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Chapter 1

Mechanical Oscillations

In this chapter we consider a very special kind of motion which occurs
when the force acting on a body is proportional to the displacement of the body
from some equilibrium position. If this force is always directed toward the
equilibrium position, repetitive back-and-forth motion occurs about this position.
Such motion is called oscillation, or vibration (the terms are completely
equivalent).

You are most likely familiar with several examples of periodic motion,
such as the oscillations of a block attached to a spring, the swinging of a child on
a playground swing, the motion of a pendulum, and the vibrations of a stringed
musical instrument. In addition to these everyday examples, numerous other
systems exhibit periodic motion. For example, the molecules in a solid oscillate
about their equilibrium positions; electromagnetic waves, such as light waves,
radar and radio waves, are characterized by oscillating electric and magnetic field
vectors; and in alternating-current electrical circuits, voltage, current, and
electrical charge vary periodically with time.

Thus a study of periodic motion gives us an important foundation for
further study in many different areas of physics.

1.1 Basic Concepts

One of the simplest systems that can undergo periodic motion is a block of
mass m attached to a spring, as shown in Figure 1.1. The body is attached to one
end of a spring, and the other end of the spring is held stationary.

Let x be the displacement of the body from its equilibrium position. When
X = 0, the spring is neither stretched nor compressed. When the body is displaced
to the right, x is positive and the spring stretches. The force F that the spring
exerts on the body is toward the left (negative x-direction), toward the
equilibrium position, and F is negative. When the body is displaced to the left, x
Is negative and the spring is compressed. The force on the body is toward the
right (positive x-direction), again toward equilibrium, and F is positive. Thus
the sign of F is always opposite to the sign of x itself. We call such a force a
restoring force.

We know that for some springs the force is directly proportional to the
deformation, at least for small deformations. This proportionality is called Hook's
law. Thus in Figure 1.1, if the spring obeys Hook's law, we may represent the
relationship of F to x as

F =-kx, (1.2
where k is the force constant for the spring. This relation is valid for both
positive and negative x; in both cases F and x have opposite signs.



Suppose we displace the body a
distance A the right and release it,
with no initial velocity. The spring
exerts a force toward the equilibrium
position, and the body accelerates in
this direction. The acceleration is not
constant, because the force decreases
as the body approaches the
equilibrium position.

When the body reaches x =0,
the force and acceleration have
decreased to zero, but the velocity that

Figure 1.1 A block attaE:hed to a spring
moving on a frictionless surface. (a) When the
block is displaced to the right of equilibrium

the body has acquired, causes it to
"overshoot" the equilibrium position
and continue to move to the left. The
force then reverses direction, and the
body's speed starts to decrease. The
body comes to rest at some point to
the left of O and starts back toward

(X >0), the force exerted by the spring acts

to the left; (b) When the block is at its

equilibrium position (X = 0), the force exerted

by the spring is zero; (c) When the block is

displaced to the left of equilibrium (X <0),

the force exerted by the spring acts to the
right

the equilibrium position.

The motion is confined to a
range x=z=A on both sides of the
equilibrium  position, and each
complete back-and-forth trip takes the
same amount of time. If there were no
loss of mechanical energy due to friction, the motion would continue forever.
This specific motion, under the influence of a restoring force proportional to
displacement and without any friction, is called simple harmonic motion,
abbreviated SHM.

Simple harmonic motion is the simplest of all periodic motions to analyze.
In more complex examples the force may depend on displacement in a more
complicated way; but only when it is directly proportional to displacement do we
use the expression "simple harmonic motion.” However, many more complex
periodic motions are approximately simple harmonic, if the displacements are
small enough. Thus, simple harmonic motion is a model that serves for an
approximate representation of many periodic motions.

An experimental arrangement that exhibits simple harmonic motion is
illustrated in Figure 1.2. A mass oscillating vertically on a spring has a pen
attached to it. While the mass is oscillating, a sheet of paper is moved
perpendicular to the direction of the spring motion, and the pen traces out a
wavelike pattern.



In general, a particle moving
along the x axis exhibits simple
harmonic motion when x, the particle's
displacement from equilibrium, varies in
time according to the relationship

x = Acos(wt + f), (1.2)
where A, w, and f are constants. To
give physical significance to these
constants, we have labeled a plot of x as
a function of t in Figure 1.3a. This is
just the pattern that is observed with the
experimental  apparatus shown in
Figure 1.2. The amplitude A of the _
motion is the maximum displacement of Motion
the particle in either the positive or of paper
negative x direction. The constant w is
called the angular frequency of the Figyre12 An experimental apparatus for
motion and has units of radians per demonstrating simple harmonic motion. A
second. The constant angle f, called the Pen attached to the oscillating mass traces

. out a wavelike pattern on the moving chart
phase constant (or phase angle), is paper
determined by the initial displacement
and velocity of the particle. If the particle is at its maximum position x = A at
t =0, then =0 and the curve of x versus t is as shown in Figure 1.3b. If the
particle is at some other position at t =0, the constants £ and A tell us what the
position was at time t=0. The quantity (wt+f) is called the phase of the
motion. The phase constant f is important when we compare the motion of two
or more oscillating objects. Imagine two identical pendulum bobs swinging side
by side in simple harmonic motion, with one having been released later than the
other. The pendulum bobs have different phase constants.

Note from Eq. (1.2) that the trigonometric function x is periodic and
repeats itself every time wt increases by 2p rad. The period T of the motion is
the time it takes for the particle to go through one full cycle. We say that the
particle has made one oscillation. This definition of T tells us that the value of x
at time t equals the value of x at time t+T . We can show that T =2p/w by
using the preceding observation that the phase (wt + f) increases by 2p rad in a
time T :

wt+Ff+2p =w(t+T)+7F.
Hence, wT =2p, or

=2~ (1.3)



The inverse of the period is

¢/% - ‘ called the frequency f of the motion.
A /\

Frequency represents the number of
oscillations that the particle makes per

\/ \//\ U unit time:

1 w
Al f===2 1.4
A T2 (1.4)

(a) The units of f are cycles per

second s1, or hertz (Hz).
Rearranging Eq. (1.4), we obtain
the angular frequency:

w = 20t =2T—p. (1.5)

A/ -----------------
\ /\ /\ ¢ We can obtain the linear velocity

of a particle undergoing simple
A N harmonic motion by differentiating Eq.

(1.2) with respect to time:

dx :
(b) v=—"=-wAsinu + ). (1.6)
Figure 1.3 (a) An X =1 curve for a particle dt
undergoing simple harmonic motion. The The acceleration of the particle

amplitude of the motion is A, the period is g
T and the phase constant is F; (b) The 2
X =1 curve in the special case in which a= dv _d"x _ WZACOS(Wt+f). (1.7)

X=Aatt=0andhence f=0 dt  t?
Because x = Acos(ut + f), we can express Eg. (1.7) in the form
= —w?x. (1.8)

From Eq. (1.6) we see that, because the sine function oscillates between £1,
the extreme values of v are +wA. Because the cosine function also oscillates

between £1, Eq. (1.7) tells us that the extreme values of a are + w?A. Therefore,
the magnitude of maximum speed and that of the maximum acceleration of a
particle moving in simple harmonic motion are

Vmax = WA, (1.9)

Amax = W2A. (1.10)

Figure 1.4a represents the displacement versus time for an arbitrary value

of the phase constant. The velocity and acceleration curves are illustrated in

Figures 1.4b and c. These curves show that the phase of the velocity differs from

the phase of the displacement by p /2 rad, or 90°. That is, when x is a maximum

or a minimum, the velocity is zero. Likewise, when X is zero, the speed is
maximum.



Furthermore, note that the phase
of the acceleration differs from the
phase of the displacement by p rad, or
180°. That is, when X is a maximum,
a is a maximum in the opposite
direction.

Summarizing, the following
properties of a particle moving in
simple harmonic motion are important:

1. The acceleration of the
particle is proportional to the
displacement but is in the opposite
direction. This is the necessary and
sufficient  condition  for  simple
harmonic motion.

2. The displacement from the
equilibrium position, velocity, and
acceleration all vary sinusoidally with
time but are not in phase, as shown in
Figure 1.4.

3. The frequency and the period
of the motion are independent of the
amplitude.

Example 1.1

(c)
Figure 1.4 Graphical representation of
simple harmonic motion. (a) Displacement
versus time; (b) Velocity versus time; (c)
Acceleration versus time. Note that at any
specified time the velocity is 90° out of phase
with the displacement and the acceleration is

180° out of phase with the displacement

An object oscillates with SHM along the x axis. Its displacement from the
origin varies with time according to the equation

X = 4cos§pt + 39,
€

44

where x is in metres, t is in seconds and the angles in the parentheses are in

radians.

a) Determine the amplitude, frequency and period of the motion.
Solution. By comparing this equation with Eq. (1.2), (x = Acos(wt + f)),
the general equation for SHM, we see that A=4 mand w =p rad/s. Therefore,
f=w/2p=p/2p =05 Hz.

and T =1/f =2s.

b) Calculate the velocity and acceleration of the object at any time t.

Solution.

dx . @ p
v=—=—(4p m/s)sin¢cpt + =
m (4p mis) gpt 4

Q
]



pi
4y
c) Determine the position, velocity and acceleratlon of an objectat t =1 s.

Solution. Noting that the angles in the trigonometric functions are the
same, we obtainat t =1

a—%——(4p m/s? )cos pt+=

X = (4)c039p +B9 = (4)cosw57p9 =(4)(-0.707) = -2.83 m,
e

V= (4 )sinQTpg = _(4p )(~0.707) = 8.89 m/s,
e [/}

a= —(4p2)cos§57p9 = —(4p?)(-0.707) = 27.9 m/s?.
e 7}

d) Determine the maximum speed and maximum acceleration of the object.
Solution. In the general expressions for v and a found in part (b), we use
the fact that the maximum values of the sine and cosine functions are unity.

Therefore, v varies between +4p m/s, and a varies between i4p2 m/s. Thus,
Vmax = 4p m/s =12.6 m/s,

amax = i4p2 m/s® =39.5 m/s®.

We obtain the same result using Vpax = WA and ampax = w?A, where A=4 m
and w=p radfs.

e) Find the displacement of the object between t =0 and t =1 s.
Solution. The x coordinateat t =0 is

x=(4)cos§0+z——(4)( 0.707) = 2.83 m.
e

In part (c), we found that the x coordinate at t =1 s is -2.83 m, therefore,
the displacement between t =0 and t =1 s is

DX = X§ - Xj = -2.83m - 2.83m = -5.66 m.

Because the body’s velocity changes its sign during the first second, the
magnitude of Dx is not the same as the distance covered in the first second. (By
the time the first second is over, the object has been through the point

= -2.83 monce, traveled to x = -2.83 m and come back to x = -2.83 m.)

Exercises

1.1. Which of the following is a necessary and sufficient condition for
SHM?

a) constant period,;

b) constant acceleration;
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c) proportionality between acceleration and displacement from equilibrium
position;

d) proportionality between restoring force and displacement from
equilibrium position.

1.2. For a particle executing SHM which of the following statements is
valid:

a) the total energy of the particle always remains the same;

b) the restoring force is maximum at extreme positions;

c) the restoring force is always directed towards a fixed point;

d) the velocity of the particle is maximum at the center of motion of the
particle.

1.3. A vibrating object goes through five complete oscillations in 1 s. Find
the angular frequency and the period of the motion.  (Ans. w=31.4 rad/s,
T=025s)

1.4. In Figure 1.1 the mass is displaced 0.12 m from its equilibrium
position and released with no initial velocity. After 2 s its displacement is found
to be 0.12 m on the opposite side and it has passed the equilibrium position once
during this interval. Find the amplitude, the period, the frequency and the angular
frequency.

1.5. Which of the following relationships between the acceleration a and

the displacement x of a particle involve SHM: a=0.5x, a =400 x2, a=-20x,

a=-3x%?

1.6. Given x =(2m)cos(5t) for SHM and needing to find the velocity at
t =2 s, should you substitute for t and then differentiate with respect to t or vice
versa?

1.7. An object of mass 0.01 kg moves with SHM of amplitude 0.24 m and
period 4 s. The coordinate is +0.24 m when t = 0. Compute

a) the position of the object when t =0.5 s.

b) the magnitude and direction of the force acting on the object when
t=05s.

c) the minimum time required for the object to move from its initial
position to the point where x =-0.12 m.

d) the velocity of the object when x =-0.12 m.

1.8. An object is vibrating with SHM of amplitude 15 cm and frequency
4 Hz. Compute

a) the maximum values of the acceleration and velocity. (Ans. 94.7 m/s?,
3.77 m/s);
b) the acceleration and velocity when the coordinate is 9 cm (Ans.

~56.8 m/s®, £3.02 m/s);
c) the time required to move from the equilibrium position to a point 12 cm
distant from it. (Ans. 0.0369 s).



10

1.2 Block-Spring System

Let us return to the block-spring system (Figure 1.1). Again, we assume
that the surface is frictionless; hence, when the block is displaced from
equilibrium, the only force acting on it is the restoring force of the spring.
Applying Newton’s second law to the motion of the block, together with the
Hook’s law, we obtain:

F = -kx,

F =ma,
k

a=-—xX. (1.11)
m

As we saw in Eg. (1.11), when the block is displaced a distance x from
equilibrium, it experiences an acceleration a = -(k/m)x. If the block is displaced

a maximum distance x = A at some initial time and then released from rest, its
initial acceleration at this instant is - kA/m (extreme negative value). When the
block passes through the equilibrium position x =0, its acceleration is zero. At
this instant, its speed is a maximum. Then the block continues to travel to the left
of equilibrium and finally reaches x = -A, at this time its acceleration is kA/m
(maximum positive) and its speed is again zero. Thus, we see that the block
oscillates between the turning points x = £A.

Recall that a = dv/dt = d®x/dt® and so we can express Eq. (1.11) as
d°x Kk

2 m

d°x  k 3
or ——+—x=0.
di2 m

If we denote the ratio k/m with the symbol w?,
w2 =X (1.12)
m

this equation becomes
2
d—2X+W2x=O. (1.13)
dt
Now we require a solution to Eq. (1.13), that is, a function x(t) that
satisfies this second-order differential equation. From the theory of differential
equations it is known that this solution has form:
X = Asinwt, (1.14a)
or x = Acosut, (1.14b)
or x = Acos(wt +f). (1.14c)
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To see this explicitly, assume that x = Acos(wt + ). Then

dx d .
— = A—cos(wt + F) = -wAsin(mt + F),
g - gpeosm ) (wt +7)
2
a7x_ _WAisin(wt +F) = -w?Acos(wt + ).
dt? dt
Comparing this expressions for x and d%x/dt?, we see that

d®x/dt? = -w?x, and Eqg. (1.13) is satisfied. We conclude that whenever the
force acting on a particle is linearly proportional to the displacement from some
equilibrium position and in the opposite direction, the particle moves in simple
harmonic motion.

It can be shown in the same manner that function (1.14a) and (1.14b) are
the solutions for the differential equation (1.13). We see that the essential
difference among them is the position of the body at the instant of time we choose
tocall t=0.

Equations (1.14) will form the basis of our further description of simple
harmonic motion. For given values of A and w, they differ in the position of the
particle at time t = 0, that is, in the particular point in the cycle at which t =0. If
the body is given an initial displacement A at time t =0 and released with no
initial velocity, the motion is described by Eq. (1.14b). If the body is given an
initial velocity vy at the equilibrium position (x=0) at time t=0, the
appropriate equation is Eq. (1.14a). In that case, vg and A are related by

Vo = WA,
since the velocity at x =0 is the maximum velocity.

When the body is given both an initial displacement Xy and an initial
velocity vg at time t =0, it is better to use Eq. (1.14c).

Suppose that at t =0 the initial position of an oscillator is x = Xy and its

initial speed is v = vy . Under these conditions, Egs. (1.2) and (1.6) give

Xg = AcosT, (1.15)
and
Vg = -WAsInf. (1.16)
Dividing Eqg. (1.16) by Eq. (1.15) eliminates A, giving vg/xy = -wtanf,
or
__ VY
tanf=-——. (1.17)
WXo

Furthermore, if we square Eq. (1.15) and (1.16), divide the velocity
equation by w?, and then add terms, we obtain

2
Vv .
xo2 +6-22 = A?(cos? F+sin’ F),
eWg
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or, using the identity cos? F+sin® F=1,

.2
x02 +§V—09 = A?, (1.18)
eEWg
which can be solved for A:
2
A= [x2 +EN00 (1.19)
eWg

The amplitude is not equal to the initial displacement. This is reasonable: if
at time t=0 the particle has both an initial displacement xg in the positive

direction and also a positive velocity vq in that direction, then it will move farther
in that direction before returning; hence, A must be greater than xg.
Recall that the period of any simple harmonic oscillator is T =2p/w and

that the frequency is the inverse of the period. We know that w=+k/m, so we
can express the period and frequency of the block-spring system as

2p / 1 1 [k
=2 and f=—=—_[—. 1.20
w P k' T 2p\Vm (1.20)

That is, the frequency and period depend only on the mass of the block and
on the force constant of the spring. Furthermore, the frequency and period are
independent of the amplitude of the motion. As we might expect, the frequency is
greater for a stiffer spring (the stiffer the spring, the greater the value of k) and
decreases with increasing mass.

Example 1.2

A spring is mounted as in Figure 1.1. By attaching a spring balance to the
free end and pulling sideways, we determine that the force is proportional to the
displacement and that a force of 4 N causes a displacement of 0.02 m. We attach a
2-kg body to the end, pull it aside a distance of 0.04 m, and release it.

a) Find the force constant of the spring.

4

b) Find the period and frequency of vibration.
Solution. The period is:

T= 2p\/:— ,/20 0.628 s.

The angular frequency: w = 2pf =10 rad/s.
c) Compute the maximum velocity attained by the vibrating body.
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Solution. The maximum velocity occurs at the equilibrium position, where
x =0. For any x, from Eq. (1.18)

V=iW\/A2—X2,

V =Vmax = £WA = (10)(0.04) = £0.4 m/s.
The same result we obtain, if we use Eq. (1.9).

d) Compute the maximum acceleration.
Solution. From Eg. (1.8),

sowhen x =0,

= -Ex = —wX.
m
The maximum acceleration occurs at the ends of the path, where x =+A.

Therefore,
amax = £(10)2(0.04) = +0.4m/s.
e) Compute the velocity and acceleration of the body when it has moved

halfway to the center from its initial position.
Solution. At this point,

x=2-002m,
2
22430
v = -(10),/(0.04)% - (0.02)2 = -g%; = -0.346 m/s,
'}

a=-w?x = -(10)%(0.02) = -2.0m/s?.
f) How much time is required for the body to move halfway to the center
from the initial position?
Solution. The position at any time is given by x = Acoswt . From this,
A/2=Acos(10 1),

cos(10t) = %

(10t) = arccos

N |-

P
3l

Example 1.3

Consider a mass m on a frictionless table connected to fixed points A and
B (Figure 1.5) by two springs of equal natural length, negligible mass and spring
constants k; and k, respectively. The mass is displaced horizontally and then

released. What is the period of oscillation?



14

Sk Sy ks ~ Solution. Let the mass be
|—/Mb”6\— N —/Wb‘\—l displaced horizontally to the
A Ct B position C¢ such that CCt=x. The
X - spring S; is stretched through a

Figure 1.5 Mass M is connected by two springs distance x and exerts a force - k1X
along CA. Similarly, the string S, is compressed through a distance x and exerts

a force -kox along BC. If d®x/dt® be the acceleration of the block, then from

the Newton’s second law:
d°x 3 3
m—r-= -kyx = kox = -(ky + ko)X,
dt
2
d*x, (kitka), _4
dt? m
This equation represents SHM. Hence, the angular frequency and period

are, corespondingly:
w=_ KLtk and T=2p |— 1
m kl + k2

Exercises

or

1.9. A block of mass m=680 g is fastened to a spring whose spring
constant k =65 N/m. The block is pulled a distance x=11 cm from its
equilibrium position at x =0 on a frictionless surface and released from rest at
t=0.

a) What are the angular frequency, frequency and the period of the resulting
motion? (Ans. w=9.8 rad/s, f =1.6 Hz, T =640 ms.)

b) What is the amplitude of oscillation? (Ans. A=11cm.)
c) What is the maximum speed vax Of the oscillating block, and where is

the block when it occurs? (Ans. Viax =1.1 m/s.)
d) What is the magnitude an,x Of the maximum acceleration of the block?

(Ans. amax =11m/52.)

e) What is the phase constant? (Ans. f=0 rad.)

f) What is the displacement x(t) for the block-spring system?
(Ans. x(t) =0.11cos(9.8t)).

1.10. At t=0, the displacement of the block is -9.50 cm. The block’s

velocity v(0) is then -0.920 m/s and its acceleration a(0) = 47.0 m/s®.

a) What is the angular frequency of this system? (Ans. w =23.5 rad/s.)

b) What is the phase constant f and amplitude A? (Ans. f=155° and
A=9.4cm.)



15

1.11. A harmonic oscillator has a mass of 0.5 kg and a spring of unknown
force constant. It is found to have a period of 0.20 s. Find the force constant of the
spring.

1.12. A block of unknown mass is attached to a string of force constant
200 N/m. 1t is found to vibrate with a frequency of 3.0 Hz. Find the period, the
angular frequency and the mass. (Ans. T =0.333s, w=18.8 radrs,

m = 0.563 kg.)
1.3 Block-Spring System in Vertical Plane

Suppose we turn the system of Figure 1.1 by 90°, so the mass hangs
vertically from the spring (see Figure 1.6a). The motion does not change in any
essential way. In Figure 1.6b, a body of mass m hangs in equilibrium from a
spring with force constant k. In this position the spring is stretched an amount DI
just great enough so that the spring's upward vertical force kDI on the body
balances its weight mg . In this case, kDI =mg .

When the body is at a distance x
above its equilibrium position, as in
Figure 1.6c, the extension of the spring ;
is DI - x. The upward force it exerts on
the body is then k(DI -x), and the

resultant force F on the body is

F =k(DI - x) - mg = -kx,

that is, a net downward force of x=0 x $
magnitude kx. Similarly, when the

lmg

g
/
b 2 kAl -x)
A R Al

body is below the equilibrium position, Vg

there is a net upward force proportional
to x. Therefore, the equation of motion ~_ (3) (b) ()

is the same as Eq. (1.13). Hence, if the F9ure 1.6 ‘The restoring force on a body
suspended by a spring is proportional to the

bOd_y is Se_t in Vertica! motion, it coordinate measured from the equilibrium
oscillates with SHM, with the same position

angular frequency as though it were horizontal, i.e., the motion is described by
Eqg. (1.13) and its angular frequency is

w=+k/m.

Example 1.4
Two springs A and B each of length I, have a force constants k; and k.
Find the force constant k of the spring system, if they are connected (a) in
parallel, (b) in series in vertical plane.
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Solution.

Let body of mass m be suspended from the combination of the springs.

(a) Springs are connected in parallel.

Force F =mg, acted on the spring’s system can be resolved into two
components, F = F + F,. One of them, F, is applied to the spring A, the other —
to the spring B . Elongations of the both spring x are the same.

The tension in A is F; = k;x and tension in B is F, =k,x. Hence for the
system of spring we can write

F =kx
where k the spring constant of the combination. We can rewrite this equation as
F + F, =kx, ors
kyx + kox =kx, or
k=ky+ks.

(b) Springs are connected in series,

The elongations in springs A and B, produced by force F, will be
x1 = F kg and xo = F/k5, respectively. The total elongation is

_ _EF FO_ 21 10_ $k2+k16

X=X+ X -g—+—;- Fg—+—;- Fe—=—==.

ki kg ki kag kikz g
And, finally, the force constant of the system is
_F F _ kiko

X Faek2+klg" Ky +ky
kika g
Example 1.5
A body of mass 5 kg is suspended by a string, which stretches 0.1 m when
the body is attached. The body is then displaced downward an additional 0.05 m
and released. Find the amplitude, the period and the frequency of the resulting
SHM.

Solution. Since the initial position is 0.05 m from equilibrium and there is
no initial velocity, A=0.05 m. To find the period we first find the force constant

of the string. The string is stretched 0.1 m by a force of (5kg)(9.8 m/sz) , SO
=M _ O)O8) _ 490 njm.

DI 0.1m
The period T is
T= Zp\/E =2p | 2K 635
K 490 N/m

The frequency of SHM:

f ===1.57 Hz
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Example 1.6

The vertical motion of a huge piston in a machine is approximately simple
harmonic with a frequency f =0.5 Hz. A block of 10 kg is placed on the piston.

What is the maximum amplitude of the piston’s SHM, for the block and piston to
remain together?

Solution. Here, f =0.5 Hz, g =9.8 m/s?. When displacement is x, the
acceleration of SHM is given by
a=wx= (2pf)2x=4p2f2x.
The acceleration will be maximum at the extreme position x = A, i.e.
amax = 4p2f2A.
The block will remain in contact with the piston, if a,,; does not exceed
the acceleration due to gravity, i.e. aqax IS the most equal to g. i.e.

4p2 f2A= g,
2
or A= g S = 9'82"‘/3 ~=0.993 m.
4p“f 4p“(0.5)
Exercises

1.13. Four passengers whose combined mass is 300 kg are observed to
compress the automobile by 5 cm when they enter the automobile. If the total load
supported by the string is 900 kg, find the period of vibration of the loaded
automobile.

1.14. Choose the answer: Two bodies M and N of equal masses are
suspended from two separate massless spring with spring constants k; and k,

respectively. If the two bodies oscillate vertically such that their maximum
velocities are equal, the ratio of the amplitude of M to that of N is

ky /Ko, ko /Ky, k7K, ko 7K, . (Recall that Vipay = WA.)

1.15. The period of a mass suspended by a spring (force constant k) is T.
If the spring is cut in three equal pieces, what will be the force constant of each

part and what will be the period? (Ans. 3k, T+/3.)

1.16. A block of mass 2 kg is suspended from a spring of negligible mass
and is found to stretch the string 0.20 m.

a) What is the force constant of the spring? (Ans. 98.0 N/m.)

b) What is the period of oscillation of the block if pulled down and
released? (Ans. 0.898s.)

c) What would be the period of the block of mass 4 kg hanging from the
same spring? (Ans. 1.27 s.)
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1.17. The scale of a spring balance reading from zero to 180 N is 9 cm
long. A fish suspended from the balance is observed to oscillate vertically at 1.5
Hz. What is the mass of the fish? Neglect the mass of the spring.

1.18. A block of mass 5 kg hangs from a spring and oscillates with a period
of 0.5 s. How much will the spring shorten when the block is removed?
(Ans. 0.0620 m.)

1.4 Simple Pendulum

A simple pendulum is another mechanical system that exhibits periodic
motion. It consists of a particle-like bob of mass m suspended by a light string of
length L that is fixed at the upper end, as shown in Figure 1.7. The motion occurs
in the vertical plane and is driven by the force of gravity. We shall show that,
provided the angle g is small (less than about 10°) the motion is that of a simple
harmonic oscillator.

The forces acting on the bob are
the force T exerted by the string and
the gravitational force mg. The
| tangential component of  the

0 gravitational force mgsing always acts
| towards qg=0, opposite the
L T displacement. Therefore, the tangential
| force is a restoring force, and we can
apply Newton's second law for motion

. s m in the tangential direction:
T : o : d°s
mgsin® 5 aks =-mgsing =m—,
dt
mgcos®  where s is the bob's displacement
mg measured along the arc. The minus sign

Figure 1.7 When q is small, a simple
pendulum oscillates in simple harmonic
motion about the equilibrium position g = 0.

indicates that the tangential force acts
toward the equilibrium (vertical)
position. Because s=Lg and L is

: ) . constant, this equation reduces to
The restoring force is MQ@SINg, the

L G
component of the gravitational force tangent q — _gsinq
to the arc dt? L '

The right side is proportional to sing rather than to g ; hence, with sing
present, we would not expect simple harmonic motion because this expression is
not of the form of Eq. (1.13). However, if we assume that g is small, we can use
the approximation sing » g ; thus, the equation of motion for the simple
pendulum becomes

d%q _

i (1.21)

9
Lq'
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Now we have an expression of the same form as Eq. (1.13), and we
conclude that the motion for small amplitudes of oscillation is simple harmonic
motion, therefore, g can be written as

q = Qmax COS(wt + ), (1.22)
where gmax 1S the maximum angular displacement and the angular frequency
w is

The period of the motion is

_2P _ 9 L (1.23)
w g

In other words, the period and frequency of a simple pendulum depend only
on the length of the string and the acceleration due to gravity. Because the period
Is independent of the mass, we conclude that all simple pendulums that are of
equal length and are at the same location (so that g is the same), oscillate with
the same period.

We emphasize again that the motion of a pendulum is only approximately
SHM; when the amplitude is not small, the departures from SHM can be
substantial. But how small is this “small”? The period can be expressed by an
infinite series; when the maximum angular displacement is gyay, the period T is

given by
L& 12 24 2732 4q . ¢
T=2p |— Gl+—sm sin® —+...7.

We can compute the period to any desired degree of precision by taking
enough terms in series. When gpax =15°, the true period differs from that given
by the approximate Eq. (1.23) by less than 0.5%.

The analogy between the motion of a simple pendulum and that of a block-
spring system is illustrated in Figure 1.8.

The simple pendulum of certain length can be used as a timekeeper because
its period depends only on its length and the local value of g. It is also a

convenient device for making precise measurements of the free-fall acceleration.
Such measurements are important because variations in local values of g can
provide information on the location of oil and of other valuable underground
resources.

-1- -1-O:

(S



T/4 0 | —o4]| o lkAz 0
2

O max T2 | —A4 0 | w24 0 %/{A2

j 3740 0 |04 | 0 %kAZ 0

-4 0 A
Figure 1.8 Simple harmonic motion for a block-spring system and its relationship to the
motion of a simple pendulum. The parameters in the table refer to the block-spring system,

assuming that X = A at t = 0; thus, X = Acoswt

Simple pendulum was first used by the French physicist Jean Foucault to
verify the Earth's rotation experimentally. As the pendulum swings, the vertical
plane in which it oscillates appears to rotate as the bob successively knocks over
the indicators arranged in a circle on the floor. In reality, the plane of oscillation is
fixed in space, and the Earth rotating beneath the swinging pendulum moves the
indicators into the position to be knocked down, one after the other.

Example 1.7

A simple pendulum of length L and mass m is suspended in a car that is
traveling with a constant speed v around a circle of radius r. If the pendulum
undergoes small oscillations about its equilibrium position, what will be its
frequency of oscillation?

Solution. Here the car is an accelerated frame of reference. A fictitious

force mv2 /r is to be introduced as a centrifugal force (Figure 1.9).



From Figure 1.9
2
Fcosg=mg and Fsing = ﬂ,

r
2 49
Hence F =m ng+v—j.
&

When the pendulum is slightly displaced such
that it makes an angle (g +dqg) with the vertical, then

there will be a restoring force Fsindg » Fdg = Fx/L,

where x =Ldg is linear displacement. Restoring force mg _
- . Figure 1.9 A simple

per unit displacement is F /L. pendulum in a car
The period is: traveling around a circle

m mL
T=2p,|——=2p ———=2p | —/—
VF/L /m/gz+v4 v
r2

The frequency of oscillation:

Exercises

1.19. A simple pendulum 4 m long swings with amplitude of 0.2 m.

a) Compute the linear velocity v of the pendulum at its lowest point.

b) Compute its linear acceleration a at the end of its path.

1.20. Find the length of a simple pendulum whose period is exactly 1 s at a

point where g =9.8 m/s? (Ans. 0.248 m.)
1.21. A simple pendulum has a period of 2.0 s on the Earth. What is its

period on the Moon, where g =1.7 m/s??

1.22. When period of a simple pendulum is doubled

a) its length is doubled;

b) the mass of the bob is doubled,;

c) its length is made four times;

d) the mass of the bob and the length of the pendulum are doubled?
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1.23. The period of oscillation of a simple pendulum with length L at the
Earth surface is T . Its period inside a mine is

a) greater than T,

b) less than T,

c)equalsto T,

d) can not be computed.

1.24. What is the length of a simple pendulum that marks seconds by
completing a full swing from left to right and then back again every 2.0 s?

1.25. A performer seated on a trapeze is swinging back and forth with a
period of 8.85 s. If he stands up, so that the center of mass of the
trapeze+performer system rises by 35.0 cm, what will be the new period of
oscillation of the system? Treat trapeze + performer as a simple pendulum.

1.26. When a small sphere is hung from the end of an elastic string, the
length of the simple pendulum obtained is 40 cm. The time for 20 small
oscillations of this pendulum is 26 s. The bob is then changed to a sphere of the
same size but different mass. The new time for 20 oscillations is 26.4 s. Calculate

the ratio of the masses. (Ans. M- ;—22 =0.602.)

My
1.5 Physical Pendulum

Suppose you balance a small wheel so that it is supported by your extended
index finger. When you give the wheel a small displacement (with your other
hand) and then release it, it oscillates. If a hanging object oscillates about a fixed
axis that does not pass through its center of mass and the object cannot be
approximated as a point mass, we cannot treat the system as a simple pendulum.
In this case the system is called a physical pendulum.

Consider a rigid body pivoted at a
point O that is a distance d from the
center of mass (Figure 1.10). The force
of gravity provides a torque about an
axis through O, and the magnitude of
that torque is mgdsing, where d is as

shown in Figure 1.10. Using the law of
motion t = la, where | is the moment
of inertia about the axis passig through

o, dzq/dt2 Is the angular acceleration,

we obtain
2
-mgdsing = Id—g.
Y dt
mg The minus sign indicates that the

Figure 1.10 A physical pendulum torque about O tends to decrease q.
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That is, the force of gravity produces a restoring torque. Because this equation

gives us the angular acceleration dzq/ dt? of the pivoted body, we can consider it
the equation of motion for the system. If we again assume that g is small, the
approximation sing » g is valid, and the equation of motion reduces to
d%q _ gmgd o
g == g =q = —qu. (1.24)
dt e | o
Because this equation is of the same form as Eq. (1.13), the motion is
simple harmonic motion. That s, the solution of Eq. (1.24) is
G = Qmax COS(Wt + F) , where gmax 1S the maximum angular displacement and

W= /ml—gd . (1.25)
The period of oscillations is

T=2P 5 | L (1.26)

We can use this result to measure the moment of inertia of a flat rigid body.
If the location of the center of mass — and hence the value of d — is known, the
moment of inertia can be obtained by measuring the period. Finally, note that

Eq. (1.26) reduces to the period of a simple pendulum when 1| = md?, that is,
when all the mass is concentrated at the center of mass.
Sometimes the quantity
I

Le ok (1.27)
which is called the effective length of physical pendulum, is used. As it is clear
from Eq. (1.27), the effective length depends on moment of inertia, that is,
distribution of mass over the pendulum and its shape. Substituting the expression

for Lg into the Eq. (1.26), we obtain

T=2p\/g,
g

that is, the same expression as for the simple pendulum. Therefore, the effective
length of physical pendulum is the length of simple pendulum which has the same
period of oscillations as the given physical one.

Example 1.8

How can the period of a physical pendulum be used to determine its
moment of inertia?

Solution. Eq. (1.26) may be solved for the moment of inertia |, giving
szgh

| = .
4p2
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The quantities on the right of the equation can all be measured directly.
Hence the moment of inertia of a body of any complex shape may be found by
suspending the body as a physical pendulum and measuring its period of
oscillation. We can find the center of gravity by balancing. Since T, m, g and h

are known, we can compute | .

Example 1.9

A uniform rod of mass M and length L is pivoted about one end and
oscillates in a vertical plane. Find the period of oscillations if the amplitude of the
motion is small.

Solution. Moment of inertia of a uniform rod about an axis through one

end is %MLZ. The distance d from the pivot to the center of mass is L/2.

Substituting these quantities into Eq.(1.26) gives

SIVIK T
T=2p-3 — =2p |-
mg(L/2) 39

Exercises

1.27. A thin uniform rod of length L and mass m is pivoted about a
perpendicular axis through the rod at a distance L/4 from one end.

a) Find the moment of inertia about this axis. (Ans. 7mL? /148.)
b) Find the period of oscillation of the rod. (Ans.2p./7L/12g .)

1.28. A monkey wrench is pivoted at one end and allowed to swing as a
physical pendulum. The period is 0.9 s, the pivot is 0.20 m from the center of
gravity.

a) What is the ratio of moment of inertia to mass for the wrench, about an
axis through the pivot?

b) If the wrench was initially displaced 0.1 rad from its equilibrium
position, what is the angular velocity of the wrench as it passes through the
equilibrium position?

1.29. A meter stick swings about a pivot at one end at distance h from its
center of mass. What its period of oscillation T? (Ans. 1.64s.)

1.6 Torsional Pendulum

In the Figure 1.11, there is shown an angular version of simple harmonic
oscillator, the element of springless or elasticity is associated with twisting of
suspention wire rather than the extension and compression. The divice is called a
torsional pendulum, with torsion referring to the twisting. Torsional pendulum is
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a rigid body suspended by a wire attached at the top to a fixed support. When the
body is twisted through an angle g, the twisted wire exerts a restoring torque on
the body . The torque is proportional to the angular displacement. That is,

t =-kq,
where k (kappa) is called the torsion constant of the support wire. The value of
k can be obtained by applying a known torque to twist the wire through a
measurable angle q .
Applying Newton's second law for
rotational motion, we find

2
t=-kq = d—zq
dt
d%q _ k ‘2%
?g:—l—q. (128) I

Again, this is the equation of
motion for a simple harmonic oscillator,

with w=+/k/1 and a period

T= 2p\g (1.29)

There is no small-angle restriction
in this situation as long as the elastic  Figure 1.11 A torsional pendulum of a rigid

limit of the wire is not exceeded. body suspended by a wire attached to a
rigid support. The body oscillates about the

line OP with an amplitude Qmax

Example 1.10

A watch has a balanced wheel which performs angular simple harmonic
motion of period 0.5 s and maximum angular displacement of p radian. What is
the maximum angular velocity of the wheel?

Solution. From T = % the angular frequency is 2pf = 2? = % =4p and

the maximum angular velocity wyax = 2pfq = 4p(p) =39.5 rad/s.

Example 1.11

A thin rod of length L and mass m =135 g is suspended from a long wire
at its midpoint. Its period T of angular SHM is measured to be 2.53 s. An
irregularly shaped object is then hung from the same wire, and its period
To =4.76 s. What is the moment of inertia of object about its suspension axis?

Solution. The moment of inertia of either the rod or an object is related to
the measured period by Eqg. (1.29). We know that moment of inertia of a thin rod
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about a perpendicular axis passing through its midpoint is | = %mLZ. Thus, we
have
1

2_1 2 - an-4 2
| =—mL® =—(0.135)(0.124)° =1.73" 10 "kg*m*.
B 12( 5)( ) g

The period of rod is T=2pJ%, and the period of the object is

To=2p I—O. The constant k, which is the property of the wire, is the same for
0 k

both bodies. Lets square each of equations, divide the second by the first one and
solve the resulting equation for I,. The resultis

2 2
I =1, Tiz = (1.73'10‘4kgxm2)% =6.12 10 *kgrm?.
T/ (2.53s)
Exercises

1.30. The balance wheel of a watch vibrates with the angular amplitude of
p rad and a period of 0.5 s.

a) Find its maximum velocity.

b) Find its angular velocity when the displacement is the one-half
magnitude.

c) Find its angular acceleration when the displacement is 45°.

1.31. An alarm clock ticks four times each second, each tick representing
half a period. The balance wheel consists of a thin rim of radius 1.5cm,
connected to the balance staff by thin spokes of negligible mass. The total mass of
the balance wheel is 0.8 g.

a) What is the moment of inertia of the balance wheel?

(Ans. 1.807 1077 kgxm2 )
b) What is the torque constant of the hairspring?

(Ans. 2.84”107° Nxm/rad?.)

1.32. A torsional pendulum is formed by attaching a wire to the center of a
meter stick with a mass of 2 kg. If the resulting period is 3 min, what is the
torsion constant for the wire?

1.33. A clock balance wheel has a period of oscillation of 0.25 s. The wheel
Is constructed so that 20 g of mass is concentrated around a rim of radius 0.5 cm.
What are (a) the wheel's moment of inertia and (b) the torsion constant of the
attached spring?
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1.7 Energy of Simple Harmonic Oscillator

Let us examine the mechanical energy of a block-spring system illustrated
in Figure 1.12. Because the surface is frictionless, we expect the total mechanical
energy to be constant. We can apply Eq.(1.6) to express the kinetic energy as

K :%mvz =%mW2AZSin2(Wt+f). (1.30)

As the elastic restoring force is a
conservative force, we can represent the
work done by this force in terms of
potential energy. The elastic potential
energy stored in the spring of any

Figure 1.12 A bIocklspring system that
starts from rest at X = A. In this case

Eqg. (1.2), we obtain f =0 and, thus, X = Acoswit

elongation x is given by %kxz. Using

U= %kx2 = %kA2 cosz(wt +7T). (1.31)

We see that K and U are always positive quantities. Because w? =k/m,
we can express the total mechanical energy of a simple harmonic oscillator as

E=K+U =%kA2Lin2(m+f)+cosz(m+f) .

From the identity sin2(Wt +f)+ cosz(wt +f) =1, we see that the quantity
in square brackets is a unity. Therefore, this equation reduces to

E=K+U =%mv2+%kx2. (1.32)

The total mechanical energy is equal to the maximum potential energy
stored in the spring when x = +A because v =0 at these points and thus there is
no Kkinetic energy. At the equilibrium position, where U =0 because x =0, the

total energy, all in the form of kinetic energy, is again E = %mvrznax = %kAz. That
IS,
E= %mv2 + %kx2 = const. (1.33)

That is, the total mechanical energy of a simple harmonic oscillator is a
constant of the motion and is proportional to the square of the amplitude. Note
that U is small when K is large and vice versa, because the sum must be
constant. Plots of the kinetic and potential energies versus time is shown in Figure
1.13, where we have taken f=0. As already mentioned, both K and U are

. : : : 1
always positive, and at all times their sum is a constant equal to EkAZ, the total

energy of the system. Energy is continuously transformed between potential
energy stored in the spring and kinetic energy of the block.
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Figure 1.13 (a) Kinetic energy and potential energy versus time for a simple harmonic
oscillator with ¥ = 0. (b) Kinetic energy and potential energy versus displacement for a simple

harmonic oscillator. In plot (b), note that K + U = const

We can often see another representation of Eq. (1.32), shown by the graph
in Figure 1.14, where energy is plotted vertically and the coordinate x

)
o}
(e
. L]
\U=pk /
2
\ 7
E: ‘ |
‘ K
y
A
U
! Y ! > X
—A 0] X +A

Figure 1.14 Relation between total energy
E, potential energy U and kinetic energy

K for a body oscillating with SHM

horizontally. The curve represents the
potential energy, U = %kxz. As we can

see, the curve is a parabola. The
horizontal line at height E represents
the constant total energy of the body.
We see that the body's motion is
restricted to values of x lying between
the points where the horizontal line
intersects the parabola. If x were
outside this range, the potential energy
would exceed the total energy that is
impossible.

If we draw a vertical line at any
value of x within the permitted range,

the length of the segment between the x-axis and the parabola represents the
potential energy U at that value of x. The length of the segment between the
parabola and the horizontal line at height E represents the corresponding kinetic
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energy K. At the endpoints, the energy is all potential, and at the middle points it
is all kinetic. The speed has its maximum value vy, at the midpoint:

1 - [2E
Emv max = E , Vimax = F

Let’s return to the Figure 1.8 which illustrates the position, velocity,
acceleration, kinetic energy, and potential energy of the block-spring system for
one full period of the motion. Most of the ideas discussed so far are incorporated
in this important figure.

Finally, we can use the principle of energy conservation to obtain the
velocity of an arbitrary displacement by expressing the total energy at some
arbitrary position x as

E=K+U =2mv2+1ke? = 1Al
2 2 2

v=+% h(A2 - x2) = iW\/lAZ - x? ’ (1.34)

m

When we check this equation to see whether it agrees with known cases,
we find that it substantiates the fact that the speed is a maximum at x =0 and is
zero at the turning points x = £A.

Then velocity is

Example 1.12

The system in Fig. 1.1 is given an initial displacement of 0.05 m, and an
initial velocity of 2 m/s. Find the amplitude, the phase angle and the total energy
of the motion and write an equation for the position as a function of time.

Solution

From Eq. (1.19),

A=x@ + (Vo /w)? =/(0.05m)2 + (2(m/s)/10s )2 = 0.206 m.

From Eq. (1.17),

go = arctan 0 = arctan _12 WS _76.0°= -1.33 rad.
WXg (10s71)(0.05m)

From Eqg. (1.32) and the following discussion,
E = %kAz = %(200 N/m)(0.206 m)? = 4.26 J.

Alternatively, from the initial conditions,
E = %mvg + %kxz = %(2 kg)(2mis) + %(200 N/m)(0.05m)? = 4.24 J.

The x according to Eq. (1.2) is given by
x = (0.206m) cos[(10s 1)t -1.33rad].
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Example 1.13

A 0.5 kg cube connected to a light spring for which the force constant is
20.0 N/m oscillates on a horizontal frictionless track.

a) Calculate the total energy of the system and the maximum speed of the
cube if the amplitude of the motion is 3.00 cm.

Solution

Using Eq. (1.32), we obtain

E=K+U =%kA2 :%(ZON/m)(B'lo‘Zm) =97107% J.

When the cube is at x=0, we know that U =0 and E=%mvr2nax;

therefore,
E= %mv?nax =97107%J.

b) What is the velocity of the cube when the displacement is zero?
Solution
We can apply Eq. (1.19) directly

V= 1\/5(A2 -x%) = i\/zo NIM - 0.03m)?2 - (0.02m)2] = £0.141 mis.
m

0.5kg

In the expression, the positive and negative signs indicate that the cube
could be moving either to the right or to the left at this instant.

c) Compute the kinetic and potential energies of the system when the
displacement is 2.00 cm.

Solution

Using the result of (b), we find that

K = %mvz = %(0.5 kg)(0.141m/s)? =57 10737,

U= %kxz = %(20 N/m)(0.02m)? = 4710733,
Note, that K+U = E.

Exercises

1.34. An object of mass 4 kg is attached to a string of force constant
k =100 N/m. The object is given an initial velocity of vy =12 m/s and an initial
displacement of xg =0. Find the amplitude, the phase angle, and the total energy

of the motion and write the equation for the position as a function of time.
1.35. A block of mass 4 kg is attached to a coil spring and oscillates
vertically in SHM. The amplitude is 0.5 m, and at the highest point of the motion,
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the spring has its natural unstretched length. Calculate the elastic potential energy
of the spring, the kinetic energy of the body, its gravitational potential energy
relative to the lowest point of the motion and the sum of these three energies,
when the body is:

a) at the lowest point, (Ans. 39.2J,0,0,39.2J))

b) at is equilibrium position, (Ans.9.8J,9.8J,9.8J,39.2J.)

c) at its highest point. (Ans. 0, 0, 39.2 J, 39.2J.)

1.36. A 200-g mass is attached to a spring and undergoes simple harmonic
motion with a period of 0.250 s. If the total energy of the system is 2 J, find (a)
the force constant of the spring and (b) the amplitude of the motion.

1.37. An automobile having a mass of 1 000 kg is driven into a brick wall

in a safety test. The bumper behaves as a spring of constant 5-10% N/m and
compresses 3.16 cm as the car is brought to rest. What was the speed of the car
before the impact, assuming that no energy is lost during the impact with the
wall?

1.38. A mass-spring system oscillates with amplitude of 3.5 cm. If the
spring constant is 250 N/m and the mass is 0.5 kg, determine (a) the mechanical
energy of the system, (b) the maximum speed of the mass, and (c) the maximum
acceleration.

1.39. A 50-g mass connected to a spring with a force constant of 35 N/m
oscillates on a horizontal, frictionless surface with an amplitude of 4 cm. Find (a)
the total energy of the system and (b) the speed of the mass when the
displacement is 1 cm. Find (c) the kinetic energy and (d) the potential energy
when the displacement is 3.00 cm.

1.40. A 2.00-kg mass is attached to a spring and placed on a horizontal,
smooth surface. A horizontal force of 20 N is required to hold the mass at rest
when it is pulled 0.2 m from its equilibrium position (the origin of the x axis).
The mass is now released from rest with an initial displacement of x; =0.2 m,

and it subsequently undergoes simple harmonic oscillations. Find (a) the force
constant of the spring, (b) the frequency of the oscillations, and (c) the maximum
speed of the mass. Where does this maximum speed occur? (d) Find the
maximum acceleration of the mass. Where does it occur? (e) Find the total energy
of the oscillating system. Find (f) the speed and (g) the acceleration when the
displacement equals one third of the maximum value.

1.41. A 1.5-kg block at rest on a tabletop is attached to a horizontal spring
having a force constant of 19.6 N/m. The spring is initially unstretched. A
constant 20-N horizontal force is applied to the object causing the spring to
stretch. (a) Determine the speed of the block after it has moved 0.3 m from
equilibrium, assuming that the surface between the block and the tabletop is
frictionless. (b) Answer part (a) for a coefficient of kinetic friction of 0.200
between the block and the tabletop.
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1.42. The amplitude of a system moving in simple harmonic motion is
doubled. Determine the change in (a) the total energy, (b) the maximum speed, (c)
the maximum acceleration, and (d) the period.

1.8 Circle of Reference

We can gain additional insight into simple harmonic motion through a
geometric representation called the circle of reference. This representation makes
use of a close relationship between SHM and uniform circular motion, which we
studied earlier. The basic idea is shown in Figure 1.15. Point Q moves

counterclockwise around a circle with a radius A that is equal to the amplitude of

the actual simple harmonic motion, with the constant angular velocity w

(measured in rad/s). Thus, w is the rate of change of the angle g; w=dqg/dt .
The vector from O to Q is the position vector of point Q relative to O.

This vector has the constant magnitude A and at time t is at an angle g,
measured counterclockwise from the positive x-axis. As Q moves, this vector

rotates counterclockwise with the constant angular velocity w=dqg/dt. The
horizontal component of this vector represents the actual motion of the body
under study. Such a rotating vector is called a phasor. This representation is also
useful in many other areas of physics where we encounter quantities that vary
sinusoidally with time, including ac-circuit analysis and interference phenomena
in optics.
In Figure 1.15, point P lies on the
horizontal diameter of the circle, directly

Q below Q. We call Q the reference

A | point, the circle — the reference circle,

| and P - the projection of Q onto the

0] 0 ! diameter. The location of P can be
: treated as a shadow of Q on the x-axis,

x—= Acosd /> p  cast by a light beam perpendicular to the

x-axis. As Q revolves, P moves back
and forth along the diameter, staying
always directly below (or above) Q.
Now we’ll show that the motion of P is
Figure 1.15 Coordinates of a body in SHM  simple harmonic motion.
The displacement of P from the origin O at any time t is the distance OP,
or x. From Figure 1.15, we see that
X = Acosq .
If point Q is at the extreme right end of the diameter at time t =0, then
q =0 when t =0, and the time variation of g is given by
qg=wt.
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Hence,
X = Acoswt. (1.35)
Now w, the angular velocity of Q in radians per second, is related to f,

the number of complete revolutions of Q per second, by

w=2pf ,
since there are 2p radians in one complete revolution. Furthermore, the point P
makes one complete back-and-forth vibration for each revolution of Q. Hence f

is also the number of vibrations per second, or the frequency of vibration of point
P. Thus Eq. (1.35) may also be written as
X = Acos2pf .
We can find the instantaneous velocity of P with the aid of Figure 1.16.
The reference point Q moves with a tangential velocity given by

Ve = WA = 2pfA.
Since point P is always directly below or above the reference point, the
velocity of P at each instant must equal the x-component of the velocity of Q.

That is, from Figure 1.16
v = -WAsinwt (1.36)

The minus sign is needed because

the velocity is directed toward the left.
When Q is below the horizontal

diameter, the velocity of P is toward the
right; but since sing is negative at such
points, the minus sign is still needed.
Eq. (1.36) gives the velocity of point P
at any time.

We can also find the acceleration
of the point P by making use again of
the fact that since P is always directly
below or above Q, its acceleration must
equal the x-component of the
acceleration of Q. As point Q moves in
a circular path with the constant angular
velocity w, at every instant it has an
acceleration toward the center given by

U =Ug Sing

Figure 1.16 Velocity in SHM

an = —W2X .

From Figure 1.17, the x-component of this acceleration is
ay = -an Cosq,

ay = ~w? Acoswt. (1.37)



The minus sign is needed because
the acceleration is directed toward the
left. When Q is to the left from the

center, the acceleration of P is directed
toward the right; but since cosq is
negative at such points, the minus sign is
still required. Eqg. (1.37) gives the
acceleration of P at any time.

Now comes the final step in
showing that the motion of P is simple
harmonic. We combine Egs. (1.35) and
(1.37), obtaining

= —w?x. (1.38)

As w is constant, the acceleration a at each instant equals a negative
constant times the displacement x at this instant. But this is the essential feature
of simple harmonic motion: Force and acceleration are proportional to the
displacement from equilibrium. Hence, the motion of P is indeed simple
harmonic.

In order to make Egs. (1.12) and (1.38) agree precisely, we must choose an

Figure 1.17 Acceleration in SHM

angular velocity w for the reference point Q such that w? =k/m. Thus, the
angular velocity of point P is identical to the angular frequency of the motion
defined by Eq. (1.12).

Throughout this discussion we have assumed that the initial position of the
particle (at time t = 0) is its maximum positive displacement A, but this is not an
essential restriction. Different initial positions of the particle correspond to
different initial positions of the reference point Q. For example, if at time t =0
the phasor OQ makes an angle gy with the positive x-axis, then the angle g at
time t is given not by g = wt as before but by g =qg +wt.

The only change in the discussion is to replace wt in Egs. (1.35), (1.36),
and (1.37) by (wt +qg). These equations become then

X = Acos(wt +qqg),
= -wAsin(wt +qg),

ay = —WZACOS(Wt +qp) = ~WPX.

The initial position xg and initial velocity vq (at time t =0) are then given
by
x=Acosqy and vg=-wAsingy.,
correspondingly.
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Example 1.14
A particle rotates counterclockwise in a circle of radius 3.0 m with a
constant angular speed of 8.0 rad/s. At t =0, the particle has an x coordinate is

equal to 2.0 m and is moving to the right.
a) Determine the x -coordinate as a function of time.

Solution
Because the amplitude of the particle's motion equals the radius of the

circle and w =8 rad/s, we have
x = Acos(wt + f) =3cos(8t + f).
We can evaluate f by using the initial conditionthat x=2 mat t=0:
2=3cos(0+7F),

If we were to take our answer as f=48.2°, then the coordinate
X =3cos(8t + 48.2°) would be decreasing at time t=0 (that is, moving to the
left). Because our particle is first moving to the right, we must choose
f=-48.2°=0.41 rad. The x coordinate as a function of time is then

X =3cos(8t - 0.841).

Note that ¥ in the cosine function must be in radians.

b) Find the x components of the particle's velocity and acceleration at any
time t.

Solution.

vy = d—)t‘ = (~3)(8)sin(8t - 0.841) = ~24sin(8t - 0.841)m/s ,

ay = ddltx = (-24)(8) cos(8t - 0.841) = -192cos(8t - 0.841) mis?.
From these results, we conclude that vp, =24 m/s and that

amax =192 m/s®. Note that these values also equal the tangential speed wA and

the centripetal acceleration w2A.
Exercises

1.43. An object is undergoing SHM with period T = 0.4 s. Use the circle of
reference to calculate the time it takes the object to go from x =0 to x=A/4.

