3°C and at 57°C? 

2.1.11   Energy of Wave Motion 

Every wave motion has the energy associated with it. To initiate a wave 
motion, we exert a force on a portion of the wave medium; the point where the 
force is applied moves, so we perform work on the system. A wave can transport 
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energy from one region of space to another. For example, transmission of energy 
by electromagnetic waves is familiar, and the destructive power of ocean surf is a 
convincing demonstration of energy transported by water waves. 

As an example of energy in wave motion, consider the plane longitudinal 
wave which propagates through a medium: 

)cos( fwx +-= kxtA .    (2.1.37) 
Let’s take the small volume VD  in a medium so small that speeds of 

propagation and deformations of all its particles are the same and equal to t¶¶ /x  
and x¶¶ /x , correspondingly. 

The volume VD  has the kinetic energy 

V
t

Wk D÷
ø
ö

ç
è
æ

¶
¶

=D
2

2
xr ,     (2.1.38) 

where VDr  is volume mass, t¶¶ /x  – its speed. 
The volume VD  has the elastic potential energy as well: 

V
x

EVEWp D÷
ø
ö

ç
è
æ

¶
¶

=D=D
22

22
xe ,   (2.1.39) 

where x¶¶= /xe  is the elongation, E  is the Young’s modulus. As r/Ev = , 

then 2vE r= , and the expression for potential energy can be rewritten in the 
form: 

V
x

vWp D÷
ø
ö

ç
è
æ

¶
¶

=D
22

2
xr .     (2.1.40) 

The total energy of the wave is the sum of potential (2.1.40) and kinetic 
(2.1.38) energies: 

V
x

v
t

WWW pk D
ú
ú
û

ù

ê
ê
ë

é
÷
ø
ö

ç
è
æ

¶
¶

+÷
ø
ö

ç
è
æ

¶
¶

=D+D=D
2

2
2

2
xxr . 

If we divide the total energy by the volume VD , we obtain the energy 
density VWw DD= / : 

ú
ú
û

ù

ê
ê
ë

é
÷
ø
ö

ç
è
æ

¶
¶

+÷
ø
ö

ç
è
æ

¶
¶

=
2

2
2

2 x
v

t
w xxr .    (2.1.41) 

To obtain the speed and elongation we take the partial derivative t¶¶ /x  
and x¶¶ /x  of Eq. (2.1.37): 

)sin( fww
x

+--=
¶
¶ kxtA

t
,     (2.1.42) 

)sin( fw
x

+--=
¶
¶ kxtAk

x
.    (2.1.43) 
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After substituting Eqs. (2.1.42) and (2.1.43) into Eq. (2.1.41) and recalling 
that 222 w=vk , we obtain 

)(sin222 fwwr +-= kxtAw .     (2.1.44) 
It follows from (2.1.44) that the energy density differs from point to point 

for any instant of time. At a fixed point, energy density w  varies according to 
squared sine function. 

To obtain the average energy density ñáw , we have take the average value 
of the square of a sine function, which is ½. Hence, average energy density at any 
point of medium is: 

22
2
1

wrAw =ñá .      (2.1.45) 

Eq. (2.1.44) shows that the energy density depends on the density r  of the 
material; the amplitude A , and the frequency w . The dependence of the average 
energy density of a wave on the square of its amplitude and also on the square of 
its angular frequency is a general result, true for waves of all types. 

As we have seen medium with the wave in it has additional energy. This 
energy is transported by the wave from the source of oscillation to different points 
of space. Quantity of energy transported by the wave through a surface per unit 
time is called energy current F .  

dt
dW

=F .      (2.1.46) 

In SI system energy current is measured in J/s, or W.  
Energy current has different value for different points of medium. To 

characterize the energy current at certain point of space, another physical 
quantity, called energy current density, is introduced. Energy current density is a 
vector quantity. The direction of this vector is the same as the direction of 
travelling wave, and it’s magnitude equals to the energy current F  through the 
unit surface ^A , perpendicular to the direction of the energy current. Let energy 

WD  be transported through the area ^A  at time tD . The energy current density j  
is 

tA
W

A
j

DD
D

=
D
DF

=
^^

 .     (2.1.47) 

Imagine the small volume VD  with area the ^A  and the height tvD , where 
v  is the propagating speed of the wave. The energy WD , transported through the 
volume, is then:  

tvAwW DD=D ^ . 
Substituting this expression into Eq. (2.1.47) we obtain expression for 

energy current density: 
wvj = ,      (2.1.48) 

or, in a vector form: 
vwj rr

= .      (2.1.49) 
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The vector defined by Eq. (2.1.49), is named Umov’s vector, in honour of 
Russian physicist N.A. Umov who introduced it.  

It should be mentioned, that the intensity I  of wave is average in time 
energy current density. The intensity I  of a traveling wave is defined as the 
average time rate at which energy is transported by a wave per unit area  across a 
surface perpendicular to the direction of propagation. Briefly, the intensity is the 
average power transported per unit area. 

^^
==

S
P

tS
WI .     (2.1.50) 

It is interesting to note that the rate of energy transfer is proportional to the 
square of the amplitude and is also proportional to the square of the frequency.  

For a particular case of transverse wave on the string, instantaneous rate of 
the energy transmission along the string can be expressed as follows: 

)(cos222 kxtATP -= wwm . 
Average power will be  

22
2
1 ATPav wm= . 

Analogous relationship can be worked out for longitudinal waves. It can be 
shown that the intensity – that is, average power per unit cross-sectional area for 
fluids in a pipe – is given by 

22
2
1 ABI wr= , 

and for a solid rod  
22

2
1 AEI wr= . 

Again the power is proportional to 2A  and 2w . 

Exercises 

2.1.63. A string of mass 4 g and length 2 m is stretched with a tension of 
30 N. Waves of frequency 60=f  Hz and amplitude 8 cm are traveling along the 
string. (a) Calculate the average power carried by these waves. (b) What happens 
to the average power if the amplitude of the waves is doubled? 

2.1.64. Show that Eq. 22
2
1 ATPav wm=  can also be written as 

2
2
1 ATkPav w= , where k  is the wave number of the wave. 

2.1.65. A string along which waves can travel is 2.70 m long and has a mass of 
260 g. The tension in the string is 36.0 N. What must be the frequency of travelling 
waves (of amplitude 7.70 mm) be for the average power to become 85.0 W? 
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2.1.66. A transverse sinusoidal wave is generated at one end of a long 
horizontal string by a bar that moves up and down through the distance of 1.0 cm. 
The motion is continuous and is repeated regularly 120 times per second. The 
string has linear density of 120 g/m and is kept under the tension of 90.0 N. Find 
the maximum value of (a) the transverse speed u  and (b) the transverse 
component of the tension tT . (Hint: This component is qsinT , where q  is the 
angle the string makes with the horizontal. You will need to relate angle q  to 

dxdy / ). (c) Show that two maximum values calculated above occur at the same 
phase values for the wave. What is the transverse displacement y  of the string at 
these phases? (d) What is the maximum rate of energy transfer along the string? 
(e) What is the transverse displacement y  when the maximum transfer occurs? (f) 
What is the minimum rate of energy transfer along the string? (g) What is the 
transverse displacement y  when this minimum transfer occurs? 

2.1.67. A taut rope has a mass of 0.18 kg and a length of 3.6 m. What 
power must be supplied to the rope to generate sinusoidal waves having an 
amplitude of 0.1 m and a wavelength of 0.5 cm and traveling with a speed of 30 
m/s? 

2.1.68. Transverse waves are being generated on a rope under constant 
tension. By what factor is the required power increased or decreased if (a) the 
length of the rope is doubled and the angular frequency remains constant; (b) the 
amplitude is doubled and the angular frequency is halved; (c) both the wavelength 
and the amplitude are doubled; and (d) both the length of the rope and the 
wavelength are halved? 

2.1.69. Sinusoidal waves 5 cm in amplitude are to be transmitted along a 
string that has a linear mass density of 2104 -´  kg/m. If the source can deliver the 
maximum power of 300 W and the string is under the tension of 100 N, what is 
the highest vibrational frequency at which the source can operate? 

2.1.70. It is found that a 6.0-m segment of a long string contains four 
complete waves and has a mass of 180 g. The string is vibrating sinusoidally with 
the frequency of 50 Hz and the peak-to-valley displacement of 15 cm. (The 
"реak-to-valley" distance is the vertical distance from the farthest positive 
displacement to the fathest negative displacement.) (a) Write the function that 
describes this wave traveling in the positive x  direction. (b) Determine the power 
supplied to the string.  

2.1.71. A sinusoidal wave on a string is described by the equation 
)508.0sin()15.0( txy -= , 
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where x  and y  are in meters and t  is in seconds. If the mass per unit length of 
this string is 12.0 g/m, determine (a) the speed of the wave; (b) the wavelength; 
(c) the frequency; and (d) the power transmitted to the wave. 

2.1.72. A two-dimensional water wave spreads in circular wave fronts. 
Show that the amplitude A  at a distance r  from the initial disturbance is 
proportional to r/1  (Hint: Consider the energy carried by one outward-moving 
ripple.) 

2.1.12   Intensity of Spherical and Plane Waves 

If a spherical body oscillates so that its radius varies sinusoidallv with time, 
a spherical wave is produced. The wave moves outward from the source at a 
constant speed if the medium is uniform. 

As of this uniformity, we conclude that the energy in a spherical wave 
propagates equally in all directions. That is, no one direction is preferred over any 
other. If avP  is the average power emitted by the source, then this power at any 
distance r  from the source must be distributed over a spherical surface of area 

24 rp . Hence, the wave intensity at a distance r  from the source is 

24 r
P

A
PI avav

p
== .    (2.1.51) 

Because avP  is the same for any spherical surface centered at the source, 
we see that the intensities at distances 1r  and 2r  are 

2
1

1
4 r
PI av
p

=   and  2
2

2
4 r
PI av
p

= . 

Therefore, the ratio of intensities on these two spherical surfaces is 

2
1

2
2

2
1

r
r

I
I

= . 

This inverse-square law states that the intensity decreases in proportion to 
the square of the distance from the source. Intensity is proportional to max2A . 
Thus, we conclude that the displacement amplitude maxA  of a spherical wave 
must vary as r/1 . Therefore, we can write the wave function y  (Greek letter psi) 
for an outgoing spherical wave in the form  

)sin(),( 0 fwy +-= rkt
r
Atr rr , 

where 0A , the displacement amplitude at the unit distance from the source, it is a 
constant parameter characterizing the given wave. 
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2.1.13   Intensity of Periodic Sound Waves 

We know that the power developed by a force equals the product of force 
and velocity. Hence, the power per unit area in a sound wave equals the product 
of the excess pressure (force per unit area), given by Eq. (2.1.24), and the particle 
velocity v , obtained by taking the time derivative of wave function 

)sin( kxtA -= wx . We find 
)cos( kxtAv -= ww , 

hence, 
)(cos22 kxtBkApv -= ww . 

By definition, the intensity is, the average value of this quantity. The 
average value of the function 2/1cos2 =a , so we find 

2
2
1 BkAI w= . 

By using the relations vk=w  and r/2 Bv = , we can transform it into the 
form 

22
2
1 ABI wr= . 

It is usually more convenient to express I  in terms of the pressure 
amplitude maxp . Using Eq. (2.1.25) and the relation vk=w , we find 

B
vp

Bk
pI

22

2
max

2
max ==

w . 

By using the wave speed relation r/2 Bv = , we can also write this in the 
alternative forms 

B
p

v
pI

rr 22

2
max

2
max == .    (2.1.52) 

The intensity of a sound wave of the largest amplitude tolerable to the 
human ear (about 30max =p  Pa) is 

2422
3

2
W/cm1007.1W/m07.1mJ/s07.1

)m/s343)(kg/m22.1(2
)Pa30( -´==×==I . 

The unit 1 W/cm2 is a mixed one, neither cgs nor SI. We mention it here 
because it is unfortunately in general use among acousticians. 

The pressure amplitude of the faintest sound wave that can be heard is 
about 5103 -´  Pa, and the corresponding intensity is about 12 210 W/m- . 
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The total power carried across a surface by a sound wave equals the 
product of the intensity at the surface and the surface area if the intensity over the 
surface is uniform. The average total sound power emitted by a person speaking 
in a conversational tone is about 10 -5 W, while a loud shout corresponds to about 

2103 -´  W.  
Because of the extremely large range of intensities over which the ear is 

sensitive, a logarithmic rather than an arithmetic intensity scale is convenient. The 
intensity b  of the sound wave is defined by the equation:  

0
log10

I
I

=b ,    (2.1.53) 

where 0I  is an arbitrary reference intensity, taken as 10 -12 W/m2. This value 
corresponds roughly to the faintest sound that can be heard. Intensity levels are 
expressed in decibels, abbreviated dB. A decibel is 1/10 of a bel, a unit named 
after Alexander Graham Bell. The bel is inconveniently large for most purposes, 
and the decibel is the usual unit of sound intensity level. 

If the intensity of a sound wave equals 0I  or 10-12 W/m2, its intensity level 
is 0 dB. The maximum intensity that the ear can tolerate without pain is about 

2W/m1 , which corresponds to an intensity level of 120 dB. Table 2.1.3 gives the 
intensity levels in decibels of several familiar noises.  

 
Table 2.1.3   Noise levels due to various sources 

Source or Description of Noise Noise level, dB Intensity, 2W m-×  
Threshold of pain 120 1 
Riveter 95 33.2 10-´  
Elevated train 90 310-  
Busy street traffic 70 510-  
Ordinary conversation 65 63.2 10-´  
Quiet automobile 50 710-  
Quiet radio in home 40 810-  
Average whisper 20 1010-  
Rustle of leaves 10 1110-  
Threshold of hearing 0 1210-  
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Within the range of audibility, the 
sensitivity of an ear varies with 
frequency. At any frequency the 
threshold of audibility is the minimum 
intensity of sound at that frequency that 
can be detected. An ear is most sensitive 
at about 3000 Hz (Figure 2.1.31). For a 
young adult with normal hearing, the 
threshold of audibility at 1000 Hz is 
about 0 dB; at 200 and 15,000 Hz, it is 
about 20 dB; and at 50 and 18,000 Hz, it 
is about 50 dB Thus the ear sensitivity 
drops at low and high ends of the 

frequency scale. Frequencies above 20,000 Hz (20 kHz) are not audible to 
humans at any intensity, and such frequencies are referred to as ultrasonic. 

Example 2.1.8  
Two identical machines are positioned at the same distance from a worker. 

The intensity of sound delivered by each machine at the location of the worker is 
7100.2 -´  W/m. Find the sound level heard by the worker (a) when one machine 

is operating. 
Solution. 
a) The sound level at the location of the worker with one machine operating 

is calculated from Eq. (2.1.53): 

53)100.2log(10
W/m100.1
W/m100.2log10 3

212

27
1 =´=÷

÷
ø

ö
ç
ç
è

æ

´

´
= -

-
b  dB. 

b) When both machines are operating. 
Solution. 
When both machines are operating, the intensity is doubled to 

7100.4 -´ 2W/m ; therefore, the sound level now is 

56)100.4log(10
W/m100.1
W/m100.4log10 3

212

27
2 =´=÷

÷
ø

ö
ç
ç
è

æ

´

´
= -

-
b . 

From these results, we see that when the intensity is doubled, the sound 
level increases by 3 dB only. 

Example 2.1.9   
The faintest sounds the human ear can detect at a frequency of 1000 Hz 

correspond to an intensity of about 10 -12 W/m2 - the so–called threshold of 
hearing, and the loudest sounds the ear can tolerate at this frequency correspond 
to an intensity of about 1 W/m2 – the threshold of pain. Determine the pressure 
amplitude and displacement amplitude associated with these two limits. 
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Figure 2.1.31   Sensitivity of the ear varies 
 

with frequency 
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Solution. 
First, consider the faintest sounds. Using Eq. (2.1.52) and taking 

343=v  m/s as the speed of sound waves in air and 2.1=r  3kg/m  as the density 
of air, we obtain 

512
max 1087.2)10)(343)(2.1(22 -- ´===D Ip r  2N/m . 

As atmospheric pressure is about 5 210 N/m , this result tells us that the ear 
can discern pressure fluctuations as small as 3 parts in 1010 . 

We can calculate the corresponding displacement amplitude by using Eqs. 
(2.1.25), (2.1.6) and (2.1.36):  

m1011.1
)Hz102)(/sm343)(kg/m2.1(

1087.2 11
33

5
max

max
-

-
´=

´

´
=

D
=

pwrv
Py . 

This is a remarkably small number! If we compare this result for maxy  

with the diameter of a molecule (about 1010 m- ), we see that the ear is an 
extremely sensitive detector of sound waves. 

In a similar manner, it can be found that the loudest sounds the human ear 
can tolerate correspond to a pressure amplitude of 228.7 N/m  and a displacement 
amplitude equal to m1011.1 5-´ . 

Example 2.1.10 
An electric spark jumps along a straight line of length 10=L  m (Figure 

2.1.32), emitting a pulse of sound that travels radially outward from the spark. 
(The spark is said to be a line source of sound.) The power of the emission is 

4106.1 ´=sP  W.  

a) What is the intensity I  of the sound when it reaches a distance 12=r  m 
from the spark? 

Solution. 
Let us centre an imaginary cylinder of radius 12=r  m and length 10=L  m 

(open at both ends) on the spark, as shown in Figure 2.1.32. First, the intensity I  
at the cylindrical surface is the ratio AP /  of the time rate P  at which sound 
energy passes through the surface to the surface area A . Second, the principle of 
conservation of energy applies to the sound energy. This means that the rate P  at 
which energy is transferred through the cylinder must equal the rate sP  at which 
energy is emitted by the source. Putting these facts together and noting that the 
area of the cylindrical surface is rLA p2= , we get 

rL
P

A
PI s

p2
== . 
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This tells us that the intensity of 
the sound from a line source decreases 
with distance r  (and not with the square 
of distance r  as for a point source). 
Substituting the given data, we find 

2
4

W/m2.21
)m10)(m12(2

W106.1
=

´
=

p
I . 

b) At what time rate dP  is sound 
energy intercepted by an acoustic 
detector of area 2=dA  cm2, aimed at 
the spark and located a distance 12=r  
m from the spark? 

Solution. 
We know that the intensity of sound at the detector is the ratio of the 

energy transfer rate dP  there to the detector's area dA : 

d

d
A
PI = . 

We can imagine that the detector lies on the cylindrical surface of (a). Then 
the sound intensity at the detector is the intensity I  (= 21.2 W/m2) at the 
cylindrical surface. Solving above equation for dP  gives us 

2.4)102)(2.21( 4 =´=×= -
dd AIP  mW. 

Exercises 

2.1.73. Of the following sounds, which is most likely to have a sound level 
of 60 dB: – rock concert, turning of a page in this text, normal conversation, or a 
cheering crowd at a football game? 

2.1.74. Estimate the decibel level of each sound in the previous question. 
2.1.75. Calculate the sound level, in decibels, of a sound wave that has an 

intensity of 4 2W/mm .  
2.1.76. A vacuum cleaner has a measured sound level of 70 dB. (a) What is 

the intensity of this sound in watts per square meter? (b) What is the pressure 
amplitude of the sound? 

2.1.77. The intensity of a sound wave of frequency 1.0 kHz at a fixed 
distance from a speaker is 0.6 2W/m . (a) Determine the intensity if the frequency 
is increased to 2.50 kHz while the constant displacement amplitude is maintained, 
(b) Calculate the intensity if the frequency is reduced to 0.50 kHz and the 
displacement amplitude is doubled. 

rL

Spark

 
Figure 2.1.32   A spark along a straight line 
of length L  emits sound waves radially 
outward. The waves pass through an 
imaginary cylinder of radius r  and length 
 

L  that is centered on the spark 
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2.1.78. The intensity of a sound wave at a fixed distance from a speaker at a 
frequency f  is I . (a) Determine the intensity if the frequency is increased to 'f  
while the constant displacement amplitude is maintained, (b) Calculate the 
intensity if the frequency is reduced to 2/f  and the displacement amplitude is 
doubled. 

2.1.79. A family ice show is held in an enclosed arena. Skaters perform to 
music with a sound level of 80 dB. This is too loud for your baby who 
consequently yells at a level of 75.0 dB. (a) What total sound intensity engulfs 
you? (b) What is the combined sound level? 

2.1.80. A violin plays a melody line and is then joined by nine other 
violins, all playing at the same intensity as the first violin, in a repeat of the same 
melody (a) When all of the violins are playing together, by how many decibels 
does the sound level increase? (b) If ten more violins join in, how much has the 
sound level increased over that for the single violin? 

2.1.14   Doppler Effect 

Ambulance саг is parked by the side of the highway, sounding its 1000 Hz 
siren. It you also park by the highway, you will hear the same frequency. 
However, if there is relative motion between you and the ambulance car, either 
toward or away from each other, you will hear a different frequency. For 
example, if you are driving toward the ambulance car at 120 km/h, you will hear a 
higher frequency (1096 Hz, an increase of 96 Hz). If you are driving away from 
the ambulance car at that same speed, you will hear a lower frequency (904 Hz, a 
decrease of 96 Hz). 

Those motion-related frequency changes are examples of the Doppler 
effect. The effect was proposed (although not fully worked out) in 1842 by 
Austrian physicist Johann Christian Doppler. It was tested experimentally in 1845 
by Buys Ballot in Holland, using a locomotive drawing an open car with several 
trumpeters. The Doppler effect holds not only for sound waves but also for 
electromagnetic waves. 

To see what causes this apparent frequency change, imagine you are in a 
boat that is lying at anchor on a gentle sea where the waves have a period of 

3=T  s. This means that every 3 s a crest hits your boat. If you set your watch to 
0=t  just as one crest hits, the watch reads 3.0 s when the next crest hits, 6.0 s 

when the third crest hits, and so on. From these observations, you conclude that 
the wave frequency is 3/1/1 == Tf  Hz. Now suppose you start your motor and 
head directly into the oncoming waves. Again you set your watch to 0=t  as a 
crest hits the front of your boat. Now, however, because you are moving toward 
the next wave crest as it moves toward you, it hits you less than 3 s after the first 
hit. In other words, the period you observe is shorter than the 3-s period you 
observed when you were stationary. As Tf /1= , you observe a higher wave 
frequency than when you were at rest. 
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If you turn around and move in the same direction as the waves, you 
observe the opposite effect. You set your watch to 0=t  as a crest hits the back of 
the boat. Because you are now moving away from the next crest, more than 3 s 
has elapsed on your watch by the time, that crest catches you. Thus, you observe a 
lower frequency than when you were at rest. 

These effects occur because the relative speed between your boat and the 
waves depends on the direction of travel and on the speed of your boat. When you 
are moving toward the waves, this relative speed is higher than that of the wave 
speed which leads to the observation of an increased frequency. When you turn 
around and move away from waves, the relative speed is lower, as is the observed 
frequency of the water waves. 

Let us now examine an analogous situation with sound waves, in which the 
water waves become sound waves, the water becomes the air, and the person on 
the boat becomes an observer listening to the sound.  

As a reference frame we shall take the air through which these waves 
travel. This means that we shall measure the speeds of source S of sound waves 
and detector D of these waves relative to air. We shall assume that S and D move 
either directly toward or directly away from each other, at speeds smaller than the 
speed of sound. 

If either the detector or the source is moving, or both are moving, the 
emitted frequency f  and the detected frequency 'f  are related by 

S

D
vv
vvff

±
±

='  general Doppler effect,   (2.1.54) 

where v  is the speed of sound through the air, Dv  is the detector's speed relative 
to the air and Sv  is the source's speed relative to the air. The choice of plus or 
minus signs is set by the rule: When detector or source moves towards the other, 
the sign on its speed must give an upward shift in frequency. When the detector or 
the source moves away from the other, the sign on its speed must give a 
downward shift in frequency. 

In short, toward means shift up, and away means shift down. 
Here are some examples of the rule. If the detector moves toward the 

source, use the plus sign in the numerator of Eq. (2.1.54) to get a shift up in the 
frequency. If it moves away, use the minus sign in the numerator to get a shift 
down. If it is stationary, substitute 0 for Dv . If the source moves toward the 
detector, use the minus sign in the denominator of Eq. (2.1.54) to get a shift up in 
the frequency. If it moves away, use the plus sign in the denominator to get a shift 
down. If the source is stationary, substitute 0 for Sv . 

Next, we derive equations for the Doppler effect for the following two 
specific situations and then derive Eq. (2.1.54) for a general situation. 
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When the detector moves relative to the air and the source is stationary 
relative to the air, the motion changes the frequency at which the detector 
intercept wave surfaces and thus the detected frequency of the sound wave. 

When the source moves relative to the air and the detector is stationary 
relative to the air, the motion changes the wavelength of the sound wave and, 
thus, the detected frequency (recall that frequency is related to wavelength). 

Detector Moving; Source Stationary . In Figure 2.1.33, a detector D is 
moving at speed Dv  toward a stationary source S that emits spherical wavefronts, 
of wavelength l  and frequency f , moving at the speed v  of sound in air. The 
wave surfaces are drawn one wavelength apart. Frequency detected by the 
detector D is the rate at which D intercepts wave surfaces (or individual 
wavelengths). If D were stationary, the rate would be f  but since D is moving 
into the wave surfaces, the rate of interception is greater, and thus the detected 
frequency 'f  is greater than f . 

 

S
D

x
v v

Dv0=Sv

 
Figure 2.1.33   A stationary source of sound S emits spherical wavefronts, (shown one 
wavelength apart), that expand outward at speed v . A sound detector D moves with the 
velocity Dv  toward the source. The detector senses a higher frequency because of its 
 

motion 
 

Let us for the moment consider the situation in which D is stationary 
(Figure 2.1.34). In time t , the wave front moves to the right a distance vt . The 
number of wavelengths in that distance vt  is the number of wavelengths 
intercepted by D in time t , and that number is l/vt . The rate at which D 
intercepts wavelengths - that is the frequency f  detected by D, is 

l
l v

t
vtf ==

/
.     (2.1.55) 
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In this situation, with D 
stationary, there is no Doppler effect: 
The frequency detected by D is the 
frequency emitted by S. 

Now let us again consider the 
situation in which D moves opposite the 
wave surfaces (Figure 2.1.35). In time t , 
the wavefront moves to the right a 
distance vt  as previously, but now D 
moves to the left a distance tvD . Thus, 
in this time t  the distance moved by the 

wavefronts relative to D is tvvt D+ . The number of wavelengths in this relative 
distance tvvt D+  is the number of wavelengths intercepted by D in time t  and is 

l/)( tvvt D+ . In this situation, The rate at which D intercepts wavelengths is the 
frequency 'f  given by 

l
l DD vv

t
tvvtf +

=
+

=
/)(' . (2.1.56) 

As fv /=l , then Eq. (2.1.56) 
becomes 

v
vvf

fv
vvf DD +

=
+

=
/

' .  (2.1.57) 

Note that in Eq. (2.1.57), 'f  must 
be greater than f  unless 0=Dv  (the 
detector is stationary). 

Similarly, we can find the frequency detected by D if D moves away from 
the source. In this situation, the wavefronts move a distance tvvt D-  relative to D 
in time t  and 'f  is given by 

v
vvff D-

=' .    (2.1.58) 

In Eq. (2.1.58) 'f  must be smaller than f  unless 0=Dv . We can 
summarize Eqs. (2.1.57) and (2.1.58) with 

v
vvff D±

='  (detector moving; source stationary).  (2.1.59) 

Source Moving; Detector Stationary. Let detector D be stationary with 
respect to the air, and the source S move toward D at speed Sv  (Figure 2.1.36). 
The motion of S changes the wavelength of the sound waves it emits and, thus, 
the frequency detected by D. 

D

vt

v

 
Figure 2.1.34   When D is stationary, there 
is no Doppler effect – the frequency 
detected by D is the frequency emitted 
 

by S 

vt

v

D

tvD

Dv

 
Figure 2.1.35   In time t , the distance 
moved by the wavefronts relative to D is 
 

tvvt D+  
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To see this change let )/1( fT =  be the time between the emission of any 
pair of successive wavefronts 1W  and 2W . During T  wavefront 1W  moves a 
distance vT , and the source moves a distance TvS . At the end of vT  wavefront 

2W  is emitted. In the direction in which S moves the distance between 1W  and 
2W , (which is the wavelength 'l  of the waves moving in that direction), is 

TvvT S- . If D detects those waves it detects frequency 'f  given by 

SSS vv
vf

fvfv
v

TvvT
vvf

-
=

-
=

-
==

//'
'

l
.   (2.1.60) 

Note that 'f  must be greater 
than f  unless 0=Sv . 

In the direction opposite to that 
taken by S, the wavelength 'l  of the 
waves is TvvT S+ . If D detects those 
waves, it detects the frequency 'f  
given by 

Svv
vff

+
=' ;.      (2.1.61) 

Now 'f  must be smaller than f  
unless 0=Sv . 

We can summarize Eqs. 
(2.1.60) and (2.1.61) with 

Svv
vff

±
=' ; (source moving; detector stationary). (2.1.62) 

General Doppler Effect Equation 
We can now derive the general Doppler effect equation by replacing f  in 

Eq. (2.1.62) (the frequency of the source) with 'f  of Eq. (2.1.58) (the frequency 
associated with motion of the detector). The result is Eq. (2.1.54) for the general 
Doppler effect: 

S

D
vv
vvff

±
±

=' . 

The general equation holds not only when both detector and source are 
moving but also in the two specific situations we just discussed. For the situation 
in which the detector is moving and the source is stationary, substitution of 

0=Sv  into Eq. (2.1.54) gives us Eq. (2.1.59) which we previously found. For the 
situation in which the source is moving and the detector is stationary, substitution 
of 0=Dv  into Eq. (2.1.54) gives us Eq. (2.1.62) previously found. Thus, Eq. 
(2.1.54) is the equation to remember. 

S x
D

0=DvSv

1S 7S

1W
2W

7W

 
Figure 2.1.36   In the direction in which S 
moves, the distance between 1W  and 2W , 
which is the wavelength 'l  of the waves 
moving in that direction, is TvvT S- . The 
 

detector senses a higher frequency 
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Although the Doppler effect is most typically experienced with sound 
waves, it is a phenomenon that is common to all waves. For example, the relative 
motion of source and observer produces a frequency shift in light waves. The 
Doppler effect is used in police radar system to measure the speeds of cars. 
Astronomers use the effect to determine the speeds of stars, galaxies and other 
celestial object, and even some animals use the effect. 

Bat Navigation.   Bats navigate and search for prey by emitting, and then 
detecting reflections of ultrasonic waves. These are sound waves with frequencies 
greater than can be heard by a human. For example, a horseshoe bat emits 
ultrasonic waves at 83 kHz, well above the 20 kHz limit of human hearing. 

After the sound is emitted through the bat's nostrils, it might reflect (echo) 
from a moth, and then return to the bat's ears. The motions of the bat and the moth 
relative to the air cause the frequency heard by the bat to differ by a few kilohertz 
from the frequency it emitted. The bat automatically translates this difference into 
a relative speed between itself and the moth, so it can zero on the moth. 

Some moths evade capture by flying away from the direction in which they 
hear ultrasonic waves. That choice of flight path reduces the frequency difference 
between what the bat emits and what it hears, and then the bat may not notice the 
echo. Some moths avoid capture by clicking to produce their own ultrasonic 
waves, thus "jamming" the detection system and confusing the bat. (Surprisingly, 
moths and bats do all this without first studying physics.) 

Doppler ultrasonic systems. Doppler effect is widely used in medicals 
diagnostic. If a reflecting surface moves in a direction parallel to the direction of 
the ultrasonic waves, the frequency of the reflected waves is changed by the 
motion of the reflector.  

The shift of frequency of the reflected waves fD  depends on the speed u  
of the reflector and the direction of the incident beam in accordance with the 
equation  

qcos2
v
uff =D , 

where f  is the frequency of the incident waves, v  is the wave speed and q  is the 
angle between the direction of the beam and the direction of motion of the 
reflecting surface. For example, the frequency shift of an ultrasonic beam of 
frequency 3 MHz at a speed of 1500 m/s in a substance due to a reflecting 
boundary moving at a speed of l m/s  
towards the source is 4 kHz. 

In a Doppler ultrasonic system, the reflected signal is detected by the 
transducer probe and mixed electronically with a signal at the incident frequency. 
(Figure 2.1.37) 
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The resultant waveform is 
modulated at the Doppler shift 
frequency which is filtered and 
measured. The speed of the reflecting 
surface can then be determined using 
the equation above. Uses of the system 
include: 

– monitoring the heart beat of a 
baby in the womb, 

– measuring the flow of blood in 
a blood vessel by measuring the speed 
of corpuscles in the blood. 

Example 2.1.11 
Let 300=Sf  Hz and 300=v m/s. The wavelength of the waves emitted by 

a stationary source is then 0.1/ =Sfv  m.  
a) What are the wavelengths ahead of and behind the moving source in 

Figure 2.1.38 if its velocity is 30 m/s? 
 

L S S

c

c

c

c

c

c

a bLu Su Su

 
 

Figure. 2.1.38   Wave surfaces emitted by a moving source are crowded together in front of  
 

the source and stretched out behind it 
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Figure 2.1.37 Transducer probe for measuring 
 

the flow of blood 
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Solution. 
In front of the source, 

90.0
Hz300

m/s30m/s300
=

-
=

-
=

s

s
f

vv
l  m. 

Behind the source,  

10.1
Hz300

m/s30m/s300
=

+
=

+
=

s

s
f

vv
l  m. 

b) If the listener L  in Figure 2.1.38 is at rest and the source is moving away 
from L  at 30 m/s, what is the frequency as heard by the listener? 

Solution. 
Since 0=Lv    and   30=sv  m/s, we have 

273
m/s30m/s300

m/s300Hz300 =
+

=
+

=
s

sL vv
vff  Hz. 

c) If the source in Figure 2.1.37 is at rest and the listener is moving toward 
the left at 30 m/s, what is the frequency heard by the listener? 

Solution. 
The positive direction (from the listener to the source) is still from left to 

right, so 
30-=Lv    and   0=sv  m/s, 

270
m/s300

m/s30m/s300Hz300 =
-

=
+

=
v
vvff s

sL  Hz. 

Thus, while the frequency Lf  heard by the listener is smaler than the 
frequency Sf  both when the source moves away from the listener and when the 
listener moves away from the source, the decrease in frequency is not the same 
for the same speed of recession. 

Example 2.12 
As an ambulance travels east down a highway at a speed of 33.5 m/s, its 

siren emits sound at a frequency of 400 Hz. 'What frequency is heard by a person 
in a car traveling west at 24.6 m/s. 

a) as the car approaches the ambulance? 
Solution. 
We can use Eq. (2.1.54) in both cases, taking the speed of sound in air to be 

343=v  m/s. As the ambulance and car approach each other, the person in the car 
hears the frequency 

Hz475)Hz400(
m/s33.5m/s343

 m/s24.6m/s343' 0 =÷÷
ø

ö
çç
è

æ
-
+

=
-
+

= f
vv
vvf

s
, 

b) as the car moves away from the ambulance? 
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Solution. 
As the vehicles recede from each other, the person hears the frequency 

Hz338)Hz400(
m/s33.5m/s343

 m/s24.6m/s343' 0 =÷÷
ø

ö
çç
è

æ
+
-

=
+
-

= f
vv
vvf

s
. 

The change in frequency detected by the person in the car is  
475 – 338 = 137 Hz, which is more than 30% of the true frequency. 

Example 2.1.13 
A rocket moves at a speed of 242 m/s directly toward a stationary target 

(through the stationary air) while emitting sound waves at frequency 1250=f  
Hz. 

a) What frequency f ¢  is measured by a detector that is attached to the 
target? 

Solution. 
We can find f ¢  with Eq. (2.1.54) for the general Doppler effect. Because 

the sound source (the rocket) moves through the air toward the stationary detector 
on the target, we need to choose the sign on sv  that gives a shift up in the 
frequency of the sound. Thus, in Eq. (2.1.54), we use the minus sign in the 
denominator. We then substitute 0 for the detector speed dv , 242 m/s for the 
source speed sv , 343 m/s for the speed of sound v , and 1250 Hz for the emitted 
frequency. 

We find 

4245
242343

0343)1250( =
-

±
=

±
±

=¢
s

d
vv
vvff  Hz. 

which, indeed, is a greater frequency than the emitted frequency. 
b) Some of the sound reaching the target reflects back to the rocket as an 

echo. What frequency f ¢  does a detector on the rocket detect for the echo? 
Solution. 
The target is now the source of sound (because it is the source of the echo), 

and the rocket's detector is now the detector (because it detects the echo). The 
frequency of the sound emitted by the source (the target) is equal to f ¢ , the 
frequency of the sound the target intercepts and reflects. 

We can rewrite Eq. (2.1.54) in terms of the source frequency f ¢  and the 
detected frequency f ¢¢  as 

s

d
vv
vvff

±
±¢=¢¢ .     (2.1.63). 

A third idea here is that, because the detector (on the rocket) moves through 
the air toward the stationary source, we need to use the sign on dv  that gives a 
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shift up in the frequency of the sound. Thus, we use the plus sign in the numerator 
of Eq. (2.1.63). Also, we substitute 242=dv  m/s, 0=sv , 343=v  m/s, and 

4245=¢f  Hz. We find 

7240
0343

2423434245 =
±

±
=¢¢f  Hz, 

which, indeed, is greater than the frequency of the sound reflected by the target. 

Exercises 

2.1.81. Explain what happens to the frequency of your echo as you move in 
a vehicle toward a canyon wall. What happens to the frequency as you move 
away from the wall? 

2.1.82. If the wavelength of a sound source is reduced by a factor of 2, what 
happens to its frequency? Its speed? 

2.1.83. Trooper B is chasing speeder A along a straight stretch of road. Both 
are moving at speed of 160 km/h, The trooper B, failing to catch up, sounds his 
siren again. Take the speed of sound in air to be 343 m/s and the frequency of the 
source to be 500 Hz. What is the Doppler shift in the frequency heard by the 
speeder A? 

2.1.84. At what frequency the 16 000 Hz, whine of the turbines in the jet 
engines of an aircraft moving with speed 200 m/s is heard by the pilot of a second 
craft trying to overtake the first at a speed of 250 m/s?   (Ans. 17.5 kHz.) 

2.1.85. An ambulance with a siren emitting a whine at 1600 Hz overtakes 
and passes a cyclist pedaling a bike at 2.44 m/s. After being passed, the cyclist 
hears a frequency of 1590 Hz. How fast is the ambulance moving? 

2.1.86. A whistle of frequency 540 Hz moves in a circle of radius 60.0 cm 
at an angular speed of 15.0 rad/s. What are (a) the lowest and (b) the highest 
frequencies heard by a listener a long distance away, at rest with respect to the 
center of the circle?   [Ans. (a) 526 Hz, (b) 555 Hz.] 

2.1.87. A stationary motion detector sends sound waves of frequency 0.15 
MHz toward a truck approaching at a speed of 45.0 m/s. What is the frequency of 
the waves reflected back to the detector? 

2.1.88. A French submarine and a U.S. submarine move toward each other 
during maneuvers in motionless water in the North Atlantic. The French .sub 
moves at 50.0 km/h. and the U.S., sub at 70.0 km/h. The French sub sends out a 
sonar signal (sound wave in water) at 1000 Hz. Sonar waves travel at 5470 km/h. 
(a) What is the signal frequency as detected by the U.S. sub? (b) What frequency 
is detected by the French sub in the signal reflected back to it by the U.S. sub?   
[Ans. (a) 1.02 kHz, (b) 1.04 kHz.] 

2.1.89. Explain how the Doppler effect is used with microwaves to 
determine the speed of an automobile. 
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2.1.15   Supersonic Speeds. Shock Waves 

If a source is moving toward a stationary detector at a speed equal to the 
speed of sound – that is, if vvs = , the Eqs. (2.1.53) and (2.1.61) predict that the 
detected frequency 'f  will be infinitely great. This means that the source is 
moving so fast that it keeps pace with its own spherical wavefronts, as Figure 
2.1.39a suggests. What happens when the speed of the source exceeds the speed 
of sound?  

 

S x

Surface of
Mach cone

(b)

xS

(a)

1W
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1S 6S
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Figure 2.1.39   (a) A source of sound S  moves at speed sv  equal to the speed of sound 
and, thus, as fast as the wave-fronts it generates; (b) A source S  moves at speed sv  faster 
than the speed of sound and, thus, faster than the wavefronts. When the source was at 
position 1S , it generated wavefront 1W  and at position 6S  it generated 6W . All the 
spherical wavefronts expand at the speed of sound v  and bunch along the surface of a 
cone called the Mach cone, forming a shock wave. The surface of the cone has  the  
 

half-angle q  and is tangent to all the wavefronts 
 
For such supersonic speeds, Eqs. (2.1.53) and (2.1.61) no longer apply. 
Figure 2.1.39b depicts the spherical wavefronts originated at various 

positions of the source. The radius of any wavefront in this figure is vt  where v  is 
the speed of sound and t  is the time that has elapsed since the source emitted that 
wavefront. Note that all the wavefronts bunch along a V-shaped envelope in the 
two-dimensional drawing of Figure 2.1.39b. The wavefronts actually extend in 
three dimensions, and the bunching actually forms a cone called the Mach cone. 
A shock wave is said to exist along the surface of this cone because the bunching 
of wavefronts causes an abrupt rise and fall of air pressure as the surface passes 
through any point. From Figure 2.1.39b,we see that the half-angle q  of the cone, 
called the Mach cone angle, is given by 

ss v
v

tv
vt

==qsin .           (Mach cone angle).  (2.1.63) 
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The ratio vvs /  is called the Mach number. When you hear that a particular 
plane has flown at Mach 2.3, it means that its speed was 2.3 times the speed of 
sound in the air through which the plane was flying. The shock wave generated by 
a supersonic aircraft or projectile produces a burst of sound called a sonic boom, 
in which the air pressure first suddenly increases and then suddenly decreases 
below normal before returning to normal. Part of the sound that is heard when a 
rifle is fired is the sonic boom produced by the bullet. A sonic boom can also be 
heard from a long bullwhip when it is snapped quickly: Near the end the motion 
of whip, its tip is moving faster than sound and produces a small sonic boom – the 
сrack of the whip. 

Exercises 

2.1.90. A jet plane passes over you at a height of 5000 m and with a speed 
of Mach 1.5. (a) Find the Mach cone angle; (b) After the jet passes directly 
overhead, how long does the shock wave reach you? Use 331 m/s for the speed of 
sound. [Ans. (a) 42º; (b) 11 s] 

2.1.91. A plane flies at 1.25 times the speed of sound. Its sonic boom 
reaches a man on the ground 1.00 min after the plane passes directly overhead. 
What is the altitude of the plane? Assume the speed of sound to be 330 m/s. 

2.1.92. A bullet is fired with a speed of 685 m/s. Find the angle made by 
the shock cone with the line of motion of the bullet. 

2.1.16   Tsunami 

A tsunami can be generated by any disturbance that displaces a large water 
mass from its equilibrium position. Submarine landslides, which often occur 
during a large earthquake, can also create a tsunami. During a submarine 
landslide, the equilibrium sea level is altered by sediment moving along the sea 
floor. Gravitational forces propagate the tsunami given the initial perturbation of 
the sea level. Similarly, a violent marine volcanic eruption can create an 
impulsive force that displaces the water column and generates a tsunami. Above 
water landslides and space born objects can disturb the water from above the 
surface. The falling debris displaces the water from its equilibrium position and 
produces a tsunami. Unlike ocean-wide tsunamis caused by some earthquakes, 
tsunamis generated by non-seismic mechanisms usually dissipate quickly and 
rarely affect coastlines far from the source area. 

Tsunamis are characterized as shallow-water waves. Shallow-water waves 
are different from wind-generated waves, the waves many of us have observed at 
the beach. Wind-generated waves usually have period of five to twenty seconds 
and a wavelength of about 100 to 200 meters. A tsunami can have a period in the 
range of ten minutes to two hours and a wavelength in excess of 500 km. It is 
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because of their long wavelengths that tsunamis behave as shallow-water waves. 
A wave is characterized as a shallow-water wave when the ratio between the 
water depth and its wavelength is very small. The speed of a shallow-water wave 
is equal to the square root of the product of the acceleration of gravity and the 
depth of the water. The rate at which a wave loses its energy is inversely related 
to its wavelength. Since a tsunami has a very large wavelength, it will lose little 
energy as it propagates. Hence, in the very deep water, a tsunami will cover at 
high speeds and travel great transoceanic distances with a limited energy loss. 
They can move from one side of the Pacific Ocean to the other side in less than 
one day. As a tsunami leaves the deep water of the open sea and propagates into 
the more shallow waters near the coast, it undergoes a transformation. Since the 
speed of the tsunami is related to the water depth, as the depth of the water 
decreases, the speed of the tsunami diminishes. The change of total energy of the 
tsunami remains constant. Therefore, the speed of the tsunami decreases as it 
enters shallower water, and the height of the wave grows. Because of this 
"shoaling" effect, a tsunami that was imperceptible in deep water may grow to be 
many meters in height.  

When a tsunami finally reaches the shore, it may appear as a rapidly rising 
or falling tide, a series of breaking waves, or even a bore. Reefs, bays, entrances 
to rivers, undersea features, and the slope of the beach all help to modify the 
tsunami as it approaches the shore. Tsunamis rarely become great, towering 
breaking waves. Sometimes the tsunami may break far offshore. Or it may form 
into a bore: a step-like wave with a steep breaking front. A bore can happen if the 
tsunami moves from deep water into a shallow bay or river. The water level on 
shore can rise many meters. In extreme cases, water level can rise to more than 15 
m for tsunamis of distant origin and over 30 m for tsunami generated near the 
epicenter of the earthquake. The first wave may not be the largest in the series of 
waves. One coastal area may see no damaging wave activity while in another area 
destructive waves can be large and violent. The flooding of an area can extend 
inland by 300 m or more, covering large expanses of land with water and debris. 
Flooding tsunami waves tend to carry loose objects and people out to sea when 
they retreat.  

A tsunami generally consists of a series of waves, often referred to as the 
tsunami wave train.  The amount of time between successive waves, known as the 
wave period, is usually a few minutes; in some instances, waves are over an hour 
apart.  Many people have lost their lives after returning home in between the 
waves of a tsunami, thinking that the waves had stopped coming. 

Because tsunami can strike at any time, being adequately prepared and 
knowing what to do beforehand can save your life. Hawaii State and County Civil 
Defense agencies provide maps of evacuation zones and information on how to be 
prepared for this type of natural disaster in the front pages of the telephone book. 



 

 

122

If you are at the beach and you feel an earthquake or observe a rapid withdrawal 
of the sea, head for higher ground immediately. When a tsunami warning has 
been issued, do not attempt to use the telephone or head to low-lying areas to 
view the oncoming waves. Remember, tsunamis travel at very fast speeds across 
the ocean; therefore, once a warning has been issued you should evacuate 
immediately. 

Summary 

A wave is any disturbance from an equilibrium condition that propagates 
from one region to another. A mechanical wave always travels within some 
material called the medium. In a periodic wave the motion of each point of the 
medium is cyclic or periodic; if the motion is sinusoidal, the wave is called a 
sinusoidal wave. The frequency f  of a periodic wave is the number of repetitions 
per unit time, and the period T  is the time for one cycle. The wavelength l  is the 
distance between two adjacent identical points of the wave. The speed of 
propagation v  is the speed with which the wave disturbance travels. For any 
periodic wave, these quantities relate as 

fv l= . 
A wave function describes the displacements of individual particles in the 

medium. It is a function of the coordinate x  and time t . The wave function for a 
sinusoidal wave traveling in the x+ -direction can be written as 
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In all forms, A  is the amplitude which is the maximum displacement of a 
particle from its equilibrium position. 

The wave function must obey a partial differential equation called the wave 
equation: 
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The speed of a transverse wave on a string having tension T  and mass per 
unit length m  is given by 

m
Tv = .      

Transverse waves have the property of polarization; longitudinal waves do 
not. 

The speed of a longitudinal wave in a fluid having bulk modulus B  and 
density r  is given by 

r
Bv = . 
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The speed of a longitudinal wave in a solid rod having Young's modulus E  
and density r  is given by 

r
Ev = . 

The speed of sound in an ideal gas is given by 

m
g

RTv =  (ideal gas). 

Wave motion conveys energy from one region to another. For a transverse 
wave on a stretched string, a portion of string exerts a transverse force on an 
adjacent portion while it undergoes a displacement; hence, one section does work 
on another, and energy is transferred along the length of the string 

For sinusoidal sound waves, the variation in the displacement is given by 
)cos(),( kxtAtx -= wx , 

and the variation in pressure from the equilibrium value is 
)sin(max kxtpp -=D w , 

where maxpD  is the pressure amplitude. The pressure wave is 90º out of phase 
with the displacement wave. The relationship between maxx  and maxpD  given by 

maxmax wxrvp =D . 
The intensity of a periodic sound wave, which is the power per unit area, is 

22
2
1 AvI wr= . 

The sound level of a sound wave, in decibels, is given by 
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The constant 0I  is a reference intensity, usually taken to be at the threshold 

of hearing ( 12 21 10 W/m-´ ), and I  is the intensity of the sound wave in watts per 
square meter. 

The intensity of a spherical wave produced by a point source is 
proportional to the average power emitted and inversely proportional to the square 
of the distance from the source:  

24 r
PI av
p

= . 

The change in frequency heard by an observer whenever there is relative 
motion between a source of sound waves and the observer is called the Doppler 
effect. The observed frequency is 
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The upper signs ( Dv+  and Sv- ) are used with motion of one toward the 
other, and the lower signs ( Dv-  and Sv+ ) are used with motion of one away 
from the other. You can also use this formula when Sv  or Dv  is zero. 

Key Terms 
Wave – волна  
mechanical waves – механическая волна  
medium – среда    
periodic wave – периодическая волна   
sinusoidal wave – гармоническая волна, синусоидальная волна 
transverse wave – поперечная  волна 
longitudinal wave – продольная волна 
wave speed – скорость волны     
wavelength – длина волны    
wave function – волновая функция    
wave number – волновое число  
wave equation – волновое уравнение    
sound – звук     
pressure amplitude – амплитуда давления  
intensity – интенсивность 
intensity level – уровень интенсивности 
threshold of audibility – порог слышимости, слуховой порог 
ultrasonic – сверхзвуковой, ультразвуковой 
Doppler effect – эффект Допплера 



 125

Chapter 2.2 

Standing Waves  
In previous chapter we studied the propagation of mechanical waves in 

media without ends or boundaries; we were not concerned with what happens 
when a wave arrives at an end or boundary of the medium in which it propagates. 
But in many wave phenomena such boundaries do play a significant role. A 
familiar example is the echo that occurs when a sound wave reflects from a rigid 
wall. Such reflections lead to overlapping, or superposition, of two waves – the 
initial and reflected waves – in the same region of the medium. When there are 
two or more boundary points or surfaces, repeated reflections can occur. In such 
cases, it turns out that sinusoidal wave motion is possible only for certain special 
values of the frequency of the wave, determined by the dimensions and 
mechanical properties of the medium. These special frequencies and their 
associated wave patterns are called normal modes. Many familiar phenomena are 
associated with normal modes. This concept will also reappear later in some 
unexpected places, such as the energy levels of atoms. 

2.2.1   Superposition of Waves 

Many interesting natural wave phenomena cannot be described by a single 
moving pulse. Instead, one must analyze complex waves in terms of a 
combination of many traveling waves. To analyze such wave combinations, we 
can make use of the superposition principle : 

If two or more traveling waves are moving through a medium, the resultant 
function at any point is the algebraic sum of the wave functions of the initial 
waves. 

Mathematically speaking, the principle of superposition states that the wave 
function describing the resulting motion is obtained by adding two wave functions 
for two separate waves. This additive property of wave functions depends, in turn, 
on the form of the wave equation, Eq. (2.1.14), which every physically possible 
wave function must satisfy. Specifically, the wave equation is linear. As a result, 
if each of any two functions ),(1 txy  and ),(2 txy  satisfies the wave equation 
separately, their sum 21 yy +  automatically satisfies the wave equation as well 
and, hence, is a physically possible motion. In view of this linearity of the wave 
equation and the corresponding linear-combination property of its solutions, the 
principle is also called the principle of linear superposition. 

Waves that obey this principle are called linear waves and are generally 
characterized by small amplitudes. Waves that violate the superposition principle 
are called nonlinear waves and are often characterized by large amplitudes. We 
will deal only with linear waves. 
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One consequence of the superposition principle is that two traveling waves 
can pass through each other without being destroyed or even altered.  For 
instance, when sound waves from two sources move through air, they pass one 
through each other. The resulting sound that hears at a given point is the resultant 
of the two disturbances.  

Figure 2.2.1 is a pictorial representation of superposition. Wave function 
for a pulse moving to the right is 1y , and wave function for a pulse moving to the 
left is 2y . The pulses have the same speed but different shapes. Each pulse is 
assumed to be symmetric, and the displacement of the medium is in the positive 
y  direction for both pulses. When the waves begin to overlap (Figure 2.2.1b), the 
wave function for the resulting complex wave is given by 21 yy + . 

 

(a)
1y

1y

2y

2y

(b)
1 2y y+

1 2y y+
(c)

(d) (e)
 

Figure 2.2.1   (a - d) Two wave pulses traveling on a stretched string in opposite directions pass 
through each other. When the pulses overlap, as shown in (b) and (c), the net displacement of 
the string equals the sum of the displacements produced by each pulse; (d) The two pulses 
 

separate and continue moving in their initial directions 
 
When the crests of the pulses coincide (Figure 2.2.1c), the resulting wave 

given by 21 yy +  is symmetric. The two pulses finally separate and continue 
moving in their original directions (Figure 2.2.1d). Note that the pulse shapes 
remain unchanged, as if the two pulses had never met. 
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(a)
1y

1y

1y

1y

2y

2y

2y

2y

(b)

1 2y y+
(c)

(d)

(e)
(f)  

Figure 2.2.2   (a-e) Two wave pulses traveling in opposite directions and having displacements 
that are inverted relative to each other. When the two overlap in (c), their displacements 
partially cancel each other;(d, e) two pulses pass through each other; (f) photograph of two  
 

pulses traveling in opposite directions 
 
Now consider two pulses traveling in opposite directions on a taut string 

where one pulse is inverted relative to the other, as illustrated in Figure 2.2.2. In 
this case, when the pulses begin to overlap, the resultant wave is given by 

21 yy + , but the values of the function 2y  are negative. Again, the two pulses 
pass through each other; however, the displacements caused by the two pulses are 
in opposite directions. 

2.2.2   Reflection and Transmission 
We have discussed traveling waves moving through a uniform medium. 

We now consider how a traveling wave is affected when it encounters a change in 
the medium. For example, consider a pulse traveling on a string that is rigidly 
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attached to a support at one end (Figure 2.2.3). When the pulse reaches the 
support, a severe change in the medium occurs – the string ends. The result of this 
change is that the wave undergoes reflection – that is, the pulse moves back along 
the string in the opposite direction. 

 

(a)

Incident
pulse

(b)

(c)

(d)

(e) Reflected
pulse  

Incident
pulse

Reflected
pulse

(a)

(b)

(c)

(d)  
Figure 2.2.3   The reflection of a traveling 
wave pulse at the fixed end of a stretched 
string. The reflected pulse is inverted, but its 
 

shape is unchanged 

Figure 2.2.4   The reflection of a traveling wave 
pulse at the free end of a stretched string. The 
 

reflected pulse is not inverted 

 
Note that the reflected pulse is inverted. This inversion can be explained as 

follows: If the end is fastened to a rigid support, it must remain at rest. The 
arriving pulse exerts a force on the support; the reaction to this force (by Newton's 
third law), exerted by the support on the string, ‘kicks back’ on the string and sets 
up an inverted reflected pulse or wave traveling in the reverse direction. 

The opposite extreme (to a rigidly fixed end) is the one that is perfectly free 
to move in the direction, transverse to the length of the string. For example, the 



 129

string might be tied to a light ring that slides on a smooth rod perpendicular to the 
length of the string (Figure 2.2.4). Again, the pulse is reflected, but this time it is 
not inverted. When it reaches the post, the pulse exerts a force on the free end of 
the string, causing the ring to accelerate upward. The ring overshoots the height of 
the incoming pulse, and then the downward component of the tension force pulls 
the ring back down. This movement of the ring produces a reflected pulse that is 
not inverted and that has the same amplitude as the incoming pulse. 

Finally, we may have a situation in which the boundary is intermediate 
between these two extremes. In this case, part of the incident pulse is reflected 
and part undergoes transmission – that is, some of the pulse passes through the 
boundary. For instance, suppose a light string is attached to a heavier string, as 
shown in Figure 2.2.5. When a pulse traveling on the light string reaches the 
boundary between the two, part of the pulse is reflected and inverted and part is 
transmitted to the heavier string. The reflected pulse is inverted for the same 
reasons described earlier in the case of the string rigidly attached to a support. 

 
Incident

pulse

(a)
Transmitted

pulse

Reflected
pulse

(b)  

Incident
pulse

Transmitted
pulse

Reflected
pulse

 

Figure 2.2.5   (a) A pulse traveling to the right 
on a light string attached to a heavier string; 
(b) Part of the incident pulse is reflected (and 
inverted), and part is transmitted to the heavier 
 

string 

Figure 2.2.6   (a) A pulse traveling to the right 
on a heavy string attached to a lighter string; 
(b) The incident pulse is partially reflected and 
partially transmitted, and the reflected pulse is 
 

not inverted 
 
Note that the reflected pulse has a smaller amplitude than the incident 

pulse. We know that the energy carried by a wave proportional to its amplitude. 
Thus, according to the principle of the conservation of energy, when the pulse 
breaks up into a reflected pulse and a transmitted pulse at the boundary, the sum 
of the energies of these two pulses must equal the energy of the incident pulse. 
Because the reflected pulse contains only part of the energy of the incident pulse,  
its amplitude must be smaller. 

When a pulse traveling on a heavy string strikes the boundary between the 
heavy string and a lighter one, as shown in Figure 2.2.6, again part is reflected 
and part is transmitted. In this case, the reflected pulse is not inverted. 
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In either case, the relative heights of the reflected and transmitted pulses 
depend on the relative densities of the two strings. If the strings are identical, 
there is no discontinuity at the boundary and no reflection takes place. 

The condition imposed on the motion of the end of the string, such as 
attachment to a rigid support or the complete absence of transverse force, are 
called boundary conditions. 

According to Eq. (2.1.22) ( m/Tv = ), the speed of a wave on a string 
increases as the mass per unit length of the string decreases. In other words, a 
pulse travels more slowly on a heavy string than on a light string if both are under 
the same tension. The following general rules apply to reflected waves:  

When a wave pulse travels from medium A to medium В and BA vv >  (that 
is, when В is denser than A), the pulse is inverted upon reflection. When a wave 
pulse travels from medium A to medium В and BA vv <  (that is, when A is denser 
than B), the pulse is not inverted upon reflection.  

2.2.3   Interference 

The principle of superposition is of central importance in all types of wave 
motion. It applies not only to waves on a string, but also to sound waves, 
electromagnetic waves (such as light), and all other wave phenomena in which the 
wave equation is linear. Superposition of two or more waves passing through the 
same region at the same time is called interference. 

The superposition principle states that when two or more waves move in 
the same linear medium, the net displacement of the medium (that is, the resultant 
wave) at any point equals the algebraic sum of all the displacements caused by the 
individual waves. Let us apply this principle to two sinusoidal waves traveling in 
the same direction in a linear medium. If the two waves are traveling to the right 
and have the same frequency and amplitude but differ in phase, we can express 
their individual wave functions as 

)sin(1 tkxAy w-= ,    and      )sin(2 fw +-= tkxAy , 
where, as usual, lp /2=k , fpw 2= , and f  is the phase constant. Hence, the 
resultant wave function y  is: 

)]sin()[sin(21 fww +-+-=+= tkxAtkxAyyy . 
To simplify this expression, we use the trigonometric identity 
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If we let tkx wa -=  and fwb +-= tkx , we find that the resultant wave 
function y  reduces to 
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This result has several important features. The resultant wave function y  is 
also sinusoidal and has the same frequency and wavelength as the individual 
waves, since the sine function incorporates the same values of k  and w  that 
appear in the original wave functions. The amplitude of the resultant wave is 
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2
cos2 fAy , and its phase is 2/f . If the phase constant f  equals 0, then 

10cos2/cos ==f , and the amplitude of the resultant wave is A2  – twice the 
amplitude of either individual wave. In this case, in which 0=f , the waves are 
said to be in phase and, thus, interfere constructively. That is, the crests and 
troughs of the individual waves 1y  and 2y  occur at the same positions. In general, 
constructive interference occurs when 12/cos ±=f . This is true, for example, 
when ,...4,2,0 ppf =  rad – that is, when f  is an even multiple of p . 

When f  is equal to p  rad or to any odd multiple of p , 
02/cos2/cos == pf , and the crests of one wave occur at the same positions as 

the troughs of the second wave. Thus, the resultant wave has zero amplitude, and 
we say that this is destructive interference. Finally, when the phase constant has 
an arbitrary value other than 0 or other than an integer multiple of p  rad, the 
resultant wave has an amplitude whose value is somewhere between 0 and A2 . 

We illustrate this with the aid of sound waves. One simple device for 
demonstrating interference of sound waves is illustrated in Figure 2.2.7. Sound 
from a loudspeaker S  is sent into a tube at point P  where there is a T -shaped 
junction. Half of the sound power 
travels in one direction, and half 
travels in the opposite direction. 
Thus, the sound waves that reach the 
receiver R  can travel along either of 
the two paths. The distance along any 
path from speaker to receiver is 
called the path length r . The lower 
path length 1r  is fixed, but the upper 
path length 2r  can be varied by 
sliding the U -shaped tube. When the 
difference in the path lengths   

12 rrr -=D  
is either zero or some integer 
multiple of the wavelength l  (that 
is, lnr = , where ,..2,1,0=n ), the 
two waves reaching the receiver at 
any instant are in phase and interfere 
constructively. For this case, a 

2r

1r

RP

S

Speaker

Receiver

 
Figure 2.2.7   An acoustical system for 
demonstrating interference of sound waves. A 
sound wave from the speaker ( S ) propagates 
into the tube and splits into two parts at point P . 
The two waves, which superimpose at the 
opposite side, are detected at the receiver ( R ). 
The upper path length 2r  can be varied by 
 

sliding the upper section 
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maximum in the sound intensity is detected at the receiver. If the path length 2r  is 

adjusted such that the path difference 
2

)12(...,,2/3,2/ l
ll +=D nr  

(for ,...3,.2,1=n ), two waves are exactly p  rad, or 180°, out of phase at the 
receiver and, hence, cancel each other. In this case of destructive interference, no 
sound is detected at the receiver. This simple experiment demonstrates that a 
phase difference may arise between two waves generated by the same source 
when they travel along paths of unequal lengths. 

It is often useful to express the path difference in terms of the phase angle 
f  between the two waves. 

As a path difference rD  of one wavelength corresponds to a phase angle of 

p2  rad, we obtain the ratio 
lp

f rD
=

2
, or 

l
p
f
2

=Dr .     (2.2.2) 

Using the notion of path difference, we can express our conditions for 
constructive and destructive interference in alternative way. If the path difference 
is any even multiple of 2/l , then the phase angle pf n2= , where ,...3,2,1,0=n , 
and the interference is constructive. For path differences of odd multiples of 2/l , 

pf )12( += n , where ,...3,2,1=n , and the interference is destructive. Thus, we 
have the conditions 

2
2 lnr =D  for constructive interference     (2.2.3) 

and  

2
)12( l

+=D nr         for destructive interference.     (2.2.4) 
Now we understand why the speaker wires in a stereo system should be 

connected properly. When connected the wrong way – that is, when the positive 
wire is connected to the negative terminal – the speakers are said to be ‘out of 
phase’ because the sound wave coming from one speaker destructively interferes 
with the wave coming from the other. In this situation, one speaker cone moves 
outward while the other moves inward. Along a line midway between the two, a 
rarefaction region from one speaker is superposed on a condensation region from 
the other speaker. Although the two sounds probably do not completely cancel 
each other (because the left and right stereo signals are usually not identical), a 
substantial loss of sound quality still occurs at points along this line. 

Example  2.2.1   
A pair of speakers placed 3.00 m apart are driven by the same oscillator 

(Figure 2.2.8). A listener is originally at point O  which is located 8.0 m from the 
center of the line connecting these two speakers. Then the listener walks to point 
P , which is a perpendicular distance 0.350 m from O , before reaching the first 
minimum in sound intensity. What is the frequency of the oscillator? 
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P

O

0.350 m

1.85 m

8.0 m

8.0 m
3.0 m

1.15 m
1r

2r

 
Figure 2.2.8    A pair of speakers placed 3.0 m apart are driven by the same oscillator 

Solution. 
To find the frequency, we need to know the wavelength of the sound 

coming from the speakers. With this information, combined with our knowledge 
of the speed of sound, we can calculate the frequency. We can determine the 
wavelength from the interference information given. The first minimum occurs 
when the two waves reaching the listener at point P are 180° out of phase– in 
other words, when their path difference rD  equals 2/l . To calculate the path 
difference, we must first find the path lengths 1r  and 2r  

Figure 2.2.8 shows the physical arrangement of the speakers, along with 
two shaded right triangles that can be drawn on the basis of the lengths described 
in the problem. From these triangles, we find that the path lengths are 

m08.8m)15.1(m)0.8( 22
1 =+=r  

and 
m21.8m)85.1(m)0.8( 22

2 =+=r . 
Hence, the path difference is m13.012 =- rr . As we require that this path 
difference be equal to 2/l  for the first minimum, we find that 26.0=l  m. 

To obtain the oscillator frequency, we use equation fv l=  where v  is the 
speed of sound in air, 343 m/s: 

Exercises 

2.2.1. Two identical traveling waves moving in the same direction are out 
of phase by 2/p  rad. What is the amplitude of the resultant wave in terms of the 
common amplitude A  of the two combining waves?   (Ans. A4.1 .) 

2.2.2. Two sinusoidal waves, identical except for phase, travel in the same 
direction along a string and interfere to produce a resultant wave given by 

)rad82.0420sin()mm3(' +-= txy , with x  in meters and t  in seconds. What are 
(a) the wavelength l  of the two waves, (b) the phase difference between them, 
and (c) their amplitude A? 
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2.2.3. Two sinusoidal waves are described by the equations 
)]12000.4(sin[)m0.5(1 txy -= p  and 

)]250.012000.4(sin[)m0.5(2 --= txy p , 
where x , y  are in meters and t  is in seconds.  

a) What is the amplitude of the resultant wave?   (Ans. 9.24 m) 
b) What is the frequency of the resultant wave?    (Ans. 600 Hz) 
2.2.4. A sinusoidal wave is described by the equation 

)]18010.0(2sin[)m08.0(1 txy -= p , 
where 1y  and x  are in meters and t  is in seconds. Write an expression for a wave 
that has the same frequency, amplitude, and wavelength as 1y  but which, when 
added to 1y , gives a resultant with an amplitude of 38  cm. 

2.2.5. Two waves are traveling in the same direction along a stretched 
string. The waves are 90° out of phase. Each wave has amplitude of 4.0 cm. Find 
the amplitude of the resultant wave.   (Ans. 5.66 cm) 

2.2.6. Two identical sinusoidal waves with wavelengths of 3.0 m travel in 
the same direction at a speed of 2.0 m/s. The second wave originates from the 
same point as the first, but at a later time. Determine the minimum possible time 
interval between the starting moments of the two waves if the amplitude of the 
resultant wave is the same as that of each of the two initial waves. 

2.2.7. Let )(sin),( 1111 xktAtxy -= w  and )(sin),( 2222 xktAtxy -= w  be the 
solution of the wave equation for the same v . Show that 

),(),(),( 21 txytxytxy +=  is also a solution of the wave equation. 

2.2.4   Standing Waves 

We now consider a special example of interference of two identical waves 
traveling in opposite directions in the same medium, for example, incident and 
reflected waves. These waves combine in accordance with the superposition 
principle and so-called standing waves are the result of this superposition. 

We can analyze such a situation by considering wave functions for two 
transverse sinusoidal waves having the same amplitude, frequency, and 
wavelength but traveling in opposite directions in the same medium: 

)sin(1 tkxAy w-=       and      )sin(2 tkxAy w+= , 
where 1y  represents a wave traveling to the right and 2y  represents reflected 
wave, traveling to the left. By adding these two functions we get the resultant 
wave function y : 

)sin()sin(21 tkxAtkxAyyy ww ++-=+= . 
When we use the trigonometric identity: 

bababa sincoscossin)sin( ±=± , 
letting kx=a  and twb = , this expression reduces to 

tkxAy wcos)sin2(= ,                                         (2.2.5) 
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which is the wave function of a standing wave. A standing wave, such as the one 
shown in Figure 2.2.9, is an oscillation pattern with a stationary outline that 
results from the superposition of two identical waves traveling in opposite 
directions. 
 

Antinode Antinode

Node

Node

2 sin A kx  
Figure 2.2.9   Standing wave on a string. The time behavior of the vertical displacement from 
equilibrium of an individual particle of the string is given by twcos . That is, each particle 
vibrates at an angular frequency w . The amplitude of the vertical oscillation of any particle 
on the string depends on the horizontal position of the particle. Each particle vibrates within 
 

the confines of the envelope function kxAsin2  
 

Notice that Eq. (2.2.5) does not contain a function of ( tkx w± ). Thus, it is 
not an expression for a traveling wave. If we observe a standing wave, we have no 
sense of motion in the direction of propagation of either of the original waves. If 
we compare this equation with wave equation, we see that Eq. (2.2.5) describes a 
special kind of simple harmonic motion. Every particle of the medium oscillates 
in simple harmonic motion with the same frequency w  (according to the twcos  
factor in the equation). However, the amplitude of the simple harmonic motion of 
a given particle (given by the factor kxAsin2 , the coefficient of the cosine 
function) depends on the location x  of the particle in the medium. We need to 
distinguish carefully between the amplitude A  of an individual waves and the 
amplitude kxAsin2  of the simple harmonic motion of the particles of the 
medium. A given particle in a standing wave vibrates within the constraints of the 
envelope function kxAsin2 , where x  is the particle's position in the medium. 
This is in contrast to the situation in a traveling sinusoidal wave in which all 
particles oscillate with the same amplitude and the same frequency and in which 
the amplitude of the wave is the same as the amplitude of the simple harmonic 
motion of the particles. 

The maximum displacement of a particle of the medium has a minimum 
value of zero when x  satisfies the condition 0sin =kx , that is, when 

,...3,2,,0 ppp=kx  
Because lp /2=k , these values for kx  give 

2
l

=x , l , 
2

3l
=x , 

2
lnx =  ,...)3,2,1,0( =n .   (2.2.6) 

These points of zero displacement are called nodes. 
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The particle with the greatest possible displacement from equilibrium has 
an amplitude of A2 , and we define this as the amplitude of the standing wave. 
The positions in the medium at which this maximum displacement occurs are 
called antinodes. The antinodes are located at positions for which the coordinate 
x  satisfies the condition 1sin ±=kx , that is, when 

..
2

5,
2

3,
2

ppp
=kx . 

Thus, the positions of the antinodes are given by 

4
,...,

4
5,

4
3,

4
llll nx = ,   )3,2,1,0( =n .    (2.2.7) 

In examining Eqs. (2.2.6) and (2.2.7), we note the following important 
features of the locations of nodes and antinodes: 

The distance between adjacent antinodes is equal to 2/l . 
The distance between adjacent nodes is equal to 2/l . 
The distance between a node and an adjacent antinode is 4/l . 
Example 2.2.2  
Two waves traveling in opposite directions produce a standing wave. The 

individual wave functions are 
)0.20.3sin()cm0.4(1 txy -=  and )0.20.3sin()cm0.4(2 txy += , 

where x  and y  are measured in centimetres, t  in seconds.  
a) Find the amplitude of the simple harmonic motion of a particle medium 

located at 3.2=x  cm. 
Solution. 
According to Eq. (2.2.5) in this problem, we have 0.4=A  cm, 0.3=k  

rad/cm, and 0.2=w  rad/s. Thus, 
txtkxAy 0.2cos]0.3sincm)0.8[(cos)sin2( == w . 

Thus, we obtain the amplitude of the simple harmonic motion of the 
particle at the position 3.2=x  by evaluating the coefficient of the cosine function 
at this position: 

cm4.6rad)9.6sin(cm)0.8(0.3sincm)0.8( 3.2 === =xxy . 
b) Find the positions of the nodes and antinodes. 
Solution. 
With rad/cm0.3/2 == lpk , we see that 3/2pl =  cm. Therefore, from 

Eq. (2.2.6), we find that the nodes are located at 

÷
ø
ö

ç
è
æ==

32
pl nnx  cm          ,...3,2,1,0=n    (nodes). 

From Eq. (2.2.7), we find that the antinodes are located at 

÷
ø
ö

ç
è
æ==

64
pl nnx  cm          ,...5,3,1=n   (antinodes). 

c) What is the amplitude of the simple harmonic motion of the particle 
located at an antinode? 
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Solution. 
The standing wave is described by Eq. (2.2.5); the maximum displacement 

of a particle at an antinode is the amplitude of the standing wave which is twice 
the amplitude of the individual traveling waves: 

8.0cm)0.4(22max === Ay  cm. 
Let us check this result by evaluating the coefficient of our standing-wave 

function at the positions we found for the antinodes: 

cm.08rad
6

0.3sincm)0.8(0.3sincm)0.8( )6/( =úû

ù
êë

é
÷
ø
ö

ç
è
æ== =

p
p nxy nx . 

In evaluating this expression, we have used the fact that n  is an odd 
integer; thus, the sine function is equal to unity. 

Exercises 

2.2.8. Two sinusoidal waves traveling in opposite directions interfere to 
produce a standing wave described by the equation 

)200cos()40.0sin()m50.1( txy = , 
where x  is in metres and t  is in seconds. Determine the wavelength, frequency, 
and speed of the interfering waves. 

2.2.9. Two waves on a long string are described by the equations 

÷
ø
ö

ç
è
æ -= txy 40

2
cos)m015.0(1    and   ÷

ø
ö

ç
è
æ += txy 40

2
cos)m015.0(2 , 

where 1y , 2y , and x  are in metres and t  is in seconds. (a) Determine the position 
of the nodes of the resulting standing wave. (b) What is the maximum 
displacement at the position 40.0=x  m? 

2.2.10. Two speakers are driven by a common oscillator at 800 Hz and face 
each other at a distance of 1.25 m. Locate the points along a line joining the two 
speakers where relative minima would be expected. (Use v  = 343 m/s.) 

2.2.11. Two waves that set up a standing wave on a long string are given by 
the expressions 

)sin(1 fw +-= tkxAy    and   )sin(2 tkxAy w+= . 
Show (a) that the addition of the arbitrary phase angle changes only the position 
of the nodes, and (b) that the distance between the nodes remains constant in time.  

2.2.12. Two sinusoidal waves combining in a medium are described by the 
equations 

( )txcy 6.0sin)m3(1 += p    and   ( )txcy 6.0sin)m3(2 -= p , 
where x  is in centimetres and t  is in seconds. Determine the maximum 
displacement of the medium at (a) 25.0=x  cm, (b) 5.0=x  cm, and (c) 5.1=x   
cm. (d) Find the three smallest values of x , corresponding to antinodes.  

2.2.13. A standing wave is formed by the interference of two traveling 
waves, each of which has an amplitude p=A  cm, angular wave number 2/p=k  
cm-1, and angular frequency pw 10=  rad/s. (a) Calculate the distance between the 
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first two antinodes. (b) What is the amplitude of the standing wave at 
25.0=x  cm?  
2.2.14. Verify by direct substitution that the wave function for a standing 

wave given in equation tkxAy wcossin2=  is a solution of the general linear 

wave equation: 2

2

22

2 1
t

y
vx

y
¶

¶
=

¶

¶ . 

2.2.5   Standing Waves in a String Fixed at Both Ends 
We know about reflection, or echo, of sound waves from rigid walls and 

the analogous reflection of transverse wave on a string from rigidly held ends. 
Now suppose we have two parallel walls. If a sharp sound pulse such as a hand 
clap originates at a point between the walls, the result is a series of regularly 
spaced echoes caused by the repeated back-and-forth reflection between the walls. 
In room acoustics, this phenomenon is called "flutter echo".  

For transverse waves on a string, the analogous situation occurs if a string 
of some definite length L  (Figure 2.2.10a) is rigidly held at both ends. If a 
sinusoidal wave is produced on such a string, the wave is reflected and re-
reflected. Note that the ends of the string, because they are fixed and must 
necessarily have zero displacement, are nodes by definition. The string has a 
number of natural patterns of oscillation, called normal modes, each of which has 
a characteristic frequency that is easily calculated. 