1.44. An object is undergoing SHM with period (p/2) s and amplitude
A=0.2 m. At t=0 the object is at x=0. How far is the object from the
equilibrium position when t =p /10 (Ans. 0.19 m.)
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1.45. The motion of the piston in a car is almost simple harmonic with
amplitude of 40 mm and the frequency of 120Hz. Calculate (a) the maximum

acceleration and (b) the maximum speed of the piston. (Ans. (a) 2.27" 10% m/s?,

(b) 30.2 m/s.)

1.46. A vertical rod is fixed to the rim of a horizontal turntable of diameter
4 cm. A horizontal beam of light casts a shadow of the rod on a screen. (a) The
turntable rotates at a uniform angular velocity w. Show that the motion of the
shadow of the rod on the screen is simple harmonic. (b) If the turntable rotates at
0.5 revolutions per second, what is the maximum speed of the shadow of the
vertical rod and at which point does it occur? (Ans. (a) 6.28 cm/s, (b) At the
midpoint)

1.47. While riding behind a car that is traveling at 3.00 m/s, you notice that
one of the car tires has a small hemispherical boss on its rim. (a) Explain why the
boss, from your viewpoint behind the car, executes simple harmonic motion, (b)
If the radius of the car tire is 0.3 m, what is the boss' period of oscillations?

1.48. Consider the simplified single-piston engine.If the wheel rotates with
the constant angular speed explain why the piston rod oscillates in simple
harmonic motion.

1.9 Phasor Addition of Oscillations

There are a lot of problems
concerning superposition of several
oscillations. Unfortunately, analytical
procedure becomes cumbersome when
we must add them. Because we are
;o interested in combining a large number

Az// o of oscillations, we now describe a

\ graphical procedure for this purpose.

\ | Let us consider the addition of
A | two oscillations of the same direction
@2 -, and equal frequencies. The resulting
| i displacement x of the oscillating body

A

0

i ~x IS the sum of displacements x; and Xo:
B R = Ay cos(wt +qy),
X Xy = Aycos(wt +4g7).
Figure 1.18 Phasor addition of the These osc_:illations can be
oscillations %, = A sin(Wt+qq)  and repres:ented graphically by phasors of
magnitudes A and A, rotating about

= i + . . . .
Xp = Apsin(Wt+@p). The  resultant 0 origin counterclockwise with an
oscillation X has amplitude A and phase angu|ar frequency w. as shown in
costant ( Figure 1.18.
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We can obtain the resultant oscillation, which is the sum of x and x,,
graphically by redrawing the phasors as shown in Figure 1.18, where the tail of
the second phasor is placed at the tip of the first one. According to vector
addition, the resultant phasor A runs from the tail of the first phasor to the tip of
the second one. Furthermore, A rotates about the origin simultaneously with the
initial phasors with the same angular frequency w. The projection of A along the
horizontal axis equals the sum of the projections of the two phasors:

X=X+ X5,

From Figure 1.18, it is clear that the amplitude of the resulting vector, can

be found from cosine theorem as

A% = A+ AF - 2M Py cos[p - (Gp - )] = AL + A +2A Ay cos(g - Gy),  (1.39)
and the initial phase of the resultant oscillation is

Asingy + Aysing, (1.40)
Ay cosq; + Ay cosqo

tang =

Example 1.15

Two oscillations of the same period T have amplitudes A =4 mm and
A, =3 mm, and their phase constants are 0 and p /3 rad, respectively. What are

the amplitude A and phase constant g of the resultant oscillation? Write the
equation of the resultant oscillation.
Solution. The oscillations can be represented by phasors rotating about an

origin at the same angular speed w = 2T_p The phase constant is by p/3 greater
for the second oscillation than for first one, that is why phasor 1 must lag phasor 2
by p/3 rad in their counterclockwise rotation, as shown in Figure 1.19a. The
resultant oscillation can be represented by a phasor that is the vector sum of
phasors 1 and 2.

To simplify the vector
summation, we draw phasors 1 and 2 Ay
in Figure 1.19a at the instant when
phasor 1 lies along the horizontal

axis. Then we drew lagging phasor 1 n/3
at positive angle p/3 rad. In Figure A
1.19b, we shift phasor 2 so that its (a)

tail is at the head of phasor 1. We can
draw the phasor A of the resultant Figure1.19 (a) Two phasors of magnitudes
oscillation from the tail of phasor 1to  A; and Ay and with phase difference p/3;
the head of phasor 2. The phase (b) Vector addition of these phasors at any
constant g is the angle it makes with instant during their rotation gives the magnitude
phasor 1. A of the phasor for the resultant oscillation

To find values of A and g, we can add phasors 1 and 2 by components.
For the horizontal components we have

A, = A cosO+ Ay, cosp/3=4+3cosp/3=5.5 mm.
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For vertical components we get
Ay = A sin0+ Ay sinp/3=4+3sinp/3=2.6 mm.
Thus, the resultant oscillation has amplitude of:

A=(55)2+(2.6)% =6.1 mm

and phase constant g of
2.6mm

5.5mm

From Figure 1.19b, phase constant g is a positive angle relative to phasor
1, Thus, the resultant oscillation leads oscillation 1 in their travel by phase
constant +0.44 rad. From Eq. (1.39), we can write the resultant oscillation as
A(t) = (6.1mm)sin(wt + 0.44).

=0.44 rad.

g = arctan

1.10 Addition of Mutually Perpendicular Oscillations

Assume that a particle can be set into oscillations both along x and y axes.

When both types of oscillations are generated, particle moves, in general, along a
curved trajectory and form of the trajectory depends on the phase difference of the
two oscillations.

Let’s chose the initial moment of time in such a way that the initial phase

constant of the first oscillation is zero. Then equations of oscillations can be
written as

X = Acoswt , (1.41)
y = Bcos(wt +q), (1.42)

where g is the phase difference between oscillations.
Expressions (1.41) and (1.42) represent the equation of trajectory in the
parametric form. To obtain an equation of trajectory as an equation of a curved

line, we have to eliminate the parameter t from them. From the first equation, it
follows that

cosmt = . (1.43)
A
Therefore,

[ 2
sinwt = +/1-coswt = + 1—X—2. (1.44)
A

Now, using trigonometric identity
cos(a + b) =cosacosb -sinasinb,
we represent cos(wt + f) in Eq. (1.42) as

X : G
cos(wt +q) :Kcosq tsing 1——2 ;
A
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and rewrite Eq. (1.42)

/ 2
y X ) X
-~ =—c0sqg xsing.|1- —.
B A q q A2

After several transformations, the latest equation can be represented as

2 2
X"y 2Xy

A2 B2 AB

Eqg. (1.45) is the equation of ellipse with semi—-axis which are turned

relatively coordinate axes x and y. Orientation of the ellipse and magnitude of

its semi—axes depend on the amplitudes A and B and phase difference g in a
rather complicated way.

cosq =sin2q (1.45)

Special cases

1. The phase difference g equals zero. In this case, Eqg. (1.45) takes the
form

ax_yo©
§A Bg
and it reduces to the equation of straight line:

B
= _—_X. 1.46
y=- (1.46)

The resulting motion is the harmonic oscillation along this straight line

with the frequency w and amplitude A% + B2 (Figure 1.20).
2. Phase difference is g = £p . Eq. (1.45) has the form:

gi + 19 = ,
eA By
and the resulting motion is SHM along the straight line (Figure 1.21)
B
= -—X. 1.47
A (L47)
yA y A
A A ]
B B
| 0 X 0 X
‘B i
i B
_________ T g

Figure 1.20 The phase difference g =0 Figure 1.21 Phase difference g = P



40

3.Atqg= i%, Eq. (1.45) transforms into
2 2
o do=1, (1.48)
A B

that is, into the equation of ellipse with a semi-axis oriented along coordinate
axes x and y correspondingly which are equal to the amplitudes A and B.
When amplitudes A and B are equal to each other, the ellipse reduces into
circumference.

Two cases g =+p /2 and g =-p /2 differ in the direction of the motion
along the ellipse or circumference. If g =+p /2, Egs. (1.41) and (1.42) can be
written as

x=Acoswt and y=-Bsinwt.
At t =0, the particle is in the point 1 (Figure 1.22). When some time elapses, the
coordinate x decreases whereas the coordinate y becomes negative. Therefore,
the body moves along the clockwise direction.

When g = -p /2, the equations of oscillations have the form

x=Acoswt and y=Bsinwt

and the motion occurs counterclockwise.

YA It follows from the discussion
above, that the uniform motion along
the circle of radius R with the angular
velocity w can be represented as a sum
of two mutually perpendicular
oscillations:

X Xx=Rcoswt, y==Rsinut.
In the expression for y the plus sign
corresponds to the motion in the
anticlockwise direction, whereas the
minus sign corresponds to the clockwise
Figure 1.22 Phase difference is ¢ = iB. direction.
2 When the frequencies of mutually

Two cases g =+p/2 and q=-p/2 . o i :
differ in the direction of the motion along the perpendicular oscillations differ in very

ellipse or circumference small amount Dw, they can be treated
as oscillations of equal frequency but with a slowly varying phase difference.
Indeed, their equations can be represented as
X = Acoswt, y = Bcos[wt + (Dut +q)],
and the expression (Dwt +q) can be treated as the phase difference which slowly
varies according to the linear law. The resulting motion occurs along the slowly
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Figure 1.23 The ratio of frequencies is 1:2 Figure 1.24 The ratio of frequencies is 1:2
and phase difference is p /2 and phase difference is 0

varying trajectory which consequently takes forms, inherent to change of a phase
difference from -p to p.

When frequencies of oscillations are not the same, the trajectory of the
resulting oscillation has the form of rather complex curves called the Lissagy
figures. When the ratio of frequencies is 1:2 and the phase difference is p/2, the
resulting trajectory is a curve represented in Figure 1.23. In this case, the
equations of oscillation have the form:

) A
x = Acoswt, y=Bcos§2Wt+29. g
e

29
During the time interval, when
the particle displaces from one extreme
position to the other along the x-axis, it
has time to reach the extreme position
and return back into the initial point
along y-axis.

When the ratio of frequencies is
1:2 and the phase difference is 0, the
trajectory transforms into an open curve
in Figure 1.24 along which particle
moves back and forth.

When the ratio of frequencies of
oscillations approaches to the unity, the
Lissagy figures become more and more
complex. As an example, the trajectory
corresponding to the ratio 3:4 and phase  Figure 1.25 The ratio of frequencies is 3:4
difference p /2 is shown in Figure 1.25. and phase difference is p /2
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Exercisers

1.49. Determine the amplitude of the resultant oscillation when two
oscillations having the same frequency and same direction are combined if their
amplitudes are 3.0 cm and 4.0 cm, and they have phase constants of 0 and p/2
rad respectively.

1.50. Two oscillations of the same period with amplitudes of 5.0 and 7.0
mm produce a resultant oscillation with an amplitude of 9.0 mm. The phase
constant of the 5.0 mm oscillation is 0. What is the phase constant of the 7.0 mm
oscillation?

1.51. Three oscillations of the same frequency and direction have
amplitudes A, A/2 and A/3 and their phase constants are 0, p/2, and p
respectively. What are (a) the amplitude and (b) the phase constant of the
resultant oscillation?

1.11 Damped Oscillations

In the idealized oscillating systems we have discussed so far, there is no
friction. Thus, the systems are conservative; the total mechanical energy is
constant, and a system once set into motion continues oscillating forever with no
decrease in amplitude.

Real systems always have some friction, however, and oscillations do die
out with time unless some means is provided for replacing the mechanical energy
lost to friction. A pendulum clock continues to run because the potential energy
stored in the spring is used to replace the mechanical energy lost due to friction in
the pendulum and the gears. But when the spring "runs down", and no more
energy is available, the pendulum swings decrease in amplitude and stop.

The decrease in amplitude caused by dissipative forces is called damping,
and the corresponding motion is called damped oscillation. The simplest case to
analyze in detail is that of a frictional damping force directly proportional to the
velocity of the oscillating body. This behavior occurs in systems involving
viscous fluid flow, such as sliding between oil-lubricated surfaces, shock
absorbers, and many other systems of practical importance. Then we have an
additional damping force on the body due to friction, Fy = -bv, where v = dx/dt
is the velocity and b is a damping constant that describes the strength of the
damping force. In Sl system, b has the unit of kilogram per second. The minus
sine indicates that Fy opposes the motion.
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The total force on the body is then
F=-kx-bv
and the Newton's-second-law formulation becomes
- kx -bv=ma, (1.49)
or
dx _ d®x

-kx-b—=m
dt dt2

2
or mﬂ+b%+kx=0,

dt?
2
dx, b, Kyzo. (1.50)
dt mdt m
Finding solutions to the Eg. (1.50) is a straightforward problem in
differential equations, but we will not go into the details here. If the damping
force is relatively small and the body is given an initial displacement A, the

motion is described by

x = Age”®/2Mt cosat (1.51)
where the frequency of oscillation wt is given by
2
wh = k_ b—2 : (1.52)
m 4m

This motion differs from that of the undamped case in two ways. First, the
amplitude

A(t) = Age~(B/2m)t (1.53)

IS not constant but decreases with time because of the exponential factor

e~ (0/2Mt Tpe larger the value of b, the more quickly the amplitude decreases.
For an undampted oscillator, the mechanical energy is constant and is given by

E= %kAZ. If the oscillator is damped, the mechanical energy is not constant but

decreases exponentially with time.

Second, the angular frequency of oscillation is no longer equal to +k/m
but is somewhat smaller. Figure 1.26 shows graphs of Eq. (1.51) for two different
values of the constant b. If b =0 (there is no damping), then Eqg. (1.52) reduces
to Eq. (1.12) (w=./k/m) for the angular frequency of an undamped oscillations,

and Eq. (1.51) reduces to Eq. (1.2) for the displacement x of an undamped
oscillations.
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Figure 1.26 Graphs of damped harmonic
motion. The period when there is no damping
(b=0) is TO- The grey curve shows the

motion when b =0.1vkm, and the black
km . The broken lines

show the exponential factor Aoe—(b/Zm)t for
each case. The amplitude decreases more

rapidly for the larger value of b. Close
inspection of the points where the curves cross
the t-axis also shows that the period

increases slightly with the increasing b. The
critical-damping condition is b = 2+/km

curve is for b=0.4

It is convenient to express the
angular frequency of a damped
oscillation in the form of

wt = Wz_i
V 4m?

where w=+k/m represents the
angular frequency in the absence of a
retarding force (the undamped

oscillator) and is called the natural
frequency of the system. When the
magnitude of the maximum retarding
force Rmax =bVmax < kA, the system

Is said to be underdamped. As the
value of R approaches kA, the
amplitudes of the oscillations decrease
more and more rapidly.

Note that in Eg. (1.52) the
frequency becomes zero when b
becomes so large that

k b?
—-—_=0 or b=+/4km.
m  4m?

When b exceeds this value, the system no longer oscillates, when it is
displaced and released, but returns to its equilibrium position without oscillation.
If Eqg. (1.54) is satisfied, the condition is called critical damping. If the medium is
so viscous that the retarding force is greater than the restoring force — that is, if

bVmax > KA and b/2m>w - the system is over-damped. Again, the displaced

system, when free to move, does not oscillate but simply returns to its equilibrium
position. As the damping increases, the time it takes the system to approach
equilibrium also increases. The nonoscillating motion that occurs when b is even
larger corresponds to overdamping. In these cases, the solutions of Eq. (1.50) are
the decreasing exponential functions without any sinusoidal factors. When b is
smaller than the critical value, the situation corresponds to underdamping .

In all cases, both overdamping and underdamping, the mechanical energy
of the system continuously decreases, approaching zero. The lost of mechanical
energy dissipates into internal energy in the retarding medium.

The ratio

(1.54)

AD A bt
At+T) Age™(0*T) - ° (1.55)
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is called the damping decrement and its natural logarithm
A(t)
At+T)
is called the logarithmic damping decrement. In both expressions we denote
b=b/2m.
To characterize the oscillating system we as ordinarily use the logarithmic

damping decrement I. Let the amplitude of oscillation decreases e times during
time t. Then,

(1.56)

AD o AR e e,

At+T) a AOE—b(t+t) a o~ bty o-bt a s
Hence, bt =1. As the logarithmic damping decrement I =bT, then
b =1/T and, on the other hand, b =1/t . Therefore, I =T /t, but during time t
the system fulfills Ny =t /T oscillation. Hence, the logarithmic decrement of
damping is an inverse of the number of oscillations during which amplitude

decreases by a factor of e.
Another often used characteristic is a so-called Q -factor:

Q= p7 = pN,. (1.57)

According to its definition, the Q -factor is proportional to the number of
oscillation N, during which the amplitude decreases by a factor e.

The suspension system of an automobile is a familiar example of damped
oscillations. The shock absorbers provide a velocity-dependent damping force so
that when the car goes over a bump, it does not continue bouncing forever. For
optimal passenger comfort, the system should be critically damped or, perhaps,
slightly underdamped. As the shocks get old and wear off, the value of b
decreases and the bouncing persists longer. Not only is this nauseating, but it is
bad for the steering because the front wheels have less positive contact with the
ground. Thus, damping is an advantage for this system. Conversely, in a system
such as a clock or an electrical oscillating system of the type found in radio
transmitters, it is usually desirable to minimize damping.

Example 1.16

A damped oscillator consists of m =250 g, k ==85 N/m, and the damping
constant b =70 g/s.

a) What is the period of motion?

Solution.

When b <<+/km =4.6 kg/s, the period is approximately that of undamped

oscillations:
T = Zp\/E = 9p |229K9 _ 34
k 85N/m

b) How long does it take the amplitude of the damped oscillations to drop
to half its initial value?
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Solution. At time t, the amplitude in Eq. (1.53) is Aoe'btlzm. It has value

Ay at t=0. Thus, we must find the value of t for which L:Z.
Aoe—bt/2m

Canceling Ay and taking the natural logarithm of the remaining equation we get

In% on the right side and

InePt/2M = _pt/om
on the left side. Thus,

-2m In1 -2(0.25 kg)(lnl)
t= 2 = 2
b 0.070 kg/s
Because T =0.34 s, this is about 15 periods of oscillation.
) How long does it take for the mechanical energy to drop to one-half its
initial value?

Solution. The mechanical energy at time t is %kx%e‘bt/m. It has the value

%kx% at t =0. Thus, we must find the value of t for which

Li2ebt/m - 12l kx2 2.
262 g
It is clear that

-bt/m_l ,or -bt/mlne = Inl,or
2’ 2

t=-Mni=921 55
b 2 007 2

Exercises

1.52. A mass of 0.4 kg is moving on the end of a spring of force constant
k =300N/m and is acted on by a damping force F =-bv. (a) If the constant b

has the value 5 kg/s, what is the frequency of oscillation of the mass? (Ans. 4.24
Hz.); (b) For what value of the constant b will the motion be critically damped?
(Ans. 21.9 kg/s.)

1.53. A mass of 0.2 kg is attached to the end of a spring of force constant
k =250 N/m moves with an initial displacement of 0.3 m. There is a damping
force F = -bv acting on the mass. It is observed that the amplitude of the motion
has decreased to 0.1 m within 5 s. Calculate the magnitude of the damping
constant.
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1.54. The amplitude of oscillation of a simple pendulum decreases with
time. How does the total energy of the pendulum vary with time?

A. It decreases in a steady rate.

B. It decreases exponentially.

C. It remains constant.

D. It oscillates with the same frequency as the pendulum.

1.55. With the aid of suitable graphs, explain what is meant by

(a) free oscillations,

(b) underdamped oscillations,

(c) critically damped oscillations,

(d) overdamped oscillations.

1.56. Show that the time rate of the change of the mechanical energy for a

damped, undriven oscillator is given by dE/dt = -bv? and, hence, is always
negative. (Hint: Differentiate the expression for the mechanical energy of an
oscillator.)

1.57. A pendulum with the length of 1 m is released from the initial angle
of 15° After 1 000 s, its amplitude is reduced by friction to 5.5°. What is the
value of b/2m?

1.58. Show that Eq. (1.51) is a solution to Eg. (1.50) provided that

b? < 4mk .

1.59. (a) Describe the energy transformation in a complete cycle for a
simple pendulum under free oscillation. Sketch suitable graphs to support your
answer; (b) Explain why the amplitude of a damped oscillation decreases.

1.60. A car with bad shock absorbers bounces up and down with a period of
1.5 s after hitting a bump. The car has a mass of 1 500 kg and is supported by four
springs of equal force constant k . Determine the value of k.

1.61. A large passenger with a mass of 150 kg sits in the middle of the car
described in Exercise 1.60. What is the new period of oscillation?

1.12 Forced Oscillations

There are many real situations where we would like to maintain oscillations
of constant amplitude in a damped oscillating system. A familiar example is a
child sitting on a swing. We set the system into motion by pulling the child back
from the straight-down equilibrium position and releasing it. If that is all we do,
the system oscillates with the decreasing amplitude and eventually comes to rest.
But by giving the system a little push once each cycle, we can maintain a nearly
constant amplitude. More generally, we can maintain a constant-amplitude
oscillation in a damped harmonic oscillator by applying an oscillating force, that
IS, a force that varies with time in a periodic or cyclic way. We call this additional
force a driving force.

Furthermore, the frequency of the force variation need not to be the same as
the natural oscillation frequency of the system. If we apply a periodically varying
driving force to the mass of the harmonic oscillator, the mass undergoes a
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periodic motion with the same frequency as that of the driving force. We call this
motion a forced oscillation, or a driven oscillation; it is different from the motion
that occurs when the system is simply set into motion and then left alone to
oscillate with a natural frequency determined by m, k, and b.
When the driving force varies according to the harmonic law, the
differential equation of oscillations has the form
2

ﬂ +2b % + W2

dt? t
Here b is the damping coefficient, w — is a natural frequency, fy = Fy/m (Fy is
the amplitude of the driving force), wy is a frequency of a driving force.

Eq. (1.58) has the nonzero right part. According to the theory of differential
equations, the solution of nonhomogeneous equation equals the sum of a general
solution of a corresponding homogeneous equation and a specific solution of a
given nonhomogeneous equation. The general solution we have already got. It has
the form

x = fgcoswyt. (1.58)

X = Aoe'bt cos(wit +q),

where wt = /w? - b? Ay and g are the arbitrary constants.

The specific solution can be found using phasors. Suppose that the specific
solution has the form:

X = Acos(wyt -q) (1.59)
Then,
dx _ : 3 p
P -Wy Asin(wyt - q) = wy Acos(wyt - g +E) (1.60)
d2x 3 2 9
d—2 = -wy“Acos(wyt - b) = wy“Acos(wyt -q +p) (1.61)
t

Substituting Egs. (1.61) and (1.60) into Eq. (1.58), we obtain:
WdzACOS(Wdt -q+p)+2bwygAcos(wyt-q+p/2)+

+Wd2ACOS(Wdt -q+p)= fycoswyt . (1.62)
From (1.62) it follows that constants A and g must have such values that
harmonic function fycoswgt is equal to the sum of three harmonic functions of

left part in equation (1.58). If we represent the function WdZACOS(Wdt -q) with

phasor of length WdZA directed to the right, then the function
2bwq Acos(wgt -q +p/2) will be represented by the phasor 2bwyA placed at

angle p /2 counterclockwise with respect to the phasor w2A. (Figure 1.27)
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a b
Figure 1.27 Phasor diagram of forced oscillations for (a) Wy < W and (b) Wy > Wo

The function WdZACOS(Wd'[ -q +p) is represented by the vector WdZA,

placed at the angle p relative to the vector w?A. To satisfy Eq. (1.58) the sum of
these three phasors must coincide with the phasor fgcoswgt. It is clear from
Figure 1.27, that such a situation can be valid only at amplitude A satisfying the
following equation:

W2 - wy?)A? +4b°wy° A% = 1§ (1.63)
The amplitude A is the solution of Eq. (1.63):
A= Fo/m (1.64)

\/(Wz _Wdz)z +4szO|2
Figure 1.27a describes the situation when wq <w, and Figure 1.27b

corresponds the case wy > wy.

When the frequency of the driving force is equal to the natural frequency of
the system, we would expect the amplitude of the resulting oscillation to be larger
than when the two are extremely different, and this expectation is borne out by
more detailed analysis and experiment. The easiest case to analyze is that of a
sinusoidally varying force, say F = FyaxSinwgt where wy is not necessarily

equal to the natural frequency w of the system. If we vary the frequency wy of

the driving force, the amplitude of the resulting forced oscillation varies in a
rather specific way, as shown in Figure 1.28. When there is very little damping,
the amplitude goes through a sharp peak as the driving frequency passes through
the natural oscillation frequency. For increased damping, the peak becomes
broader and smaller in height and shifts toward lower frequencies.
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A Figure 1.28 Graph of the amplitude A of
5F kL forced oscillation of a damped harmonic
max oscillator, as a function of the frequency

Wy of the driving force, plotted on the

4Fmax /K horizontal axis as the ratio of Wy to the

angular frequency W =+k/mof an
undamped oscillator. The highest curve

has b=0.24km, the next has
b=04vkm, and so on. As b

increases, the peak becomes broader and
less sharp and shifts toward lower

frequencies. When D is as large as

3Fmax / ki

2Fmax / Ki-

Frnax /K

2~/km , the peak disappears completely

0 05 10 15 20
Wq /w

The fact that there is an amplitude peak at driving frequencies close to the
natural frequency of the system is called resonance. Physics is full of examples of
resonance; oscillations of a child on a swing is one of them. A vibrating rattle in a
car that occurs only at a certain engine speed is another familiar example. You
have probably heard of the dangers of a band marching across a bridge; if the
frequency of their steps is close to a natural frequency of the bridge, dangerously
large oscillations can build up. A tuned circuit in a radio or television receiver
responds strongly to waves having frequencies near to its resonant frequency, and
this is used to select a particular station and reject the others.

Example 1.17

A car is driven at a constant speed over a road on which the surface height
varies sinusoidally. The shock absorber which normally damps vertical oscillation
is not working.

a) Explain why at a critical speed of the car, the amplitude of vertical
oscillation of the car becomes very large.

Solution.

When the car moves over a road with sinusoid-like surface, it is forced into

vertical oscillation. The frequency of the forced oscillations is f = % where v is

the speed of the car. When the speed v increases, the frequency of the driving
force increases as well. At the critical speed, the frequency of the driving force is
the same as the natural frequency of the car suspension system. Resonance
occurs, and the amplitude of vertical oscillations of the car is maximum.

b) In terms of the quantities listed below, deduce a formula for

1) the natural frequency of vertical oscillation of the car.
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Solution.
1) The suspension system of the car is represented by the spring
system shown in Figure 1.29.

When the car is stationary R
(Figure 1.29b), R=Mg and R =kx 4
(using Hook's law), where k is the Xo¢ M
force constant of spring. xp iIs the &
equilibrium  compression of the Mg
spring. Mg

Hence, Mg =kxg. (i)

Figure 1.29c shows the
displacement x of the car, when it is
oscillating vertically. Using F = Ma,
second Newton’s law we write as

_ - () (b) ()
Mg - Ry =Ma, Mg -k(Xg+X)=Ma, Figure 1.29 The suspension system of the
-kx =Ma. car

s

© !
ot
b i
:<—>{

<

UUU

o

i k
Hence, the acceleration a= _MX = -sz ,

W= /L’ fo_ﬂ_i/k mg = ks, k:_mg_
M 2p 2p S
and the natural frequency, fg=—,/—
quency, To 2p"M 1/

i) the critical speed of the car is when the amplltude of vertical oscillations
Is maximum. Calculate this speed from the data provided: mass of the car and the
passengers, M =2000 kg, vertical rise of the car when the passengers get out, is
s=0.1 m, mass of the passengers, m =500 kg and the wavelength of the road
surface corrugations is I =20 m.

Solution,

If vg is the critical speed of the car when resonance occurs, then vy = i

and the driving frequency f = VTO . When the resonance occurs,
driving frequency = natural frequency, i.e.

2.
vo_ 1 mg _ T /___J > 98 158 mis
I~ 2p\Ms 2710°71710

(c) Discuss the behaV|or of the car when the shock absorber mechanism is
working properly. Give suitable sketch graphs.
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Solution.

When the suspension of the system is working properly, the vertical
oscillations are slightly below the critical dumping. After going over each hump,
the car does not perform under damped oscillations. (Figure 1.30), but quickly
returns to the equilibrium position. (Figure 1.31)

Vertical Vertical
displacement displacement

. 0 Time
0 Time
Figure 1.30 Suspension system faulty Figure 1.31 Suspension system functions
properly
Exercises

1.62. Describe the energy transformation in a complete cycle for a simple
pendulum. Sketch on the same axes to show how the amplitude of forced
oscillations varies with the frequency of the driving force for

a) underdamping,

b) moderate damping,

c) overdamping.

Mark the resonance frequency fy on the graph,. What is the effect of
damping on the resonance frequency?

1.63. (a) Explain the terms forced oscillation and resonance, (b) State the
condition for resonance to occur.

1.64. (a) What is meant by the natural frequency of an oscillatory system?

(b) The suspension system of a car consists of a spring under compression
and a shock absorber which damps the vertical oscillations of the car. Sketch
graphs to illustrate how the vertical height of the car above the road varies with
time after the car has just passed over a bump if the shock absorber is (i) not
functioning, (ii) functioning normally

(c) When the driver of mass 80 kg steps into the car of mass 920 kg, the
vertical height of the car above the road decreases by 20 cm. (i) Explain why
when the car is driven over a series of equally spaced bumps, the amplitude of the
vertical oscillations of the car becomes large for one particular speed. (ii)
Calculate the speed of the car if the separation between successive humps is 15 m.
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1.65. A baby rejoices in the day by crowing and jumping up and down in
her crib. Its mass is 12.5 kg, and the crib mattress can be modeled as a light spring
with the force constant of 4.30 kN/m. (a) The baby soon learns to bounce with
maximum amplitude and minimum effort by bending its knees at what frequency?
(b) It learns to use the mattress as a trampoline — losing contact with it for part of
each cycle — when her amplitude exceeds what value?

1.66. A 2.00-kg mass attached to a spring is driven by an external force
F =(3)cos(2pt) . If the force constant of the spring is 20.0 N/m, determine (a) the

period and (b) the amplitude of the motion. (Hint: Assume that there is no
damping — that is, that b = 0 and use Eq. (1.64).)

1.67. A weight of 40 N is suspended from a spring that has a force constant
of 200 N/m. The system is undamped and is subjected to a harmonic force with a
frequency of 10 Hz, which results in the forced-motion amplitude of 2 cm.
Determine the maximum value of the force.

1.68. Damping is negligible for a 0.150-kg mass hanging from light 6.30-
N/m spring. The system is driven by a force oscillating with amplitude of 1.7 N.
At what frequency will the force make the mass vibrate with amplitude of 0.44
m?

Summary

A motion that repeats itself over and over again after a regular time interval
is called a periodic motion. A motion that repeats itself over and over again about
its mean position, such that it remains confined within the well defined limits
(called extreme positions) on either side of the mean position is called oscillation
or vibrational motion.

One oscillation (vibration) is the to and fro motion of a particle between
any two consecutive passages in the same direction.

Characteristics of SHM:

The displacement of a particle, executing SHM, at any time is defined as
the distance of the particle from the mean position at that time.

X = Acos(wt +q),
where X is called displacement of SHM and g is the phase constant of SHM.

The amplitude of a SHM is defined as the maximum displacement on either

side of the mean position.

Velocity v = % = -Awsin(umt +q) = w A% - x? = 2T—p\/ A% - %2

The velocity at the mean position is vy = Aw (maximum). The velocity at the

extreme positionis v=0.
2

Acceleration a = ﬂ = -w
dt?

2y = —WZACOS(Wt +q).
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The negative sign shows that the acceleration of a SHM is always directed
towards the mean position of the SHM Acceleration at the mean position a=0.

The acceleration at the extreme position is ayax = “W2A.

Time period (T) is the time taken by the particle executing SHM. to
complete one oscillation.

Frequency ( f) is the number of oscillations completed per second by the
particle executing SHM

f=t,
T

The unit of frequency is s or cycle per second (c.p.s.) or hertz (Hz). For high
frequencies, the units such as kilohertz (kHz) or megahertz (MHz) are used.
Block—spring system. When a mass m is attached to a massless spring and
pulled aside or downwards, it executes SHM. If x is extension in the spring on
attaching the mass m and k is its force constant, then time period of SHM

executed the spring
Im
T=2p,—.
P K

A simple pendulum is a point mass suspended by a weightless, inextensible
string of length L from a rigid support about which it can oscillate freely. When
the mass is displaced from its mean position, it executes SHM.

Time period, T = Zp\/g.
g

Period does not depend on mass.

A physical pendulum is a body suspended from an axis of rotation a
distance d from its center of gravity. If the moment of inertia about the axis of
rotation is |, the period is given by

I
T=2p mgd
Conservation of energy leads to the following relation among the position
and velocity at any time and the amplitude and total energy:
E= %kA2 = %kngmv2 =const.
If the body is given an initial displacement A and released with no initial
velocity, the position is given as a function of time by
X = Acoswt.
If it is given an initial velocity vy and no initial displacement, the position
Is given as a function of time by
X = Asinwut,
with A given by A=vy/w. If the body is given an initial displacement xy and an
initial velocity vg, the position is given by
X = Acos(wt +q)
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with A and g given by

2 .

v v
A% = X +—02 and q = arctané——og.
w e WXg

The circle-of-reference construction uses a rotating vector, called a phasor,
which have a length equal to the amplitude of the oscillation and angle g with x
axis equal to the phase constant of oscillations. Its projection on the horizontal
axis represents the actual motion of the body. When we add several oscillations,
the resultant oscillation can be determined as sum of phasors.

When a damping force F =-bv proportional to velocity is added to a
simple harmonic oscillator, the motion is described as a damped oscillation:

x = Age”®/2Mt cosut,

provided that b2 < 4km . This condition is called underdamping. When b2 = 4km,
the system is critically damped and no longer oscillates. When b is still larger,
the system is overdamped.

When a sinusoidally varying driving force is added to a damped harmonic
oscillator, the resulting motion is called a forced oscillation. Its amplitude reaches
a peak at driving frequencies close to the natural oscillation frequency of the
system. This behavior is called resonance.

Key Terms

periodic motion — meproarYecKoe ABUKCHUE

oscillation — xone6anue

simple harmonic motion (SHM) — rapmonnueckoe konebanue
cycle — nukn

period — mepuon

frequency — gactora

amplitude — ammmuTyna

angular frequency — kpyrosas 4actota

phase angle — yrox casura ¢as3, ¢pa3oBblit yroi

simple pendulum — maTemaTHyecKuii MassTHUK

physical pendulum — ¢u3uueckuit MasTHUK

torsional pendulum — KpyTHIBbHBIH MasTHHK

damping — 3aryxaHwue

damped oscillation — 3aTryxatomue kojaeOaHust

critical damping — kpuTHyYeCcKOe 3aTyxaHHe

overdamping — ameproudecKkoe 3aTyXaHue, CHIIbHOE 3aTyXaHHe
underdamping — ciaboe 3aTyxaHue

driving force — BeIHy K JaK0IIas CHIa

forced oscillation — BerHy X 1eHHBIE KOJICOAHUS

resonance — pe3oHaHcC
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Mechanical Waves

Particle and wave are the two important physical concepts, in the sense that
we are able to associate almost every branch of the subject with one of them.
However, these two concepts are completely different. The concept particle
suggests a tiny concentration of a matter capable of transmitting energy. The
concept wave suggests just the opposite - namely, a broad distribution of energy
filling the space which it passes.

The world is full of waves. Sound, light, ocean waves, earthquakes, radio
and television transmissions are all wave phenomena. A wave is any disturbance
from an equilibrium position that travels or propagates with time from one area
to another. There are three main types of waves:

Mechanical waves. These waves are most familiar because we deal with
them almost constantly; common examples include water waves, sound waves
and seismic waves. They are governed by Newton's laws and they can exist only
within a material medium, such as water, air or rock.

Electromagnetic waves. These waves are less familiar but we use them
constantly; common examples include visible and ultraviolet light, radio and
television waves, X-rays. These waves require no material medium to exist. For
example, light waves from stars travel through the space to reach us.

Matter waves. Although these waves are commonly used in modern
technology, this type is probably very unfamiliar. These waves are associated
with electrons, protons and even atoms and molecules. As we commonly think of
these things as constituting matter, such waves are called matter waves.

Chapter 2.1

Traveling Mechanical Waves

In this chapter we study only mechanical waves. Mechanical waves always
travel within some material substance called the medium for the wave. When we
observe what we call a water wave, what we see is a rearrangement of the water
surface. Without water, there would be no wave. It’s important to emphase that
the medium itself does not travel through space; its individual particles undergo
back-and-force motions around their equilibrium positions.

The mechanical waves require (1) a source of disturbance, (2) a medium
that can be disturbed, and (3) some kind of physical connection through which the
adjacent portions of the medium can influence each other.

All traveling waves carry energy. The amount of energy transmitted
through the medium and the mechanism responsible for this transport of energy
differ from case to case. For instance, the power of ocean waves during a storm is
much greater than the power of sound waves generated by a single human voice.
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Some waves are periodic: in these the particles in the medium undergo
periodic motions during wave propagation. If the periodic motion is sinusoidal,
the result is a sinusoidal wave, a type of periodic wave of special importance.

2.1.1 Basic Characteristics of Wave Motion

Imagine you are floating in a boat in a large lake. You move slowly up and
down as waves move past you. As you look out over the lake, you may be able to
see the individual waves approaching. The point at which the displacement of the
water from its normal level is the highest is called the crest of the wave. The point
at which the displacement of the water from its normal level is the lowest is called
the trough of the wave. The distance between two adjacent crests is called the
wavelength I (Greek letter lambda). More generally, the wavelength is a
minimum distance between any two adjacent identical points (such as crests) of
the wave, as shown in Figure 2.1.1.

If you count the number of Y
seconds between the arrivals of two
adjacent identical points of wave, you

are measuring the period T of the
wave. In general, we define the period /

of oscillation T of a wave to be the X
time any element of medium takes to
move through one full oscillation.

The inverse of the period, which | 2 |
is called the frequency f and | |

measured in Hz in SI, is often used. In Figure_ 2.1.1 The wavelength _l of a wave is

general, the frequency of a periodic the distance between_two adjacent identical
. points

wave is the number of crests (or

troughs, or any other point on the wave) that passes a given point in a unit time

interval. Since the waveform, traveling with constant speed v, advances a

distance of one wavelength in a time interval of one period, it follows that

]
v=—=1If. 2.1.1
= (2.1.1)

I
_ Y

The maximum displacement of a particle of the medium from its
equilibrium level is called the amplitude A of the wave. For our water wave, it
represents the highest distance of a water molecule above the undisturbed surface
of the water as the wave passes by.

Waves travel with a specific speed, and this speed depends on the
properties of the medium being disturbed. For instance, sound waves travel
through room temperature air with a speed of about 343 m/s, whereas they travel
through most solids with a speed much greater than that 343 m/s.
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Example 2.1.1

What is the wavelength of a sound wave having a frequency of 262 Hz (the
approximate frequency of the note "middle C" on the piano)? The speed of sound
in air at 20°C is 344 m/s.

Solution.

From Eq. (2.1.1),

’_1_344m/s

f 2625t
For comparison, the "high C" sung by coloratura sopranos is two octaves
above the middle C. The corresponding frequency is four times as large,
f =4(262Hz) =1048Hz, and the wavelength is one-fourth as large,

I = (1.31m)/4 =0.328 m.

=1.31 m.

Exercises

2.1.1. If you shake one end of a taut rope periodically, three times each
second, what is the period of the sinusoidal waves set up in the rope?

2.1.2. Which property is common to all types of mechanical waves?

2.1.3. The speed of sound waves in the air depends on temperature, but the
speed of light does not. Why?

2.1.4. The speed of sound in air is 343 m/s at 20°C. What is the wavelength
of a sound wave of frequency 32 Hz, the lowest pedal note of the medium-sized
pipe organs? What is the frequency of a wave having a wavelength of 1.22 m,
corresponding approximately to the note D above the middle C of the piano?

2.1.5. Provided the amplitude is sufficiently large, the human ear can
respond to longitudinal waves over the range of frequencies from about 20 Hz to
about 20,000 Hz. Compute the wavelengths corresponding to these frequencies

a) for waves in air (v =343 m/s);

b) for waves in water (v =1480 m/s).

2.1.6. What is the wavelength of the wave in Figure 2.1.2, where each
segment of the wave has length d ?

1 2.1.7. Figure 2.1.3a gives a

snapshot of a wave traveling in the

%A%ZIJALIJ direction of positive x along a string

under tension. Four string elements are

Figure 2.1.2  Wavelength is the minimum indicated by the lettered points. FOF

digtance between anygtwo identical points each of these_ elements, determine

(such as the crests) whether, at the instant of the snapshot

the element is moving upward or

downward or is momentarily at rest? (Hint: Imagine the wave as it moves through

the four string elements.). Figure 2.1.3b gives the displacement of a string

element located at x =0 as a function of time. At the lettered times, is the element
moving upward or downward or is momentarily at rest?
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(a) (b)
Figure 2.1.3 (a) Wave traveling in the direction of positive X; (b) Displacement of a string
element as a function of time

2.1.8. For a certain transverse wave, the distance between two successive
crests is 1.20 m, and eight crests pass a given point along the direction of travel
everyl2.0 s. Calculate the wave speed.

2.1.9. A sinusoidal wave is traveling along a rope. The oscillator that
generates it completes 40.0 vibrations in 30.0 s. The given maximum travels 425
cm along the rope in 10.0 s. What is the wavelength?

2.1.10. For a certain transverse wave, the distance between two successive
crests is 1.20 m, and eight crests pass a given point along the direction of travel
every 12.0 s. Calculate the wave speed.

2.1.2 Transverse and Longitudinal Waves

Let’s tie one end of a long flexible rope to a stationary object and held the
other end, stretching the rope tight. Then we give this end some transverse
(sideways) motion. If we give a single “flip”, the result is a single wave pulse
which travels down the length of the string (Figure 2.1.4).

This pulse and its motion can -
occur because the string is under tension. S
When you pull your end of the string

upward, it begins to pull upward on the -
adjacent section of the string via tension EF*‘

between two sections. As the adjacent

section moves upward, it begins to pull P _
the next section upward and so on. a5 /\—E
Meanwhile, you have pulled down on -‘—‘f’

your end of the string. As each section
moves upward, in turn, it begins to be — \E

pulled back downward by neighboring 4’
sections that are already on the way

down. The net result is that a distortion in ~ Figure 2.1.4 A wave pulse traveling down a

stretched rope. The shape of the pulse is
:Ez SS::IIQS a%[h:(?r%e(t\tlzopct::;ezl MOVES along approximately unchanged as it travels along

the rope
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This type of disturbance is called a traveling wave, and Figure 2.1.5
represents four consecutive "snapshots” of the creation and propagation of the
traveling wave pulse. The rope is the medium through which the wave travels.
Such a single pulse, in contrast to a train of pulses, has no frequency, no period,
and no wavelength. However, the pulse does have definite amplitude and definite
speed. As we shall see later, the properties of this particular medium that
determine the speed of the wave are the tension in the rope and it’s mass per unit
length. The shape of the wave pulse changes very little as it travels along the rope.
(Strictly speaking, the pulse changes its shape and gradually spreads out during
the motion. This effect is called dispersion and is common to mechanical waves,
as well as to electromagnetic waves.) As the wave pulse travels, each small
segment of the rope, as it is disturbed, moves in a direction perpendicular to the
wave motion. Note that no part of the rope ever moves in the direction of the
wave.
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Figure 2.1.5 A sinusoidal transverse wave traveling toward the right. The shape of the
string is shown at intervals of one-eighth of a period
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A more interesting situation develops when we give the free end of the rope
a repetitive or periodic motion. In particular, suppose we move it back and forth
with simple harmonic motion of amplitude A, frequency f, and period T,

where, as usual, f =1/T (Figure 2.1.5). A continuous succession of transverse

sinusoidal waves then advances along the string. The shape of a portion of the
string near the end, at intervals of 1/8 period, is shown in Figure 2.1.5 for a total
time of one period. The waveform advances steadily toward the right, as indicated
by the short arrow pointing to one particular wave crest, while any one point on
the string (black dot) oscillates back and forth about its equilibrium position with
simple harmonic motion. We distinguish between the motion of a waveform,
which moves with the constant speed along the string, and the motion of a
particle of the string, which moves with simple harmonic motion transverse to the
string. A traveling wave that causes the particles of the disturbed medium to move
perpendicular to the wave motion is called a transverse wave.

Compare this with the another type of wave — one moving down a long,
stretched spring, as shown in Figure 2.1.6. The left end of the spring is pushed
briefly to the right and then pulled briefly to the left. This movement creates a
sudden compression of a region of the coils. The compressed region travels along
the spring (to the right in Figure 2.1.6). The compressed region is followed by a
region where the coils are extended. Notice that the direction of the displacement
of the coils is parallel to the direction of propagation of the compressed region. A
traveling wave that causes the particles of the medium to move parallel to the
direction of wave motion is called a longitudinal wave.

Compressed

Figure 2.1.6 A longitudinal wave travels along a stretched spring. The displacement of the
coils is in the direction of the wave motion. Each compressed region is followed by a stretched
region

Sound waves, which we shall further discuss, are another example of
longitudinal waves. The disturbance in a sound wave is a series of high-pressure
(condensation) and low-pressure (rarefaction) regions that travel through air or
any other material medium.

In nature some waves exhibit a combination of transverse and longitudinal
displacements. Surface water waves are a good example. When a water wave
travels on the surface of deep water, the water molecules at the surface move in
nearly circular path, as shown in Figure 2.1.7.
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Wave motion

Crest

Trough

Figure 2.1.7 The motion of water molecules on the surface of deep water in which a wave is
propagating is a combination of transverse and longitudinal displacement

Note that the disturbance has both transverse and longitudinal components.

An important property of transverse waves is polarization. When we
produce a transverse wave on a string, we can choose between moving the end up
and down or sideways; in either case, the wave displacements are perpendicular,
or transverse, to the length of the string. If the end moves up and down, the
motion of the entire string is confined to a vertical plane; if the end moves
sideways, the wave moves in a horizontal plane. In either case, the wave is said to
be linearly polarized because the individual particles move back and forth in
straight lines perpendicular to the string.

Longitudinal waves, unlike transverse waves, do not exhibit polarization.
This concept has no meaning for a longitudinal wave.

Figures 2.1.4 and 2.1.5 show the oscillations of particles those equilibrium
positions are located along x -axis. In reality, not only particles of x -axis oscillate
but neighboring particles too. Propagating from the origin of oscillation, wave
process involves new and new regions of space. The locus of points oscillating
with the same phase is called a wave surface. Wave surface can be constructed
through any point of space which is involved in wave process. The boundary
wave surface which separates the space, already involved in wave process, from
the space which the wave process hasn’t reach yet is called wave front. The wave
surfaces are constructed through equilibrium positions of particles, oscillating
with the same phase. The wave front moves in the direction of propagation of
wave all the time. Therefore, there are a lot of wave surfaces, whereas there is
only one wave front.

Wave surfaces can have different forms. In simplest cases, they have a
form of a plane or a sphere. The waves in such cases are called plane or spherical
ones, correspondingly. In a plane wave, wave surfaces represent a set of planes,
parallel to each other (Figure 2.1.8); in a spherical one, they are concentric
spheres.
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Spherical waves are represented Plane y
with a series of circular arcs concentric  wave front =~ |
with the source, as shown in
Figure 2.1.9. Each arc represents a wave
surface. The distance between adjacent
wave surfaces equals the wavelength 1.
The radial lines pointing outwards from /
the source are rays.

Now consider a small portion of a
wave front far from the source, as shown / .
in Figure 2.1.10. In this case, the rays /
passing through the wave front are \ Vv
nearly parallel to one another, and the /
wave front is very close to being planar. ‘ ‘{A
Therefore, at distances from the source _ o

] Figure 2.1.8 A plane wave moving in the
that are great compared with the positive X direction with a speed V. The
wavelength, we can approximate a wave wave front is plane
front with a plane. Any small portion of a spherical wave far from its source can
be considered a plane wave.

Rays

Wave front

Figure 2.1.9 A spherical wave propagating Figure 2.1.10 Spherical waves emitted by a
radially outward from an oscillating spherical point source. The circular arcs represent the
body. The intensity of the spherical wave spherical wave fronts that are concentric with

) the source
varies as 1/ r2
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Exercises

2.1.11. What is the difference between longitudinal and transverse waves?

2.1.12. Why is a wave pulse traveling on a string considered a transverse
wave?

2.1.13. Is it possible to have a longitudinal wave on a stretched string?

2.1.14. Is it possible to have a transverse wave on a steel rod?

2.1.15. A solid can transport both longitudinal wave and transverse waves,
but a fluid can transport only longitudinal waves. Why?

2.1.16. What is the distance between compression and its nearest
rarefaction in a longitudinal wave?

2.1.17. State definition of wavelength and frequancy of a wave.

2.1.18. What phenomenon is exhibited by transverse waves but not by
longitudinal waves?

2.1.3 Wave Functions of Plane and Spherical Waves

To make the analysis of wave motion complete, we need a mathematical
language that provides a detailed description of the motion of the medium during
wave propagation. A central element of this language is the concept of wave
function which is a function that describes the position of an arbitrary particle in
the medium as a function x of its coordinates x, y, z and time t:

X =x(x,Y,2,1).

This function must be periodic both with respect to time t and coordinates
X, Y, Z. In this discussion, we’ll concentrate primarily on sinusoidal waves in
which each particle of the medium undergoes simple harmonic motion about its
equilibrium position.

As an example, we look first at waves on a stretched string. If we ignore
the sag of the string due to gravity, the equilibrium position of the string is along a
straight line. We take this to be the x-axis of a coordinate system. Waves on a
string are transverse: During wave motion, a particle with equilibrium position x
is displaced some distance y to the direction perpendicular to the x-axis. The
value of y depends on the particle (that is, on x) as well as on the time t, when
we look at it. Thus, y is a function of x and t; y= f(x,t). If we know this
function for a particular wave motion, we can use it to predict the position of any
particle at any time. From this we can determine the velocity and acceleration of
any particle, the shape of the string, its slope at any point, and anything else
related to the position and motion of the string at any time.

Thus, the wave function y = f (x,t), once it is known, contains a complete
description of the motion. Let us now consider wave functions for sinusoidal
waves. Suppose a wave travels from left to right along the string (the direction of
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increasing x). We can compare the motion of any particle of the string with the
motion of a second particle to the right of the first one. We find that the second
particle moves in the same way as the first one, but after a time lag that is
proportional to the distance between the particles. If one end of a stretched string
oscillates with simple harmonic motion, all other points on it oscillate with simple
harmonic motion of the same amplitude and frequency. The phase of the motion
Is, however, different for different points. This means that the cyclic motions of
different points are out of step with each other by various fractions of a cycle. For
example, if, at the same time, one point has its maximum positive displacement,
and another has its maximum negative displacement, the two are a half-cycle out
of phase. A phase angle of p (180°) corresponds to 1/2 cycle, p /2 to 1/4 cycle,
and so on.
Suppose the displacement of a particle at the left end (at x =0), where the
motion originates, is given by
y = Asinut . (2.1.2)
The time required for the wave disturbance to travel from x=0 to some
point x to the right of the origin is given by x/v, where v is the wave speed. The
motion of the point x at time t is the same as the motion of point x=0 at the
earlier time (t - x/v). Thus the displacement of the point x at time t is obtained

simply by replacing t by (t - x/v), in Eg. (2.1.2) and we have
y(xt) = Asinwt - X9= Asin2pf &t - X2, (2.1.3)
e Vg g Vg

The notation y = f(x,t) is a reminder that the displacement y is a function

of both the location x of the point and the time t. Eq. (2.1.3) can be rewritten in
several alternative forms, conveying the same information in different ways. In
terms of the period T and wavelength I, we get:
y(x.t) = Asin2p&L - X0, (2.1.4)
eT Iy
Another convenient form is obtained by defining a quantity k, called the
propagation constant, or the wave number:
= ZTp : (2.1.5)
In terms of k and the angular frequency w, the wavelength-to-frequency
relation v = If becomes
w = vk (2.1.6)
and we can rewrite Eq. (2.1.4) as
y(x,t) = Asin(wt - kx). (2.1.7)
Which of these various forms we use is a matter of convenience for a
specific problem; they all say the same.
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The phase of the wave is the argument (wt - kx) of the sine in Eq. (2.1.7).
As the wave sweeps through a string element at a point at a particular position x,
the phase changes linearly with time t. This means that its sine also changes,
oscillating between +1 and -1. Its extreme positive value (+1) corresponds to a
peak of the wave moving through the element; then, the value of y at position x

iIs A. This extreme negative value (-1) corresponds to a valley of the wave
moving through the element; then, the value of y at x is - A. Thus, the sine

function and the time-dependent phase of a wave correspond to the oscillation of
a string element, and the amplitude of the wave determines the extremes of the
element displacement.

For any given time t, Egs.(2.1.3), (2.1.4) or (2.1.7) give the displacement
y of a particle from its equilibrium position, as a function of the coordinate x of

the particle. If the wave is a transverse one on a string, the equation represents the
shape of the string at a certain instant, as if we have taken a photograph of the
string. Thus, attime t =0

y(x,t) = Asin(- kx) = - Asinkx = - Asin Zp%.

This curve is plotted in Figure 2.1.11.
At the same time, at any given coordinate x, Egs. (2.1.3), (2.1.4) or (2.1.7)
give the displacement y of the particle at that coordinate, as a function of time.

That is, it describes the motion of the particle. Thus, at the position x =0,
y(Xx,t) = Asinut = Asin Zp% :
This curve is plotted in Figure 2.1.12,

y y

SN/

\/ A o/-\ . o/ 0\ .
| Wavelength & | \/

| | | Period T -

Figure 2.1.11 Waveformat t =0 Figure 2.1.12 Waveform at X =0

D - -

The above formula may be used to represent a wave traveling in the
negative x-direction by making a simple modification. In this case, the
displacement of a point x at time t is the same as the motion of point x =0 at the
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later time (t+x/v). In Eqg. (2.1.2) we must therefore replace t by (t+x/v).
Thus, for a wave traveling in the negative x-direction,
y(x,t) = Asin 2pf§t + 292 Asin 2p§l X0 Asin(wt +kx). (2.1.8)
e To eT Iy
We must be careful to distinguish between the speed of propagation v of
the waveform and the particle speed u of a particle of the medium in which the
wave is traveling. The wave speed v is given by

v= I =%. (2.1.9)

For general case of the wave propagating along arbitrary direction, the
wave function can be written as follows:

X(F,t) = Asin(wt = kI +F), (2.1.10)
where x is displacement, f is an initial phase (or phase constant) and vector K is

a so-called wave vector. The wave vector k equals in magnitude to the wave
number k =2p /I and is directed along the perpendicular to the wave surface.
When we derived the above equations, we have suggested that the
amplitude of oscillations does not depend on x. For a plane wave, this
assumption is valid if the medium does not absorb energy of the wave. But if the
wave propagates in the absorbing medium, the intensity of wave decreases with
the distance from the origin, and the wave damps. Experiments show that in
homogenous and isotropic medium, such damping occurs according to the

exponential law: A= Age™% and the wave function of plane wave becomes:

y = Age”Fsin(ut - kx) . (2.1.11)
Here Aq is the amplitude of wave in plane x =0.

Now let’s derive expression of the wave function for spherical wave. In
isotropic and homogenous medium, wave from point source will be spherical. Let
the phase of oscillation of the source be (wt + f). Then points at the wave surface
of radius r will oscillate with the phase [w(t - r/v)+ f], because it takes time

t=r/v for a wave to cover the distance r. In this case, the amplitude of
oscillations would not be constant even if there is no absorption: It decreases with
distance as 1/r . Hence, the wave function of the spherical wave has the form:

r
x:écos(wt—krr), (2.1.12)
r

In the above equation, A is the amplitude of the wave at the unit distance from
the source. Dimension of A is determined by the product of oscillating quantity
and dimension of length. It should be mentioned that Eq. (2.1.12) is valid only for
distances r which is much greater than the size of the source.
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Although we have introduced the concept of wave function with reference
to transverse waves on a string, the concept is valid for longitudinal waves as
well. The quantity y still measures the displacement of a particle of the medium
from its equilibrium position; the only difference is that in a longitudinal wave

this displacement is parallel to the x-axis instead of being perpendicular to it in
transverse wave.

Example 2.1.2

A sinusoidal wave traveling in the positive x direction has an amplitude of
15 cm, a wavelength of 40 cm, and a frequency of 8.00 Hz. The vertical
displacement of the medium at t=0 and x=0 is also 15.0 cm, as shown in
Figure 2.1.13. (a) Find the angular wave number k, period T, angular frequency
w, and speed v of the wave.

y(cm) Solution.
‘ a) Using Egs. (2.1.5) and (2.1.9),
| we find the following:

A = 2_p = 2£ =0.157 radlcm,
15.0 cm /\ I 40
Y ~ x(cm) w=2pf =2p(8) =50.3 rad/s,
/ \/ T=£=1=0.1255,
f 8

Figure 2.1.13 A  sinusoidal wave of v= It =(40)(8) =320 cms.
wavelength I =40 cm and amplitude b) Determine the phase constant
A=15 cm. The wave function can be ¥, and write a general expression for the
written in the form Yy = Acos(kx - wt) wave function.
Solution.
As A=15 cm and because y=15 cmat x=0 and t =0, substitution into

Eq. (2.1.7) gives

A

-«

40.0 cm

15=15sinf or sinf=1.

We may take the principal value f=p/2 rad (or 90). Hence, the wave
function is of the form

y = Asin(kx - wt +%) = Acos(kx - wt).

By inspection, we can see that the wave function must have this form,
noting that the cosine function has the same shape as the sine function displaced
by 90°. Substituting the values for A, k, and w into this expression, we obtain

y =(15)co0s(0.157x - 50.3t).
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Example 2.1.3

A wave traveling along the string is described by
y(x,t) =0.00327sin(2.72t - 72.1x),

in which the numerical constants are in Sl units.

a) What is the amplitude of the wave?

Solution.

The equation of this wave is of the same form as Eq. (2.1.7),

y = Asin(wt - kx),
so we have a sinusoidal wave. By comparing the two equations, we see that the
amplitude is
A=0.00327m =3.27 mm.

b) What are the wavelength, period, and frequency of this wave?

Solution.

By comparing equations, we see that the angular wave number and angular
frequency are

k=721rad/m and w=2.72 rad/s.
Now we relate the wavelength I to the wave number k:

_2p__2p1ad 4 0g71m =8.71 cm.
k 72.1rad/m
Next, we relate T to w via equation:
N L PPN
w  2.72rad/s
and the frequency is
:£:i=0.433 Hz
T 231s
c) What is the speed of this wave?
Solution.
The speed of the wave is given by
y=W o 272005 e 7m =377 cmis.
k 72.1rad/m

Because the phase of wave contains the position variable x, the wave is
moving along the x axis. Also, the minus sing in front of the kx term indicates
that the wave is moving in the positive direction of the x axis. (Note that the
quantities calculated in (b) and (c) are independent of the amplitude of the wave).

d) What is the displacement y at x =22.5 cmand t =18.9 s?

Solution.

The Eq. (2.1.7) gives the displacement as a function of position x and time
t. Substituting the given values into the equation yields

y =0.00327sin(2.72718.9-72.1" 0.225) =1.92 mm.

Displacement is positive. (Don’t forget express the phase in radians before
calculating the sine function).
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Exercises

2.1.19. In Figure 2.1.14, five points are indicated on a snapshot of a
sinusoidal wave. What is the phase difference between point 1 and (a) point 2, (b)
point 3, (c) point 4, and (d) point 5? Answer in radians and in terms of the
wavelength of the wave. The snapshot shows a point of zero displacement at
X =0. In terms of the period T of the wave, when will (e) a peak and (f) the next
point of zero displacement reach x=07?

2.1.20. A sinusoidal wave train

Is described by the equation

y =(0.25m)sin(0.30x - 40.0t),
where x and y are in meters and t is
in seconds. Determine for this wave

Figure 2.1.14 Sinusoidal wave the (a) amplitude, (b) angular
frequency, (c) angular wave number, (d) wavelength, (e) wave speed, and (f)
direction of motion.

2.1.21. A transverse wave on a string is described by the expression

y = (0.12m)sin(px/8 + 4pt) .

Determine the transverse speed and acceleration of the string at t=2.0 s
for the point on the string located at x =1.60 m. (b) What are the wavelength,
period, and speed of propagation of this wave?

2.1.22. (a) Write the expression for y as a function of x and t for a

sinusoidal wave traveling along a rope in the negative x direction with the
following characteristics: A=8.0 cm, I =80.0 cm, f =3.0 Hz and y(0,t) =0 at

t =0. (b) Write the expression for y as a function of x and t for the wave in part
(@), assuming that y(x,0) =0 at the point x =10.0 cm.
2.1.23. Show that Eq. (2.1.7) may be written as:

y= —AsinZTp(x—vt).

2.1.24. The equation of a certain traveling transverse wave is

where x and y are in centimeters and t is in seconds. What are the wave’s
amplitude, wavelength, frequency, speed of propagation?
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2.1.4 Wave Equation

The wave function of any wave is a solution of the differential equation,
called wave equation. To obtain this equation, we take wave function (2.10) for a
plane wave and compare second partial derivative of the displacement x with
respect to coordinates x, y, z and second partial derivative with respect to
time t:

2 S
ﬂ—’z( = —k 2 Asin(wt - k¥ + F) = -k, 2x
X
2 S
X =k 2Asinqut - k¥ + ) = -k, %,
Ty
ﬂ—zz—k Asin(wt - kr+f)——k x
1z
2
ﬂ_x =-w Asm(wt kr +f) = ~wPx.
Mt
By summing the derivatives with respect to coordinates x, y, z we get:
ﬂ;( ﬂ;( ﬂ; ~(k? +ky 2 +k,2)x = kX
x= fy® 1z

After comparing this equation with the second time derivative and
substitute k2 /w? with 1/v2, we obtain

ﬂx ﬂx ﬂx lﬂ

— 2.1.13
W 2 22 I @)
The equation can be written in the form:
Dx = 1 1 = (2.1.14)
V2 ﬂt

P S
where D = st—=+t— is the so-called Laplas’s operator. This equation is

x= y" 1z

one of the most important equations in all physics. It is called the wave equation,
and whenever it appears, we can conclude immediately that the disturbance
described by the function x propagates as a traveling wave with a speed of wave

v. In a particular case, when wave propagates along x-axis, Eq. (2.1.14) reduces
to:

f°x _ 1 1%
‘Hx2 v2 ﬂt2 '

(2.1.15)
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This expression can be applied to various types of traveling waves. For
waves on strings, x represents the vertical displacement of the string. For sound
waves quantity x corresponds to displacement of air molecules from equilibrium
or variations in either pressure or density of the gas through which the sound
waves are propagating. In the case of electromagnetic waves x corresponds to
electric or magnetic field components.

Alternative Derivation from the Newton’s Second Law. Alternative way of
the wave equation derivation is the application of the Newton’s second law.
Suppose a traveling wave is propagating along a string that is under a tension T .
Let us consider one small string segment of length Dx (Figure 2.1.15). Ends of
the segment make small angles g5 and gg with the x axis. The net force acting
on the segment in the vertical direction is

AF, =Tsingg -Tsinga =T(singg -singp).

T As the angles are small, we can
use the small-angle approximation
sing » tang to express the net force as

AF, »T(tangg - tangp).

However, at A and B the
tangents of the angles are defined as the
slopes of the string segment at these
points. Because the slope of a curve is
given by Ty/x, we have

Figure 2.1.15 The segment of a string
under tension T . At points A and B the
slopes are given by tanga and tangg, éFy »Tac—+ -¢——+ (. (2.1.16)
respectively g Txog €MXoag
We now apply Newton's second law to the segment, with the mass of the
segment given by m = mDx, where m is mass per unit length.

ezTys aTfyos U

o £q2y 0
aFy=may = meG—Zz. (2.1.17)
§9t° 5
Combining Eq. (2.1.16) with Eq. (2.1.17), we obtain:
2q2,,0 4 . Lo
mDX ﬂ_y?: S@M -%EM H,or
8ﬂt25 sexog €TXxgajg
2q2y 0 _

T 8 ﬂtZ 5 Dx
The right side of this equation can be expressed in other form if we note
that the partial derivative of any function is defined as

E:Iim f(x+Dx) - f(x)
1 Dx®0 Dx :
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If we associate f(x+Dx) with (y/fx)g and f(x) with (Ty/9x) s, we see
that, in the limit Dx ® 0, Eq.(2.1.18) becomes

mEtye_ gty
TEM? 5 W
2 22y 0
ﬂ—;’:izc;ﬂ—g’j, (2.1.19)
X< vegqte
where
2 T
vi=_, (2.1.20)
m

This is the linear wave equation as it applies to waves on a string.

Now we show that the sinusoidal wave function (Eq.2.1.7) represents a
solution of the linear wave equation. If we take the sinusoidal wave function to be
of the form y(x,t) = Asin(wt - kx), then the appropriate derivatives are

f 2y
—=-w Asm(wt kx) , (2.1.21a)
ﬂt
1° y
k2 Asin(wt - kx). (2.1.21b)
G
Substituting these expressions into Eq. (2.1.19), we obtain
2
mw

- sin(wt - k) = —k2sin(wt - kx).

This equation must be true for all values of the variables x and t in order
for the sinusoidal wave function to be a solution of the wave equation. Both sides
of the equation depend on x and t through the same function sin(wt - kx).

Because this function divides out, we do indeed have an identity, provided that

2
mw
k2 ="

-
Using the relationship v =w/k in this expression, we see that
2
-
=Y

k2 m

V= \ﬁ (2.1.22)
m

In this section, we have shown that the sinusoidal wave function is a
solution of the linear wave equation (Eg. 2.1.14). Although we do not prove it
here, the linear wave equation is satisfied by any wave function having the form
x = f(xxvt). Furthermore, we have seen that the linear wave equation is a direct

consequence of the Newton's second law applied to any segment of the string.

and, finally
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Exercises

2.1.25. Show that the wave function y = e®*~V1) js a solution of the wave

equation (Eqg. 2.1.13), where b is a constant.
2.1.26. Show that the wave function y =In[b(x -vt)] is a solution to Eqg.

(2.1.13) where b is a constant.

2.1.27. Show that the function y(x,t) = x2 +v2t? s a solution to the wave

equation.
2.1.28. A wave on a string is described by the wave function
y =(0.120m)sin(0.50x - 20t)].
(a) Show that a particle in the string at x = 2.0 m executes simple harmonic
motion; (b) Determine the frequency of oscillation of this particular point.

2.1.5 Sound Waves

Sound waves are the most important example of longitudinal waves.
Seismic prospecting teams use such waves to probe Earth's crust for oil. Ships
carry sound-ranging gear (sonar) to detect underwater obstacles. Submarines use
sound waves to stalk other submarines, largely by listening for the characteristic
noises produced by the propulsion system. Sound waves can be used to explore
the soft tissues of the human body.

Sound waves are divided into three categories that cover different
frequency ranges:

1) Audible waves are waves that lie within the range of sensitivity of the
human ear. The ear is sensitive to range of sound frequencies from about 20 Hz to
about 20,000 Hz. The corresponding wavelength range is from about 17 m,
corresponding to a 20-Hz, to about 1.7 cm, corresponding to 20,000 Hz.

2) Infrasonic waves are waves having frequencies below the audible range.
Elephants can use infrasonic waves to communicate with each other even when
separated by many kilometers.

3) Ultrasonic waves are waves having frequencies above audible range.
You may have used “silent” whistle to retrieve your dog. The ultrasonic sound it
emits is easily heard by dogs, although humans cannot detect it at all. Dolphins
and bats use high-frequency sound waves for navigation. For bat a typical
frequency is 100,000 Hz; the corresponding wavelength in air is about 3.5 mm,
small enough to permit detection of flying insects useful as food. Ultrasonic
waves are also used in medical imaging.

Sound waves can travel through any material with a speed that depends on
the properties of the medium. As the waves travel, the particles in the medium
vibrate to produce changes in density and pressure along the direction of motion
of the wave. These changes result in a series of high-pressure and low-pressure
regions. If the source of the sound waves vibrates sinusoidally, the pressure
variations are also sinusoidal.
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In this discussion, we have ignored the molecular nature of a gas and have
treated it as a continuous medium. Actually, we know that a gas is composed of
molecules in random motion, separated by distances that are large compared with
their diameters. The vibrations that constitute a wave in a gas are superposed on
the random thermal motion. At atmospheric pressure, a molecule travels an

average distance of about 107 cm between collisions while the displacement
amplitude of a faint sound may be only a few ten-thousandths of this amount.

The simplest sound waves are sinusoidal waves with definite frequency,
amplitude and wavelength. When such a wave arrives at the ear, the air particles
at the eardrum vibrate with definite frequency and amplitude. This vibration may
also be described in terms of the variation of air pressure at the same point. The
pressure fluctuates above and below atmospheric pressure with a sinusoidal
variation having the same frequency as the motions of the air particles.

A sinusoidal sound wave in an elastic medium is described by a wave
function of the form:

y = Asin(wt - kx),
where y is the displacement from equilibrium of a point in the medium, and the

amplitude A is, as usual, the maximum displacement from equilibrium. From a
practical standpoint, it is nearly always easier to measure the pressure variations
in a sound wave than to measure the displacements, so it is worthwhile to develop
a relation between the two. Let p be the instantaneous pressure fluctuation at any
point; that is, the amount by which the pressure differs from normal atmospheric
pressure. If the displacements of two neighboring points x and x+Dx are the
same, the air between these points is neither compressed nor expanded, there is no
volume change, and consequently p =0. Only when y varies from one point to a
neighboring one, there is a change of volume and, therefore, of pressure.

The fractional volume change DV /V in a volume element near point x
turns out to be given simply by fy/1x, which is the rate of change of y with x
as we go from one point to a neighboring point. To see why this is so, consider an
imaginary cylinder of air, (as in Figure 2.1.16), with the cross-sectional area A
and the axis along the direction of propagation. The grey cylinder shows the
undisplaced position, and the dashed lines show the displaced position. When no
sound disturbance is present, the cylinder's length is Dx and its volume is
V = ADx. When a wave is present, the end of the cylinder (initially at x) is
displaced a distance y; = y(x,t), and the end initially at x+ Dx is displaced a

distance y, = y(x + Dx,t). The change in volume DV of this element is
DV = A(y2 - y1) = ALy(x + Dx,t) - y(x,t)],
and in the limit as Dx ® 0, the fractional change in volume DV /V is given by
DV _ y(x+Dx,t) - y(x,t) _ Ty
Vv Dx x
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y1 = Y(x,t) yo = y(x+Dx,t)

AX

X X + AX
Figure 2.1.16 A cylindrical volume of gas with
the cross-sectional area A. The length in the
undisplaced position is DX. During wave
propagation along the axis, the left end is

displaced to the right a distance Yp, and the
right end is displaced a different distance Y5.

Now from the definition of the
bulk modulus B, p=-BDV/V, we

find that

2Ty o
= -B¢——= (2.1.23)
gﬂxﬂ
The negative sign  arises

because, when ly/qx is positive, the

displacement is greater at x + Dx than
at x corresponding to an increase in
volume and a decrease in pressure. For
the sinusoidal wave of Eq. (2.1.7), we
find
p = BkAcos(wt - kx). (2.1.24)
This expression shows that the
quantity BKA represents the maximum
pressure variation. This maximum is

The resulting change in volume is called the pressure amplitude and is
A(y2 - y1) denoted by prax. Thus,
Pmax = BKA. (2.1.25)

The pressure amplitude is directly proportional to the displacement
amplitude A, as might be expected, and it also depends on wavelength. Waves of
shorter wavelength (larger k) have greater pressure variations for a given
amplitude because the maxima and minima are squeezed closer together.

Ultrasound Waves

Ultrasonics cover a frequency range from 20 000 Hz upwards. Compared
with sonics (i.e. sound waves we can hear), ultrasonics have shorter wavelengths
because their frequencies are higher.

Ultrasonics is widely used. For example, ultrasonics of frequency 40 kHz is
used for industrial cleaning. In air where the speed of sound is approximately 340
m/s, the wavelength of these ultrasonic waves is 8.5 mm. By comparison, sound
waves of frequency 1000 Hz have in air wavelength of 0.33 m. Equipment to be
cleaned by ultrasonics is placed in a tank of water which ultrasonics pass through.
The ultrasonic waves pass through the water, agitating and loosening particles of
dirt and grease.

Another use of ultrasonics is in medical imaging. For example, they are
used in prenatal care to give an image of a baby inside the womb (Figure 2.1.17).

Ultrasonic scans do not harm the baby, and are much safer than X-ray scans
in this situation.
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To produce the ultrasonic
waves, an ultrasonic transducer is
used. (Figure 2.1.18).

It converts electrical energy into
ultrasonic energy by applying an
alternating voltage across a quartz
crystal. Quartz is used because it
changes length slightly when a voltage
is applied across it. So an alternating
voltage makes the quartz vibrate. By
making the applied frequency equal to
the natural frequency of vibration of
the crystal, the vibrations become very
large: the crystal resonates. So, the
crystal produces ultrasonic waves of
frequency equal to its natural
frequency. The frequency is in the
megahertz (MHz) range, so the
ultrasonics passes directly into the
body when the transducer is placed on  Figure 2.1.17 Ultrasonic imaging of a baby in
the body surface. Inside the body, the womb
tissue boundaries reflect part of the incoming ultrasonic energy, and the
transducer can be used to detect the reflected ultrasonics. The transducer converts
ultrasonic energy back into the electrical energy, thus enabling an image at an
oscilloscope to be built up showing the internal boundaries.

For medical imaging purposes, Coaxial

ultrasonics is used at frequencies cable Srur;\[;zl
between about 1 and 10 MHz. This t y
frequency  range  represents a Plastic

compromise between lower
frequencies which would diffract and
spread out too much and higher
frequencies which would be absorbed too easily by tissues. The higher the
frequency the smaller the wavelength and, hence, the greater the detail of the
image. Since the frequency used depends on the depth and density of the organ to
be imaged, low density organs near the surface (e.g. the eye) can be imaged in
more detail than higher density internal structures (e.g. a baby in the womb).
Producing ultrasonics. An ultrasonic probe contains a piezoelectric
transducer in the shape of disc which vibrates when an alternating voltage is
applied across its surfaces (Figure 2.1.19). When the applied frequency is equal to
the natural frequency of vibration of the transducer disc, the disc vibrates at

Earthed metal case Absorder  COVer
Figure 2.1.18 An ultrasonic transducer
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resonance and creates sound waves at the same frequency as the alternating
voltage in the surrounding medium. The thickness of the disc determines its
resonant frequency on the same principle as the resonance in a pipe. An absorber
block behind the disc prevents ultrasonic waves created at two surfaces of the disk
canceling each other. Normaly, the alternating voltage is supplied in pulses so the
disc produces ultrasonic pulses. The backing block is made of epoxy resin which
damps the disc vibrations rapidly at the end of each pulse before the next pulse is
produced.

An ultrasonic scanning system. The probe is connected to a control system
which includes a visual display unit. In operation, the probe is held in contact
with the body surface via a gel so that ultrasonic pulses are directed into the body.
These pulses reflect at the surface of internal organs and at tissue boundaries and
are detected by the transducer, which acts as a receiver when it is not producing
pulses.

Piezoelectric disc

\
> f JJ ‘ Protective
9 / / ™ cover fixed
V \ to disc

Insulated wires Absorber block
(a) Probe construction

Electrical pulses

—WW VW

M)

Probe Ultrasonic pulses

(b) Ultrasonic pulses
Figure 2.1.19 An ultrasonic probe

The speed of ultrasound in tissue is about 1500 m/s so it takes an ultrasonic
pulse less than 1 millisecond to travel across the body and back. In operation, the
probe must therefore produce pulses at a rate of no more than one per millisecond
to allow received pulses to return before the next pulse is transmitted. Also, the
pulses must last no more than a few microseconds to ensure the end of a pulse is
clearning the probe before the reflection of the front end returns.



79

Each boundary in the body is a partial reflector of ultrasonics, so each pulse
from the transducer produces a series of reflected pulses which return to the
transducer. These reflected pulses are received by the transducer when it is in the
“receiver” mode to produce a pulsed signal from the transducer. This signal is
amplified and displayed (the A-scan) or used to modulate the brightness of an
image built up on a VDU (the B-scan) as the probe is moved across the body
surface.

In the A-scan system, the spacing of each reflected pulse at the oscilloscope
screen from the transmitted pulse is proportional to the time taken by each
ultrasonic pulse to travel from the probe to the reflecting boundary and return
back (Figure 2.1.20). The A-scan system is used when precise locations are to be
measured.

uscliioscope
f \ A Pulse
generator
T e— -
? Y Time base

trigger
Amplifier
Transducer
probe
Cross-section O

of patient

O

Figure 2.1.20 The A-scan system

In the B-scan system position sensors attached to the probe provide signals
to control the direction of the electron beam in the VDU as it moves across the
screen. Received pulses control the beam current. The B-scan system therefore
gives a two-dimensional image (Figure 2.1.21).

Reflection of ultrasound. The intensity of an ultrasonics beam reflected at a
boundary between two substances is given by the equation

2
| = (Fava - i)™,
2
(ravp - vp)




80

Brightness
- signal input
Position terminal
signal input
terminals

Cross-section
of patient

Figure 2.1.21 The B-scan system

Transducer probe

where g is the incident intensity, r;
and ro are the densities of the incident

substance and  the  transmitted
substance, v; and v, are the speeds of

ultrasonics in the two substances.
The reflection coefficient R of a
boundary is defined as 1/1y. The

acoustic impedance of a substance is
defined as rv.

Typical values of densities,
speeds, and acoustic impedances, for
different types of tissue in the body, are
given in Table 2.1.1. These values may
be used to calculate the reflection
coefficient ~ for  different  tissue
boundaries. Several implications follow
from these calculations:

— Almost 100% reflection occurs
at an air-skin boundary. This is why the

probe is applied to the body via a gel or a water bag so that most of the ultrasound
energy enters the body.

— Ultrasonics reflects at the boundaries between different soft tissues in the
body. Hence an ultrasonic imaging system can detect and display such boundaries
unlike an X-ray imaging system which cannot. Note that the strength of a
reflected pulse depends on the distance travelled by the ultrasonic pulse in the
body as well as the reflection coefficient.

Table 2.1.1 Typical values for densities, speeds and acoustic impedances for different
types of tissue in the body

Substance type Speed, m 51 Density, k gm'3 Acoustic
impedance, kg m st

Air 1.2 340 410

Water 1000 1500 15108
Soft tissue 1050 1550 16”108
Fat 900 1450 137108
Muscle 1080 1600 177108
Bone 1900 4000 787108




81

Example 2.1.4. Measurement of sound waves show that maximum
pressure variations in the loudest sound, that the ear can tolerate without pain are
of the order of 30 Pa (above and below atmospheric pressure, which is about
100,000 Pa). Find the corresponding maximum displacement if the frequency is
1000 Hz and v = 350 m/s.

Solution.

We have

w = (2p)(L000Hz) = 628357 and
w6283 _ -1

For air the adiabatic bulk modulus is
B =gp = (1.4)(1.01" 10°Pa) =1.42" 10° Pa.
From Eq. (2.1.25) we find
A= Pmax (30Pa) =0.0118 mm.

Bk  (1.42710°Pa)(18m™)
Thus, the displacement amplitude of even the loudest sound is extremely
small. The maximum pressure variation in the faintest audible sound of frequency

1000 Hz is only about 37107° Pa. The corresponding displacement amplitude is
about 6~ 1073 cm. Thus, the ear is an extremely sensitive organ.

Exercises

Note: The equilibrium density of air is r=1.29 kg/m3; the speed of sound
inair is v =343 m/s. Pressure variations DP are measured relative to atmospheric

pressure, 1.013710° Pa.

2.1.29. In air a sound wave has pressure amplitude equal to 471073 Pa.
Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.
2.1.30. A sinusoidal sound wave is described by the displacement

y(x,t) = (2.0 pm)cos[(15.7m 1) - (85857 H)t].
(@) Find the amplitude, wavelength, and speed of this wave; (b) Determine the
instantaneous displacement of the molecules at the position x =0.05 m at t =3
ms; (c) Determine the maximum speed of a molecules oscillatory motion.
2.1.31. As a sound wave travels through the air, it produces pressure
variations (above and Dbelow atmospheric pressure) that are given by
DP =1.27sin(px - 340pt) in Sl units. Find (a) the amplitude of the pressure

variations; (b) the frequency of the sound wave; (c) its wavelength in air, and (d)
its speed.
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2.1.32. Write an expression that describes the pressure variation as a
function of position and time for a sinusoidal sound wave in air, if 1=0.100 m
and DP =0.20 Pa.

2.1.33. Write the function that describes the displacement wave
corresponding to the pressure wave in Ex. 2.32.

2.1.34. In a traveling sound wave the pressure is given by the equation

Dp = (L5 Pa)sin p[(0.9m 1) - (31557 H)t].
Find (a) the frequency; (b) the pressure amplitude; (c) the wavelength; and (d) the

speed of wave.
2.1.35. Calculate the pressure amplitude of a 2.0-kHz sound wave in air if

the displacement amplitude is equal to 2~ 108 m.

2.1.36. (1) Calculate the wavelength of ultrasonics of frequency 2 MHz in
(@) air, (b) water. The speed of sound in air = 340 m/s; in water = 1500 m/s.
(Ans. (a) 0.17 mm; (b) 0.75 mm.)

(2) Calculate the reflection coefficient at (a) an air-tissue boundary, (b) a
water-tissue boundary, (c) a boundary between fat and tissue. Use the data from
Table 2.1. (Ans. (a) 0.995; (b) 0.04; (c) 0.10.)

(3) The diagram shows an A-scan trace. (a) Explain why there are several
pulses on the display after each transmitted pulse. (b) Calculate the distance from
the probe to the boundary that caused pulse X on the display. See Table 2.1.1 for
the speed of sound in the body. (Ans. 0.18 m)

Transmitted 2.1.37. (1) With the aid of a
pulse _ diagram (Figure 2.1.22), describe and
_Ht-cmagrid  explain  the construction of an

ultrasonic transducer.
f\ ) (2) (@) With the aid of a

A
J\ J”/sTg?thisT:Je diagram, describe an ultrasonic B-scan
system. (b) Why is it necessary to use
a gel where the ultrasonic probe is

- ied?
Y@ QT o | . Time applied? (c) What advantage does an

base ultrasonic scanner have in medicine in

| | trigger  comparison with X-ray imaging?
Y-gain Time base 2.1.38. Bats can ascertain
input control set distances, directions, and size of the

-1
at 0.1 ms cm . .
Figure 2.1.22. The diagram shows an A-scan obstacle without any €yes. Explaln,

trace why.
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2.1.6 Phase Speed and Group Speed of a Traveling Wave

Figure 2.1.23 shows two snapshots of the wave taken a small time interval
Dt apart. The wave is traveling in the positive x-direction (to the right in the
Figure 2.1.23), the entire wave pattern moves a distance Dx in the direction
during the time interval Dt. The ratio Dx/Dt (or, in the differential limit dx/dt),
Is the wave speed v. How can we find it’s value?

As the wave in the Figure2.1.23 v
moves, each point of the moving wave
form (such as the point A marked on a A ﬁ
peak) retains its displacement y. (Points

on the string do not retain their — X
displacement, but points on the wave é
form do). If the point A retains its
dlsplacements as It. moves, the phase Figure 2.1.23 Two snapshots of the wave
which ensures the displacement must be _ "t =0 and then at t = Dt. As the
constant. wave moves to the right at velocity V, the
kx - wt = const (2.1.26) entire curve shifts a distance DX during
Note that although this argument Dt . Point A “rides” with the wave form but
is constant, both x and t are changing. the string elements move only up and down
In fact, as t increases, x must as well, to keep the argument constant. This
confirms that the wave pattern is moving in the positive x -direction,
If we take the derivative dx/dt, we obtain the speed with which the given
phase propagates. This speed is known as the phase speed of wave.

v
—

Wave at t = At
Wave att =0

k—-w=0, or —=v=—. (2.1.27)
dt dt K
Using k =2p /I, we can rewrite the phase speed of the wave as
v=o oy (2.1.28)
k T

The equation v=1I/T tells us that the phase speed of a wave is one
wavelength per period; the wave moves a distance of one wavelength in one
period of oscillation.

When we deal with a packet of waves with different wavelength and so-
called dispersion medium (that is, medium in which speed of wave propagation
depends on its wavelength), it is useful, as Rayleigh showed, to introduce
additional speed, a group speed. We shell not discuss the dispersion phenomena
in this book; we only mention that the group speed u is defined as

dv

u=v-I1—. 2.1.29
T, ( )
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From Eq. (2.1.29), we can see, that group speed is greater than phase speed

(u>v)if % <0 orless(u<v)if g—\; > 0. Hence, group speed can be smaller or
greater than phase speed. When % >0, i.e. when waves with longer wavelength

propagate faster, we speak about normal dispersion; when g—\;<0, I.e. when
waves with shorter wavelength propagate faster, dispersion is called abnormal.
When there is no dispersion, % =0, all waves of the packet propagate with equal

speeds, and then the phase and the group speeds are equal.
Exercises

2.1.39. A wave has an angular frequency of p rad/s and a wavelength of
1.80 m. Calculate (a) the angular wave number and (b) the speed of the wave.

2.1.40. The ocean floor is underlain by a layer of basalt that constitutes the
crust, or uppermost layer, of the Earth in that region. Below the crust is found
denser peridotite rock, which forms the Earth's mantle. The boundary between
these two layers is called the Mohorovicic discontinuity ("Moho™" for short). If an
explosive charge is set off at the surface of the basalt, it generates a seismic wave
that is reflected back out at the Moho. If the speed of the wave in basalt is 6.50
km/s and the two-way travel time is 1.85 s, what is the thickness of this oceanic
crust?

2.1.41. A traveling wave is represented by the equation
y =0.25sin(6000t - 20x). (a) Calculate the wave frequency, wavelength, and

speed of the wave. (b) Write the equation to represent a similar wave of twice the
amplitude and frequency and traveling with the same speed but in the opposite
direction.

2.1.42. The wave in a ripple tank is represented by the equation
y =0.6sin(20t - 4x), where x and y are in cm and t in second. Calculate the

speed of the wave. Write an equation to represent a wave in the ripple tank which
has half the amplitude and twice the frequency but travels with the same speed.

2.1.7 Speed of a Transverse Wave on Strings

How is the speed of propagation v of a transverse wave on a string related
to the mechanical properties of the system? The relevant physical quantities are
the tension in the string and it’s mass per unit length. Intuition suggests that the
speed should grow with the increase of tension, and should decrease with the
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growing mass. We now develop this relationship by two different methods. The
first is simple and considers a specific type of waveform; the second is more
general but also more formal.

For our first development, we consider a perfectly flexible string, as shown
in Figure 2.1.24 having linear mass density (mass per unit length) m and
stretched with the tension T . Initially the string is at rest. Attime t =0, a constant

transverse force F is applied at the left end of the string. We might expect that
the end would move with the constant acceleration; this would certainly occur if
the force were applied to a point mass. But here the effect of the force is to set
successively more and more mass in motion. The wave travels with constant
speed, so the division point P between moving and nonmoving portions also
travels with definite speed. Hence, the total mass in motion is proportional to the
time the force actied and, thus, to the impulse of the force. This, in turn, is equal
to the total momentum mu of the moving part of the string. The total momentum
thus must increase proportionately with time, so the change of momentum must
be associated entirely with the increasing amount of mass in motion, not with the
increasing velocity of an individual mass element. Force is the rate of change of
momentum mu, and mu changes because m changes, not u. Hence, the end of
the string moves upward with the constant velocity u.

Figure 2.1.24 Propagation of transverse disturbance in a string

Figure 2.1.24 shows the shape of the string after the time t has elapsed. All
particles of the string to the left of the point P move upward with the speed u,
while all particles to the right of the point P are still at rest. The boundary point
P between the moving and the stationary portions is traveling to the right with
the speed of propagation v. The left end of the string has moved up a distance ut,
and the boundary point P has advanced a distance vt along the string. .

The tension at the left end of the string is the vector sum of the forces T

and F . As no motion occurs in the direction along the length of the string, there
IS no unbalanced horizontal force, so T, the magnitude of the horizontal
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component, does not change when the string is displaced. As a result of the
increased tension, the string clearly stretched somewhat. It can be shown that, for
small displacement, the amount of stretch is approximately proportional to the
increase in tension, as we would expect from Hook’s law.

We can obtain an expression for the speed v of propagation by applying
the impulse-momentum relation to the portion of the string in motion at time t:
that is the darkly shaded portion in Figure 2.1.24. We set the transverse impulse
(transverse forse” time) equal to the change of transverse momentum of the

moving portion (mass ~ transverse velocity). The impulse of the transverse force

F intime t is Ft. By similar triangles,
F_ut g4
T vt Vv

: u
Hence, transverse impulse Ft =T —t.
v

The mass of the moving portion of the string is the product of mass per unit
length m and the length vt. (In its displaced position, the section of string is
stretched, making its mass per unit length somewhat less than m and its length
somewhat greater than vt. But the mass of the section is still nvt, the same as in
the undisplaced position.) Hence, transverse momentum

mu = nvtu.

Note again that the momentum increases with time not because the mass
moves faster, but because more mass is brought into motion. Nevertheless, the
impulse of the force F is still equal to the total change in momentum of the
system. Applying this relation, we obtain

T Et = mtu,
v
and therefore we obtain the same equation as Eq. (2.1.21)
V= T : (transverse wave)
m

Hence the speed of propagation of a transverse pulse in a string depends
only on the tension (a force) and the mass per unit length. Although this
calculation of the wave speed considered only a very special kind of pulse, it can
be shown that any shape of wave disturbance can be considered as a series of
pulses with different rates of transverse displacement. Thus, although derived for
a special case, Eq. (2.1.21) is valid for any transverse wave motion on a string,
including, in particular, the sinusoidal and other periodic waves.

Here is an alternative derivation of Eq. (2.1.21). Instead of the sinusoidal
wave, let us consider a single symmetrical pulse such as that of Figure 2.1.25,
moving from left to right along the string with speed v. For convenience, we
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choose a reference frame in which the pulse remains stationary; that is, we run
along with the pulse, keeping it constantly in view. In this frame, the string
appears to move past us, from right to left with speed v.

Con3|d_er a small string element of - Al -
length DI within the pulse, forming an T

: : T
arc of a circle of radius R and 0
subtending an angle 2g at the center of 0
that circle. A force T with a magnitude <—— R B
v

equal to the tension in the string pulls
tangentially on this element at each end.
The horizontal components of these

Figure 2.1.25 A symmetric pulse, viewed

forces cancel, but the vertical R .
from a reference frame in which the pulse is

components add to form a radial stationary and the string appears to move
restoring force F: right to left with speed V
F =2(Tsing) » T(2q) =T%I, (2.1.24)
where we approximated sing as g for small angles g in Figure 2.1.25. From that
figure, we have also used 2g =DI/R.
The mass of the element is given by

Dm = mDlI, (2.1.25)
where m is the string mass linear density.

At the moment shown in Figure 2.1.25, the string element DI is moving in
an arc of a circle. Thus, it has a centripetal acceleration toward the center of that
circle, given by

v2
= R (2.1.26)
Egs. (2.1.24), (2.1.25), and (2.1.26) contains the elements of Newton’s

second law. Combining them in the form
force = mass~ acceleration

we get
TDI v2
—— = (mDl)—.
R (mol) R
After solving this equation for the speed v,
V= T : (2.1.27)
m
Example 2.1.5

A uniform cord has a mass of 0.30 kg and a length of 6.0 m (Figure 2.1.26).
The cord passes over a pulley and supports a 2.0-kg object. Find the speed of a
pulse traveling along this cord.
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5.0 m Solution.
The tension T in the cord is

2)—5— equal to the weight of the suspended

‘

Ny

1.0m  2.0-kg mass:
S mg = (2.0kg)(9.8 m/s%) =19.6 N.
0K (This calculation of the tension
- K8 neglects the small mass of the cord.

Fig. 2.1.26. The tension T in the cord is Strictly speaking, the cord can never be

maintained by the suspended object. The .
speed of any wave traveling along the cord is exaCtIy horizontal, and therefore, the

_ _ tension is not uniform.) The mass per
given by v =T /m unit length m, of the cord is
m="=039K3 _ 4 550 kgim.
I 6.0m

Therefore, the wave speed is

V= 1 = ﬂ =19.8m/s.
m 0.050kg/m

Exercises

2.1.43. A transverse traveling wave on a taut wire has an amplitude of
0.20 mm and a frequency of 500 Hz. It travels with a speed of 196 m/s. (a) Write
an equation in Sl units of the form y = Asin(kx - wt)] for this wave; (b) The mass

per unit length of this wire is 4.10 g/m. Find the tension in the wire.

2.1.44. A phone cord is 4.0 m long and of mass of 0.20 kg. A transverse
wave pulse is produced by plucking one end of the taut cord. The pulse makes
four trips down along the cord and returnes in 0.80 s. What is the tension in the
cord?

2.1.45. Transverse waves with a speed of 50.0 m/s are to be produced in a
taut string. A 5.0-m length of string with a total mass of 0.06 kg is used. What is
the required tension?

2.1.46. A piano string having a mass per unit length 5.00° 2073 kg/m is
under the tension of 1 350 N. Find the speed with which a wave travels on this
string.

2.1.47. A sinusoidal wave of wavelength 2 m and amplitude 0.1 m travels
on a string with the speed of 1 m/s to the right. Initially, the left end of the string
Is at the origin. Find (a) the frequency and the angular frequency; (b) the angular
wave number; and (c) the wave function for this wave. Determine the equation of
motion for (d) the left end of the string and (e) the point on the string at x =1.50
m to the right of the left end. (f) What is the maximum speed of any point on the
string?
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2.1.48. The linear density of the string is 1.6~ 1074 kg/m. A tranverse wave
on the string is described by the equation
y = 0.021sin[2x + 30t].

What is (a) the wave speed and (b) the tention in the string?
2.1.8 Speed of a Longitudinal Wave in Solids

To obtain the expression for speed of longitudinal wave in solids we
consider a medium with the plane sinusoidal wave propagating along x-axis.
Let’s choose the cylindrical volume element with the cross section A and the
height Dx in the medium (Figure 2.1.27). The plane wave, as usual, is described
by the equation

X = Xmax cos(mt - kx + f),
where x is the displacement of particle.

The graph of this function is represented in Figure 2.1.28. If the base of the
cylinder with the coordinate x has displacement x in a certain moment of time,

then the base with the coordinate x + Dx has the displacement x + Dx . Hence, the
volume becomes deformed — it obtains the elongation Dx . We call the ratio of
variation of the displacement Dx to the initial separation Dx the percent
elongation Dx/Dx. Quantity <e> =Dx/Dx determines the average relative
elongation of the cylinder. As x changes with x nonlinearly, real deformation in

the different cross-section of the cylinder would not be the same. To obtain
deformation e in a particular cross-section x, we use approximation Dx ® 0, i.e.
take derivative

X X+ AX rE dx _

s | \ dx _,
o (x)| | Lo (X + AX) &<
~~— ™ dx X
! | >0
| o ]
E ‘ _X:O_/

e <—>‘{ dX
§ C+ACS
Figure 2.1.27 Relative deformation in Figure 2.1.28 Deformation of cylinder
different cross—section when longitudinal wave is propagating
through it
_Tx
x
We use the partial derivative because x depends not only on x, buton t as
X : . .
well. When e:ﬂ—>0, the distance between points increases.This situation

X
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corresponds to elongation of a medium. When e = X <0, the distance between

X
points decreases and such kind of e describes the compression of a medium. As
X = Xmax Cos(Wt - kx + F), the deformation is:

e= 1111—)( = ﬂi[xmax cos(Wmt - kx + F)] = kxax SIN(WMt - kx + F).
X x
It is clear from the above equation, that deformation has its maximum value
_ Tix

in the same points where speed v = ﬁ = WXmax SIN(wt - kx + F) reaches its

maximum, i.e. in points of equilibrium.
To obtain the speed of wave, recall Hook’s law for deformation of the
elastic medium, according to which the elastic force is proportional to the

deformation of medium: F :iageﬂ_ng where a is the elastic coefficient. For

aeftg
. . - 1 :
cylindrical element this coefficient equals a=E where E is the Young’s

modulus.
Let’s return to the cylindrical volume with a longitudinal wave of
Figure 2.1.27 and consider forces exerted by the cylinder. The force exerted by

the left base of cylinder is F = AE%?T—XQ , and the force at the right base is
e X oy
F = AEgﬂ—XQ . As forces F and F, are directed in opposite directions, the
e X ay+Dx

resulting force is F = F - F,. Now we are ready to write the equation of motion
for cylinder. Let’s take the small element Dx in the cylinder so small that

projections of acceleration for all its points are the same and equal to 2x 19t2.
The mass of the cylinder we can be express as rADx where r is the density of
the nondeformed medium, the resulting force is:
Fo= AEGIX0 _glxg o
a6 X ayepx € Moy
As Dx is small, we assume that

gﬂx bX+DX eﬂx éx
Hence, for the resultant force, we obtain:
2
F, = AE ﬂ—)z( Dx.
X

axo  _elxg +§ﬂ2X
¢
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Now we substitute expressions, obtained for acceleration, mass, and force
into Newton’s second law:
2 2
rADxﬂ—;( = AEﬂ—)Z(Dx.
it fx
Dividing out ADx, we obtain the wave equation:
1°x _ ri°x
Comparing Egs. (2.1.28) and (2.1.13), we conclude that the phase speed of
a longitudinal wave in solids is

(2.1.28)

v=|E. (2.1.29)

r

It can be shown in the similar way that the speed of the transverse wave in
solids is

(2.1.30)

where G is the modulus of rigidity.

Typical value for the speed of sound in solids is much greater than the
speed of sound in gases, as Table 2.1.2 shows. This difference in speeds makes
sense because the molecules of a solid are bound together into a much more rigid
structure than those in a gas and hence, respond more rapidly to a disturbance.

Table 2.1.2 Speeds of sound in various media

Medium Speed of sound, u (m/s)
Gases
Hydrogen (0° C) 1286
Helium (0° C) 972
Air (20°C) 343
Air (0°C) 331
Oxygen (0°C) 317
Liquids at 25°C
Glycerol 1984
Sea water 1533
Water 1493
Mercury 1450
Kerosene 1324
Methyl alcohol 1143
Carbon tetrachloride 926
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Table 2.1.2 (continued)

Medium Speed of sound, u (m/s)
Solids

Diamond 12000
Pyrex glass 5640
Iron 5130
Aluminum 5100
Brass 4700
Copper 3560
Gold 3240
Lucite 2680
Lead 1322
Rubber 1600

In solids, a combination of longitudinal waves can propagate, for example
during earthquakes. The three-dimensional waves that travel from the point under
the Earth surface at which an earthquake occurs are of both types, transverse and
longitudinal. Longitudinal waves are faster of the two, and travel at speeds in the
range of 7 to 8 km/s near the surface. These are called P waves with "P"
standing for primary because they travel faster than the transverse waves and
arrive at a seismograph first. The slower transverse waves called S waves (with
"S" standing for secondary), travel through the Earth at 4 to 5 km/s near the
surface. By recording the time interval between the arrivals of these two sets of
waves at a seismograph, the distance from the seismograph to the point of origin
of the waves can be determined. A single measurement establishes an imaginary
sphere centred at the seismograph, with the radius of the sphere determined by the
difference in arrival times of the P and S waves. The origin of the waves is
located somewhere on that sphere. Imaginary spheres from three or more
monitoring stations located far apart intersect at one region of the Earth, and this
region is where the earthquake occurred.

Example 2.1.6

If a solid bar is struck at one end with a hammer, a longitudinal pulse
propagates down the bar with the speed v=.,E/r where E is the Young's

modulus for the material, E=7"10 N/m? for aluminum. Find the speed of
sound in an aluminum bar.
Solution.

Density of aluminum r=2.7" 10° kg/m?®. Therefore,
- 1al0

E_ A =5.1 km/s.

r

V =
2.7710°
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Exercises

2.1.49. A wire of density 9 gm/cm? is stretched between two damps 1 m
apart while subjected to an extension of 0.05 cm. What is the lowest frequency of

vibrations in the wire? Assume Young's modulus E=9"10" N/m?.

(Ans. 35.3 Hz.)

2.1.50. Earthquakes generate sound waves inside Earth. Unlike a gas, Earth
can experience both transverse (S) and longitudinal (P) sound waves. Typically,
the speed of S waves is about 4.5 km/s, and that of P waves 8.0 km/s. A
seismograph records P and S waves from an earthquake. The first P waves arrive
3.0 min before the first S waves (Figure 2.29). Assuming the waves travel in a
straight line, how far away does the earthquake occur?

P waves S wawes

| |
........ ﬂﬂ“ﬂﬂﬂﬂh AAA A \nﬂnﬂﬂhﬂ
WAWWW UJVUVVVVVVV UUUVVVVV

o

Displacement of
seismograph recording pen

1 2 3 4 5 6
Time (min)
Figure 2.1.29 The first P waves arrive 3.0 min before the first S waves

2.1.51. The tensile stress in a thick copper bar is 99.5% of its elastic

breaking point of 13~ 10'% N/m?. A 500-Hz sound wave is transmitted through

the material. (a) What displacement amplitude will cause the bar to break? (b)
What is the maximum speed of the particles at this moment?

2.1.52. The speed of sound in a certain metal is v. One end of a long pipe
of this metal of length L is struck a hard blow. A listener at the other end hears
two sounds, one from the wave that travels along the pipe and the other from the
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wave that travels through the air. (a) If v, is the speed of sound in air, what time

interval t elapses between the arrivals of the two sounds? (b) Suppose that t =1 s
and the metal is steel. Find the length L.

2.1.53. A steel pipe 100 m long is struck at one end. A person at the other
end hears two sounds as a result of two longitudinal waves, one traveling in the
metal pipe and the other traveling in the air. What is the time interval between the

two sounds? Take Young's modulus of steel to be 2~ 10* Pa, the density of steel
to be 7800 kg/m3, and the speed of sound in air to be 345 m/s.

2.1.9 Speed of a Longitudinal Wave in Fluids

Propagation speed of longitudinal as well as transverse waves is determined
by the mechanical properties of the medium, and we can derive relation for speed
of longitudinal waves, analogous to Eq. (2.1.21) for transverse waves on a string.
Here is an example of such a derivation for longitudinal waves in a liquid in a
tube.

Figure 2.1.30 shows a fluid with the density r in a tube with the cross-

sectional area A. In the equilibrium state, the fluid is under a uniform pressure p.

In Figure 2.1.30a, the fluid is at rest. At time t =0, we start the piston at the left

end moving toward the right with the constant speed u. This initiates a wave

motion that travels to the right along the length of the tube in which successive

sections of fluid begin to move and become compressed at successively later

times.

DA Figure 2.1.30b shows the fluid

—»1 after a time t has elapsed. All portions

of fluid to the left of the point P are

(a) moving with the speed u, and all

v portions to the right of P are still at

- >~ rest. The boundary between the

ut moving and stationary portions travels

to the right with the speed equal to the

(p+Apzﬁi ul\_/I?vuiﬁ jﬁ Atrest Speed of propagation v. At time t, the

u=u— [P piston has moved a distance ut, and

the boundary has advanced a distance

(b) vt. As with a transverse disturbance in

a string, we can compute the speed of

Figure 2.1.30 Propagation of a longitudinal propagation from the impu|se_

disturbance in a fluid confined in a tube momentum theorem.

The quantity of fluid set in motion at time t is the amount that originally

occupied a volume of length vt and of cross-sectional area A. The mass of this
fluid is therefore, pvtA, and the longitudinal momentum it has acquired is

Longitudinal momentum = pvtAu.
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Next we compute the increase of pressure, Dp, in the moving fluid. The

original volume of the moving fluid, Avt, has decreased by the amount Aut.
From the definition of bulk modulus B,
Change in pressure Dp

~ Fractional change in volume ~ Aut/Avt’

Therefore,
Dp=BY.
Y

In the moving fluid, the pressure is p + Dp, and the force exerted on it by
the piston is (p + Dp)A. The net force on the moving fluid (see Figure 2.1.30) is
ADp, and the longitudinal impulse is

Longitudinal impulse = DpAt = BY At.
'

Applying the impulse-momentum theorem, we find

BY At = rvtAu.
V

Hence,

V= [— (longitudinal wave). (2.1.31)
r

Therefore, the speed of propagation of a longitudinal pulse in a fluid
depends only on the bulk modulus and the density of the medium. The form of
this relation is similar to that of Eq. (2.1.21); in both cases, the numerator is a
quantity characterizing the strength of the restoring force, and the denominator is
a quantity describing the inertial properties of the medium.

Example 2.1.6

(a) Find the speed of sound in water which has a bulk modulus of 2.1° 10°

N/m? and a density of 10° kg/m®,
Solution.
Using Eq. (2.1.31), we find that

[6 17109
V= \/E = 2.1 go =1.4 km/s.
r 10

In general, sound waves travel slowlier in liquids than in solids because
liquids are more compressible than solids.

(b) Dolphins use sound waves to locate food. Experiments have shown that
a dolphin can detect a 7.5-cm target 110 m away, even in murky water. For a bit
of dinner at that distance, how much time passes between the moment the dolphin
emits a sound pulse and the moment the dolphin hears its reflection and, thereby,
detects the distant target?
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Solution.
The total distance covered by the sound wave as it travels from dolphin to
the target and returnis 27110 =220 m. From Eq. (2.1.2), we have

t= % = —220 =0.16
v 1400
Exercises

2.1.54. Find the speed of sound in mercury, which has a bulk modulus of

approximately 2.8~ 10*% N/m? and a density of 13 600 kg/m®.

2.1.55. Diagnostic ultrasound of frequency 4.5 MHz is used to examine
tumors in soft tissue. (a) What is the wavelength in air of such a sound wave?; (b)
If the speed of sound in tissue is 1500 m/s, what is the wavelength of this wave in
tissue?

2.1.56. Provided the amplitude is sufficiently great, the human ear can
respond to longitudinal waves over a range of frequencies from about 20 Hz to
about 20,000 Hz. Compute the wavelengths corresponding to these frequencies

a) for waves in air (v =345 m/s);

b) for waves in water (v =1480 m/s).

2.1.57. When sound travels from air into water, does the frequency of the
wave change? The wavelength? The speed?

2.1.10 Speed of a Sound Wave in Gases

In Section 2.1.9, we have derived the expression for calculating the speed
of sound in a fluid in a pipe, in terms of its density r and bulk modulus B. We
have learned that when a gas is compressed adiabatically, its temperature rises;
when it expands adiabatically, its temperature drops. Does this also happen when
a wave travels through a gas, or does enough heat conduction occur between the
adjacent layers of gas to maintain a nearly constant temperature throughout? This
Is a crucial question because it determines what we use for the bulk modulus B in
Eq. (2.1.27). The bulk modulus is defined in general as:

B=-V %
dv

If the temperature is constant, then according to Boyle’s law, the product

pV is constant, and we can use it to evaluate dp/dV . But if the process is

adiabatic, then pV Y is constant, and we get a different result for B.

Experiments show that for ordinary sound frequencies, say 20 to 20000 Hz,
the thermal conductivity of gases is so small that the propagation of sound is, in
fact, very nearly adiabatic. Thus we must use the adiabatic bulk modulus Bggq

derived from the assumption
pV Y =const. (2.1.32)
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We take the derivative of Eq. (2.1.32) with respect to V

dp 1
VI +govI =0,
av ' P
Dividing out it by V91 and rearranging, we find that the adiabatic bulk
modulus for an ideal gas is simply
dp
-V—= =gp. 2.1.33
qy _ ad ap ( )
For an isothermal process, however, pV =const, and the isothermal bulk
modulus is
Bist = P
In each case, the bulk modulus (characterizing the material's resistance to
compression) is proportional to the pressure, but the adiabatic modulus is larger
than the isothermal by a factor g .
Combining Egs. (2.1.31) and (2.1.33), we obtain

V= \/@ (ideal gas) (2.1.34)
r
an alternative form can be obtained by using the relation
P _RT
r M’

where R is the gas constant, M is the molar mass, and T is the absolute

temperature. Therefore,
v= R (2.1.35)
M

Foragivengas, g, R,and M are constants, so the speed of propagation is
proportional to the square root of the absolute temperature.

The speed of sound also depends on the temperature of the medium. For
sound traveling through air, the relationship between wave speed and medium

temperature is
v =(331m/s),[1+ e : (2.1.36)
273°C

where 331 m/s is the speed of sound in air at 0°C, and T is the temperature in

Celsius degrees. Using this equation, we can find that at 20°C, the speed of sound
in air is approximately 343 m/s.

This information provides a convenient way to estimate the distance to a
thunderstorm. During a lightning flash, the temperature of a long channel of air
rises rapidly as the bolt passes through it. This temperature increase causes the air
in the channel to expand rapidly, and this expansion creates a sound wave. The
channel produces sound throughout, its entire length at essentially the same
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instant. If the orientation of the channel is such that all of its parts are
approximately the same distance from you, sounds from the different parts reach
you at the same time, and you hear a short, intense thunderclap. However, if the
distances between your ear and different portions of the channel vary, sounds
from different portions arrive at your ears at different times. If the channel were a
straight line, the resulting sound would be a steady roar but the zigzag shape of
the path produces variations in loudness.

Example 2.1.7

Compute the speed of longitudinal waves in air at an absolute temperature
of 300 K.

Solution
The mean molecular mass of air is

28.8g/mol = 28.8 10~ >kg/mol.
Also, g =1.4 for air, and R =8.314J/molxK . At T =300 K, we obtain
L= [2.4)(8.314 Jmol:K)(T = 300K)
(28.8” 10 3kg/mol)

This result agrees with the measured speed at this temperature to within
0.3%.

=348 m/s.

Exercises

2.1.58. What is the difference between the speeds of longitudinal waves in
air at — 3°C and at 57°C?

2.1.59. Use the definition B =-V (dp/dV) and the relation between p and
V for an adiabatic process to derive Eqg. (2.35).

2.1.60. If the propagation of sound waves in gases were characterized by
isothermal rather than adiabatic expansions and compressions, and assuming that
the gas behaves as an ideal gas, show that the speed of sound would be given by

JRT /'m. What is the speed of sound in air at 27°C in this case?

2.1.61. At a temperature of 27°C, what is the speed of longitudinal waves
in argon? hydrogen? Compare your answers to (a) and (b) with the speed in air at
the same temperature.