 

L

(a)

2f

1f

3f

N

A

N

n = 1
(b)

12
1

l=L

n = 3
(d)(c)

n = 2
32

3
l=L2l=L

 
Figure 2.2.10   (a) A string of length L  fixed at both ends. The normal modes of vibration 
form a harmonic series; (b) the fundamental or first harmonic; (c) the second harmonic; (d)  
 

the third harmonic 
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In general, we can describe the normal modes of oscillation for the string 
by imposing the requirements that the ends must be nodes and that the nodes and 
antinodes must be separated by one fourth of a wavelength. The first normal 
mode, shown in Figure 2.2.10b, has nodes at its ends and one antinode in the 
middle. This is the longest-wavelength mode and is consistent with our 
requirements. This first normal mode occurs when the wavelength 1l  is twice the 
length of the string, that is. L21 =l . The next normal mode, of wavelength 2l  
(see Figure 2.2.10c), occurs when the wavelength equals the length of the string, 
that is, L=2l . The third normal mode (see Figure 2.2.10d) corresponds to the 
case when 3/23 L=l . In general, the wavelengths of various normal modes for a 
string of length L  fixed at both ends is defined as 

n
L

n
2

=l ,        ( ,...3,2,1=n ),      (2.2.8) 

where the index n  refers to the n -th normal mode of oscillation. These are the 
possible modes of oscillation for the string.  

In general, the motion of an oscillating string fixed at both ends is 
described by the superposition of several normal modes. The exact normal mode 
depends on how the oscillation is started. 

The natural frequencies associated with these modes are obtained from the 
relationship l/vf = , where the wave speed v  is the same for all frequencies. 
Using Eq. (2.2.8), we find that natural frequencies nf  of the normal modes are 

L
vnvf

n
n 2

==
l

   ( ,...3,2,1=n ).   (2.2.9) 

Because m/Tv =  where T  is the tension in the string and m  is its linear mass 
density, we can also express the natural frequencies of a taut string as 

m
T

L
nfn 2

= ,          ( ,...3,2,1=n ).   (2.2.10) 

The lowest frequency 1f , which corresponds to 1=n , is called either 
fundamental or fundamental frequency and is given by  

m
T

L
f

2
1

1 = .     (2.2.11) 

Frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency. Frequencies of normal modes that exhibit an integer–
multiple relationship such as this form a harmonic series, and the normal modes 

are called harmonics. The fundamental frequency 1f  is the frequency of the first 
harmonic; the frequency 12 2 ff =  is the frequency of the second harmonic; and 
the frequency 1nffn =  is the frequency of the n -th harmonic. Other oscillating 
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systems, such as a drumhead, exhibit normal modes, but the frequencies are not 
related as integer multiples of a fundamental. Thus, we do not use the term 
harmonic in association with these types of systems. 

This series of frequencies, all integer multiples of the fundamental, is called 
a harmonic series. Musicians sometimes call 2f , 3f , and so on overtones; 2f  is 
the second harmonic, or the the first overtone, 3f  is the third harmonic, or the 
second overtone, and so on. 

In obtaining Eq. (2.2.8), we used a technique based on the separation 
distance between nodes and antinodes. We can obtain this equation in an 
alternative manner. These results may also be obtained directly from Eq. (2.2.5): 

tkxAy wcos)sin2(= . 
The boundary conditions require that 021 =+ yy  at the ends of the string, that is, 
at 0=x  and Lx = . Since the sine of zero is zero, the first condition is satisfied 
automatically. The second condition requires that 0sin =kL , and this is true only 
when k  has certain special values. The sine of an angle is zero only when the 
angle is zero or an integer multiple of p  (180°). Thus, we must have 

pnkL =  ( ,...3,2,1=n ). 
We do not include the possibility 0=n  because that gives 0=k , that is, a 

wave with zero displacement everywhere (a possible case, to be sure, but not a 
very interesting one). 

Replacing k  above by lp /2 , we obtain 

p
l
p nL

=
2      or 

n
L

n
2

=l , 

in agreement with Eq. (2.2.8). 
Each of the frequencies given by Eq. (2.2.9) corresponds to a possible 

normal mode of motion, that is, a motion in which each particle of the string 
moves sinusoidally, all with the same frequency. As this analysis shows, there is 
an infinite number of normal modes, each with its characteristic frequency. This 
situation is in striking contrast with the simple harmonic oscillator system 
consisting of a single mass and a spring. The harmonic oscillator has only one 
normal mode and one characteristic frequency while the vibrating string has an 
infinite number. 

If a string is initially displaced so that its shape is the same as any one of 
the possible harmonics, it will vibrate, when released, at the frequency of that 
particular harmonic. But when a piano string is struck or a guitar string is 
plucked, not only the fundamental but many of the overtones are present in the 
resulting vibration. This motion is, therefore, a combination, or superposition, of 
normal modes. Several frequencies and motions are present simultaneously, and 
the displacement of any point on the string is the sum (or superposition) of 
displacements associated with the individual modes. Indeed, every possible 
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motion of the string can be represented as some superposition of' normal-mode 
motions.  

The fundamental frequency of a vibrating string is Lvf 2/1 =  where 
m/Tv = . It follows that  

m
T

L
f

2
1

1 = . 

Stringed instruments provide many examples of the implications of this 
equation. For example, all such instruments are tuned by varying the tension T . 
An increase of tension increases the frequency or pitch, and vice versa. The 
inverse dependence of frequency on length L  is illustrated by the long strings of 
the bass section of the piano or the bass viol compared with the shorter strings on 
the piano treble or the violin. In playing the violin or guitar, the usual means of 
varying the pitch is to press the strings against the fingerboard with the fingers to 
change the length of the vibrating portion of the string.  

Example 2.2.3 
The high E string on a guitar measures 64.0 cm in length and has a 

fundamental frequency of 330 Hz. By pressing down on it at the first fret, the 
string is shortened so that it plays an F note that has a frequency of 350 Hz. How 
far is the fret from the neck end of the string? 

Solution. 
Eq. (2.2.9) relates the string length to the fundamental frequency. With 

1=n , we can solve for the speed of the wave on the string,  

422Hz)330(
1

m)64.0(22
=== nfn

Lv  m/s. 

Because we have not adjusted the tuning peg, the tension in the string, and, 
hence, the wave speed, remain constant. We can again use Eq. (2.2.9), this time 
solving for L  and substituting the new frequency to find the shortened string 
length: 

603.0
Hz)2(350

m/s422)1(
2

===
nf

vnL  m. 

The difference between this length and the measured length of 64.0 cm is the 
distance from the fret to the neck end of the string, or 3.70 cm. 

Exercises 

2.2.15. A 2.0-m-long wire having a mass of 0.10 kg is fixed at both ends. 
The tension in the wire is maintained at 20.0 N. What are the frequencies of the 
first three allowed modes of vibration? If a node is observed at a point 0.40 m 
from one end, in what mode and with what frequency is it vibrating? 



 142

2.2.16. Find the fundamental frequency and the next three frequencies that 
could cause a standing-wave pattern on a string that is 30.0 m long, has a mass 
per length of 8109 -´  kg/m, and is stretched to a tension of 20.0 N.  

2.2.17. A standing wave is established in a 120-cm-long string fixed at both 
ends. The string vibrates in four segments when driven at 120 Hz. (a) Determine 
the wavelength. (b) What are the fundamental frequencies of the string?  

2.2.18. A string of length L , mass per unit length m , and tension T  is 
vibrating at its fundamental frequency. Describe the effectt that each of the 
following conditions has on the fundamental frequency: (a) The length of the 
string is doubled, but all other factors are held constant; (b) The mass per unit 
length is doubled, but all other factors are held constant; (c) The tension is 
doubled, but all other factors are held constant.  

2.2.19. A 60.0-cm guitar string under a tension of 50.0 N has a mass per 
unit length of 0.10 g/cm. What is the highest resonance frequency of the string 
that can be heard by a person able to hear frequencies of up to 20 000 Hz?  

2.2.20. A stretched wire vibrates in its first normal mode at a frequency of 
400 Hz. What would be the fundamental frequency if the wire were half as long, 
its diameter were doubled and its tension were increased four-fold?  

2.2.21. A string under tension iT , oscillates in the third harmonic at a 
frequency of 3f , and the waves on the string have a wavelength 3l . If the tension 
is increased to if TT 4= , and the string is again made to oscillate in the third 
harmonic, what are (a) the frequency of oscillation in terms of 3f  and (b) the 
wavelength of the waves in terms of 3l ? 

2.2.22. A nylon guitar string has a linear density of 7.2 g/m and is under a 
tension of 150 N. Fixed supports are 90 cm apart. The string is oscillating in the 

standing wave pattern shown in 
Figure 2.2.10. Calculate the (a) speed, 
(b) wavelength and (c) frequency of the 
traveling waves whose superposition 
produces this standing wave. [Ans. (a) 
140 m/s, (b) 60 cm, max4.1 y ) 

2.2.23. Two sinusoidal waves with identical wavelengths and amplitudes 
travel in opposite directions along a string with a speed of 10 cm/s. If the time 
interval between instants when the string is flat is 0.50 s, what is the wavelength 
of the waves?  

2.2.24. A 125 cm length of string has a mass of 2.0 g. It is stretched with a 
tension of 7.0 N between fixed supports. (a) What is the wave speed for this 
string? (b) What is the lowest resonant frequency of this string? 

2.2.25. What are the three lowest frequencies for standing waves on a wire 
10.0 m long having a mass of 100 g, which is stretched under a tension of 250 N?  

90.0 cm

 
Figure 2.2.10   The string is oscillating in the 
 

standing wave pattern 
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2.2.26. A string oscillates according to the equation 

txy p
p 40cos
3

sin)cm5.0( ÷
ø
ö

ç
è
æ= . 

What are (a) the amplitude and (b) the speed of the two waves (identical except 
for direction of travel) whose superposition gives this oscillation? (c) What is the 
distance between nodes? (d) What is the speed of a particle of the string at the 
position 5.1=x  cm when 8/9=t  s? 

2.2.27. A string 3.0 m long is oscillating as a three-loop standing wave with 
an amplitude of 1.0 cm. The wave speed is 100 m/s. (a) What is the frequency? 
(b) Write equations for two waves that, when combined, will result in this 
standing wave.  

2.2.28. In an experiment on standing waves, a string 90 cm long is attached 
to a prong of an electrically driven tuning fork that oscillates perpendicular to the 
length of the string at a frequency of 60 Hz. The mass of the string is 0.044 kg. 
What tension must the string be under (weights are attached to the other end) if it 
is to oscillate in four loops? 

2.2.29. Oscillation of a 600 Hz tuning fork sets up standing waves in a 
string clamped at both ends. The wave speed for the string is 400 m/s. The 
standing wave has four loops and an amplitude of 2.0 mm. (a) What is the length 
of the string? (b) Write an equation for the displacement of the string as a function 
of position and time. 

2.2.30. A rope, under a tension of 200 N and fixed at both ends, oscillates 
in a second-harmonic standing wave pattern. The displacement of the rope is 
given by 

txy p
p 12sin
2

sin)m1.0( ÷
ø
ö

ç
è
æ= , 

where 0=x  at one end of the rope, x  is in metres, and t  is in seconds. What are 
(a) the length of the rope; (b) the speed of the waves on the rope; and (c) the mass 
of the rope? (d) If the rope oscillates in a third-harmonic standing wave pattern, 
what is the period of oscillation? 

2.2.6   Resonance 

We have seen that a system such as a taut string is capable of oscillating in 
one or more normal modes of oscillation. If a periodic force is applied to such a 
system, the amplitude of the resulting motion is greater than normal when the 
frequency of the applied force is equal to or nearly equal to one of the natural 
frequencies of the system. We have discussed this phenomenon, known as 
resonance. Although a block-spring system or a simple pendulum has only one 
natural frequency, standing wave systems can have a whole set of natural 
frequencies. Because an oscillating system exhibits a large amplitude when driven 
at any of its natural frequencies, these frequencies are often referred to as 
resonance frequencies. 
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Figure 2.2.12 shows the response of an oscillating system to various 
driving frequencies, where one of the resonance frequencies of the system is 
denoted by 0f . Note that the oscillation amplitude of the system is the greatest 
when the frequency of the driving force equals the resonance frequency. The 
maximum amplitude is limited by friction in the system. If a driving force begins 
to work on an oscillating system initially at rest, the input energy is used both to 
increase the amplitude of the oscillation and to overcome the frictional force. 
Once maximum amplitude is reached, the work done by the driving force is used 
only to overcome friction. 

A system is said to be weakly 
damped when the amount of friction to be 
overcome is small. Such a system has a 
large amplitude of motion when driven at 
one of its resonance frequencies, and the 
oscillations persist for a long time after 
the driving force is removed. A system in 
which considerable friction must be 
overcome is said to be strongly damped. 
For a given driving force applied at a 
resonance frequency, the maximum 
amplitude attained by a strongly damped 
oscillator is smaller than that attained by a 
comparable weakly damped oscillator. 
Once the driving force in a strongly 
damped oscillator is removed, the 
amplitude decreases rapidly with time. 

Exercises 

2.2.27. Chains suspending a child swing are 2.0 m long. At what frequency 
should a big brother’s push make the child swing with greatest amplitude? 

2.2.28. Standing wave vibrations are set in a crystal goblet with four 
antinodes equally spaced around the 20.0-cm circumference of its rim. If 
transverse waves move around the glass at 900 m/s, an opera singer would have to 
produce a high harmonic with what frequency to shatter the glass with a resonant 
vibration? 

2.2.29. An earthquake can produce a seiche in a lake in which the water 
sloshes back and forth from end to end with a remarkably large amplitude and 
long period. Consider a seiche produced in a rectangular farm pond. Suppose that 
the pond is 9.15 m long and of uniform depth. You measure that a wave pulse 
produced at one end reaches the other end in 2.50 s. (a) What is the wave speed? 
(b) To produce the seiche, you suggest that several people stand on the bank at 
one end and paddle together with snow shovels, moving them in simple harmonic 
motion. What must be the frequency of this motion? 

A
m

pl
itu

de

Frequency of driving force
0f

 
Figure 2.2.12   Graph of the amplitude 
(response) versus driving frequency for an 
oscillating system. The amplitude is a 
maximum at the resonance frequency 0f . 
 

Note that the curve is not symmetric 
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2.2.30. A 125 cm length of string has a mass of 2.0 g. It is stretched with a 
tension of 7.0 N between fixed supports. (a) What is the wave speed of the string? 
(b) What is the lowest resonant frequency of the string? 

2.2.31. A string A is stretched between two clamps separated by distance 
L . A string B with the same linear density and under the same tension as string A, 
is stretched between two clamps separated by distance L4 . Consider the first 
eight harmonics of the string B. Which, if any, has a resonant frequency that 
matches a resonant frequency of the string A? 

2.2.32. A string that is stretched between fixed supports separated by 75.0 
cm has resonant frequencies of 420 and 315 Hz with no intermediate resonant 
frequencies. What are (a) the lowest resonant frequency and (b) the wave speed? 
[Ans. (a) 105 Hz, (b) 158 m/s.] 

2.2.7   Longitudinal Standing Waves 

When longitudinal waves propagate in a fluid or gas in a tube of finite 
length, they are reflected from the ends in the same way that transverse waves on 
a string are reflected at its ends. The superposition of the waves traveling in 
opposite directions again forms a standing wave. 

When reflection takes place at a closed end, the displacement of the 
particles is always equal to zero. This situation is analogous to a fixed end of a 
string; in both cases there is no displacement at the end, and the end is a node . For 
clarity, in the following discussion, we call a closed end of a tube or pipe a 
displacement node. Furthermore, because the pressure wave is 90° out of phase 
with the displacement wave, the closed end of an air column corresponds to a 
pressure antinode (that is, a point of maximum pressure variation). 

If the end of the tube is open, the nature of the reflection is more complex 
and depends on whether the tube is wide or narrow compared with the 
wavelength. If the tube is narrow compared with the wavelength, which is the 
case in most musical instruments, the open end is a displacement antinode and a 
pressure node. (A free end of a stretched string is also a displacement antinode.) 
Thus longitudinal waves in a column of gas are reflected at the closed and open 
ends of a tube in the same way that transverse waves in a string are reflected at 
fixed and free ends, respectively. 

You may wonder how a sound wave can reflect from an open end, since 
there may not appear to be a change in the medium at this point. It is indeed true 
that the medium through which the sound wave moves is air both inside and 
outside the pipe. Remember that sound is a pressure wave, however, and a 
compression region of the sound wave is constrained by the sides of the pipe as 
long as the region is inside the pipe. As the compression region exits at the open 
end of the pipe, the constraint is removed and the compressed air is free to expand 
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into the atmosphere. Thus, there is a change in the character of the medium 
between the inside of the pipe and the outside even though there is no change in 
the material of the medium. This change in character is sufficient to allow some 
reflection. 

The first three normal modes of oscillation of a pipe open at both ends are 
shown in Figure 2.2.13a. When air is directed against an edge at the left, 
longitudinal standing waves are formed, and the pipe resonates at its natural 
frequencies. All normal modes are excited simultaneously (although not with the 
same amplitude). Note that both ends are displacement antinodes (approximately). 
In the first normal mode, the standing wave extends between two adjacent 
antinodes which is a distance of half a wavelength. Thus, the wavelength is twice 

the length of the pipe, and the fundamental frequency is 
L
vf

21 = . As Figure 

2.2.13a shows, the frequencies of the higher harmonics are 12 f , 13 f . Thus, we 
can say that in a pipe open at both ends, the natural frequencies of oscillation 
form a harmonic series that includes all integral multiples of the fundamental 
frequency. 

Because all harmonics are present and because the fundamental frequency 
is given by the same expression as that for a string (see Eq. (2.2.9)), we can 
express the natural frequencies of oscillation as 

L
vnfn 2

=     ( ,...3,2,1=n ).   (2.2.12) 

Despite the similarity between Eqs. (2.2.9) and (2.2.12), we must remember 
that in Eq. (2.2.9), v  is the speed of waves on the string, whereas in Eq. (2.2.12), 
v  is the speed of sound in air. 

If a pipe is closed at one end and open at the other, the closed end is a 
displacement node (see Figure 2.2.13b). In this case, the standing wave for the 
fundamental mode extends from an antinode to the adjacent node, which is one 
fourth of a wavelength. Hence, the wavelength for the first normal mode is L4 , 
and the fundamental frequency is Lvf 4/1 = . As Figure 2.2.13b shows, the 
higher-frequency waves that satisfy our conditions are those that have a node at 
the closed end and an antinode at the open end; this means that the higher 
harmonics have frequencies 13 f , 15 f . 

It is interesting to investigate what happens to the frequencies of 
instruments based on air columns and strings during a concert as the temperature 
rises. The sound emitted by a flute, for example, becomes sharp (increases in 
frequency) as it warms up because the speed of sound increases in the 
increasingly warmer air inside the flute (consider Eq. (2.2.12)). The sound 
produced by a violin becomes flat (decreases in frequency) as the strings expand 
thermally because the expansion causes their tension to decrease. 
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Figure 2.2.13   Motion of air molecules in standing longitudinal waves in a pipe along with 
schematic representations of the waves. The graphs represent the displacement amplitudes, 
not the pressure amplitudes. (a) In a pipe open at both ends, the harmonic series created 
consists of all integer multiples of the fundamental frequency 1f , 12 f , 13 f , (b) In a pipe 
closed at one end and open at the other, the harmonic series created consists of only  
 

odd-integer multiples of the fundamental frequency 1f , 13 f , 15 f  
 
We can demonstrate longitudinal standing waves in a column of gas and 

measure the wave speed by using the apparatus called Kundt's tube, shown in 
Figure 2.2.14. A glass tube a metre or so long is closed at one end and has a 
flexible diaphragm at the other end that can transmit vibrations. We use a sound 
source which might be a small loudspeaker driven by an audio oscillator and 
amplifier to vibrate the diaphragm sinusoidally with a variable frequency. A small 
amount of light powder or cork dust is distributed uniformly along the bottom 
side of the tube. As we vary the frequency of the sound, we pass through 
frequencies where the amplitude of the standing waves becomes large enough for 
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the moving gas to sweep the cork dust along the tube at all points where the gas is 
in motion. The powder, therefore, collects at the displacement nodes, which can 
be seen and measured easily. 

 

S

N A N A N A N A N
Powder collects at the nodesVibrating diaphragm

Gas inlet
tube

 
Figure 2.2.14   Kundt's tube for determining the velocity of sound in a gas. The shading 
represents the density of the gas molecules at an instant when the pressure at the 
 

displacement nodes is a maximum or a minimum 
 
In a standing wave, the distance between two adjacent nodes is one-half 

(not one) wavelength. Thus, we can measure the wavelength by measuring the 
distances 2/l  between adjacent clumps of powder. We read the frequency f  
from the oscillator dial and can calculate the speed v  of the waves from the usual 
relation 

fv l= . 
At a displacement node, the pressure variations above and below the 

average have their maximum value, while at a displacement antinode the pressure 
does not vary. To understand this, note that two small masses of gas on opposite 
sides of a displacement node vibrate in opposite phase. When the masses of gas 
approach each other, the gas between them is compressed and the pressure rises; 
when they recede from each other, the pressure drops. But two small masses of 
gas on opposite sides of a displacement antinode vibrate in phase and so cause no 
pressure variations at the antinode. 

We can describe this relationship in terms of pressure nodes, which are the 
points where the pressure does not vary, and pressure antinodes, which are the 
points where its variation is greatest. A pressure node is always a displacement 
antinode, and a pressure antinode is always a displacement node. An open end of 
a thin tube or pipe is a pressure node because such an end is open to the 
atmosphere and is, thus, at constant pressure. But for this reason, an open end is 
always a displacement antinode. 
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Example   2.2.4  
A section of drainage culvert 1.23 m in length makes a howling noise when 

the wind blows.  
a) Determine the frequencies of the first three harmonics of the culvert if it 

is open at both ends. Take 343=v  m/s as the speed of sound in air. 
Solution. 
The frequency of the first harmonic of a pipe open at both ends is 

139
m)23.1(2

m/s343
21 ===

L
vf  Hz. 

Because both ends are open, all harmonics are present; thus, 
2782 12 == ff  Hz   and   4173 13 == ff  Hz. 

b) What are the three lowest natural frequencies of the culvert if it is 
blocked at one end? 

Solution. 
The fundamental frequency of a pipe closed at one end 

7.69
m)23.1(4

m/s343
41 ===

L
vf  Hz. 

In this case, only odd harmonics are present; hence, the next two harmonics 
have frequencies 2093 13 == ff  Hz and  

5495 15 == ff  Hz. 
c) For the culvert open at both ends, how many of the harmonics present 

fall within the normal human hearing range (20 to 17000 Hz)? 
Solution. 
Because all harmonics are present, we can express the frequency of the 

highest harmonic heard as 1nffn =  where n  is the number of harmonics that we 
can hear. For 17000=nf  Hz, we find that the number of harmonics present in the 
audible range is 

122
Hz139

Hz00017
==n . 

Only the first few harmonics are of sufficient amplitude to be heard. 

Exercises 

2.2.33. Calculate the length of a pipe that has a fundamental frequency of 
240 Hz if the pipe is (a) closed at one end and (b) open at both ends. 

2.2.34. The fundamental frequency of an open organ pipe corresponds to 
middle С (261.6 Hz on the chromatic musical scale). The third resonance of a 
closed organ pipe has the same frequency. What are the lengths of the two pipes? 
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2.2.35. Estimate the length of your ear canal from its opening at the 
external ear to the eardrum. If you regard the canal as a tube that is open at one 
end and closed at the other, at approximately what fundamental frequency would 
you expect your hearing to be most sensitive? Explain why you can hear 
especially soft sounds just around this frequency. 

2.2.36. The longest pipe on an organ that has pedal stops is often 4.88 m. 
What is the fundamental frequency (at 0°C) if the nondriven end of the pipe is (a) 
closed and (b) open? (c) What are the frequencies at 20.0°C? 

2.2.8   Standing Waves on Rods and Plates 

Standing waves can also be set up on rods and plates. A rod clamped in the 
middle and stroked at one end oscillates, as depicted in Figure 2.2.15a. The 
oscillations of the particles of the rod are longitudinal, and so the broken lines in 
Figure 2.2.15b represent longitudinal displacements of various parts of the rod. 
For clarity, we have drawn them in the transverse direction, just as we did for air 
columns. The midpoint is a displacement node because it is fixed by the clamp, 
whereas the ends are displacement antinodes because they are free to oscillate. 
The oscillations in this setup are analogous to those in a pipe open at both ends. In 
Figure 2.2.15a the broken lines represent the first normal mode for which the 
wavelength is L2  and the frequency is Lvf 2/=  where v  is the speed of 
longitudinal wave in the rod. Other normal modes may be excited by clamping 
the rod at different points. For example, the second normal mode (Fig. 2.2.15b) is 
excited by clamping the rod a distance 4/L  away from one end. 
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Figure 2.2.15   Normal-mode longitudinal vibrations of a rod of length L  (a) clamped at the 
middle to produce the first normal mode and (b) clamped at a distance 4/L  from one end to 
produce the second normal mode. Note that the dashed lines represent amplitudes parallel to 
 

the rod (longitudinal waves) 
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Two-dimensional oscillations can be set up in a flexible membráne 
stretched over a circular hoop, such as that in a drumhead. As the membrane is 
struck at some point, wave pulses that arrive at the fixed boundary are reflected 
many times. The resulting sound is not harmonic because the oscillating 
drumhead and the drum's hollow interior together produce a set of standing waves 
having frequencies that are not related by integer multiples. Without this 
relationship, the sound may be more correctly described as noise than as music. 
This is in contrast to the situation in wind and stringed instruments which produce 
sounds that we describe as musical. 

Some possible normal modes of oscillation for a two-dimensional circular 
membráne are shown in Figure 2.2.16. The lowest normal mode, which has a 
frequency f , contains only one nodal curve; this curve runs around the outer 
edge of the membráne. The other possible normal modes show additional nodal 
curves that are circles and straight lines across the diameter of the membrane. 

 

 
Figure 2.2.16   Representation of some of the normal modes possible in a circular 
membrane fixed at its perimeter. The frequencies of oscillation do not form a harmonic 
 

series 
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Exercises 

2.2.37. An aluminum rod is clamped one quarter of the way along its length 
and set into longitudinal vibration by a variable-frequency driving source. The  
lowest frequency that produces resonance is 4400 Hz. The speed of sound in 
aluminum is 5100 m/s. Determine the length of the rod. 

2.2.38. An aluminum rod 1.60 m in length is held at its centre. It is stroked 
with a rosin-coated cloth to set up a longitudinal vibration. (a) What is the 
fundamental frequency of the waves established in the rod? (b) What harmonics 
are set in the rod held in this manner? (c) What would be the fundamental 
frequency if the rod were made of copper? 

2.2.39. A 60.0-cm metal bar that is clamped at one end is struck with a 
hammer. If the speed of longitudinal (compressional) waves in the bar is 4,500 
m/s, what is the lowest frequency with which the struck bar resonates? 

2.2.9   Beats: Interference in Time 
The interference phenomena with which we have been dealing so far 

involve the superposition of two or more waves having the same frequency. As 
the resultant wave depends on the coordinates of the disturbed medium, we refer 
to the phenomenon as spatial interference. Standing waves in strings and pipes 
are common examples of spatial interference. 

We now consider another type of interference, the one that results from the 
superposition of two waves having slightly different frequencies. In this case, 
when two waves are observed at the point of superposition, they are periodically 
in and out of phase. That is, there is a temporal (time) alternation between 
constructive and destructive interference. Thus, we refer to this phenomenon as 
interference in time, or temporal interference. For example, if two tuning forks of 
slightly different frequencies are struck, one hears a sound of periodically varying 
intensity. This phenomenon is called beating: 

Beating is the periodic variation in intensity at a given point due to the 
superposition of two waves having slightly different frequencies. 

The number of intensity maxima one hears per second, or the beat 
frequency, equals the difference in frequency between the two sources, as we 
shall show below. The maximum beat frequency that the human ear can detect is 
about 20 beats/s. When the beat frequency exceeds this value, the beats blend 
indistinguishably with the compound sounds producing them. 

A piano tuner can use beats to tune a stringed instrument by "beating" a 
note against a reference tone of known frequency and then adjust the string 
tension until the frequency of the sound it emits equals the frequency of the 
reference tone. The tuner does this by tightening or loosening the string until the 
beats produced by it, and the reference source become too infrequent to notice. 
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Consider two sound waves of equal amplitude traveling through a medium 
with slightly different frequencies 1f  and 2f . We use equations similar to Eq. 
(2.1.7) to represent the wave functions for these two waves at a point that we 
choose as 0=x : 

tfAtAy 111 2coscos pw == , 
tfAtAy 222 2coscos pw == . 

Using the superposition principle, we find that the resultant wave function 
at this point is 

tftfAyyy 2121 2cos2(cos pp +=+= . 
The trigonometric identity 
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tfftffAy ÷
ø
ö

ç
è
æ +

úû

ù
êë

é
÷
ø
ö

ç
è
æ -

=
2

2cos
2
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Graphs of the individual waves and the resultant wave are shown in 
Figure 2.2.17. From the factors in Eq. (2.2.13), we see that the resultant sound for 
a listener standing at any given point has an effective frequency equal to the 
average frequency 2/)( 21 ff +  and an amplitude given by the expression in the 
square brackets: 

tffAAresult ÷
ø
ö

ç
è
æ -

=
2

2cos2 21p .       (2.2.14) 
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Figure 2.2.17   Beats are formed by the combination of two waves of slightly different 
frequencies. (a) The individual waves. (b) The combined wave has an amplitude (broken line)  
 

that oscillates in time 
 

That is, the amplitude and therefore the intensity of the resultant sound vary 
in time. The broken line in Figure 2.2.17b is a graphical representation of Eq. 
(2.2.14) and is a sine wave varying with frequency 2/)( 21 ff - . 
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Note that a maximum in the amplitude of the resultant sound wave is 
detected whenever 

1
2

2cos 21 ±=÷
ø
ö

ç
è
æ - tff

p . 

This means there are two maxima in each period of the resultant wave. 
Because the amplitude varies with frequency as 2/)( 21 ff - , the number of beats 
per second, or the beat frequency bf , is twice this value. That is, 

21 fffb -=     (2.2.15) 
For instance, if one tuning fork vibrates at 438 Hz and a second one 

vibrates at 442 Hz, the resultant sound wave of the combination has a frequency 
of 440 Hz (the musical note A) and a beat frequency of 4 Hz. A listener would 
hear a 440-Hz sound wave go through an intensity maximum four times every 
second. 

Example 2.2.5 
You wish to tune the note A3 on a piano to its proper frequency of 220 Hz. 

You have available a tuning fork of frequency is 440 Hz. How should you 
proceed? 

Solution. 
Two frequencies are too far apart to produce beats and the piano string will 

oscillate not only in its fundamental mode (at 220 Hz when tuned) but also in its 
second harmonic mode (at 440 Hz when in tune). Thus, with the string somewhat 
out of tune, the frequency of its second harmonic will beat against the 440 Hz of 
the tuning fork. To tune the string, you can listen for those beats and then either 
tighten or loosen the string to decrease the beat frequency until the beating 
disappears. 

Exercises 

2.2.40. In certain ranges of a piano keyboard, more than one string is tuned 
to the same note to provide extra loudness. For example, the note at 110 Hz has 
two strings that vibrate at this frequency. If one string slips from its normal 
tension of 600 N to 540 N, what beat frequency is heard when the hammer strikes 
the two strings simultaneously? 

2.2.41. While attempting to tune the note С at 523 Hz, a piano tuner hears 2 
beats/s between a reference oscillator and the string. (a) What are the possible 
frequencies of the string? (b) When she tightens the string slightly, she hears 3 
beats/s. What is the frequency of the string now? (c) By what percentage should 
the piano tuner now change the tension in the string to bring it into tune?  

2.2.42. A student holds a tuning fork oscillating at 256 Hz. He walks 
toward a wall at a constant speed of 1.33 m/s. (a) What beat frequency does he 
observe between the tuning fork and its echo? (b) How fast must he walk away 
from the wall to observe a beat frequency of 5.00 Hz? 
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2.2.10   Energy in a Standing Wave 
It is instructive to describe the energy associated with the particles of a 

medium in which a standing wave exists. Consider a standing wave formed on a 
taut string fixed at both ends, as shown in Figure 2.2.18. Except for the nodes, 
which are always stationary, all points on the string oscillate vertically with the 
same frequency but with different amplitudes of simple harmonic motion. Figure 
2.2.18 represents snapshots of a standing wave at various times over one half of a 
period. 

 

N N N
t = 0(a) (b)

t = T/8

(c) t = T/4 (d)

(e)

t = T/3 8

t = T/2
 

Figure 2.2.18   A standing-wave pattern in a taut string. The five "snapshots" were taken at 
half-cycle intervals. (a) At 0=t , the string is momentarily at rest; thus, 0=K , and all the 
energy is potential energy U  associated with the vertical displacements of the string particles. 
(b) At 8/Tt = , the string is in motion, as indicated by the arrows, and the energy is half 
kinetic and half potential. (c) At 4/Tt = , the string is moving but horizontal (undeformed); 
thus, 0=U , and all the energy is kinetic. (d) The motion continues as indicated. (e) At 

2/Tt = , the string is again momentarily at rest, but the crests and troughs of (a) are 
reversed. The cycle continues until ultimately, when a time interval equal to T  has passed, the 
 

configuration shown in (a) is repeated 
 
In a traveling wave energy is transferred along with the wave. We can 

imagine this transfer to be due to work done by one segment of the string on the 
next segment. As one segment moves upward, it exerts a force on the next 
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segment, moving it through a displacement – that is, work is done. A particle of 
the string at a node, however, experiences no displacement. Thus, it cannot do 
work on the neighboring segment. As a result, no energy is transmitted along the 
string across a node, and energy does not propagate in a standing wave. For this 
reason, standing waves are often called stationary waves. 

The energy of the oscillating string continuously alternates between elastic 
potential energy, when the string is momentarily stationary (see Figure 2.2.18a), 
and kinetic energy, when the string is horizontal and the particles have their 
maximum speed (see Figure 2.2.18c). At intermediate times (see Figure 2.2.18b 
and d), the string particles have both potential energy and kinetic energy 

Exercises 

2.2.43. Show that the maximum kinetic energy in each loop of a standing 
wave produced by two travelling waves of identical amplitudes is fvy2

max
22 mp . 

2.2.44. Two pulses travel along a string in opposite directions. The wave 
speed v  is 2.0 m/s and the pulses are 6.0 cm apart at 0=t . In what form (or type) 
is the energy of the pulses at 15=t  ms?  

Summary 
A wave that reaches a boundary of the medium in which it propagates is 

reflected. At any point where the initial and reflected waves overlap, the total 
wave displacement is the sum of the displacements of the individual waves; this 
statement is the principle of superposition. 

When two traveling waves having equal amplitudes and constant phase 
difference superimpose, the resultant wave has an amplitude that depends on the 
phase angle f  between the two waves. Constructive interference occurs when the 
two waves are in phase, corresponding to ,..4,2,0 ppf =  rad. Destructive 
interference occurs when two waves are I80º out of phase, corresponding to 

,...5,3, pppf =  rad.  
Standing waves are formed from the superposition of two sinusoidal waves 

having the same frequency and amplitude but traveling in opposite directions. The 
resultant standing wave is described by the wave function 

tkxAy wcos)sin2(= . 
Hence, the amplitude of the standing wave is A2 , and the amplitude of the 

simple harmonic motion of any particle of the medium varies according to its 
position as kxAsin2 . The points of zero amplitude (nodes) occur at 2/lnx =  
( ,..3,2,1,0=n ) The maximum amplitude points (called antinodes) occur at 

4/lnx = , ( ,..5,3,1=n ). Adjacent antinodes are separated by a distance 2/l . 
Adjacent nodes are also separated by a distance 2/l .  

When a wave is reflected from a fixed or free end of a stretched string, the 
incident and reflected waves combine to form a standing wave which does not 
appear to travel in either direction. Its pattern contains nodes and antinodes; 
adjacent nodes are spaced a distance 2/l  apart, as are adjacent antinodes. 
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When both ends of a string of length L  are held, standing waves can occur 
only when L  is an integer multiple of 2/l ; the corresponding possible 
frequencies are given by 

L
vnfn 2

=       ( ,..3,2,1=n ). 

Each frequency, with its associated vibration pattern is called a normal 
mode. The lowest frequency 1f  is called the fundamental frequency. In terms of 
the mechanical properties T  and m  of the string, the fundamental frequency is 
given by 

m
T

L
f

2
11 = ,     ( ,..3,2,1=n ). 

Standing waves also occur in wave motion in pipes or tubes. A closed end 
is a displacement node and a pressure antinode; an open end is a displacement 
antinode and a pressure node. 

For a pipe open at both ends, the normal-mode frequencies are given by 

L
vnfn 2

=       ( ,..3,2,1=n ). 

For a pipe open at one end and closed at the other, the normal-mode 
frequencies are 

L
vnfn 4

=       ( ,..3,2,1=n ). 

When two or more waves overlap in the same region of space, the resulting 
effects are called interference. The resulting amplitude can be either larger or 
smaller than the amplitude of each individual wave, depending on whether the 
waves are in phase or out of phase. If waves are in phase, the result is called 
reinforcement or constructive interference; if they are out of phase, it is called 
cancellation, or destructive interference. 

When a periodically varying force is applied to a system having normal 
modes of vibration, the system vibrates with the same frequency as that of the 
force; this is called a forced oscillation. If the force frequency is equal or close to 
one of the normal-mode frequencies, the amplitude of the resulting forced 
oscillation can become very large; this phenomenon is called resonance. 

 
Key Terms 
boundary conditions – граничные условия 
principle of superposition – принцип суперпозиции 
interference - интерференция 
node - узел 
antinode - пучность 
standing wave – стоячая волна 
fundamental frequency – основная частота 
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Chapter 3  

Electromagnetic Oscillations 
We have studied the behavior of an RC  circuit and that of an RL  circuit. 

In both cases, the behavior is characterized by an exponential approach to some 
steady-state value. In this chapter, we will see how the electric charge q  varies 
with time in a circuit made of an inductor L , a capacitor C , and a resistor R . 
From another point of view, we shall discuss how energy shuttles back and forth 
between the magnetic field of the inductor and the electric field of the capacitor, 
while it is being gradually dissipated as thermal energy in the resistor. In the 
absence of energy losses, the charges on the capacitor surge back and forth 
indefinitely. This process is called an electromagnetic oscillation . 

We have discussed mechanical oscillations before. We saw how 
displacement x  varies with time in a mechanical oscillating system made of a 
block of mass m , a spring of spring constant k , and a viscous or frictional 
element such as oil. We also saw how energy shuttled back and forth between the 
kinetic energy of the oscillating mass and the potential energy of the spring, 
gradually dissipated as thermal energy. 

The parallel between mechanical and electromagnetic oscillations is exact, 
and the controlling differential equations are identical. Thus, there is no new 
mathematics to be learned; we can simply change the symbols and give our full 
attention to the physics of the process.  

3.1   Oscillations in LC Circuit 

We now examine the two-element circuit combination LC  (Figure 3.1). 
We’ll see that in this case, the charge, current, and potential difference do not 
decay exponentially with time but vary sinusoidally (with the period T  and the 
angular frequency w ). Such a circuit is called LC  oscillator. 

From the energy standpoint (in the absence of 
energy losses), the oscillations of an electrical circuit 
consist of a transfer of energy back and forth from the 
electric field of the capacitor to the magnetic field of 
the inductor. The total energy associated with the 
circuit remains constant. This is analogous to the 

transfer of energy in an oscillating mechanical system from kinetic to potential, 
and vice versa, with the total energy remaining constant. 

If we charge the capacitor C  in LC  circuit and connect it to inductor L , 
electromagnetic oscillations occur in the circuit. Succeeding stages of the 
oscillations in a simple LC  circuit are shown in Figure 3.2. The energy stored in 

L C

 
Figure 3.1   Resistanceless 
 

LC –circuit 
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the electric field of the capacitor at any time is 

C
qUE 2

2
= ,         (3.1) 

where q  is the charge on the capacitor at that time.  
The energy stored in the magnetic field of the inductor at any time is 

2

2LiUB = ,          (3.2) 

where i  is the current through the inductor at that time. 
From now in this chapter, we shall use small letters for representing 

instantaneous values of the electrical quantities of a sinusoidally oscillating 
circuit and capital letters for the amplitudes of those quantities. Assume that 
initially the charge q  on the capacitor is at its maximum value Q  and that the 
current i  through the inductor is zero, state of the circuit is shown in Figure 3.2a. 
The bar graphs for energy indicate that at this instant, with zero current through 
the inductor and maximum charge on the capacitor, the energy BU  of the 
magnetic field is zero and the energy EU  of the electric field is a maximum. 

The capacitor now starts to discharge through the inductor, positive charge 
carriers moving counterclockwise, as shown in Figure 3.2b. This means that a 
current i  given by dtdq /  is established. As the capacitor charge decreases, the 
energy stored in the electric field within the capacitor also  decreases. This energy 
is transferred to the magnetic field that appears around the  inductor because of the 
current i  that is building up there. Thus, the electric field decreases and the 
magnetic field builds up as energy is transferred from the electric field to the 
magnetic field. 

The capacitor eventually loses all its charge (Figure 3.2c) as well as its 
electric field and the energy stored in that field. The energy has been fully 
transferred to the magnetic field of the inductor. The magnetic field is at its 
maximum magnitude, and the current through the inductor is at its maximum 
value I . 

Although the charge on the capacitor is now zero, the counterclockwise 
current must continue because the inductor does not allow it to change suddenly 
to zero. The current goes on to transfer positive charge from the top plate to the 
bottom plate through the circuit (Figure 3.2d).  Energy now flows from the 
inductor back to the capacitor as the electric field within the capacitor builds up 
again. The current gradually decreases during this energy transfer. When the 
energy has been transferred completely back to the capacitor (Figure 3.2e), the 
current has become zero. The situation of Figure 3.2e is similar to the initial one, 
except that the capacitor is now charged oppositely. The capacitor starts to 
discharge again but now with a clockwise current (Figure 3.2f). Now the process 
repeats in opposite direction: We see that the clockwise current builds to a 
maximum (Figure 3.2g) and then decreases (Figure 3.2h), until the circuit 
eventually returns to its initial state (Figure 3.2a). The process repeats at some 
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frequency f  and, thus, at an angular frequency fpw 2= . In the ideal LC  circuit 
with no resistance, there are no energy transfers other than that between the 
electric field of the capacitor and the magnetic field of the inductor. Owing to the 
conservation of energy, the oscillations continue indefinitely. It is worth to be 
mentioned that oscillations need not begin with the energy all in the electric field; 
the initial situation could be any other stage of the oscillation. 
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Figure 3.2   Eight stages in a single oscillation cycle of a resistanceless LC  circuit. The bar 
graphs by each figure show the stored magnetic and electric energies. The magnetic field lines 
of the inductor and the electric field lines of the capacitor are shown. (a) Capacitor with the 
maximum charge, no current. (b) Capacitor discharging, current increasing; (c) Capacitor fully 
discharged, current maximum. (d) Capacitor charging but with polarity opzposite that in (a), 
current decreasing. (e) Capacitor with maximum charge. having polarity opposite that in (a), no 
current; (f) Capacitor discharging, current increasing with direction opposite that in (b); (g)  
 

Capacitor fully discharged, current maximum. (h) Capacitor charging, current decreasing 
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Exercises 

3.1. Why does an LC -circuit produce oscillations?   (Ans. When a charged 
capacitor in an LC -circuit discharges through the inductor, the electric energy 
stored between the plates of capacitor appears as the magnetic energy inside the 
inductor. When the capacitor is discharged, the magnetic field linked with the 
inductor starts collapsing. Due to this, the induced EMF is produced in the 
inductor, the capacitor starts charging; and ultimately, the magnetic energy 
appears as the electric energy across the capacitor. This process repeats again and 
again, giving rise to LC -oscillations.) 

3.2   Mathematical Description and Comparison with  

Mechanical Oscillations 

Let us look a little closer at the analogy between the oscillating LC  system 
and an oscillating block-spring system. Two kinds of energy are involved in the 
block-spring system. One is potential energy of the compressed or extended 
spring; the other is kinetic energy of the moving block.  

 
Table 3.1   Analogies between electrical and mechanical systems 

Mass on a Spring Circuit Containing Inductance and 
Capacitance 

Kinetic energy = 2
2
1 mv  Magnetic energy = 21

2
Li  

Potential energy = 21
2

kx  Electrical energy = 
2

2
q
C

 

222
2
1

2
1

2
1 kAkxmv =+  

2 2
21

2 2 2
q QLi
C C

+ =  

22/ xAmkv -±=  2 21/i LC Q q= ± -  

dt
dxv =  dqi

dt
=  

cos / cosx A k m t A tw= =  cos 1/ cosq Q LC t Q tw= =  
tvtAv www sinsin max-=-=  sin sini Q t I tw w w= - = -  

 
By looking across the table, we can see an analogy between the forms of 

the two pairs of energies – the mechanical energy of the block-spring system and 
the electromagnetic energies of the LC  oscillator. The equations for v  and i  help 
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us sее the details of the analogy. They tell us that q  corresponds to x , and i  
corresponds to v . These correspondences suggest that in the energy expressions, 

C/1  corresponds to k  and L  corresponds to m . Thus, 

xq ® ,    k
C

®
1 , 

vi ® ,    mL ® . 
We have seen that the angular frequency of oscillation of a frictionless 

block-spring system is  

m
k

=w .       (block-spring system)         (3.3) 

The correspondences listed above suggest that to find the angular frequency 
of oscillations for a resistanceless LC  circuit, k  should be replaced by C/1  and 
m  by L , yielding 

LC=w .    ( LC  circuit)       (3.4) 
We shell derive this result just now. We shell show explicitly that Eq. (3.4) 

for the angular frequency of LC  oscillations is correct. At first we shell obtain 
differential equation of oscillation and expression for angular frequency w  for 
block-spring system, then do the same for LC  circuit and compare the obtained 
results. 

The Block-Spring Oscillator. We can write. for the total energy U  of a 
block-spring oscillator at any instant  

22

22 kxmvUUU sb +=+=    (3.5) 

where bU  and sU  are, respectively, the kinetic energy of the moving block and 
the potential energy of the stretched or compressed spring. If there is no friction –
we assume, the total energy U  remains constant with time even though v  and x  
vary. In more formal language, 0/ =dtdU . This leads to 

dt
dxkx

dt
dvmvkxmv

dt
d

dt
dU

+=÷
÷
ø

ö
ç
ç
è

æ
+=

22

22
.    (3.6) 

However, 
dt
dxv = , and 2

2

dt
xd

dt
dv

= . With these substitutions, Eq. (3.6) 

becomes 

02

2
=+ kx

dt
xdm ,   or 

02
2

2
=+ x

dt
xd

w ,   (block-spring oscillations)   (3.7) 
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where mk /2 =w . Eq. (3.7) is the fundamental differential equation that governs 
the frictionless block-spring oscillations. The general solution to Eq. (3.7) – that 
is, the function )(tx  that describes the block-spring oscillations – is  

)cos( fw += tAx ,   (displacement).   (3.8) 
in which A  is the amplitude of the mechanical oscillations, w  is the angular 
frequency of the oscillations, and f  is a phase constant. 

The LC  Oscillator. Now let us analyze the oscillations of a resistanceless 
LC  circuit, proceeding exactly as we just did for the block-spring oscillator. The 
total energy U  present at any instant in an oscillating LC  circuit is given by 

C
qLiUUU EB 22

22
+=+=     (3.9) 

in which BU  is the energy stored in the magnetic field of the inductor and EU  is 
the energy stored in the electric field of the capacitor. Since we have assumed the 
circuit resistance to be zero, no energy is transferred into thermal energy and U  
remains constant with time. In more formal language, dtdU /  must be zero. This 
leads to 

dt
dq

C
q

dt
diLi

C
qLi

dt
d

dt
dU

+=÷
÷
ø

ö
ç
ç
è

æ
+=

22

22
.   (3.10)  

However, 
dt
dqi =  and 2

2

dt
qd

dt
di

= . With these substitution Eq. (3.10) becomes 

01
2

2
=+ q

LCdt
qd .    ( LC  oscillations)   (3.11) 

This is the differential equation that describes the oscillations of a 
resistanceless LC  circuit. If we denote CL/1  as 2w , we obtain the same equation 
as Eq. (3.7), with the only difference that q  instead of x . 

02
2

2
=+ q

dt
qd

w .     (3.12) 

We can obtain Eq. (3.11) from other standpoint: According to Kirhgoff’s 
loop rule, the sum of potential differences in a circuit equals the sum of EMF in it. 
In our case of a resistanless circuit, the capacitor voltage CqUC /=  must be 
equal to the EMF of the self-induction at the inductor dtLdis /-=e  at each 
instant of time. Hence, 

dt
diL

C
q

-= .     (3.13) 
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As dtdqi /= , then 22 // dtqddtdi = . When we substitute this expression into Eq. 
(3.13) and rearrange the later, we obtain the same differential equation as Eq. 
(3.12): 

02
2

2
=+ q

dt
qd

w , 

which is analogous to Eq. (1.13) for the mechanical harmonic oscillator. The 
solutions of this differential equation, functions with their second derivative equal 
to LC/1-  times the original function, are 

tQq wcos= ,    (3.13a) 
tQq wsin= ,    (3.13b) 

)cos( fw += tQq     (3.13c) 
where LC/1=w , and Q  and f  are constants. Just as with the mechanical 
harmonic oscillator, the choice of one of these functions is determined by the 
initial conditions. If at time 0=t , the capacitor has maximum charge and 0=i , 
as in the discussion above, then we use Eq. (3.14a). If at 0=t , 0=q  but i  is 
different from zero, we use Eq. (3.14b). And if both q  and i  are different from 
zero at time 0=t , the more general form, Eq. (3.14c), must be used. The striking 
parallel between the mechanical and electrical systems shown in Table 3.1 is only 
one of many such examples in physics. So close is the parallel between electrical 
and mechanical (and acoustical) systems that it is possible to solve complicated 
mechanical and acoustical problems by setting up analogous electrical circuits 
and measuring the currents and voltages that correspond to the mechanical and 
acoustical quantities to be determined. This is the basic principle of one kind of 
analog computer. 

Exercises 

3.2. Show that the angular frequency of free oscillations of an LC  circuit is 
equal to LC/1 . 

3.3. A charged 30 µF capacitor is connected to a 27 mH inductor. What is 
the angular frequency of free oscillations of the circuit? 

3.4. An inductor having 40=L  mH is to be combined with a capacitor to 
make an LC  circuit with the natural frequency of 6102´  Hz. What value of 
capacitance should be used? 

3.5. The maximum capacitance of a variable air capacitor is 35 pF. What 
should be the inductance of a coil connected to this capacitor if the natural 
frequency of the LC  circuit is to be 310550´  Hz, corresponding to one end of 
the AM radio broadcast band, when the capacitor is set to its maximum 
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capacitance? The frequency at the other end of the broadcast band is 3101550´  
Hz. What must the minimum capacitance of the capacitor be if the natural 
frequency is to be adjustable over the range of the broadcast band? 

3.6. Show that differential equation (3.12) is satisfied by the function 
tQq wcos= , with w  given by LC/1 . 

3.7. Calculate the wavelength of radio waves radiated out by a circuit 
consisting of 0.02 µF capacitor and a 8 µН inductor in series.   
(Ans. 21054.7 ´=l  m.) 

3.8. Find the natural frequency of a circuit containing inductance of 100 µH 
and a capacity of 0.01 µF. To which wavelength its response will be maximum? 
For how long the oscillations will continue?   (Ans. 159.15 kHz; 1884.96 m; 
forever.) 

3.9. A coil of inductance of 0.4 mH is connected to a capacitor of 
capacitance 400 pF. To what wavelength is the circuit tuned?    (Ans. 753.77 m.) 

3.10. A 20 µF capacitor is charged to 30 V potential. Then the battery is 
disconnected and a 200 mH coil is connected across it, so that LC -oscillations are 
set up. Calculate the frequency of oscillations set up and the maximum current in 
coil.   (Ans. 79.6 Hz; 0.3 A.) 

3.3   Charge, Voltage, and Current Oscillations 
We can write the general solution of Eq. (3.11) as 

)cos( fw += tQq  (charge)      (3.15) 
where Q  is the amplitude of the charge variations, )( fw +t  is the phase of 
oscillations, w  is the angular frequency, and f  is the phase constant.  

The phase of oscillation )( fw +t  determines the state of oscillating system, 
that is, the charge on the capacitor at any instant of time. For example, at some 
moment of time 1t  the phase of oscillation is pfw 2)( 1 =+t . It means that at this 
time the charge at the capacitor is maximum ( 12cos =p ). If in time 2t , the phase 
equals 3/p , then 2/2 Qq = , that is, the capacitor is partially discharged and has 
half of its maximum charge. Phase of oscillation has a lot of information. If we 
are given the charge q , then we know the degree of charging or discharging of 
the capacitor but know nothing about the direction of the process. But if we are 
given the phase of oscillation, i.e. 4/7)( 1 pfw =+t , then we know the charge on 
the capacitor ( 2/2Qq = ) and direction of the oscillation process – the capacitor 
is charging. (For a given instant, with time increasing, the phase increases, cosine 
function and charge increase as well.) 

At the capacitor voltage oscillates in the same manner as its charge:  

)cos()cos(
fw

fw
+=

+
== tV

C
tQ

C
qv  (voltage) (3.16) 

where the amplitude value of voltage CQV /= . 
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Taking the first derivative of Eq. (3.15) with respect to time we get the 
current of the LC  oscillator: 

)sin( fww +-== tQ
qt
dqi  .  (current)   (3.17) 

The amplitude I  of this sinusoidally varying current is 
QI w= ,     (3.18) 

so we can rewrite Eq. (3.17) as 
)sin( fw +-= tIi .      (3.19) 

From Eqs. (3.15), (3.16) and (3.19), it is clear that oscillations of charge 
and voltage lag the oscillation of current by 2/p , that is, when current reaches its 
maximum value I , charge and voltage become equal to zero and vice versa. 

We can test whether Eq. (3.15) is a solution of Eq. (3.11) by substituting it 
and its second derivative with respect to time into Eq. (3.11). The first derivative 
of Eq. (3.15) is Eq. (3.17). The second derivative is  

)cos(2
2

2
fww +-= tQ

qt
qd . 

Substituting them for q  and 22 / dtqd  into Eq. (3.11), we obtain 

0)cos(1)cos(2 =+++- fwjww tQ
C

tQL . 

The canceling the )cos( fw +tQ  and its rearrangement lead to 

LC
1

=w . 

Thus, Eq. (3.15) is indeed a solution of Eq. (3.11) if w  has the value 
LC
1 . 

In Eq. (3.15), the phase constant f  is determined by the conditions at any certain 
time, say, 0=t . If the conditions yield 0=f  at 0=t , Eq. (3.15) requires that 

Qq = , and Eq. (3.17) requires that 0=i ; these are the initial conditions 
represented by Figure 3.2a. 

Example 3.1 
The 9-pF capacitor is charged by the voltage of 12 V and then directly 

connected across the 2.81 mH inductor. (a) Find the frequency of oscillation of 
the circuit.  

Solution. 
(a) The frequency f  is  

6
123

101
)109)(1081.2(2

1
2

1
2

´=
´´

===
--ppp

w
LC

f  Hz. 

(b) What are the maximum values of charge on the capacitor and current in 
the inductor?  
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Solution. 
The initial charge on the capacitor equals the maximum charge, and 

because VQC /= , we have 
1012 1008.1)12)(109( -- ´=´== CVQ  C. 

The maximum current is related to the maximum charge according to Eq. 
(3.18): 

4106 1079.6)1008.1)(102(2 -- ´=´´=== ppw fQQI  A. 
(c) Determine the charge and current as functions of time. 
Solution. 
According to Eqs. (3.15) and (3.19) 

])102cos[()1008.1(cos 610 ttQq ´´== - pw , 
])102sin[()1079.6( 64 ti ´´-= - p . 

Exercises 

3.11. A 1.00-µF capacitor is charged by a 40 V power supply. Then fully-
charged capacitor is discharged through a 10 mH inductor. Find the maximum 
current in the resulting oscillations. 

3.12. An LC  circuit consists of a 20.0-mH inductor and a 0.5-µF capacitor. 
If the maximum instantaneous current is 0.100 A, what is the greatest potential 
difference across the capacitor? 

3.13. A fixed inductance 05.1=L  µH is used in series with a variable 
capacitor in the tuning section of a radio. What capacitance tunes the circuit to the 
signal from a station, broadcasting at 6.30 MHz? 

3.14. Calculate the inductance of an LC  circuit that oscillates at 120 Hz 
when the capacitance is 8 µH. 

3.15. What are the dimensions of LC ?   (Ans. Second.) 
3.16. An inductor of inductance 2 mH is connected across a charged 

capacitor of capacitance 5 µF and the resulting LC -circuit is set oscillating at its 
natural frequency. It is found that the maximum value of charge on the capacitor 

is 200 µC. (a) When 100=q  µC, what is the value of 
dt
di ? (b) When 200=q  µC, 

what is the value of i ? (c) Find the maximum value of i . (d) When i  is equal to 
one half its maximum value, what is the value of q ?   (Ans. (a) 410  A/s, (b) 0, (c) 
2 A, (d) 173.2 µC.) 

3. 17. Capacitor of 9 pF is charged by 12 V battery and then is connected 
directly across the 2.81 mH inductor. (a) Find the frequency of oscillation of the 
circuit. (b) What are the maximum value of charge on the capacitor and current in 
the circuit? (c) What is the total energy stored in the circuit?   [Ans. (a) 

6101´=f  Hz; (b) 4
max 1079.6 -´=I  A; (c) 101048.6 -´=U  J.] 
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3.18. An inductor of inductance L  and a capacitor of capacitance C  are 
connected in series. The current in the circuit increases linearly in time as 
described by ktI = . The capacitor is initially uncharged. Determine (a) the 
voltage across the inductor as a function of time; (b) The voltage across the 
capacitor as a function of time; and (c) The time when the energy stored in the 
capacitor first exceeds that in the inductor. 

3.19. An LC  circuit contains an 82-mH inductor and a 17-µF capacitor that 
initially carries a 180–µC charge. (a) Find the frequency (in hertz) of the resulting 
oscillations. At 1=t  ms, find (b) the charge on the capacitor and (c) the current in 
the circuit. 

3.4   Electric and Magnetic Energy Oscillations 
The electric energy stored in the LC  circuit at any time at any t  is, from 

Eqs. (3.1) and (3.15), 

)(cos
22

2
22

fw +== t
C

Q
C

qUE .    (3.20) 
From Eqs. (3.2) and (3.17), the magnetic energy is,: 

)(sin
2

)(sin
22

2
2

2
222

fwfw
w

+=+== tLItQLLiUB . 
The total energy of the LC  circuit is 

)(sin
2

)(cos
2

2
2

2
2

fwfw +++=+= tLIt
C

QUUU BE .  (3.21) 
This expression contains all the features described qualitatively at the 

beginning of this section. It shows that the energy of the LC  circuit continuously 
oscillates between the energy stored in the electric field of the capacitor and the 
energy stored in the magnetic field of the inductor. When the energy stored in the 
capacitor has its maximum value CQ 2/2 , the energy stored in the inductor is 
zero. When the energy stored in the inductor has its maximum value 2/2LI , the 
energy stored in the capacitor is zero. 

Plots of the time variations of EU  and BU  are shown in Figure 3.3. The 
sum BE UU +  is constant and equal to the total energy CQ 2/2  or 2/2LI .  

Analytical verification of this is fact straightforward. The amplitudes of the 
two graphs in Figure 3.3 must be equal because the maximum energy stored in the 
capacitor (when 0=I ) must equal the maximum energy stored in the inductor 
(when 0=Q ). This is mathematically expressed as 

22

22 LI
C

Q
= .     (3.22) 

After substituting this expression into Eq. (3.21) for the total energy, we get 

C
Qtt

C
QU

2
)](sin)([cos

2

2
22

2
=+++= fwfw , 

because 1)(sin)(cos 22 =+++ fwfw tt . 
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In our idealized situation, the 
oscillations in the circuit persist 
indefinitely; however, we remember 
that the total energy U  of the circuit 
remains constant only if energy 
transfers and transformations are 
neglected. In actual circuits, there is 
always some resistance, and, hence, 
energy is transformed into internal 
energy. We mentioned at the 
beginning of this section that we also 
ignore radiation from the circuit. In 
reality, radiation is inevitable in this 
type of circuit, and the total energy in 
the circuit continuously decreases as 
a result of this process. 

Example 3.2 
A 1.5 µF capacitor is charged to 57 V. Then the charging battery is 

disconnected, and a 12 mH coil is connected in series with the capacitor so that 
LC  oscillations occur.  

(a) What is the maximum current in the coil? Assume that the circuit 
contains no resistance.  

Solution. 
As the circuit contains no resistance, the electromagnetic energy of the 

circuit is conserved because the energy is transferred back and forth between the 
electric field of the capacitor and the magnetic field of the coil (inductor). Then, 
at any time t , the energy )(tUB  of the magnetic field is related to the current )(ti  

through the coil by Eq. (3.2): 
2

2LiUB = . When all the energy is stored as 

magnetic energy, the current is at its maximum value I  and that energy is 

2

2LIUB = . Moreover, at any time t , the energy )(tUE  of the electric field is 

related to the charge )(tq  on the capacitor by Eq. (3.1): 
C

qUB 2

2
= . When all the 

energy is stored as electric energy, the charge is at its maximum value Q  and that 

energy is 
C

QUB 2

2
= . Hence, we can write the conservation of energy as 

C
QLI
22

22
= . 

0

En
er

gy

T/2 T

)( EB UUU +=
C

Q
2

2

)(tUE

)(tUB

Time  
Figure 3.3 The stored magnetic energy and 
electric energy in the circuit of Figure 3.2 as a 
function of time. Note that their sum remains 
 

constant. T  is the period of oscillation 
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Solving it for I  we obtain 

LC
QI

2
= . 

We know L  and C  but not Q . However, with CVq = , we can relate Q  to 
the maximum potential difference V  across the capacitor which is the initial 
potential difference of 57 V. Thus, the substitution of CVQ =  leads to 

A637.0
H1012
F105.1)V57( 3

6
=

´

´
== -

-

L
CVI . 

(b) What is the potential difference )(tvL  across the inductor as a function 
of time?  

Solution. 
We can apply the loop rule to this oscillating circuit. At any time t  during 

the oscillations, the loop rule gives us 
)()( tvtv CL = , 

that is, the potential difference Lv  across the inductor must always be equal to the 
potential difference Cv  across the capacitor, so that the net potential difference 
around the circuit is zero. Thus, we shall find )(tvL  if we can find )(tvC , and we 
can find )(tvC  from )(tq  with Cvq =  and CVQ = . 

As the potential difference )(tvC  is maximum when the oscillations begin 
at time 0=t , the charge q  on the capacitor must also be maximum. Thus, the 
phase constant f  must be zero, so 

tQq wcos= . 
Note that this cosine function does indeed yield maximum Qq =  when 0=t . To 
get the potential difference )(tvC , we divide both sides of the expression by C  
and obtain: 

t
C
Q

C
q

wcos= , 

or tVv CC wcos= . Here, CV  is the amplitude of the oscillations in the potential 
difference Cv  across the capacitor. As CL vv = , we find  

tVv CL wcos= . 
We can evaluate the right side of this equation by the first are noting that 

the amplitude CV  is equal to the initial (maximum) potential difference of 57 V 
across the capacitor. Then, using the values of L  and C , we find w :  

7500rad/s7454
)]F105.1)(H012.0[(

11
6 »=

´
== -LC

w  rad/s. 
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Thus, potential difference across inductor becomes 
tvL )rad/s7500cos()V57(= . 

(c) What is the maximum rate max)/( dtdi  at which the current i  changes in 
the circuit? 

Solution. 

The current is tQ
dt
dqi ww sin-== . Then  

tQtQ
dt
d

dt
di

wwww cos)sin( 2-=-= . 

We can simplify this equation by substituting CCV  for Q  (because we 
know C  and CV  but not Q  and LC/1  for w ). We get 

t
L

VtCV
LCdt

di L
C ww coscos1

-=-= . 

This tells us that the current changes at a sinusoidal rate, with its maximum 
rate of change being 

4750
012.0
57

==
H

V
L

VL  A/m. 

Exercises 

3.20. An LC -circuit contains a 20 mH inductor and a 50 µF capacitor with 
an initial charge of 10 mC. The resistance of the circuit is negligible. Let the 
instant at which circuit is closed be 0=t . (a) What is the total energy stored 
initially? Is it conserved during the LC  oscillations (Ans. (a) 1 J, yes)? (b) What 
is the natural frequency of the circuit? (Ans. 159.15 Hz) (c) When is the energy 
stored that is: (i) completely electrical (i.e. stored in the capacitor)? (Ans. 

,...2/3,2/,,0 TTTt = , where 31028.2 -´=T  s); (ii) completely magnetic (i.e. 
stored in the inductor)?   (Ans. ,..4/5,4/3,4/ TTTt = ); (d) When is the total 
energy shared equally between the inductor and the capacitor? (Ans. 

,..8/5,8/3,8/ TTTt = , where 31028.2 -´=T  s.) 
3.21. Show that in the free oscillations of an LC  circuit, the sum of 

energies stored in the capacitor and the inductor is constant in time. 

3.5   Damped Oscillations in an RLC  circuit 

In our discussion of the LC  circuit, we did not include any resistance.  This 
omission is an idealization, of course; every real inductor has resistance in its 
windings, and there may also be resistance in the connecting wires. The effect of 
resistance is to dissipate the electromagnetic energy in the circuit and convert it 
into heat; thus, resistance plays a role in an electric circuit analogous to that of 
friction in a mechanical system. 
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To study this situation in greater detail, we consider an inductor with 
inductance L  and a resistor of resistance R  connected in series across the 
terminals of a charged capacitor C . (Figure 3.4). A circuit containing resistance, 
inductance, and capacitance is called an RLC  circuit. As before, the capacitor 
starts to discharge as soon as the circuit is completed, but, because of Ri2  losses 
in the resistor, there is less energy in the inductor when the capacitor is 
completely discharged, than there was in capacitor originally. In the same way, 
the energy of the capacitor is still smaller, when the magnetic field has collapsed, 
and so on. 

To analyze the oscillations of this 
circuit from energy standpoint, we write 
an equation for the total electromagnetic 
energy U  in the circuit at any instant. 
Because the resistance does not store 
electromagnetic energy, we can use Eq. 
(3.9): 

C
qLiUUU EB 22

22
+=+= . 

However, now, this total energy 
decreases as energy is transferred to 
thermal energy. The rate of this transfer is 

Ri
dt

dU 2-=      (3.23) 

where the minus sign indicates that U  decreases. By differentiating Eq. (3.9) with 
respect to time and then substituting the result in Eq. (3.23), we obtain 

Ri
dt
dq

C
q

dt
diLi

dt
dU 2-=+= . 

Substituting dtdq /  for i  and 22 / dtqd  for dtdi / , we get 

01
2

2
=++ q

Cdt
dqR

dt
qdL , 

or    01
2

2
=++ q

LCdt
dq

L
R

dt
qd .    (3.24) 

Eq. (3.24) is the differential equation for damped oscillations in an RLC  circuit.  
Again, as for the case of undumped oscillations, there is an alternative way 

to obtain the differential equation Eq. (3.24) of dumped oscillations: We apply 
Kirhgoff's loop rule to the circuit at Figure 3.4 and obtain the equation 

dt
diLq

C
iR -=+

1     or    01
=++ q

Cdt
diLiR . 

CL

R

 
Figure 3.4   A series RLC  circuit. As the 
charge contained in the circuit oscillates 
back and forth through the resistance, 
electromagnetic energy is dissipated as 
thermal energy, damping (decreasing the 
 

amplitude of) the oscillations 
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Replacing i  with dtdq /  and rearranging, we obtain the same equation as 
Eq. (3.24) 

01
2

2
=++ q

LCdt
dq

L
R

dt
qd . 

Note that when 0=R , this equation reduces to Eq. (3.11). 
If the resistance R  is relatively small, the circuit still oscillates, but with 

damped oscillations, as shown in Figure 3.5a. If we increase R , the oscillations 
die out more rapidly. When R  reaches a certain value, the circuit no longer 
oscillates, and we say that it is critically damped, as in Figure 3.5b. For still larger 
values of R , the circuit is overdamped, as in Figure 3.5c.  

 

Solutions of Eq. (3.24) can be obtained by general methods of differential 
equations. The form of this solution depends on whether R  is large or small. 
When R  is less than )/(2 CL , the solution has the form 

tQet
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R
LC
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÷÷
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)2/( .   (3.25)  

When R  is greater than CL /2 , the solution is 
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,       (3.26) 

where A  and B  are constants determined by V , R , L , and C . 

q
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Q

(a)

t

q
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(b)

q

t

Q

(c)
 

Figure 3.5   Graphs of q  versus I  in an RLC  circuit: (a) Small damping; (b) Critically damped; 
 

(c) Overdamped 
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Eq. (3.25) corresponds to the underdamped behavior shown in Figure 3.4a; 
the function represents a sinusoidal oscillation with an exponentially decaying 
amplitude. Note that the angular frequency of the oscillation is no longer 

CL //1  but is less than this because of the term containing R . The frequency 'w  
of the damped oscillations is, thus, given by 

2

2
2

2

2

44
1'

L
R

L
R

LC
-=-= ww . 

As R  increases, 'w  becomes smaller and smaller. When CLR /42 = , the 
quantity under the radical becomes zero and the case of critical damping has been 
reached (Figure 3.5b). For still larger values of R , the behavior is no longer 
oscillatory but is described as the sum of two exponential functions, as in Figure 
3.5c; the circuit is overdamped. 

We emphasize once more that this behavior is completely analogous to that 
of the damped harmonic oscillator studied in Chapter 1. Eq. (3.25) tells us how 
the charge on the capacitor oscillates in a damped RLC  circuit; the equation is 
the electromagnetic counterpart of equation which gives the displacement of a 
damped block-spring oscillator. Similarly, the crossover point between 
underdamping and overdamping occurs at kmb 42 =  for a mechanical system and 
at CLR /42 =  for an electrical one. 

Let us next find an expression for the total electromagnetic energy U  of the 
circuit as a function of time. One way to do so is to monitor the energy of the 
electric field in the capacitor which is given by Eq. (3.1): )2/( 2 CqU E = . By 
substituting Eq. (3.25) into Eq. (3.1), we obtain 

[ ] )(cos
22

)cos(
2

2/
222/2

fw
fw

+¢=
+¢

== -
-

te
C

Q
C

tQe
C

qU LRt
LRt

. (3.27) 

Thus, the energy of the electric field oscillates according to a cosine-squared term 
and the amplitude of this oscillation decreases exponentially with time. 

Example  3.3 
A series RLC  circuit has the inductance 12=L  mH, the capacitance 
6.1=C  µF, and the resistance 5.1=R  Ω. (a) At what time t  will the amplitude of 

the charge oscillations in the circuit be 50% of its initial value?  
Solution. 
(a) The amplitude of the charge oscillations decreases exponentially with 

time t . According to Eq. (3.25), the charge amplitude is LRtQe 2/- , at any time t , 
with Q  being the amplitude at time 0=t . We want to obtain the time when the 
charge amplitude has decreased to Q5.0 , that is, when 

QQe LRt 5.02/ =- . 
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Canceling Q  and then taking the natural logarithms of both sides, we have 

5.0ln
2

=-
L

Rt . 

Solution for t  and then substitution of the given data yield 

11s011.0
5.1

)5.0)(lnH1012)(2(5.0ln2 3
==

W
´

-=-=
-

R
Lt  ms. 

(b) How many oscillations are completed within this time? 
Solution. 
Time for one complete oscillation is the period wp ¢= /2T  where the 

angular frequency for LC  oscillations is given by  

=
´

-
´´

=-= --- 23

2

632

2

)H1012(4
5.1

)F106.1)(H1012(
1

4
1'

L
R

LC
w  

w»´=´»-´= 367 102.7101.52471021.5 . 
Thus, in the time interval 011.0=Dt  s, the number of complete oscillations 

N  is: 

13
)]F106.1)(H1012[(2

s011.0
2 2/163 »

´´
=

D
=

D
= --pp LC

t
T

tN . 

Thus, the amplitude decays by 50% in about 13 complete oscillations.  

Exercises 

3.22. Why does a real LC -circuit usually produce damped oscillations?   
(Ans. An inductor possesses a small resistance. Therefore, each time electric 
energy converts into magnetic energy during LC -oscillations, a small part of 
energy or dissipated as heat energy across the resistance of the inductor. As a 
result, the oscillations produced are damped in nature.) 

3.23. In Figure 3.3, let 6.7=R  Ω, 2.2=L  mH, and 8.1=C  µF. (a) 
Calculate the frequency of the damped oscillation of the circuit; (b) What is the 
critical resistance? 

3.24. Consider an LC  circuit in which 500=L  mH and 1.0=C  µF. (a) 
What is the resonant frequency 0w ?  If a resistance of 1 k Ω is introduced into 
this circuit, what is the frequency of the (damped) oscillations? What is the 
percent difference between two frequencies? 

3.25. Electrical oscillations are initiated in a series circuit containing a 
capacitance C , an inductance L , and a resistance R . (a) If CLR /4<<  (weak 
damping), how much time elapses before the amplitude of the current oscillation 
falls to 50.0% of its initial value? (b) How long does it take the energy to decrease 
to 50.0% of its initial value? 



 176

3.26. If a resistor is inserted in the circuit, how much energy is eventually 
dissipated as heat?   (Ans. When resistance is introduced, whole of the energy will 
be dissipated in the form of the heat. The introduction of resistance produces 
damped oscillations.) 

3.27. What role does the resistance of inductor play in LC -circuit ?   (Ans. 
Due to the resistance of the inductor, the LC -oscillations produced are damped 
one. It is because, during each oscillation, a part of electric energy is dissipated in 
the form of heat energy.) 

3.6   Forced Oscillations 

We have seen that once started, the charge, potential difference, and current 
in both undamped LC  circuits and damped RLC  circuits (with small enough R ) 
oscillate at angular frequency LC/1=w . Such oscillations are said to be free 
oscillations (free of any external EMF), and the angular frequency w  is said to be 
the circuit's natural angular frequency . 

When the external alternating EMF  
tdm wee sin=      (3.28) 

is connected to an RLC  circuit, the oscillations of charge, potential difference, 
and current are said to be driven oscillations or forced oscillations. These 
oscillations always occur at the driving angular frequency dw . 

The oscillations in an RLC  circuit will not dumped out if an external EMF 
device supplies enough energy to make up for the energy dissipated as thermal 
energy in the resistance R . Circuits in homes, offices, including countless RLC  
circuits, receive such energy from local power stations. The energy is supplied via 
oscillating EMFs and current is said to be alternating current, or AC for short.  

)sin( fw -= tIi dm .     (3.29) 
(The nonoscillating current from a battery is said to be a direct current, or DC.)  

These oscillating EMFs and current vary sinusoidally with time, reversing 
direction. (In Ukraine 100 times per second and thus having frequency– 50 Hz, in 
North America 120 times per second and thus frequency is – 60 Hz.) 

At first sight this may seem to be a strange arrangement. We have seen that 
the drift speed of the conduction electrons in household wiring may typically be 
10-5 m/s. If we now reverse their direction every (1/120) s, such electrons can 
move only about 7103 -´  m in a half-cycle. At this rate, a typical electron can 
drift past no more than about 10 atoms in the wiring before it is required to 
reverse its direction. How can the electron ever get anywhere? The answer is as 
follows: The conduction electrons do not have to “get anywhere”. When we say 
that the current in a wire is one ampere, we mean that charge passes through any 
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plane cutting across that wire at the rate of one coulomb per second. The speed at 
which the charge carriers cross that plane does not matter directly: one ampere  
may correspond to many charge carriers moving very slowly or to a few moving 
very rapidly. Furthermore, the signal to the electrons to reverse directions – which 
originates in the alternating EMF is propagated along the conductor at a speed of 
light. All electrons, no matter where they are located, get their reversal 
instructions at about the same instant. Finally, we note that for many devices, 
such as lightbulbs and toasters, the direction of motion is unimportant as long as 
the electrons do move so as to transfer energy to the device via collisions with 
atoms in the device. 