2.1.62. What is the difference between the speeds of longitudinal waves in
air at — 3°C and at 57°C?

2.1.11 Energy of Wave Maotion

Every wave motion has the energy associated with it. To initiate a wave
motion, we exert a force on a portion of the wave medium; the point where the
force is applied moves, so we perform work on the system. A wave can transport
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energy from one region of space to another. For example, transmission of energy
by electromagnetic waves is familiar, and the destructive power of ocean surf is a
convincing demonstration of energy transported by water waves.
As an example of energy in wave motion, consider the plane longitudinal
wave which propagates through a medium:
x = Acos(wt - kx + ). (2.1.37)
Let’s take the small volume DV in a medium so small that speeds of
propagation and deformations of all its particles are the same and equal to fx /1t
and fx/9x, correspondingly.
The volume DV has the kinetic energy
.2
pw, = FEIX0 py (2.1.38)
2¢8tg
where rDV is volume mass, x/qt — its speed.
The volume DV has the elastic potential energy as well:

2 .2
DW, =B py =Eglxoy,, (2.1.39)
2 2¢xg

where e = x/9{x is the elongation, E is the Young’s modulus. As v=.E/r,

then E = rv?, and the expression for potential energy can be rewritten in the
form:

2 2
DW, = Ve X0 py (2.1.40)
2 ¢fxp

The total energy of the wave is the sum of potential (2.1.40) and Kinetic
(2.1.38) energies:
. 20
DW = DWj +DW,, = L gE X0 281X0 iy
2ge Tt g efixo 4
If we divide the total energy by the volume DV, we obtain the energy
density w=DW /DV :

é .2 2|
w=LagIxer, 2alxory (2.1.42)
2ge Tt e efixe g

To obtain the speed and elongation we take the partial derivative {x/qt
and fx/9x of Eqg. (2.1.37):

= _Awsin(wt - kx + ), (2.1.42)

IX  _Aksin(t - kx+ ). (2.1.43)
X
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After substituting Egs. (2.1.42) and (2.1.43) into Eq. (2.1.41) and recalling
that k%v2 = w?, we obtain

w = rA2w? sin2(Wt -kx+7f). (2.1.44)

It follows from (2.1.44) that the energy density differs from point to point
for any instant of time. At a fixed point, energy density w varies according to
squared sine function.

To obtain the average energy density awii, we have take the average value

of the square of a sine function, which is %. Hence, average energy density at any
point of medium is:

AW :% A2 (2.1.45)

Eq. (2.1.44) shows that the energy density depends on the density r of the
material; the amplitude A, and the frequency w. The dependence of the average
energy density of a wave on the square of its amplitude and also on the square of
its angular frequency is a general result, true for waves of all types.

As we have seen medium with the wave in it has additional energy. This
energy is transported by the wave from the source of oscillation to different points
of space. Quantity of energy transported by the wave through a surface per unit
time is called energy current F.

F=9W (2.1.46)

In SI system energy current is measured in J/s, or W.

Energy current has different value for different points of medium. To
characterize the energy current at certain point of space, another physical
quantity, called energy current density, is introduced. Energy current density is a
vector quantity. The direction of this vector is the same as the direction of
travelling wave, and it’s magnitude equals to the energy current F through the
unit surface A, perpendicular to the direction of the energy current. Let energy

DW Dbe transported through the area A~ at time Dt. The energy current density j
IS
j= DF _ DW
DAx  DAADt
Imagine the small volume DV with area the A~ and the height vDt, where

v is the propagating speed of the wave. The energy DW , transported through the
volume, is then:

(2.1.47)

DW = wDAAVDLt.
Substituting this expression into Eq. (2.1.47) we obtain expression for
energy current density:
] =wv, (2.1.48)
or, in a vector form:
j=wy. (2.1.49)
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The vector defined by Eq. (2.1.49), is named Umov’s vector, in honour of
Russian physicist N.A. Umov who introduced it.

It should be mentioned, that the intensity | of wave is average in time
energy current density. The intensity | of a traveling wave is defined as the
average time rate at which energy is transported by a wave per unit area across a
surface perpendicular to the direction of propagation. Briefly, the intensity is the
average power transported per unit area.

1= P (2.1.50)

It is interesting to note that the rate of energy transfer is proportional to the
square of the amplitude and is also proportional to the square of the frequency.

For a particular case of transverse wave on the string, instantaneous rate of
the energy transmission along the string can be expressed as follows:

P =./mTw?A? cosz(wt - kx).

Average power will be
Py = %1/mTW2A2.

Analogous relationship can be worked out for longitudinal waves. It can be
shown that the intensity — that is, average power per unit cross-sectional area for

fluids in a pipe — is given by
| = %JrBWZAZ,

and for a solid rod
| = %JEWZAZ.
Again the power is proportional to A% and w?.
Exercises

2.1.63. A string of mass 4 g and length 2 m is stretched with a tension of
30 N. Waves of frequency f =60 Hz and amplitude 8 cm are traveling along the

string. (a) Calculate the average power carried by these waves. (b) What happens
to the average power if the amplitude of the waves is doubled?

2.1.64. Show that Eq. Pa\,zéﬂ/mTWZA2 can also be written as

Py = ETkwAz, where Kk is the wave number of the wave.

2.1.65. A string along which waves can travel is 2.70 m long and has a mass of
260 g. The tension in the string is 36.0 N. What must be the frequency of travelling
waves (of amplitude 7.70 mm) be for the average power to become 85.0 W?
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2.1.66. A transverse sinusoidal wave is generated at one end of a long
horizontal string by a bar that moves up and down through the distance of 1.0 cm.
The motion is continuous and is repeated regularly 120 times per second. The
string has linear density of 120 g/m and is kept under the tension of 90.0 N. Find
the maximum value of (a) the transverse speed u and (b) the transverse
component of the tension T;. (Hint: This component is T sing, where g is the

angle the string makes with the horizontal. You will need to relate angle g to
dy/dx). (c) Show that two maximum values calculated above occur at the same

phase values for the wave. What is the transverse displacement y of the string at

these phases? (d) What is the maximum rate of energy transfer along the string?
(e) What is the transverse displacement y when the maximum transfer occurs? (f)

What is the minimum rate of energy transfer along the string? (g) What is the
transverse displacement y when this minimum transfer occurs?

2.1.67. A taut rope has a mass of 0.18 kg and a length of 3.6 m. What
power must be supplied to the rope to generate sinusoidal waves having an
amplitude of 0.1 m and a wavelength of 0.5 cm and traveling with a speed of 30
m/s?

2.1.68. Transverse waves are being generated on a rope under constant
tension. By what factor is the required power increased or decreased if (a) the
length of the rope is doubled and the angular frequency remains constant; (b) the
amplitude is doubled and the angular frequency is halved; (c) both the wavelength
and the amplitude are doubled; and (d) both the length of the rope and the
wavelength are halved?

2.1.69. Sinusoidal waves 5 cm in amplitude are to be transmitted along a

string that has a linear mass density of 4~ 1072 kg/m. If the source can deliver the
maximum power of 300 W and the string is under the tension of 100 N, what is
the highest vibrational frequency at which the source can operate?

2.1.70. 1t is found that a 6.0-m segment of a long string contains four
complete waves and has a mass of 180 g. The string is vibrating sinusoidally with
the frequency of 50 Hz and the peak-to-valley displacement of 15 cm. (The
"peak-to-valley" distance is the vertical distance from the farthest positive
displacement to the fathest negative displacement.) (a) Write the function that
describes this wave traveling in the positive x direction. (b) Determine the power
supplied to the string.

2.1.71. A sinusoidal wave on a string is described by the equation

y =(0.15)sin(0.8x - 50t) ,
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where x and y are in meters and t is in seconds. If the mass per unit length of
this string is 12.0 g/m, determine (a) the speed of the wave; (b) the wavelength;
(c) the frequency; and (d) the power transmitted to the wave.

2.1.72. A two-dimensional water wave spreads in circular wave fronts.
Show that the amplitude A at a distance r from the initial disturbance is
proportional to 1/r (Hint: Consider the energy carried by one outward-moving
ripple.)

2.1.12 Intensity of Spherical and Plane Waves

If a spherical body oscillates so that its radius varies sinusoidallv with time,
a spherical wave is produced. The wave moves outward from the source at a
constant speed if the medium is uniform.

As of this uniformity, we conclude that the energy in a spherical wave
propagates equally in all directions. That is, no one direction is preferred over any
other. If P,, is the average power emitted by the source, then this power at any

distance r from the source must be distributed over a spherical surface of area
4pr2. Hence, the wave intensity at a distance r from the source is
P P
I :ﬂ:%. (2.1.51)
A apr
Because P, is the same for any spherical surface centered at the source,
we see that the intensities at distances r, and r, are

P, P
|1 = aV2 and |2 = iz .
4pry 4pr,
Therefore, the ratio of intensities on these two spherical surfaces is
| 2
n_n
|2 r12

This inverse-square law states that the intensity decreases in proportion to
the square of the distance from the source. Intensity is proportional to Amax .
Thus, we conclude that the displacement amplitude Ay, Of a spherical wave
must vary as 1/r. Therefore, we can write the wave function y (Greek letter psi)
for an outgoing spherical wave in the form
. Iy
y(r,t)= ﬁsm(wt -kr+f),
r
where Ay, the displacement amplitude at the unit distance from the source, it is a
constant parameter characterizing the given wave.
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2.1.13 Intensity of Periodic Sound Waves

We know that the power developed by a force equals the product of force
and velocity. Hence, the power per unit area in a sound wave equals the product
of the excess pressure (force per unit area), given by Eq. (2.1.24), and the particle
velocity v, obtained by taking the time derivative of wave function
x = Asin(wt - kx). We find

v = wAcos(wt - kx),
hence,
pv = WBKA? cosz(wt - kx).
By definition, the intensity is, the average value of this quantity. The

2a =1/2, so we find
| = L uBkaZ,
2

average value of the function cos

By using the relations w =vk and v? =B/ r, we can transform it into the
form

| =%JEWZA2.

It is usually more convenient to express | in terms of the pressure
amplitude ppmax - Using Eq. (2.1.25) and the relation w = vk, we find

2 2
| = Wmax_ _ YPmax
2Bk 2B

By using the wave speed relation v2 =B/ r, we can also write this in the
alternative forms

2 2
| = Pmax” _ Pmax (2.1.52)

2rv - 2B
The intensity of a sound wave of the largest amplitude tolerable to the
human ear (about pyax =30 Pa)is

. (30Pa)?

2(1.22kg/m®)(343m/s)
The unit 1 W/cm? is a mixed one, neither cgs nor SI. We mention it here
because it is unfortunately in general use among acousticians.
The pressure amplitude of the faintest sound wave that can be heard is

=1.07Jd/s*m? =1.07 W/m? =1.07 " 10" *W/cm? .

about 37 107> Pa, and the corresponding intensity is about 10712 wim?.
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The total power carried across a surface by a sound wave equals the
product of the intensity at the surface and the surface area if the intensity over the
surface is uniform. The average total sound power emitted by a person speaking
in a conversational tone is about 10~ W, while a loud shout corresponds to about
371072 w.

Because of the extremely large range of intensities over which the ear is
sensitive, a logarithmic rather than an arithmetic intensity scale is convenient. The
intensity b of the sound wave is defined by the equation:

b =10 IogIL, (2.1.53)
0
where 1y is an arbitrary reference intensity, taken as 10™* W/m?. This value

corresponds roughly to the faintest sound that can be heard. Intensity levels are
expressed in decibels, abbreviated dB. A decibel is 1/10 of a bel, a unit named
after Alexander Graham Bell. The bel is inconveniently large for most purposes,
and the decibel is the usual unit of sound intensity level.

If the intensity of a sound wave equals 1y or 10™* W/m?, its intensity level

is 0 dB. The maximum intensity that the ear can tolerate without pain is about

1 W/m2, which corresponds to an intensity level of 120 dB. Table 2.1.3 gives the
intensity levels in decibels of several familiar noises.

Table 2.1.3 Noise levels due to various sources

Source or Description of Noise Noise level, dB Intensity, W xm™2
Threshold of pain 120 1

Riveter 95 32-10°3
Elevated train 90 1073
Busy street traffic 70 1075
Ordinary conversation 65 32-1076
Quiet automobile 50 1077
Quiet radio in home 40 1078
Average whisper 20 10-10
Rustle of leaves 10 10~11
Threshold of hearing 0 10-12
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- ! Within the range of audibility, the
EA sensitivity of an ear varies with
2E frequency. At any frequency the
23 threshold of audibility is the minimum
€3 intensity of sound at that frequency that
= g can be detected. An ear is most sensitive
S 3 at about 3000 Hz (Figure 2.1.31). For a
a3 young adult with normal hearing, the
‘ ‘ S — threshold of audibility at 1000 Hz is

0 10 102 108 10%  about 0 dB; at 200 and 15,000 Hz, it is
Frequency/Hz about 20 dB; and at 50 and 18,000 Hz, it

Figure 2.1.31 Sensitivity of the ear varies IS about 50 dB Thus the ear sensitivity
with frequency drops at low and high ends of the

frequency scale. Frequencies above 20,000 Hz (20 kHz) are not audible to
humans at any intensity, and such frequencies are referred to as ultrasonic.

Example 2.1.8

Two identical machines are positioned at the same distance from a worker.
The intensity of sound delivered by each machine at the location of the worker is

2.0710~" W/m. Find the sound level heard by the worker (a) when one machine
IS operating.
Solution.
a) The sound level at the location of the worker with one machine operating
is calculated from Eq. (2.1.53):
£20710" " 29
by =10l0g6-22 10 12W/m >~ =10l0g(2.0” 10%) =53 dB.
£1.07107W/m*
b) When both machines are operating.
Solution.
When both machines are operating, the intensity is doubled to

4.0710~7 Wim?: therefore, the sound level now is
2407107 29
by =10l0gt 210 WM = - 1010g(4.0 10%) = 56.
§1.07107“W/m*
From these results, we see that when the intensity is doubled, the sound
level increases by 3 dB only.

Example 2.1.9

The faintest sounds the human ear can detect at a frequency of 1000 Hz
correspond to an intensity of about 10 W/m? - the so—called threshold of
hearing, and the loudest sounds the ear can tolerate at this frequency correspond
to an intensity of about 1 W/m? — the threshold of pain. Determine the pressure
amplitude and displacement amplitude associated with these two limits.
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Solution.
First, consider the faintest sounds. Using Eg. (2.1.52) and taking

v =343 m/s as the speed of sound waves in air and r =1.2 kg/m3 as the density
of air, we obtain
DPmax = 2 =+/2(1.2)(343)(10722) = 2.877 1075 N/m?.
As atmospheric pressure is about 10° N/m?, this result tells us that the ear

can discern pressure fluctuations as small as 3 parts in 1019,
We can calculate the corresponding displacement amplitude by using Egs.
(2.1.25), (2.1.6) and (2.1.36):

- 10-5
g = DPmax _ 2.87710 117 10-Mm

nw o (1.2kg/m3)(343m/s)(2p ~ 10° Hz)
This is a remarkably small number! If we compare this result for ymax

with the diameter of a molecule (about 10710 m), we see that the ear is an

extremely sensitive detector of sound waves.
In a similar manner, it can be found that the loudest sounds the human ear

can tolerate correspond to a pressure amplitude of 28.7 N/m? and a displacement
amplitude equal to 1.11" 107°m.

Example 2.1.10

An electric spark jumps along a straight line of length L =10 m (Figure
2.1.32), emitting a pulse of sound that travels radially outward from the spark.
(The spark is said to be a line source of sound.) The power of the emission is

P, =1.6"10% W.

a) What is the intensity | of the sound when it reaches a distance r =12 m
from the spark?

Solution.

Let us centre an imaginary cylinder of radius r =12 mand length L =10 m
(open at both ends) on the spark, as shown in Figure 2.1.32. First, the intensity |
at the cylindrical surface is the ratio P/A of the time rate P at which sound
energy passes through the surface to the surface area A. Second, the principle of
conservation of energy applies to the sound energy. This means that the rate P at
which energy is transferred through the cylinder must equal the rate Pg at which

energy is emitted by the source. Putting these facts together and noting that the
area of the cylindrical surface is A =2prL , we get
P_ P

A 2prL
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Spark This tells us that the intensity of
o the sound from a line source decreases
K_/ with distance r (and not with the square

of distance r as for a point source).
Substituting the given data, we find

_1.6710%W
4 ~8 2p(12m)(10m)

v b) At what time rate Py is sound

Figure 2.1.32 A spark along a straight line energy mtercepted by an  acoustic

of length L emits sound waves radially detector of area Ay =2 cm?, aimed at

outward. The waves pass through an . _
imaginary cylinder of radius I and length the spark and located a distance r =12

L that is centered on the spark m from the spark?

Solution.
We know that the intensity of sound at the detector is the ratio of the
energy transfer rate Py there to the detector's area Aq:

.

Ad

We can imagine that the detector lies on the cylindrical surface of (a). Then
the sound intensity at the detector is the intensity | (= 21.2 W/m®) at the
cylindrical surface. Solving above equation for Py gives us

Py =1xAy =(21.2)(2710™%) = 4.2 mW.

= 21.2 W/m?Z.

‘ -
-

Exercises

2.1.73. Of the following sounds, which is most likely to have a sound level
of 60 dB: — rock concert, turning of a page in this text, normal conversation, or a
cheering crowd at a football game?

2.1.74. Estimate the decibel level of each sound in the previous question.

2.1.75. Calculate the sound level, in decibels, of a sound wave that has an

intensity of 4 mWim?,

2.1.76. A vacuum cleaner has a measured sound level of 70 dB. (a) What is
the intensity of this sound in watts per square meter? (b) What is the pressure
amplitude of the sound?

2.1.77. The intensity of a sound wave of frequency 1.0 kHz at a fixed

distance from a speaker is 0.6 W/m?. (a) Determine the intensity if the frequency
Is increased to 2.50 kHz while the constant displacement amplitude is maintained,
(b) Calculate the intensity if the frequency is reduced to 0.50 kHz and the
displacement amplitude is doubled.
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2.1.78. The intensity of a sound wave at a fixed distance from a speaker at a
frequency f is I. (a) Determine the intensity if the frequency is increased to f'

while the constant displacement amplitude is maintained, (b) Calculate the
intensity if the frequency is reduced to f /2 and the displacement amplitude is

doubled.

2.1.79. A family ice show is held in an enclosed arena. Skaters perform to
music with a sound level of 80 dB. This is too loud for your baby who
consequently yells at a level of 75.0 dB. (a) What total sound intensity engulfs
you? (b) What is the combined sound level?

2.1.80. A violin plays a melody line and is then joined by nine other
violins, all playing at the same intensity as the first violin, in a repeat of the same
melody (a) When all of the violins are playing together, by how many decibels
does the sound level increase? (b) If ten more violins join in, how much has the
sound level increased over that for the single violin?

2.1.14 Doppler Effect

Ambulance car is parked by the side of the highway, sounding its 1000 Hz
siren. It you also park by the highway, you will hear the same frequency.
However, if there is relative motion between you and the ambulance car, either
toward or away from each other, you will hear a different frequency. For
example, if you are driving toward the ambulance car at 120 km/h, you will hear a
higher frequency (1096 Hz, an increase of 96 Hz). If you are driving away from
the ambulance car at that same speed, you will hear a lower frequency (904 Hz, a
decrease of 96 Hz).

Those motion-related frequency changes are examples of the Doppler
effect. The effect was proposed (although not fully worked out) in 1842 by
Austrian physicist Johann Christian Doppler. It was tested experimentally in 1845
by Buys Ballot in Holland, using a locomotive drawing an open car with several
trumpeters. The Doppler effect holds not only for sound waves but also for
electromagnetic waves.

To see what causes this apparent frequency change, imagine you are in a
boat that is lying at anchor on a gentle sea where the waves have a period of
T =3 s. This means that every 3 s a crest hits your boat. If you set your watch to
t =0 just as one crest hits, the watch reads 3.0 s when the next crest hits, 6.0 s
when the third crest hits, and so on. From these observations, you conclude that
the wave frequency is f =1/T =1/3 Hz. Now suppose you start your motor and
head directly into the oncoming waves. Again you set your watch to t=0 as a
crest hits the front of your boat. Now, however, because you are moving toward
the next wave crest as it moves toward you, it hits you less than 3 s after the first
hit. In other words, the period you observe is shorter than the 3-s period you
observed when you were stationary. As f =1/T, you observe a higher wave

frequency than when you were at rest.
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If you turn around and move in the same direction as the waves, you
observe the opposite effect. You set your watch to t =0 as a crest hits the back of
the boat. Because you are now moving away from the next crest, more than 3 s
has elapsed on your watch by the time, that crest catches you. Thus, you observe a
lower frequency than when you were at rest.

These effects occur because the relative speed between your boat and the
waves depends on the direction of travel and on the speed of your boat. When you
are moving toward the waves, this relative speed is higher than that of the wave
speed which leads to the observation of an increased frequency. When you turn
around and move away from waves, the relative speed is lower, as is the observed
frequency of the water waves.

Let us now examine an analogous situation with sound waves, in which the
water waves become sound waves, the water becomes the air, and the person on
the boat becomes an observer listening to the sound.

As a reference frame we shall take the air through which these waves
travel. This means that we shall measure the speeds of source S of sound waves
and detector D of these waves relative to air. We shall assume that S and D move
either directly toward or directly away from each other, at speeds smaller than the
speed of sound.

If either the detector or the source is moving, or both are moving, the
emitted frequency f and the detected frequency f' are related by

vVvp
V+vg
where v is the speed of sound through the air, vp is the detector's speed relative
to the air and vg is the source's speed relative to the air. The choice of plus or

minus signs is set by the rule: When detector or source moves towards the other,
the sign on its speed must give an upward shift in frequency. When the detector or
the source moves away from the other, the sign on its speed must give a
downward shift in frequency.

In short, toward means shift up, and away means shift down.

Here are some examples of the rule. If the detector moves toward the
source, use the plus sign in the numerator of Eq. (2.1.54) to get a shift up in the
frequency. If it moves away, use the minus sign in the numerator to get a shift
down. If it is stationary, substitute O for vp. If the source moves toward the
detector, use the minus sign in the denominator of Eq. (2.1.54) to get a shift up in
the frequency. If it moves away, use the plus sign in the denominator to get a shift
down. If the source is stationary, substitute O for vg .

Next, we derive equations for the Doppler effect for the following two
specific situations and then derive Eq. (2.1.54) for a general situation.

f'=f

general Doppler effect, (2.1.54)
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When the detector moves relative to the air and the source is stationary
relative to the air, the motion changes the frequency at which the detector
intercept wave surfaces and thus the detected frequency of the sound wave.

When the source moves relative to the air and the detector is stationary
relative to the air, the motion changes the wavelength of the sound wave and,
thus, the detected frequency (recall that frequency is related to wavelength).

Detector Moving; Source Stationary. In Figure 2.1.33, a detector D is
moving at speed vp toward a stationary source S that emits spherical wavefronts,

of wavelength I and frequency f, moving at the speed v of sound in air. The
wave surfaces are drawn one wavelength apart. Frequency detected by the
detector D is the rate at which D intercepts wave surfaces (or individual
wavelengths). If D were stationary, the rate would be f but since D is moving
into the wave surfaces, the rate of interception is greater, and thus the detected
frequency f' is greater than f.

<l

Figure 2.1.33 A stationary source of sound S emits spherical wavefronts, (shown one
wavelength apart), that expand outward at speed V. A sound detector D moves with the

velocity Vp toward the source. The detector senses a higher frequency because of its
motion

Let us for the moment consider the situation in which D is stationary
(Figure 2.1.34). In time t, the wave front moves to the right a distance vt. The
number of wavelengths in that distance vt is the number of wavelengths
intercepted by D in time t, and that number is vt/ I. The rate at which D
intercepts wavelengths - that is the frequency f detected by D, is

f=22=t (2.1.55)
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v In this situation, with D
stationary, there is no Doppler effect:
i The frequency detected by D is the
E) frequency emitted by S.

b Now let us again consider the
situation in which D moves opposite the
wave surfaces (Figure 2.1.35). In time t,
_ Pv—t% _ the wavefront moves to the right a
Figure 2.1.34 When D is stationary, there distance vt as previously, but now D

is no Doppler effect — the frequency )
detected by D is the frequency emitted Moves to the left a distance vpt. Thus,

by S in this time t the distance moved by the
wavefronts relative to D is vt +vpt. The number of wavelengths in this relative

distance vt +vpt is the number of wavelengths intercepted by D in time t and is
(vt +vpt)/ I. In this situation, The rate at which D intercepts wavelengths is the
frequency f' given by

v fr (V“"tDt)” . "*"’D (2.1.56)
VDrkl As I=v/f, then Eq. (2.1.56)
<‘_ZED becomes
i Py f=YIVD - ¢ VIVD (5 57
vt vpt Vit
. —— - .
Figure 2.1.35 In time T, the distance Note that in Eq. (2.1.57), f' must

moved by the wavefronts relative to D is e greater than f unless vp =0 (the

vi+vpl detector is stationary).
Similarly, we can find the frequency detected by D if D moves away from

the source. In this situation, the wavefronts move a distance vt -vpt relative to D
intime t and f' is given by
fr=fY2VD (2.1.58)
v
In Eq. (2.1.58) f' must be smaller than f unless vp =0. We can

summarize Eqgs. (2.1.57) and (2.1.58) with
+
fr=f Y2V
Vv
Source Moving; Detector Stationary. Let detector D be stationary with
respect to the air, and the source S move toward D at speed vg (Figure 2.1.36).

The motion of S changes the wavelength of the sound waves it emits and, thus,
the frequency detected by D.

(detector moving; source stationary). (2.1.59)
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To see this change let T =(1/ f) be the time between the emission of any
pair of successive wavefronts Wy and W,. During T wavefront W; moves a
distance vT, and the source moves a distance vgT . At the end of vT wavefront
W, is emitted. In the direction in which S moves the distance between W; and
Wy, (which is the wavelength I' of the waves moving in that direction), is
VT -vgT . If D detects those waves it detects frequency f' given by
v v v v

f'l=—= = = : (2.1.60)
I' vT-vgT v/f-vg/f V-Vg
Note that f' must be greater W,
than f unless vg =0. Wy
In the direction opposite to that
taken by S, the wavelength I' of the Vp =
waves is vT +vgT . If D detects those — HHH—x
waves, it detects the frequency f' D
given by
frof Y (2.1.61)
V+Vg

Figure 2.1.36 In the direction in which S

Now f' must be smaller than f _
moves, the distance between W; and W,

unless vg =0. which is the wavelength I' of the waves
We can summarize EQS. moving in that direction, is VT =VgT . The

(2.1.60) and (2.1.61) with detector senses a higher frequency
f'=f ; (source moving; detector stationary). (2.1.62)

VEVg
General Doppler Effect Equation

We can now derive the general Doppler effect equation by replacing f in
Eq. (2.1.62) (the frequency of the source) with f' of Eq. (2.1.58) (the frequency
associated with motion of the detector). The result is Eq. (2.1.54) for the general
Doppler effect:

fref ViVD .
ViVg

The general equation holds not only when both detector and source are
moving but also in the two specific situations we just discussed. For the situation
in which the detector is moving and the source is stationary, substitution of
vg =0 into Eq. (2.1.54) gives us Eq. (2.1.59) which we previously found. For the
situation in which the source is moving and the detector is stationary, substitution
of vp =0 into Eq. (2.1.54) gives us Eq. (2.1.62) previously found. Thus, Eq.

(2.1.54) is the equation to remember.
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Although the Doppler effect is most typically experienced with sound
waves, it is a phenomenon that is common to all waves. For example, the relative
motion of source and observer produces a frequency shift in light waves. The
Doppler effect is used in police radar system to measure the speeds of cars.
Astronomers use the effect to determine the speeds of stars, galaxies and other
celestial object, and even some animals use the effect.

Bat Navigation. Bats navigate and search for prey by emitting, and then
detecting reflections of ultrasonic waves. These are sound waves with frequencies
greater than can be heard by a human. For example, a horseshoe bat emits
ultrasonic waves at 83 kHz, well above the 20 kHz limit of human hearing.

After the sound is emitted through the bat's nostrils, it might reflect (echo)
from a moth, and then return to the bat's ears. The motions of the bat and the moth
relative to the air cause the frequency heard by the bat to differ by a few kilohertz
from the frequency it emitted. The bat automatically translates this difference into
a relative speed between itself and the moth, so it can zero on the moth.

Some moths evade capture by flying away from the direction in which they
hear ultrasonic waves. That choice of flight path reduces the frequency difference
between what the bat emits and what it hears, and then the bat may not notice the
echo. Some moths avoid capture by clicking to produce their own ultrasonic
waves, thus "jamming" the detection system and confusing the bat. (Surprisingly,
moths and bats do all this without first studying physics.)

Doppler ultrasonic systems. Doppler effect is widely used in medicals
diagnostic. If a reflecting surface moves in a direction parallel to the direction of
the ultrasonic waves, the frequency of the reflected waves is changed by the
motion of the reflector.

The shift of frequency of the reflected waves Df depends on the speed u

of the reflector and the direction of the incident beam in accordance with the
equation
Df = ﬁcosq,
Y

where f is the frequency of the incident waves, v is the wave speed and q is the

angle between the direction of the beam and the direction of motion of the
reflecting surface. For example, the frequency shift of an ultrasonic beam of
frequency 3 MHz at a speed of 1500 m/s in a substance due to a reflecting
boundary moving at a speed of | m/s
towards the source is 4 kHz.

In a Doppler ultrasonic system, the reflected signal is detected by the
transducer probe and mixed electronically with a signal at the incident frequency.
(Figure 2.1.37)



The resultant waveform is
modulated at the Doppler shift
frequency which is filtered and

measured. The speed of the reflecting
surface can then be determined using
the equation above. Uses of the system
include:

— monitoring the heart beat of a
baby in the womb,

— measuring the flow of blood in
a blood vessel by measuring the speed
of corpuscles in the blood.

Example 2.1.11
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Coupling

gel \

Transducer

Skin probe
/ Blood
Corpuscle 4R vessel

Figure 2.1.37 Transducer probe for measuring
the flow of blood

Let fg =300 Hz and v =300m/s. The wavelength of the waves emitted by

a stationary source is then v/ fg =1.0 m.

a) What are the wavelengths ahead of and behind the moving source in

Figure 2.1.38 if its velocity is 30 m/s?

C

Figure. 2.1.38 Wave surfaces emitted by a moving source are crowded together in front of
the source and stretched out behind it
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Solution.
In front of the source,

J = V-Vs _ 300m/s - 30m/s ~0.90 m.
fs 300Hz

Behind the source,
j="V +Vs _300m/s +30m/s
fs 300Hz

b) If the listener L in Figure 2.1.38 is at rest and the source is moving away
from L at 30 m/s, what is the frequency as heard by the listener?

=1.10 m.

Solution.
Since v =0 and vg =30 m/s, we have
fl=f— " =300Hz—00MS o734y
V+ Vg 300m/s +30m/s

c) If the source in Figure 2.1.37 is at rest and the listener is moving toward
the left at 30 m/s, what is the frequency heard by the listener?
Solution.
The positive direction (from the listener to the source) is still from left to
right, so
vp =-30 and vg =0 m/s,

VHVs _ 3004z 300m/s - 30m/s _ 970 Hz.
v 300m/s
Thus, while the frequency f, heard by the listener is smaler than the
frequency fg both when the source moves away from the listener and when the

listener moves away from the source, the decrease in frequency is not the same
for the same speed of recession.

fL:fS

Example 2.12

As an ambulance travels east down a highway at a speed of 33.5 m/s, its
siren emits sound at a frequency of 400 Hz. "What frequency is heard by a person
in a car traveling west at 24.6 m/s.

a) as the car approaches the ambulance?

Solution.

We can use Eq. (2.1.54) in both cases, taking the speed of sound in air to be
v =343 m/s. As the ambulance and car approach each other, the person in the car

hears the frequency
_V+vo . _®343m/s+24.6m/s 9(400Hz) — 475 My
V-V 343m/s - 33.5m/s j ’

b) as the car moves away from the ambulance?

f 1
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Solution.
As the vehicles recede from each other, the person hears the frequency
= VYo ¢ _ £343m/s - 24.6m/s 8(400Hz) _338H7.
V+ Vg 343m/s +33.5m/s 4

The change in frequency detected by the person in the car is
475 — 338 = 137 Hz, which is more than 30% of the true frequency.

Example 2.1.13

A rocket moves at a speed of 242 m/s directly toward a stationary target
(through the stationary air) while emitting sound waves at frequency f =1250
Hz.

f

a) What frequency f¢ is measured by a detector that is attached to the
target?

Solution.

We can find f¢ with Eqg. (2.1.54) for the general Doppler effect. Because

the sound source (the rocket) moves through the air toward the stationary detector
on the target, we need to choose the sign on vy that gives a shift up in the

frequency of the sound. Thus, in Eqg. (2.1.54), we use the minus sign in the
denominator. We then substitute O for the detector speed vy, 242 m/s for the
source speed v, 343 m/s for the speed of sound v, and 1250 Hz for the emitted
frequency.

We find
VEvy - (1250) 343+0
VE Vg 343 -242
which, indeed, is a greater frequency than the emitted frequency.

b) Some of the sound reaching the target reflects back to the rocket as an
echo. What frequency f¢ does a detector on the rocket detect for the echo?

Solution.

The target is now the source of sound (because it is the source of the echo),
and the rocket's detector is now the detector (because it detects the echo). The
frequency of the sound emitted by the source (the target) is equal to f¢, the

frequency of the sound the target intercepts and reflects.
We can rewrite Eqg. (2.1.54) in terms of the source frequency f¢ and the

detected frequency f@¢ as

fe=f = 4245 Hz.

fe= eV EVd (2.1.63).
VAT
A third idea here is that, because the detector (on the rocket) moves through

the air toward the stationary source, we need to use the sign on vy that gives a
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shift up in the frequency of the sound. Thus, we use the plus sign in the numerator
of Eq. (2.1.63). Also, we substitute vq =242 m/s, v =0, v=343 m/s, and

ft=4245 Hz. We find

fo= 4245% = 7240 Hz,

43+0

which, indeed, is greater than the frequency of the sound reflected by the target.
Exercises

2.1.81. Explain what happens to the frequency of your echo as you move in
a vehicle toward a canyon wall. What happens to the frequency as you move
away from the wall?

2.1.82. If the wavelength of a sound source is reduced by a factor of 2, what
happens to its frequency? Its speed?

2.1.83. Trooper B is chasing speeder A along a straight stretch of road. Both
are moving at speed of 160 km/h, The trooper B, failing to catch up, sounds his
siren again. Take the speed of sound in air to be 343 m/s and the frequency of the
source to be 500 Hz. What is the Doppler shift in the frequency heard by the
speeder A?

2.1.84. At what frequency the 16 000 Hz, whine of the turbines in the jet
engines of an aircraft moving with speed 200 m/s is heard by the pilot of a second
craft trying to overtake the first at a speed of 250 m/s? (Ans. 17.5 kHz.)

2.1.85. An ambulance with a siren emitting a whine at 1600 Hz overtakes
and passes a cyclist pedaling a bike at 2.44 m/s. After being passed, the cyclist
hears a frequency of 1590 Hz. How fast is the ambulance moving?

2.1.86. A whistle of frequency 540 Hz moves in a circle of radius 60.0 cm
at an angular speed of 15.0 rad/s. What are (a) the lowest and (b) the highest
frequencies heard by a listener a long distance away, at rest with respect to the
center of the circle? [Ans. (a) 526 Hz, (b) 555 Hz.]

2.1.87. A stationary motion detector sends sound waves of frequency 0.15
MHz toward a truck approaching at a speed of 45.0 m/s. What is the frequency of
the waves reflected back to the detector?

2.1.88. A French submarine and a U.S. submarine move toward each other
during maneuvers in motionless water in the North Atlantic. The French .sub
moves at 50.0 km/h. and the U.S., sub at 70.0 km/h. The French sub sends out a
sonar signal (sound wave in water) at 1000 Hz. Sonar waves travel at 5470 km/h.
(a) What is the signal frequency as detected by the U.S. sub? (b) What frequency
Is detected by the French sub in the signal reflected back to it by the U.S. sub?
[Ans. (a) 1.02 kHz, (b) 1.04 kHz.]

2.1.89. Explain how the Doppler effect is used with microwaves to
determine the speed of an automobile.
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2.1.15 Supersonic Speeds. Shock Waves

If a source is moving toward a stationary detector at a speed equal to the
speed of sound — that is, if vg =v, the Egs. (2.1.53) and (2.1.61) predict that the
detected frequency f' will be infinitely great. This means that the source is

moving so fast that it keeps pace with its own spherical wavefronts, as Figure
2.1.39a suggests. What happens when the speed of the source exceeds the speed
of sound?

Surface of
N Mach cone

/,/’/! Vst
() (b) ~ -

Figure 2.1.39 (a) A source of sound S moves at speed Vg equal to the speed of sound

and, thus, as fast as the wave-fronts it generates; (b) A source S moves at speed Vg faster
than the speed of sound and, thus, faster than the wavefronts. When the source was at
position Sl, it generated wavefront Wl and at position 56 it generated W6- All the

spherical wavefronts expand at the speed of sound V and bunch along the surface of a
cone called the Mach cone, forming a shock wave. The surface of the cone has the

half-angle ¢ and is tangent to all the wavefronts

For such supersonic speeds, Egs. (2.1.53) and (2.1.61) no longer apply.

Figure 2.1.39b depicts the spherical wavefronts originated at various
positions of the source. The radius of any wavefront in this figure is vt where v is
the speed of sound and t is the time that has elapsed since the source emitted that
wavefront. Note that all the wavefronts bunch along a V-shaped envelope in the
two-dimensional drawing of Figure 2.1.39b. The wavefronts actually extend in
three dimensions, and the bunching actually forms a cone called the Mach cone.
A shock wave is said to exist along the surface of this cone because the bunching
of wavefronts causes an abrupt rise and fall of air pressure as the surface passes
through any point. From Figure 2.1.39b,we see that the half-angle g of the cone,
called the Mach cone angle, is given by

vt v

sing =—=—. (Mach cone angle). (2.1.63)
Vgt Vg
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The ratio vg /v is called the Mach number. When you hear that a particular

plane has flown at Mach 2.3, it means that its speed was 2.3 times the speed of
sound in the air through which the plane was flying. The shock wave generated by
a supersonic aircraft or projectile produces a burst of sound called a sonic boom,
in which the air pressure first suddenly increases and then suddenly decreases
below normal before returning to normal. Part of the sound that is heard when a
rifle is fired is the sonic boom produced by the bullet. A sonic boom can also be
heard from a long bullwhip when it is snapped quickly: Near the end the motion
of whip, its tip is moving faster than sound and produces a small sonic boom — the
crack of the whip.

Exercises

2.1.90. A jet plane passes over you at a height of 5000 m and with a speed
of Mach 1.5. (a) Find the Mach cone angle; (b) After the jet passes directly
overhead, how long does the shock wave reach you? Use 331 m/s for the speed of
sound. [Ans. (a) 42° (b) 11 5]

2.1.91. A plane flies at 1.25 times the speed of sound. Its sonic boom
reaches a man on the ground 1.00 min after the plane passes directly overhead.
What is the altitude of the plane? Assume the speed of sound to be 330 m/s.

2.1.92. A bullet is fired with a speed of 685 m/s. Find the angle made by
the shock cone with the line of motion of the bullet.

2.1.16 Tsunami

A tsunami can be generated by any disturbance that displaces a large water
mass from its equilibrium position. Submarine landslides, which often occur
during a large earthquake, can also create a tsunami. During a submarine
landslide, the equilibrium sea level is altered by sediment moving along the sea
floor. Gravitational forces propagate the tsunami given the initial perturbation of
the sea level. Similarly, a violent marine volcanic eruption can create an
impulsive force that displaces the water column and generates a tsunami. Above
water landslides and space born objects can disturb the water from above the
surface. The falling debris displaces the water from its equilibrium position and
produces a tsunami. Unlike ocean-wide tsunamis caused by some earthquakes,
tsunamis generated by non-seismic mechanisms usually dissipate quickly and
rarely affect coastlines far from the source area.

Tsunamis are characterized as shallow-water waves. Shallow-water waves
are different from wind-generated waves, the waves many of us have observed at
the beach. Wind-generated waves usually have period of five to twenty seconds
and a wavelength of about 100 to 200 meters. A tsunami can have a period in the
range of ten minutes to two hours and a wavelength in excess of 500 km. It is
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because of their long wavelengths that tsunamis behave as shallow-water waves.
A wave is characterized as a shallow-water wave when the ratio between the
water depth and its wavelength is very small. The speed of a shallow-water wave
Is equal to the square root of the product of the acceleration of gravity and the
depth of the water. The rate at which a wave loses its energy is inversely related
to its wavelength. Since a tsunami has a very large wavelength, it will lose little
energy as it propagates. Hence, in the very deep water, a tsunami will cover at
high speeds and travel great transoceanic distances with a limited energy loss.
They can move from one side of the Pacific Ocean to the other side in less than
one day. As a tsunami leaves the deep water of the open sea and propagates into
the more shallow waters near the coast, it undergoes a transformation. Since the
speed of the tsunami is related to the water depth, as the depth of the water
decreases, the speed of the tsunami diminishes. The change of total energy of the
tsunami remains constant. Therefore, the speed of the tsunami decreases as it
enters shallower water, and the height of the wave grows. Because of this
"shoaling" effect, a tsunami that was imperceptible in deep water may grow to be
many meters in height.

When a tsunami finally reaches the shore, it may appear as a rapidly rising
or falling tide, a series of breaking waves, or even a bore. Reefs, bays, entrances
to rivers, undersea features, and the slope of the beach all help to modify the
tsunami as it approaches the shore. Tsunamis rarely become great, towering
breaking waves. Sometimes the tsunami may break far offshore. Or it may form
into a bore: a step-like wave with a steep breaking front. A bore can happen if the
tsunami moves from deep water into a shallow bay or river. The water level on
shore can rise many meters. In extreme cases, water level can rise to more than 15
m for tsunamis of distant origin and over 30 m for tsunami generated near the
epicenter of the earthquake. The first wave may not be the largest in the series of
waves. One coastal area may see no damaging wave activity while in another area
destructive waves can be large and violent. The flooding of an area can extend
inland by 300 m or more, covering large expanses of land with water and debris.
Flooding tsunami waves tend to carry loose objects and people out to sea when
they retreat.

A tsunami generally consists of a series of waves, often referred to as the
tsunami wave train. The amount of time between successive waves, known as the
wave period, is usually a few minutes; in some instances, waves are over an hour
apart. Many people have lost their lives after returning home in between the
waves of a tsunami, thinking that the waves had stopped coming.

Because tsunami can strike at any time, being adequately prepared and
knowing what to do beforehand can save your life. Hawaii State and County Civil
Defense agencies provide maps of evacuation zones and information on how to be
prepared for this type of natural disaster in the front pages of the telephone book.
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If you are at the beach and you feel an earthquake or observe a rapid withdrawal
of the sea, head for higher ground immediately. When a tsunami warning has
been issued, do not attempt to use the telephone or head to low-lying areas to
view the oncoming waves. Remember, tsunamis travel at very fast speeds across
the ocean; therefore, once a warning has been issued you should evacuate
immediately.

Summary

A wave is any disturbance from an equilibrium condition that propagates
from one region to another. A mechanical wave always travels within some
material called the medium. In a periodic wave the motion of each point of the
medium is cyclic or periodic; if the motion is sinusoidal, the wave is called a
sinusoidal wave. The frequency f of a periodic wave is the number of repetitions

per unit time, and the period T is the time for one cycle. The wavelength 1[I is the
distance between two adjacent identical points of the wave. The speed of
propagation v is the speed with which the wave disturbance travels. For any
periodic wave, these quantities relate as

v=1If.

A wave function describes the displacements of individual particles in the
medium. It is a function of the coordinate x and time t. The wave function for a
sinusoidal wave traveling in the + x-direction can be written as

y(x,t) = Asin Wgt _X9= Asin 2pf§t _X0- Asin(wt - kx) = Asin 2p§L _X9
e Vg e Vg eT Iy

In all forms, A is the amplitude which is the maximum displacement of a
particle from its equilibrium position.

The wave function must obey a partial differential equation called the wave
equation:

1°y _ 1 9%
‘Hx2 v2 ﬂt2
The speed of a transverse wave on a string having tension T and mass per
unit length m is given by

T
V= —.
m
Transverse waves have the property of polarization; longitudinal waves do
not.
The speed of a longitudinal wave in a fluid having bulk modulus B and

density r is given by
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The speed of a longitudinal wave in a solid rod having Young's modulus E
and density r is given by

E
V= [—.
r

The speed of sound in an ideal gas is given by
V= gﬂ (ideal gas).
m

Wave motion conveys energy from one region to another. For a transverse
wave on a stretched string, a portion of string exerts a transverse force on an
adjacent portion while it undergoes a displacement; hence, one section does work
on another, and energy is transferred along the length of the string

For sinusoidal sound waves, the variation in the displacement is given by

X(x,t) = Acos(wt - kx),
and the variation in pressure from the equilibrium value is

DP = Pmax Sin(wt - kx) ,
where Dppmax 1S the pressure amplitude. The pressure wave is 90° out of phase
with the displacement wave. The relationship between X, and Dpmax given by

DPmax = NVWXmax -
The intensity of a periodic sound wave, which is the power per unit area, is

I = % WA A?
The sound level of a sound wave, in decibels, is given by

210
b =10 Iogg—i.
lo g
The constant g is a reference intensity, usually taken to be at the threshold

of hearing (1~ 10712 W/mz), and | is the intensity of the sound wave in watts per

square meter.

The intensity of a spherical wave produced by a point source is
proportional to the average power emitted and inversely proportional to the square
of the distance from the source:

| = I:)c’ilV
—.
4pr
The change in frequency heard by an observer whenever there is relative

motion between a source of sound waves and the observer is called the Doppler
effect. The observed frequency is

I+

v

f':aéV VD

Vs

I+
= -1-1-O:
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The upper signs (+vp and -vg) are used with motion of one toward the
other, and the lower signs (-vp and +vg) are used with motion of one away
from the other. You can also use this formula when vg or vp is zero.

Key Terms

Wave — BosiHa

mechanical waves — mexanndeckasi BoJIHa

medium — cpena

periodic wave — nepuouieckas BOJIHA

sinusoidal wave — rapmMonudeckast BoJHa, CHHYCOUaIbHAs BOJIHA
transverse wave — ronepeyHasl BOJIHA

longitudinal wave — npomonsHas BoIHA

wave speed — CKOpoCTh BOJTHBI

wavelength — muHa BOJTHBI

wave function — BoitHOBast pyHKIIUS

wave number — BOJTHOBOE YHCJIO

wave equation — BoJIHOBOE ypaBHEHHE

sound — 3ByK

pressure amplitude — ammMTy 1A KaBICHUS

intensity — ”HTEHCUBHOCTH

intensity level — ypoBeHb HHTEHCHBHOCTH

threshold of audibility — mopor cibIIIMMOCTH, CITyXOBOH TIOPOT
ultrasonic — cBepx3BYKOBOM, yIbTPa3BYKOBOI

Doppler effect — apdext dommiepa
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Chapter 2.2
Standing Waves

In previous chapter we studied the propagation of mechanical waves in
media without ends or boundaries; we were not concerned with what happens
when a wave arrives at an end or boundary of the medium in which it propagates.
But in many wave phenomena such boundaries do play a significant role. A
familiar example is the echo that occurs when a sound wave reflects from a rigid
wall. Such reflections lead to overlapping, or superposition, of two waves — the
initial and reflected waves — in the same region of the medium. When there are
two or more boundary points or surfaces, repeated reflections can occur. In such
cases, it turns out that sinusoidal wave motion is possible only for certain special
values of the frequency of the wave, determined by the dimensions and
mechanical properties of the medium. These special frequencies and their
associated wave patterns are called normal modes. Many familiar phenomena are
associated with normal modes. This concept will also reappear later in some
unexpected places, such as the energy levels of atoms.

2.2.1 Superposition of Waves

Many interesting natural wave phenomena cannot be described by a single
moving pulse. Instead, one must analyze complex waves in terms of a
combination of many traveling waves. To analyze such wave combinations, we
can make use of the superposition principle:

If two or more traveling waves are moving through a medium, the resultant
function at any point is the algebraic sum of the wave functions of the initial
waves.

Mathematically speaking, the principle of superposition states that the wave
function describing the resulting motion is obtained by adding two wave functions
for two separate waves. This additive property of wave functions depends, in turn,
on the form of the wave equation, Eq. (2.1.14), which every physically possible
wave function must satisfy. Specifically, the wave equation is linear. As a result,
if each of any two functions yj(x,t) and y,(x,t) satisfies the wave equation

separately, their sum y; +y, automatically satisfies the wave equation as well

and, hence, is a physically possible motion. In view of this linearity of the wave
equation and the corresponding linear-combination property of its solutions, the
principle is also called the principle of linear superposition.

Waves that obey this principle are called linear waves and are generally
characterized by small amplitudes. Waves that violate the superposition principle
are called nonlinear waves and are often characterized by large amplitudes. We
will deal only with linear waves.
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One consequence of the superposition principle is that two traveling waves
can pass through each other without being destroyed or even altered. For
instance, when sound waves from two sources move through air, they pass one
through each other. The resulting sound that hears at a given point is the resultant

of the two disturbances.
Figure 2.2.1 is a pictorial representation of superposition. Wave function

for a pulse moving to the right is y;, and wave function for a pulse moving to the
left is y,. The pulses have the same speed but different shapes. Each pulse is

assumed to be symmetric, and the displacement of the medium is in the positive
y direction for both pulses. When the waves begin to overlap (Figure 2.2.1b), the

wave function for the resulting complex wave is given by y; +v.

e

M
(a)

Y1 Y2

(b) Mm

y1+ty2

(c)
Yi1t+Y2

e

M
(d)

Y2 y1 (e)

Figure 2.2.1 (a - d) Two wave pulses traveling on a stretched string in opposite directions pass

through each other. When the pulses overlap, as shown in (b) and (c), the net displacement of

the string equals the sum of the displacements produced by each pulse; (d) The two pulses
separate and continue moving in their initial directions

When the crests of the pulses coincide (Figure 2.2.1c), the resulting wave
given by y; +yo is symmetric. The two pulses finally separate and continue
moving in their original directions (Figure 2.2.1d). Note that the pulse shapes
remain unchanged, as if the two pulses had never met.
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Figure 2.2.2 (a-e) Two wave pulses traveling in opposite directions and having displacements
that are inverted relative to each other. When the two overlap in (c), their displacements

partially cancel each other;(d, e) two pulses pass through each other; (f) photograph of two
pulses traveling in opposite directions

Now consider two pulses traveling in opposite directions on a taut string
where one pulse is inverted relative to the other, as illustrated in Figure 2.2.2. In

this case, when the pulses begin to overlap, the resultant wave is given by
y1 + Y2, but the values of the function y, are negative. Again, the two pulses

pass through each other; however, the displacements caused by the two pulses are
in opposite directions.

2.2.2 Reflection and Transmission

We have discussed traveling waves moving through a uniform medium.
We now consider how a traveling wave is affected when it encounters a change in
the medium. For example, consider a pulse traveling on a string that is rigidly
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attached to a support at one end (Figure 2.2.3). When the pulse reaches the
support, a severe change in the medium occurs — the string ends. The result of this
change is that the wave undergoes reflection — that is, the pulse moves back along
the string in the opposite direction.

Incident
pulse

—_—
(a) I

> Incident

ﬁ % I pulse
(b)
WZZ%I —

(©)

Eﬁm:?\\\\\jl .
()

-

Reflected

mzwgmzmzl pulse
Reflected
pulse

Figure 2.2.3 The reflection of a traveling Flgure 2.2.4 The reflection of a traveling wave
wave pulse at the fixed end of a stretched pulse at the free end of a stretched string. The
string. The reflected pulse is inverted, but its reflected pulse is not inverted

shape is unchanged

Note that the reflected pulse is inverted. This inversion can be explained as
follows: If the end is fastened to a rigid support, it must remain at rest. The
arriving pulse exerts a force on the support; the reaction to this force (by Newton's
third law), exerted by the support on the string, ‘kicks back’ on the string and sets
up an inverted reflected pulse or wave traveling in the reverse direction.

The opposite extreme (to a rigidly fixed end) is the one that is perfectly free
to move in the direction, transverse to the length of the string. For example, the
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string might be tied to a light ring that slides on a smooth rod perpendicular to the
length of the string (Figure 2.2.4). Again, the pulse is reflected, but this time it is
not inverted. When it reaches the post, the pulse exerts a force on the free end of
the string, causing the ring to accelerate upward. The ring overshoots the height of
the incoming pulse, and then the downward component of the tension force pulls
the ring back down. This movement of the ring produces a reflected pulse that is
not inverted and that has the same amplitude as the incoming pulse.

Finally, we may have a situation in which the boundary is intermediate
between these two extremes. In this case, part of the incident pulse is reflected
and part undergoes transmission — that is, some of the pulse passes through the
boundary. For instance, suppose a light string is attached to a heavier string, as
shown in Figure 2.2.5. When a pulse traveling on the light string reaches the
boundary between the two, part of the pulse is reflected and inverted and part is
transmitted to the heavier string. The reflected pulse is inverted for the same
reasons described earlier in the case of the string rigidly attached to a support.

Incident — INcident

—
7=, pulse @ pulse
(a)

Transmitted ~ Reflected Transmitted___,

pulse pulse s pulse =

Reflected <e—
pulse

(b)

Figure 2.2.5 (a) A pulse traveling to the right Figure 2.2.6 (a) A pulse traveling to the right
on a light string attached to a heavier string; on a heavy string attached to a lighter string;
(b) Part of the incident pulse is reflected (and (b) The incident pulse is partially reflected and
inverted), and part is transmitted to the heavier partially transmitted, and the reflected pulse is

string not inverted

Note that the reflected pulse has a smaller amplitude than the incident
pulse. We know that the energy carried by a wave proportional to its amplitude.
Thus, according to the principle of the conservation of energy, when the pulse
breaks up into a reflected pulse and a transmitted pulse at the boundary, the sum
of the energies of these two pulses must equal the energy of the incident pulse.
Because the reflected pulse contains only part of the energy of the incident pulse,
its amplitude must be smaller.

When a pulse traveling on a heavy string strikes the boundary between the
heavy string and a lighter one, as shown in Figure 2.2.6, again part is reflected
and part is transmitted. In this case, the reflected pulse is not inverted.
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In either case, the relative heights of the reflected and transmitted pulses
depend on the relative densities of the two strings. If the strings are identical,
there is no discontinuity at the boundary and no reflection takes place.

The condition imposed on the motion of the end of the string, such as
attachment to a rigid support or the complete absence of transverse force, are
called boundary conditions.

According to Eq. (2.1.22) (v=4/T/m), the speed of a wave on a string

increases as the mass per unit length of the string decreases. In other words, a
pulse travels more slowly on a heavy string than on a light string if both are under
the same tension. The following general rules apply to reflected waves:

When a wave pulse travels from medium A to medium B and vp > vg (that

Is, when B is denser than A), the pulse is inverted upon reflection. When a wave
pulse travels from medium A to medium B and v <vg (that is, when A is denser

than B), the pulse is not inverted upon reflection.

2.2.3 Interference

The principle of superposition is of central importance in all types of wave
motion. It applies not only to waves on a string, but also to sound waves,
electromagnetic waves (such as light), and all other wave phenomena in which the
wave equation is linear. Superposition of two or more waves passing through the
same region at the same time is called interference.

The superposition principle states that when two or more waves move in
the same linear medium, the net displacement of the medium (that is, the resultant
wave) at any point equals the algebraic sum of all the displacements caused by the
individual waves. Let us apply this principle to two sinusoidal waves traveling in
the same direction in a linear medium. If the two waves are traveling to the right
and have the same frequency and amplitude but differ in phase, we can express
their individual wave functions as

yp = Asin(kx -wt), and  y, = Asin(kx - wt + f),
where, as usual, k =2p /I, w=2pf, and F is the phase constant. Hence, the
resultant wave function vy is:
y =yp + Yo = Alsin(kx - wt) + Asin(kx - wt + f)].
To simplify this expression, we use the trigonometric identity
sina +sin b = 2cost b Oinf2t bo
e 2 g € 2 ¢

If we let a =kx-wt and b =kx-wt+ f, we find that the resultant wave

function y reduces to

y=2Acos§fgsin§kx—wt+I9. (2.2.1)
e2g ¢ 29
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This result has several important features. The resultant wave function vy is

also sinusoidal and has the same frequency and wavelength as the individual
waves, since the sine function incorporates the same values of k and w that
appear in the original wave functions. The amplitude of the resultant wave is

y = 2Acosage§9, and its phase is f/2. If the phase constant f equals 0, then
€2y

cosf/2 =cos0=1, and the amplitude of the resultant wave is 2A - twice the
amplitude of either individual wave. In this case, in which f =0, the waves are
said to be in phase and, thus, interfere constructively. That is, the crests and
troughs of the individual waves y; and y, occur at the same positions. In general,
constructive interference occurs when cosf/2=+1. This is true, for example,
when f=0,2p,4p,... rad —that is, when f is an even multiple of p .

When f is equal to p rad or to any odd multiple of p,
cosf/2=cosp/2=0, and the crests of one wave occur at the same positions as

the troughs of the second wave. Thus, the resultant wave has zero amplitude, and
we say that this is destructive interference. Finally, when the phase constant has
an arbitrary value other than O or other than an integer multiple of p rad, the
resultant wave has an amplitude whose value is somewhere between 0 and 2A.
We illustrate this with the aid of sound waves. One simple device for
demonstrating interference of sound waves is illustrated in Figure 2.2.7. Sound
from a loudspeaker S is sent into a tube at point P where there is a T -shaped

junction. Half of the sound power

travels in one direction, and half ([ )

travels in the opposite direction. |

path length r, can be varied by

sliding the U -shaped tube. When the
opposite side, are detected at the receiver (R).
The upper path length I'p can be varied by

Thus, the sound waves that reach the S
receiver R can travel along either of
the two paths. The distance along any
 RI
Receiver
difference in the path lengths Speaker
Dr = |r2 - l'1| Figure 2.2.7 An  acoustical  system  for
is either zero or some integer demonstrating interference of sound waves. A

path from speaker to receiver is
multiple of the wavelength I (that sound wave from the speaker (S) propagates

called the path length r. The lower

path length r is fixed, but the upper

is. r=nl. where n=012 ) the into the tube and splits into two parts at point P .
: ’ ’ The two waves, which superimpose at the

two waves reaching the receiver at
any instant are in phase and interfere

constructively. For this case, a o :
sliding the upper section
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maximum in the sound intensity is detected at the receiver. If the path length 1y is

adjusted such that the path difference Dr=1/2, 31/2, .., (2n+1)é

(for n=1,2,.3,...), two waves are exactly p rad, or 180°, out of phase at the

receiver and, hence, cancel each other. In this case of destructive interference, no
sound is detected at the receiver. This simple experiment demonstrates that a
phase difference may arise between two waves generated by the same source
when they travel along paths of unequal lengths.

It is often useful to express the path difference in terms of the phase angle
T between the two waves.

As a path difference Dr of one wavelength corresponds to a phase angle of

2p rad, we obtain the ratio I = E, or
2p |
Dr =Ll. (2.2.2)
2p
Using the notion of path difference, we can express our conditions for
constructive and destructive interference in alternative way. If the path difference
is any even multiple of I/2, then the phase angle f=2np, where n=0,1,2,3,...,

and the interference is constructive. For path differences of odd multiples of 1/2,
f=(2n+1)p, where n=123,..., and the interference is destructive. Thus, we

have the conditions
Dr = Zn% for constructive interference  (2.2.3)
and
Dr=(2n+ 1)% for destructive interference. (2.2.4)

Now we understand why the speaker wires in a stereo system should be
connected properly. When connected the wrong way — that is, when the positive
wire is connected to the negative terminal — the speakers are said to be ‘out of
phase’ because the sound wave coming from one speaker destructively interferes
with the wave coming from the other. In this situation, one speaker cone moves
outward while the other moves inward. Along a line midway between the two, a
rarefaction region from one speaker is superposed on a condensation region from
the other speaker. Although the two sounds probably do not completely cancel
each other (because the left and right stereo signals are usually not identical), a
substantial loss of sound quality still occurs at points along this line.

Example 2.2.1

A pair of speakers placed 3.00 m apart are driven by the same oscillator
(Figure 2.2.8). A listener is originally at point O which is located 8.0 m from the
center of the line connecting these two speakers. Then the listener walks to point
P, which is a perpendicular distance 0.350 m from O, before reaching the first
minimum in sound intensity. What is the frequency of the oscillator?
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t 4 ”96‘ ------ n
1.1%5m T T T=—— p 0.350m
8.0m |
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g 0
2 _-- 1.85m
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8.0m
Figure 2.2.8 A pair of speakers placed 3.0 m apart are driven by the same oscillator

Solution.

To find the frequency, we need to know the wavelength of the sound
coming from the speakers. With this information, combined with our knowledge
of the speed of sound, we can calculate the frequency. We can determine the
wavelength from the interference information given. The first minimum occurs
when the two waves reaching the listener at point P are 180° out of phase- in
other words, when their path difference Dr equals I/2. To calculate the path
difference, we must first find the path lengths r and r,

Figure 2.2.8 shows the physical arrangement of the speakers, along with
two shaded right triangles that can be drawn on the basis of the lengths described
in the problem. From these triangles, we find that the path lengths are

i =+/(6.0m)% +(L.15m)? =8.08m

and

rp = /(8.0m)2 + (1.85m)% =8.21m.
Hence, the path difference is r, -1 =0.13m. As we require that this path

difference be equal to /2 for the first minimum, we find that 7 =0.26 m.
To obtain the oscillator frequency, we use equation v = If where v is the

speed of sound in air, 343 m/s:
Exercises

2.2.1. Two identical traveling waves moving in the same direction are out
of phase by p/2 rad. What is the amplitude of the resultant wave in terms of the
common amplitude A of the two combining waves? (Ans. 1.4A.)

2.2.2. Two sinusoidal waves, identical except for phase, travel in the same
direction along a string and interfere to produce a resultant wave given by
y'= (3mm)sin(20x - 4t + 0.82rad), with x in meters and t in seconds. What are

(a) the wavelength I of the two waves, (b) the phase difference between them,
and (c) their amplitude A?
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2.2.3. Two sinusoidal waves are described by the equations
y1 = (5.0m)sin[p(4.0x -1200t)] and
Y2 =(5.0m)sin[p(4.0x -1200t - 0.250)],
where x, y are in meters and t is in seconds.
a) What is the amplitude of the resultant wave? (Ans. 9.24 m)
b) What is the frequency of the resultant wave? (Ans. 600 Hz)
2.2.4. A sinusoidal wave is described by the equation
y1 = (0.08 m)sin[2p(0.10x - 180t)],
where y; and x are in meters and t is in seconds. Write an expression for a wave
that has the same frequency, amplitude, and wavelength as y; but which, when

added to y;, gives a resultant with an amplitude of 83 cm.

2.2.5. Two waves are traveling in the same direction along a stretched
string. The waves are 90° out of phase. Each wave has amplitude of 4.0 cm. Find
the amplitude of the resultant wave. (Ans. 5.66 cm)

2.2.6. Two identical sinusoidal waves with wavelengths of 3.0 m travel in
the same direction at a speed of 2.0 m/s. The second wave originates from the
same point as the first, but at a later time. Determine the minimum possible time
interval between the starting moments of the two waves if the amplitude of the
resultant wave is the same as that of each of the two initial waves.

2.2.7. Let yp(x,t) =Agsin(wt - kyx) and yo(x,t) = Ay sin (wot - kyx) be the
solution of the wave equation for the same v. Show that
y(x,t) =y (x,t) + yo(x,t) is also a solution of the wave equation.

2.2.4 Standing Waves

We now consider a special example of interference of two identical waves
traveling in opposite directions in the same medium, for example, incident and
reflected waves. These waves combine in accordance with the superposition
principle and so-called standing waves are the result of this superposition.

We can analyze such a situation by considering wave functions for two
transverse sinusoidal waves having the same amplitude, frequency, and
wavelength but traveling in opposite directions in the same medium:

yp = Asin(kx -wt) and  y, = Asin(kx + wt),
where y; represents a wave traveling to the right and y, represents reflected

wave, traveling to the left. By adding these two functions we get the resultant
wave function vy :
y = y1 + Yo = Asin(kx - wt) + Asin(kx + wt) .
When we use the trigonometric identity:
sin(a £ b) =sinacosb xcosasinb,
letting a = kx and b =wit, this expression reduces to
y = (2Asinkx)coswt , (2.2.5)
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which is the wave function of a standing wave. A standing wave, such as the one

shown in Figure 2.2.9, is an oscillation pattern with a stationary outline that

results from the superposition of two identical waves traveling in opposite
directions.

Antinode Antinode

i Node

2A sin kx

Figure 2.2.9 Standing wave on a string. The time behavior of the vertical displacement from
equilibrium of an individual particle of the string is given by COSWt . That is, each particle
vibrates at an angular frequency W. The amplitude of the vertical oscillation of any particle
on the string depends on the horizontal position of the particle. Each particle vibrates within

the confines of the envelope function 2 Asin kx

Notice that Eq. (2.2.5) does not contain a function of (kx £ wt). Thus, it is
not an expression for a traveling wave. If we observe a standing wave, we have no
sense of motion in the direction of propagation of either of the original waves. If
we compare this equation with wave equation, we see that Eq. (2.2.5) describes a
special kind of simple harmonic motion. Every particle of the medium oscillates
in simple harmonic motion with the same frequency w (according to the coswt
factor in the equation). However, the amplitude of the simple harmonic motion of
a given particle (given by the factor 2Asinkx, the coefficient of the cosine
function) depends on the location x of the particle in the medium. We need to
distinguish carefully between the amplitude A of an individual waves and the
amplitude 2Asinkx of the simple harmonic motion of the particles of the
medium. A given particle in a standing wave vibrates within the constraints of the
envelope function 2Asinkx, where x is the particle's position in the medium.
This is in contrast to the situation in a traveling sinusoidal wave in which all
particles oscillate with the same amplitude and the same frequency and in which
the amplitude of the wave is the same as the amplitude of the simple harmonic
motion of the particles.

The maximum displacement of a particle of the medium has a minimum
value of zero when x satisfies the condition sinkx = 0, that is, when

kx=0,p,2p,3p,...
Because k =2p /I, these values for kx give

x:i, I, xzﬂ, x:n—’ (n=0,1,23,..). (2.2.6)
2 2 2

These points of zero displacement are called nodes.
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The particle with the greatest possible displacement from equilibrium has
an amplitude of 2A, and we define this as the amplitude of the standing wave.
The positions in the medium at which this maximum displacement occurs are
called antinodes. The antinodes are located at positions for which the coordinate
x satisfies the condition sinkx = +1, that is, when

=P 30 5P
- _ 2" 272
Thus, the positions of the antinodes are given by
x-i ﬂ o ﬂ (n=0,1,2,3). (2.2.7)
4474777 4

In examining Egs. (2.2.6) and (2 2.7), we note the following important
features of the locations of nodes and antinodes:

The distance between adjacent antinodes is equal to 1/2.

The distance between adjacent nodes is equal to I/2.

The distance between a node and an adjacent antinode is I/4.

Example 2.2.2

Two waves traveling in opposite directions produce a standing wave. The
individual wave functions are

y1 = (4.0cm)sin(3.0x - 2.0t) and y, = (4.0cm)sin(3.0x + 2.0t),
where x and y are measured in centimetres, t in seconds.

a) Find the amplitude of the simple harmonic motion of a particle medium
located at x =2.3 cm.

Solution.

According to Eq. (2.2.5) in this problem, we have A=4.0 cm, k=3.0
rad/cm, and w = 2.0 rad/s. Thus,

y = (2Asinkx)coswt =[(8.0cm)sin3.0x]cos2.0t .

Thus, we obtain the amplitude of the simple harmonic motion of the
particle at the position x = 2.3 by evaluating the coefficient of the cosine function
at this position:

y =(8.0cm)sin 3.0x|X:2 3= (8.0cm)sin(6.9rad) =4.6cm.

b) Find the positions of the nodes and antinodes.

Solution.

With k=2p/ I =3.0rad/cm, we see that I =2p/3 cm. Therefore, from
Eqg. (2.2.6), we find that the nodes are located at

X = né nagegg cm n=0,123,... (nodes).
e3¢
From Eq. (2.2.7), we find that the antinodes are located at
X = ni = 6539 cm n=135,.. (antinodes).
4 ¢é6¢

c) What is the amplitude of the simple harmonic motion of the particle
located at an antinode?
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Solution.

The standing wave is described by Eq. (2.2.5); the maximum displacement
of a particle at an antinode is the amplitude of the standing wave which is twice
the amplitude of the individual traveling waves:

Ymax = 2A=2(4.0cm) =8.0 cm.

Let us check this result by evaluating the coefficient of our standing-wave

function at the positions we found for the antinodes:

y =(8.0cm)sin 3.0x|X = (8.0cm)sin§3.0 naep gradg =8.0cm.
6

=n(p /6 E6g |
In evaluating this expression, we have used the fact that n is an odd
integer; thus, the sine function is equal to unity.

Exercises

2.2.8. Two sinusoidal waves traveling in opposite directions interfere to
produce a standing wave described by the equation
y = (2.50m)sin(0.40x) cos(200t),
where x is in metres and t is in seconds. Determine the wavelength, frequency,
and speed of the interfering waves.
2.2.9. Two waves on a long string are described by the equations

yp =(0.015 m)cosé5 ~40t? and yo =(0.015 m)cosé5 + 40t9,
82 g g2 g

where y1, Yo, and x are in metres and t is in seconds. (a) Determine the position

of the nodes of the resulting standing wave. (b) What is the maximum
displacement at the position x =0.40 m?

2.2.10. Two speakers are driven by a common oscillator at 800 Hz and face
each other at a distance of 1.25 m. Locate the points along a line joining the two
speakers where relative minima would be expected. (Use v =343 m/s.)

2.2.11. Two waves that set up a standing wave on a long string are given by
the expressions

yp = Asin(kx -wt+f) and y, = Asin(kx +wt).
Show (a) that the addition of the arbitrary phase angle changes only the position
of the nodes, and (b) that the distance between the nodes remains constant in time.

2.2.12. Two sinusoidal waves combining in a medium are described by the
equations

y; = (3cm)sinp(x+0.6t) and y, =(3cm)sinp(x - 0.6t),
where x is in centimetres and t is in seconds. Determine the maximum
displacement of the medium at (a) x =0.25 cm, (b) x=0.5 cm, and (¢c) x =15
cm. (d) Find the three smallest values of x, corresponding to antinodes.

2.2.13. A standing wave is formed by the interference of two traveling
waves, each of which has an amplitude A =p cm, angular wave number k =p /2
cm™, and angular frequency w =10p rad/s. (a) Calculate the distance between the
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first two antinodes. (b) What is the amplitude of the standing wave at
x=0.25 cm?
2.2.14. Verify by direct substitution that the wave function for a standing
wave given in equation y =2Asinkxcoswt is a solution of the general linear
2 2
wave equation: f g/:izﬂ 2y
= vo Tt

2.2.5 Standing Waves in a String Fixed at Both Ends

We know about reflection, or echo, of sound waves from rigid walls and
the analogous reflection of transverse wave on a string from rigidly held ends.
Now suppose we have two parallel walls. If a sharp sound pulse such as a hand
clap originates at a point between the walls, the result is a series of regularly
spaced echoes caused by the repeated back-and-forth reflection between the walls.
In room acoustics, this phenomenon is called "flutter echo”.

For transverse waves on a string, the analogous situation occurs if a string
of some definite length L (Figure 2.2.10a) is rigidly held at both ends. If a
sinusoidal wave is produced on such a string, the wave is reflected and re-
reflected. Note that the ends of the string, because they are fixed and must
necessarily have zero displacement, are nodes by definition. The string has a
number of natural patterns of oscillation, called normal modes, each of which has
a characteristic frequency that is easily calculated.

A
: L =| |@I
1
n=1 L:EIl
(b)

(a)

n=2

= 3
n=3 L=— |3
(©) (d) 2
Figure 2.2.10 (a) A string of length L fixed at both ends. The normal modes of vibration

form a harmonic series; (b) the fundamental or first harmonic; (c) the second harmonic; (d)
the third harmonic
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In general, we can describe the normal modes of oscillation for the string
by imposing the requirements that the ends must be nodes and that the nodes and
antinodes must be separated by one fourth of a wavelength. The first normal
mode, shown in Figure 2.2.10b, has nodes at its ends and one antinode in the
middle. This is the longest-wavelength mode and is consistent with our
requirements. This first normal mode occurs when the wavelength I is twice the

length of the string, that is. k; =2L. The next normal mode, of wavelength I,

(see Figure 2.2.10c), occurs when the wavelength equals the length of the string,
that is, I, = L. The third normal mode (see Figure 2.2.10d) corresponds to the

case when I3 =2L/3. In general, the wavelengths of various normal modes for a

string of length L fixed at both ends is defined as
I, =&, (n=1,2,3,...), (2.2.8)
n
where the index n refers to the n-th normal mode of oscillation. These are the
possible modes of oscillation for the string.

In general, the motion of an oscillating string fixed at both ends is
described by the superposition of several normal modes. The exact normal mode
depends on how the oscillation is started.

The natural frequencies associated with these modes are obtained from the
relationship f =v/ I, where the wave speed v is the same for all frequencies.
Using Eq. (2.2.8), we find that natural frequencies f,, of the normal modes are

Y Y
f.=—=n— (n=12,3,...). 2.2.9
=3 "o ¢ ) (229)
Because v =T /m where T is the tension in the string and m is its linear mass
density, we can also express the natural frequencies of a taut string as
n |T
fo=— |—, n=123..). 2.2.10
R T ) (2210)
The lowest frequency f;, which corresponds to n=1, is called either
fundamental or fundamental frequency and is given by
1 T
fi=— |—. 2.2.11
1= 50\ ( )

Frequencies of the remaining normal modes are integer multiples of the
fundamental frequency. Frequencies of normal modes that exhibit an integer—
multiple relationship such as this form a harmonic series, and the normal modes
are called harmonics. The fundamental frequency f; is the frequency of the first
harmonic; the frequency f, =21, is the frequency of the second harmonic; and

the frequency f,, =nfy is the frequency of the n-th harmonic. Other oscillating
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systems, such as a drumhead, exhibit normal modes, but the frequencies are not
related as integer multiples of a fundamental. Thus, we do not use the term
harmonic in association with these types of systems.

This series of frequencies, all integer multiples of the fundamental, is called
a harmonic series. Musicians sometimes call f,, f3, and so on overtones; f, is

the second harmonic, or the the first overtone, f3 is the third harmonic, or the

second overtone, and so on.

In obtaining Eq. (2.2.8), we used a technique based on the separation
distance between nodes and antinodes. We can obtain this equation in an
alternative manner. These results may also be obtained directly from Eq. (2.2.5):

y = (2Asinkx)coswt .

The boundary conditions require that y; +y, =0 at the ends of the string, that is,

at x=0 and x = L. Since the sine of zero is zero, the first condition is satisfied
automatically. The second condition requires that sinkL =0, and this is true only
when k has certain special values. The sine of an angle is zero only when the
angle is zero or an integer multiple of p (180°). Thus, we must have

kL =np (n=123,...).

We do not include the possibility n=0 because that gives k =0, that is, a
wave with zero displacement everywhere (a possible case, to be sure, but not a
very interesting one).

Replacing k above by 2p/ I', we obtain
—=np or | -2t

I " n’
in agreement with Eq. (2.2.8).

Each of the frequencies given by Eq. (2.2.9) corresponds to a possible
normal mode of motion, that is, a motion in which each particle of the string
moves sinusoidally, all with the same frequency. As this analysis shows, there is
an infinite number of normal modes, each with its characteristic frequency. This
situation is in striking contrast with the simple harmonic oscillator system
consisting of a single mass and a spring. The harmonic oscillator has only one
normal mode and one characteristic frequency while the vibrating string has an
infinite number.

If a string is initially displaced so that its shape is the same as any one of
the possible harmonics, it will vibrate, when released, at the frequency of that
particular harmonic. But when a piano string is struck or a guitar string is
plucked, not only the fundamental but many of the overtones are present in the
resulting vibration. This motion is, therefore, a combination, or superposition, of
normal modes. Several frequencies and motions are present simultaneously, and
the displacement of any point on the string is the sum (or superposition) of
displacements associated with the individual modes. Indeed, every possible
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motion of the string can be represented as some superposition of' normal-mode
motions.
The fundamental frequency of a vibrating string is f; =v/2L where

v=./T/m. It follows that

(= 1 T
TR
Stringed instruments provide many examples of the implications of this

equation. For example, all such instruments are tuned by varying the tension T.
An increase of tension increases the frequency or pitch, and vice versa. The
inverse dependence of frequency on length L is illustrated by the long strings of
the bass section of the piano or the bass viol compared with the shorter strings on
the piano treble or the violin. In playing the violin or guitar, the usual means of
varying the pitch is to press the strings against the fingerboard with the fingers to
change the length of the vibrating portion of the string.

Example 2.2.3

The high E string on a guitar measures 64.0 cm in length and has a
fundamental frequency of 330 Hz. By pressing down on it at the first fret, the
string is shortened so that it plays an F note that has a frequency of 350 Hz. How
far is the fret from the neck end of the string?

Solution.

Eq. (2.2.9) relates the string length to the fundamental frequency. With
n =1, we can solve for the speed of the wave on the string,

2L

TE i W(sso Hz) = 422 ms.
n

Because we have not adjusted the tuning peg, the tension in the string, and,
hence, the wave speed, remain constant. We can again use Eq. (2.2.9), this time
solving for L and substituting the new frequency to find the shortened string
length:

L=nV =@)-222MS _ 4603 m.
21, 2(350Hz2)
The difference between this length and the measured length of 64.0 cm is the
distance from the fret to the neck end of the string, or 3.70 cm.

Exercises

2.2.15. A 2.0-m-long wire having a mass of 0.10 kg is fixed at both ends.
The tension in the wire is maintained at 20.0 N. What are the frequencies of the
first three allowed modes of vibration? If a node is observed at a point 0.40 m
from one end, in what mode and with what frequency is it vibrating?
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2.2.16. Find the fundamental frequency and the next three frequencies that
could cause a standing-wave pattern on a string that is 30.0 m long, has a mass

per length of 9~ 1078 kg/m, and is stretched to a tension of 20.0 N.

2.2.17. A standing wave is established in a 120-cm-long string fixed at both
ends. The string vibrates in four segments when driven at 120 Hz. (a) Determine
the wavelength. (b) What are the fundamental frequencies of the string?

2.2.18. A string of length L, mass per unit length m, and tension T is
vibrating at its fundamental frequency. Describe the effectt that each of the
following conditions has on the fundamental frequency: (a) The length of the
string is doubled, but all other factors are held constant; (b) The mass per unit
length is doubled, but all other factors are held constant; (c) The tension is
doubled, but all other factors are held constant.

2.2.19. A 60.0-cm guitar string under a tension of 50.0 N has a mass per
unit length of 0.10 g/cm. What is the highest resonance frequency of the string
that can be heard by a person able to hear frequencies of up to 20 000 Hz?

2.2.20. A stretched wire vibrates in its first normal mode at a frequency of
400 Hz. What would be the fundamental frequency if the wire were half as long,
its diameter were doubled and its tension were increased four-fold?

2.2.21. A string under tension T, oscillates in the third harmonic at a

frequency of fg, and the waves on the string have a wavelength I5. If the tension
is increased to Tt =4T;, and the string is again made to oscillate in the third

harmonic, what are (a) the frequency of oscillation in terms of f3 and (b) the
wavelength of the waves in terms of I3?

2.2.22. A nylon guitar string has a linear density of 7.2 g/m and is under a

tension of 150 N. Fixed supports are 90 cm apart. The string is oscillating in the

| 90.0 cm | standing wave pattern shown in

Figure 2.2.10. Calculate the (a) speed,

(b) wavelength and (c) frequency of the

—— i,

e < e _ - traveling waves whose superposition
Figure 2.2.10 The string is oscillating in the produces this standing wave. [Ans. (a)
standing wave pattern 140 m/s, (b) 60 cm, 1.4 Ymax)

2.2.23. Two sinusoidal waves with identical wavelengths and amplitudes
travel in opposite directions along a string with a speed of 10 cm/s. If the time
interval between instants when the string is flat is 0.50 s, what is the wavelength
of the waves?

2.2.24. A 125 cm length of string has a mass of 2.0 g. It is stretched with a
tension of 7.0 N between fixed supports. (a) What is the wave speed for this
string? (b) What is the lowest resonant frequency of this string?

2.2.25. What are the three lowest frequencies for standing waves on a wire
10.0 m long having a mass of 100 g, which is stretched under a tension of 250 N?
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2.2.26. A string oscillates according to the equation

y= (O.50m)sina§B xgcos40pt.
€3 o

What are (a) the amplitude and (b) the speed of the two waves (identical except
for direction of travel) whose superposition gives this oscillation? (c) What is the
distance between nodes? (d) What is the speed of a particle of the string at the
position x =1.5 cmwhen t =9/8 s?

2.2.27. A string 3.0 m long is oscillating as a three-loop standing wave with
an amplitude of 1.0 cm. The wave speed is 100 m/s. (a) What is the frequency?
(b) Write equations for two waves that, when combined, will result in this
standing wave.

2.2.28. In an experiment on standing waves, a string 90 cm long is attached
to a prong of an electrically driven tuning fork that oscillates perpendicular to the
length of the string at a frequency of 60 Hz. The mass of the string is 0.044 kg.
What tension must the string be under (weights are attached to the other end) if it
is to oscillate in four loops?

2.2.29. Oscillation of a 600 Hz tuning fork sets up standing waves in a
string clamped at both ends. The wave speed for the string is 400 m/s. The
standing wave has four loops and an amplitude of 2.0 mm. (a) What is the length
of the string? (b) Write an equation for the displacement of the string as a function
of position and time.

2.2.30. A rope, under a tension of 200 N and fixed at both ends, oscillates
in a second-harmonic standing wave pattern. The displacement of the rope is
given by

y= (O.lm)singggsianpt,
€29g

where x =0 at one end of the rope, x is in metres, and t is in seconds. What are
(a) the length of the rope; (b) the speed of the waves on the rope; and (c) the mass
of the rope? (d) If the rope oscillates in a third-harmonic standing wave pattern,
what is the period of oscillation?

2.2.6 Resonance

We have seen that a system such as a taut string is capable of oscillating in
one or more normal modes of oscillation. If a periodic force is applied to such a
system, the amplitude of the resulting motion is greater than normal when the
frequency of the applied force is equal to or nearly equal to one of the natural
frequencies of the system. We have discussed this phenomenon, known as
resonance. Although a block-spring system or a simple pendulum has only one
natural frequency, standing wave systems can have a whole set of natural
frequencies. Because an oscillating system exhibits a large amplitude when driven
at any of its natural frequencies, these frequencies are often referred to as
resonance frequencies.
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Figure 2.2.12 shows the response of an oscillating system to various
driving frequencies, where one of the resonance frequencies of the system is
denoted by fp. Note that the oscillation amplitude of the system is the greatest

when the frequency of the driving force equals the resonance frequency. The
maximum amplitude is limited by friction in the system. If a driving force begins
to work on an oscillating system initially at rest, the input energy is used both to
increase the amplitude of the oscillation and to overcome the frictional force.
Once maximum amplitude is reached, the work done by the driving force is used
only to overcome friction.

A system is said to be weakly
damped when the amount of friction to be
overcome is small. Such a system has a
large amplitude of motion when driven at
one of its resonance frequencies, and the
oscillations persist for a long time after
the driving force is removed. A system in
which considerable friction must be
overcome is said to be strongly damped.
: For a given driving force applied at a
fo resonance frequency, the maximum

Frequency of driving force amplitude attained by a strongly damped
Figure 2212 Graph of the amplitude OSCillator is smaller than that attained by a
(response) versus driving frequency for an  comparable weakly damped oscillator.
oscillating system. The amplitude is a Once the driving force in a strongly
maximum at the resonance frequency fg. damped oscillator is removed, the

Note that the curve is not symmetric amplitude decreases rapidly with time.

Amplitude

Exercises

2.2.27. Chains suspending a child swing are 2.0 m long. At what frequency
should a big brother’s push make the child swing with greatest amplitude?

2.2.28. Standing wave vibrations are set in a crystal goblet with four
antinodes equally spaced around the 20.0-cm circumference of its rim. If
transverse waves move around the glass at 900 m/s, an opera singer would have to
produce a high harmonic with what frequency to shatter the glass with a resonant
vibration?

2.2.29. An earthquake can produce a seiche in a lake in which the water
sloshes back and forth from end to end with a remarkably large amplitude and
long period. Consider a seiche produced in a rectangular farm pond. Suppose that
the pond is 9.15 m long and of uniform depth. You measure that a wave pulse
produced at one end reaches the other end in 2.50 s. (a) What is the wave speed?
(b) To produce the seiche, you suggest that several people stand on the bank at
one end and paddle together with snow shovels, moving them in simple harmonic
motion. What must be the frequency of this motion?
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2.2.30. A 125 cm length of string has a mass of 2.0 g. It is stretched with a
tension of 7.0 N between fixed supports. (a) What is the wave speed of the string?
(b) What is the lowest resonant frequency of the string?

2.2.31. A string A is stretched between two clamps separated by distance
L. A string B with the same linear density and under the same tension as string A,
is stretched between two clamps separated by distance 4L. Consider the first
eight harmonics of the string B. Which, if any, has a resonant frequency that
matches a resonant frequency of the string A?

2.2.32. A string that is stretched between fixed supports separated by 75.0
cm has resonant frequencies of 420 and 315 Hz with no intermediate resonant
frequencies. What are (a) the lowest resonant frequency and (b) the wave speed?
[Ans. (a) 105 Hz, (b) 158 m/s.]

2.2.7 Longitudinal Standing Waves

When longitudinal waves propagate in a fluid or gas in a tube of finite
length, they are reflected from the ends in the same way that transverse waves on
a string are reflected at its ends. The superposition of the waves traveling in
opposite directions again forms a standing wave.

When reflection takes place at a closed end, the displacement of the
particles is always equal to zero. This situation is analogous to a fixed end of a
string; in both cases there is no displacement at the end, and the end is a node . For
clarity, in the following discussion, we call a closed end of a tube or pipe a
displacement node. Furthermore, because the pressure wave is 90° out of phase
with the displacement wave, the closed end of an air column corresponds to a
pressure antinode (that is, a point of maximum pressure variation).

If the end of the tube is open, the nature of the reflection is more complex
and depends on whether the tube is wide or narrow compared with the
wavelength. If the tube is narrow compared with the wavelength, which is the
case in most musical instruments, the open end is a displacement antinode and a
pressure node. (A free end of a stretched string is also a displacement antinode.)
Thus longitudinal waves in a column of gas are reflected at the closed and open
ends of a tube in the same way that transverse waves in a string are reflected at
fixed and free ends, respectively.

You may wonder how a sound wave can reflect from an open end, since
there may not appear to be a change in the medium at this point. It is indeed true
that the medium through which the sound wave moves is air both inside and
outside the pipe. Remember that sound is a pressure wave, however, and a
compression region of the sound wave is constrained by the sides of the pipe as
long as the region is inside the pipe. As the compression region exits at the open
end of the pipe, the constraint is removed and the compressed air is free to expand
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into the atmosphere. Thus, there is a change in the character of the medium
between the inside of the pipe and the outside even though there is no change in
the material of the medium. This change in character is sufficient to allow some
reflection.

The first three normal modes of oscillation of a pipe open at both ends are
shown in Figure 2.2.13a. When air is directed against an edge at the left,
longitudinal standing waves are formed, and the pipe resonates at its natural
frequencies. All normal modes are excited simultaneously (although not with the
same amplitude). Note that both ends are displacement antinodes (approximately).
In the first normal mode, the standing wave extends between two adjacent
antinodes which is a distance of half a wavelength. Thus, the wavelength is twice

the length of the pipe, and the fundamental frequency is fl:%' As Figure

2.2.13a shows, the frequencies of the higher harmonics are 2f;, 3f;. Thus, we

can say that in a pipe open at both ends, the natural frequencies of oscillation
form a harmonic series that includes all integral multiples of the fundamental
frequency.

Because all harmonics are present and because the fundamental frequency
Is given by the same expression as that for a string (see Eg. (2.2.9)), we can
express the natural frequencies of oscillation as

v
fo=n— n=123...). 2.2.12
=N ) (2212)

Despite the similarity between Egs. (2.2.9) and (2.2.12), we must remember
that in Eq. (2.2.9), v is the speed of waves on the string, whereas in Eq. (2.2.12),
v is the speed of sound in air.

If a pipe is closed at one end and open at the other, the closed end is a
displacement node (see Figure 2.2.13b). In this case, the standing wave for the
fundamental mode extends from an antinode to the adjacent node, which is one
fourth of a wavelength. Hence, the wavelength for the first normal mode is 4L,
and the fundamental frequency is f; =v/4L. As Figure 2.2.13b shows, the

higher-frequency waves that satisfy our conditions are those that have a node at
the closed end and an antinode at the open end; this means that the higher
harmonics have frequencies 3f;, 5f;.

It is interesting to investigate what happens to the frequencies of
instruments based on air columns and strings during a concert as the temperature
rises. The sound emitted by a flute, for example, becomes sharp (increases in
frequency) as it warms up because the speed of sound increases in the
increasingly warmer air inside the flute (consider Eq. (2.2.12)). The sound
produced by a violin becomes flat (decreases in frequency) as the strings expand
thermally because the expansion causes their tension to decrease.
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(b) Closed at one end, open at the other

Figure 2.2.13 Motion of air molecules in standing longitudinal waves in a pipe along with
schematic representations of the waves. The graphs represent the displacement amplitudes,
not the pressure amplitudes. (a) In a pipe open at both ends, the harmonic series created

consists of all integer multiples of the fundamental frequency fl, 2 fl, 3f1, (b) In a pipe
closed at one end and open at the other, the harmonic series created consists of only
odd-integer multiples of the fundamental frequency fq, 3f;, 5f;

We can demonstrate longitudinal standing waves in a column of gas and
measure the wave speed by using the apparatus called Kundt's tube, shown in
Figure 2.2.14. A glass tube a metre or so long is closed at one end and has a
flexible diaphragm at the other end that can transmit vibrations. We use a sound
source which might be a small loudspeaker driven by an audio oscillator and
amplifier to vibrate the diaphragm sinusoidally with a variable frequency. A small
amount of light powder or cork dust is distributed uniformly along the bottom
side of the tube. As we vary the frequency of the sound, we pass through
frequencies where the amplitude of the standing waves becomes large enough for
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the moving gas to sweep the cork dust along the tube at all points where the gas is
in motion. The powder, therefore, collects at the displacement nodes, which can
be seen and measured easily.

Gas inlet
tube
Ej .
N A N A A N A N
Vibrating diaphragm Powder collects at the nodes

Figure 2.2.14 Kundt's tube for determining the velocity of sound in a gas. The shading
represents the density of the gas molecules at an instant when the pressure at the
displacement nodes is a maximum or a minimum

In a standing wave, the distance between two adjacent nodes is one-half
(not one) wavelength. Thus, we can measure the wavelength by measuring the
distances [/2 between adjacent clumps of powder. We read the frequency f

from the oscillator dial and can calculate the speed v of the waves from the usual
relation
v=1If.

At a displacement node, the pressure variations above and below the
average have their maximum value, while at a displacement antinode the pressure
does not vary. To understand this, note that two small masses of gas on opposite
sides of a displacement node vibrate in opposite phase. When the masses of gas
approach each other, the gas between them is compressed and the pressure rises;
when they recede from each other, the pressure drops. But two small masses of
gas on opposite sides of a displacement antinode vibrate in phase and so cause no
pressure variations at the antinode.

We can describe this relationship in terms of pressure nodes, which are the
points where the pressure does not vary, and pressure antinodes, which are the
points where its variation is greatest. A pressure node is always a displacement
antinode, and a pressure antinode is always a displacement node. An open end of
a thin tube or pipe is a pressure node because such an end is open to the
atmosphere and is, thus, at constant pressure. But for this reason, an open end is
always a displacement antinode.
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Example 2.2.4

A section of drainage culvert 1.23 m in length makes a howling noise when
the wind blows.

a) Determine the frequencies of the first three harmonics of the culvert if it
Is open at both ends. Take v =343 m/s as the speed of sound in air.

Solution.
The frequency of the first harmonic of a pipe open at both ends is
flzizm:jﬁg Hz.
2L 2(1.23m)

Because both ends are open, all harmonics are present; thus,
fp =21, =278 Hz and f3=3f; =417 Hz.
b) What are the three lowest natural frequencies of the culvert if it is
blocked at one end?

Solution.
The fundamental frequency of a pipe closed at one end
flzi:M:ng Hz.
4L 4(1.23m)

In this case, only odd harmonics are present; hence, the next two harmonics

have frequencies f3 =3f; =209 Hz and
f5 = 5f1 =549 Hz.

c) For the culvert open at both ends, how many of the harmonics present
fall within the normal human hearing range (20 to 17000 Hz)?

Solution.

Because all harmonics are present, we can express the frequency of the
highest harmonic heard as f, = nf; where n is the number of harmonics that we
can hear. For f, =17000 Hz, we find that the number of harmonics present in the

audible range is
n= 17000Hz —122
139Hz

Only the first few harmonics are of sufficient amplitude to be heard.
Exercises

2.2.33. Calculate the length of a pipe that has a fundamental frequency of
240 Hz if the pipe is (a) closed at one end and (b) open at both ends.

2.2.34. The fundamental frequency of an open organ pipe corresponds to
middle C (261.6 Hz on the chromatic musical scale). The third resonance of a
closed organ pipe has the same frequency. What are the lengths of the two pipes?
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2.2.35. Estimate the length of your ear canal from its opening at the
external ear to the eardrum. If you regard the canal as a tube that is open at one
end and closed at the other, at approximately what fundamental frequency would
you expect your hearing to be most sensitive? Explain why you can hear
especially soft sounds just around this frequency.

2.2.36. The longest pipe on an organ that has pedal stops is often 4.88 m.
What is the fundamental frequency (at 0°C) if the nondriven end of the pipe is (a)
closed and (b) open? (c) What are the frequencies at 20.0°C?

2.2.8 Standing Waves on Rods and Plates

Standing waves can also be set up on rods and plates. A rod clamped in the
middle and stroked at one end oscillates, as depicted in Figure 2.2.15a. The
oscillations of the particles of the rod are longitudinal, and so the broken lines in
Figure 2.2.15b represent longitudinal displacements of various parts of the rod.
For clarity, we have drawn them in the transverse direction, just as we did for air
columns. The midpoint is a displacement node because it is fixed by the clamp,
whereas the ends are displacement antinodes because they are free to oscillate.
The oscillations in this setup are analogous to those in a pipe open at both ends. In
Figure 2.2.15a the broken lines represent the first normal mode for which the
wavelength is 2L and the frequency is f =v/2L where v is the speed of
longitudinal wave in the rod. Other normal modes may be excited by clamping
the rod at different points. For example, the second normal mode (Fig. 2.2.15b) is
excited by clamping the rod a distance L/4 away from one end.

L
B L | 4
| |
\\\\ ///,’ \\ // \\ //
| X | | — |
A _-TINTS~o_ A/,/N\\A//N\\A
P P
1, =2L I,=L
u u u
fi=—=— fo===2f
17, 72 2Tt
(a) (b)

Figure 2.2.15 Normal-mode longitudinal vibrations of a rod of length L (a) clamped at the

middle to produce the first normal mode and (b) clamped at a distance L /4 from one end to

produce the second normal mode. Note that the dashed lines represent amplitudes parallel to
the rod (longitudinal waves)



151

Two-dimensional oscillations can be set up in a flexible membrane
stretched over a circular hoop, such as that in a drumhead. As the membrane is
struck at some point, wave pulses that arrive at the fixed boundary are reflected
many times. The resulting sound is not harmonic because the oscillating
drumhead and the drum'’s hollow interior together produce a set of standing waves
having frequencies that are not related by integer multiples. Without this
relationship, the sound may be more correctly described as noise than as music.
This is in contrast to the situation in wind and stringed instruments which produce
sounds that we describe as musical.

Some possible normal modes of oscillation for a two-dimensional circular
membrane are shown in Figure 2.2.16. The lowest normal mode, which has a
frequency f, contains only one nodal curve; this curve runs around the outer

edge of the membrane. The other possible normal modes show additional nodal
curves that are circles and straight lines across the diameter of the membrane.

1.593 £,

2917 £,

4.230 f;

Figure 2.2.16 Representation of some of the normal modes possible in a circular
membrane fixed at its perimeter. The frequencies of oscillation do not form a harmonic

series
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Exercises

2.2.37. An aluminum rod is clamped one quarter of the way along its length
and set into longitudinal vibration by a variable-frequency driving source. The
lowest frequency that produces resonance is 4400 Hz. The speed of sound in
aluminum is 5100 m/s. Determine the length of the rod.

2.2.38. An aluminum rod 1.60 m in length is held at its centre. It is stroked
with a rosin-coated cloth to set up a longitudinal vibration. (a) What is the
fundamental frequency of the waves established in the rod? (b) What harmonics
are set in the rod held in this manner? (c) What would be the fundamental
frequency if the rod were made of copper?

2.2.39. A 60.0-cm metal bar that is clamped at one end is struck with a
hammer. If the speed of longitudinal (compressional) waves in the bar is 4,500
m/s, what is the lowest frequency with which the struck bar resonates?

2.2.9 Beats: Interference in Time

The interference phenomena with which we have been dealing so far
involve the superposition of two or more waves having the same frequency. As
the resultant wave depends on the coordinates of the disturbed medium, we refer
to the phenomenon as spatial interference. Standing waves in strings and pipes
are common examples of spatial interference.

We now consider another type of interference, the one that results from the
superposition of two waves having slightly different frequencies. In this case,
when two waves are observed at the point of superposition, they are periodically
in and out of phase. That is, there is a temporal (time) alternation between
constructive and destructive interference. Thus, we refer to this phenomenon as
interference in time, or temporal interference. For example, if two tuning forks of
slightly different frequencies are struck, one hears a sound of periodically varying
intensity. This phenomenon is called beating:

Beating is the periodic variation in intensity at a given point due to the
superposition of two waves having slightly different frequencies.

The number of intensity maxima one hears per second, or the beat
frequency, equals the difference in frequency between the two sources, as we
shall show below. The maximum beat frequency that the human ear can detect is
about 20 beats/s. When the beat frequency exceeds this value, the beats blend
indistinguishably with the compound sounds producing them.

A piano tuner can use beats to tune a stringed instrument by "beating"” a
note against a reference tone of known frequency and then adjust the string
tension until the frequency of the sound it emits equals the frequency of the
reference tone. The tuner does this by tightening or loosening the string until the
beats produced by it, and the reference source become too infrequent to notice.
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Consider two sound waves of equal amplitude traveling through a medium
with slightly different frequencies f; and f,. We use equations similar to Eq.
(2.1.7) to represent the wave functions for these two waves at a point that we
choose as x=0:
y1 = Acoswt = Acos 2pfit,
yo = Acoswyt = Acos 2pfat .
Using the superposition principle, we find that the resultant wave function
at this point is
y = y1 + Yo = A(cos 2pfit + cos 2pf,t .
The trigonometric identity

hs +ha
cosa+cosb=2cos§a bg osga bg
e g € 2 g
allows us to write this expression in the form
y = 2A20032p§ fi- t cos2pi—L -2 ght 0 (2.2.13)
€ e ol E 2 g

Graphs of the individual waves and the resultant wave are shown in
Figure 2.2.17. From the factors in Eq. (2.2.13), we see that the resultant sound for
a listener standing at any given point has an effective frequency equal to the
average frequency (f;+ fo)/2 and an amplitude given by the expression in the

square brackets:
f2 0
5

Aresult = 2Acos 2pg (2.2.14)

MA’*f\”f’\”ﬂ“ﬂ“‘n\n . Af*n’“ﬁﬂf\“‘r\\% |

Figure 2.2.17 Beats are formed by the combination of two waves of slightly different
frequencies. (a) The individual waves. (b) The combined wave has an amplitude (broken line)
that oscillates in time

That is, the amplitude and therefore the intensity of the resultant sound vary
in time. The broken line in Figure 2.2.17b is a graphical representation of EQq.
(2.2.14) and is a sine wave varying with frequency (f; - f5)/2.
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Note that a maximum in the amplitude of the resultant sound wave is
detected whenever

fl f2 0
'}

This means there are two maX|ma in each period of the resultant wave.
Because the amplitude varies with frequency as (f; - f»)/2, the number of beats
per second, or the beat frequency fj, is twice this value. That is,

fb = | fl - f2| (2215)

For instance, if one tuning fork vibrates at 438 Hz and a second one
vibrates at 442 Hz, the resultant sound wave of the combination has a frequency
of 440 Hz (the musical note A) and a beat frequency of 4 Hz. A listener would

hear a 440-Hz sound wave go through an intensity maximum four times every
second.

cosZpg =t = £1.

Example 2.2.5

You wish to tune the note A; on a piano to its proper frequency of 220 Hz.
You have available a tuning fork of frequency is 440 Hz. How should you
proceed?

Solution.

Two frequencies are too far apart to produce beats and the piano string will
oscillate not only in its fundamental mode (at 220 Hz when tuned) but also in its
second harmonic mode (at 440 Hz when in tune). Thus, with the string somewhat
out of tune, the frequency of its second harmonic will beat against the 440 Hz of
the tuning fork. To tune the string, you can listen for those beats and then either
tighten or loosen the string to decrease the beat frequency until the beating
disappears.

Exercises

2.2.40. In certain ranges of a piano keyboard, more than one string is tuned
to the same note to provide extra loudness. For example, the note at 110 Hz has
two strings that vibrate at this frequency. If one string slips from its normal
tension of 600 N to 540 N, what beat frequency is heard when the hammer strikes
the two strings simultaneously?

2.2.41. While attempting to tune the note C at 523 Hz, a piano tuner hears 2
beats/s between a reference oscillator and the string. (a) What are the possible
frequencies of the string? (b) When she tightens the string slightly, she hears 3
beats/s. What is the frequency of the string now? (c) By what percentage should
the piano tuner now change the tension in the string to bring it into tune?

2.2.42. A student holds a tuning fork oscillating at 256 Hz. He walks
toward a wall at a constant speed of 1.33 m/s. (a) What beat frequency does he
observe between the tuning fork and its echo? (b) How fast must he walk away
from the wall to observe a beat frequency of 5.00 Hz?
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2.2.10 Energy in a Standing Wave

It is instructive to describe the energy associated with the particles of a
medium in which a standing wave exists. Consider a standing wave formed on a
taut string fixed at both ends, as shown in Figure 2.2.18. Except for the nodes,
which are always stationary, all points on the string oscillate vertically with the
same frequency but with different amplitudes of simple harmonic motion. Figure
2.2.18 represents snapshots of a standing wave at various times over one half of a
period.

®) t=T/8

©) vy =74 @ t=3T/8

(e)
t=T/2

Figure 2.2.18 A standing-wave pattern in a taut string. The five "snapshots" were taken at
half-cycle intervals. (a) At t =0, the string is momentarily at rest; thus, K =0, and all the
energy is potential energy U associated with the vertical displacements of the string particles.
(b) At t =T /8, the string is in motion, as indicated by the arrows, and the energy is half
kinetic and half potential. (c) At t =T /4, the string is moving but horizontal (undeformed);
thus, U =0, and all the energy is kinetic. (d) The motion continues as indicated. (e) At
t =T /2, the string is again momentarily at rest, but the crests and troughs of (a) are
reversed. The cycle continues until ultimately, when a time interval equal to T has passed, the
configuration shown in (a) is repeated

In a traveling wave energy is transferred along with the wave. We can
imagine this transfer to be due to work done by one segment of the string on the
next segment. As one segment moves upward, it exerts a force on the next
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segment, moving it through a displacement — that is, work is done. A particle of
the string at a node, however, experiences no displacement. Thus, it cannot do
work on the neighboring segment. As a result, no energy is transmitted along the
string across a node, and energy does not propagate in a standing wave. For this
reason, standing waves are often called stationary waves.

The energy of the oscillating string continuously alternates between elastic
potential energy, when the string is momentarily stationary (see Figure 2.2.18a),
and kinetic energy, when the string is horizontal and the particles have their
maximum speed (see Figure 2.2.18c). At intermediate times (see Figure 2.2.18b
and d), the string particles have both potential energy and kinetic energy

Exercises

2.2.43. Show that the maximum Kinetic energy in each loop of a standing

wave produced by two travelling waves of identical amplitudes is 2p2my§1ax fv.

2.2.44. Two pulses travel along a string in opposite directions. The wave
speed v is 2.0 m/s and the pulses are 6.0 cm apart at t = 0. In what form (or type)
Is the energy of the pulses at t =15 ms?

Summary

A wave that reaches a boundary of the medium in which it propagates is
reflected. At any point where the initial and reflected waves overlap, the total
wave displacement is the sum of the displacements of the individual waves; this
statement is the principle of superposition.

When two traveling waves having equal amplitudes and constant phase
difference superimpose, the resultant wave has an amplitude that depends on the
phase angle F between the two waves. Constructive interference occurs when the
two waves are in phase, corresponding to f=0,2p,4p,.. rad. Destructive
interference occurs when two waves are 180° out of phase, corresponding to
f=p,3p,5p,.. rad.

Standing waves are formed from the superposition of two sinusoidal waves
having the same frequency and amplitude but traveling in opposite directions. The
resultant standing wave is described by the wave function

y = (2Asinkx)coswt .

Hence, the amplitude of the standing wave is 2A, and the amplitude of the
simple harmonic motion of any particle of the medium varies according to its
position as 2Asinkx. The points of zero amplitude (nodes) occur at x=nl/2
(n=0,1,2,3,..) The maximum amplitude points (called antinodes) occur at

x=nl/4, (n=13,5,..). Adjacent antinodes are separated by a distance I/2.

Adjacent nodes are also separated by a distance I/2.

When a wave is reflected from a fixed or free end of a stretched string, the
incident and reflected waves combine to form a standing wave which does not
appear to travel in either direction. Its pattern contains nodes and antinodes;
adjacent nodes are spaced a distance [I/2 apart, as are adjacent antinodes.
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When both ends of a string of length L are held, standing waves can occur
only when L is an integer multiple of [I/2; the corresponding possible
frequencies are given by

f, = n% (n=12,3..).

Each frequency, with its associated vibration pattern is called a normal

mode. The lowest frequency f; is called the fundamental frequency. In terms of

the mechanical properties T and m of the string, the fundamental frequency is
given by

f1=i 1, (n=1,2,3,..).
2L \'m
Standing waves also occur in wave motion in pipes or tubes. A closed end
Is a displacement node and a pressure antinode; an open end is a displacement
antinode and a pressure node.

For a pipe open at both ends, the normal-mode frequencies are given by
v
fh=n— n=12,3..).
= )

For a pipe open at one end and closed at the other, the normal-mode
frequencies are

fo=n— n=123,..).
=N )

When two or more waves overlap in the same region of space, the resulting
effects are called interference. The resulting amplitude can be either larger or
smaller than the amplitude of each individual wave, depending on whether the
waves are in phase or out of phase. If waves are in phase, the result is called
reinforcement or constructive interference; if they are out of phase, it is called
cancellation, or destructive interference.

When a periodically varying force is applied to a system having normal
modes of vibration, the system vibrates with the same frequency as that of the
force; this is called a forced oscillation. If the force frequency is equal or close to
one of the normal-mode frequencies, the amplitude of the resulting forced
oscillation can become very large; this phenomenon is called resonance.

Key Terms

boundary conditions — rpaniuHbIE YCIOBUS

principle of superposition — npuHIKIT CyepHO3UITUH
interference - uarepdepenms

node - y3zen

antinode - my4HOCTb

standing wave — cTosiuast BOJIHA

fundamental frequency — ocHoBHas yacToTta
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Chapter 3

Electromagnetic Oscillations

We have studied the behavior of an RC circuit and that of an RL circuit.
In both cases, the behavior is characterized by an exponential approach to some
steady-state value. In this chapter, we will see how the electric charge q varies

with time in a circuit made of an inductor L, a capacitor C, and a resistor R.
From another point of view, we shall discuss how energy shuttles back and forth
between the magnetic field of the inductor and the electric field of the capacitor,
while it is being gradually dissipated as thermal energy in the resistor. In the
absence of energy losses, the charges on the capacitor surge back and forth
indefinitely. This process is called an electromagnetic oscillation.

We have discussed mechanical oscillations before. We saw how
displacement x varies with time in a mechanical oscillating system made of a
block of mass m, a spring of spring constant k, and a viscous or frictional
element such as oil. We also saw how energy shuttled back and forth between the
Kinetic energy of the oscillating mass and the potential energy of the spring,
gradually dissipated as thermal energy.

The parallel between mechanical and electromagnetic oscillations is exact,
and the controlling differential equations are identical. Thus, there is no new
mathematics to be learned; we can simply change the symbols and give our full
attention to the physics of the process.

3.1 Oscillations in LC Circuit

We now examine the two-element circuit combination LC (Figure 3.1).
We’ll see that in this case, the charge, current, and potential difference do not
decay exponentially with time but vary sinusoidally (with the period T and the
angular frequency w). Such a circuit is called LC oscillator.

L C From the energy standpoint (in the absence of
i+ energy losses), the oscillations of an electrical circuit

Eﬂ consist of a transfer of energy back and forth from the

electric field of the capacitor to the magnetic field of

Figure 3.1 Resistanceless  the inductor. The total energy associated with the
LC —circuit circuit remains constant. This is analogous to the
transfer of energy in an oscillating mechanical system from Kinetic to potential,
and vice versa, with the total energy remaining constant.
If we charge the capacitor C in LC circuit and connect it to inductor L,
electromagnetic oscillations occur in the circuit. Succeeding stages of the
oscillations in a simple LC circuit are shown in Figure 3.2. The energy stored in
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the electric field of the capacitor at any time is

2
_9
=2 3.1
C (3.1)
where ¢ is the charge on the capacitor at that time.
The energy stored in the magnetic field of the inductor at any time is

)
U ="~ (3.2)
where i is the current through the inductor at that time.

From now in this chapter, we shall use small letters for representing
instantaneous values of the electrical quantities of a sinusoidally oscillating
circuit and capital letters for the amplitudes of those quantities. Assume that
initially the charge g on the capacitor is at its maximum value Q and that the

current i through the inductor is zero, state of the circuit is shown in Figure 3.2a.
The bar graphs for energy indicate that at this instant, with zero current through
the inductor and maximum charge on the capacitor, the energy Upg of the

magnetic field is zero and the energy U of the electric field is a maximum.