Whatever the natural angular frequency w  of a circuit may be, forced 
oscillations of charge, current, and potential difference in the circuit always occur 
at the driving angular frequency dw . 

However, as you will later, the amplitudes of the oscillations very much 
depend on how close dw  is to w . When the two angular frequencies match – a 
condition known as resonance - the amplitude I  of the current in the circuit is 
maximum. 

3.7   Resistance in an AC Circuit 

The simplest problem in the AC-circuit analysis consists of a resistor of 
resistance R , connected between the terminal of an AC generator with the 
alternating EMF. (Figure 3.6a). By the loop rule, we have 

Rv=e . 
 

This gives us 
tv dmR we sin= .     (3.30) 

As the amplitude RV  of the alternating potential difference (or voltage) 
across the resistance is equal to the amplitude me  of the alternating EMF, we can 
write this as 

tVv dRR wsin= .          (3.31) 
The instantaneous current Ri  in the resistance is 

t
R

V
R
vi d

RR
R wsin==      (3.32) 

where 
R

VI R
R =  is the amplitude of the current Ri  in the resistance. We also see 

that the voltage amplitude and the current amplitude are related by 
RIV RR =      (resistor).    (3.33) 
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The current and voltage are both 
proportional to tdwsin . Thus, these two 
quantities are in phase which means 
that their corresponding maxima (and 
minima) occur at the same time. Figure 
3.6b which is a plot of )(tvR  and )(tiR , 
illustrates this fact. Note that Rv  and Ri  
do not decay here because the generator 
supplies energy to the circuit to make 
up for the energy dissipated in R .  

Although we found this relation 
for the circuit of Figure 3.6a, it applies 
to any resistance in any AC circuit. 

The time-varying quantities Rv  
and Ri  can also be represented 
geometrically by phasors. Recall that 
phasors are vectors that rotate around 
an origin. Phasors that represent the 
voltage across and current in the 
resistor of Figure 3.6a are shown in 
Figure 3.6c at an arbitrary time t . Such 
phasors have the following properties: 

Angular speed: Both phasors 
rotate counterclockwise about the origin 
with an angular speed equal to the 
angular frequency dw  of Rv  and Ri . 

Length: The length of each 
phasor represents the amplitude of the 
alternating quantity: RV  for the voltage 
and RI  for the current. 

Projection: The projection of 
each phasor on the vertical axis 
represents the value of the alternating 
quantity at time t : Rv  for the voltage 
and Ri  for the current. 

Rotation angle: The rotation 
angle of each phasor is equal to the 
phase of the alternating quantity at 
time t . In Figure 3.6c, the voltage and 

R

(a)

Ri Rv

0 T tT/2

Instants
represented in (c)

(b)

RR iv ,

RI

RV

Ri

Rv

rad00

(c)

Rotation of
phasors at

dwrate

tdw RV
Rv

Ri
RI

 
Figure 3.6   (a) A resistor is connected across 
an alternating-current generator; (b) The 
current Ri  and the potential difference Rv  
across the resistor are plotted on the same 
graph, both versus time t . They are in phase 
and complete one cycle in one period T ; (с) 
A phasor diagram shows the same thing 
 

as (b) 
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current are in phase, so their phasors always have the same phase tdw  and the 
same rotation angle, and thus they rotate together. 

Mentally follow the rotation. Can you see that when the phasors have 
rotated so that °= 90tdw  (they point vertically upward), they indicate that just 
then RR Vv =  and RR Ii = . Eqs. (3.31) and (3.33) give the same results. 

Example 3.4 
In Figure 3.6, the resistance R  is 200 Ω, and the sinusoidal alternating 

EMF device operates at the amplitude 36=me  V and the frequency 60=df  Hz. 
What is the potential difference )(tvR  across the resistance, and what is the 
amplitude RV  of )(tvR ? 

Solution.  
If we apply loop rule to the circuit, we find that potential difference )(tvR  

across the resistance is always equal to the potential difference )(te  across the 
EMF device. Thus, 36== mRV e  V, and the potential difference )(tvR   

)120sin(36)602sin(36sin)()( tttttv dmR ppwee =´=== . 

3.8   Effective Values of Current and Voltage 

In previous discussion, we have seen that, like the applied voltage, the 
current varies sinusoidally and has corresponding positive and negative values 
during each cycle. Thus, the sum of the instantaneous current values over one 
complete cycle is zero, and the average current is zero. The fact that the average 
current is zero, however, does not mean that the average power is zero and that 
there is no dissipation of electrical energy. As we know, joule heating is given by 

Ri2  and depends on 2i  (which is always positive whether i  is positive or 
negative) and not on i . Thus, there is joule heating and dissipation of electrical 
energy when an AC current passes through a resistor. 

The instantaneous power dissipated in the resistor is 
tRIRiP dw222 sin== .    (3.34) 

The average value of P  over a cycle is  
tRIRiP dw222 sin== .   (3.35) 

Mathematically, the average value of a function )(tF  over a period T  is given by  

ò=
T

dttF
T

tF
0

)(1)( ,    (3.36) 
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where the  denotes the average of the quantity inside the bracket. Since 2I  and 
R  are constants, 

tRIP dw22 sin= . 

Using the trigonometric identity )2cos1(
2
1sin2 tt dd ww -= , we have 

)2cos1(
2
1sin2 tt dd ww -= , 

and since  

=ú
û

ù
ê
ë

é
-== ò

T

d

d
T

dd
t

T
tdt

T
t

00 2
2sin12cos12cos
w

w
ww  

0)02(sin
2

1
=--= T

T d
d

w
w

, 

Hence, we have 
2
1sin2 =tdw . Thus, 

RIP 2
2
1

= .     (3.37) 

To express AC power in the same form as DC power RiP 2= , a special 
value of current is used. It is called root mean square (rms), or effective current 
(Figure 3.7) and is denoted by rmsI . It is defined by 

IIIIIrms 707.0
22

1 22 ==== .    (3.38) 

In terms of rmsI , the average power is 

RIRIP rms
22

2
1

== .    (3.39) 

Similarly, we define the rms voltage,e or effective voltage, by 

VVVrms 707.0
2

== .     (3.40) 

From Ohm’s law we have 
IRV = , 

or RIV
22

= , or 

RIV rmsrms = .    (3.41) 
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Eq. (3.41) gives us the relation 
between AC current and voltage and is 
similar to that in the DC case. This 
shows the advantage of introducing the 
concept of rms values. In terms of rms 
values, the equation for power relation 
between current and voltage in AC 
circuits are essentially the same as 
those for the DC case. 

It is customary to measure and 
specify rms values for AC quantities. 
For example, the household line 
voltage of 220 V is an rms value with a 
peak voltage of 

V311)220)(414.1(2 === rmsVV . 
In fact, rms current is the equivalent DC current that would produce the 

same average power loss as the alternating current. Eq. (3.39) can also be 
written as 

rmsrms
rms VI
R

VP ==
2

.    (3.42) 

Example 3.5 
A light bulb is rated at 100 W for a 220 V supply. Find: (a) The resistance 

of the bulb.  
Solution. 
(a) We are given 100=P  W and 220=V  V. The resistance of the bulb is 

W=== 484
W100

)V100( 22

P
VR rms . 

(b) The peak voltage of the source.  
Solution. 
The peak voltage of the source is 

V3112 === rmsm VV . 
(c) The rms current through the bulb. 
Solution. 
Since rmsrmsVIP = , hence: 

A45.0
V220
W100

===
rms

rms V
PI . 

I

0

mI

mI-

rmsI

2

 
Figure 3.7   The rms current rmsI  is related 
to the peak current I  as 
 

IIIrms 707.0
2

==  
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Exercises 
3.28. A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What 

is the rms value of current in the circuit? (b) What is the net power consumed 
over a full cycle? 

3.29. (a) The peak voltage of an AC supply is 300 V. What is the rms 
voltage? (b) The rms value of current in an ac circuit is 10 A. What is the peak 
current? 

3.9. Capacitance in an AC Circuit 
Figure 3.8a shows a circuit 

containing a capacitance and a 
generator with the alternating EMF of 
Eq. (3.28). Using the loop rule, we 
find that the potential difference 
across the capacitor is 

tVv dCC we sin== , (3.43) 
where cV  is the amplitude of the 
alternating voltage across the 
capacitor.  
From the definition of capacitance, 
we can also write 

tCVCvq dCCC wsin== .  (3.44) 
Now we are interested more in 

the current than in the charge. Thus, 
we differentiate Eq. (3.44) to find 

tCV
dt

dqi dCd
C

C ww cos== .  (3.45) 

Then we modify Eq. (3.45) in 
two ways. First, for reasons of 
symmetry of notation, we introduce 
the quantity CX , called the capacitive 
reactance of a capacitor, defined as 

C
X

d
C w

1
= .  (3.46) 

Its value depends not only on 
the capacitance but also on the driving 
angular frequency dw . We know 
from the definition of the capacitive 
time constant ( RC=t ) that the SI 
unit for C  can be expressed as 

 
Figure 3.8   (a) A capacitor is connected across 
an alternating-current generator; (b) The current 
in the capacitor leads the voltage by 90° ;(c) А 
 

phasor diagram shows the same thing 
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seconds per ohm. By applying this to Eq. (3.46), we show that the SI unit for CX  
is the ohm, just as for resistance R . Second, we replace tdw  in Eq. (3.45) with a 
phase-shifted sine: 

)90sin(cos °+= tt dd ww . 
With these two modifications, Eq. (3.45) becomes 

)90sin( °+÷÷
ø

ö
çç
è

æ
= t

X
Vi d

C

C
C w . 

We can also write the current Ci  in C  as 
)90sin( °+= tIi dCC w ,     (3.47) 

where CI  is the amplitude of Ci . Comparing Eqs. (3.43) and (3.47), we see that 
for a purely capacitive load, the phase constant f  for the current is -90°. We also 
see that the voltage amplitude and current amplitude are related by 

CCC XIV =       (3.48) 
Although we have found this relation for the circuit of Figure 3.8a, it 

applies to any capacitance in any ac circuit. 
The comparison of Eqs. (3.43) and (4.47), or inspection of Figure 3.8b 

shows us that the quantities Cv  and Ci  are 90°, or one-quarter cycle, out of phase. 
Further we see that Ci  leads Cv  which means that, if you monitored the current 
Ci  and the potential difference Cv  in the circuit of Figure 3.8a, you will find that 
Ci  reaches its maximum before Cv  does, by one-quarter cycle. 

This relation between Ci  and Cv  is illustrated by the phasor diagram of 
Figure 3.8c. As the phasors representing these two quantities rotate 
counterclockwise together, the phasor labeled CI  does indeed lead that labeled 

CV  by an angle of 90°; that is, the phasor CI  coincides with the vertical axis one-
quarter cycle before the phasor CV  does. It is clear that the phasor diagram in 
Figure 3.8c is consistent with Eqs. (3.43) and (3.47). 

The instantaneous power supplied to the capacitor is 

)2sin(
2

))(sin((cos)sin)(cos( tVIttVItVtIviP d
CC

ddCCdCdCCCC wwwww ==== . 

So, the average power is 

0)2sin(
2

)2sin(
2

=== tIVtIVPC ww , 

since 0)2sin( =tw  over a complete cycle. The energy stored by a capacitor in 
each quarter period is returned to the source in the next quarter period.  

Example 3.6 
A 15.0 µF capacitor is connected to a 220 V, 50 Hz source. Find the 

capacitive reactance and the current (rms and peak) in the circuit. If the frequency 
is doubled, what happens to the capacitive reactance and the current? 
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Solution. 
The capacitive reactance is 

W=
´

==
-

212
)F105.1)(Hz50(2

1
2

1
6ppfC

XC . 

The rms current is 

A04.1
212

V220
=

W
==

C

rms
rms X

VI . 

The peak current is 
A47.1)A04.1)(41.1(2 === rmsm II . 

This current oscillates between +1.47 A and -1.47 A and is ahead of the 
voltage by 90º. 

If the frequency is doubled, the capacitive reactance is halved and, 
consequently, the current is doubled. 

Exercises 

3.30. A 60 µF capacitor is connected to a 110 V, 60 Hz AC supply. 
Determine the rms value of the current in the circuit. 

3.31. What is the reactance of a 1-µF capacitor at a frequency of 60 Hz?   
(Ans. 31065.2 ´  Ω.) 

3.32. What is the capacitance of a capacitor whose reactance is 1 Ω at 60 
Hz?   (Ans. 31065.2 -´  F) 

3.33. What is the reactance of a 1-µF capacitor at a frequency of 60 Hz? 
3.34. What is the capacitance of a capacitor whose reactance is 1 Ω at 60 

Hz?   (Ans. 31065.2 -´  F) 
3.35. A 1-µF capacitor is connected across an AC source whose voltage 

amplitude is kept constant at 50 V but whose frequency can be varied. Find the 
current amplitude when the angular frequency (a) l00 rad/s; (b) l000 rad/s, (c) 
10,000 rad/s.   [Ans. (a) 3105 -´  A;   (b) 2105 -´  A);   (c) 0.5 A] 

3.36. The voltage amplitude of an AC source is 50 V, and its angular 
frequency is 1000 rad/s. Find the current amplitude if the capacitance of a 
capacitor connected across the source is     (a) 0.01 µF. (b) 1.0 µF, (c) 100 µF. 

3.10   Inductance in an AC Circuit 

Figure 3.9a shows a circuit containing an inductance and a generator with 
the alternating EMF of Eq. (3.28). Using the loop rule and proceeding as we did 
to obtain Eq. (3.30), we find that the potential difference across the inductance is 

tVv dLL wsin=       (3.49) 
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where LV  is the amplitude of Lv . From 
loop rule we can write the potential 
difference across an inductance L , in 
which the current is changing at the rate 

dtdiL / , as 

dt
diLv L

L = .    (3.50) 

If we combine Eqs. (3.49) and 
(3.50), we have 

t
L

V
dt

di
d

LL wsin= .  (3.51) 

We are interested in the current 
rather than with its time derivative. We 
find the former by integrating Eq. (3.51), 
obtaining 

sinL
L L d

Vi di t dt
L

w= = =ò ò  

cosL
d

d

V t dt
L

w
w

æ ö
= -ç ÷

è ø
.     (3.52) 

Then we can now modify this 
equation in two ways. First, for reasons 
of symmetry of notation, we introduce 
the quantity LX , called the inductive 
reactance of an inductor, which is 
defined as 

LX dL w=     (3.53) 
The value of LX  depends on the 

driving angular frequency dw . The unit 
of the inductive time constant Lt  
indicates that the SI unit of LX  is the 
ohm just as it is for CX  and for R . 

Second, we replace tdwcos-  in Eq. (3.52) with a phase-shifted sine: 
)90sin(cos °-=- tt dd ww . 

You can verify this identity by shifting a sine curve in the positive direction 
by 90°. With these two changes, Eq. (3.52) becomes 

)90sin( °-÷÷
ø

ö
çç
è

æ
= t

X
Vi d

L
L

L w .      (3.54) 

 
Figure 3.9   (a) An inductor is connected 
acrtoss an alternating current generator; (b) 
The current in the inductor lags the voltage 
by °90 ; (c) A phasor diagram shows the 
 

same thing 
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From Eq. (3.54), we can write this current in the inductance as 
)90sin( °-= tIi dLL w ,     (3.55) 

where LI  is the amplitude of the current Li . Comparing Eqs. (3.49) and (3.55), 
we see that for a purely inductive load, the phase constant f  for the current is 
+90º. We also see that the voltage amplitude and current amplitude are related by 

LLL XIV = .           (3.56) 
Although we found this relation for the circuit of Figure 3.9a, it applies to 

any inductance in any AC circuit. 
The comparison of Eqs. (3.49) and (3.55) or the inspection of Figure 3.9b, 

shows us that the quantities Li  and Lv  are 90° out of phase. In this case, however, 
Li  lags Lv : that is, if you monitored the current Li  and the potential difference Lv  

in the circuit of Figure 3.9a, you would find that Li  reaches its maximum value 
after LI  does, by one-quarter cycle. 

The phasor diagram of Figure 3.9c also contains this information. As the 
phasors rotate counterclockwise in the figure, the phasor labeled LI  does indeed 
lag that labeled LV  by an angle of 90°. It is clear that Figure 3.9c represents Eqs. 
(3.49) and (3.55).  

We have seen that an inductor has reactance that limits current similar to 
resistance in a dc circuit.  

The instantaneous power supplied to the inductor is 

)2sin(
2

)sin()cos()sin()
2

sin( tIVttIVtVtIviP LLL wwww
p

w -==-== . 

So, the average power over а complete cycle, as in the case of a capacitor, is 

0)2sin(
2

)2sin(
2

=-=-= tIVtIVPL ww , 

since the average of )2sin( tw  over cycle is zero. Thus, the average power 
supplied to an inductor over one complete cycle is zero. 

Physically, this result means the following. During the first quarter of each 
current cycle, the flux through the inductor builds up and sets up a magnetic field 
and energy is stored in the inductor. In the following quarter of cycle, as the 
current decreases, the flux decreases, and the stored energy is returned to the 
source. Thus, in each half-cycle, the energy which withdrawn  from the source is 
returned to it without any dissipation of power. 

Example 3.7 
A pure inductor of 25 mH is connected to a source of 220 V. Find the 

inductive reactance and rms current in the circuit if the frequency of the source is 
50 Hz. 
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Solution. 
The inductive reactance, 

W=´´´´== - 85.710255014.322 3fLX L p . 
The rms current in the circuit is 

A03.28
7.85

V220
=

W
==

L

rms
rms X

VI . 

Exercises 

3.37. A 44 mH inductor is connected to a 220 V, 50 Hz AC supply. 
Determine the rms value of the current in the circuit. 

3.38. What is the reactance of a 1-H inductor at a frequency of 60 Hz?   
(Ans. 377 Ω.) 

3.39. What is the inductance of an inductor whose reactance is 1 Ω at 60 
Hz?   (Ans. 31065.2 -´  H.) 

3.40. Compute the reactance of a 10-H inductor at frequencies of 60 Hz and 
600 Нz. 

3.41. At what frequency is the reactance of a 10-H inductor equal to that of 
a 10-µF capacitor? 

3.42. An inductor of self-inductance 10 H and of negligible resistance is 
connected across the AC source whose voltage amplitude is kept constant at 50 V 
but whose frequency can be varied. Find the current amplitude when the angular 
frequency is   (a) 100 rad/s; (b) 1000 rad/s; (c) 10,000 rad/s.   [Ans. (a) 2105 -´  
A;   (b) 3105 -´  A;   (c) 4105 -´  A.] 

3.43. Find the current amplitude if the self-inductance of a resistanceless 
inductor connected across the source of AC source whose voltage amplitude is 
kept constant at 50 V but whose frequency can be varied, is (a) 0.01 H; (b) 1.0 H; 
(c) 100 H. 

3.11   The Series RLC  Circuit 

We are now ready to apply the alternating EMF  
tdm wee sin=           (3.57)  

to the full RLC  circuit of Figure 3.10. As R , L , and C  are in series, the same 
current 

)sin( fw -= tIi d       (3.58) 
is driven in all three of them. We wish to find (a) the current amplitude I  and (b) 
the phase constant f . The solution is simplified by the use of phasor diagrams. 
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a) The Current Amplitude. We 
start with Figure 3.11a, which shows the 
phasor representing the current of Eq. 
(3.58) at an arbitrary time t . The length 
of the phasor is the current amplitude I , 
the projection of the phasor on the 
vertical axis is the current i  at time t , 
and the angle of rotation of the phasor is 
the phase fw -td  of the current at 
time t . 

Figure 3.11 shows the phasors 
representing the voltages across R , L , 

and C  at the same time t . Each phasor is oriented relative to the angle of rotation 
of current phasor I  in Figure 3.11a, based on the following information: 

Resistor: Current and voltage are in phase, so the angle of rotation of the 
voltage phasor RV  is the same as that of the phasor I . 

Capacitor: Current leads voltage by 90°, so the angle of rotation of voltage 
phasor CV  is 90° less than that of phasor I . 

Inductor: Current lags voltage by 90°, so the angle of rotation of the 
voltage phasor LV  is 90° greater than that of the phasor I , 

Figure 3.11b also shows the instantaneous voltages RV , CV , and LV  across 
R , L , and C  at time t ; those voltages are the projections of the corresponding 
phasors on the vertical axis of the figure. 

Figure 3.11c shows the phasor representing the applied EMF of Eq. (3.57). 
The length of the phasor is the EMF amplitude me , the projection of the phasor 
on the vertical axis is the emf e  at time t , and the angle of rotation of the phasor 
is the phase tdw  of the EMF at time t . 

From the loop rule, we know that at any instant, the sum of the voltages 
RV , CV , and LV  is equal to the applied EMF e  

LCR vvv ++=e .    (3.59) 
Thus, at time t , the projection emfe  in Figure 3.11c is equal to the 

algebraic sum of the projections RV , CV , and LV  in Figure 3.I1b. In fact, as the 
phasors rotate together, this equality always holds. This means that phasor emfe  

in Figure 3.11c must be equal to the vector sum of the three voltage phasors RV , 

CV , and LV  in Figure 3.11b. 

 
Figure 3.10   A single-loop circuit containing 
a resistor, a capacitor, and an inductor. A 
generator produces an alternating EMF that 
establishes an altemating current; the 
directions of the  EMF  and curreŕit are 
 

indicated here at only one instant 
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Figure 3.11   (a) A phasor representing the alternating current in the driven RLC  at time t . 
The amplitude I , the instantaneous value i , and the phase jw -td  are shown; (b) 
Phasor representing the voltages across the inductor, the resistor, and the capacitor, 
oriented with respect to the current vector in (a); (c) A phasor representing EMF that drives 
the current of (a); (d) The EMF phasor is equal to the vector sum of the three voltage 
phasors of (b). Here, voltage phasors LV  and CV  have been added to yield their net 
 

phasor ( CL VV - ) 

 
Requirement of Eq. (3.59) is indicated in Figure 3.11d , where the phasor e  

is the sum of phasors RV , LV , and CV . Because phasors LV  and CV  have 
opposite directions in the figure, we simplify the vector sum by first combining 

LV  and CV  to form the single phasor CL VV -  and the obtained that single phasor 
with RV  to find the net phasor. Again, the net phasor must coincide with phasor 

maxe  as shown. 
Both triangles in Figure 3.11d are right triangles. The application of the 

Pythagorean Theorem to either yields 
222 )( LCRm VVV -+=e . 

From the amplitude information, we can rewrite this as 
222 )( CLRm IXIXV -+=e , 
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and then rearrange it to the form 

22 )( CL

m

XXR
I

-+
=

e .    (3.60) 

The denominator in Eq. (3.60) is called the impedance Z  of the circuit for 
the driving angular frequency dw : 

22 )( CL XXRZ -+= .    (3.61) 
Then we can write Eq. (3.60) as 

Z
I me

= .      (3.62) 

If we substitute for CX  and LX  from Eqs. (3.46) and (3.53), we can write 
Eq. (3.60) more explicitly as 

2
2 1

÷÷
ø

ö
çç
è

æ
-+

=

C
LR

I

d
d

m

w
w

e .     (3.63) 

We have now accomplished half of our goal: We have obtained an 
expression for the current amplitude I  in terms of the sinusoidal driving EMF  and 
the circuit elements in a series RLC  circuit. 

The value of I  depends on the difference between Ldw  and Cdw/1 , or, 
equivalently, the difference between LX  and CX  in Eq. (3.60). In either 
equation, it does not matter which of two quantities is greater because the 
difference is always squared. 

The current that we described in this section is the steady-state current 
which occurs after the alternating EMF has been applied for some time. When the 
EMF is first applied to a circuit, a brief transient current occurs. Its duration 
(before settling down into the steady-state current) is determined by the time 
constants RLL /=t  and RCC =t  as the inductive and capacitive elements turn 
on. This transient current can be large, for example, to destroy a motor on start up 
if it is not properly taken into account in the motor circuit design. 

b) The Phase Constant. From the right-hand phasor triangle in Figure 
3.11d, we can write 

IR
IXIX

V
VV CL

R

CL -
=

-
=ftan ,    (3.64) 

which gives us 

R
XX CL -

=ftan .      (3.65) 

This is the other half of our goal to obtain an equation to calculate the 
phase constant f  in a sinusoidally driven series RLC  circuit. In essence, it gives 
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us three different results for the phase constant, depending on the relative values 
of LX  and CX : 

1. CL XX > : The circuit is said to be more inductive than capacitive. Eq. 
(3.65) tells us that f  is positive for such a circuit, which means that the phasor I  
rotates behind the phasor EMF (Figure 3.12a). A plot of EMF and i  versus time 
is like that in Figure 3.12b. (Figures 3.11c and d  were drawn assuming 

CL XX > .) 
 

 
Figure 3.12   Phasor diagrams and graphs of the alternating emf and i  for the driven RLC  
circuit of Figure 3.11. In the phasor diagram of (a) and the graph of (b), the current i  lags the 
driving emf the current's phase constant f  is positive. In (c) and (d), the current i  leads the 
driving emf and its phase constant f  is negative. In (e) and (f), the current i  is in phase with 
 

driving emf and its phase constant f  is zero 
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2. CL XX <  The circuit is said to be more capacitive than inductive. Eq. 
(3.65) tells us that f  is negative for such a circuit, which means that the phasor I  
rotates ahead of the phasor EMF (Figure 3.12c). A plot of EMF and i  versus time 
is like that in Figure 3.12d. 

3. CL XX = : The circuit is said to be in resonance, a state that is discussed 
next. Eq. (3.65) tells us that 0=f  for such a circuit which means that the phasors 
EMF and i  rotate together (Figure 3.12e). A plot of EMF and i  versus time is 
like that in Figure 3.12f. 

As an illustration, let us reconsider two extreme circuits: In the purely 
inductive circuit of Figure 3.9a, where LX  is nonzero, and 0== RXC , Eq.(3.65) 
tells us that °+= 90f  which is consistent with Figure 3.9c. In the purely 
capacitive circuit of Figure 3.8a, where CX  is nonzero and 0== RX L , 
Eq.(3.65) tells us that °-= 90f  which is consistent with Figure 3.8c. 

Example 3.8 
A resistor of 200 Ω and a capacitor of 15.0 µF are connected in series to a 

220 V, 50 Hz AC source.  
(a) Calculate the current in the circuit.  
Solution. 
To calculate the current, we need to know the impedance of the circuit. It is 

=´´´+W=+=+= --- 2622222 )F10Hz5014.32()200()2( fCRXRZ C p

5.291)212()200( 22 =W+W=  Ω. 
Therefore, the current in the circuit is  

755.0
5.291
V220

=
W

==
Z

VI rms
rms  A. 

(b) Calculate the voltage (rms) across the resistor and the capacitor. Is the 
algebraic sum of these voltages greater than the source voltage? If yes, resolve the 
paradox.  

Solution. 
Since the current is the same throughout the circuit, we have 

V151)200)(755.0( =W== ARIV rmsR , 
V3.160)3.212)(755.0( =W== AXIV CrmsC . 

The algebraic sum of the two voltages, RV  and CV , is 311.3 V which is 
more than the source voltage of 220 V. How to resolve this paradox? 

As we have leaned, the two voltages are not in the same phase. Therefore, 
they cannot be added like ordinary numbers. The two voltages are out of phase by 
ninety degrees. Therefore, the total of these voltages must be obtained using the 
Pythagorean theorem: 

V22022 =+=+ CRCR VVV . 
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Thus, if the phase difference between two voltages is properly taken into 
account, the total voltage across the resistor and the capacitor is equal to the 
voltage of the source. 

Example 3.9 
In a series circuit, let 300=R  Ω, 9.0=L  H, 2=C  µF, and 1000=w  rad/s. 

Calculate the reactance, the impedance, the current amplitude, the phase angle 
and the voltage amplitudes across the inductor and capacitor. 

Solution. 
The inductive and the capacitive reactances are: 

900== LX L w  Ω, 

5001
==

C
XC w

 Ω. 

Then the reactance X  of the circuit is 
400=-= CL XXX  Ω, 

and the impedance Z  is 
50022 =+= ZRZ  Ω. 

If the circuit is connected across an AC source of the voltage amplitude 50 
V, the current amplitude is 

1.0==
Z
VI  A. 

The phase angle f  is 

°== 53arctan
R
X

f . 

The voltage amplitude across the resistor is 
30== IRVR  V. 

The voltage amplitudes across the inductor and capacitor are, respectively, 
90== LL IXV  V, 50== CC IXV  V. 

Exercises 

3.44. Why is the expression for the impedance Z  of an RL  series circuit 
obtained from Eq. (3.61) by setting 0=CX  which corresponds to ¥=C , 
whereas for an RC  series circuit, one obtains the impedance Z  from Eq. (3.61) 

by setting 0=L ? Explain. (Ans. CQVC /=  whereas 
dt
diL=e .) 

4.45. In an RLC  series circuit, the source has a constant voltage amplitude 
of 50 V and a frequency of 1000 rad/s, 300=R  Ω, 9.0=L  H, 2=C  µF. 
Suppose a series circuit contains only a resistor and an inductor in series. (a) What 
is the impedance of the circuit? (b) What is the current amplitude? (c) What are 
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the voltage amplitudes across the resistor and across the inductor? (d) What is the 
phase angle f  of the source voltage with respect to the current? (e) Does the 
source voltage lag or lead the current? (f) Construct the phasor diagram. 

3.46. Consider the circuit from the Ex. 3.45, except that it consists of the 
resistor and the capacitor in series only. For part (c) calculate the voltage 
amplitudes across the resistor and across the capacitor. (Ans. (a) 583 Ω; (b) 
0.0857 A; (c) 25.7 V; 42.9 V; (d) 59.1º) 

3.47. Consider the circuit from the Ex. 3.45, except that it consists of the 
capacitor and the inductor in series only. For part (c), calculate the voltage 
amplitudes across the capacitor and across the inductor. 

3.48. А 400-Ω resistor is in series with a 0.1-H inductor and a 0.5-µF 
capacitor. Compute the impedance of the circuit and draw the phasor diagram (a) 
at a frequency of 500 Hz. (b) at a frequency of 1000 Hz. In each case, compute 
the phase angle of the source voltage with respect to the current, and state whether 
the source voltage lags or leads the current.   (Ans. (a) 514 Ω),   (b) 506 Ω; 37.8º) 

3.49. (a) Compute the impedance of an RLC  series circuit at angular 
frequencies of 1000, 750, and 500 rad/s. Take 300=R  Ω, 9.0=L  H, and 

0.2=C  µF. (b) Describe how the current amplitude varies as the frequency of the 
source is slowly reduced from l000 rad/s to 500 rad/s. (c) What is the phase angle 
of the source voltage with respect to the current when 1000=w  rad/s? Construct 
the phasor diagram when 1000=w  rad/s. Repeat part (c) for 500=w  rad/s. 

3.12   Series Resonance  

Eq. (3.63) gives the current amplitude I  in an RLC  circuit as a function of 
the driving angular frequency dw  of the external alternating EMF. For a given 
resistance R , this amplitude is a maximum when the quantity CL dd ww /1-  in 
the denominator is zero – that is, when 

C
L

d
d w

w
1

=      or 

LCd
1

=w .        (3.66) 

Because the natural angular frequency 0w  of the RLC  circuit is also equal 
to LC/1 , the maximum value of I  occurs when the driving angular frequency 
matches the natural angular frequency. This peaking of the current amplitude at a 
certain frequency is called resonance. Thus, in an RLC  circuit, resonance and 
maximum current amplitude I  occur when 

LCd
1

0 == ww .          (3.67) 
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If the inductance L  or the capacitance C  of a circuit can be varied, the 
resonant frequency can be varied as well. This is the procedure by which a radio 
or television receiving set may be tuned to receive the signal of the desired 
station. In the early days of radio, this was accomplished by the use of capacitors 
with movable metal plates whose overlap could be varied to change C . 
Nowadays it is more common to use a variable inductor with a ferrite core that 
slides in and out of a coil to vary L . 

Figure 3.13 shows three resonance curves for sinusoidally driven 
oscillations in three series RLC  circuits differing only in R . Each curve peaks at 
its maximum current amplitude I  when the ratio 0/wwd  is 1.0, but the maximum 
value of I  decreases with the increasing R . (The maximum I  is always 

REMF / ). In addition, the curves increase in width with increasing R . 
To make the physical sense of 

Figure 3.13 consider how the 
reactance LX  and CX  change as we 
increase the driving angular 
frequency dw , starting with a value 
much less than the natural frequency 

0w . For small dw , the reactance LX  
( Ldw= ) is small and the reactance 

CX  ( Cdw/1= ) is large. Thus, the 
circuit is mainly capacitive, and the 
impedance is dominated by the large 

CX  which keeps the current low. 
As we increase dw  the 

reactance CX  remains dominant but 
decreases while the reactance LX  
increases. The decrease in CX , 
decreases the impedance allowing the 
current to increase, as we see on the 
left side of any resonance curve in 
Figure 3.13. When the increasing 

LX , and the decreasing CX  reach 
equal values, the current is the 
greatest and the circuit is in 
resonance, with 0ww =d . As we 
continue to increase dw , the increasing reactance LX  becomes progressively 
more dominant over the decreasing reactance CX . The impedance increases 
because of LX , and the current decreases, as on the right side of any resonance 
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m
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Figure 3.13   Resonance curves for the driven 
RLC  circuit of Figure 3.10 with 100=L  μH, 

100=C  pF, and three values of R . The 
current amplitude I  of the alternating current 
depends on how close the driving angular 
frequency dw  is to the natural angular 

frequency 0w . The horizontal arrow on each 
curve measures the width of the curve at the 
half-maximum level, a measure of the 
sharpness of the resonance. To the left of 

0.1/ =wwd , the circuit is mainly capacitive, 

with LC XX > ; to the right it is mainly 
 

inductive, with LC XX <  
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curve in Figure 3.13. In summary, the low-frequency side of resonance curve is 
dominated by the capacitor reactance, the high-frequency side is dominated by the 
inductor reactance, and resonance occurs in the middle. 

Figure 3.14 shows the graphs of R , LX , CX , and Z  as functions of w . 
We have used a logarithmic frequency scale because of the wide range of 
frequencies covered. Note that at one particular frequency, LX  and CX  are 
numerically equal and CL XXX -=  is zero. Hence, at this frequency the 
impedance Z  has its minimum value, equal simply to the resistance R . By 
inspecting Eq. (3.63), we must conclude that, when 0=R , the current becomes 
infinite at resonance. Although the equation predicts this, real circuit always has a 
resistance, which limits the value of the current. 

To understand the resonance 
peak of the current amplitude more 
fully, consider the voltages in the 
circuit of Figure 3.10. At any instant 
the current is the same in L  and C . As 
we have learned, the voltage across an 
inductor always leads the current by 
90°, or a quarter-cycle, and the voltage 
across a capacitor always lags the 
current by 90°. Thus, comparing the 
phase of the instantaneous voltage Lv  
across L  and the voltage Cv  across C , 
we find that these two voltages always 
differ in phase by 180°, or a half-cycle. 
Therefore, they have opposite signs at 
each instant. If, in addition, the 
amplitudes of the two voltages are 
equal, then they add to zero at each 
instant, and the total voltage CLv  
across the LC  combination is exactly 
zero. As we have found above, this 
phenomenon occurs only at one 
particular frequency which we call the 

resonant frequency. Depending on the numerical values of R , L , and C , the 
voltages across L  and C  individually can be larger than that across R , so at 
frequencies sufficiently close to the resonant frequency, the voltages across L  and 
C  individually can be much larger than the source voltage! 

An airport metal detector is essentially a resonant circuit. The portal you 
step through is an inductor (a large loop of conducting wire) that is part of the 
circuit. The frequency of the circuit is tuned to the resonant frequency of the 
circuit when there is no metal in the inductor. Any metal on your body increases 
the effective inductance of the loop and changes the current in it.  

0

(a)

CX

LX

CL XXX -=

22 )( CL XXRZ -+=

 
Fig. 3.14    (a) Reactance, resistance, and 
impedance as functions of frequency 
(logarithmic frequency scale); (b) Impedance, 
current, and phase angle as functions of 
 

frequency (logarithmic frequency scale) 
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Resonance phenomena occur in all areas of physics; we have already seen 
it in the forced oscillation of the harmonic oscillator. In that case the amplitude of 
a mechanical oscillation peaked at a driving-force frequency close to the natural 
frequency of the system, and the behavior of the RLC  circuit is analogous to this. 
Other important examples of resonance occur in acoustics, in atomic and nuclear 
physics, and in the study of fundamental particles (high-energy physics). 

Example 3.10 
A series RLC  ac circuit has 425=R  Ω. 25.1=L  H, 5.3=C  µF. 377=w  

Hz, and 150max =DV  V.  
(a) Determine the inductive reactance, the capacitive reactance, and the 

impedance of the circuit.  
Solution. 
The reactances are 471== LX L w  Ω and 758/1 == CXC w  Ω. The 

impedance is 
513)758471()425()( 2222 =-+=-+= CL XXRZ  Ω. 

(b) Find the maximum current in the circuit. 
Solution. 

292.0
513
150

===
Z

VI m
m  A. 

(c) Find the phase angle between the current and voltage. 
Solution. 

°-=÷
ø
ö

ç
è
æ -

=÷
ø
ö

ç
è
æ -

= -- 34
425

758471tantan 11
R

XX CLf . 

Because the circuit is more capacitive than inductive, f  is negative and the 
current leads the applied voltage. 

(d) Find both the maximum voltage and the instantaneous voltage across 
each element. 

Solution. 
The maximum voltages are 

124)425)(292.0( ===D RIV mR  V, 
138)471)(292.0( ===D LmL XIV  V, 
221)758)(292.0( ===D CmC XIV  V. 

We can write the instantaneous voltages across the three elements as 
tvR 377sin)124(=D  V, 
tvL 377cos)138(=D  V, 
tvR 377cos)221(-=D  V, 

Comments. The sum of the maximum voltages across the elements is 
483=D+D+D CLR vvv V. Note that this sum is much greater than the maximum 

voltage of the generator, 150 V. As we saw, the sum of the maximum voltages is 



 198

a meaningless quantity because when sinusoidally varying quantities are added, 
both their amplitudes and their phases must be taken into account. We know that 
the maximum voltages across the various elements occur at different times. That 
is, the voltages must be added in a way that takes into account of the different 
phases. When it is done, Eq. (3.59) is satisfied. 