The capacitor now starts to discharge through the inductor, positive charge
carriers moving counterclockwise, as shown in Figure 3.2b. This means that a
current i given by dq/dt is established. As the capacitor charge decreases, the

energy stored in the electric field within the capacitor also decreases. This energy
Is transferred to the magnetic field that appears around the inductor because of the
current i that is building up there. Thus, the electric field decreases and the
magnetic field builds up as energy is transferred from the electric field to the
magnetic field.

The capacitor eventually loses all its charge (Figure 3.2c) as well as its
electric field and the energy stored in that field. The energy has been fully
transferred to the magnetic field of the inductor. The magnetic field is at its
maximum magnitude, and the current through the inductor is at its maximum
value I.

Although the charge on the capacitor is now zero, the counterclockwise
current must continue because the inductor does not allow it to change suddenly
to zero. The current goes on to transfer positive charge from the top plate to the
bottom plate through the circuit (Figure 3.2d). Energy now flows from the
inductor back to the capacitor as the electric field within the capacitor builds up
again. The current gradually decreases during this energy transfer. When the
energy has been transferred completely back to the capacitor (Figure 3.2e), the
current has become zero. The situation of Figure 3.2e is similar to the initial one,
except that the capacitor is now charged oppositely. The capacitor starts to
discharge again but now with a clockwise current (Figure 3.2f). Now the process
repeats in opposite direction: We see that the clockwise current builds to a
maximum (Figure 3.2g) and then decreases (Figure 3.2h), until the circuit
eventually returns to its initial state (Figure 3.2a). The process repeats at some
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frequency f and, thus, at an angular frequency w =2pf . In the ideal LC circuit

with no resistance, there are no energy transfers other than that between the
electric field of the capacitor and the magnetic field of the inductor. Owing to the
conservation of energy, the oscillations continue indefinitely. It is worth to be
mentioned that oscillations need not begin with the energy all in the electric field,;
the initial situation could be any other stage of the oscillation.

. | e

Ug Ug
=0

Ug Ug

1O

(9) (f) (€)

Figure 3.2 Eight stages in a single oscillation cycle of a resistanceless LC circuit. The bar
graphs by each figure show the stored magnetic and electric energies. The magnetic field lines
of the inductor and the electric field lines of the capacitor are shown. (a) Capacitor with the
maximum charge, no current. (b) Capacitor discharging, current increasing; (c) Capacitor fully
discharged, current maximum. (d) Capacitor charging but with polarity opzposite that in (a),
current decreasing. (e) Capacitor with maximum charge. having polarity opposite that in (a), no
current; (f) Capacitor discharging, current increasing with direction opposite that in (b); (g)
Capacitor fully discharged, current maximum. (h) Capacitor charging, current decreasing
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Exercises

3.1. Why does an LC -circuit produce oscillations? (Ans. When a charged
capacitor in an LC -circuit discharges through the inductor, the electric energy
stored between the plates of capacitor appears as the magnetic energy inside the
inductor. When the capacitor is discharged, the magnetic field linked with the
inductor starts collapsing. Due to this, the induced EMF is produced in the
inductor, the capacitor starts charging; and ultimately, the magnetic energy
appears as the electric energy across the capacitor. This process repeats again and
again, giving rise to LC -oscillations.)

3.2 Mathematical Description and Comparison with

Mechanical Oscillations

Let us look a little closer at the analogy between the oscillating LC system
and an oscillating block-spring system. Two kinds of energy are involved in the
block-spring system. One is potential energy of the compressed or extended
spring; the other is kinetic energy of the moving block.

Table 3.1 Analogies between electrical and mechanical systems

Mass on a Spring Circuit Containing Inductance and
Capacitance
. _1 - . I
Kinetic energy = > mv Magnetic energy = > Li
. 1 - 2
Potential energy = =kx Electrical energy = g9
2 2C
2 2
L2+ Lie? = Ly 12,0920
2 2 2 2 2C  2C
v =k /my A% - x? i = +1/LC QZ_q2
_ dx _dg
dt dt
X = Acosvk/mt= Acoswt g=Qcosv1/LC t =Qcoswt
V = —WASINWE = =Vypay SINWA I =-wQsinwt = -1 sinwt

By looking across the table, we can see an analogy between the forms of
the two pairs of energies — the mechanical energy of the block-spring system and
the electromagnetic energies of the LC oscillator. The equations for v and i help
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us see the details of the analogy. They tell us that g corresponds to x, and i

corresponds to v. These correspondences suggest that in the energy expressions,
1/C corresponds to k and L corresponds to m. Thus,
q®x, Lok,
C
I®v, L®m.
We have seen that the angular frequency of oscillation of a frictionless
block-spring system is
W= h (block-spring system) (3.3)
m
The correspondences listed above suggest that to find the angular frequency
of oscillations for a resistanceless LC circuit, k should be replaced by 1/C and
m by L, yielding
w=+LC. (LC circuit) (3.4)
We shell derive this result just now. We shell show explicitly that Eq. (3.4)
for the angular frequency of LC oscillations is correct. At first we shell obtain
differential equation of oscillation and expression for angular frequency w for
block-spring system, then do the same for LC circuit and compare the obtained
results.
The Block-Spring Oscillator. We can write. for the total energy U of a
block-spring oscillator at any instant
2 2
U=Ub+US:%+% (3.5)
where Uy and Ug are, respectively, the kinetic energy of the moving block and

the potential energy of the stretched or compressed spring. If there is no friction —
we assume, the total energy U remains constant with time even though v and x
vary. In more formal language, dU /dt =0. This leads to

— =G+ = T=mv—+kx—. (3.6)

dt dt§ 2 2 5 dt dt
2
However, vz%, and ﬁ=ﬂ With these substitutions, Eq. (3.6)
dt dt  gt?
becomes
2
md—2X+kx=0, or
dt
d®x 2 : I
—+wx=0, (block-spring oscillations) (3.7)

dt?
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where w? =k/m. Eq. (3.7) is the fundamental differential equation that governs
the frictionless block-spring oscillations. The general solution to Eq. (3.7) — that
IS, the function x(t) that describes the block-spring oscillations — is
x = Acos(wt + f), (displacement). (3.8)

in which A is the amplitude of the mechanical oscillations, w is the angular
frequency of the oscillations, and f is a phase constant.

The LC Oscillator. Now let us analyze the oscillations of a resistanceless
LC circuit, proceeding exactly as we just did for the block-spring oscillator. The
total energy U present at any instant in an oscillating LC circuit is given by

Li2 g2

U:UB+UE:—2—+2E (3.9)

in which Ug is the energy stored in the magnetic field of the inductor and Ug is
the energy stored in the electric field of the capacitor. Since we have assumed the
circuit resistance to be zero, no energy is transferred into thermal energy and U
remains constant with time. In more formal language, dU /dt must be zero. This
leads to

au _d gLiz + qzé—Liﬂ+ﬂﬂ

—=—0(—+ 1 "= (3.10)
dt dt§ 2 2C dt C dt
. dq . di _d%q ... -
However, i =— and — =——. With these substitution Eq. (3.10) becomes
dt dt  gt?
2
%9, 1 4=0. (LC oscillations) (3.11)
dt?2 LC
This is the differential equation that describes the oscillations of a

resistanceless LC circuit. If we denote 1/CL as w?, we obtain the same equation

as Eq. (3.7), with the only difference that q instead of x.
2
d—7‘1+w2q:o. (3.12)
dt
We can obtain Eq. (3.11) from other standpoint: According to Kirhgoff’s
loop rule, the sum of potential differences in a circuit equals the sum of EMF in it.
In our case of a resistanless circuit, the capacitor voltage Uz =q/C must be

equal to the EMF of the self-induction at the inductor eg =-Ldi/dt at each

instant of time. Hence,

di
%z-La. (3.13)
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As i=dq/dt, then di/dt = dzq/dtz. When we substitute this expression into Eq.

(3.13) and rearrange the later, we obtain the same differential equation as Eq.
(3.12):
2

d_q + qu =0,

dt?
which is analogous to Eq. (1.13) for the mechanical harmonic oscillator. The
solutions of this differential equation, functions with their second derivative equal
to -1/LC times the original function, are

q=Qcoswt, (3.13a)
q=Qsinwt, (3.13b)
g=Qcos(wt +f) (3.13c)

where w=1/+/LC, and Q and f are constants. Just as with the mechanical

harmonic oscillator, the choice of one of these functions is determined by the
initial conditions. If at time t =0, the capacitor has maximum charge and i =0,
as in the discussion above, then we use Eq. (3.14a). If at t=0, q=0 but i is

different from zero, we use Eq. (3.14b). And if both g and i are different from

zero at time t =0, the more general form, Eq. (3.14c), must be used. The striking
parallel between the mechanical and electrical systems shown in Table 3.1 is only
one of many such examples in physics. So close is the parallel between electrical
and mechanical (and acoustical) systems that it is possible to solve complicated
mechanical and acoustical problems by setting up analogous electrical circuits
and measuring the currents and voltages that correspond to the mechanical and
acoustical quantities to be determined. This is the basic principle of one kind of
analog computer.

Exercises

3.2. Show that the angular frequency of free oscillations of an LC circuit is

equal to 1/4/LC .

3.3. A charged 30 pF capacitor is connected to a 27 mH inductor. What is
the angular frequency of free oscillations of the circuit?

3.4. An inductor having L =40 mH is to be combined with a capacitor to

make an LC circuit with the natural frequency of 2710% Hz. What value of
capacitance should be used?

3.5. The maximum capacitance of a variable air capacitor is 35 pF. What
should be the inductance of a coil connected to this capacitor if the natural

frequency of the LC circuit is to be 550 10° Hz, corresponding to one end of
the AM radio broadcast band, when the capacitor is set to its maximum
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capacitance? The frequency at the other end of the broadcast band is 1550~ 10°
Hz. What must the minimum capacitance of the capacitor be if the natural
frequency is to be adjustable over the range of the broadcast band?

3.6. Show that differential equation (3.12) is satisfied by the function
q=Qcoswt, with w given by 1/-/LC .

3.7. Calculate the wavelength of radio waves radiated out by a circuit
consisting of 0.02 pF capacitor and a 8 pH inductor in series.
(Ans. I =7.54"10% m.)

3.8. Find the natural frequency of a circuit containing inductance of 100 puH
and a capacity of 0.01 uF. To which wavelength its response will be maximum?
For how long the oscillations will continue? (Ans. 159.15 kHz; 1884.96 m;
forever.)

3.9. A coil of inductance of 0.4 mH is connected to a capacitor of
capacitance 400 pF. To what wavelength is the circuit tuned? (Ans. 753.77 m.)

3.10. A 20 uF capacitor is charged to 30 V potential. Then the battery is
disconnected and a 200 mH coil is connected across it, so that LC -oscillations are
set up. Calculate the frequency of oscillations set up and the maximum current in
coil. (Ans.79.6 Hz; 0.3 A.)

3.3 Charge, Voltage, and Current Oscillations

We can write the general solution of Eq. (3.11) as
q =Qcos(wt + f) (charge) (3.15)
where Q is the amplitude of the charge variations, (wt+f) is the phase of
oscillations, w is the angular frequency, and f is the phase constant.

The phase of oscillation (wt + f) determines the state of oscillating system,
that is, the charge on the capacitor at any instant of time. For example, at some
moment of time t; the phase of oscillation is (wt; + f) = 2p . It means that at this
time the charge at the capacitor is maximum (cos2p =1). If in time t,, the phase
equals p/3, then g, =Q/2, that is, the capacitor is partially discharged and has

half of its maximum charge. Phase of oscillation has a lot of information. If we
are given the charge q, then we know the degree of charging or discharging of

the capacitor but know nothing about the direction of the process. But if we are
given the phase of oscillation, i.e. (wt; +f)=7p /4, then we know the charge on

the capacitor (g =~/2Q/2) and direction of the oscillation process — the capacitor

Is charging. (For a given instant, with time increasing, the phase increases, cosine
function and charge increase as well.)
At the capacitor voltage oscillates in the same manner as its charge:

_Q cos(th +1) =V cos(wt + f) (voltage) (3.16)

where the amplitude value of voltage V =Q/C.

y=4
C
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Taking the first derivative of Eq. (3.15) with respect to time we get the
current of the LC oscillator:

= d—? = -wQsin(wt + f) : (current) (3.17)
q
The amplitude | of this sinusoidally varying current is
I =wQ, (3.18)
so we can rewrite Eq. (3.17) as
i =-Isin(ut+f). (3.19)

From Egs. (3.15), (3.16) and (3.19), it is clear that oscillations of charge
and voltage lag the oscillation of current by p /2, that is, when current reaches its
maximum value |, charge and voltage become equal to zero and vice versa.

We can test whether Eq. (3.15) is a solution of Eq. (3.11) by substituting it
and its second derivative with respect to time into Eq. (3.11). The first derivative
of Eq. (3.15) is Eq. (3.17). The second derivative is

2
dq = —W2Q cos(wt + ).
qt?

Substituting them for g and d2q/dt2 into Eq. (3.11), we obtain
- LWZQCOS(Wt +J) +%Qcos(wt +1)=0.

The canceling the Q cos(wt + f) and its rearrangement lead to

1
w=——.

JLC

Thus, Eqg. (3.15) is indeed a solution of Eq. (3.11) if w has the value L

JLC

In Eqg. (3.15), the phase constant  is determined by the conditions at any certain
time, say, t=0. If the conditions yield f=0 at t=0, Eqg. (3.15) requires that
qg=Q, and Eg. (3.17) requires that i=0; these are the initial conditions
represented by Figure 3.2a.

Example 3.1

The 9-pF capacitor is charged by the voltage of 12 V and then directly
connected across the 2.81 mH inductor. (a) Find the frequency of oscillation of
the circuit.

Solution.
(a) The frequency f is
f=2 L L =1710% Hz.

20 2pJLC 2py(2.817107%)(9 107)
(b) What are the maximum values of charge on the capacitor and current in
the inductor?
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Solution.
The initial charge on the capacitor equals the maximum charge, and
because C =Q/V , we have

Q=CV =(9"1071?)12)=1.08"1071% C.
The maximum current is related to the maximum charge according to Eqg.
(3.18):
| =wQ =2pfQ = (2p ~10°%)(1.08" 10719 =6.797107% A.
(c) Determine the charge and current as functions of time.

Solution.
According to Egs. (3.15) and (3.19)

q=Qcosut = (1.08” 1079 cos[(2p ~ 10%)t],
i =(=6.79"10"%)sin[(2p ~ 10%)t].

Exercises

3.11. A 1.00-pF capacitor is charged by a 40 V power supply. Then fully-
charged capacitor is discharged through a 10 mH inductor. Find the maximum
current in the resulting oscillations.

3.12. An LC circuit consists of a 20.0-mH inductor and a 0.5-uF capacitor.
If the maximum instantaneous current is 0.100 A, what is the greatest potential
difference across the capacitor?

3.13. A fixed inductance L =1.05 pH is used in series with a variable
capacitor in the tuning section of a radio. What capacitance tunes the circuit to the
signal from a station, broadcasting at 6.30 MHz?

3.14. Calculate the inductance of an LC circuit that oscillates at 120 Hz
when the capacitance is 8 uH.

3.15. What are the dimensions of ~LC ? (Ans. Second.)

3.16. An inductor of inductance 2 mH is connected across a charged
capacitor of capacitance 5 UF and the resulting LC -circuit is set oscillating at its
natural frequency. It is found that the maximum value of charge on the capacitor

dil 5 () When g = 200 uC,

dt
what is the value of i? (c) Find the maximum value of i. (d) When i is equal to
one half its maximum value, what is the value of g? (Ans. (a) 104 AJs, (b) 0, (c)

2 A (d)173.2 uC))

3. 17. Capacitor of 9 pF is charged by 12 V battery and then is connected
directly across the 2.81 mH inductor. (a) Find the frequency of oscillation of the
circuit. (b) What are the maximum value of charge on the capacitor and current in
the circuit? (c) What is the total energy stored in the circuit?  [Ans. (a)

f =1710° Hz; (b) | ax=6.79"10"% A; (c) U =6.48" 10710 J]

is 200 uC. (a) When g =100 pC, what is the value of
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3.18. An inductor of inductance L and a capacitor of capacitance C are
connected in series. The current in the circuit increases linearly in time as
described by | =kt. The capacitor is initially uncharged. Determine (a) the
voltage across the inductor as a function of time; (b) The voltage across the
capacitor as a function of time; and (c) The time when the energy stored in the
capacitor first exceeds that in the inductor.

3.19. An LC circuit contains an 82-mH inductor and a 17-uF capacitor that
initially carries a 180—-uC charge. (a) Find the frequency (in hertz) of the resulting
oscillations. At t =1 ms, find (b) the charge on the capacitor and (c) the current in
the circuit.

3.4 Electric and Magnetic Energy Oscillations

The electric energy stored in the LC circuit at any time at any t is, from
Egs. (3.1) and (3.15),

a° _ Q%
=—=—=—cos“"(mt+T7). 3.20
£ =50 o0 (TN (3.20)
From Egs. (3.2) and (3.17), the magnetic energy is,:
2 22 2
Ug = L; = LWZQ sin? (wt + F) :%sinz(WHf).
The total energy of the LC circuit is

Q% LIZ . 5
U=Ug +UB=zcos (Wt+f)+7sm (wmt+7). (3.21)

This expression contains all the features described qualitatively at the
beginning of this section. It shows that the energy of the LC circuit continuously
oscillates between the energy stored in the electric field of the capacitor and the
energy stored in the magnetic field of the inductor. When the energy stored in the

capacitor has its maximum value Q2/2C, the energy stored in the inductor is

zero. When the energy stored in the inductor has its maximum value LI 22, the
energy stored in the capacitor is zero.
Plots of the time variations of Ug and Upg are shown in Figure 3.3. The

sum Ug +Upg Iis constant and equal to the total energy Q2/2C or LI%/2.

Analytical verification of this is fact straightforward. The amplitudes of the
two graphs in Figure 3.3 must be equal because the maximum energy stored in the
capacitor (when | =0) must equal the maximum energy stored in the inductor
(when Q =0). This is mathematically expressed as

2 2
Q" _LI™ (3.22)
- - - - 2-C 2

After substituting this expression into Eq. (3.21) for the total energy, we get

2 2

Q 2 . 2 Q
U==-Jcos"mt+F)+sin“(wmt+f)]=——,
oC [cos®(wt + ) (wt+7)] °C

because cosz(wt +f) +sin2(wt +f)=1.
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In our idealized situation, the
oscillations in the circuit persist
indefinitely; however, we remember
that the total energy U of the circuit
remains constant only if energy
transfers and transformations are
neglected. In actual circuits, there is
always some resistance, and, hence,
energy is transformed into internal
energy. We mentioned at the
beginning of this section that we also 0 T/2 T
ignore radiation from the circuit. In

reality, radiation is inevitable in this Figure 3.3 The stored magnetic energy and
type 9f CI_I’CUIt, é_md the total energy In electric energy in the circuit of Figure 3.2 as a
the circuit continuously decreases as function of time. Note that their sum remains

a result of this process. constant. T is the period of oscillation
Example 3.2

A 1.5 uF capacitor is charged to 57 V. Then the charging battery is
disconnected, and a 12 mH coil is connected in series with the capacitor so that
LC oscillations occur.

(@) What is the maximum current in the coil? Assume that the circuit
contains no resistance.

Solution.

As the circuit contains no resistance, the electromagnetic energy of the
circuit is conserved because the energy is transferred back and forth between the
electric field of the capacitor and the magnetic field of the coil (inductor). Then,
at any time t, the energy Ug(t) of the magnetic field is related to the current i(t)

2
through the coil by Eqg. (3.2): Ug :%. When all the energy is stored as

Q2 U(=Upg +UE)

Time

magnetic energy, the current is at its maximum value | and that energy is
2

LI . e

Ug :T' Moreover, at any time t, the energy Ug(t) of the electric field is

2

related to the charge q(t) on the capacitor by Eq. (3.1): Ug = g—c When all the

energy is stored as electric energy, the charge is at its maximum value Q and that

QZ

energyisUg = PYeS Hence, we can write the conservation of energy as

LI? Q2

2 2C



170
Solving it for 1 we obtain

=<
LC
We know L and C but not Q. However, with g =CV , we can relate Q to

the maximum potential difference V across the capacitor which is the initial
potential difference of 57 V. Thus, the substitution of Q =CV leads to

-6
| =V \f (57 V) 15 103F—0.637A.
12°1073H

(b) What is the potential difference v| (t) across the inductor as a function

of time?

Solution.

We can apply the loop rule to this oscillating circuit. At any time t during
the oscillations, the loop rule gives us

V() =vc (1),
that is, the potential difference v| across the inductor must always be equal to the
potential difference v across the capacitor, so that the net potential difference
around the circuit is zero. Thus, we shall find v|_(t) if we can find v (t), and we
can find v¢ (t) from q(t) with g=Cv and Q =CV .

As the potential difference v (t) is maximum when the oscillations begin
at time t=0, the charge g on the capacitor must also be maximum. Thus, the
phase constant ¥ must be zero, so

g=Qcoswt.
Note that this cosine function does indeed yield maximum q=Q when t=0. To
get the potential difference v (t), we divide both sides of the expression by C
and obtain:

9= 9coswt

C C
or vc =V coswt. Here, V¢ is the amplitude of the oscillations in the potential
difference v across the capacitor. As v| =V, we find

\7 =VC coswt .

We can evaluate the right side of this equation by the first are noting that

the amplitude V¢ is equal to the initial (maximum) potential difference of 57 V
across the capacitor. Then, using the values of L and C, we find w:

-1 _ 1 = = 7454rad/s » 7500 rad/s.
JLC  [(0.012H)(L.5" 107%F)]
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Thus, potential difference across inductor becomes
v =(57V)cos(7500rad/s)t.

(c) What is the maximum rate (di/dt)yax at which the current i changes in
the circuit?

Solution.

The currentis i = 2—? = -wQsinwt . Then
di _d . 2
— = —(-wQsinut) = -w Qcoswt .
m OIt( wQ ) Q

We can simplify this equation by substituting CVs for Q (because we

know C and V¢ butnot Q and 1/+/LC for w). We get
di 1 v Vi

This tells us that the current changes at a sinusoidal rate, with its maximum
rate of change being

Vi = AL = 4750 A/m.
L 0.012H
Exercises

3.20. An LC -circuit contains a 20 mH inductor and a 50 pF capacitor with
an initial charge of 10 mC. The resistance of the circuit is negligible. Let the
instant at which circuit is closed be t=0. (a) What is the total energy stored
initially? Is it conserved during the LC oscillations (Ans. (a) 1 J, yes)? (b) What
Is the natural frequency of the circuit? (Ans. 159.15 Hz) (c) When is the energy
stored that is: (i) completely electrical (i.e. stored in the capacitor)? (Ans.

t=0,T,T/2,3T/2,., where T =2.28"1073 s); (ii) completely magnetic (i.e.
stored in the inductor)? (Ans. t=T/4, 3T /4,5T/4,..); (d) When is the total
energy shared equally between the inductor and the capacitor? (Ans.
t=T/8, 3T/8,5T/8,., where T =2.28" 1073 s)

3.21. Show that in the free oscillations of an LC circuit, the sum of
energies stored in the capacitor and the inductor is constant in time.

3.5 Damped Oscillations in an RLC circuit

In our discussion of the LC circuit, we did not include any resistance. This
omission is an idealization, of course; every real inductor has resistance in its
windings, and there may also be resistance in the connecting wires. The effect of
resistance is to dissipate the electromagnetic energy in the circuit and convert it
into heat; thus, resistance plays a role in an electric circuit analogous to that of
friction in a mechanical system.
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To study this situation in greater detail, we consider an inductor with
inductance L and a resistor of resistance R connected in series across the
terminals of a charged capacitor C. (Figure 3.4). A circuit containing resistance,
inductance, and capacitance is called an RLC circuit. As before, the capacitor

starts to discharge as soon as the circuit is completed, but, because of i°R losses

in the resistor, there is less energy in the inductor when the capacitor is

completely discharged, than there was in capacitor originally. In the same way,

the energy of the capacitor is still smaller, when the magnetic field has collapsed,
and so on.

g To analyze the oscillations of this

h ffR circuit from energy standpoint, we write

an equation for the total electromagnetic

energy U in the circuit at any instant.

L —C Because the resistance does not store
electromagnetic energy, we can use Eq.
(3.9):
Figure 3.4 A series RLC circuit. As the |_| q2
charge contained in the circuit oscillates U=Ug+Ug _7+2C
back and forth through the resistance,
electromagnetic energy is dissipated as However, now, this total energy
thermal energy, damping (decreasing the decreases as energy is transferred to
amplitude of) the oscillations thermal energy. The rate of this transfer is
ViR (3.23)
dt

where the minus sign indicates that U decreases. By differentiating Eq. (3.9) with
respect to time and then substituting the result in Eq. (3.23), we obtain

du el di L a dq _i%R

dt dt C dt
Substituting dg/dt for i and d q/dt2 for di/dt, we get

d q +rdd dq 1
dt
2
or d q qu L —q=0. (3.24)
dt? L dt LC
Eq. (3.24) is the differential equation for damped oscillations in an RLC circuit.
Again, as for the case of undumped oscillations, there is an alternative way
to obtain the differential equation Eg. (3.24) of dumped oscillations: We apply
Kirhgoff's loop rule to the circuit at Figure 3.4 and obtain the equation
di di 1

|R+—q——La or R+La+—q 0.

q 0,
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Replacing i with dg/dt and rearranging, we obtain the same equation as
Eq. (3.24)
2
d_q + Bd_q + iq =0.
dt?2 Ldt LC
Note that when R =0, this equation reduces to Eq. (3.11).

If the resistance R is relatively small, the circuit still oscillates, but with
damped oscillations, as shown in Figure 3.5a. If we increase R, the oscillations
die out more rapidly. When R reaches a certain value, the circuit no longer
oscillates, and we say that it is critically damped, as in Figure 3.5b. For still larger
values of R, the circuit is overdamped, as in Figure 3.5c.

4
QN

(b) (©)

Figure 3.5 Graphs of ( versus | inan RLC circuit: (a) Small damping; (b) Critically damped;
(c) Overdamped

Solutions of Eq. (3.24) can be obtained by general methods of differential
equations. The form of this solution depends on whether R is large or small.

When R is less than 2(~/L/C), the solution has the form

_ Aa-(R/2L)t % i_%iézg — 0e-(R/2Lt coc it
q=0Qe cosg c gZLE it—Qe coswit . (3.25)
0

When R is greater than 2+/L/C , the solution is

: %/§R92_9t ‘. ageRgz_l%
A 2Lg LC*™ 2Lg LC*™

q:e-(R/zL)tgAeg 0 : g o
€

I +Be (3.26)

D> (D>

where A and B are constants determined by V, R, L,and C.
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Eq. (3.25) corresponds to the underdamped behavior shown in Figure 3.4a;
the function represents a sinusoidal oscillation with an exponentially decaying
amplitude. Note that the angular frequency of the oscillation is no longer

1/+/L/C but is less than this because of the term containing R. The frequency w'
of the damped oscillations is, thus, given by

|1 R? » R?
W=,|—-—5= W -—.
LC 412 412

As R increases, w' becomes smaller and smaller. When R? =4L/C, the
quantity under the radical becomes zero and the case of critical damping has been
reached (Figure 3.5b). For still larger values of R, the behavior is no longer
oscillatory but is described as the sum of two exponential functions, as in Figure
3.5¢; the circuit is overdamped.

We emphasize once more that this behavior is completely analogous to that
of the damped harmonic oscillator studied in Chapter 1. Eq. (3.25) tells us how
the charge on the capacitor oscillates in a damped RLC circuit; the equation is
the electromagnetic counterpart of equation which gives the displacement of a
damped block-spring oscillator. Similarly, the crossover point between

underdamping and overdamping occurs at b? = 4km for a mechanical system and

at R2 =4L/C for an electrical one.
Let us next find an expression for the total electromagnetic energy U of the
circuit as a function of time. One way to do so is to monitor the energy of the

electric field in the capacitor which is given by Eq. (3.1): (Ug =q2/2C). By
substituting Eq. (3.25) into Eqg. (3.1), we obtain

U 02 [Qe-Rt/zLCOS(VWtHc)]2 _ Q2

S2c 2C 2C
Thus, the energy of the electric field oscillates according to a cosine-squared term
and the amplitude of this oscillation decreases exponentially with time.

e'R”Lcosz(Mt+f). (3.27)

Example 3.3

A series RLC circuit has the inductance L =12 mH, the capacitance
C =1.6 WF, and the resistance R =1.5 Q. (a) At what time t will the amplitude of
the charge oscillations in the circuit be 50% of its initial value?

Solution.

(@) The amplitude of the charge oscillations decreases exponentially with
time t. According to Eq. (3.25), the charge amplitude is Qe'Rt/ZL, atany time t,
with Q being the amplitude at time t =0. We want to obtain the time when the
charge amplitude has decreased to 0.5Q, that is, when

Qe Rt/2L -0 5Q.
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Canceling Q and then taking the natural logarithms of both sides, we have

—&=In0.5.
2L

Solution for t and then substitution of the given data yield
-10-3
t = —2—Lln0.5 __(2(@2710""H)(In0.5)
R 15W

(b) How many oscillations are completed within this time?

Solution.

Time for one complete oscillation is the period T =2p/wt where the
angular frequency for LC oscillations is given by

=0.011s =11 ms.

W,_\/ 1 R?_ 1 1
LC 41 | (1271073H)1.6"107°F) 412" 1073H)?

= /5217107 - 47 »/52.17 108 =727 10% »w.
Thus, in the time interval Dt =0.011 s, the number of complete oscillations
N is:

_Dt_ Dt 0.011s 13

T 2pJLC  2p[271073H).6" 107 S )2
Thus, the amplitude decays by 50% in about 13 complete oscillations.

Exercises

3.22. Why does a real LC -circuit usually produce damped oscillations?
(Ans. An inductor possesses a small resistance. Therefore, each time electric
energy converts into magnetic energy during LC -oscillations, a small part of
energy or dissipated as heat energy across the resistance of the inductor. As a
result, the oscillations produced are damped in nature.)

3.23. In Figure 3.3, let R=76 Q, L=22 mH, and C=1.8 pF. (a)
Calculate the frequency of the damped oscillation of the circuit; (b) What is the
critical resistance?

3.24. Consider an LC circuit in which L =500 mH and C =0.1 pF. (a)
What is the resonant frequency wy? If a resistance of 1 k Q is introduced into

this circuit, what is the frequency of the (damped) oscillations? What is the
percent difference between two frequencies?
3.25. Electrical oscillations are initiated in a series circuit containing a

capacitance C, an inductance L, and a resistance R. (a) If R<<+/4L/C (weak
damping), how much time elapses before the amplitude of the current oscillation

falls to 50.0% of its initial value? (b) How long does it take the energy to decrease
to 50.0% of its initial value?
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3.26. If a resistor is inserted in the circuit, how much energy is eventually
dissipated as heat? (Ans. When resistance is introduced, whole of the energy will
be dissipated in the form of the heat. The introduction of resistance produces
damped oscillations.)

3.27. What role does the resistance of inductor play in LC -circuit ? (Ans.
Due to the resistance of the inductor, the LC -oscillations produced are damped
one. It is because, during each oscillation, a part of electric energy is dissipated in
the form of heat energy.)

3.6 Forced Oscillations

We have seen that once started, the charge, potential difference, and current
in both undamped LC circuits and damped RLC circuits (with small enough R)

oscillate at angular frequency w=1/+/LC . Such oscillations are said to be free
oscillations (free of any external EMF), and the angular frequency w is said to be
the circuit's natural angular frequency.
When the external alternating EMF

e = ey sinwgyt (3.28)
Is connected to an RLC circuit, the oscillations of charge, potential difference,
and current are said to be driven oscillations or forced oscillations. These
oscillations always occur at the driving angular frequency wy .

The oscillations in an RLC circuit will not dumped out if an external EMF
device supplies enough energy to make up for the energy dissipated as thermal
energy in the resistance R. Circuits in homes, offices, including countless RLC
circuits, receive such energy from local power stations. The energy is supplied via
oscillating EMFs and current is said to be alternating current, or AC for short.

I = Iy sin(wgt - F). (3.29)
(The nonoscillating current from a battery is said to be a direct current, or DC.)

These oscillating EMFs and current vary sinusoidally with time, reversing
direction. (In Ukraine 100 times per second and thus having frequency- 50 Hz, in
North America 120 times per second and thus frequency is — 60 Hz.)

At first sight this may seem to be a strange arrangement. We have seen that
the drift speed of the conduction electrons in household wiring may typically be
10 m/s. If we now reverse their direction every (1/120) s, such electrons can

move only about 37107 min a half-cycle. At this rate, a typical electron can
drift past no more than about 10 atoms in the wiring before it is required to
reverse its direction. How can the electron ever get anywhere? The answer is as
follows: The conduction electrons do not have to “get anywhere”. When we say
that the current in a wire is one ampere, we mean that charge passes through any
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plane cutting across that wire at the rate of one coulomb per second. The speed at
which the charge carriers cross that plane does not matter directly: one ampere
may correspond to many charge carriers moving very slowly or to a few moving
very rapidly. Furthermore, the signal to the electrons to reverse directions — which
originates in the alternating EMF is propagated along the conductor at a speed of
light. All electrons, no matter where they are located, get their reversal
instructions at about the same instant. Finally, we note that for many devices,
such as lightbulbs and toasters, the direction of motion is unimportant as long as
the electrons do move so as to transfer energy to the device via collisions with
atoms in the device.
Whatever the natural angular frequency w of a circuit may be, forced

oscillations of charge, current, and potential difference in the circuit always occur
at the driving angular frequency wy .

However, as you will later, the amplitudes of the oscillations very much
depend on how close wy is to w. When the two angular frequencies match — a

condition known as resonance - the amplitude 1 of the current in the circuit is
maximum.

3.7 Resistance in an AC Circuit

The simplest problem in the AC-circuit analysis consists of a resistor of
resistance R, connected between the terminal of an AC generator with the
alternating EMF. (Figure 3.6a). By the loop rule, we have

€ =VR.

This gives us
VR = e Sinwgt. (3.30)
As the amplitude Vg of the alternating potential difference (or voltage)
across the resistance is equal to the amplitude e, of the alternating EMF, we can
write this as
VR :VR sin Wdt . (331)
The instantaneous current ig in the resistance is
IR :VEsz—:siant (3.32)

VR . : . :
where Ig = ?R is the amplitude of the current ig in the resistance. We also see

that the voltage amplitude and the current amplitude are related by
Vg =IgR  (resistor). (3.33)
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T— Instants 4T

represented in (c)

(b)

Rotation of

phasors at
\ate Wy

()
Figure 3.6 (a) A resistor is connected across
an alternating-current generator; (b) The
current iR and the potential difference VR

across the resistor are plotted on the same
graph, both versus time t. They are in phase

and complete one cycle in one period T ; (c)
A phasor diagram shows the same thing
as (b)

The current and voltage are both
proportional to sinwgt. Thus, these two

quantities are in phase which means
that their corresponding maxima (and
minima) occur at the same time. Figure
3.6b which is a plot of v (t) and ir(t),

illustrates this fact. Note that vg and ig

do not decay here because the generator
supplies energy to the circuit to make
up for the energy dissipated in R.
Although we found this relation
for the circuit of Figure 3.6a, it applies
to any resistance in any AC circuit.
The time-varying quantities vg

and igr can also be represented

geometrically by phasors. Recall that
phasors are vectors that rotate around
an origin. Phasors that represent the
voltage across and current in the
resistor of Figure 3.6a are shown in
Figure 3.6¢ at an arbitrary time t. Such
phasors have the following properties:
Angular speed: Both phasors
rotate counterclockwise about the origin
with an angular speed equal to the
angular frequency wy of vg and ig.

Length: The length of each
phasor represents the amplitude of the
alternating quantity: Vg for the voltage

and I for the current.

Projection: The projection of
each phasor on the vertical axis
represents the value of the alternating
quantity at time t: vg for the voltage

and ig for the current.

Rotation angle: The rotation
angle of each phasor is equal to the
phase of the alternating quantity at
time t. In Figure 3.6¢, the voltage and
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current are in phase, so their phasors always have the same phase wqt and the

same rotation angle, and thus they rotate together.
Mentally follow the rotation. Can you see that when the phasors have

rotated so that wgt =90° (they point vertically upward), they indicate that just
then vg =VR and ig = Ir. Egs. (3.31) and (3.33) give the same results.

Example 3.4

In Figure 3.6, the resistance R is 200 Q, and the sinusoidal alternating
EMF device operates at the amplitude e, =36 V and the frequency fq =60 Hz.

What is the potential difference vg(t) across the resistance, and what is the
amplitude Vg of vgr(t)?

Solution.

If we apply loop rule to the circuit, we find that potential difference vg(t)
across the resistance is always equal to the potential difference e(t) across the
EMF device. Thus, Vg = e, =36 V, and the potential difference vg (t)

VR (t) = e(t) = ey sinwgt = 36sin(2p ~ 60)t = 36sin(120pt).

3.8 Effective Values of Current and Voltage

In previous discussion, we have seen that, like the applied voltage, the
current varies sinusoidally and has corresponding positive and negative values
during each cycle. Thus, the sum of the instantaneous current values over one
complete cycle is zero, and the average current is zero. The fact that the average
current is zero, however, does not mean that the average power is zero and that
there is no dissipation of electrical energy. As we know, joule heating is given by

iR and depends on i2 (which is always positive whether i is positive or
negative) and not on i. Thus, there is joule heating and dissipation of electrical
energy when an AC current passes through a resistor.

The instantaneous power dissipated in the resistor is

P =i’R = I °Rsin® wyt. (3.34)
The average value of P over a cycle is
(P)=(i%R) = (1%Rsin? wyt). (3.35)
Mathematically, the average value of a function F(t) over a period T is given by
T
(F(t))= Ti s F(t)dt, (3.36)

0
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where the < > denotes the average of the quantity inside the bracket. Since 12 and

R are constants,
(P)= I2R<sin2 Wdt>.

Using the trigonometric identity sin? wyt = %(1 - cos2wyt), we have

<sin2 Wdt> = %(1— (cos2wgyt)),

and since
T - T
é U
(cos2wyt) = 1(‘)cos,ZWdtdt = -lésm ZWdtu =
Ty Tg 2wy (g
S (sin2wyT -0) =0,
2WdT

Hence, we have <sin2 Wdt> = % Thus,

<P>=%I2R.

(3.37)

To express AC power in the same form as DC power P = i°R, a special
value of current is used. It is called root mean square (rms), or effective current

(Figure 3.7) and is denoted by |,y . It is defined by

|rms=\/@:\/§ %

In terms of |,y , the average power is

1
<P>=§I2R=Ir2msR.

=0.7071.

Similarly, we define the rms voltage,e or effective voltage, by

Vims = % =0.707V .
From Ohm’s law we have
V = IR,
V I
or —=—R, or
2 2

(3.38)

(3.39)

(3.40)

(3.41)
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Eq. (3.41) gives us the relation |
between AC current and voltage and is

|l
similar to that in the DC case. This |rmn; /\ /\
shows the advantage of introducing the \
concept of rms values. In terms of rms \ /
values, the equation for power relation 0 = = ol

between current and voltage in AC
circuits are essentially the same as
those for the DC case.

It is customary to measure and - Im—
specify rms values for AC quantities.
For example, the household line Figure3.7 The rms current I rms is related

voltage of 220 V is an rms value witha to  the peak  current I as
peak voltage of |- o 0.707 |
V =./2V,ms = (1.414)(220) =311 V. mse o

In fact, rms current is the equivalent DC current that would produce the
same average power loss as the alternating current. Eq. (3.39) can also be
written as

2
Vrms

(7)=

= lrmsVrms - (3.42)

X

Example 3.5

A light bulb is rated at 100 W for a 220 V supply. Find: (a) The resistance
of the bulb.

Solution.

(@) We are given P =100 W and V =220 V. The resistance of the bulb is

. Vs _ (100 V)2
P 100 W
(b) The peak voltage of the source.
Solution.
The peak voltage of the source is
Vi = /2Vyms == 311 V.
(c) The rms current through the bulb.
Solution.
Since P = I nsVyms» hence:
|- P _100W
™ Vs 220V

=484 W.

= 0.45A.
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Exercises

3.28. A 100 Q resistor is connected to a 220 V, 50 Hz ac supply. (a) What
Is the rms value of current in the circuit? (b) What is the net power consumed

over a full cycle?

3.29. (a) The peak voltage of an AC supply is 300 V. What is the rms
voltage? (b) The rms value of current in an ac circuit is 10 A. What is the peak

current?

3.9. Capacitance in an AC Circuit

A

gg(\) C::jic Ve

Y

(a)

¢ =—90°=-m/2rad |

T—Instants S
represented in (c)

(b)

_ Rotation of
Iev——ic phasors at
rate ®;

(c)
Figure 3.8 (a) A capacitor is connected across
an alternating-current generator; (b) The current
in the capacitor leads the voltage by 90° ;(c) A
phasor diagram shows the same thing

Figure 3.8a shows a circuit
containing a capacitance and a
generator with the alternating EMF of
Eqg. (3.28). Using the loop rule, we
find that the potential difference
across the capacitor is

e =Vg =Vc sinwgt, (3.43)
where V. is the amplitude of the

alternating  voltage across the
capacitor.
From the definition of capacitance,
we can also write
gc =Cvc =CVcsinwgt. (3.44)
Now we are interested more in
the current than in the charge. Thus,
we differentiate Eq. (3.44) to find

c= d((:—tc =wyCVc coswyt. (3.45)

Then we modify Eqg. (3.45) in
two ways. First, for reasons of
symmetry of notation, we introduce
the quantity X, called the capacitive

reactance of a capacitor, defined as

1
X =——. 3.46
C c (3.46)

Wa
Its value depends not only on
the capacitance but also on the driving
angular frequency wg. We know

from the definition of the capacitive
time constant (t =RC) that the Sl
unit for C can be expressed as
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seconds per ohm. By applying this to Eq. (3.46), we show that the Sl unit for X
is the ohm, just as for resistance R. Second, we replace wqt in Eq. (3.45) with a

phase-shifted sine:
coswgt =sin(wyt +90°).
With these two modifications, Eq. (3.45) becomes

. _&Ve 0.
ic =gX—Cism(Wdt+90°).

Co
We can also write the current ic in C as
ic = I sin(wgt +90°), (3.47)

where I is the amplitude of ic. Comparing Egs. (3.43) and (3.47), we see that
for a purely capacitive load, the phase constant ¥ for the current is -90°. We also
see that the voltage amplitude and current amplitude are related by
VC = ICXC (348)
Although we have found this relation for the circuit of Figure 3.8a, it
applies to any capacitance in any ac circuit.
The comparison of Eqgs. (3.43) and (4.47), or inspection of Figure 3.8b
shows us that the quantities v and ic are 90°, or one-quarter cycle, out of phase.

Further we see that ic leads v which means that, if you monitored the current
ic and the potential difference v¢ in the circuit of Figure 3.8a, you will find that
Ic reaches its maximum before v does, by one-quarter cycle.

This relation between ic and v¢ is illustrated by the phasor diagram of

Figure 3.8c. As the phasors representing these two quantities rotate
counterclockwise together, the phasor labeled I- does indeed lead that labeled

V¢ by an angle of 90°; that is, the phasor I coincides with the vertical axis one-
quarter cycle before the phasor V- does. It is clear that the phasor diagram in

Figure 3.8c is consistent with Eqgs. (3.43) and (3.47).
The instantaneous power supplied to the capacitor is

IcVe

Pc =icve = (Ic coswyt)(Ve sinwgt) = IV (coswyt)(sin(wyt) = sin(2wyt) .

So, the average power is
vV . v, .
(Po)= 7sm(2wt) =7<sm(2wt)>=0,
since sin(2wt) =0 over a complete cycle. The energy stored by a capacitor in
each quarter period is returned to the source in the next quarter period.

Example 3.6

A 15.0 uF capacitor is connected to a 220 V, 50 Hz source. Find the
capacitive reactance and the current (rms and peak) in the circuit. If the frequency
is doubled, what happens to the capacitive reactance and the current?
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Solution.
The capacitive reactance is
1 1
2pfC  2p(50Hz)(L.5"107° F)
The rms current is

=212W.

Xc

Vs _ 220V

lrms = =1.04A.
M Xe 212w

The peak current is
I =~21ms = (1.41)(L.04A) =1.47 A.
This current oscillates between +1.47 A and -1.47 A and is ahead of the
voltage by 90°.
If the frequency is doubled, the capacitive reactance is halved and,
consequently, the current is doubled.

Exercises

3.30. A 60 pF capacitor is connected to a 110 V, 60 Hz AC supply.
Determine the rms value of the current in the circuit.
3.31. What is the reactance of a 1-uF capacitor at a frequency of 60 Hz?

(Ans. 2.65°10° Q.
3.32. What is the capacitance of a capacitor whose reactance is 1 Q at 60

Hz? (Ans. 2.657107° F)
3.33. What is the reactance of a 1-pF capacitor at a frequency of 60 Hz?
3.34. What is the capacitance of a capacitor whose reactance is 1 Q at 60

Hz? (Ans. 2.65° 1073 F)

3.35. A 1-uF capacitor is connected across an AC source whose voltage
amplitude is kept constant at 50 V but whose frequency can be varied. Find the
current amplitude when the angular frequency (a) 100 rad/s; (b) 1000 rad/s, (c)
10,000 rad/s. [Ans. (3) 571073 A; (b) 571072 A); (c) 0.5 A]

3.36. The voltage amplitude of an AC source is 50 V, and its angular
frequency is 1000 rad/s. Find the current amplitude if the capacitance of a
capacitor connected across the source is  (a) 0.01 pF. (b) 1.0 pF, (c) 100 pF.

3.10 Inductance in an AC Circuit

Figure 3.9a shows a circuit containing an inductance and a generator with

the alternating EMF of Eq. (3.28). Using the loop rule and proceeding as we did
to obtain Eq. (3.30), we find that the potential difference across the inductance is

VL :VL sin Wdt (349)



where V| is the amplitude of v . From
loop rule we can write the potential
difference across an inductance L, in
which the current is changing at the rate
dip /dt, as
Vi = Ldl (350)
dt
If we combine Egs. (3.49) and
(3.50), we have

m 2 sinwgyt. (3.51)

We are interested in the current

rather than with its time derivative. We

find the former by integrating Eq. (3.51),
obtaining

iL = (‘)dIL :VTL(\)Sin Wdtdt =

= —év—'-gcoswdtdt. (3.52)

eWylyg
Then we can now modify this
equation in two ways. First, for reasons
of symmetry of notation, we introduce

the quantity X, called the inductive
reactance of an inductor, which is
defined as
XL =wglL (3.53)
The value of X depends on the
driving angular frequency wy. The unit
of the inductive time constant &
indicates that the SI unit of X is the
ohm just as it is for X and for R.
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represented in (c)
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Rotation of
\ phasors at
VL - 43 rate gy
W,!
ipt--->1p
(c)

Figure 3.9 (a) An inductor is connected
acrtoss an alternating current generator; (b)
The current in the inductor lags the voltage

by 90°; (c) A phasor diagram shows the
same thing

Second, we replace -coswgyt in Eq. (3.52) with a phase-shifted sine:
- coswgt =sin(wqt -90°).
You can verify this identity by shifting a sine curve in the positive direction
by 90°. With these two changes, Eg. (3.52) becomes

i| = EX—Lgsin(wdt ~90°). (3.54)

L g
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From Eqg. (3.54), we can write this current in the inductance as
i|_ = | L sin(wdt - 900), (355)
where I is the amplitude of the current i . Comparing Egs. (3.49) and (3.55),
we see that for a purely inductive load, the phase constant f for the current is
+90°. We also see that the voltage amplitude and current amplitude are related by
VL = ||_X|_. (356)

Although we found this relation for the circuit of Figure 3.9a, it applies to
any inductance in any AC circuit.

The comparison of Egs. (3.49) and (3.55) or the inspection of Figure 3.9b,
shows us that the quantities i and v are 90° out of phase. In this case, however,
i lags v|_: that is, if you monitored the current i} and the potential difference v|_
in the circuit of Figure 3.9a, you would find that i; reaches its maximum value
after 1, does, by one-quarter cycle.

The phasor diagram of Figure 3.9c also contains this information. As the
phasors rotate counterclockwise in the figure, the phasor labeled 1, does indeed
lag that labeled V| by an angle of 90°. It is clear that Figure 3.9c represents Eqgs.

(3.49) and (3.55).

We have seen that an inductor has reactance that limits current similar to
resistance in a dc circuit.

The instantaneous power supplied to the inductor is

P =ipv = Isin(wmt - %)V sin(umt) = IV cos(wt)sin(wt) = —%sin(ZWt) :
So, the average power over a complete cycle, as in the case of a capacitor, is
(P)= <— %sin(ZWt)> = —%(sin(ZWt)} =0,

since the average of sin(2wt) over cycle is zero. Thus, the average power

supplied to an inductor over one complete cycle is zero.

Physically, this result means the following. During the first quarter of each
current cycle, the flux through the inductor builds up and sets up a magnetic field
and energy is stored in the inductor. In the following quarter of cycle, as the
current decreases, the flux decreases, and the stored energy is returned to the
source. Thus, in each half-cycle, the energy which withdrawn from the source is
returned to it without any dissipation of power.

Example 3.7

A pure inductor of 25 mH is connected to a source of 220 V. Find the
inductive reactance and rms current in the circuit if the frequency of the source is
50 Hz.
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Solution.
The inductive reactance,

X =2pfL=2"3.14"50" 25~ 1073 =7.85W.
The rms current in the circuit is

s =i = 220V 3
L .
Exercises

3.37. A 44 mH inductor is connected to a 220 V, 50 Hz AC supply.
Determine the rms value of the current in the circuit.

3.38. What is the reactance of a 1-H inductor at a frequency of 60 Hz?
(Ans. 377 Q.)

3.39. What is the inductance of an inductor whose reactance is 1 Q at 60

Hz? (Ans. 2.657107° H.)

3.40. Compute the reactance of a 10-H inductor at frequencies of 60 Hz and
600 Hz.

3.41. At what frequency is the reactance of a 10-H inductor equal to that of
a 10-pF capacitor?

3.42. An inductor of self-inductance 10 H and of negligible resistance is
connected across the AC source whose voltage amplitude is kept constant at 50 V
but whose frequency can be varied. Find the current amplitude when the angular

frequency is (@) 100 rad/s; (b) 1000 rad/s; (c) 10,000 rad/s. [Ans. (a) 571072
A; (05 10 A; (€)5 1074 A]

3.43. Find the current amplitude if the self-inductance of a resistanceless
inductor connected across the source of AC source whose voltage amplitude is

kept constant at 50 V but whose frequency can be varied, is (a) 0.01 H; (b) 1.0 H;
(c) 100 H.

3.11 The Series RLC Circuit

We are now ready to apply the alternating EMF
e = ey sinwgyt (3.57)
to the full RLC circuit of Figure 3.10. As R,L, and C are in series, the same
current
i =Isin(wgt-7) (3.58)
is driven in all three of them. We wish to find (a) the current amplitude | and (b)
the phase constant f. The solution is simplified by the use of phasor diagrams.
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i a) The Current Amplitude. We

VVWN— start with Figure 3.11a, which shows the

R phasor representing the current of Eq.

gg@ C== il’ (3.58) at an arbitrary time t. The length
L of the phasor is the current amplitude 1,
00— the projection of the phasor on the
R vertical axis is the current i at time t,

Figure 3.10 A single-loop circuit containing @nd the angle of rotation of the phasor is

a resistor, a capacitor, and an inductor. A the phase wqt-f of the current at
generator produces an alternating EMF that

establishes an altemating current; the time t-_
directions of the EMF and currefit are Figure 3.11 shows the phasors
indicated here at only one instant representing the voltages across R, L,

and C at the same time t. Each phasor is oriented relative to the angle of rotation
of current phasor | in Figure 3.11a, based on the following information:

Resistor: Current and voltage are in phase, so the angle of rotation of the
voltage phasor Vg is the same as that of the phasor | .

Capacitor: Current leads voltage by 90°, so the angle of rotation of voltage
phasor V¢ is 90° less than that of phasor 1.

Inductor: Current lags voltage by 90°, so the angle of rotation of the
voltage phasor V| is 90° greater than that of the phasor I,

Figure 3.11b also shows the instantaneous voltages Vg, V¢, and V| across

R, L, and C at time t; those voltages are the projections of the corresponding
phasors on the vertical axis of the figure.

Figure 3.11c shows the phasor representing the applied EMF of Eq. (3.57).
The length of the phasor is the EMF amplitude e, the projection of the phasor

on the vertical axis is the emf e at time t, and the angle of rotation of the phasor
is the phase wyt of the EMF at time t.

From the loop rule, we know that at any instant, the sum of the voltages
VR, Vc, and V| is equal to the applied EMF e

e =VR +Vc +V| . (3.59)

Thus, at time t, the projection egms in Figure 3.11c is equal to the
algebraic sum of the projections Vg, V¢, and V| in Figure 3.11b. In fact, as the
phasors rotate together, this equality always holds. This means that phasor eqms

in Figure 3.11c must be equal to the vector sum of the three voltage phasors Vg,
V¢, and V| in Figure 3.11b.
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S

Ve Ve

(b) (d)
Figure 3.11 (a) A phasor representing the alternating current in the driven RLC at time t .

The amplitude |, the instantaneous value 1, and the phase Wyt - j are shown; (b)

Phasor representing the voltages across the inductor, the resistor, and the capacitor,
oriented with respect to the current vector in (a); (c) A phasor representing EMF that drives
the current of (a); (d) The EMF phasor is equal to the vector sum of the three voltage

phasors of (b). Here, voltage phasors V|_ and VC have been added to yield their net
phasor (V| -V¢)

Requirement of Eq. (3.59) is indicated in Figure 3.11d, where the phasor e
is the sum of phasors Vg, V|, and V. Because phasors V| and Vc have

opposite directions in the figure, we simplify the vector sum by first combining
V| and V¢ to form the single phasor V| -V and the obtained that single phasor

with Vg to find the net phasor. Again, the net phasor must coincide with phasor
€max as shown.
Both triangles in Figure 3.11d are right triangles. The application of the
Pythagorean Theorem to either yields
2 _y\ 2 2
em =VR™ +(Vc -VL)".
From the amplitude information, we can rewrite this as
e2 =VR% +(IX - IX¢)?,
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and then rearrange it to the form

| = €m | (3.60)
\/R2 +(XL - Xc)?
The denominator in Eq. (3.60) is called the impedance Z of the circuit for
the driving angular frequency wy :

z=|R%+ (X - Xc)?. (3.61)
Then we can write Eqg. (3.60) as

| = %m (3.62)

If we substitute for X and X from Egs. (3.46) and (3.53), we can write
Eq. (3.60) more explicitly as

| = €m | (3.63)

.2
R2+fwgl -+ 2
: wgC g

We have now accomplished half of our goal: We have obtained an
expression for the current amplitude | in terms of the sinusoidal driving EMF and
the circuit elements in a series RLC circuit.

The value of | depends on the difference between wyL and 1/wyC, or,

equivalently, the difference between X, and X in Eg. (3.60). In either

equation, it does not matter which of two quantities is greater because the
difference is always squared.

The current that we described in this section is the steady-state current
which occurs after the alternating EMF has been applied for some time. When the
EMF is first applied to a circuit, a brief transient current occurs. Its duration
(before settling down into the steady-state current) is determined by the time
constants t; =L/R and tc =RC as the inductive and capacitive elements turn

on. This transient current can be large, for example, to destroy a motor on start up
if it is not properly taken into account in the motor circuit design.

b) The Phase Constant. From the right-hand phasor triangle in Figure
3.11d, we can write

L-Ve _ IXp - IXc
VR IR

tanfzv

(3.64)

which gives us

XL-Xc

tanf = (3.65)

This is the other half of our goal to obtain an equation to calculate the
phase constant f in a sinusoidally driven series RLC circuit. In essence, it gives
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us three different results for the phase constant, depending on the relative values
of X and X¢:

1. X > X¢: The circuit is said to be more inductive than capacitive. Eq.
(3.65) tells us that F is positive for such a circuit, which means that the phasor |
rotates behind the phasor EMF (Figure 3.12a). A plot of EMF and i versus time

is like that in Figure 3.12b. (Figures 3.11c and d were drawn assuming
XL > XC )

€, 1
’ , Positive
R W
Em Em|
t
g
1
(a) (b)
€, 1
7 Negative ¢
I —
;\ Em|
m
& t
(c) (d)
€, 1

- i Zerod

(e) ®

Figure 3.12 Phasor diagrams and graphs of the alternating emf and 1 for the driven RLC
circuit of Figure 3.11. In the phasor diagram of (a) and the graph of (b), the current 1 lags the
driving emf the current's phase constant f is positive. In (c) and (d), the current | leads the

driving emf and its phase constant F is negative. In (e) and (f), the current I is in phase with
driving emf and its phase constant F is zero
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2. X <Xc The circuit is said to be more capacitive than inductive. Eq.
(3.65) tells us that f is negative for such a circuit, which means that the phasor |
rotates ahead of the phasor EMF (Figure 3.12c). A plot of EMF and i versus time
is like that in Figure 3.12d.

3. X = X¢ : The circuit is said to be in resonance, a state that is discussed
next. Eq. (3.65) tells us that £ =0 for such a circuit which means that the phasors
EMF and i rotate together (Figure 3.12e). A plot of EMF and i versus time is
like that in Figure 3.12f.

As an illustration, let us reconsider two extreme circuits: In the purely
inductive circuit of Figure 3.9a, where X| is nonzero, and X¢c =R =0, Eq.(3.65)
tells us that £=+90° which is consistent with Figure 3.9c. In the purely
capacitive circuit of Figure 3.8a, where X is nonzero and X =R =0,

Eq.(3.65) tells us that £ =-90° which is consistent with Figure 3.8c.

Example 3.8

A resistor of 200 Q and a capacitor of 15.0 pF are connected in series to a
220 V, 50 Hz AC source.

(a) Calculate the current in the circuit.

Solution.

To calculate the current, we need to know the impedance of the circuit. It is

Z= \/R2 +XE = \/R2 +(2pfC)™2 = \/(ZOOW)2 +(273.14750Hz 107 %F) 2 =

= J(200W)2 + (212W)? = 2915 Q.
Therefore, the current in the circuit is
_Vims _ 220V

'ms =77 " oot

(b) Calculate the voltage (rms) across the resistor and the capacitor. Is the
algebraic sum of these voltages greater than the source voltage? If yes, resolve the
paradox.

Solution.

Since the current is the same throughout the circuit, we have

VR = ImsR = (0.755 A)(200W) =151V,
Ve = lIymsXc =(0.755A)(212.3W) =160.3V .
The algebraic sum of the two voltages, Vg and V¢, is 311.3 V which is

more than the source voltage of 220 V. How to resolve this paradox?

As we have leaned, the two voltages are not in the same phase. Therefore,
they cannot be added like ordinary numbers. The two voltages are out of phase by
ninety degrees. Therefore, the total of these voltages must be obtained using the

Pythagorean theorem:
Vrsc =VE +VE =220V.

=0.755 A.
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Thus, if the phase difference between two voltages is properly taken into
account, the total voltage across the resistor and the capacitor is equal to the
voltage of the source.

Example 3.9

In a series circuit, let R=300 Q,L=0.9 H, C =2 pF, and w =1000 rad/s.
Calculate the reactance, the impedance, the current amplitude, the phase angle
and the voltage amplitudes across the inductor and capacitor.

Solution.
The inductive and the capacitive reactances are:
X =wL =900 Q,
Xc = 1 500 Q.
wC

Then the reactance X of the circuit is
X =X - X¢ =400 Q,
and the impedance Z is
Z =\R%+2% =500 Q.
If the circuit is connected across an AC source of the voltage amplitude 50
V, the current amplitude is

=0.1A.

N <

The phase angle f is
f= arctan% =53°.
The voltage amplitude across the resistor is
VR =IR=30 V.

The voltage amplitudes across the inductor and capacitor are, respectively,
VI =IX =90 V, V¢ =IX¢c =50 V.

Exercises

3.44. Why is the expression for the impedance Z of an RL series circuit
obtained from Eq. (3.61) by setting Xc =0 which corresponds to C =¥,

whereas for an RC series circuit, one obtains the impedance Z from Eq. (3.61)
by setting L =07 Explain. (Ans. Vc =Q/C whereas e = L%.)

4.45. Inan RLC series circuit, the source has a constant voltage amplitude
of 50 V and a frequency of 1000 rad/s, R=300 Q, L=09 H, C=2 pF.
Suppose a series circuit contains only a resistor and an inductor in series. (a) What
is the impedance of the circuit? (b) What is the current amplitude? (c) What are
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the voltage amplitudes across the resistor and across the inductor? (d) What is the
phase angle f of the source voltage with respect to the current? (e) Does the
source voltage lag or lead the current? (f) Construct the phasor diagram.

3.46. Consider the circuit from the Ex. 3.45, except that it consists of the
resistor and the capacitor in series only. For part (c) calculate the voltage
amplitudes across the resistor and across the capacitor. (Ans. (a) 583 Q; (b)
0.0857 A; (c) 25.7 V; 42.9 V; (d) 59.1°)

3.47. Consider the circuit from the Ex. 3.45, except that it consists of the
capacitor and the inductor in series only. For part (c), calculate the voltage
amplitudes across the capacitor and across the inductor.

3.48. A 400-Q resistor is in series with a 0.1-H inductor and a 0.5-pF
capacitor. Compute the impedance of the circuit and draw the phasor diagram (a)
at a frequency of 500 Hz. (b) at a frequency of 1000 Hz. In each case, compute
the phase angle of the source voltage with respect to the current, and state whether
the source voltage lags or leads the current. (Ans. (a) 514 Q), (b) 506 Q; 37.8°)

3.49. (a) Compute the impedance of an RLC series circuit at angular
frequencies of 1000, 750, and 500 rad/s. Take R=300 Q, L=0.9 H, and
C =2.0 uF. (b) Describe how the current amplitude varies as the frequency of the
source is slowly reduced from 1000 rad/s to 500 rad/s. (c) What is the phase angle
of the source voltage with respect to the current when w =1000 rad/s? Construct
the phasor diagram when w =1000 rad/s. Repeat part (c) for w =500 rad/s.

3.12 Series Resonance

Eq. (3.63) gives the current amplitude | in an RLC circuit as a function of
the driving angular frequency wy of the external alternating EMF. For a given

resistance R, this amplitude is a maximum when the quantity wqL -1/wyC in
the denominator is zero — that is, when

Wy L= L or
WdC
Wy = (3.66)

Because the natural angular frequency wg of the RLC circuit is also equal

to 1/+/LC , the maximum value of 1 occurs when the driving angular frequency
matches the natural angular frequency. This peaking of the current amplitude at a
certain frequency is called resonance. Thus, in an RLC circuit, resonance and
maximum current amplitude | occur when

Wy =Wy (3.67)

1
~Jie®
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If the inductance L or the capacitance C of a circuit can be varied, the
resonant frequency can be varied as well. This is the procedure by which a radio
or television receiving set may be tuned to receive the signal of the desired
station. In the early days of radio, this was accomplished by the use of capacitors
with movable metal plates whose overlap could be varied to change C.
Nowadays it is more common to use a variable inductor with a ferrite core that
slides in and out of a coil to vary L.

Figure 3.13 shows three resonance curves for sinusoidally driven
oscillations in three series RLC circuits differing only in R. Each curve peaks at
its maximum current amplitude 1 when the ratio wq /wg is 1.0, but the maximum

value of | decreases with the increasing R. (The maximum | is always
EMF /R). In addition, the curves increase in width with increasing R.

To make the physical sense of {
Figure 3.13 consider how the o
reactance X, and X change as we 3 / \RzloQ
increase  the  driving angular = Yo% X | X
frequency wy, starting with a value g C L /‘ ’\ L|> C
much less than the natural frequency 5 //Q(R =300
wg. For small Wwq , the reactance X 5 — R=100 0O
(=wgL) is small and the reactance /—ﬂ
Xc (=U/wgC) is large. Thus, the 090 095 1.00 105 1.10

Wq /W

circuit is mainly capacitive, and the
impedance is dominated by the large
X¢ which keeps the current low.

As we increase wq the Figure 3.13 Resonance curves for the driven

RLC circuit of Figure 3.10 with L =100 pH,

reactance X remains dominant but
decreases while the reactance X
increases. The decrease in Xc,

decreases the impedance allowing the
current to increase, as we see on the
left side of any resonance curve in
Figure 3.13. When the increasing
X, and the decreasing Xc reach
equal values, the current is the
greatest and the circuit is in
resonance, with wq =wgy. As we

C =100 pF, and three values of R. The

current amplitude | of the alternating current
depends on how close the driving angular

frequency Wq is to the natural angular
frequency Wgq. The horizontal arrow on each

curve measures the width of the curve at the
half-maximum level, a measure of the
sharpness of the resonance. To the left of

Wy /w=1.0, the circuit is mainly capacitive,
with Xc > X|; to the right it is mainly
inductive, with X¢ < X

continue to increase wy, the increasing reactance X becomes progressively
more dominant over the decreasing reactance Xc. The impedance increases
because of X , and the current decreases, as on the right side of any resonance
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curve in Figure 3.13. In summary, the low-frequency side of resonance curve is
dominated by the capacitor reactance, the high-frequency side is dominated by the
inductor reactance, and resonance occurs in the middle.

Figure 3.14 shows the graphs of R, X, X¢, and Z as functions of w.
We have used a logarithmic frequency scale because of the wide range of
frequencies covered. Note that at one particular frequency, X, and X are
numerically equal and X = X| - X¢ is zero. Hence, at this frequency the
Impedance Z has its minimum value, equal simply to the resistance R. By
inspecting Eq. (3.63), we must conclude that, when R =0, the current becomes
infinite at resonance. Although the equation predicts this, real circuit always has a
resistance, which limits the value of the current.

Z =|R2+(X| - Xc)?

To understand the resonance
peak of the current amplitude more
fully, consider the voltages in the
circuit of Figure 3.10. At any instant
Xc the current is the same in L and C. As

we have learned, the voltage across an

/ inductor always leads the current by

90°, or a quarter-cycle, and the voltage

across a capacitor always lags the
current by 90°. Thus, comparing the
X, phase of the instantaneous voltage v|

across L and the voltage v across C,

0 we find that these two voltages always
differ in phase by 180°, or a half-cycle.
Therefore, they have opposite signs at

X=XL-Xc each instant. If, in addition, the
amplitudes of the two voltages are
(a) equal, then they add to zero at each

_ _ instant, and the total voltage vg|
::T']gbe%;ﬁce (a;SRe%Crf?Qgﬁ’s rejf'Staf':gZheigg across the LC combination is exactly
(logarithmic frequency scale); (b) Impedance, ~Z2€r0. As we have found above, this
current, and phase angle as functions of phenomenon occurs only at one

frequency (logarithmic frequency scale) particular frequency which we call the
resonant frequency. Depending on the numerical values of R, L, and C, the
voltages across L and C individually can be larger than that across R, so at
frequencies sufficiently close to the resonant frequency, the voltages across L and

C individually can be much larger than the source voltage!

An airport metal detector is essentially a resonant circuit. The portal you
step through is an inductor (a large loop of conducting wire) that is part of the
circuit. The frequency of the circuit is tuned to the resonant frequency of the
circuit when there is no metal in the inductor. Any metal on your body increases
the effective inductance of the loop and changes the current in it.
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Resonance phenomena occur in all areas of physics; we have already seen
it in the forced oscillation of the harmonic oscillator. In that case the amplitude of
a mechanical oscillation peaked at a driving-force frequency close to the natural
frequency of the system, and the behavior of the RLC circuit is analogous to this.
Other important examples of resonance occur in acoustics, in atomic and nuclear
physics, and in the study of fundamental particles (high-energy physics).

Example 3.10
A series RLC ac circuithas R=425 Q. L=1.25 H, C=35 uF. w=377

Hz, and DVax =150 V.

(a) Determine the inductive reactance, the capacitive reactance, and the
impedance of the circuit.

Solution.

The reactances are X| =wL =471 Q and X =1/wC =758 Q. The

impedance is
Z=|R2+(X| - Xc)? = (425) + (471-758)% =513 Q.
(b) Find the maximum current in the circuit.

Solution.
m :V—m:@—o.ZQZ A
Z 513
(c) Find the phase angle between the current and voltage.
Solution.
f= tan_lgmg = tan_lgwg = -34°.
e R ¢ e 425 g

Because the circuit is more capacitive than inductive, f is negative and the
current leads the applied voltage.
(d) Find both the maximum voltage and the instantaneous voltage across
each element.
Solution.
The maximum voltages are
DVR = 1,R =(0.292)(425) =124 V,
DV| =1,X =(0.292)(471) =138 V,
DV = I X =(0.292)(758) = 221 V.
We can write the instantaneous voltages across the three elements as
Dvg = (124)sin 377t V,
Dv| = (138)cos377t V,
Dvg = (-221)cos377t V,
Comments. The sum of the maximum voltages across the elements is
Dvg +Dv| +Dvc =483V. Note that this sum is much greater than the maximum

voltage of the generator, 150 V. As we saw, the sum of the maximum voltages is
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a meaningless quantity because when sinusoidally varying quantities are added,
both their amplitudes and their phases must be taken into account. We know that
the maximum voltages across the various elements occur at different times. That
IS, the voltages must be added in a way that takes into account of the different
phases. When it is done, Eq. (3.59) is satisfied.

Exercises

3.50. Show that a series RLC circuit driven by an ac source exhibits
resonance at w, =1/+/LC.

3.51. In series RLC circuit let R=200 Q, C=15.0 pF, L=230 mH,
fqy =60 Hz and e, =36 V. (a) What is the current amplitude |? (b) What is the

phase constant? (Ans. -0.424 rad, 0.164 A.)

3.52. Find Z, f, and | for the circuit of Ex. 3.51 with the capacitor
removed from the circuit, all other parameters remaining unchanged. (Ans.
Xc=0Q, X =867 Q, Z=182 Q, 1 =198 mA, f=285°.)

3.53. Find Z, f, and | for the circuit of Ex. 3.51 with the inductor
removed from the circuit, all other parameters remaining unchanged.

3.54. Find Z, f, and | for the circuit of Ex. 3.51 with C =70.0 pF, the
other parameters remaining unchanged. (Ans. X =379 Q, X =86.7 Q,
Z =167 Q, 1 =216 mA, f=17.1°))

3.55. In an RLC circuit, can the amplitude of the voltage across an
inductor be greater than the amplitude of the generator EMF? Consider an RLC
circuit with e, =10 V, R=10 Q, L=1.0 H, and C =1.0 pF. Find the amplitude
of the voltage across the inductor at resonance. (Ans. 1000 V.)

3.56. When the generator EMF in Ex. 3.51 is a maximum, what is the
voltage across (a) the generator, (b) the resistance, (c) the capacitance, and (d) the
inductance? (e) By summing these with appropriate signs, verify that the loop
rule is satisfied.

3.57. A coil of inductance 88 mH and unknown resistance and a 0.94 pF
capacitor are connected in series with an alternating EMF of frequency 930 Hz. If
the phase constant between the applied voltage and the current is 75°, what is the
resistance of the coil? (Ans. 89 Q.)

3.58. An ac generator with e, =220 V and operating at 400 Hz causes

oscillations in a series RLC circuit having R=220 Q, L=150 mH, and
C =24.0 pF. Find (a) the capacitive reactance X, (b) the impedance Z, and (c)
the current amplitude 1. A second capacitor of the same capacitance is then
connected in series with the other components. (d) Determine whether the values
of X¢c,(e) Z,and | increase, decrease, or remain the same.
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3.59. An RLC circuit such as that of Figure 3.10 has R=5.0 Q, C=20.0
pF, L=1.0 mH, and e, =3.0 V. (a) At what angular frequency wy will the

current amplitude have its maximum value, as in the resonance curves of Figure
3.10? (b) What is this maximum value? (c) At what two angular frequencies wgy;
and wgo will the current amplitude be half this maximum value? (d) What is the
fractional half-width [ = (wqq - wg2)/wgy] of the resonance curve for this circuit?
[Ans. (a) 224 rad/s, (b) 6.0 A, (c) 228 rad/s, 219 rad/s, (d) 0.040.]

3.60. At an airport, a person is made to walk through the doorway of a
metal detector, for security reasons. If she or he is carrying anything made of

metal, the metal detector emits a sound. On what principle does this detector
work?

3.13 Q-factor of the Circuit

Let’s return to Figure 3.13. We see, that the curves increase in width with
the increasing R. Thus, a small R gives a sharply peaked response curve, and a
large R gives a broad flat curve. This distinction is crucially important in the
design of radio and television receiving circuits. The sharply peaked curve is what
makes it possible to discriminate between two stations broadcasting on adjacent
frequency bands. But if the peak is too sharp, some information is lost in the
received signal. Finally, note that the shape of the resonance curve is related to
the over-damped and underdamped oscillations. A sharply peaked resonance
curve corresponds to a small value of R and a lightly damped oscillating system;
a broad flat curve goes with a large value of R and a heavily damped system.

As the resistance is made smaller, the curve becomes sharper in the vicinity
of the resonance frequency. This curve sharpness is usually described by a
dimensionless parameter known as the quality factor, denoted by Q :

"o
=—, 3.68
2Dw (3.68)
where wy is the resonance frequency, 2Dw is the width of the curve measured
between the two values of w for which P,, has half its maximum value, called

the half-power points (see Figure 3.15.)
To understand the physical meaning of the quality factor more fully, return
again to the circuit of Figure 3.10. For values of wy other than wg, the amplitude

of the current is smaller than the maximum value. Suppose we choose a value of

: : . 1 .1 . : :
wy for which the current amplitude is | = —=1,, that is —= times its maximum

V2 V2

value. From the curve in Figure 3.15, we see that there are two such values of wy ,
say, wy, and wy, one greater and the other smaller than wy and symmetrical
about wg. We can write

Wi =wg+Dw and w, =wy-Dw.



200

Figure 3.15 Average

power
frequency for a series RLC circuit. The
width DW of each curve is measured
between the two points where the power is
half its maximum value. The power is a
maximum at the resonance frequency

Versus

The difference wy -wy =2Dw is

often called the bandwidth of the circuit.
The quantity wy/2Dw is regarded as a

measure of the sharpness of resonance.
The smaller the Dw, the sharper, or
narrower, is the resonance.

To get an expression for Dw, we
note that the current amplitude is
i| :e_m
V2 " RY2
Therefore, at wy, current 1 is on one
hand,

for wy =wy+Dw.

€m

\/R2+a§w1|_- 19
wC g

and, on the other hand,

€m

RV2'

It is clear, that denominators of both expressions must be equal, hence

.2

L2
® 0
R2+BmL- 1 % —RV2. or RZ+EmL -+ ¥ =2R2
g £

WC g

WC g

and wL - 1 - R. As w; = wg +Dw, we can rewrite the latest expression as

W]_C
1
(WO+DW)L——:R, or
(wp + Dw)C
& 0

WOLg1+ bwb _ ! =R

Wy o 2 0

08 WoC l+—W:

Wo g

Using Wg = % in the second term on the left hand side, we get
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o & (
We can approximate g1+—W as gl —W- since Dw <<1. Therefore,

Wo g Wo g Wo
0 &
Lg1+EHY;- OLgl—EHY:—IQ or
o ¢ Wo ¢

OLZD—W: R, and, finally,

Wo
R

Dw=—.
2L

The sharpness of resonance is given by
Mo _ Wl (3. 69)
2Dw R
The ratio
WoL Wo
Q= R 2Dw
is the quality factor (Q -factor) of the circuit, defined by Eqg. (3.68).

From Egs. (3.69) and (3.70), we see that
2Dw="0

Q

So, the larger the value of Q, the smaller is the value of 2Dw, or the
bandwidth, and the sharper the resonance. Using Wg :%, Eqg. (3.70) can be

equivalently expressed as
1
Q= WCR (3.70)
We see from Figure 3.15, that if the resonance is less sharp, not only is the
maximum current less, but also the circuit is close to resonance for a larger range
Dw of frequencies and the tuning of the circuit will not be good. So, the less
sharp the resonance, the less the selectivity of the circuit, or vice versa. From Eq.
(3.70) we see that if the quality factor is large, i.e., R is low or L is large, the
circuit is more selective.
The quality factor is also defined as the ratio
2pE
DE
where E is the energy stored in the oscillating system, and DE is the energy lost
per cycle of oscillation.

(3.71)
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The curves plotted in Figure 3.15 show that a high- Q circuit responds to
only a very narrow range of frequencies, whereas a low-Q circuit can detect a
much broader range of frequencies. In electronic circuits, typical values of Q

range from 10 to 100.

The receiving circuit of a radio is an important application of a resonant
circuit. One tunes the radio to a particular station (which transmits a specific
electromagnetic wave or signal) by varying a capacitor or an inductor, which
changes the resonant frequency of the receiving circuit. When the resonance
frequency of the circuit matches that of the incoming electromagnetic wave, then
the current in the receiving circuit increases. This signal caused by the incoming
wave is then amplified and fed to a speaker. Because many signals are often
present over a range of frequencies, it is important to design a high- Q circuit to

eliminate unwanted signals. In this manner, stations whose frequencies are near
but not equal to the resonance frequency give signals at the receiver that are
negligibly small relative to the signal that matches the resonance frequency.

Exercises

3.61. Obtain the resonant frequency w, of a series RLC circuit with L =2,
H, C =32 uF, and R=10 Q. What is the Q -value of this circuit?

3.13 Power in Alternating-Current Circuits

No power losses are associated with pure capacitors and pure inductors in
an AC circuit. To see why this is true, let us first analyze the power in an AC
circuit containing only a generator and a capacitor.

When the current begins to increase in one direction in an AC circuit, the
charge begins to accumulate on the capacitor, and a voltage drops across it. When
this voltage drop reaches its maximum value, the energy stored in the capacitor is

CV2/2. However, this energy storage is only momentary. The capacitor is

charged and discharged twice during each cycle: The charge is delivered to the
capacitor during two quarters of the cycle and is returned to the voltage source
during the remaining two quarters. Therefore, the average power supplied by the
source is zero. In other words, no power losses occur in a capacitor in an AC
circuit.

Similarly, the voltage source must do work against the back EMF of the
inductor. When the current reaches its maximum value, the energy stored in the

inductor is a maximum and is given by L12/2. When the current begins to

decrease in the circuit, this stored energy is returned to the source as the inductor
attempts to maintain the current in the circuit.
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The power delivered by a battery to a DC circuit is equal to the product of
the current and the EMF of the battery. Likewise, the instantaneous power
delivered by an AC generator to a circuit is the product of the generator current
and the applied voltage. For the RLC circuit shown in Figure 3.10, we can
express the instantaneous power P as

P=iv=1Isin(wt - F)Vsinut = IV sinwtsin(ut - f), (3.72)

Clearly, this result is a complicated function of time and, therefore, is not
very useful from a practical viewpoint. What is generally of interest is the average
power over one or more cycles. Such an average can be computed by using the
trigonometric identity sin(wt - f) =sinwtcosf - coswtsinf. The substitution of

this into Eq. (3.72) gives
P = IVsin®wtcosf - IV sinwtcosutsin . (3.73)

We now take the time average of P over one or more cycles, noting that |,
V, f and w are all constants. The time average of the first term in the right side

. . . 1 :
of Eq. (3.73) involves the average value of sinwt, which is a 5 The time
average of the second term on the right is identically zero because

: 1. : .
sinwtcoswt = Esm 2wt and the average value of sin2wt is zero. Therefore, we

can express the average power P, as
Py = % IV cosF. (3.74)

It is convenient to express the average power in terms of the rms current
and rms voltage defined by Eq. (3.39) and (3.41):

Pav = lrmsVrms COS T, (3.75)
where the quantity cosf is called the power factor. The maximum voltage drop
across the resistor is given by V,cosf = 1,,R. Using Eqg. (3.75) and the fact that
cosf =IR/V , we find that we can express P,, as

2V 9IR IR
Piv = lrmeVime COSTF = | ——= —.
av rmsYrms rmsgﬁﬂv I‘mS\/E

After making the substitution I, = 2 Irms from Eqg. (3.39), we have

Py = 12cR. (3.76)

In words, the average power delivered by the generator is converted into

the internal energy in the resistor, just as in the case of a DC circuit. No power

loss occurs in an ideal inductor or capacitor. When the load is purely resistive,
then £=0, cosf =1, and from Eq. (3.76), we see that

Pav = TrmsVrms - (3.77)
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Eq. (3.76) shows that the power delivered by an AC source to any circuit
depends on the phase, and this result has many interesting applications. For
example, a factory that uses large motors in machines, generators, or transformers
has a large inductive load (because of all the windings). To deliver greater power
to such devices in the factory without using excessively high voltages, technicians
introduce capacitance in the circuits to shift the phase.

So, as we have understood, the average power dissipated depends not only
on the voltage and current but also on the power factor. Let us discuss the
following cases:

Case (a). Resistive circuit: If the circuit contains only pure R, it is called
resistive. In that case, ¥ =0, cosf =1. There is maximum the power dissipation.

Case (b). Purely inductive or capacitive circuit: If the circuit contains only
an inductor or capacitor, we know that the phase difference between the voltage
and the current is p/2. Therefore, cosf =0, and no power is dissipated even
though a current is flowing in the circuit. This current is sometimes referred to as
wattless current.

Case (c). RLC series circuit. In an RLC series circuit, the power

dissipated is given by Eq. (3.75) with f= tan'lé%g. So, f may be non-
e o
zero (except p/2) ina RL, RC, or RLC circuit. Even in such cases, power is
dissipated only in the resistor.
Case (d). Power dissipated at resonance in RLC circuit: At resonance,
Xc-X_. =0 and f=0. Therefore, cosf=1 and P=I7m=%m. That is,

maximum power is dissipated ina RLC circuit (through R) at resonance.

Example 3.11

A sinusoidal voltage of the peak value 283 V and the frequency 50 Hz is
applied to a series RLC circuit in which R=3 Q, L=25.48 mH, and C =796
MF.

(a) Find the impedance of the circuit.

Solution.

(@) To find the impedance of the circuit, we first calculate X and X¢:

X, =2pfL=2"3.14" 50" 25.48” 1073w = 8W,
1 1

= = 5 =4W.
2pfC  273.147507 796”10~

Xc
Therefore,
Z =JR2+(X| - Xc)2 =432 + (8- 4)% =5W.

(b) Find the phase difference between the voltage across the source and the
current.
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Solution.
Phase difference
f=tanEXC XL O (5184780 5390
e R g e 3 g

T is negative, the current in the circuit lags the voltage across the source.
(c) Find the power dissipated in the circuit.

Solution.
The power dissipated in the circuit is
P= Ir2msR’
I 1 ae2830
Now, | m = $=40A,
rms = J2 \/_ 2¢ 5 ¢
Therefore,

P = (40 A)? " 3W = 4800W .
(d) Find the power factor.
Solution.
Power factor: cosf =c0s53.1°=0.6.

Example 3.12

Suppose the frequency of the source in the previous example can be varied.
(a) What is the frequency of the source at which resonance occurs?
Solution.

(a) The frequency at which the resonance occurs is

Wy = 1 - L =222.1rad/s,
VLC /254871073 796 107
=Moo 22l o as g
2p 273.14

(b) Calculate the impedance, the current and the power dissipated at the

resonant condition.

Solution.
The impedance Z at resonant condition is equal to the resistance:
Z=R=3W.
The rms current at resonance is
| s :Vrms :Vrms :$28391_ 66.7 A
Z R 243
The power dissipated at resonance is

P=12.R=(66.7)>" 3=13.35kW.
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Exercises

3.62. A series RLC circuit with R=20 Q, L=15 H, and C=35 pF is
connected to a variable-frequency 200 V AC supply. When the frequency of the
supply equals the natural frequency of the circuit, what is the average power
transferred to the circuit in one complete cycle?

3.63. A series RLC circuit is connected to a variable frequency 230 V
source. L=5 H, C =80 uF, R=40 Q; (a) Determine the source frequency which
drives the circuit in resonance. (b) Obtain the impedance of the circuit and the
amplitude of current at the resonating frequency. (c) Determine the rms potential
drops across the three elements of the circuit. Show that the potential drop across
the LC combination is zero at the resonating frequency.

3.64. A 400-Q resistor is in series with a 0.1-H inductor and a 0.5-pF
capacitor. The circuit carries an rms current of 0.25 A with a frequency of 100
Hz. (a) What average power is delivered by the source? (b) What average power
Is consumed in the resistor? (c) In the capacitor? (d) In the inductor? (e) Compare
your answers in (a) to the sum of (b), (c),and (d) (Ans. 25 W), (b) 25 W, (c) O,
(d) 0, (e) (a) =(b)* (c)+ (d).)

3.65. A series circuit has a resistance of 75 Q and an impedance of 150 Q.
What power is consumed in the circuit when a voltage of 120 V (rms) is
impressed across it?

3.14 Parallel Resonance

A different kind of resonance occurs when L, R, and C are connected in
parallel, as shown in Figure 3.16a. We can analyze this circuit by using the same
procedure as for the series circuit. In this case, the instantaneous potential
difference v is the same for all elements and is equal to the source voltage. Figure
3.16b shows a phasor diagram; the single phasor V represents this common
voltage. There are three separate currents, one in each branch, and the three
corresponding current phasors are also shown. The phasor Ig, (with amplitude

V /R and in phase with V') represents the current in the resistor. Phasor 1 (with
amplitude V /X and lagging V by 90°) represents the current in the inductor.
Phasor I¢, with amplitude V /X and leading V by 90°, represents the current
in the capacitor.

By Kirchhoff’s point rule, the instantaneous current i, equals the
(algebraic) sum of the instantaneous currents ig, i , and ic and is represented by
the phasor I, the vector sum of phasors Ig, I, and Ic. Angle f is the phase

angle of current with respect to source voltage (the negative of the phase angle of
voltage with respect to current).
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(a)

I
(b)

Figure 3.16 (a) Parallel RLC circuit; (b) Phasor diagram showing current phasors for the three
branches. The single voltage phasor V represents the voltage across all three branches

From Figure 3.16,

Vi Vo
l=13+(0c-1;)2= 829 +&pcv - L0 =
\/R (Ic - 1) \/gR 9 C

=V\/ 12+9wc-i9 . (3.78)
R ¢ WL g

The maximum current | is frequency-dependent, as expected. It is minimal
when the second factor in the radical is zero; this occurs when the two reactances
have equal magnitudes, at the resonant frequency wy.

Comparing this equation with Eqg. (3.61), we see that the impedance Z of a
parallel RLC circuit is given by

2
L i+%§wc-i9 . (3.79)
Z \|R? & wi g
At resonance 1/Z , is minimum, so Z itself has its maximum value at
w=wy=1/+J/LC. (3.80)

Thus, at resonance, the total current in the parallel RLC circuit is
minimum, in contrast to the RLC series circuit which has maximum current at
resonance. This distinction can be understood by noting that, in the parallel
circuit, the currents in L and C are always exactly a half-cycle out of phase.
When they also have equal magnitudes, they cancel each other completely, and
the total current is simply the current through R. Indeed, when wC =1/wL, Eq.
(3.78) becomes simply I =V /R. This does not mean that there is no current in L
or C at resonance, but only that the two currents cancel. If R is large, the
equivalent impedance of the circuit near resonance is much larger that the
individual reactances X and Xc .



208
Exercises

3.66. For the circuit of Figure 3.16a, let V =120 V, R=200 Q, L=0.5 H,
and C =0.2 uF. (a) What is the resonant angular frequency of the circuit? Sketch
the phasor diagram at the resonant frequency. (b) At the resonant frequency, what
Is the current through the source? (c) At the resonant frequency, what is the
current through the resistor? (Ans. (a) 3160 rad/s, (b) 0.6 A, (c) 0.6 A,)

3.67. Consider the circuit of Figure 3.16a, with the same numerical values
as in Exercise 3.51. At resonance, what is: (a) the average rate at which the
electrical energy is delivered by the source? (b) the average rate at which
electrical energy is dissipated in the resistor? Compare to the result of (a). (c) Is
the current through the inductor, and, hence, the energy stored in its magnetic
field, zero at all times? If not, how can the result obtained in (b) be explained? (d)
Calculate the maximum energy stored in the inductor. (e) Calculate the maximum
energy stored in the capacitor.

Summary

A circuit containing an inductance L and a capacitance C undergoes
electromagnetic oscillations, with angular frequency w given by
1

JLC
Such a circuit is analogous to a mechanical harmonic oscillator with the
mass m analogous to the inductance L, the force constant k to the reciprocal of
the capacitance 1/C, the displacement x to the charge g, and the velocity v to

the current i. A series circuit containing inductance, resistance, and capacitance
undergoes damped oscillations for sufficiently small resistance. As R increases,
the damping increases; at a certain value of R, the behavior becomes
overdamped, and the circuit no longer oscillates. The crossover between the
underdamping and the overdamping occurs when

R= .2,
C

and the frequency w' of damped oscillations when R is smaller than this critical

value is
|1 R?
W=, |—-—.
LC 412

There is a direct analogy between every aspect of the behavior of the RLC
circuit and the mechanical damped harmonic oscillator. This analogy is widely
used in analog computers.

An alternator or AC source produces an EMF that varies sinusoidally with
time. Voltages and currents that vary sinusoidally with time can be represented by
vectors called phasors. A phasor rotates counterclockwise with constant angular
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velocity w equal to the angular frequency of the sinusoidal quantity, and its
projection on the horizontal axis at any instant represents the instantaneous value
of the quantity.

The voltage across a resistor R is in phase with the current, and the
amplitudes are related by
V =IR.
The voltage across a capacitor C lags the current by 90°; the amplitudes
are related by
V =1X¢.
where X¢c =1/wC is the capacitive reactance of the capacitor.
The voltage across an inductor L leads the current by 90°; the amplitudes
are related by
V=1IX|.
where X =wlL is the inductive reactance of the inductor.
Inan RLC series circuit, the voltage and current amplitudes are related by
V=IZ.
where Z is the impedance of the circuit, given by
z=VR2+ X2 =[R2+ (X - Xc)? = yRZ+[WL - (L/uC)]2 .
The phase angle g of the voltage relative to the current is given by
VI -Ve _ (X -Xg) _ X
Vp | "R’
The Sl unit of capacitive or inductive reactance, or impedance is the ohm.
The root-mean-square (rms) value of a sinusoidally varying quantity is
1/+/2 times the amplitude; thus I ms = 1/~+/2 and Vi =V /+/2.
The average power input P to an ac circuit is given by
P'=Vimslrms COSq ,
where g is the phase angle of voltage with respect to current. The quantity cosq

is called the power factor.
The current in an RLC series circuit becomes maximum, and the

impedance minimum, at a frequency wy =1/+/LC called the resonant frequency.

This phenomenon is called resonance. At resonance the voltage and current are in
phase, and the impedance Z is equal to the resistance R.

The current in an RLC parallel circuit becomes minimum, and the
impedance maximum, at this same resonant frequency wg. The impedance Z of

this circuit at any frequency is given by
%: JRZ+ [l - W/wC)? .

At resonance, Z = R.

tang =
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Key Terms

Electro—magnetic oscillations — anekrpomarauTHBIE KOJICOAHUS
damped oscillations — 3aryxaromue konebanus

alternating current — mepeMeHHBIN TOK

aC SOuUrce — ICTOYHHK IMEPEMCHHOI'O TOKa

phasor diagrams — ¢azopHas quarpamMmma

phase angle — ¢a3oBbIii yrom

capacitive reactance — eMKOCTHOE CONPOTHBIICHHUE

inductive reactance — WHIYKTUBHOE COMPOTHUBIICHHE

reactance — peakTuBHOE CONPOTUBIIEHUE

impedance — uMrieanc

root-mean-square (rms) value — cpenneapupmMeTHIECKOE 3HAYCHUE
resonance — pe3oHaHC

resonant frequency — pe3oHaHCHas 4acTOTa
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Chapter 4

Electromagnetic Waves

The waves we discussed in Chapter 2 require a medium (some material)
through which or along which to travel. We had waves traveling along a string,
through Earth, and through the air. However, an electromagnetic wave is different
in that it requires no medium for its travel. It can, indeed, travel through a medium
such as air or glass, but it can also travel through the vacuum of space between a
star and us.

Once the special theory of relativity became accepted, long after Einstein
published it in 1905, the speed of light waves was realized to be special. One
reason is that light has the same speed regardless of the frame of reference from
which it is measured. If you send a beam of light along an axis and ask several
observers to measure its speed while they move at different speeds along that axis,
either in the direction of the light or opposite it, they will all measure the same
speed for the light. This result is an amazing one and quite different from what
would have been found if those observers had measured the speed of any other
type of wave; for other waves, the speed of the observers relative to the wave
would have affected their measurements.

4.1 Nature of Electromagnetic Waves

We have studied various aspects of electric and magnetic fields, falling in
two general categories. The first category includes fields that do not vary with
time. The electrostatic field of a distribution of charges at rest and the magnetic
field of a steady current in a conductor are examples of fields that do not vary
with time at any individual point, although they may vary from point to point in
space. For these situations we could treat the electric and magnetic fields
independently, without worrying much about interactions between them. The
second category includes fields that do vary with time, and in all such cases, we
found that it is not possible to treat the fields independently.

James Clerk Maxwell's crowning achievement was to show that a beam of
light is a traveling wave of electric and magnetic fields — an electromagnetic
wave. In Maxwell's time (the mid 1800s), the visible, infrared, and ultraviolet
forms of light were the only electromagnetic waves known. Using Maxwell's
work, however, Heinrich Hertz discovered what we now call radio waves and
verified that they move through the laboratory at the same speed as visible light.

We have given a brief description of Maxwell's equations which form the
theoretical basis of all electromagnetic phenomena. The consequences of
Maxwell's equations are far-reaching. The Ampere-Maxwell law predicts that a
time-varying electric field produces a magnetic field, just as Faraday's law tells us
that a time-varying magnetic field produces an electric field. Maxwell's
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introduction of the concept of displacement current as a new source of a magnetic
field provided the final important link between electric and magnetic fields in
classical physics. Maxwell's equations also predict the existence of
electromagnetic waves that propagate through space with the speed of light c.

In his unified theory of electromagnetism, Maxwell showed that
electromagnetic waves are a natural consequence of the fundamental laws
expressed in the following four equations:

r 1
rot Ez—E,
. t

divB=0

r
rot H = E+ E,
L
divD=r.

Some electromagnetic waves, including X-rays, gamma rays, and visible
light, are radiated (emitted) from sources that are of atomic or nuclear size where
quantum physics rules. Here we discuss how other electromagnetic waves are
generated. To simplify matters, we restrict ourselves to that region of the
spectrum (wavelength =1 m) in which the source of the radiation is both

macroscopic and of manageable dimensions.
Devises for generating such waves contain an LC oscillator which

establishes an angular frequency w=~/LC . Charges and currents in this circuit
vary sinusoidally at this frequency. An external source — possibly an AC
generator — must be included to supply energy to compensate both for thermal
losses in the circuit and for energy carried away by the radiated electromagnetic
wave.

The LC oscillator is coupled by a transformer and a transmission line to an
antenna which consists essentially of two thin solid conducting rods. Through this
coupling, the sinusoidally varying current in the oscillator causes charge to
oscillate sinusoidally along the rods of the antenna at the angular frequency w of
the LC oscillator. The current in the rods associated with this movement of
charge also varies sinusoidally, in magnitude and direction, at angular frequency
w. The antenna has the effect of an electric dipole whose electric dipole moment
varies sinusoidally in magnitude and direction along the length of the antenna.

Because the dipole moment varies in magnitude and direction, the electric
field produced by the dipole varies in magnitude and direction. As well, because
the current varies, the magnetic field produced by the current varies in magnitude
and direction. However, the changes in the electric and magnetic fields do not
happen everywhere instantaneously; rather, the changes travel outward from the
antenna at the speed of light c. Together the changing fields form an
electromagnetic wave that travels away from the antenna at speed c. The angular
frequency of this wave is w, the same as that of the LC oscillator.
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We are bathed in electromagnetic waves of different wavelengths. The Sun,
whose radiations define the environment in which we as a species have evolved
and adapted, is the dominant source. We are also crisscrossed by radio and
television signals. Microwaves from radar systems and from telephone relay
systems reach us. There are electromagnetic waves from lighlbulbs, from the
heated engine blocks of automobiles, from X-ray machines, from lightning
flashes, and from buried radioactive materials. Beyond this, radiation reaches us
from stars and other objects in our galaxy and from other galaxies.
Electromagnetic waves also travel in the other direction. Television signals,
transmitted from Earth since about 1950, have now taken news about us to
whatever technically sophisticated inhabitants there may be on whatever planets
may encircle the nearest 400 or so stars.

4.2 Hertz's Experiment

In 1887, Heinrich Hertz produced electromagnetic waves with the aid of
oscillating circuits, and received and detected these waves with other circuits
tuned to the same frequency.

The experimental apparatus that Input
Hertz used to generate and detect
electromagnetic  waves is  shown
schematically in Figure 4.1. An
induction coil is connected to a
transmitter made up of two spherical Induction
electrodes separated by a narrow gap. coil
The coil provides short voltage surges to
the electrodes, making one positive and
the other negative. A spark is generated
between the spheres when the electric
field near either electrode surpasses the

dielectric strength for air (3’106 V/m). g g
In a strong electric field, the acceleration
of free electrons provides them with
enough energy to ionize any molecules
they strike. This ionization provides
more electrons which can accelerate and
cause further ionization. As the air in the
gap is ionized, it becomes a much better
conductor, and the discharge between
the electrodes exhibits an oscillatory
behavior at a very high frequency. From an electric-circuit viewpoint, this is
equivalent to a LC circuit in which the inductance is that of the coil and the
capacitance is due to the spherical electrodes.

Transmitter

Receiver

Figure 4.1 The experimental apparatus that
Hertz used to generate and detect
electromagnetic waves
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Because L and C are quite small in Hertz's apparatus, the frequency of

oscillations is very high, f =100 MHz. (Recall that W=L fora LC circuit).

JLC

Electromagnetic waves are radiated at this frequency as a result of the oscillation
(and hence acceleration) of free charges in the transmitter circuit. Hertz was able
to detect these waves by using a single loop of wire with its own spark gap (the
receiver). Such a receiver loop, placed several metres from the transmitter, has its
own effective inductance, capacitance, and natural frequency of oscillation. In
Hertz's experiment, sparks were induced across the gap of the receiving electrodes
when the frequency of the receiver was adjusted to match that of the transmitter.
Thus, Hertz demonstrated that the oscillating current induced in the receiver was
produced by electromagnetic waves radiated by the transmitter. His experiment is
analogous to the mechanical phenomenon in which a tuning fork responds to
acoustic vibrations from an identical tuning fork that is oscillating.

Additionally, Hertz showed in a series of experiments that the radiation
generated by his spark-gap device was transverse and exhibited the wave
properties of interference, diffraction, reflection, refraction, and polarization, all
of which are properties exhibited by light. Thus, it became evident that the radio-
frequency waves Hertz had generated had properties similar to those of light
waves and differed only in frequency and wavelength. Perhaps his most
convincing experiment was the measurement of the speed of this radiation. Radio-
frequency waves of known frequency were reflected from a metal sheet and
created a standing-wave interference pattern whose nodal points could be
detected. The measured distance between the nodal points enabled determination
of the wavelength [I. Using the relationship v = If , Hertz found that v was close

to 37108 m/s, the known speed c of visible light.

4.3 Wave Equation for Plane Electromagnetic Waves

The existence and properties of electromagnetic waves can be deduced
from Maxwell's equations. One approach to deriving these properties is to solve
the second-order differential equation obtained from Maxwell's equations. To
circumvent this problem, we assume that the vectors for a electric field and
magnetic field in an electromagnetic wave have a specific space-time behavior
that is simple but consistent with Maxwell's equations.

To understand the prediction of electromagnetic waves more fully, let us
focus on a plane electromagnetic wave that travels in the x direction (the direction

of propagation). In this wave, the electric field E is in the y direction, and the

magnetic field B is in the z direction, as shown in Figure 4.2. It means that their
components on coordinate axes does not depend on coordinates y and z.
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We can relate E and H to each
other. In an empty space, where r=0
and =0, e=1, m=1, Maxwell’s
equations become:

r
rotk = —E, (4.1)
it
divB=0, (4'2) Figure 4.2 At some instant, a plane
r ﬂIID electromagnetic wave moving in the X
rotH = —, (4.3) direction has a maximum electric field in the
qt positive Y direction. At that point the

(4.4) corresponding magnetic field has a magnitude
E/c andisinthe z direction
Consider the Eg. (4.1) which is the differential form of law of
electromagnetic induction. As
I . .
ot =l L 1 1[_&%E; _TEy0 M€, TExg, ZWEy fExO

divD = 0.

x Ty fz| S0 T2, KW s g Ty
Ex Ey Ez

then Eq. (4.1) can be rewritten as

H
O0=m : 4.5
0 g (4.5)
1E; _ . THy

o mo it (4.6)

ﬂEy H;
—==-m : 4.7
™ 0 (4.7)

After the same procedure, the Eq. (4.3) can be written in the form:
TEx

0=eg—=, 4.8
0 gy (4.8)

TH; ﬂEy
= - , 4.9
i 0 gt (4.9)

TH y 1E,;
—=eyp—=. 4.10
0w 0 g (4.10)
Egs. (4.2) and (4.4) take form
By _ Mo H =0 and . Dy =€y TEx =0,
ix ix ix X

respectively.
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Eqgs (4.4) and (4.8) show that E, does not depend either on coordinate x or
time t. Eqgs (4.2) and (4.5) give the same information about H,. Hence the field

itself has no components along the x-—axis. This means that vectors E, and H are
perpendicular to the direction of wave propagation, that is, that electromagnetic
waves are transverse waves.

The Eqgs (4.7), (4.9), and (4.6), (4.10) can be combined into two
independent systems:

—L = , L Z=_gg—2, 4.11
i s i o it (4.11)
and
ﬂEz - ﬂHy ﬂHy - ﬂEz
"=z - ) — 2 —en—£. 4.12
w0 ™0 g (4.12)

The Egs. (4.11) interrelate the components E, and H,, and the Egs. (4.12)
interrelate the components E; and H .

Suppose that initially the time-varying electric field Ey directed along the
y -axis was created. According to the second of Eq. (4.11), this field produces the
magnetic field H; which is directed along z-axis. Furthermore, according to the
first of Eqgs. (4.11), the field H; produces the electric field Ey and so on. Neither
the field E; not field Hy are induced in this case. Similarly, if initially the
electric field E; was produced, then the field Hy appears, and this Hy field

induces electric field E; and so on, according to Egs. (4.12). Hence, for

description of plane wave, we can use only one of the above systems, putting the
components of the second system equal zero.
Let’s choose system (4.11), putting E, =H, =0. Taking derivative of the

first of Egs. (4.9) with respect to x, substituting 1W—Z:1ﬂHZ, and
ix it Tt Tx
combining the result with Eq. (4.11), we obtain:
2 ) 2
By _ o LafHzo__, fefH.6_ . g2  TEyo_ 1By
o2 PAXE Tt g OftE g oty O M, O g2
That is,
2 2
E E
L 2y :moeoﬂ—zy. (4.13)
fx fit

In the same manner, taking the derivative of the second of Egs. (4.11) with
respect to x, we get:
2 2
112 = oo -1z (4.14)
Ix 1t
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We obtain very important result: Egs. (4.13) and (4.14) both have a form of
the general wave equation. It is known that any function which satisfies the wave
equation describes the wave motion, which can be realized in nature. Moreover,
the root of quantity, which is reciprocal to the coefficient at time derivative, gives
squared phase speed of the wave. Hence, Egs. (4.13) and (4.14) state that
electromagnetic fields can exist in the form of electromagnetic waves and their
phase speed c in vacuum is determined as

1

Jmoeo
Recall again, that Ey =E, =0 and Hy=H, =0, that is E, =E and
H, = H.We keep indexes y and z in Egs. (4.13) and (4.14) to show that vectors

E and H are directed along mutually perpendicular axes y and z.

The simplest solutions of Eqs.(4.13) and (4.14) are sinusoidal waves for
which the field magnitudes E and H vary with time according to expression:

Ey = Epcos(wt - kx + ), (4.16)
H, = Hpcos(wt -kx + ), (4.17)

where E,, and H, are the amplitudes of the fields. Here, as usual, k is a wave
number, k=2p /I, I is a wavelength, f; and f, are the phase constants of
oscillations for points with coordinates x =0. The angular frequency is w = 2pf
where f is the wave frequency.

The substitution of functions (4.16) and (4.17) into Egs.(4.11) leads to the
following relationships:

KEp, sin(wt - kx + f;) = mowH , sin(wt - kx + f5) ,
kHp, sin(wt - kx + f5) = egWE, sin(wt - kx + ) .

As these relationships must be satisfied at any of t and x, certain
requirements are necessary:

a) initial phases must be equal, f; =f,, and

b) following equalities must hold:

KEm = mowH, and egwEn, =kHp,.
Multiplying these equations, we obtain:
eoE2 = myH 2.

Thus, electric and magnetic fields oscillate with the same phase (f; =1),

and amplitudes of the fields are related as
Em €o = Hm mg .

It is clear from the last expression that for a wave, propagating through

empty space, the ratio of electric field intensity E to magnetic field intensity is

En/Hp =My /e = (4p ~1077)(4p = 97 10%) =120p =377 Q.

c= (4.15)
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Another interesting and useful result is:
Em _E_¢ (4.18)
Bnhn B
that is, at every instant of time, the ratio of the magnitude of the electric field E
to the magnitude of the magnetic field B = myH in electromagnetic wave equals

the speed of light c.

Finally, note that electromagnetic waves obey the superposition principle
because the differential equations involving E and B are linear equations. For
example, we can add two waves with the same frequency simply by adding the
magnitudes of the two electric fields algebraically.

Let us summarize the properties of electromagnetic waves as we have
described them:

1. The solutions of Maxwell's first and second (or third and fourth)
equations are wave-like, with both E and H satisfying the wave equation.

2. Electromagnetic waves travel through empty space at the speed of light

1
A/ Mo€o

3. The components of the electric and magnetic fields of plane
electromagnetic waves are perpendicular to each other and perpendicular to the
direction of wave propagation. We can summarize the latter property by saying
that electromagnetic waves are transverse waves.

4. The magnitudes of E and B in empty space are related by the
expression

c=

E_
5-C
5. Electromagnetic waves obey the principle of superposition.

Example 4.1

A sinusoidal electromagnetic wave of frequency 40.0 MHz travels in free
space in the x direction, as shown in Figure 4.2.

a) Determine the wavelength and period of the wave.

Solution.

Using equation c¢= If and given that f =40.0 MHz =4.0"10"s?, we
have

108
’:3:3.0 1O7m/f _75m
f40710"s”
The period T of the wave is the inverse of the frequency:
T=1- 1 -p5-1085
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b) At some point and at some instant, the electric field has its maximum
value of 750 N/C and is along the y axis. Find the magnitude and direction of the

magnetic field at this position and time.
Solution.
We know that
_Em _ 750 N/C
C 3.0710°m/s
Because E and B must be perpendicular to each other and perpendicular to
the direction of wave propagation ( x in this case), we conclude that B is in the z

direction.
c) Write expressions for the space-time variation of the components of the
electric and magnetic fields for this wave.
Solution.
We can apply Eqgs.(4.16) and (4.17) directly;
E = E,, cos(wt - kx) = 750cos(wt - kx) ;

B = By, cos(t - kx) = 2.50 107° cos(ut - kx).

=257107° T.

Here,
w=2pf =2p(4.07107") = 2.51" 108 radss,
_2P _ 2P _ 838 radim.
I 750m
Example 4.2

The electric field of a plane electromagnetic wave in vacuum is represented

Ex=0. Ey =0.5cos[2p’108(t -x/c)] and E, =0.

a) What is the propagation direction of electromagnetic waves?
Solution.
a) The equation

E, =0.5c08[2p ~10°(t - x/c)] (a)

indicates that the electromagnetic waves are propagating along the positive
direction of x-axis.
b) Determine the wavelength of the wave.

Solution.
Comparing the equation (a) with the equation in standard form i.e.

Ey = Egcosw(t - x/c), we get

w=2p 108 or 2pf =2p ~10%, or f =10° Hz.
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Now,
c_3710° _
I=—=——-=3
fo108
c) Compute the component of associated magnetic field.
Solution.

The associated magnetic field is perpendicular to both the electric field and
the direction of propagation. Since the wave is propagating along the x-axis and
the electric field is along the y -axis, the magnetic field must be along z-axis.

Hence, the components of associated magnetic field are

By =0, By, =0 and B, =%cos[2p’108(t - x/c)].

Exercies

4.1. We are surrounded by electromagnetic waves emitted by many radio
and television stations. How are radio or television receivers able to select a
single station among all this mishmash of waves? What happens inside a radio
receiver when the dial is turned to change stations?

4.2. Write down expressions for the electric and magnetic fields of a
sinusoidal plane electromagnetic wave having a frequency of 3.0 GHz and
traveling in the positive x direction. The amplitude of the electric field is 300
V/m.

4.3. List as many similarities and differences between sound waves and
light waves as you can.

4.4 The maximum electric field in the vicinity of a certain radio transmitter

is .071073 Vxm™1. What is the maximum magnitude of the B field? How does

this compare in magnitude with the Earth's field?
4.5. A certain radio station broadcasts at a frequency of 1020 kHz. At a
point some distance from the transmitter, the maximum magnetic field of the

electromagnetic wave it emits is found to be 1.6~ 1071 T,
a) What is the wavelength of the wave? (Ans. 294 m).

b) What is the maximum electric field? (Ans. 4.80" 1073 V/m).

4.6. Consider each of the electric and magnetic-field orientations given
below. In each case, what is the direction of propagation of the wave?
= Ei, B=Bj;
=-Ej, B=BI;

E=EK., B=-Bi:

m- m-
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4.7. A radar pulse returns to the receiver after a total travel time of

407107* s. How far away is the object that reflected the wave?
4.8. If the North Star, Polaris, were to burn out today, in what year would it
disappear from our vision? Take the distance from the Earth to Polaris as

6.447 10 m (Ans. 2680 A.D.)
4.9. The amplitude of the electric field is 300 V/m. In Sl units, the electric
field in an electromagnetic wave is described by
Ey = 1OOsin(107 X -wm).
4.10. Find (a) the amplitude of the corresponding magnetic field; (b) the
wavelength [I; and (c) the frequency f. [Ans. (a) 0.333 uT; (b) 0.628 um; (c)
477 THZ].