Exercises 

3.50. Show that a series RLC  circuit driven by an ac source exhibits 
resonance at LCr /1=w . 

3.51. In series RLC  circuit let 200=R  Ω, 0.15=C  µF, 230=L  mH, 
60=df  Hz and 36=me  V. (a) What is the current amplitude I ?   (b) What is the 

phase constant?   (Ans. -0.424 rad, 0.164 A.) 
3.52. Find Z , f , and I  for the circuit of Ex. 3.51 with the capacitor 

removed from the circuit, all other parameters remaining unchanged.   (Ans. 
0=CX  Ω, 7.86=LX  Ω, 182=Z  Ω, 198=I  mA, °= 5.28f .) 
3.53. Find Z , f , and I  for the circuit of Ex. 3.51 with the inductor 

removed from the circuit, all other parameters remaining unchanged. 
3.54. Find Z , f , and I  for the circuit of Ex. 3.51 with 0.70=C  µF, the 

other parameters remaining unchanged.   (Ans. 9.37=CX  Ω, 7.86=LX  Ω, 
167=Z  Ω, 216=I  mA, °= 1.17f .) 

3.55. In an RLC  circuit, can the amplitude of the voltage across an 
inductor be greater than the amplitude of the generator EMF? Consider  an RLC  
circuit with 10=me  V, 10=R  Ω, 0.1=L  H, and 0.1=C  µF. Find the amplitude 
of the voltage across the inductor at resonance.   (Ans. 1000 V.) 

3.56. When the generator EMF in Ex. 3.51 is a maximum, what is the 
voltage across (a) the generator, (b) the resistance, (c) the capacitance, and (d) the 
inductance? (e) By summing these with appropriate signs, verify that the loop 
rule is satisfied. 

3.57. A coil of inductance 88 mH and unknown resistance and a 0.94 µF 
capacitor are connected in series with an alternating EMF of frequency 930 Hz. If 
the phase constant between the applied voltage and the current is 75°, what is the 
resistance of the coil?   (Ans. 89 Ω.) 

3.58. An ac generator with 220=me  V and operating at 400 Hz causes 
oscillations in a series RLC  circuit having 220=R  Ω, 150=L  mH, and 

0.24=C  µF. Find (a) the capacitive reactance CX , (b) the impedance Z , and (c) 
the current amplitude I . A second capacitor of the same capacitance is then 
connected in series with the other components. (d) Determine whether the values 
of CX , (e) Z , and I  increase, decrease, or remain the same. 
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3.59. An RLC  circuit such as that of Figure 3.10 has 0.5=R  Ω, 0.20=C  
µF, 0.1=L  mH, and 0.3=me  V. (a) At what angular frequency dw  will the 
current amplitude have its maximum value, as in the resonance curves of Figure 
3.10? (b) What is this maximum value? (c) At what two angular frequencies 1dw  
and 2dw  will the current amplitude be half this maximum value? (d) What is the 
fractional half-width [ 021 /)( www dd -= ] of the resonance curve for this circuit?   
[Ans. (a) 224 rad/s, (b) 6.0 A, (c) 228 rad/s, 219 rad/s, (d) 0.040.] 

3.60. At an airport, a person is made to walk through the doorway of a 
metal detector, for security reasons. If she or he is carrying anything made of 
metal, the metal detector emits a sound. On what principle does this detector 
work? 

3.13   Q-factor of the Circuit 

Let’s return to Figure 3.13. We see, that the curves increase in width with 
the increasing R . Thus, a small R  gives a sharply peaked response curve, and a 
large R  gives a broad flat curve. This distinction is crucially important in the 
design of radio and television receiving circuits. The sharply peaked curve is what 
makes it possible to discriminate between two stations broadcasting on adjacent 
frequency bands. But if the peak is too sharp, some information is lost in the 
received signal. Finally, note that the shape of the resonance curve is related to 
the over-damped and underdamped oscillations. A sharply peaked resonance 
curve corresponds to a small value of R  and a lightly damped oscillating system; 
a broad flat curve goes with a large value of R  and a heavily damped system. 

As the resistance is made smaller, the curve becomes sharper in the vicinity 
of the resonance frequency. This curve sharpness is usually described by a 
dimensionless parameter known as the quality factor, denoted by Q : 

w
w
D

=
2

0Q ,        (3.68) 

where 0w  is the resonance frequency, wD2  is the width of the curve measured 
between the two values of w  for which avP  has half its maximum value, called 
the half-power points (see Figure 3.15.)  

To understand the physical meaning of the quality factor more fully, return 
again to the circuit of Figure 3.10. For values of dw  other than 0w , the amplitude 
of the current is smaller than the maximum value. Suppose we choose a value of 

dw  for which the current amplitude is mII
2

1
= , that is 

2
1  times its maximum 

value. From the curve in Figure 3.15, we see that there are two such values of dw , 
say, 1w , and 2w , one greater and the other smaller than 0w  and symmetrical 
about 0w . We can write 

www D+= 01      and     www D-= 02 . 
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The difference www D=- 221  is 
often called the bandwidth of the circuit. 
The quantity ww D2/0  is regarded as a 
measure of the sharpness of resonance. 
The smaller the wD , the sharper, or 
narrower, is the resonance. 

To get an expression for wD , we 
note that the current amplitude is 

22
1

R
II m
m

e
==  for www D+= 01 . 

Therefore, at 1w , current I  is on one 
hand, 

2

1
1

2 1
÷÷
ø

ö
çç
è

æ
-+

=

C
LR

I m

w
w

e , 

and, on the other hand,  

2R
I me

= . 

It is clear, that denominators of both expressions must be equal, hence 

21 2

1
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2 R
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LR =÷÷
ø

ö
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è
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w
w , or 2
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1
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2 21 R
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LR =÷÷
ø
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w , 

and R
C

L =-
1

1
1

w
w . As www D+= 01 , we can rewrite the latest expression as 

R
C

L =
D+

-D+
)(

1)(
0

0 ww
ww ,   or 
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Using 
LC
12

0 =w  in the second term on the left hand side, we get 

RLL =
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Figure 3.15   Average power versus 
frequency for a series RLC  circuit. The 
width wD  of each curve is measured 
between the two points where the power is 
half its maximum value. The power is a 
 

maximum at the resonance frequency 
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We can approximate 
1

0
1

-
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w
w  as ÷÷

ø
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D
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w . Therefore, 
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w
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w , or 

RL =
D

0
0

2
w

w
w , and, finally,  

L
R

2
=Dw . 

The sharpness of resonance is given by 

R
L00

2
w

w
w

=
D

.    (3. 69) 

The ratio  

w
ww
D

==
2

00
R

LQ  

is the quality factor (Q -factor) of the circuit, defined by Eq. (3.68). 
From Eqs. (3.69) and (3.70), we see that 

Q
02 w

w =D . 

So, the larger the value of Q , the smaller is the value of wD2 , or the 

bandwidth, and the sharper the resonance. Using 
LC
12

0 =w , Eq. (3.70) can be 

equivalently expressed as  

CR
Q

0

1
w

= .     (3.70) 

We see from Figure 3.15, that if the resonance is less sharp, not only is the 
maximum current less, but also the circuit is close to resonance for a larger range 

wD  of frequencies and the tuning of the circuit will not be good. So, the less 
sharp the resonance, the less the selectivity of the circuit, or vice versa. From Eq. 
(3.70) we see that if the quality factor is large, i.e., R  is low or L  is large, the 
circuit is more selective. 

The quality factor is also defined as the ratio 

E
EQ

D
=

p2      (3.71) 

where E  is the energy stored in the oscillating system, and ED  is the energy lost 
per cycle of oscillation.  
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The curves plotted in Figure 3.15 show that a high- Q  circuit responds to 
only a very narrow range of frequencies, whereas a low- Q  circuit can detect a 
much broader range of frequencies. In electronic circuits, typical values of Q  
range from 10 to 100. 

The receiving circuit of a radio is an important application of a resonant 
circuit. One tunes the radio to a particular station (which transmits a specific 
electromagnetic wave or signal) by varying a capacitor or an inductor, which 
changes the resonant frequency of the receiving circuit. When the resonance 
frequency of the circuit matches that of the incoming electromagnetic wave, then 
the current in the receiving circuit increases. This signal caused by the incoming 
wave is then amplified and fed to a speaker. Because many signals are often 
present over a range of frequencies, it is important to design a high- Q  circuit to 
eliminate unwanted signals. In this manner, stations whose frequencies are near 
but not equal to the resonance frequency give signals at the receiver that are 
negligibly small relative to the signal that matches the resonance frequency. 

Exercises 

3.61. Obtain the resonant frequency rw  of a series RLC  circuit with 2=L , 
H, 32=C  µF, and 10=R  Ω. What is the Q -value of this circuit?  

3.13   Power in Alternating-Current Circuits 

No power losses are associated with pure capacitors and pure inductors in 
an AC circuit. To see why this is true, let us first analyze the power in an AC 
circuit containing only a generator and a capacitor. 

When the current begins to increase in one direction in an AC circuit, the 
charge begins to accumulate on the capacitor, and a voltage drops across it. When 
this voltage drop reaches its maximum value, the energy stored in the capacitor is 

2/2CV . However, this energy storage is only momentary. The capacitor is 
charged and discharged twice during each cycle: The charge is delivered to the 
capacitor during two quarters of the cycle and is returned to the voltage source 
during the remaining two quarters. Therefore, the average power supplied by the 
source is zero. In other words, no power losses occur in a capacitor in an AC 
circuit. 

Similarly, the voltage source must do work against the back EMF of the 
inductor. When the current reaches its maximum value, the energy stored in the 
inductor is a maximum and is given by 2/2LI . When the current begins to 
decrease in the circuit, this stored energy is returned to the source as the inductor 
attempts to maintain the current in the circuit. 



 203

The power delivered by a battery to a DC circuit is equal to the product of 
the current and the EMF of the battery. Likewise, the instantaneous power 
delivered by an AC generator to a circuit is the product of the generator current 
and the applied voltage. For the RLC  circuit shown in Figure 3.10, we can 
express the instantaneous power P  as 

)sin(sinsin)sin( fwwwfw -=-== ttIVtVtIivP ,  (3.72) 
Clearly, this result is a complicated function of time and, therefore, is not 

very useful from a practical viewpoint. What is generally of interest is the average 
power over one or more cycles. Such an average can be computed by using the 
trigonometric identity fwfwfw sincoscossin)sin( ttt -=- . The substitution of 
this into Eq. (3.72) gives 

fwwfw sincossincossin2 ttIVtIVP -= .  (3.73) 
We now take the time average of P  over one or more cycles, noting that I , 

V , f  and w  are all constants. The time average of the first term in the right side 

of Eq. (3.73) involves the average value of tw2sin , which is a 
2
1 . The time 

average of the second term on the right is identically zero because 

ttt www 2sin
2
1cossin =  and the average value of tw2sin  is zero. Therefore, we 

can express the average power avP  as 

fcos
2
1 IVPav = .                               (3.74)  

It is convenient to express the average power in terms of the rms current 
and rms voltage defined by Eq. (3.39) and (3.41): 

fcosrmsrmsav VIP = ,       (3.75) 
where the quantity fcos  is called the power factor. The maximum voltage drop 
across the resistor is given by RIV mm =fcos . Using Eq. (3.75) and the fact that 

VIR /cos =f , we find that we can express avP  as 

22
cos IRI

V
IRVIVIP rmsrmsrmsrmsav =÷

ø
ö

ç
è
æ== f . 

After making the substitution rmsm II 2=  from Eq. (3.39), we have 

RIP rmsav
2= .    (3.76) 

In words, the average power delivered by the generator is converted into 
the internal energy in the resistor , just as in the case of a DC circuit. No power 
loss occurs in an ideal inductor or capacitor. When the load is purely resistive, 
then 0=f , 1cos =f , and from Eq. (3.76), we see that 

rmsrmsav VIP = .    (3.77) 
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Eq. (3.76) shows that the power delivered by an AC source to any circuit 
depends on the phase, and this result has many interesting applications. For 
example, a factory that uses large motors in machines, generators, or transformers 
has a large inductive load (because of all the windings). To deliver greater power 
to such devices in the factory without using excessively high voltages, technicians 
introduce capacitance in the circuits to shift the phase. 

So, as we have understood, the average power dissipated depends not only 
on the voltage and current but also on the power factor . Let us discuss the 
following cases: 

Case (a). Resistive circuit: If the circuit contains only pure R , it is called 
resistive. In that case, 0=f , 1cos =f . There is maximum the power dissipation. 

Case (b). Purely inductive or capacitive circuit: If the circuit contains only 
an inductor or capacitor, we know that the phase difference between the voltage 
and the current is 2/p . Therefore, 0cos =f , and no power is dissipated even 
though a current is flowing in the circuit. This current is sometimes referred to as 
wattless current. 

Case (c). RLC  series circuit. In an RLC  series circuit, the power 

dissipated is given by Eq. (3.75) with ÷
ø
ö

ç
è
æ -

= -
R

XX LC1tanf . So, f  may be non-

zero (except 2/p ) in a RL , RC , or RLC  circuit. Even in such cases, power is 
dissipated only in the resistor. 

Case (d). Power dissipated at resonance in RLC  circuit: At resonance, 

0=- LC XX  and 0=f . Therefore, 1cos =f  and 
R
I

Z
IP mm == . That is, 

maximum power is dissipated in a RLC  circuit (through R ) at resonance. 
Example 3.11 
A sinusoidal voltage of the peak value 283 V and the frequency 50 Hz is 

applied to a series RLC  circuit in which 3=R  Ω, 48.25=L  mH, and 796=C  
µF.  

(a) Find the impedance of the circuit.  
Solution. 
(a) To find the impedance of the circuit, we first calculate LX  and CX : 

W=W´´´´== - 81048.255014.322 3fLX L p , 

W=
´´´´

== - 4
107965014.32

1
2

1
6fC

XC p
. 

Therefore, 
W=-+=-+= 5)48(3)( 2222

CL XXRZ . 
(b) Find the phase difference between the voltage across the source and the 

current.  
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Solution. 
Phase difference 

°-=÷
ø
ö

ç
è
æ -

=÷
ø
ö

ç
è
æ -

= -- 1.53
3

84tantan 11
R

XX LCf . 

Since f  is negative, the current in the circuit lags the voltage across the source. 
(c) Find the power dissipated in the circuit.  
Solution. 
The power dissipated in the circuit is 

RIP rms
2= , 

Now, AII m
rms 40

5
283

2
1

2
=÷

ø
ö

ç
è
æ== , 

Therefore, 
W48003)40( 2 =W´= AP . 

(d) Find the power factor.  
Solution. 
Power factor: 6.01.53coscos =°=f . 

Example 3.12  
Suppose the frequency of the source in the previous example can be varied. 
(a) What is the frequency of the source at which resonance occurs?  
Solution. 
(a) The frequency at which the resonance occurs is 

rad/s1.222
107961048.25

11
630 =

´´´
==

--LC
w , 

Hz35.4Hz
14.32
1.221

2
0 =

´
==

p
w

rf . 

(b) Calculate the impedance, the current and the power dissipated at the 
resonant condition.  

Solution. 
The impedance Z  at resonant condition is equal to the resistance: 

W== 3RZ . 
The rms current at resonance is 

A7.66
3
1

2
283

=÷
ø
ö

ç
è
æ===

R
V

Z
VI rmsrms

rms . 

The power dissipated at resonance is 
kW35.133)7.66( 22 =´== RIP rms . 
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Exercises 

3.62. A series RLC  circuit with 20=R  Ω, 5.1=L  H, and 35=C  µF is 
connected to a variable-frequency 200 V AC supply. When the frequency of the 
supply equals the natural frequency of the circuit, what is the average power 
transferred to the circuit in one complete cycle? 

3.63. A series RLC  circuit is connected to a variable frequency 230 V 
source. 5=L  H, 80=C  µF, 40=R  Ω; (a) Determine the source frequency which 
drives the circuit in resonance. (b) Obtain the impedance of the circuit and the 
amplitude of current at the resonating frequency. (c) Determine the rms potential 
drops across the three elements of the circuit. Show that the potential drop across 
the LC  combination is zero at the resonating frequency. 

3.64. А 400-Ω resistor is in series with a 0.1-H inductor and a 0.5-µF 
capacitor. The circuit carries an rms current of 0.25 A with a frequency of 100 
Hz. (a) What average power is delivered by the source? (b) What average power 
is consumed in the resistor? (c) In the capacitor? (d) In the inductor? (e) Compare 
your answers in (a) to the sum of (b), (c), and (d)     (Ans. 25 W), (b) 25 W, (c) 0, 
(d) 0, (e) (a) =(b)+ (c)+ (d).) 

3.65. A series circuit has a resistance of 75 Ω and an impedance of 150 Ω. 
What power is consumed in the circuit when a voltage of 120 V (rms) is 
impressed across it? 

3.14   Parallel Resonance 

A different kind of resonance occurs when L , R , and C  are connected in 
parallel, as shown in Figure 3.16a. We can analyze this circuit by using the same 
procedure as for the series circuit. In this case, the instantaneous potential 
difference v  is the same for all elements and is equal to the source voltage. Figure 
3.16b shows a phasor diagram; the single phasor V  represents this common 
voltage. There are three separate currents, one in each branch, and the three 
corresponding current phasors are also shown. The phasor RI , (with amplitude 

RV /  and in phase with V ) represents the current in the resistor. Phasor LI  (with 
amplitude LXV /  and lagging V  by 90°) represents the current in the inductor. 
Phasor CI , with amplitude CXV /  and leading V  by 90°, represents the current 
in the capacitor. 

By Kirchhoff’s point rule, the instantaneous current i , equals the 
(algebraic) sum of the instantaneous currents Ri , Li , and Ci  and is represented by 
the phasor I , the vector sum of phasors RI , LI , and CI . Angle f  is the phase 
angle of current with respect to source voltage (the negative of the phase angle of 
voltage with respect to current). 



 207

 

I

V

(b)

CI

RI

LI

LC II -

 
Figure 3.16   (a) Parallel RLC  circuit; (b) Phasor diagram showing current phasors for the three 
 

branches. The single voltage phasor V represents the voltage across all three branches 
 

From Figure 3.16, 
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The maximum current I  is frequency-dependent, as expected. It is minimal 
when the second factor in the radical is zero; this occurs when the two reactances 
have equal magnitudes, at the resonant frequency 0w . 

Comparing this equation with Eq. (3.61), we see that the impedance Z  of a 
parallel RLC  circuit is given by 

2

2
111
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ø
ö

ç
è
æ -+=

L
C

RZ w
w .      (3.79) 

At resonance Z/1 , is minimum, so Z  itself has its maximum value at 
LC/10 == ww .      (3.80) 

Thus, at resonance, the total current in the parallel RLC  circuit is 
minimum, in contrast to the RLC  series circuit which has maximum current at 
resonance. This distinction can be understood by noting that, in the parallel 
circuit, the currents in L  and C  are always exactly a half-cycle out of phase. 
When they also have equal magnitudes, they cancel each other completely, and 
the total current is simply the current through R . Indeed, when LC ww /1= , Eq. 
(3.78) becomes simply RVI /= . This does not mean that there is no current in L  
or C  at resonance, but only that the two currents cancel. If R  is large, the 
equivalent impedance of the circuit near resonance is much larger that the 
individual reactances LX  and CX . 
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Exercises 

3.66. For the circuit of Figure 3.16a, let 120=V  V, 200=R  Ω, 5.0=L  H, 
and 2.0=C  µF. (a) What is the resonant angular frequency of the circuit? Sketch 
the phasor diagram at the resonant frequency. (b) At the resonant frequency, what 
is the current through the source? (c) At the resonant frequency, what is the 
current through the resistor? (Ans. (a) 3160 rad/s, (b) 0.6 A, (c) 0.6 A, ) 

3.67. Consider the circuit of Figure 3.16a, with the same numerical values 
as in Exercise 3.51. At resonance, what is: (a) the average rate at which the 
electrical energy is delivered by the source? (b) the average rate at which 
electrical energy is dissipated in the resistor? Compare to the result of (a). (c) Is 
the current through the inductor, and, hence, the energy stored in its magnetic 
field, zero at all times? If not, how can the result obtained in (b) be explained? (d) 
Calculate the maximum energy stored in the inductor. (e) Calculate the maximum 
energy stored in the capacitor. 

Summary 

A circuit containing an inductance L  and a capacitance C  undergoes 
electromagnetic oscillations, with angular frequency w  given by 

LC
1

=w . 

Such a circuit is analogous to a mechanical harmonic oscillator with the 
mass m  analogous to the inductance L , the force constant k  to the reciprocal of 
the capacitance C/1 , the displacement x  to the charge q , and the velocity v  to 
the current i . A series circuit containing inductance, resistance, and capacitance 
undergoes damped oscillations for sufficiently small resistance. As R  increases, 
the damping increases; at a certain value of R , the behavior becomes 
overdamped, and the circuit no longer oscillates. The crossover between the 
underdamping and the overdamping occurs when 

C
LR 4

= , 

and the frequency 'w  of damped oscillations when R  is smaller than this critical 
value is 

2

2

4
1'

L
R

LC
-=w . 

There is a direct analogy between every aspect of the behavior of the RLC  
circuit and the mechanical damped harmonic oscillator. This analogy is widely 
used in analog computers. 

An alternator or AC source produces an EMF that varies sinusoidally with 
time. Voltages and currents that vary sinusoidally with time can be represented by 
vectors called phasors. A phasor rotates counterclockwise with constant angular 
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velocity w  equal to the angular frequency of the sinusoidal quantity, and its 
projection on the horizontal axis at any instant represents the instantaneous value 
of the quantity. 

The voltage across a resistor R  is in phase with the current, and the 
amplitudes are related by 

IRV = . 
The voltage across a capacitor C  lags the current by 90°; the amplitudes 

are related by 
CIXV = . 

where CXC w/1=  is the capacitive reactance of the capacitor. 
The voltage across an inductor L  leads the current by 90°; the amplitudes 

are related by 
LIXV = . 

where LX L w=  is the inductive reactance of the inductor. 
In an RLC  series circuit, the voltage and current amplitudes are related by 

IZV = . 
where Z  is the impedance of the circuit, given by 

222222 )]/1([)( CLRXXRXRZ CL ww -+=-+=+= . 
The phase angle q  of the voltage relative to the current is given by 

R
X

I
XXI

V
VV CL

R

CL =
-

=
-

=
)(tanq . 

The SI unit of capacitive or inductive reactance, or impedance is the ohm. 
The root-mean-square (rms) value of a sinusoidally varying quantity is 

2/1  times the amplitude; thus 2/IIrms =  and 2/VVrms = . 
The average power input P  to an ac circuit is given by 

qcosrmsrmsIVP = , 
where q  is the phase angle of voltage with respect to current. The quantity qcos  
is called the power factor. 

The current in an RLC  series circuit becomes maximum, and the 
impedance minimum, at a frequency LC/10 =w  called the resonant frequency. 
This phenomenon is called resonance. At resonance the voltage and current are in 
phase, and the impedance Z  is equal to the resistance R . 

The current in an RLC  parallel circuit becomes minimum, and the 
impedance maximum, at this same resonant frequency 0w . The impedance Z  of 
this circuit at any frequency is given by 

22 )]/1([1 CLR
Z

ww -+= . 

At resonance, RZ = . 
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Key Terms 
Electro–magnetic oscillations – электромагнитные колебания  
damped oscillations – затухающие колебания 
alternating current – переменный ток  
ac source – источник переменного тока  
phasor diagrams – фазорная диаграмма 
phase angle – фазовый угол 
capacitive reactance – емкостное сопротивление 
inductive reactance  – индуктивное сопротивление  
reactance – реактивное сопротивление  
impedance – импеданс 
root-mean-square (rms) value – среднеарифметическое значение 
resonance –  резонанс 
resonant frequency – резонансная частота 
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Chapter 4 

Electromagnetic Waves 
The waves we discussed in Chapter 2 require a medium (some material) 

through which or along which to travel. We had waves traveling along a string, 
through Earth, and through the air. However, an electromagnetic wave is different 
in that it requires no medium for its travel. It can, indeed, travel through a medium 
such as air or glass, but it can also travel through the vacuum of space between a 
star and us. 

Once the special theory of relativity became accepted, long after Einstein 
published it in 1905, the speed of light waves was realized to be special. One 
reason is that light has the same speed regardless of the frame of reference from 
which it is measured. If you send a beam of light along an axis and ask several 
observers to measure its speed while they move at different speeds along that axis, 
either in the direction of the light or opposite it, they will all measure the same 
speed for the light. This result is an amazing one and quite different from what 
would have been found if those observers had measured the speed of any other 
type of wave; for other waves, the speed of the observers relative to the wave 
would have affected their measurements. 

4.1   Nature of Electromagnetic Waves 

We have studied various aspects of electric and magnetic fields, falling in 
two general categories. The first category includes fields that do not vary with 
time. The electrostatic field of a distribution of charges at rest and the magnetic 
field of a steady current in a conductor are examples of fields that do not vary 
with time at any individual point, although they may vary from point to point in 
space. For these situations we could treat the electric and magnetic fields 
independently, without worrying much about interactions between them. The 
second category includes fields that do vary with time, and in all such cases, we 
found that it is not possible to treat the fields independently. 

James Clerk Maxwell's crowning achievement was to show that a beam of 
light is a traveling wave of electric and magnetic fields — an electromagnetic 
wave. In Maxwell's time (the mid 1800s), the visible, infrared, and ultraviolet 
forms of light were the only electromagnetic waves known. Using Maxwell's 
work, however, Heinrich Hertz discovered what we now call radio waves and 
verified that they move through the laboratory at the same speed as visible light. 

We have given a brief description of Maxwell's equations which form the 
theoretical basis of all electromagnetic phenomena. The consequences of 
Maxwell's equations are far-reaching. The Ampere-Maxwell law predicts that a 
time-varying electric field produces a magnetic field, just as Faraday's law tells us 
that a time-varying magnetic field produces an electric field. Maxwell's 
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introduction of the concept of displacement current as a new source of a magnetic 
field provided the final important link between electric and magnetic fields in 
classical physics. Maxwell's equations also predict the existence of 
electromagnetic waves that propagate through space with the speed of light c . 

In his unified theory of electromagnetism, Maxwell showed that 
electromagnetic waves are a natural consequence of the fundamental laws 
expressed in the following four equations: 

t
BErot
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rr
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0=Bdiv
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. 
Some electromagnetic waves, including X-rays, gamma rays, and visible 

light, are radiated (emitted) from sources that are of atomic or nuclear size where 
quantum physics rules. Here we discuss how other electromagnetic waves are 
generated. To simplify matters, we restrict ourselves to that region of the 
spectrum (wavelength 1=l  m) in which the source of the radiation is both 
macroscopic and of manageable dimensions. 

Devises for generating such waves contain an LC  oscillator which 
establishes an angular frequency LC=w . Charges and currents in this circuit 
vary sinusoidally at this frequency. An external source – possibly an AC 
generator – must be included to supply energy to compensate both for thermal 
losses in the circuit and for energy carried away by the radiated electromagnetic 
wave. 

The LC  oscillator is coupled by a transformer and a transmission line to an 
antenna which consists essentially of two thin solid conducting rods. Through this 
coupling, the sinusoidally varying current in the oscillator causes charge to 
oscillate sinusoidally along the rods of the antenna at the angular frequency w  of 
the LC  oscillator. The current in the rods associated with this movement of 
charge also varies sinusoidally, in magnitude and direction, at angular frequency 
w . The antenna has the effect of an electric dipole whose electric dipole moment 
varies sinusoidally in magnitude and direction along the length of the antenna. 

Because the dipole moment varies in magnitude and direction, the electric 
field produced by the dipole varies in magnitude and direction. As well, because 
the current varies, the magnetic field produced by the current varies in magnitude 
and direction. However, the changes in the electric and magnetic fields do not 
happen everywhere instantaneously; rather, the changes travel outward from the 
antenna at the speed of light c . Together the changing fields form an 
electromagnetic wave that travels away from the antenna at speed c . The angular 
frequency of this wave is w , the same as that of the LC  oscillator. 
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We are bathed in electromagnetic waves of different wavelengths. The Sun, 
whose radiations define the environment in which we as a species have evolved 
and adapted, is the dominant source. We are also crisscrossed by radio and 
television signals. Microwaves from radar systems and from telephone relay 
systems reach us. There are electromagnetic waves from lighlbulbs, from the 
heated engine blocks of automobiles, from X-ray machines, from lightning 
flashes, and from buried radioactive materials. Beyond this, radiation reaches us 
from stars and other objects in our galaxy and from other galaxies. 
Electromagnetic waves also travel in the other direction. Television signals, 
transmitted from Earth since about 1950, have now taken news about us to 
whatever technically sophisticated inhabitants there may be on whatever planets 
may encircle the nearest 400 or so stars. 

4.2   Hertz’s Experiment 
In 1887, Heinrich Hertz produced electromagnetic waves with the aid of 

oscillating circuits, and received and detected these waves with other circuits 
tuned to the same frequency. 

The experimental apparatus that 
Hertz used to generate and detect 
electromagnetic waves is shown 
schematically in Figure 4.1. An 
induction coil is connected to a 
transmitter made up of two spherical 
electrodes separated by a narrow gap. 
The coil provides short voltage surges to 
the electrodes, making one positive and 
the other negative. A spark is generated 
between the spheres when the electric 
field near either electrode surpasses the 
dielectric strength for air ( 6103´  V/m). 
In a strong electric field, the acceleration 
of free electrons provides them with 
enough energy to ionize any molecules 
they strike. This ionization provides 
more electrons which can accelerate and 
cause further ionization. As the air in the 
gap is ionized, it becomes a much better 
conductor, and the discharge between 
the electrodes exhibits an oscillatory 
behavior at a very high frequency. From an electric-circuit viewpoint, this is 
equivalent to a LC  circuit in which the inductance is that of the coil and the 
capacitance is due to the spherical electrodes. 

 
Figure 4.1   The experimental apparatus that 
Hertz used to generate and detect 
 

electromagnetic waves 



 214

Because L  and C  are quite small in Hertz's apparatus, the frequency of 

oscillations is very high, 100=f  MHz. (Recall that 
LC
1

=w  for a LC  circuit). 

Electromagnetic waves are radiated at this frequency as a result of the oscillation 
(and hence acceleration) of free charges in the transmitter circuit. Hertz was able 
to detect these waves by using a single loop of wire with its own spark gap (the 
receiver). Such a receiver loop, placed several metres from the transmitter, has its 
own effective inductance, capacitance, and natural frequency of oscillation. In 
Hertz's experiment, sparks were induced across the gap of the receiving electrodes 
when the frequency of the receiver was adjusted to match that of the transmitter. 
Thus, Hertz demonstrated that the oscillating current induced in the receiver was 
produced by electromagnetic waves radiated by the transmitter. His experiment is 
analogous to the mechanical phenomenon in which a tuning fork responds to 
acoustic vibrations from an identical tuning fork that is oscillating. 

Additionally, Hertz showed in a series of experiments that the radiation 
generated by his spark-gap device was transverse and exhibited the wave 
properties of interference, diffraction, reflection, refraction, and polarization, all 
of which are properties exhibited by light. Thus, it became evident that the radio-
frequency waves Hertz had generated had properties similar to those of light 
waves and differed only in frequency and wavelength. Perhaps his most 
convincing experiment was the measurement of the speed of this radiation. Radio-
frequency waves of known frequency were reflected from a metal sheet and 
created a standing-wave interference pattern whose nodal points could be 
detected. The measured distance between the nodal points enabled determination 
of the wavelength l . Using the relationship fv l= , Hertz found that v  was close 

to 8103´  m/s, the known speed c  of visible light. 

4.3   Wave Equation for Plane Electromagnetic Waves  

The existence and properties of electromagnetic waves can be deduced 
from Maxwell's equations. One approach to deriving these properties is to solve 
the second-order differential equation obtained from Maxwell's equations. To 
circumvent this problem, we assume that the vectors for a electric field and 
magnetic field in an electromagnetic wave have a specific space-time behavior 
that is simple but consistent with Maxwell's equations. 

To understand the prediction of electromagnetic waves more fully, let us 
focus on a plane electromagnetic wave that travels in the x  direction (the direction 
of propagation). In this wave, the electric field E

r
 is in the y  direction, and the 

magnetic field B
r

 is in the z  direction, as shown in Figure 4.2. It means that their 
components on coordinate axes does not depend on coordinates y  and z . 
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We can relate E
r

 and H
r

 to each 
other. In an empty space, where 0=r  
and 0=j , 1=e , 1=m , Maxwell’s 
equations become: 
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Consider the Eq. (4.1) which is the differential form of law of 
electromagnetic induction. As 
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then Eq. (4.1) can be rewritten as 
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After the same procedure, the Eq. (4.3) can be written in the form: 
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Eqs. (4.2) and (4.4) take form 
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respectively. 

 
Figure 4.2   At some instant, a plane 
electromagnetic wave moving in the x  
direction has a maximum electric field in the 
positive y  direction. At that point the 
corresponding magnetic field has a magnitude 
 

cE /  and is in the z  direction 
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Eqs (4.4) and (4.8) show that xE  does not depend either on coordinate x  or 
time t . Eqs (4.2) and (4.5) give the same information about xH . Hence the field 
itself has no components along the x –axis. This means that vectors E

r
, and H

r
 are 

perpendicular to the direction of wave propagation, that is, that electromagnetic 
waves are transverse waves. 

The Eqs (4.7), (4.9), and (4.6), (4.10) can be combined into two 
independent systems: 
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The Eqs. (4.11) interrelate the components yE  and zH , and the Eqs. (4.12) 
interrelate the components zE  and yH . 

Suppose that initially the time-varying electric field yE  directed along the 
y -axis was created. According to the second of Eq. (4.11), this field produces the 
magnetic field zH  which is directed along z -axis. Furthermore, according to the 
first of Eqs. (4.11), the field zH  produces the electric field yE  and so on. Neither 
the field zE  not field yH  are induced in this case. Similarly, if initially the 
electric field zE  was produced, then the field yH  appears, and this yH  field 
induces electric field zE  and so on, according to Eqs. (4.12). Hence, for 
description of plane wave, we can use only one of the above systems, putting the 
components of the second system equal zero. 

Let’s choose system (4.11), putting 0== yz HE . Taking derivative of the 

first of Eqs. (4.9) with respect to x , substituting 
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combining the result with Eq. (4.11), we obtain: 
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That is, 
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In the same manner, taking the derivative of the second of Eqs. (4.11) with 
respect to x , we get: 
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We obtain very important result: Eqs. (4.13) and (4.14) both have a form of 
the general wave equation. It is known that any function which satisfies the wave 
equation describes the wave motion, which can be realized in nature. Moreover, 
the root of quantity, which is reciprocal to the coefficient at time derivative, gives 
squared phase speed of the wave. Hence, Eqs. (4.13) and (4.14) state that 
electromagnetic fields can exist in the form of electromagnetic waves and their 
phase speed c  in vacuum is determined as 

00

1
em

=c .      (4.15) 

Recall again, that 0== zx EE  and 0== yx HH , that is EEy =  and 
HH z = . We keep indexes y  and z  in Eqs. (4.13) and (4.14) to show that vectors 

E
r

 and H
r

 are directed along mutually perpendicular axes y  and z . 
The simplest solutions of Eqs.(4.13) and (4.14) are sinusoidal waves for 

which the field magnitudes E  and H  vary with time according to expression: 
( )1cos fw +-= kxtEE my ,    (4.16) 
( )2cos fw +-= kxtHH mz ,    (4.17) 

where mE  and mH  are the amplitudes of the fields. Here, as usual, k  is a wave 
number, lp /2=k , l  is a wavelength, 1f  and 2f  are the phase constants of 
oscillations for points with coordinates 0=x . The angular frequency is fpw 2=  
where f  is the wave frequency.  

The substitution of functions (4.16) and (4.17) into Eqs.(4.11) leads to the 
following relationships: 

)sin()sin( 201 fwwmfw +-=+- kxtHkxtkE mm , 
)sin()sin( 102 fwwefw +-=+- kxtEkxtkH mm . 

As these relationships must be satisfied at any of t  and x , certain 
requirements are necessary:  

a) initial phases must be equal, 21 ff = ,  and 
b) following equalities must hold: 

mm HkE wm0=    and   mm kHE =we0 . 
Multiplying these equations, we obtain: 

2
0

2
0 mm HE me = . 

Thus, electric and magnetic fields oscillate with the same phase ( 21 ff = ), 
and amplitudes of the fields are related as  

00 me mm HE = . 
It is clear from the last expression that for a wave, propagating through 

empty space, the ratio of electric field intensity E  to magnetic field intensity is 
377120)1094)(104(// 97

00 ==´´´== - pppemmm HE  Ω. 
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Another interesting and useful result is:  

c
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B
E

m
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that is, at every instant of time, the ratio of the magnitude of the electric field E  
to the magnitude of the magnetic field HB 0m=  in electromagnetic wave equals 
the speed of light c . 

Finally, note that electromagnetic waves obey the superposition principle 
because the differential equations involving E

r
 and B

r
 are linear equations. For 

example, we can add two waves with the same frequency simply by adding the 
magnitudes of the two electric fields algebraically. 

Let us summarize the properties of electromagnetic waves as we have 
described them: 

1. The solutions of Maxwell's first and second (or third and fourth) 
equations are wave-like, with both E  and H  satisfying the wave equation. 

2. Electromagnetic waves travel through empty space at the speed of light 

00
1

em
=c . 

3. The components of the electric and magnetic fields of plane 
electromagnetic waves are perpendicular to each other and perpendicular to the 
direction of wave propagation. We can summarize the latter property by saying 
that electromagnetic waves are transverse waves. 

4. The magnitudes of E  and B  in empty space are related by the 
expression 

cB
E = . 

5. Electromagnetic waves obey the principle of superposition. 
Example 4.1 
A sinusoidal electromagnetic wave of frequency 40.0 MHz travels in free 

space in the x  direction, as shown in Figure 4.2.  
a) Determine the wavelength and period of the wave.  
Solution. 
Using equation fc l=  and given that 7100.4MHz0.40 ´==f s-1, we 

have 
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The period T  of the wave is the inverse of the frequency: 
8
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b) At some point and at some instant, the electric field has its maximum 
value of 750 N/C and is along the y  axis. Find the magnitude and direction of the 
magnetic field at this position and time. 

Solution. 
We know that 

6
8 105.2

m/s100.3
N/C750 -´=

´
==

c
EB m

m  T. 

Because E
v

 and B
v

 must be perpendicular to each other and perpendicular to 
the direction of wave propagation ( x  in this case), we conclude that B  is in the z  
direction. 

с) Write expressions for the space-time variation of the components of the 
electric and magnetic fields for this wave. 

Solution. 
We can apply Eqs.(4.16) and (4.17) directly; 

)cos(750)cos( kxtkxtEE m -=-= ww ; 

)cos(1050.2)cos( 6 kxtkxtBB m -´=-= - ww . 
Here, 

87 1051.2)100.4(22 ´=´== -ppw f  rad/s, 
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Example 4.2 
The electric field of a plane electromagnetic wave in vacuum is represented 

by 
0=xE . )]/(102cos[5.0 8 cxtEy -´= p  and 0=zE . 

a) What is the propagation direction of electromagnetic waves? 
Solution. 
a) The equation 

)]/(102cos[5.0 8 cxtEy -´= p      (a) 
indicates that the electromagnetic waves are propagating along the positive 
direction of x -axis. 

b) Determine the wavelength of the wave. 
Solution. 
Comparing the equation (a) with the equation in standard form i.e . 

)/(cos0 cxtEEy -= w , we get 
8102 ´= pw  or 81022 ´= ppf , or 810=f  Hz. 
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Now,  
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c) Compute the component of associated magnetic field. 
Solution. 
The associated magnetic field is perpendicular to both the electric field and 

the direction of propagation. Since the wave is propagating along the x -axis and 
the electric field is along the y -axis, the magnetic field must be along z -axis. 
Hence, the components of associated magnetic field are 

0=xB , 0=yB  and )]/(102cos[
103
5.0 8

8 cxtBz -´
´

= p . 

Exercies 

4.1. We are surrounded by electromagnetic waves emitted by many radio 
and television stations. How are radio or television receivers able to select a 
single station among all this mishmash of waves? What happens inside a radio 
receiver when the dial is turned to change stations? 

4.2. Write down expressions for the electric and magnetic fields of a 
sinusoidal plane electromagnetic wave having a frequency of 3.0 GHz and 
traveling in the positive x  direction. The amplitude of the electric field is 300 
V/m. 

4.3. List as many similarities and differences between sound waves and 
light waves as you can. 

4.4 The maximum electric field in the vicinity of a certain radio transmitter 
is 3 11.0 10 V m- -´ × . What is the maximum magnitude of the B

v
 field? How does 

this compare in magnitude with the Earth's field? 
4.5. A certain radio station broadcasts at a frequency of 1020 kHz. At a 

point some distance from the transmitter, the maximum magnetic field of the 
electromagnetic wave it emits is found to be 11106.1 -´  T. 

a) What is the wavelength of the wave?   (Ans. 294 m). 
b) What is the maximum electric field?   (Ans. 31080.4 -´  V/m). 
4.6. Consider each of the electric and magnetic-field orientations given 

below. In each case, what is the direction of propagation of the wave? 
iEE
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4.7. A radar pulse returns to the receiver after a total travel time of 
4100.4 -´  s. How far away is the object that reflected the wave? 

4.8. If the North Star, Polaris, were to burn out today, in what year would it 
disappear from our vision? Take the distance from the Earth to Polaris as 

181044.6 ´  m   (Ans. 2680 A.D.) 
4.9. The amplitude of the electric field is 300 V/m. In SI units, the electric 

field in an electromagnetic wave is described by 
)10sin(100 7 txEy w-= . 

4.10. Find (a) the amplitude of the corresponding magnetic field; (b) the 
wavelength l ; and (c) the frequency f .   [Ans. (a) 0.333 μT; (b) 0.628 μm; (c) 
477 THz]. 

4.4   Electromagnetic Waves in Matter 

Thus far, we have discussed only electromagnetic waves in vacuum, but it 
is easy to extend our analysis to include electromagnetic waves in dielectrics. The 
wave speed now is not the same as in vacuum, so we denote it by v  instead of c . 
Faraday's law is unaltered, but cBE =  is replaced by vBE = . In Ampere's law, 

the displacement-current density is given not by 
dt
Ed
r

0e  but by 
dt
Ed
r

0ee . In 

addition, the constant 0m  in Ampere's law must be replaced by 0mm  and the wave 
speed is given by 

emmeme
cv ==

00

1 . 

For many dielectrics, the permeability m  is practically equal to unity; in 
such a case, we have: 

0 0

1 1 cv
em e m e

== = . 

As permittivity e  is always greater than unity, the speed v  of 
electromagnetic waves in a dielectric is always smaller than the speed c  in 

vacuum by a factor of 
e

1 . The ratio of the speed c  in vacuum to the speed v  in 

a material is known in optics as the index of refraction n  of the material. For most 
dielectrics, where 1»m , n  is given by 

e== nv
c . 
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Example 4.3 

Electromagnetic waves travel in a medium with a speed of 8102´  m/s. The 
permeability m  of the medium is 1. Find the permittivity e . 

Solution. 
Here, 8102´=v  m/s and 1=m . The speed of electromagnetic waves in a 

medium is given by  

meme oo
v 1

= ,      (a) 

where m  and e  are permeability and permittivity of the medium. 
Therefore, Eq. (a) becomes 
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Exercises 

4.11. Determine the speed of light in water, which has a dielectric constant 
at optical frequencies of 1.78. 

4.12. An electromagnetic wave in vacuum has electric field amplitude of 
220 V/m. Calculate the amplitude of the corresponding magnetic field.   (Ans. 
733 nT). 

4.13. Calculate the maximum value of the magnetic field of an 
electromagnetic wave in a medium where the speed of light is two thirds of the 
speed of light in vacuum and where the electric field amplitude is 7.60 mV/m. 

4.14. Choose the correct answer: Maxwell’s electromagnetic theory of light 
suggests that the light consists of oscillation of: 

a) magnetic vector along; 
b) electric vector along; 
c) electric and magnetic vectors perpendicular to each other; 
d) parallel electric and magnetic vectors. 

4.5   Energy Carried by Electromagnetic Waves 

Electromagnetic waves carry energy, and as they propagate through space 
they can transfer energy to object placed in their path. Two simple examples are 
the energy of the Sun’s radiation and cooking with microwave oven. To derive 
detailed relationship for the energy in an electromagnetic wave, we begin with the 
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expression for the energy densities associated with electric and magnetic fields. 
Recall that the energy per unit volume, which is the instantaneous energy density 
associated with an electric field, for vacuum is given by  

2
02

1 EuE e= .         (4.19) 

And that the instantaneous energy density associated with magnetic fields is  
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Because E  and B  vary with time for an electromagnetic wave, the energy 
densities also vary with time. When we use the relationships  

c
EB =    and   
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we obtain 
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Comparing this result with the expression for Eu , we see that 
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That is, for an electromagnetic wave, the instantaneous energy density 
associated with the magnetic field equals the instantaneous energy density 
associated with the electric field. Hence, in a given volume, the energy is equally 
shared by two fields. 

The total instantaneous energy density u  is equal to the sum of the energy 
densities associated with the electric and magnetic fields: 
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BEuuu BE ==+= .    (4.23) 

As the E  and B  fields in a simple wave considered above advance with 
time into regions where originally no fields were present, it is clear that the wave 
transports energy from one region to another. We can describe this energy transfer 
in terms of energy transferred per unit time, per unit cross-sectional area  for an 
area perpendicular to the direction of wave travel. This quantity will be denoted 
by S . It is analogous to the concept of current density, which is the charge per 
unit time transferred across unit area perpendicular to the direction of flow. 

To see how the energy flow is related to the fields, consider a stationary 
plane perpendicular to the x -axis that coincides with the wave front at a certain 
time, Figure 4.3.  
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In a time dt  after this, the wave 
front moves a distance cdt  to the right. 
Considering an area A  on the stationary 
plane, we note that the energy in the 
space to the right of this area must have 
passed through it to reach its new 
location. The volume dV  of the 
relevant region is the base area A  times 
the length cdt , and the total energy dU  
in this region is the energy density u  
times this volume: 

AcdtEdU 2
0e= .  (4.24) 

Since this much energy passed 
through area A  in time dt , the energy 
flow S  per unit time, per unit area, is 

2
0

1 cE
dt

dU
A

S e== . 

Using Eq. (4.18) 
Ec

EB 00me== , 

we obtain the alternative forms 

ucEBEES ====
0
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00
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mm
e

me
e .   (4.25) 

The unit of S  is energy per unit time, per unit area. The SI unit of S  is  
2/1 msJ ×     or    2/1 mW . 

We can define a vector quantity that describes both the magnitude and the 
direction of the energy-flow rate: 

BES
rrr

´=
0

1
m

.       (4.26) 

S
r

 is called the Pointing vector; its magnitude is given by Eq. (4.25), and its 
direction is the direction of propagation of the wave. The magnitude 

0m
EB  gives 

the flow of energy through a cross-section perpendicular to the direction of 
propagation, per unit area and per unit time.  The total energy flow per unit time 
(power, P ) through any surface is given by the integral  

ò ×=
A

AdSP
rr

       (4.27) 
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Figure 4.3   At time dt  the wave front moves 
 

to the right a distance cdt  
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over the surface. The electric and magnetic fields at any point in a wave vary with 
time, so the Pointing vector at any point is also a function of time.  

What is of greater interest for a sinusoidal plane electromagnetic wave is 
the time average of S  over one or more cycles, which is called the wave intensity 
I . When this average is taken, we obtain an expression involving the time 
average of ( )kxt -w2cos  which equals 2/1 . Hence, the average value of S  (in 
other words, the intensity of the wave) is 

2

00

2

0 222 m
mmm

av Bc
c

EBESI
mmm

==== .    (4.28) 

Comparing this result with expression for value of S , we see that  
avav cuSI == .     (4.29) 

In other words, the intensity of an electromagnetic wave equals the average 
energy density multiplied by the speed of light. 

Example 4.4 
For a plane wave, suppose 100V/m100 ==E  N/C. Find the value of B , 

the energy density, and the rate of energy flow per unit area A . 
Solution. 
From Eq. (4.18) 

c
EB =  

we obtain 
7

8 1033.3
m/s100.3

V/m100 -´=
´

==
c
EB  T. 

From Eq. (4.23) 2
0Euuu BE e=+= , it follows: 

38222122
0 J/m1085.8)N/C100)(mN/(C1085,8( -- ´=×´== Eu e

=×´´== -- )mWb/(A104/()1033.3)(V/m100(/ 77
0 pmEBA  

W/m5.26A/mV5.26 =×= . 

Example 4.5 
The Sun delivers about 1000 W/m2 of energy to the Earth's surface via 

electromagnetic radiation. Calculate the total power that is incident on a roof of 
dimensions m0.20m0.8 ´ . 

Solution. 
The magnitude of the Pointing vector for solar radiation at the surface of 

the Earth is 1000=S  W/m2; this represents the power per unit area, or the light 
intensity. Assuming that the radiation is incident normal to the roof, we obtain 

522 1060.1)m0.200.8)(W/m1000( ´=´== SAP  W. 
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If all this power could be converted to electrical energy, it would provide 
more than enough power for an average house. However, solar energy is not 
easily harnessed, and the prospects for large-scale conversion are not as bright as 
may appear from this calculation. For example, the efficiency of conversion from 
solar to electrical energy is typically 10% for photovoltaic cells. Roof systems for 
converting solar energy to internal energy are approximately 50% efficient; 
however, solar energy is associated with other practical problems, such as 
overcast days, geographic location, and methods of energy storage. 

Exercises 

4.15. A certain plane electromagnetic wave emitted by a microwave 
antenna has a wavelength of 3.0 cm and a maximum magnitude of electric field of 

2100.2 ´  1V m-× . 
a) What is the frequency of the wave? 
b) What is the maximum magnetic field? 
c) What is the intensity (average power per unit area) of the wave, if the 

wave is sinusoidal? 
4.16. A plane sinusoidal electromagnetic wave has a wavelength of 3.0 cm 

and an E -field amplitude of 130 V m-× . 
a) What is the frequency? 
b) What is the B -field amplitude? 
c) What is the intensity? 
4.17. Suggest reasons, why (a) food in metal containers cannot be cooked 

in a microwave oven; (b) an empty glass container does not get hot in a 
microwave oven.   (Ans. In a microwave oven, the frequency of microwaves is 
selected to match the resonance frequency of water molecules so that the energy 
from the waves is transferred efficiently to the kinetic energy of the molecules. 
This rises the temperature of any food containing water. 

(a) The atoms of the metallic container are set into forced vibrations by the 
microwaves. Due to this, energy of the microwaves is not efficiently transferred to 
the metallic containers. Owing to this, food in metallic containers cannot be 
cooked in a microwave oven. 

(b) The molecules of the glass container do not respond to the frequency of 
microwaves. Due to this, energy from the microwaves is not transferred to the 
glass container and, hence, it does not get hot in a microwave oven. ) 

4.18. Describe the physical significance of the Pointing vector. 
4.19. The energy flow to the Earth associated with sunlight is about 1.4 

kW/m2. (a) Find the maximum values of E  and B  for a wave of this intensity. (b) 
Find the total power radiated by the Sun. 

4.20. How much electromagnetic energy per cubic metre is contained in 
sunlight if the intensity of sunlight at the Earth's surface under a fairly clear sky is 

21000 W/m ?   (Ans. 23.33 J/mm ). 
4.21. Some neodymium-glass lasers can provide 100 TW of power in 1.0 ns 

pulses at a wavelength of 0.26 µm. How much energy is contained in a single pulse?  
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4.22. What is the intensity of a plane traveling electromagnetic wave if mB  
is 4100.1 -´  T? 

4.23. In a plane radio wave, the maximum value of the electric field 
component is 5.0 V/m. Calculate (a) the maximum value of the magnetic field 
component and (b) the wave intensity.   (Ans. (a) 16.7 nT; (b) 33.1 mW/m2) 

4.6   Intensity Variation of Spherical Waves with Distance 
The intensity variation of electromagnetic waves varies with distance from 

a real source of electromagnetic radiation is usually a complex matter – especially 
when the source beams the radiation in a particular direction. However, in some 
situations we can assume that the source is a point source  that emits the light 
isotropically; that is, with equal intensity in all directions. The spherical 
wavefronts spreading from such an isotropic point source S  at a particular instant 
are shown in cross section in Figure 4.4. 

 

Let us assume that the energy of 
the waves is conserved as they spread 
from this source. Let us also center an 
imaginary sphere of radius r  on the 
source, as shown in Figure 4.4. All the 
energy emitted by the source must pass 
through the sphere. Thus, the rate at 
which energy is transferred through the 
sphere by the radiation must equal the 
rate at which energy is emitted by the 
source – that is, the power sP  of the 
source. The intensity I  at the sphere 
must then be 

24 r
PI s
p

= ,  (4.30) 

where 24 rp  is the area of the sphere. 
Eq. (4.30) tells us that the intensity of 
the electromagnetic radiation from an isotropic point source decreases with the 
square of the distance r  from the source. 

Example 4.6 
Estimate the maximum magnitudes of the electric and magnetic fields of 

the light that is incident on this page because of the visible light coming from 
your desk lamp. Treat the bulb as a point source of electromagnetic radiation that 
is about 5% efficient at convening electrical energy to visible light. 

S

 
Figure 4.4   A point source S  emits 
electromagnetic waves uniformly in all 
directions. The spherical wavefronts pass 
through an imaginary sphere of radius r  that 
 

is centered on S  
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Solution. 
From Eq. (4.30), the wave intensity I  at the distance r  from a point source 

is 24/ rPI sv p=  where sP  is the average power output of the source and 24 rp  is 
the area of a sphere of radius r  centered on the source. Because the intensity of 
an electromagnetic wave is also given by Eq. (4.28), we have 

c
E

r
PI ms

0

2

2 24 mp
== . 

We must now make some assumptions about numbers to enter in this 
equation. If we have a 60-W lightbulb, its output at 5% efficiency is 
approximately 3.0 W in the form of visible light. (The remaining energy transfers 
out of the bulb by conduction and invisible radiation.) A reasonable distance from 
the bulb to the page might be 0.30 m. Thus, we have 
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From Eq. (4.18) 
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==
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c

EB m
m  T. 

This value is two orders of magnitude smaller than the Earth's magnetic field, 
which, unlike the magnetic field in the light wave from your desk lamp, is not 
oscillating. 

Exercises 

4.24. At a distance of 50 km from a rádio station antenna, the electric-field 
amplitúde is measured to be 2

max 102 -´=E  V/m. 
a) What is the magnetic-field amplitúde maxB  at this same point? 
b) Assuming that the antenna radiates equally in all directions (which is 

probably not the case), what is the total power output of the station? 
c) At what dištance from the antenna would 2

max 101 -´=E  V/m, half the 
above value? 

4.25. Estimate the energy density of the light wave just before it strikes this 
page.   (Ans. 9100.9 -´  J/m3.) 

4.26. An airplane flying at a distance of 10 km from a radio transmitter 
receives a signal of intensity 10 µW/m2. Calculate (a) the amplitude of the electric 
field at the airplane due to this signal, (b) the amplitude of the magnetic field at 
the airplane, and (c) the total power of the transmitter, assuming the transmitter to 
radiate uniformly in all directions.    (Ans. (a) 87 mV/m; (b) 0.30 nT; (c)  13 kW.) 
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4.7   Momentum and Radiation Pressure  

Electromagnetic waves transport linear momentum as well as energy. It 
follows that, as this momentum is absorbed by some surface, pressure is exerted 
on this surface. It can be shown by the following example. Let the 
electromagnetic wave strike the surface at normal incidence and transports a total 
energy U  to the surface with 1=e  and 1=m  in a time t . The electric field of the 
wave creates current of density Ej

rr
s=  in the body. The magnetic field of the 

wave will exert on every charge carrier of the body with the force BvqF
rrr

´= , 
where q  is the charge of the charge carrier, vr  is its speed. The force exerted on 
all n  charge carries in a unit volume is defined by the expression: 

BjBunqBunqF
rrrrrrr

´=´=´= )( , 
where unqj rr

=  is a current density. As it is clear, the direction of the force is the 
same as direction of the wave propagation. 

The momentum dp  delivered to the surface layer of the unit area and the 
thickness dl  per unit time 

jHdlFdldp 0m==        (4.31) 
(vectors ld

r
 and B

v
 are mutually perpendicular). During the unit time this layer 

absorbs the energy  
jEdldU =         (4.32) 

which transforms in the form of heat.  
The momentum dp  (4.31) and the energy dU  (4.32) are delivered to the 

layer by that part of the wave which is absorbed by this layer. Taking their ratio, 
we obtain 

E
H

jEdl
jHdl

dU
dp

0
0 m

m
== . 

Recalling that 2
0

2
0 EH em = , we can write: 

cdU
dp 1

00 == me . 

Hence, the electromagnetic wave of the energy dU  has the momentum dp  
as well, and the relation between them is 

c
dUdp =  or 

c
Up = .       (4.33) 

From Eq. (4.33), it follows that the momentum density (i.e., momentum per 
unit volume) of electromagnetic field is 

u
c

p volun
1

.. = .      (4.34) 
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The energy density u  is related to the module of Pointing vector by the 
relation ucS = . Substituting cSu /=  in Eq. (4.34) and taking into account that 
vectors pv  and S

r
 coincide in direction, we obtain 

HE
c

S
c

p volun
rr

´== 22..
11 . 

Suppose the incident wave is absorbed by the body completely. Then a unit 
surface of the body obtains additional energy per unit time, which is included in 
the cylinder of unit base and height c . According to Eq. (4.34), this momentum 
equals uccu =)/( . The momentum delivered to the unit surface per unit time 
equals the pressure P  at the surface, uP = . This quantity oscillates with high 
frequency, and hence, of practical importance, is its average in time magnitude: 

uP = . 
Maxwell showed that, if the surface absorbs all the incident energy U  in 

this time, the total momentum p  transported to the surface has a magnitude 

c
Up =    (Complete absorption)     (4.35) 

The pressure exerted on the surface is defined as force per unit area AF / . 
Let us combine this with Newton’s second law to obtain 

dt
dp

AA
FP 1== . 

If we now replace p , the momentum transported to the surface by light, 
from (4.33), we get 

( ) ( )
A

dt
dU

cc
U

dt
d

Adt
dp

AP 111 === . 

We recognize AdtdU /)/(  as the rate at which energy is arriving at the 
surface per unit area, which is the magnitude of the Pointing vector. Thus, the 
radiation pressure P  exerted on the perfectly absorbing (with reflectivity 0=r ) 
surface is 

c
I

c
SP == .      (4.36) 

If the surface is a perfect reflector (such as mirror, with reflectivity 1=r ) 
and the incidence is normal, then the momentum transported to the surface at time 
t  is twice that given by Eq. (4.35). That is, the momentum transferred to the 
surface by the incoming light is cUp /= , and that transferred by the reflected 
light also is cUp /= . Therefore: 

c
Up 2= .   (Complete reflection)  (4.37) 
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Finally, the radiation pressure exerted on a perfectly reflecting surface for 
normal incidence of the wave is: 

c
I

c
SP 22

== .     (4.38) 

In a general case, the momentum delivered to a surface having a reflectivity 
r  somewhere between these two extremes has a value between cU /  and cU /2 , 
depending on the properties of the surface, namely, on the reflectivity r . Finally, 
the radiation pressure exerted on a surface for arbitrary incidence is: 

( ) ( ) arar 22 cos1cos1 +=+= c
IuP      (4.39) 

where u  is the volume energy density, r  is the reflectance coefficient of the 
surface, a  is the angle of incidence, I  is the intensity of light. 

Radiation pressure is important in the structure of stars. Gravitational 
attractions tend to shrink a star, but this tendency is balanced by radiation 
pressure in maintaining the size of the star through most stages of its evolution.  

The pressure of the sun's radiation is responsible for pushing the tail of a 
comet away from the Sun (Figure 4.5). 

Although radiation pressures are 
very small (about 6105 -´  2N/m  for 
direct sunlight), they have been 
measured with torsion balances such 
as the one shown in Figure 4.6. A 
mirror (a perfect reflector) and a black 
disk (a perfect absorber) are connected 
by a horizontal rod suspended from a 
fine fiber. Normal-incidence light 
striking the black disk is completely 
absorbed, so all of the momentum of 
the light is transferred to the disk. 
Normal-incidence light striking the 
mirror is totally reflected, and, hence, 
the momentum transferred to the 
mirror is twice as great as that 
transferred to the disk. The radiation 
pressure is determined by measuring the angle through which the horizontal 
connecting rod rotates. The apparatus must be placed in a high vacuum to 
eliminate the effects of air currents. 

 
Figure 4.5   The comet. The tail of the comet is 
pushed away from the Sun and split into two 
distinct parts by radiation pressure from the 
Sun's electromagnetic radiation and by the 
"solar wind," a stream of particles emitted by 
 

the Sun 
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Example 4.7 
A great amount of dust exists in interplanetary space. Although in theory, 

these dust particles can vary in size from that of a molecule to much larger, very 
little dust in our solar system is smaller than about 0.2 μm. Why? 

Solution. 
Dust particles are subject to two 

significant forces, the gravitational 
force that draws them toward the Sun 
and the radiation-pressure force that 
pushes them away from it. The 
gravitational force is proportional to 
the cube of the radius of a spherical 
dust particle because it is proportional 
to the mass and, therefore, to the 
volume 3/4 3rp  of the particle. The 
radiation pressure is proportional to 
the square of the radius because it 
depends on the planar cross-section of 
the particle. For large particles, the 

gravitational force is greater than the force from radiation pressure. For particles 
having radii less than about 0.2 μm, the radiation-pressure force is greater than the 
gravitational force, and, as a result, these particles are swept out of the Solar 
System. 

Example 4.8 
Many people giving presentations use a laser pointer to direct the attention 

of the audience. If a 3.0 mW pointer creates a spot that is 2.0 mm in diameter, 
determine the radiation pressure on a screen that reflects 70% of the light that 
strikes it. The power of 3.0 mW is a time-averaged value. 

Solution. 
We certainly do not expect the pressure to be very large. Before we can 

calculate it, we must determine the Pointing vector of the beam by dividing the 
time-averaged power delivered via the electromagnetic wave by the cross-
sectional area of the beam: 
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This is about the same as the intensity of sunlight at the Earth’s surface. 
(Thus, it is not safe to shine the beam of a laser pointer into a person’s eyes; that 
may be more dangerous than looking directly at the Sun.) 

 
Figure 4.6   An apparatus for measuring the 
pressure exerted by light. In practice, the 
 

system is contained in a high vacuum 
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Now we can determine the radiation pressure from the laser beam. Eq. 
(4.38) indicates that a completely reflected beam would apply a pressure of 

cSP /2= . We can model the actual reflection as follows: Imagine that the 
surface absorbs the beam, resulting in pressure cSP /= . Then the surface emits 
the beam, resulting in additional pressure cSP /= . If the surface emits only a 
fraction r  of the beam (so that r  is the amount of the incident beam reflected), 
then the pressure due to the emitted beam is cSP /r= . Thus, the total pressure on 
the surface due to absorption and re-emission (reflection) is  

c
S

c
S

c
SP )1( rr +=+= . 

Notice that if 1=r , which represents complete reflection, this equation to 
reduces to Eq.(4.38). For a beam 70% reflected, the pressure is 

6
8

2
104.5

m/s100.3
W/m955)70.01( -´=

´
+=P  2N/m . 

This is an extremely small value, as expected. (Recall that atmospheric 
pressure is approximately 105 N/m2). 

Exercises 

4.27. For a given incident energy of an electromagnetic wave, why is the 
radiation pressure on a perfectly reflecting surface twice is great as that on a 
perfectly absorbing surface? 

4.28. If the intensity of direct sunlight is 1.4 kW/m2, find: 
a) The momentum density (momentum per unit volume);   

(Ans. 141056.1 -´  12 smkg -- ×× ). 
b) The momentum flow rate (momentum carried through a surface area A  

in unit time) in the sunlight. (Note: This equals the radiation pressure.)   
(Ans. Pa1067.4 6-´ ). 

4.29. The intensity of a bright light source is 900 2W/m . Find the radiation 
pressure (in paschal) on 

a) a totally absorbing surface, 
b) a totally reflecting surface. 
4.30. A radio wave transmits 25.0 2W/m  of power per unit area. A flat 

surface of area A  is perpendicular to the propagation direction of the wave. 
Calculate the radiation pressure on it if the surface is a perfect absorber. 

4.31. A plane electromagnetic wave of intensity 6.00 2W/m  strikes a small 
pocket mirror, of area 40.0 2cm , held perpendicular to the approaching wave. (a) 
What momentum does the wave transfer to the mirror each second? (b) Find the 
force that the wave exerts on the mirror. 
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4.32. A 100-mW laser beam is reflected back upon itself by a mirror. 
Calculate the force on the mirror. 

4.33. Given that the intensity of solar radiation incident on the upper 
atmosphere of the Earth is 1 340 2W/m , determine (a) the solar radiation incident 
on Mars; (b) the total power incident on Mars; and (c) the total force acting on the 
planet. (d) Compare this force to the gravitational attraction between Mars and the 
Sun. 

4.34. A plane electromagnetic wave has an intensity of 750 2W/m . A flat 
rectangular surface of dimensions cm 100cm0.50 ´  is placed perpendicular to the 
direction of the wave. If the surface absorbs half of the energy and reflects half, 
calculate 

a) the total energy absorbed by the surface in 1.0 min;   (Ans. 11.3 kJ). 
b) the momentum absorbed in this time.   (Ans. 41013.1 -´  kg∙m/s). 
4.35. A plane sinusoidal electromagnetic wave has a wavelength of 3.0 cm 

and an E -field amplitude of 30 V/m. 
a) What is the frequency? 
b) What is the B -field amplitude? 
c) What is the intensity? 
d) What average force does this radiation exert on a totally absorbing 

surface of area 0.5 m2 perpendiculars to the direction of propagation? 
4.36. The energy flow to the Earth associated with sunlight is about 

1.4 2kW/m . 
a) Find the maximum values of E  and B  for a wave of this intensity. 
b) The distance from the Earth to the Sun is about 11105.1 ´  m. Find the 

total power radiated by the sun. 
4.37. For a sinusoidal electromagnetic wave in vacuum, show that the 

average density of energy in the electric field is the same as that in the magnetic 
field. 

4.8   Standing Waves 

Electromagnetic waves can be reflected; a conducting surface can serve as 
a reflector. The superposition principle holds for electromagnetic waves just as 
for all electric and magnetic fields, and the superposition of an incident wave and 
a reflected wave can form a standing wave. The situation is analogous to standing 
waves on a stretched string. 

Suppose a sheet of an ideal conductor, having zero resistivity, is placed in 
the yz -plane, and the wave traveling in the negative x -direction is incident on it. 
The essential characteristic of an ideal conductor is that no electric field can ever 
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exist within it; any attempt to establish a field is immediately canceled by the 
rearrangement of the mobile charges in the conductor. Thus, E

r
 must always be 

zero everywhere in this plane, and the E
r

 field of the incident wave induces 
sinusoidal currents in the conductor so that E

r
 is zero inside it. 

These induced currents produce a reflected wave, traveling out from the 
plane to the right. From the superposition principle, the total E

r
 field at any point 

to the right of the plane is the vector sum of the E
r

 fields of the incident and 
reflected waves; the same is true for the total B

r
 field. 

Suppose the incident wave is described by the wave functions of equation 
)sin( kxtEE m -= w  

and the reflected wave by the wave functions of equation 
)]sin( kxtEE m +-= w . 

From the superposition principle, the total fields at any point are given by 
)]sin()sin([ kxtkxtEE m -++-= ww , 

)]sin()[sin( kxtkxtBB m -++= ww . 
These expressions may be expanded and simplified by using the identity  

bababa sincoscossin)sin( ±=±  
The results are 

kxtEE m sincos2 w-= ,    (4.40) 
kxtBB m cossin2 w=     (4.41) 

The former is analogous to the equation for a stretched string. We see that 
at 0=x , E  is always zero; this condition is required by the nature of the ideal 
conductor, which plays the same role as a fixed point at the end of the string. 
Furthermore, E  is zero at all times in those planes for which 0sin =kx ; that is, 

,...,2,,0 pp=kx  or 

...,
2

3,,
2

.0 l
l

l
=x .     (4.42) 

These are called the nodal planes of the E
r

 field. 
The total magnetic field is zero at all times in those planes for which 

0cos =kx . or at which 

,..
4

5,
4

3,
4

lll
=x .     (4.43) 

These are the nodal planes of the B
r

 field. The magnetic field is not zero at 
the conducting surface ( 0=x ), and there is no reason it should be. The nodal 
planes of one field are midway between those of the other, and the nodal planes of 
either field are separated by one-half wavelength. Figure 4.7 shows a standing-
wave pattern at one instant of time. 
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Figure 4.7   E
r

 and B
r

 vectors in a standing wave. The pattern does not move along the x -
axis, but the E

r
 and B

r
 vectors grow and diminish with time at each point. At each point E

r
 is 

maximum when B
r

 is minimum, and conversely. The position of the wave at time 0=t  is 
 

shown 
 

The total electric field is a cosine function of t , and the total magnetic field 
is a sine function of t . The fields are, therefore. 90° out of phase. At times when 

0cos =tw , the electric field is zero everywhere and the magnetic field is 
maximum. When 0sin =tw , the magnetic field is zero everywhere and the 
electric field is maximum. 

Pursuing the stretched-string analogy, we may now insert a second 
conduction plane (parallel to the first and a distance L  from it) along the x+ -
axis. This is analogous to the stretched string held at the points 0=x  and Lx = . 
A standing wave can exist only when L  is an integer multiple of 2/l . Hence, the 
possible wavelengths are 

n
L

n
2

=l ,   ,3,2,1=n …    (4.44) 

and the corresponding frequencies are 

L
cncf

n
n 2

==
l

,   ,3,2,1=n …    (4.45) 

Thus, there is a set of normal modes, each with a characteristic frequency, 
wave shape, and node pattern. The measurement of the node positions makes it 
possible to measure the wavelength. If the frequency is known, the wave speed 
can be determined. This technique was, in fact, used by Hertz in his pioneering 
investigations of electromagnetic waves. 
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Conducting surfaces are not the only reflectors of electromagnetic waves; 
reflections also occur at an interface between two insulating materials having 
different dielectric or magnetic properties. The mechanical analog is a junction of 
two strings with equal tension but different linear mass density. In general, a wave 
incident on such a boundary surface is partly transmitted into the second material 
and partly reflected back into the first one. The partial transmission and reflection 
of light at a glass surface is a familiar phenomenon; light is transmitted through a 
sheet of glass, but its surfaces also reflect light. 

Exercises 

4.38. For a standing wave given by Eqs. (4.40) and (4.41), 
a) Plot the energy density as a function of x , kx /0 p<<  for the times 

wpwpwp 4/3,2/,4/,0=t  and wp / . 

b)  Find the direction of S
r

 in the regions kx 2/0 p<<  and 
kxk /2/ pp <<  at the times wp 4/=t  and wp 4/3=t . 

c) Use your results in (b) to explain the plots obtained in (a). 

4.9   Radiation from a Dipole 

Plane waves are the simplest of all electromagnetic waves to be described 
and analyzed, but they are not the simplest to produce experimentally. Any charge 
or current distribution that oscillates sinusoidally with time produces sinusoidal 
electromagnetic waves, but in general there is no reason to expect them to be 
plane waves. 

The simplest example of an oscillating charge distribution is an oscillating 
dipole which is a pair of electric charges of equal magnitude and opposite sign, 

q+  and q- , separated by distance l  and characrerized by electric dipole moment 
lqp
rr

=       (4.46) 
where l

r
 is a position-vector joining negative and positive charges (arm of dipole) 

and q  is magnitude of charges. 
Such an oscillating dipole can be constructed in various ways, but we need 

not be concerned with the details. The radiation from an oscillating dipole is not a 
plane wave, but it travels out in all directions from the source. Because the dipole 
fields fall off as 3/1 r , they are not important at great distances from the antenna. 
However, at these great distances, something else causes a type of radiation 
different from that close to the antenna. The source of this radiation is the 
continuous induction of an electric field by the time-varying magnetic field and 
the induction of a magnetic field by the time-varying electric field. The electric 
and magnetic fields produced in this manner are in phase with each other and vary 
as r/1 . The result is an outward flow of energy at all times. 
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At points far from the source, the E
r

, and B
r

 fields are perpendicular to the 
direction from the source and to each other; in this sense the wave is still 
transverse. The value of S

r
 drops off as the square of the distance from the source. 

The average value of S
r

 (intensity) depends on the direction from the source; it is 
greatest at directions perpendicular to the dipole axis, and 0=S  at directions 
parallel to the axis. 

Let the electric dipole moment of system vary with time according to 
harmonica law: 

tptqlp m ww coscos ==   (4.47) 
where mp  is the amplitude of vector pr . 

Consider radiation from dipole in assumption that its size is much smaller 
than the wavelength of radiation ( l<<l ). Such a dipole is called an elementary 
dipole, or a point dipole. In the vicinity of the dipole, the character of the 
electromagnetic field is complex enough, but it simplifies in a so-called wave 
zone, that is, at distances l>>r . In any points vectors E

r
 and B

r
 are 

perpendicular to the ray, that is, to the position-vector from center of dipole to the 
given point. In any point, vectors E

r
 and B

r
 vary according to )cos( kxt -w . The 

amplitudes mE  and mH  depend on the distance r  from the radiator and the angle 
q  between the vector rr  and axis of dipole. For vacuum, this dependence has the 
form 

r
Em

qsin
µ    and    

r
Hm

qsin
µ . 

Average value of Pointing vector S , that is intensity, is proportional to 
the product mmHE , hence, 

2

2sin
r

S q
µ .       (4.48) 

 

From Eq. (4.48), it follows that 
the intensity drops along the ray as 

2/1 r . Next, the intensity is maximum 
in a plane which is perpendicular to the 
axis of antenna ( 2/pq = ) and passes 
through its midpoint. Furthermore, it is 
zero along the axis of an antenna where 

pq =  or 0=q . It means that in the 
direction of the axis, dipole doesn’t 
radiate. The dependence of the 
intensity on the angle q , which is 
known as directional pattern, or 
antenna pattern, is shown on the 
Figure 4.8.  

y

S

x

 
Figure 4.8 Angular dependence of the 
intensity of radiation produced by an 
 

oscillating electric dipole 
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Mathematical analysis proves that radiation power of the dipole (that is, 
energy radiated over all the directions per unit time) is proportional to the squared 
second derivative of dipole moment with time 

2

2

2
0

6 dt
pd

c
P

p
m

= .           (4.49) 

In accordance with Eq. (4.47)  

tpp
dt

pd
m www 222

2

2
cos-=-= . 

Therefore,   
22240 cos

6
tp

c
P m ww

p
m

= , 

that is,   
tpP m ww 242 cosµ . 

During one complete oscillation, the average power of the dipole radiation 
is: 

24

0

0
12

1
m

T
p

c
Pdt

T
P w

p
m

ò == ,  

that is, 
42wmpP µ .      (4.50) 

From the above expression, it is clear that the average power of the dipole 
radiation is proportional to the 2

mp  and 4w . Thus, at low frequencies, radiation of 
an electrical system (for example, AC transmitting lines) is insignificant. 

The radiation pattern from a dipole source is shown schematically in 
Figure 4.9. The figure shows a cross section of the radiation pattern at one instant. 
The oscillating dipole P is located at the centres of the spheres. At all points in the 
plane of the figure, the E

r
 field lies in the plane and the B

r
 field is perpendicular 

to it. The E
r

 field is shown by arrows, and the direction of B
r

 by crosses (where it 
points into the plane) and circles with dots (where it points out of the plane). It is 
easy to verify that the direction of the Poynting vector S

r
 is radially outward from 

the source at every point. 
As we have discussed, electromagnetic waves can be reflected by 

conducting surfaces. When the surface is large compared to the wavelength of the 
radiation, the reflection behaves like reflection of light rays from a mirror. Large 
parabolic mirrors several meters in diameter are used as both transmitting and 
receiving antennas for microwave communications signals; typical wavelengths 
are a few centimeters. A transmitting reflector produces a wave that radiates in a 
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narrow, well-defined beam; a 
receiving reflector gathers wave 
energy over its whole area and reflects 
it to the focus of parabola where a 
detecting device is placed. 

According to (4.46), 

aq
dt

ldq
dt

pd r
rr

-== 2

2

2

2
 where ar  is 

acceleration of oscillating charge. 
Substituting above expression into Eq. 
(4.49), we obtain 

22aqP µ .     (4.51) 
Eq. (4.51) defines the radiation 

power not only for oscillations but for 
arbitrary motion of charged particle. It 
follows that any charge moving with 
acceleration excites electromagnetic 
waves and its radiation power is 
proportional to the squared charge and 
squared acceleration.  

The charge executing SHM 
radiates a monochromatic wave of 
frequency which matches the 
frequency of charge oscillation. But if 
the charge acceleration ar  varies 
according to the nonharmonic law, 
radiation consists of a set of waves 
with different frequencies. 

According to Eq. (4.51), 
intensity drops to zero at 0=ar . 
Hence, an electron moving uniformly 
does not emit electromagnetic waves. 
Nevertheless, this is valid only for 
situations when a speed of electron ev  
does not exceed the speed of light lv  

in the medium em// cncvl ==  where electron moves. For the case 
em/cvv le => , a very special kind of radiation, called Vavilov-Cherenkov 

radiation, is observed. This kind of radiation we will discuss in our book “Wave 
Optics". 

0

 
Figure 4.9   Cross section in the xz -plane of 
radiation from an oscillating electric dipole P. 
The wave fronts are expanding concentric 
spheres centered at P. At every point the E

r
 

field lies in the plane, and  the B
r

 field is 
perpendicular to it. At points with circles, B

r
 

comes out of the plane, and at points with 
crosses, it is into the plane. The direction of the 
Poynting vector S

r
 is radially outward at every 

 

point 
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Exercises 

4.39. Accelerating charges radiate electromagnetic waves. Calculate the 
wavelength of radiation produced by a proton in a cyclotron with a radius of 
0.500 m and a magnetic field with a magnitude of 0.350 T. 

4.40. Accelerating charges radiate electromagnetic waves. Calculate the 
wavelength of radiation produced by a proton in a cyclotron of radius R  and 
magnetic field B . 

4.10   Production of Electromagnetic Waves by an Antenna 

Neither stationary charges nor steady currents can produce electromagnetic 
waves. However, whenever the current going through a wire changes with time, 
the wire emits electromagnetic radiation. The fundamental mechanism 
responsible for this radiation is the acceleration of a charged particle. Whenever a 
charged particle accelerates, it must radiate energy. 

An alternating voltage applied to the wires of an antenna forces an electric 
charge in the antenna to oscillate. This is a common technique for accelerating 
charges and is the source of the radio waves emitted by the transmitting antenna 
of a radio station. Figure 4.10 shows how this is done. Two metal rods are 
connected to a generator that provides a sinusoidally oscillating voltage. This 
causes charges to oscillate in two rods. At 0=t , the upper rod is given a 
maximum positive charge and the bottom rod an equal negative charge, as shown 
in Figure 4.10a. The electric field near the antenna at this instant is also shown in 
Figure 4.10a. 

 
+ +

+

+ +

+

+ +

+

E E E

E

( )a ( )b ( )c ( )dt = 0 t T = 4
Tt = 2

Tt =
 

Figure 4.10   The electric field set up by charges oscillating in an antenna. The field moves away 
 

from the antenna with the speed of light 
 
As positive and negative charges decrease from their maximum values, the 

rods become less charged, the field near the rods decreases in strength, and the 
downward-directed maximum electric field produced at 0=t  moves away from 
the rod (A magnetic field oscillating in a direction perpendicular to the plane of 
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the diagram in Figure 4.10 accompanies the oscillating electric field, but it is not 
shown for the sake of clarity.) When the charges on the rods are momentarily zero 
(Figure 4.10b), the electric field at the rod dropps to zero. This occurs at a time 
equal to one quarter of the period of oscillation. 

As the generator charges the rods in the opposite sense from that at the 
beginning, the upper rod soon obtains a maximum negative charge and the lower 
rod a maximum positive charge (Figure 4.10c); this results in an electric field near 
the rod that is directed upward after a time equal to one-half the period of 
oscillation. The oscillations continue as indicated in Figure 4.10d. The electric 
field near the antenna oscillates in phase with the charge distribution. That is, the 
field points down when the upper rod is positive and up when the upper rod is 
negative. Furthermore, the magnitude of the field at any instant depends on the 
amount of charge on the rods at that instant. 

As the charges continue to oscillate (and accelerate) between the rods, the 
electric field they set up moves away from the antenna at the speed of light. As 
you can see from Figure 4.10, one cycle of charge oscillation produces one 
wavelength in the electric-field pattern. 

Now let us consider the 
production of electromagnetic waves by 
a half-wave antenna. In this 
arrangement, two conducting rods are 
connected to a source of alternating 
voltage (such as an LC  oscillator), as 
shown in Figure 4.11. The length of 
each rod is equal to one quarter of the 
wavelength of the radiation that will be 
emitted when the oscillator operates at 
frequency f . The oscillator forces 
charges to accelerate back and forth 
between the two rods. Figure 4.11 shows 
the configuration of the electric and 
magnetic fields at some instant when the 
current is upward. The electric field lines 
resemble those of an electric dipole. (As 
a result, this type of antenna is 
sometimes called a dipole antenna.) 
Because these charges are continuously 
oscillating between the two rods, the 
antenna can be approximated by an 
oscillating electric dipole. The magnetic 
field lines form concentric circles around 

S
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S

I

I

outB inB

++
+
+

+

 
Figure 4.11   A half-wave antenna consists 
of two metal rods connected to an alternating 
voltage source. This diagram shows E

r
 and 

B
r

 at an instant when the current is upward. 
Note that the electric field lines resemble 
 

those of a dipole 
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the antenna and are perpendicular to the electric field lines at all points. The 
magnetic field is zero at all points along the axis of the antenna. Furthermore, E

r
 

and B
r

 are 90° out of phase at time because the current is zero when the charges at 
the outer ends of the rods are at a maximum. 

At the two points where the magnetic field is shown in Figure 4.11, the 
Pointing vector S

r
 is directed radially outward. This indicates that energy is 

flowing away from the antenna at this instant. At later times, the fields and the 
Poynting vector change direction as the current alternates.  

The electric field lines produced by a dipole antenna at some instant are 
shown in Figure 4.12 as they propagate away from the antenna. Note that the 
intensity and the power radiated are a maximum in a plane that is perpendicular to 
the antenna and passing through its midpoint. Furthermore, the power radiated is 
zero along the antenna's axis.  

 

Antenna

Antenna
axis

32 4 5  
Figure 4.12   Electric field lines surrounding a dipole antenna at a given instant. The radiation 
 

fields propagate outward from the antenna with a speed c  
 
Electromagnetic waves can also induce currents in a receiving antenna. The 

response of a dipole receiving antenna at a given position is a maximum when the 
antenna axis is parallel to the electric field at that point and zero when the axis is 
perpendicular to the electric field. 

Example 4.9 
A half-wave antenna works on the principle that its optimal length is one-

half the wavelength of the radiation being received. What is the optimal length of 
a car antenna when it receives a signal of frequency 94.0 MHz? 
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Solution. 
Wavelength of the signal is 

19.3
Hz109.4

m/s103
7

8
=

´

´
==

f
c

l  m. 

Thus, to operate most efficiently, the antenna should have a length of (3.19 
m)/2 = 1.60 m.  

For practical reasons, car antennas are usually one-quarter wavelength in 
size. 

Example 4.10 
What is the order of magnitude of the minimum frequency of 

electromagnetic waves that can be used to detect the presence of (a) the planet 
Venus; (b) an aircraft 50 m long; (c) a bird 0.1 m long? From what sources of 
electromagnetic radiation, are you able to generate radiation of these 
wavelengths? 

Solution. 
In order to use a wave phenomenon to detect the presence of some object, 

the wavelength of the waves used must be comparable to or smaller than the 
dimensions of the object to be detected. 

a) the planet Venus. 
Solution. 
Venus is about 107 m in diameter. The frequency of electromagnetic waves 

of wavelength 107 m is given by 

30
10

103
7

8
=

´
==

l
cf  Hz. 

The waves of frequency 30 Hz correspond to very low audio-frequency 
radio waves. Practically, it will not be possible to detect Venus by employing 
such waves, because of the following reasons: 

1. It would be almost impossible to get much enough power into such a low 
frequency wave. 

2. Such a radio wave would be absorbed completely in the upper 
atmosphere. 

3. Even if we could send such a radiowave to Venus and receive an echo, 
its beam would be so broad that we will not be able to pinpoint the direction of 
the Venus. 

b) An aircraft 50 m long.  
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Solution. 
The waves of wavelength 50 m required to detect an aircraft possess 

frequency 

6
8

106
50
103

´=
´

==
l
cf  Hz = 6 MHz. 

This frequency is higher than the frequency of radiowaves used by A.M. 
broadcasting stations. Primitive radars operated at frequencies about 20 times this. 

c) a bird 0.1 m long.  
Solution. 
А 0.1 m long bird will require frequency, 

3000
1.0

103 8
=

´
==

l
cf  MHz. 

It is very close to the popular radar frequency. Indeed, radars occasionally 
detect birds. 

Exercises 

4.41. Figure 4.11 shows a Hertz antenna (also known as a half-wave 
antenna since its length is 2/l ). The antenna is far enough from the ground that 
reflections do not significantly affect its radiation pattern. Most AM radio 
stations, however, use a Marconi antenna which consists of the top half of a Hertz 
antenna. The lower end of this (quarter-wave) antenna is connected to the earth 
ground, and the ground itself serves as the missing lower half. What are the 
heights of the Marconi antennas for radio stations broadcasting at (a) 360 kHz and 
(b) 1 600 kHz?  

4.42. Two hand-held radio transceivers with dipole antennas are separated 
by a great fixed distance. Assuming that the transmitting antenna is vertical, what 
fraction of the maximum received power will occur in the receiving antenna when 
it is inclined from the vertical by (a) 15.0c? (b) 45.0°? (c) 90.0°? 

4.43. Two radio-transmitting antennas are separated by half the broadcast 
wavelength and are driven in phase with each other. In which directions are (a) 
the strongest and (b) the weakest signals radiated?   

4.11   Radiation from an Infinite Current Sheet 

In this section, we describe the electric and magnetic fields radiated by a 
flat conductor carrying a time-varying current. In the symmetric plane geometry 
employed here, the mathematics is less complex than that required in lower-
symmetry situations. 

Consider an infinite conducting sheet lying in the yz -plane and carrying a 
surface current in the y  direction, as shown in Figure 4.13. 
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The current is distributed across 
the z  direction such that the current per 
unit length is J

r
. Let us assume that J  

varies sinusoidally with time as 
tJJ m wcos=     (4.52) 

where mJ  is the amplitude of the current 
variation and w  is the angular frequency 
of the variation. The magnetic field 
outside the sheet is everywhere parallel 
to the sheet and lies along the z  axis. It 
can be shown that in the present 
situation, where J  varies with time, the 
magnetic field zB  can be described as: 

tJB mz w
m cos
2
0=  (for small values of x) 

To obtain the expression valid for 
zB  for arbitrary values of x , we can 

investigate the solution: 

)cos(
2
0 tkxJB mz w

m
-= .   (4.53) 

You should note two things about this solution, which is unique to the 
geometry under consideration. First, when x  is very small, it agrees with our 
original solution. Second, it satisfies the wave equation. We conclude that the 
magnetic field lies along the z  axis, varies with time, and is characterized by a 
transverse traveling wave having an angular frequency w  and an angular wave 
number lp /2=k . 

We can obtain the electric field radiating from our infinite current sheet 
using Eq.(4.18): 

)cos(
2 max

0 tkxJccBE zz w
m

-== .  (4.54) 

That is, the electric field is in the y  direction, perpendicular to B
r

, and has 
the same space and time dependencies. These expressions for zB  and yE  show 
that the radiation field of an infinite current sheet earning a sinusoidal current is a 
plane electromagnetic wave propagating with a speed c  along the x  axis, as 
shown in Figure 4.14.  

We can calculate the Poynting vector for this wave from Eqs. (4.25), (4.46), 
and (4.27): 

)(cos
4

220
0

tkxJcEBS m w
m

m
-== .    (4.55) 
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Figure 4.13   A portion of an infinite current 
sheet lying in the yz  plane. The current 
density is sinusoidal and is given by the 
expression tJJ mx wcos= . The magnetic 
field is everywhere parallel to the sheer and 
 

lies along z  
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Intensity of the wave, which equals the average value of S  is 

20
8 mav JcSI m

== .        (4.56) 

This intensity represents the 
power per unit area of the outgoing 
wave on each side of the sheet. The 
total rate of energy emitted per unit 
area of the conductor is  

4/2 max2
0JcSav m= . (4.57) 

Example 4.11 
An infinite current sheet lying in 

the yz  plane carries a sinusoidal 
current that has a maximum density of 
5.00 A/m2. 

a) Find the maximum values of 
the radiated magnetic and electric 
fields. 

Solution. 
From Eq. (4.53) and (4.54), we see that the maximum values of zB  and yE  

are 

mm JcE
2

0m
=    and   mm JB

2
0m

= . 

Using the values m/AT104 7
0 ×´= -pm  , and m/s103 8´=c , we get 

T1014.3
2

A/m)m/A)(5T104( 6
7

-
-

´=
×´

=
p

mB ,

V/m942
2

m/s)103A/m)(m/A)(5T104( 87
=

´×´
=

-p
mE . 

b) What is the average power incident on a flat surface that is parallel to the 
sheet and has an area of 3.0 m2? (The length and width of this surface are both 
much greater than the wavelength of the radiation.) 

Solution. 
The intensity, or power per unit area, radiated in each direction by the 

current sheet is given by Eq. (4.56): 

23
287

20 W/m1018.1
8

A/m)m/s)(5103m/A)(T104(
8

´=
´×´

==
-pm

mJcI . 

Multiplying this by the area of the surface, we obtain the incident power: 
W)mW/mIAP 2223 1054.33)(1018.1( ´=´== . 

The result is independent of the distance from the current sheet because we 
are dealing with a plane wave. 
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c
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sJ

 
Figure 4.14   Representation of the plane 
electromagnetic wave radiaied by an infinite 
current sheet lying in the yz  plane. The vector 

B
r

 is in the z ; direction, the vector E
r

 is in the 
y  direction, and the direction of wave motion 

 

is along x  
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Exercises 

4.44. A large current-earning sheet emits radiation in each direction 
(normal to the plane of the sheet) with an intensity of 570 W/m 2. What maximum 
value of sinusoidal current density is required? 

4.45. A rectangular surface of dimensions cmcm 40120 ´  is parallel to and 
4.40 m away from a much larger conducting sheet in which a sinusoidally varying 
surface current exists that has a maximum value of 10.0 A/m. (a) Calculate the 
average power that is incident on the smaller sheet. (b) What power per unit area 
is radiated by the larger sheet? 

4.12   Electromagnetic Spectrum 

The various types of electromagnetic waves are listed in Figure 4.15, which 
shows the electromagnetic spectrum. No sharp dividing point exists between one 
type of wave and the other. Remember that all forms of the various types of 
radiation are produced by the same phenomena – accelerating charges. The names 
given to the types of waves are simply for convenience in describing the region of 
the spectrum in which they lie. 

Radio waves are the result of charges accelerating through conducting 
wires. Ranging from more than 104 m to about 0.1 m in wavelength, (in the 
frequency range from 500 kHz to about 1000 MHz), they are generated by such 
electronic devices as LC  oscillators and are used in radio and television 
communication systems. The AM (amplitude modulated) band is from 530 kHz to 
1710 kHz. Higher frequencies up to 54 MHz are used for “short wave” bands. TV 
waves range from 54 MHz to 890 MHz. The FM (frequency modulated) radio 
band extends from 88 MHz to 108 MHz. Cellular phones use radio waves to 
transmit voice communication in the ultrahigh frequency (UHF) band.  

Microwaves have wavelengths ranging from approximately 0.3 m to 10 -4 m 
and are also generated by electronic devices. Because of their short wavelengths, 
they are well suited for radar systems and for studying the atomic and molecular 
properties of matter. Microwave ovens (in which the wavelength of the radiation 
is 122.0=l  m) are an interesting domestic application of these waves.  

Infrared waves have wavelengths ranging from 310-  m to the longest 
wavelength of visible light, 7107 -´  m. These waves, produced by molecules and 
room-temperature objects, are readily absorbed by most materials. The infrared 
( IR ) energy absorbed by a substance appears as internal energy because the 
energy agitates the atoms of the object, increasing their vibration or translational 
motion, which results in a temperature increase. Infrared radiation has practical 
and scientific applications in many areas, including physical therapy, IR  
photography, and vibrational spectroscopy. Infrared radiation also plays an 
important role in maintaining the Earth’s warmth or average temperature through 
the greenhouse effect. Incoming visible light (which passes relatively easily 
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through the atmosphere) is absorbed by the earth’s surface and re-radiated as 
infrared (longer wavelength) radiations. This radiation is trapped by greenhouse 
gases such as carbon dioxide and water vapor. 

Visible light, the most familiar form of electromagnetic waves, is the part of 
the electromagnetic spectrum that the human eye can detect. Light is produced by 
the rearrangement of electrons in atoms and molecules. Various wavelengths of 
visible light correspond to different colours and range from red ( 7107 -´=l  m) 
to violet ( 7104 -´=l  m). The sensitivity of the human eye is a function of 
wavelength, being a maximum at a wavelength of about 7105.5 -´  m. Different 
animals are sensitive to different range of wavelength. For example, snakes can 
detect infrared waves, and the visible range of many insects extends well into the 
ultraviolet. 

Because of the very small magnitudes of light wavelengths, it is convenient 
to measure them in small units of length. Three such units are commonly used: 
the micrometer (1 μm), the nanometer (1 nm) and the angstrom (1 Å): 

61 m 10 mm -= , 
91nm 10 m-= , 

1Å = 10-10 m. 
The color of light depends on its wavelength or frequency. Different parts 

of the visible spectrum evoke the sensations of different colors. Wavelengths for 
colors in the visible spectrum are (very approximately) as follows: 

Violet 400 to 440 nm 
Blue 440 to 480 nm 
Green 480 to 530 nm 
Yellow 530 to 590 nm 
Orange 590 to 630 nm 
Red 630 to 700 nm 

Ultraviolet waves cover wavelengths ranging from approximately 
7104 -´  m to 10106 -´  m. The ultraviolet radiation (UV ) is produced by special 

lamps and very hot bodies. The Sun is an important source of UV  radiation, 
which is the main cause of sunburn.  

Sunscreen lotions are transparent to visible light but absorb most UV  light. 
The higher a sunscreen's solar protection factor (SPF), the greater the percentage 
of UV  light absorbed. Ultraviolet rays have also been implicated in the formation 
of cataracts, a clouding of the lens inside the eye. Wearing sunglasses that do not 
block UV  light is worse for your eyes than wearing no sunglasses. Lenses of any 
sunglasses absorb some visible light, thus causing the wearer's pupils to dilate. If 
the glasses do not also block UV  light, then more damage may be done to the 
lens of the eye because of the dilated pupils. If you wear no sunglasses at all, your 
pupils are contracted, you squint, and less UV  light enters your eyes. High-
quality sunglasses block nearly all the eye-damaging UV  light. 
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Figure 4.15   A chart of the electromagnetic spectrum 
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Most of the UV  light from the Sun is absorbed by ozone ( 3O ) molecules in 
the Earth's upper atmosphere, in a layer called the stratosphere. This ozone shield 
converts lethal high-energy UV  radiation to infrared radiation which in turn 
warms the stratosphere. Recently, a great deal of controversy has arisen 
concerning the possible depletion of the protective ozone layer as a result of the 
chemicals emitted from aerosol spray cans and used as refrigerants. 

X-rays have wavelengths in the range from approximately 10 -8 m to 10-12 
m. The most common source of X-rays is the deceleration of high-energy 
electrons bombarding a metal target. X-rays are used as a diagnostic tool in 
medicine and as a treatment for certain forms of cancer. Because X-rays damage 
or destroy living tissues and organisms, care must be taken to avoid unnecessary 
exposure or overexposure. X-rays are also used in the study of crystal structure 
because X-ray wavelengths are comparable to the atomic separation distances in 
solids (about 0.1 nm). 

Gamma rays are electromagnetic waves emitted by radioactive nuclei (such 
as Co60  and Cs137 ) and during certain nuclear reactions. High-energy gamma 
rays are a component of cosmic rays that enter the Earth's atmosphere from space. 
They have wavelengths ranging from approximately 10 -10 m to less than 10-14 m. 
They are highly penetrating and produce serious damage when absorbed by living 
tissues. Consequently, those working near such dangerous radiation must be 
protected with heavily absorbing materials, such as thick layers of lead. 

Exercises 

4.46. Give several examples of electromagnetic waves that you encounter 
in everyday life. How are they all alike? How do they differ? 

4.47. We are surrounded by electromagnetic waves emitted by many radio 
and television stations. How is a radio or television receiver able to select a single 
station among all this mishmash of waves? What happens inside a radio receiver 
when the dial is turned to change stations? 

4.48. The ionosphere is a layer of ionized air 100 km or so above the 
Earth's surface. It acts as a reflector of radio waves of frequency less than about 
30 MHz, but not of higher frequency. How does this reflection occur? Why does 
it work better for lower frequencies than for higher?  

4.49. What is the fundamental cause of electromagnetic radiation? 
4.50. Suppose a creature from another planet had eyes that were sensitive to 

infrared radiation. Describe what the creature would see if it looked around the 
room you are now in. That is, what would be bright and what would be dim? 

4.51. What is the wavelength in meters, microns, nanometers, and angstrom 
units of: 

a) Soft X-rays of frequency 2∙1017 Hz?   (Ans. 9105.1 -´  m). 
b) Green light of frequency 5.6∙1014 Hz?   (Ans. 71035.5 -´  m). 
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4.52. Classify waves with frequencies of 2 Hz, 2 kHz,2 MHz, 2 GHz, 2 
THz, 2 PHz, 2 EHz, 2 ZHz, and 2 YHz on the electromagnetic spectrum, (b) with 
wavelengths of 2 km, 2 m, 2 mm,2 μm, 2 nm, 2 pm. 

4.53. Compute an order-of-magnitude estimate for the frequency of an 
electromagnetic wave with a wavelength equal to (a) your height; (b) the 
thickness of this sheet of paper. How is each wave classified on the 
electromagnetic spectrum? 

4.54. A human eye is most sensitive to light having a wavelength of 
550 nm, which is in the green-yellow region of the visible electromagnetic 
spectrum. What is the frequency of this light?   (Ans. 545 THz). 

4.55. Suppose you are located 180 m from a radio transmitter. 
a) How many wavelengths are you from the transmitter if the station calls 

itself 1150 AM?   (Ans. The AM band frequencies are in kilohertz.) 
b) What if this station were 98.1 FM?   (Ans. The FM band frequencies are 

in megahertz.) 
4.56. What are the wavelengths of electromagnetic waves in free space that 

have frequencies of (a) 5.0∙1019 Hz and (b) 4.0∙109 Hz? 
4.57. What are the wavelengths ranges in: 
(a) the AM radio band (Ans. 540- 600 kHz): 
(b) the FM radio band (Ans. 88.0-108 MHz)? 

4.13   Doppler Effect 

We have seen in Einstein theory of relativity that the same speed is 
measured for light no matter what the relative speeds of the light sources and the 
observer are. The measured frequency and wavelength will change, but always in 
such a way that their product, which is the velocity of light, remains constant. 
Such frequency shifts are called Doppler shift, after Johann Doppler (1803-1853) 
who first predicted them. 

In section “Sound waves” we showed that if a source of sound is moving 
away from an observer or if observer is moving away from the source, the 
frequency heard by the observer is 

vu
ff

/1
1

0 +
=¢ ,      (4.58) 

where u  is speed of sound source, v  is the speed of sound. 
For light the “source receding from observer” and “observer receding from 

source” is physically identical situations and must exhibit exactly the same 
Doppler frequency. The Doppler frequency predicted by the theory of relativity, is 
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When cu << , formula (4.59) can be rewritten as 
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uff .    (4.60) 

The ratio cu /  for all available monochromatic light sources, even those of 
atomic dimensions, is small. In this equation, this means that successive terms 
becomes small rapidly and, depending on the accuracy required, only a limited 
number of terms need to be retained. 

From (4.60) we can obtain relative change of frequency: 

c
u

f
f

-=
D

0
.      (4.61) 

A police radar unit employs the Doppler effect with microwaves to measure 
the speed u  of a car. A source in the radar unit emits a microwave beam at a 
certain (proper) frequency 0f  along the road. A car that is moving toward the 
unit intercepts that beam but at a frequency that is shifted upward by the Doppler 
effect due to the car’s motion toward the radar unit. The car reflects the beam 
back towards the radar unit. Because the car is moving towards the radar unit, the 
detector in the unit intercepts a reflected beam that is further shifted up in the 
frequency. The unit compares that detected frequency with 0f  and computes the 
speed u  of the car. 

The Doppler effect for light finds many applications in astronomy where it 
is used to determine the speeds at which luminous heavenly bodies are moving 
toward or receding from us. Such Doppler shifts measure only the radial or line-
of-sight components of the relative velocity. Almost all galaxies for which such 
measurements have been made appear to be receding from us, the recession 
velocity being greater for the more distant galaxies; these observations form the 
basis of the concept of the expending Universe.  

Let us assume that the radial speed u  of a certain light source is low 

enough for us to neglect the 
2

÷
ø
ö

ç
è
æ

c
u  term in Eq. (4.59). Let us also explicitly show 

a ±  option in front of the ÷
ø
ö

ç
è
æ

c
u  term – the minus sine corresponding to radial 

motion away from us and the plus sign corresponding to radial motion towards us. 
Then Eq. (4.59) becomes  
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Astronomical measurements involving light are usually done in 
wavelengths rather then in frequencies, so let us replace f  with l/c  and 0f  with 

0/ lc  where l  is the measured wavelength and 0l  is the proper wavelength. 
Then Eq. (4.62) is written as  
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, 
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which leads to 

cu
l

ll 0-
±= . 

This is conventionally written as 

cu
l
lD

=  

where 0lll -=D  is the wavelength Doppler shift of the light source. If the 
source is moving away from us, l  is greater than 0l  and the Doppler shift is 
called a red shift. (The term means that the wavelength increases). Similarly, if 
the source is moving toward us, l  is less than 0l  and the Doppler shift is called a 
blue shift. 

Example 4.12 
Certain characteristic wavelength in the light from a galaxy in the 

constellation Virgo are observed to be increased in wavelength, as compared with 
terrestrial sources, by about 0.4%. What is the radial speed of this galaxy with 
respect to the Earth? Is it approaching or receding? 

Solution. 
If 0l  is the wavelength for a terrestrial source, then 

0004.1 ll =¢ . 
Since we must have cff ==¢¢ 0ll , we can write this as  

00996.0 ff =¢ . 
This frequency shift is so small that, in calculating the source speed, we can 

use Eq. (4.62). As a result, we obtain  
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c
ufff 1996.0 00 . 

Solving yields 004.0/ =cu , or 68 101.2m/s)103)(004.0( ´=´=u  m/s. The 
galaxy is receding from us; had u  turned out to be negative, the galaxy would 
have been moving towards us. 

Exercises 

4.58. Can a galaxy be so distant that its recession speed equals c ? If so, 
will its light ever reach us? 

4.59. The “red shift” of radiation from a distant nebula consists of the light 
( gH ), known to have a wavelength of 8104340 -´  cm when observed in the 

laboratory. It appears to have a wavelength of 8106540 -´  cm. What is the speed 
of the nebula in the line of sight relative to the Earth? Is it approaching or 
receding? 
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4.60. The difference in wavelength between an incident microwave beam 
and one reflected from an approaching or receding car is used to determine 
automobile speeds on the highway. Show that if u , the speed, and f , the 

frequency of the incident beam, the change of frequency is approximately 
c
uf2 . 

4.61. Show that for low speed, the Doppler shift can be written in the 
appropriate form 

c
u

=
D
l
l , 

where lD  is the change in wavelength. 
4.62. The rotation period of the Sun at its equator is 24.7 days; its radius is 

8100.7 ´  m. What Doppler wavelength shifts are expected for characteristic 
wavelength in the vicinity of 5500 Å emitted from the edge of the Sun disk?   
( 2108.3 -´  Å). 

4.63. A rocket ship is receding from the Earth at a speed of c2.0 . A light in 
the rocket ship appears blue to passengers on the ship. What color would it appear 
to be to an observer on the Earth?   (yellow-orange). 

4.14   Propagation of Electromagnetic Waves in Atmosphere 
Before we discuss the propagation of EM waves in the atmosphere, it is 

necessary to learn a few things about the atmosphere and its various layers. The 
atmosphere is the gaseous envelope surrounding our Earth. It is retained to the 
earth due to gravitational attraction. As we go up, the air thins out gradually and 
air pressure decreases. The atmosphere can be divided into various layers as 
shown in Figure 4.16. The layers are known by different names. 
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Figure 4.16   The Earth’s atmosphere 
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The troposphere includes the layer close to the earth and extends up to 
about 12 km. This layer is responsible for all the important weather phenomena 
affecting our environment. The next layer, called the stratosphere, extends from 
about 10-16 km to about 50 km. The mesosphere extends from about 50 km to 
about 80 km. The thermosphere extends from 80 km to the edge of the 
atmosphere. It receives energy directly from the solar radiation. The ozone layer 
is in the lower stratosphere. This ozone results from the dissociation of molecular 
oxygen by solar ultraviolet radiation in the upper atmosphere. Except for the layer 
in the upper atmosphere, called ionosphere, which is composed partly of electrons 
and positive ions, the rest of the atmosphere is composed mostly of neutral 
molecules. 

The atmosphere is transparent to visible radiation and we can see the Sun 
and the stars through it clearly. However, most infrared radiation is not able to 
pass through, as it is absorbed by the atmosphere. Low lying clouds in the 
atmosphere also prevent infrared radiation from passing through. The ozone layer 
blocks the passage of ultraviolet radiation from the sun. 

The behavior of electromagnetic waves of wavelength 310-  m and higher 
(called radio waves) in their propagation through the atmosphere is an important 
consideration in all modern forms of communication: radio, television, 
microwaves etc. At low frequencies, radio waves radiated by an antenna near the 
earth travel directly following the surface of the earth. This is called wave along 
ground propagation (Figure 4.17). 
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Figure 4.17   The three main modes of propagation of electromagnetic waves 
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During the daytime, broadcast from medium waveband station can travel 
nearly 200 km like this. Above 2 MHz, such waves weaken rapidly with distance. 

Radio waves of frequencies between 2 MHz and about 20 MHz are 
reflected off the ionosphere. So, in this frequency range, radio waves radiated 
from a certain point and reflected by the ionosphere can be received at another 
point on the surface. This is known as sky wave, or ionosperic propagation. In this 
way, radio waves travel very large distances and can even travel round the earth. 

Ionosphere does not help in the propagation of waves of frequencies higher 
than 30 MHz. Television signals have frequencies in the 100 - 200 MHz range 
and penetrate ionosphere (no reflection), therefore, their propagation is not 
possible through the sky wave, Such waves can be reseaved only if the receiver 
antenna directly intercepts the signal. Thus, television broadcasts are made from 
tall antenna to get larger coverage. This is space wave propagation. Radiowaves 
with frequencies higher than television signals are the microwaves. In recent 
times, microwaves have revolutionized telecommunications. The signals (in this 
range) from the broadcasting station are beamed towards a geostationary satellite 
which in turn broadcasts it back to the earth. In this way, signals can be 
propagated over a the earth's surface. 

The Sun is the main source of electromagnetic radiation. It sends out 
electromagnetic waves of different wavelengths towards the Earth. As the 
electromagnetic waves propagate through the Earth's atmosphere, a major part of 
them is absorbed. Most of the infrared radiation is absorbed by the atmosphere, 
and the atmosphere gets heated. The visible light is only slightly absorbed. The 
electromagnetic radiation from the Sun is quite rich in ultra-violet radiation. 
Owing to its small wavelength (high energy), ultraviolet radiation is harmful to 
plants and living cells. However, the ozone layer absorbs most of the ultra-violet 
radiation and other harmful radiations of lower wavelengths. The ozone layer 
converts the ultraviolet radiation into the infrared which further heats up the 
atmosphere and the earth's surface 

Green–House Effect. The Sun is the source of energy. It emits energy in 
the form of visible light, infrared and ultraviolet radiations. The behavior of 
atmosphere is different towards different types of radiations. Whereas the ultra 
violet radiation and other low wavelength waves are absorbed by the ozone layer, 
a large part of the infrared radiation is not allowed by the atmosphere to pass 
through it. The earth's atmosphere is transparent to visible light. Therefore, only 
visible light and a part of infrared radiation reach the Earth's surface. These 
radiations keep the earth's surface warm even at night due to the green house 
effect of the atmosphere, as explained below 

The Earth gets heated to low temperature only due to the solar energy 
reaching its surface. At such a low temperature, the energy emitted from the Earth 
lies mostly in the infrared region. Since the Earth's atmosphere is not transparent 
to infra-red radiations, these radiations are reflected back. The low lying clouds 
and heavy gases like CO2 present in the atmosphere reflect infrared radiation back 
towards the earth surface. Due to this, the earth's atmosphere becomes richer in 
infrared radiation. As this radiation is absorbed by the objects readily, they get 
heated in this process. This phenomenon is called the green house effect. 
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Questions 
4.64. Static crashes are heard on radio when a lightning flash occurs – even 

if the lightning occurs far away. Why does this happen?   (Ans. A lightning flash 
involves tremendous electrical fields and currents which oscillate between the 
earth and the clouds or between two groups of clouds. In this electrical activity, 
many charges oscillate and produce a wide variety of electromagnetic waves. The 
flashes of light we see are emitted by atoms during this intense activity. Those 
electromagnetic waves, which have frequencies in radio-wave range, interfere 
with radio waves. Since light and radiowaves travel with the same speed, they 
arrive at the same time as does the light.) 

4.65. Optical telescopes are built on the ground, but X-ray astronomy is 
possible only from satellites orbiting the Earth. Why?   (Ans. The Earth’s 
atmosphere is transparent to visible light and radio waves, but absorbs X-rays. 
Therefore, X-astronomy is possible only from satellites orbiting the Earth.) 

4.66. Some scientists have predicted that a global nuclear war on the Earth 
would be followed by a severe “nuclear winter” with a devastating effect on life 
on Earth. What might be the basis of this prediction?   (Ans. Scientists estimate 
that in case of global nuclear war, the clouds produced will cover probably the 
whole of the sky In that case, solar radiation would be prevented from reaching 
the earth and it will result in what they call nuclear winter on the Earth.) 

4.67. Explain the “green house effect” of Earth's atmosphere. 
4.68. What is the role of ozone layer in the atmosphere? 
4.69. If the Earth did not have atmosphere, would its average surface 

temperature be higher or lower than what it is now?   (Ans. The infrared radiation, 
emitted by earth is retained by the Earth's atmosphere due to the green house 
effect, and this keeps the earth warm. If the Earth did have atmosphere, its 
average temperature would have been low.) 

4.70. Discuss the significance of the greenhouse effect in the atmosphere. 

Summary 

Maxwell's equations, which incorporate all the basic relationships of 
electric and magnetic fields and their sources (charges and currents), predict the 
existence of electromagnetic disturbances that can propagate through empty space 
and travel with a speed equal to the measured value of the speed of light. The 
simplest such a wave is a plane wave in which E

v
 and B

v
 are uniform over any 

plane perpendicular to the propagation direction, so that E
v

 and B
v

 are zero 
everywhere to the left of a certain plane and have constant values everywhere to 
the right of it. For such a wave disturbance to be consistent with Faraday's law, 
the two field magnitudes must be related by 

cBE = , 
or 

cEB 00me=  
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where c  is the propagation speed. For both of these requirements to be satisfied, 
c  must be given by 

8

00
1031

´==
me

c  m/s. 

Electromagnetic waves are transverse; the E
v

 and B
v

 fields are 
perpendicular to the direction of propagation and to each other. There is a definite 
ratio between E

v
 and B

v
 in a wave, and the waves travel in vacuum with a definite 

and unchanging speed c . 
The energy density in an electromagnetic wave can be expressed as 
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The energy-flow rate (power per unit area) is given by the Pointing vector 
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The time-average value of the magnitude 0/ mEB  of the Pointing vector is 
called the intensity of the wave. These waves also carry momentum; the 
momentum per unit volume has magnitude 
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and the rate of transfer of momentum per unit cross-sectional area is 
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When an electromagnetic wave travels through a dielectric, the wave speed 
v  is given by 

n
cv = . 

For a sinusoidal electromagnetic wave traveling in the x+ -direction, both 
E
v

 and B
v

 are sinusoidal functions of the quantity )( kxt -w , and at each point the 
sinusoidal variations of E

v
 and B

v
 are in phase. For a wave in the x-  direction, E

v
 

and B
v

 are sinusoidal functions of )( kxt +w . 
The electromagnetic spectrum covers a range of frequencies from at least 1 

to 1024 Hz and a correspondingly broad range of wavelengths. Visible light is a 
very small part of this spectrum, with wavelengths of 7104 -´  to 7107 -´  m or 
400 to 700 nm. 

The Doppler frequency predicted by the theory of relativity, is 
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Key Terms 
Speed of light – скорость света  
Energy density – плотность энергии  
Pointing vector – вектор Пойнтинга  
Intensity – интенсивность  
Index of refraction – показатель преломления  
Doppler effect – эффект Допплера  
Red shift – красное смещение 
Electromagnetic wave – электромагнитная волна 
Gap – зазор, промежуток 
Spark – искра 
Spark gap – искровой промежуток 
Standing wave – стоячая волна 
Natural frequency – собственная частота  
Loop – контур, петля 
To match – подходить, согласовываться 
Tuning fork – камертон 
Restricted – связанный, ограниченный 
Plane wave – плоская волна 
Index of refraction – коэффициент преломления 
Energy flow – поток энергии 
Radiation – излучение 
Perfect reflector – идеальный отражатель 
Reflectivity – коэффициент отражения 
Tail – хвост 
Torsion balance – крутильные весы 
Fiber – волокно, нить 
Beam – луч 
Absorption – поглощение 
Electromagnetic spectrum – спектр электромагнитных волн 
Infrared – инфракрасный 
Visible – видимый 
Ultraviolet – ультрафиолетовый 
X-rays – рентгеновские лучи 
Gamma-rays – g -лучи 
Doppler effect – эффект Допплера 
Doppler shift –допплеровский сдвиг 
Galaxy – галактика 
Radiation pressure – давление излучения (света) 
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