4.4 Electromagnetic Waves in Matter

Thus far, we have discussed only electromagnetic waves in vacuum, but it
Is easy to extend our analysis to include electromagnetic waves in dielectrics. The
wave speed now is not the same as in vacuum, so we denote it by v instead of c.
Faraday's law is unaltered, but E =cB is replaced by E =.VB' In Ampere'sl law,

the displacement-current density is given not by eocé—f but by eeo?j—f. In

addition, the constant mg in Ampere's law must be replaced by mmg and the wave
speed is given by

y= 1 _¢C
Jemegmy  Jem’
For many dielectrics, the permeability m is practically equal to unity; in
such a case, we have:

1 1 _c
__Mxleomo e
As permittivity e is always greater than unity, the speed v of
electromagnetic waves in a dielectric is always smaller than the speed c in

vacuum by a factor of i. The ratio of the speed ¢ in vacuum to the speed v in

Je
a material is known in optics as the index of refraction n of the material. For most
dielectrics, where m» 1, n is given by

C-n=.e.
v
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Example 4.3

Electromagnetic waves travel in a medium with a speed of 2~ 108 m/s. The
permeability m of the medium is 1. Find the permittivity e .

Solution.

Here, v=2"10% m/s and m=1. The speed of electromagnetic waves in a
medium is given by
# ’ (a)
\J€oEMoMm
where m and e are permeability and permittivity of the medium.

Therefore, Eq. (a) becomes

V=

V= 1 _ 1 . 1 _¢C
Jmomege  fmoeg  Jme  Jme’
or et = (710 )0

vem (2 108)2 "1
Exercises

4.11. Determine the speed of light in water, which has a dielectric constant
at optical frequencies of 1.78.

4.12. An electromagnetic wave in vacuum has electric field amplitude of
220 VI/m. Calculate the amplitude of the corresponding magnetic field. (Ans.
733 nT).

4.13. Calculate the maximum value of the magnetic field of an
electromagnetic wave in a medium where the speed of light is two thirds of the
speed of light in vacuum and where the electric field amplitude is 7.60 mV/m.

4.14. Choose the correct answer: Maxwell’s electromagnetic theory of light
suggests that the light consists of oscillation of:

a) magnetic vector along;

b) electric vector along;

c) electric and magnetic vectors perpendicular to each other;
d) parallel electric and magnetic vectors.

4.5 Energy Carried by Electromagnetic Waves

Electromagnetic waves carry energy, and as they propagate through space
they can transfer energy to object placed in their path. Two simple examples are
the energy of the Sun’s radiation and cooking with microwave oven. To derive
detailed relationship for the energy in an electromagnetic wave, we begin with the
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expression for the energy densities associated with electric and magnetic fields.
Recall that the energy per unit volume, which is the instantaneous energy density
associated with an electric field, for vacuum is given by

Ug =%90E2. (4.19)
And that the instantaneous energy density associated with magnetic fields is
2
B
Up = ——. 4.20
B~ 2o (4.20)

Because E and B vary with time for an electromagnetic wave, the energy
densities also vary with time. When we use the relationships
1

\€0Mo ’

Ef
= CL - MEO 2 _15,p2 (4.21)

B~ 2my ~ 2mo 2
Comparing this result with the expression for ug, we see that

B:E and c=
c

we obtain

2
Ug =UE :%eOEZZZBTo' (4.22)

That is, for an electromagnetic wave, the instantaneous energy density
associated with the magnetic field equals the instantaneous energy density
associated with the electric field. Hence, in a given volume, the energy is equally
shared by two fields.

The total instantaneous energy density u is equal to the sum of the energy
densities associated with the electric and magnetic fields:

2 _B?
U=Ug +ug =egE” =—. (4.23)
Mo

As the E and B fields in a simple wave considered above advance with
time into regions where originally no fields were present, it is clear that the wave
transports energy from one region to another. We can describe this energy transfer
in terms of energy transferred per unit time, per unit cross-sectional area for an
area perpendicular to the direction of wave travel. This quantity will be denoted
by S. It is analogous to the concept of current density, which is the charge per
unit time transferred across unit area perpendicular to the direction of flow.

To see how the energy flow is related to the fields, consider a stationary
plane perpendicular to the x-axis that coincides with the wave front at a certain
time, Figure 4.3.
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y In a time dt after this, the wave
MC d front moves a distance cdt to the right.
Considering an area A on the stationary
plane, we note that the energy in the
space to the right of this area must have
e passed through it to reach its new
location. The volume dV of the
relevant region is the base area A times
B the length cdt, and the total energy dU
in this region is the energy density u

times this volume:
dU = egE2Acdt . (4.24)
Since this much energy passed
Figure 4.3 At time dt the wave front moves through area A in time dt, the energy

to the right a distance cdt flow S per unit time, per unit area, is
1dU

2
—— =enCE“.
Adt 0

/l

Z

Using Eq. (4.18)

=0 g2z [P0p2-EB -y, (4.25)

The unit of S is energy per unit time, per unit area. The Sl unit of S is

1J/sxm? or 1W/m?2.

We can define a vector quantity that describes both the magnitude and the
direction of the energy-flow rate:
1 r_r
—E"B. (4.26)

Mo

r
S =

S is called the Pointing vector; its magnitude is given by Eqg. (4.25), and its
direction is the direction of propagation of the wave. The magnitude Irzn_g gives

the flow of energy through a cross-section perpendicular to the direction of
propagation, per unit area and per unit time. The total energy flow per unit time
(power, P) through any surface is given by Ithe integral
P=0)SxdA (4.27)
A
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over the surface. The electric and magnetic fields at any point in a wave vary with
time, so the Pointing vector at any point is also a function of time.

What is of greater interest for a sinusoidal plane electromagnetic wave is
the time average of S over one or more cycles, which is called the wave intensity
| . When this average is taken, we obtain an expression involving the time

average of cosz(wt ~ kx) which equals 1/2. Hence, the average value of S (in
other words, the intensity of the wave) is

2
| =g, =cmbm - Em _ € g2 (4.28)
2mg  2mgc  2mg

Comparing this result with expression for value of S, we see that
| =Sav =CUay. (429)
In other words, the intensity of an electromagnetic wave equals the average
energy density multiplied by the speed of light.

Example 4.4

For a plane wave, suppose E =100V/m =100 N/C. Find the value of B,

the energy density, and the rate of energy flow per unit area A.
Solution.
From Eq. (4.18)

g=E
C
we obtain
g=E- 100\/8/m =33371077 T.
C 3.0710° m/s

From Eq. (4.23) u=ug +ug = eOEZ, it follows:
u=epE? = (885 1072C2 /(N*m?)(L0ON/C)? =8.85" 10~8)/m3

A=EB/my = (100 V/m)(3.33”107")/(4p ~ 10" Wb/(Axm) =
= 26.5VxA/m = 26.5 W/m .

Example 4.5

The Sun delivers about 1000 W/m? of energy to the Earth's surface via
electromagnetic radiation. Calculate the total power that is incident on a roof of
dimensions 8.0 m~ 20.0 m.

Solution.

The magnitude of the Pointing vector for solar radiation at the surface of
the Earth is S =1000 W/m?; this represents the power per unit area, or the light
intensity. Assuming that the radiation is incident normal to the roof, we obtain

P = SA = (1000 W/m?)(8.0 20.0 m?) =1.60"10° W.
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If all this power could be converted to electrical energy, it would provide
more than enough power for an average house. However, solar energy is not
easily harnessed, and the prospects for large-scale conversion are not as bright as
may appear from this calculation. For example, the efficiency of conversion from
solar to electrical energy is typically 10% for photovoltaic cells. Roof systems for
converting solar energy to internal energy are approximately 50% efficient;
however, solar energy is associated with other practical problems, such as
overcast days, geographic location, and methods of energy storage.

Exercises

4.15. A certain plane electromagnetic wave emitted by a microwave
antenna has a wavelength of 3.0 cm and a maximum magnitude of electric field of
2.0710% vim™t,

a) What is the frequency of the wave?

b) What is the maximum magnetic field?

c) What is the intensity (average power per unit area) of the wave, if the
wave is sinusoidal?

4.16. A plane sinusoidal electromagnetic wave has a wavelength of 3.0 cm

and an E -field amplitude of 30 Vim™t

a) What is the frequency?

b) What is the B -field amplitude?

c) What is the intensity?

4.17. Suggest reasons, why (a) food in metal containers cannot be cooked
in a microwave oven; (b) an empty glass container does not get hot in a
microwave oven. (Ans. In a microwave oven, the frequency of microwaves is
selected to match the resonance frequency of water molecules so that the energy
from the waves is transferred efficiently to the kinetic energy of the molecules.
This rises the temperature of any food containing water.

(a) The atoms of the metallic container are set into forced vibrations by the
microwaves. Due to this, energy of the microwaves is not efficiently transferred to
the metallic containers. Owing to this, food in metallic containers cannot be
cooked in a microwave oven.

(b) The molecules of the glass container do not respond to the frequency of
microwaves. Due to this, energy from the microwaves is not transferred to the
glass container and, hence, it does not get hot in a microwave oven. )

4.18. Describe the physical significance of the Pointing vector.

4 19. The energy flow to the Earth associated with sunlight is about 1.4
kW/m?. (a) Find the maximum values of E and B for a wave of this intensity. (b)
Find the total power radiated by the Sun.

4.20. How much electromagnetic energy per cubic metre is contained in
sunlight if the intensity of sunlight at the Earth's surface under a fairly clear sky is

1000 W/m?? (Ans. 3.33 mJ/m?).

4.21. Some neodymium-glass lasers can provide 100 TW of power in 1.0 ns
pulses at a wavelength of 0.26 um. How much energy is contained in a single pulse?
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4.22. What is the intensity of a plane traveling electromagnetic wave if B,

is 1.071074 T2

4.23. In a plane radio wave, the maximum value of the electric field
component is 5.0 V/m. Calculate (a) the maximum value of the magnetic field
component and (b) the wave intensity. (Ans. (a) 16.7 nT; (b) 33.1 mW/m?)

4.6 Intensity Variation of Spherical Waves with Distance

The intensity variation of electromagnetic waves varies with distance from
a real source of electromagnetic radiation is usually a complex matter — especially
when the source beams the radiation in a particular direction. However, in some
situations we can assume that the source is a point source that emits the light
isotropically; that is, with equal intensity in all directions. The spherical
wavefronts spreading from such an isotropic point source S at a particular instant
are shown in cross section in Figure 4.4,

Let us assume that the energy of
the waves is conserved as they spread
from this source. Let us also center an
imaginary sphere of radius r on the
source, as shown in Figure 4.4. All the
energy emitted by the source must pass
through the sphere. Thus, the rate at
which energy is transferred through the
sphere by the radiation must equal the
rate at which energy is emitted by the
source — that is, the power Ps of the

source. The intensity | at the sphere
must then be

| = Ps (4.30) Figure4.4 A point source S emits

4pr2’ electromagnetic waves uniformly in all

2 . directions. The spherical wavefronts pass
where 4pr© is the area of the sphere. through an imaginary sphere of radius I that

Eq. (4.30) tells us that the intensity of is centered on S
the electromagnetic radiation from an isotropic point source decreases with the
square of the distance r from the source.

Example 4.6

Estimate the maximum magnitudes of the electric and magnetic fields of
the light that is incident on this page because of the visible light coming from
your desk lamp. Treat the bulb as a point source of electromagnetic radiation that
Is about 5% efficient at convening electrical energy to visible light.
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Solution.

From Eq. (4.30), the wave intensity | at the distance r from a point source
is 1 =P/ 4pr2 where Py is the average power output of the source and 4pr2 IS
the area of a sphere of radius r centered on the source. Because the intensity of
an electromagnetic wave is also given by Eq. (4.28), we have

4pr2 2moC

We must now make some assumptions about numbers to enter in this
equation. If we have a 60-W lightbulb, its output at 5% efficiency is
approximately 3.0 W in the form of visible light. (The remaining energy transfers

out of the bulb by conduction and invisible radiation.) A reasonable distance from
the bulb to the page might be 0.30 m. Thus, we have

10T - 118
£, = /mochV _ (4p " 10" T xm/ A)(3 102m/s)(3.0W) _ 45 V/m.
2pr 2p(0.30m)

From Eq. (4.18)

Enm _ 45V/m
¢ (3710%m/s)
This value is two orders of magnitude smaller than the Earth's magnetic field,

which, unlike the magnetic field in the light wave from your desk lamp, is not
oscillating.

=15710"" T.

Exercises

4.24. At a distance of 50 km from a radio station antenna, the electric-field

amplitade is measured to be Epay =2 1072 V/m.
a) What is the magnetic-field amplitude B, at this same point?

b) Assuming that the antenna radiates equally in all directions (which is
probably not the case), what is the total power output of the station?

c) At what distance from the antenna would Eq 5 =17 1072 V/m, half the

above value?
4.25. Estimate the energy density of the light wave just before it strikes this

page. (Ans. 9.07107° Jm°)

4.26. An airplane flying at a distance of 10 km from a radio transmitter
receives a signal of intensity 10 pW/m?. Calculate (a) the amplitude of the electric
field at the airplane due to this signal, (b) the amplitude of the magnetic field at
the airplane, and (c) the total power of the transmitter, assuming the transmitter to
radiate uniformly in all directions.  (Ans. (a) 87 mV/m; (b) 0.30 nT; (c) 13 kW.)
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4.7 Momentum and Radiation Pressure

Electromagnetic waves transport linear momentum as well as energy. It
follows that, as this momentum is absorbed by some surface, pressure is exerted
on this surface. It can be shown by the following example. Let the
electromagnetic wave strike the surface at normal incidence and transports a total
energy U to the surface with e =1 and m =1 inatime t. The electric field of the
wave creates current of density ] = sE in the body. The magnetic field of the

wave will exert on every charge carrier of the body with the force F= q\'/ - I_5>,
where q is the charge of the charge carrier, v is its speed. The force exerted on
all n charge carries in a unlt volume IS deflned by the expressmn

—nqu “B= (nqu) B= j B,
where ] = nqtlj Is a current density. As it is clear, the direction of the force is the

same as direction of the wave propagation.
The momentum dp delivered to the surface layer of the unit area and the

thickness dl per unit time
dp = Fdl = mg jHdl (4.31)

(vectors dl and B are mutually perpendicular). During the unit time this layer
absorbs the energy
dU = jEdI (4.32)
which transforms in the form of heat.
The momentum dp (4.31) and the energy dU (4.32) are delivered to the

layer by that part of the wave which is absorbed by this layer. Taking their ratio,
we obtain
dp _ mpjHdl - H

dU ~ jEdl  CE’
Recalling that mgH 2 = eOEZ, we can write:

Hence, the electromagnetic wave of the energy dU has the momentum dp

as well, and the relation between them is
dp:d—U or p:E. (4.33)
C C
From Eq. (4.33), it follows that the momentum density (i.e., momentum per

unit volume) of electromagnetic field is
1
Pun.vol. = EU : (4.34)
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The energy density u is related to the module of Pointing vector by the
relation S =uc. Substituting u=S/c in Eq. (4.34) and taking into account that

vectors p and S coincide in direction, we obtain

1 1 r’ r
pun.vol.:c_zsz_zE H.

C

Suppose the incident wave is absorbed by the body completely. Then a unit
surface of the body obtains additional energy per unit time, which is included in
the cylinder of unit base and height c. According to Eq. (4.34), this momentum
equals (u/c)c=u. The momentum delivered to the unit surface per unit time

equals the pressure P at the surface, P =u. This quantity oscillates with high
frequency, and hence, of practical importance, is its average in time magnitude:

P=(u).
Maxwell showed that, if the surface absorbs all the incident energy U in
this time, the total momentum p transported to the surface has a magnitude

p= % (Complete absorption)  (4.35)

The pressure exerted on the surface is defined as force per unit area F/A.
Let us combine this with Newton’s second law to obtain

If we now replace p, the momentum transported to the surface by light,
from (4.33), we get

Adt Adt‘c/ ¢ A
We recognize (dU /dt)/ A as the rate at which energy is arriving at the

surface per unit area, which is the magnitude of the Pointing vector. Thus, the
radiation pressure P exerted on the perfectly absorbing (with reflectivity r =0)
surface is

p-1dp_1d (U)_l(dudt)_

poS_l
cC ¢
If the surface is a perfect reflector (such as mirror, with reflectivity r =1)
and the incidence is normal, then the momentum transported to the surface at time
t is twice that given by Eq. (4.35). That is, the momentum transferred to the

surface by the incoming light is p=U/c, and that transferred by the reflected
light also is p=U /c. Therefore:

D= ZT (Complete reflection)  (4.37)

(4.36)
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Finally, the radiation pressure exerted on a perfectly reflecting surface for
normal incidence of the wave is:
_2S _ 21
¢ ¢

In a general case, the momentum delivered to a surface having a reflectivity
r somewhere between these two extremes has a value between U /c and 2U /c,
depending on the properties of the surface, namely, on the reflectivity r. Finally,
the radiation pressure exerted on a surface for arbitrary incidence is:

P=u(l+ r)cos’a = %(1+ r)cos’a (4.39)

P (4.38)

where u is the volume energy density, r is the reflectance coefficient of the
surface, a is the angle of incidence, | is the intensity of light.

Radiation pressure is important in the structure of stars. Gravitational
attractions tend to shrink a star, but this tendency is balanced by radiation
pressure in maintaining the size of the star through most stages of its evolution.

The pressure of the sun's radiation is responsible for pushing the tail of a
comet away from the Sun (Figure 4.5).

Although radiation pressures are

very small (about 571078 N/m? for
direct sunlight), they have been
measured with torsion balances such
as the one shown in Figure 4.6. A
mirror (a perfect reflector) and a black
disk (a perfect absorber) are connected
by a horizontal rod suspended from a
fine fiber. Normal-incidence light
striking the black disk is completely
absorbed, so all of the momentum of
the light is transferred to the disk.
Normal-incidence light striking the Figure 4.5 The comet. The tail of the comet is
mirror is totally reflected, and, hence, pushed away from the Sun and split into two

distinct parts by radiation pressure from the
the momentum transferred to the Sun's electromagnetic radiation and by the

mirror is twice as great as that "solar wind," a stream of particles emitted by
transferred to the disk. The radiation the Sun

pressure is determined by measuring the angle through which the horizontal
connecting rod rotates. The apparatus must be placed in a high vacuum to
eliminate the effects of air currents.
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Example 4.7

A great amount of dust exists in interplanetary space. Although in theory,
these dust particles can vary in size from that of a molecule to much larger, very
little dust in our solar system is smaller than about 0.2 um. Why?

Solution.

Dust particles are subject to two
significant forces, the gravitational
force that draws them toward the Sun
and the radiation-pressure force that
pushes them away from it. The
gravitational force is proportional to
the cube of the radius of a spherical
dust particle because it is proportional
to the mass and, therefore, to the

Mirror volume 4pr3/ 3 of the particle. The

Bluck disk radiation pressure is proportional to

Figure 4.6 An apparatus for measuring the the square of the radius becal_Jse it

pressure exerted by light. In practice, the ~depends on the planar cross-section of

system is contained in a high vacuum the particle. For large particles, the

gravitational force is greater than the force from radiation pressure. For particles

having radii less than about 0.2 um, the radiation-pressure force is greater than the

gravitational force, and, as a result, these particles are swept out of the Solar
System.

Example 4.8

Many people giving presentations use a laser pointer to direct the attention
of the audience. If a 3.0 mW pointer creates a spot that is 2.0 mm in diameter,
determine the radiation pressure on a screen that reflects 70% of the light that
strikes it. The power of 3.0 mW is a time-averaged value.

Solution.

We certainly do not expect the pressure to be very large. Before we can
calculate it, we must determine the Pointing vector of the beam by dividing the
time-averaged power delivered via the electromagnetic wave by the cross-
sectional area of the beam:

- 10-3
S=%= P __ 30710 "W 2:955 W/m?2.

2 ]
pre 220710 3m?
2
This is about the same as the intensity of sunlight at the Earth’s surface.
(Thus, it is not safe to shine the beam of a laser pointer into a person’s eyes; that
may be more dangerous than looking directly at the Sun.)



233

Now we can determine the radiation pressure from the laser beam. Eqg.
(4.38) indicates that a completely reflected beam would apply a pressure of
P=2S/c. We can model the actual reflection as follows: Imagine that the
surface absorbs the beam, resulting in pressure P =S/c. Then the surface emits
the beam, resulting in additional pressure P =S/c. If the surface emits only a
fraction r of the beam (so that r is the amount of the incident beam reflected),

then the pressure due to the emitted beam is P = rS/c. Thus, the total pressure on

the surface due to absorption and re-emission (reflection) is

P=§+ r§=(1+ r)§.
C C C

Notice that if r =1, which represents complete reflection, this equation to
reduces to Eq.(4.38). For a beam 70% reflected, the pressure is

955 W/m?

3.0710% m/s

This is an extremely small value, as expected. (Recall that atmospheric
pressure is approximately 10° N/m?).

P = (1+0.70) =5.47107% N/m?.

Exercises

4.27. For a given incident energy of an electromagnetic wave, why is the
radiation pressure on a perfectly reflecting surface twice is great as that on a
perfectly absorbing surface?

4.28. If the intensity of direct sunlight is 1.4 kwW/m?, find:

a) The momentum density (momentum per unit volume);

(Ans. 156" 10714 kgxm‘zxs'l).
b) The momentum flow rate (momentum carried through a surface area A
in unit time) in the sunlight. (Note: This equals the radiation pressure.)

(Ans. 4.67°107° Pa).

4.29. The intensity of a bright light source is 900 W/m?. Find the radiation
pressure (in paschal) on

a) a totally absorbing surface,

b) a totally reflecting surface.

4.30. A radio wave transmits 25.0 W/m? of power per unit area. A flat
surface of area A is perpendicular to the propagation direction of the wave.
Calculate the radiation pressure on it if the surface is a perfect absorber.

4.31. A plane electromagnetic wave of intensity 6.00 W/m? strikes a small

pocket mirror, of area 40.0 cm?, held perpendicular to the approaching wave. (a)
What momentum does the wave transfer to the mirror each second? (b) Find the
force that the wave exerts on the mirror.
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4.32. A 100-mW laser beam is reflected back upon itself by a mirror.
Calculate the force on the mirror.
4.33. Given that the intensity of solar radiation incident on the upper

atmosphere of the Earth is 1 340 W/m?, determine (a) the solar radiation incident
on Mars; (b) the total power incident on Mars; and (c) the total force acting on the
planet. (d) Compare this force to the gravitational attraction between Mars and the
Sun.

4.34. A plane electromagnetic wave has an intensity of 750 W/m?. A flat
rectangular surface of dimensions 50.0cm”100cm is placed perpendicular to the

direction of the wave. If the surface absorbs half of the energy and reflects half,
calculate
a) the total energy absorbed by the surface in 1.0 min; (Ans. 11.3 kJ).

b) the momentum absorbed in this time. (Ans. 1.13~ 1074 kg-m/s).

4.35. A plane sinusoidal electromagnetic wave has a wavelength of 3.0 cm
and an E -field amplitude of 30 VV/m.

a) What is the frequency?

b) What is the B -field amplitude?

c) What is the intensity?

d) What average force does this radiation exert on a totally absorbing
surface of area 0.5 m? perpendiculars to the direction of propagation?

4.36. The energy flow to the Earth associated with sunlight is about

1.4 kW/m?.
a) Find the maximum values of E and B for a wave of this intensity.

b) The distance from the Earth to the Sun is about 15710 m. Find the
total power radiated by the sun.

4.37. For a sinusoidal electromagnetic wave in vacuum, show that the
average density of energy in the electric field is the same as that in the magnetic
field.

4.8 Standing Waves

Electromagnetic waves can be reflected; a conducting surface can serve as
a reflector. The superposition principle holds for electromagnetic waves just as
for all electric and magnetic fields, and the superposition of an incident wave and
a reflected wave can form a standing wave. The situation is analogous to standing
waves on a stretched string.

Suppose a sheet of an ideal conductor, having zero resistivity, is placed in
the yz-plane, and the wave traveling in the negative x-direction is incident on it.

The essential characteristic of an ideal conductor is that no electric field can ever
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exist within it; any attempt to establish a field is immediately canceled by the
rearrangement of the mobile charges in the conductor. Thus, E must always be
zero everywhere in this plane, and the E field of the incident wave induces
sinusoidal currents in the conductor so that E is zero inside it.

These induced currents produce a reflected wave, traveling out from the
plane to the right. From the superposition principle, the total E field at any point
to the right of the plane is the vector sum of the E fields of the incident and
reflected waves; the same is true for the total B field.

Suppose the incident wave is described by the wave functions of equation

E = E;, sin(wt - kx)
and the reflected wave by the wave functions of equation
= -E sin(wt + kx)] .
From the superposition principle, the total fields at any point are given by
E = Ep[-sin(wt + kx) +sin(wt - kx)],
B = By [sin(wt + kx) + sin(wt - kx)].

These expressions may be expanded and simplified by using the identity

sin(a £ b) =sinacosb £cosasinb

The results are

E = -2E,, coswtsinkx, (4.40)

B = 2By, sin wt coskx (4.41)

The former is analogous to the equation for a stretched string. We see that
at x=0, E is always zero; this condition is required by the nature of the ideal
conductor, which plays the same role as a fixed point at the end of the string.
Furthermore, E is zero at all times in those planes for which sinkx = 0; that is,

kx=0,p,2p,..., Or
x:O.i,l,ﬂ,.... (4.42)
2 2

These are called the nodal planes of the E field.

The total magnetic field is zero at all times in those planes for which
coskx =0. or at which

LI L L (4.43)
44 4

These are the nodal planes of the B field. The magnetic field is not zero at
the conducting surface (x =0), and there is no reason it should be. The nodal
planes of one field are midway between those of the other, and the nodal planes of
either field are separated by one-half wavelength. Figure 4.7 shows a standing-
wave pattern at one instant of time.
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Figure 4.7 E and B vectors in a standing wave. The pattern does not move along the X-
axis, but the E and B vectors grow and diminish with time at each point. At each point E is

maximum when B is minimum, and conversely. The position of the wave at time t =0 is
shown

The total electric field is a cosine function of t, and the total magnetic field
Is a sine function of t. The fields are, therefore. 90° out of phase. At times when
coswt =0, the electric field is zero everywhere and the magnetic field is
maximum. When sinwt =0, the magnetic field is zero everywhere and the
electric field is maximum.

Pursuing the stretched-string analogy, we may now insert a second
conduction plane (parallel to the first and a distance L from it) along the + x-
axis. This is analogous to the stretched string held at the points x=0 and x=1L
A standing wave can exist only when L is an integer multiple of I/2. Hence, the
possible wavelengths are

1 =%t n=123 .. (4.42)
n
and the corresponding frequencies are
C C
fr=—=n—, n=1223,... 4.45
L (4.45)

Thus, there is a set of normal modes, each with a characteristic frequency,
wave shape, and node pattern. The measurement of the node positions makes it
possible to measure the wavelength. If the frequency is known, the wave speed
can be determined. This technique was, in fact, used by Hertz in his pioneering
investigations of electromagnetic waves.
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Conducting surfaces are not the only reflectors of electromagnetic waves;
reflections also occur at an interface between two insulating materials having
different dielectric or magnetic properties. The mechanical analog is a junction of
two strings with equal tension but different linear mass density. In general, a wave
incident on such a boundary surface is partly transmitted into the second material
and partly reflected back into the first one. The partial transmission and reflection
of light at a glass surface is a familiar phenomenon; light is transmitted through a
sheet of glass, but its surfaces also reflect light.

Exercises

4.38. For a standing wave given by Egs. (4.40) and (4.41),

a)Plot the energy density as a function of x, 0<x <p/k for the times
t=0,p/4w,p/2w,3p /4w and p/w.

b) Find the direction of S in the regions 0< x<p/2k and
pl2k <x<plk atthetimes t=p/4w and t =3p/4w.

c) Use your results in (b) to explain the plots obtained in (a).
4.9 Radiation from a Dipole

Plane waves are the simplest of all electromagnetic waves to be described
and analyzed, but they are not the simplest to produce experimentally. Any charge
or current distribution that oscillates sinusoidally with time produces sinusoidal
electromagnetic waves, but in general there is no reason to expect them to be
plane waves.

The simplest example of an oscillating charge distribution is an oscillating
dipole which is a pair of electric charges of equal magnitude and opposite sign,
+q and - q, separated by distance | and characrerized by electric dipole moment

b=ql (4.46)

where | is a position-vector joining negative and positive charges (arm of dipole)
and g is magnitude of charges.

Such an oscillating dipole can be constructed in various ways, but we need
not be concerned with the details. The radiation from an oscillating dipole is not a
plane wave, but it travels out in all directions from the source. Because the dipole

fields fall off as 1/r3, they are not important at great distances from the antenna.
However, at these great distances, something else causes a type of radiation
different from that close to the antenna. The source of this radiation is the
continuous induction of an electric field by the time-varying magnetic field and
the induction of a magnetic field by the time-varying electric field. The electric
and magnetic fields produced in this manner are in phase with each other and vary
as 1/r. The result is an outward flow of energy at all times.
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At points far from the source, the Il:, and B fields are perpendicular to the
direction from the source and to each other; in this sense the wave is still

transverse. The value of S drops off as the square of the distance from the source.

The average value of S (intensity) depends on the direction from the source; it is
greatest at directions perpendicular to the dipole axis, and S =0 at directions
parallel to the axis.

Let the electric dipole moment of system vary with time according to
harmonica law:

p =gl coswt = py, coswt (4.47)
where pp, is the amplitude of vector p.

Consider radiation from dipole in assumption that its size is much smaller
than the wavelength of radiation (I << I'). Such a dipole is called an elementary
dipole, or a point dipole. In the vicinity of the dipole, the character of the
electromagnetic field is complex enough, but it simplifies in a so-called wave
zone, that is, at distances r>> 1. In any points vectors E and B are
perpendicular to the ray, that is, to the position-vector from center of dipole to the
given point. In any point, vectors E and B vary according to cos(wt - kx). The
amplitudes E,, and H, depend on the distance r from the radiator and the angle
g between the vector r and axis of dipole. For vacuum, this dependence has the
form

Em Hy

Average value of Pointing vector <S> that is intensity, is proportional to

the product E,H,, hence,

and Hp, pﬂ.
r

(sp . (4.48)

From Eq. (4.48), it follows that
the intensity drops along the ray as

y
0 S 1/r%. Next, the intensity is maximum
in a plane which is perpendicular to the
axis of antenna (g =p/2) and passes
~ » through its midpoint. Furthermore, it is
zero along the axis of an antenna where
\jv g=p or g=0. It means that in the

direction of the axis, dipole doesn’t
radiate. The dependence of the
intensity on the angle g, which is
Figure 4.8 Angular dependence of the known as directional pattern, or

intensity of radiaton produced by an antenna pattern, is shown on the
oscillating electric dipole Figure 4.8.
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Mathematical analysis proves that radiation power of the dipole (that is,
energy radiated over all the directions per unit time) is proportional to the squared
second derivative of dipole moment with time

d°p
dt?

2
_ My

i (4.49)

In accordance with Eq. (4.47)

d%p _ W20 = 2 2
—— = -W"p =-w"pp Cos wt.
dt
Therefore,
_ My 4 2 2.2
P 6ch P COS™ Wt~
that is,

PR p%w4 cos? ut.
During one complete oscillation, the average power of the dipole radiation

IS:
T
(P) =L pdt :ﬂw“p%,
T, 12pc
that is,
(P)p paw?. (4.50)

From the above expression, it is clear that the average power of the dipole

radiation is proportional to the p% and w*. Thus, at low frequencies, radiation of

an electrical system (for example, AC transmitting lines) is insignificant.

The radiation pattern from a dipole source is shown schematically in
Figure 4.9. The figure shows a cross section of the radiation pattern at one instant.
The oscillating dipole P ils located at the centres of the sphgres. At all points in the

plane of thle figure, the E field lies in the plane and the B Ifield is perpendicular

to it. The E field is shown by arrows, and the direction of B by crosses (where it
points into the plane) and circles with dots (where it poilnts out of the plane). It is

easy to verify that the direction of the Poynting vector S is radially outward from
the source at every point.

As we have discussed, electromagnetic waves can be reflected by
conducting surfaces. When the surface is large compared to the wavelength of the
radiation, the reflection behaves like reflection of light rays from a mirror. Large
parabolic mirrors several meters in diameter are used as both transmitting and
receiving antennas for microwave communications signals; typical wavelengths
are a few centimeters. A transmitting reflector produces a wave that radiates in a
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e

Figure 4.9 Cross section in the XZ-plane of
radiation from an oscillating electric dipole P.
The wave fronts are expanding concentrilc

spheres centered at P. At every poilnt the E
field lies in the plane, and the B field is

perpendicular to it. At points with circles, B

comes out of the plane, and at points with

crosses, it is into the plane. The direction of the
1

Poynting vector S is radially outward at every
point

narrow,  well-defined beam; a
receiving reflector gathers wave
energy over its whole area and reflects
it to the focus of parabola where a
detecting device is placed.

According to (4.46),

d2h  dA

y T4 5 T
dt dt
acceleration of oscillating charge.

Substituting above expression into Eq.
(4.49), we obtain
P g2a®. (4.51)

Eqg. (4.51) defines the radiation
power not only for oscillations but for
arbitrary motion of charged particle. It
follows that any charge moving with
acceleration excites electromagnetic
waves and its radiation power is
proportional to the squared charge and
squared acceleration.

The charge executing SHM
radiates a monochromatic wave of
frequency  which  matches the
frequency of charge oscillation. But if
the charge acceleration a varies
according to the nonharmonic law,
radiation consists of a set of waves
with different frequencies.

According to Eq. (4.51),
intensity drops to zero at a=0.
Hence, an electron moving uniformly
does not emit electromagnetic waves.
Nevertheless, this is valid only for
situations when a speed of electron v,

does not exceed the speed of light v,

r G
-ga where a is

in the medium v; =c/</n=c/,/lem where electron moves. For the case

Ve >V| =c//em, a very special kind of radiation, called Vavilov-Cherenkov
radiation, is observed. This kind of radiation we will discuss in our book “Wave

Optics".
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Exercises

4.39. Accelerating charges radiate electromagnetic waves. Calculate the
wavelength of radiation produced by a proton in a cyclotron with a radius of
0.500 m and a magnetic field with a magnitude of 0.350 T.

4.40. Accelerating charges radiate electromagnetic waves. Calculate the
wavelength of radiation produced by a proton in a cyclotron of radius R and
magnetic field B.

4.10 Production of Electromagnetic Waves by an Antenna

Neither stationary charges nor steady currents can produce electromagnetic
waves. However, whenever the current going through a wire changes with time,
the wire emits electromagnetic radiation. The fundamental mechanism
responsible for this radiation is the acceleration of a charged particle. Whenever a
charged particle accelerates, it must radiate energy.

An alternating voltage applied to the wires of an antenna forces an electric
charge in the antenna to oscillate. This is a common technique for accelerating
charges and is the source of the radio waves emitted by the transmitting antenna
of a radio station. Figure 4.10 shows how this is done. Two metal rods are
connected to a generator that provides a sinusoidally oscillating voltage. This
causes charges to oscillate in two rods. At t=0, the upper rod is given a
maximum positive charge and the bottom rod an equal negative charge, as shown
in Figure 4.10a. The electric field near the antenna at this instant is also shown in
Figure 4.10a.

T+

T
4

Figure 4.10 The electric field set up by charges oscillating in an antenna. The field moves away
from the antenna with the speed of light

@t=0  ()t= ©t=" @ t=T

As positive and negative charges decrease from their maximum values, the
rods become less charged, the field near the rods decreases in strength, and the
downward-directed maximum electric field produced at t =0 moves away from
the rod (A magnetic field oscillating in a direction perpendicular to the plane of
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the diagram in Figure 4.10 accompanies the oscillating electric field, but it is not
shown for the sake of clarity.) When the charges on the rods are momentarily zero
(Figure 4.10b), the electric field at the rod dropps to zero. This occurs at a time
equal to one quarter of the period of oscillation.

As the generator charges the rods in the opposite sense from that at the
beginning, the upper rod soon obtains a maximum negative charge and the lower
rod a maximum positive charge (Figure 4.10c); this results in an electric field near
the rod that is directed upward after a time equal to one-half the period of
oscillation. The oscillations continue as indicated in Figure 4.10d. The electric
field near the antenna oscillates in phase with the charge distribution. That is, the
field points down when the upper rod is positive and up when the upper rod is
negative. Furthermore, the magnitude of the field at any instant depends on the
amount of charge on the rods at that instant.

As the charges continue to oscillate (and accelerate) between the rods, the
electric field they set up moves away from the antenna at the speed of light. As
you can see from Figure 4.10, one cycle of charge oscillation produces one
wavelength in the electric-field pattern.

Now let us consider the
production of electromagnetic waves by
a half-wave antenna. In this
arrangement, two conducting rods are
connected to a source of alternating
voltage (such as an LC oscillator), as
shown in Figure 4.11. The length of
each rod is equal to one quarter of the
wavelength of the radiation that will be
emitted when the oscillator operates at
— frequency f. The oscillator forces

charges to accelerate back and forth
between the two rods. Figure 4.11 shows
the configuration of the electric and
magnetic fields at some instant when the
current is upward. The electric field lines
resemble those of an electric dipole. (As
- a result, this type of antenna is
Figure 4.11 A half-wave antenna consists sometimes called a dipole antenna.)
of two metal rods connected to an alternating ~ Because these charges are continuously
voltage source. This diagram shows E and oscillating between the two rods, the
B at an instant when the current is upward. anténna can be approximated by an
Note that the electric field lines resemble  oscillating electric dipole. The magnetic

those of a dipole field lines form concentric circles around

+ 4+ ++

+
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the antenna and are perpendicular to the electric field lines at all points. The
magnetic field is zero at all points along the axis of the antenna. Furthermore, E
and B are 90° out of phase at time because the current is zero when the charges at
the outer ends of the rods are at a maximum.

At the twolpoints where the magnetic field is shown in Figure 4.11, the

Pointing vector S is directed radially outward. This indicates that energy is
flowing away from the antenna at this instant. At later times, the fields and the
Poynting vector change direction as the current alternates.

The electric field lines produced by a dipole antenna at some instant are
shown in Figure 4.12 as they propagate away from the antenna. Note that the
intensity and the power radiated are a maximum in a plane that is perpendicular to
the antenna and passing through its midpoint. Furthermore, the power radiated is
zero along the antenna's axis.

Figure 4.12 Electric field lines surrounding a dipole antenna at a given instant. The radiation
fields propagate outward from the antenna with a speed C

Electromagnetic waves can also induce currents in a receiving antenna. The
response of a dipole receiving antenna at a given position is a maximum when the
antenna axis is parallel to the electric field at that point and zero when the axis is
perpendicular to the electric field.

Example 4.9

A half-wave antenna works on the principle that its optimal length is one-
half the wavelength of the radiation being received. What is the optimal length of
a car antenna when it receives a signal of frequency 94.0 MHz?
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Solution.
Wavelength of the signal is

108
I = £ = M =3.19m
f 94710"Hz
Thus, to operate most efficiently, the antenna should have a length of (3.19

m)/2 = 1.60 m.
For practical reasons, car antennas are usually one-quarter wavelength in
size.

Example 4.10

What is the order of magnitude of the minimum frequency of
electromagnetic waves that can be used to detect the presence of (a) the planet
Venus; (b) an aircraft 50 m long; (c) a bird 0.1 m long? From what sources of
electromagnetic radiation, are you able to generate radiation of these
wavelengths?

Solution.

In order to use a wave phenomenon to detect the presence of some object,
the wavelength of the waves used must be comparable to or smaller than the
dimensions of the object to be detected.

a) the planet Venus.
Solution.

Venus is about 10’ m in diameter. The frequency of electromagnetic waves
of wavelength 10" m is given by

The waves of frequency 30 Hz correspond to very low audio-frequency
radio waves. Practically, it will not be possible to detect Venus by employing
such waves, because of the following reasons:

1. It would be almost impossible to get much enough power into such a low
frequency wave.

2. Such a radio wave would be absorbed completely in the upper
atmosphere.

3. Even if we could send such a radiowave to Venus and receive an echo,
its beam would be so broad that we will not be able to pinpoint the direction of
the Venus.

b) An aircraft 50 m long.
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Solution.

The waves of wavelength 50 m required to detect an aircraft possess
frequency

This frequency is higher than the frequency of radiowaves used by A.M.
broadcasting stations. Primitive radars operated at frequencies about 20 times this.
c) a bird 0.1 m long.

Solution.
A 0.1 m long bird will require frequency,
108
f=C=319 _ 3000 MHZ.
I 0.1

It is very close to the popular radar frequency. Indeed, radars occasionally
detect birds.

Exercises

4.41. Figure 4.11 shows a Hertz antenna (also known as a half-wave
antenna since its length is I/2). The antenna is far enough from the ground that
reflections do not significantly affect its radiation pattern. Most AM radio
stations, however, use a Marconi antenna which consists of the top half of a Hertz
antenna. The lower end of this (quarter-wave) antenna is connected to the earth
ground, and the ground itself serves as the missing lower half. What are the
heights of the Marconi antennas for radio stations broadcasting at (a) 360 kHz and
(b) 1 600 kHz?

4.42. Two hand-held radio transceivers with dipole antennas are separated
by a great fixed distance. Assuming that the transmitting antenna is vertical, what
fraction of the maximum received power will occur in the receiving antenna when
it is inclined from the vertical by (a) 15.0°? (b) 45.0°? (c) 90.0°?

4.43. Two radio-transmitting antennas are separated by half the broadcast
wavelength and are driven in phase with each other. In which directions are (a)
the strongest and (b) the weakest signals radiated?

4.11 Radiation from an Infinite Current Sheet

In this section, we describe the electric and magnetic fields radiated by a
flat conductor carrying a time-varying current. In the symmetric plane geometry
employed here, the mathematics is less complex than that required in lower-
symmetry situations.

Consider an infinite conducting sheet lying in the yz-plane and carrying a

surface current in the y direction, as shown in Figure 4.13.
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y The current is distributed across

the z direction such that the current per

/ unit length is J. Let us assume that J
Js varies sinusoidally with time as

J =J coswt (4.52)

where J, is the amplitude of the current
variation and w is the angular frequency
of the variation. The magnetic field
outside the sheet is everywhere parallel
to the sheet and lies along the z axis. It

/\ can be shown that in the present
7 x  Situation, where J varies with time, the
Figure 4.13 A portion of an infinite current magnetic field B, can be described as:

sheet lying in the YZ plane. The current
density is sinusoidal and is given by the

B, = % Jm cosut (for small values of x)

expression J = Jyy COSWL. The magnetic To obtain the expression valid for
field is everywhere parallel to the sheer and B, for arbitrary values of x, we can
lies along Z investigate the solution:
m
B, = 70Jm cos(kx - wt) . (4.53)

You should note two things about this solution, which is unique to the
geometry under consideration. First, when x is very small, it agrees with our
original solution. Second, it satisfies the wave equation. We conclude that the
magnetic field lies along the z axis, varies with time, and is characterized by a
transverse traveling wave having an angular frequency w and an angular wave
number k =2p /1.

We can obtain the electric field radiating from our infinite current sheet
using Eq.(4.18):

E, =B, = % Jmax, COS(kX - 1A). (4.54)

That is, the electric field is in the y direction, perpendicular to Ié, and has
the same space and time dependencies. These expressions for B, and Ey show

that the radiation field of an infinite current sheet earning a sinusoidal current is a
plane electromagnetic wave propagating with a speed ¢ along the x axis, as
shown in Figure 4.14.
We can calculate the Poynting vector for this wave from Eqs. (4.25), (4.46),
and (4.27):
S =E=%J%cosz(kx—wt). (4.55)
Mo 4
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Intensity of the wave, which equals the average value of S is

This intensity represents the
power per unit area of the outgoing
wave on each side of the sheet. The
total rate of energy emitted per unit
area of the conductor is

25,y = CMd °max /4.  (4.57)

Example 4.11
An infinite current sheet lying in
the yz plane carries a sinusoidal

current that has a maximum density of
5.00 A/m?,

a) Find the maximum values of
the radiated magnetic and electric
fields.

Solution.

_Cmg ,2

Figure 4.14 Representation of
electromagnetic wave radiaied by an infinite
current sheet lying in the YZ plane. The vector

the plane

B isin the Z: direction, the vector E is in the
Y direction, and the direction of wave motion

is along X

From Eq. (4.53) and (4.54), we see that the maximum values of B, and E

are

Em =%Jm and By, =%Jm.

Using the values my =4p ~ 10" Txm/A , and ¢ =3"10% m/s, we get

B
m 2

Em

_ (4p 7107 "Txm/A)(5A/m)

_ (4p 107" Txm/A)(BA/M)(3~ 10° mis)

=31471075T,

=942 V/m.

2
b) What is the average power incident on a flat surface that is parallel to the
sheet and has an area of 3.0 m*? (The length and width of this surface are both
much greater than the wavelength of the radiation.)

Solution.

The intensity, or power per unit area, radiated in each direction by the

current sheet is given by Eq. (4.56):
= Moc

_(4p " 107" Txm/A)(3” 108 m/s)(5 A/m)?

| J2 =

8

=1.18"10° W/m?2.

Multiplying this by the area of the surface, we obtain the incident power:
P=1A=(1.18" 10°W/m?)(3m?) = 3.54" 10°W .
The result is independent of the distance from the current sheet because we

are dealing with a plane wave.
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Exercises

4.44. A large current-earning sheet emits radiation in each direction
(normal to the plane of the sheet) with an intensity of 570 W/m?. What maximum
value of sinusoidal current density is required?

4.45. A rectangular surface of dimensions 120cm”~ 40cm is parallel to and

4.40 m away from a much larger conducting sheet in which a sinusoidally varying
surface current exists that has a maximum value of 10.0 A/m. (a) Calculate the
average power that is incident on the smaller sheet. (b) What power per unit area
Is radiated by the larger sheet?

4.12 Electromagnetic Spectrum

The various types of electromagnetic waves are listed in Figure 4.15, which
shows the electromagnetic spectrum. No sharp dividing point exists between one
type of wave and the other. Remember that all forms of the various types of
radiation are produced by the same phenomena — accelerating charges. The names
given to the types of waves are simply for convenience in describing the region of
the spectrum in which they lie.

Radio waves are the result of charges accelerating through conducting
wires. Ranging from more than 104 m to about 0.1 m in wavelength, (in the
frequency range from 500 kHz to about 1000 MHz), they are generated by such
electronic devices as LC oscillators and are used in radio and television
communication systems. The AM (amplitude modulated) band is from 530 kHz to
1710 kHz. Higher frequencies up to 54 MHz are used for “short wave” bands. TV
waves range from 54 MHz to 890 MHz. The FM (frequency modulated) radio
band extends from 88 MHz to 108 MHz. Cellular phones use radio waves to
transmit voice communication in the ultrahigh frequency (UHF) band.

Microwaves have wavelengths ranging from approximately 0.3 m to 10 m
and are also generated by electronic devices. Because of their short wavelengths,
they are well suited for radar systems and for studying the atomic and molecular
properties of matter. Microwave ovens (in which the wavelength of the radiation
is 1 =0.122 m) are an interesting domestic application of these waves.

Infrared waves have wavelengths ranging from 1073 m to the longest

wavelength of visible light, 7~ 10~" m. These waves, produced by molecules and
room-temperature objects, are readily absorbed by most materials. The infrared
(IR) energy absorbed by a substance appears as internal energy because the
energy agitates the atoms of the object, increasing their vibration or translational
motion, which results in a temperature increase. Infrared radiation has practical
and scientific applications in many areas, including physical therapy, IR
photography, and vibrational spectroscopy. Infrared radiation also plays an
important role in maintaining the Earth’s warmth or average temperature through
the greenhouse effect. Incoming visible light (which passes relatively easily
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through the atmosphere) is absorbed by the earth’s surface and re-radiated as
infrared (longer wavelength) radiations. This radiation is trapped by greenhouse
gases such as carbon dioxide and water vapor.

Visible light, the most familiar form of electromagnetic waves, is the part of
the electromagnetic spectrum that the human eye can detect. Light is produced by
the rearrangement of electrons in atoms and molecules. Various wavelengths of

visible light correspond to different colours and range from red ( I = 771077 m)
to violet (l=4'10'7 m). The sensitivity of the human eye is a function of

wavelength, being a maximum at a wavelength of about 55°10"" m. Different
animals are sensitive to different range of wavelength. For example, snakes can
detect infrared waves, and the visible range of many insects extends well into the
ultraviolet.

Because of the very small magnitudes of light wavelengths, it is convenient
to measure them in small units of length. Three such units are commonly used:
the micrometer (1 pm), the nanometer (1 nm) and the angstrom (1 A):

1mm =105 m,

1Inm =107 m,

1A=10"m.

The color of light depends on its wavelength or frequency. Different parts
of the visible spectrum evoke the sensations of different colors. Wavelengths for
colors in the visible spectrum are (very approximately) as follows:

Violet 400 to 440 nm
Blue 440 to 480 nm
Green 480 to 530 nm
Yellow 530 to 590 nm
Orange 590 to 630 nm
Red 630 to 700 nm

Ultraviolet waves cover wavelengths ranging from approximately

47107 mto 6~ 1071% m. The ultraviolet radiation (UV) is produced by special
lamps and very hot bodies. The Sun is an important source of UV radiation,
which is the main cause of sunburn.

Sunscreen lotions are transparent to visible light but absorb most UV light.
The higher a sunscreen's solar protection factor (SPF), the greater the percentage
of UV light absorbed. Ultraviolet rays have also been implicated in the formation
of cataracts, a clouding of the lens inside the eye. Wearing sunglasses that do not
block UV light is worse for your eyes than wearing no sunglasses. Lenses of any
sunglasses absorb some visible light, thus causing the wearer's pupils to dilate. If
the glasses do not also block UV light, then more damage may be done to the
lens of the eye because of the dilated pupils. If you wear no sunglasses at all, your
pupils are contracted, you squint, and less UV light enters your eyes. High-
quality sunglasses block nearly all the eye-damaging UV light.
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Most of the UV light from the Sun is absorbed by ozone (O3) molecules in
the Earth's upper atmosphere, in a layer called the stratosphere. This ozone shield
converts lethal high-energy UV radiation to infrared radiation which in turn
warms the stratosphere. Recently, a great deal of controversy has arisen
concerning the possible depletion of the protective ozone layer as a result of the
chemicals emitted from aerosol spray cans and used as refrigerants.

X-rays have wavelengths in the range from approximately 10® m to 10"
m. The most common source of X-rays is the deceleration of high-energy
electrons bombarding a metal target. X-rays are used as a diagnostic tool in
medicine and as a treatment for certain forms of cancer. Because X-rays damage
or destroy living tissues and organisms, care must be taken to avoid unnecessary
exposure or overexposure. X-rays are also used in the study of crystal structure
because X-ray wavelengths are comparable to the atomic separation distances in
solids (about 0.1 nm).

Gamma rays are electromagnetic waves emitted by radioactive nuclei (such

as %9Co and 137Cs) and during certain nuclear reactions. High-energy gamma
rays are a component of cosmic rays that enter the Earth's atmosphere from space.
They have wavelengths ranging from approximately 10™° m to less than 10 m.
They are highly penetrating and produce serious damage when absorbed by living
tissues. Consequently, those working near such dangerous radiation must be
protected with heavily absorbing materials, such as thick layers of lead.

Exercises

4.46. Give several examples of electromagnetic waves that you encounter
in everyday life. How are they all alike? How do they differ?

4.47. We are surrounded by electromagnetic waves emitted by many radio
and television stations. How is a radio or television receiver able to select a single
station among all this mishmash of waves? What happens inside a radio receiver
when the dial is turned to change stations?

4.48. The ionosphere is a layer of ionized air 100 km or so above the
Earth's surface. It acts as a reflector of radio waves of frequency less than about
30 MHz, but not of higher frequency. How does this reflection occur? Why does
it work better for lower frequencies than for higher?

4.49. What is the fundamental cause of electromagnetic radiation?

4.50. Suppose a creature from another planet had eyes that were sensitive to
infrared radiation. Describe what the creature would see if it looked around the
room you are now in. That is, what would be bright and what would be dim?

4.51. What is the wavelength in meters, microns, nanometers, and angstrom
units of:

a) Soft X-rays of frequency 2-:1017 Hz? (Ans. 1.5~ 1079 m).
b) Green light of frequency 5.6-1014 Hz? (Ans. 5.357 1077 m).
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4.52. Classify waves with frequencies of 2 Hz, 2 kHz,2 MHz, 2 GHz, 2
THz, 2 PHz, 2 EHz, 2 ZHz, and 2 YHz on the electromagnetic spectrum, (b) with
wavelengths of 2 km, 2 m, 2 mm,2 um, 2 nm, 2 pm.

4.53. Compute an order-of-magnitude estimate for the frequency of an
electromagnetic wave with a wavelength equal to (a) your height; (b) the
thickness of this sheet of paper. How is each wave classified on the
electromagnetic spectrum?

4.54. A human eye is most sensitive to light having a wavelength of
550 nm, which is in the green-yellow region of the visible electromagnetic
spectrum. What is the frequency of this light? (Ans. 545 THz).

4.55. Suppose you are located 180 m from a radio transmitter.

a) How many wavelengths are you from the transmitter if the station calls
itself 1150 AM? (Ans. The AM band frequencies are in kilohertz.)

b) What if this station were 98.1 FM? (Ans. The FM band frequencies are
in megahertz.)

4.56. What are the wavelengths of electromagnetic waves in free space that
have frequencies of (a) 5.0-1019 Hz and (b) 4.0-109 Hz?

4.57. What are the wavelengths ranges in:

(a) the AM radio band (Ans. 540- 600 kHz):

(b) the FM radio band (Ans. 88.0-108 MHz)?

4.13 Doppler Effect

We have seen in Einstein theory of relativity that the same speed is
measured for light no matter what the relative speeds of the light sources and the
observer are. The measured frequency and wavelength will change, but always in
such a way that their product, which is the velocity of light, remains constant.
Such frequency shifts are called Doppler shift, after Johann Doppler (1803-1853)
who first predicted them.

In section “Sound waves” we showed that if a source of sound is moving
away from an observer or if observer is moving away from the source, the
frequency heard by the observer is

f¢=f0 1

1+u/v’

where u is speed of sound source, v is the speed of sound.
For light the “source receding from observer” and “observer receding from

source” is physically identical situations and must exhibit exactly the same

Doppler frequency. The Doppler frequency predicted by the theory of relativity, is

fi= fgt_U/C (4.59)

Ji-w/e)?

(4.58)
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When u << ¢, formula (4.59) can be rewritten as

é u 1au62 U
ft=fqel-—+=¢—= +..0. 4.60
0 C ZgCg . ( )

The ratio u/c for all available monochromatic light sources, even those of
atomic dimensions, is small. In this equation, this means that successive terms
becomes small rapidly and, depending on the accuracy required, only a limited
number of terms need to be retained.

From (4.60) we can obtain relative change of frequency:

bt __u (4.61)
fo C
A police radar unit employs the Doppler effect with microwaves to measure
the speed u of a car. A source in the radar unit emits a microwave beam at a
certain (proper) frequency fy along the road. A car that is moving toward the

unit intercepts that beam but at a frequency that is shifted upward by the Doppler
effect due to the car’s motion toward the radar unit. The car reflects the beam
back towards the radar unit. Because the car is moving towards the radar unit, the
detector in the unit intercepts a reflected beam that is further shifted up in the
frequency. The unit compares that detected frequency with fy and computes the

speed u of the car.

The Doppler effect for light finds many applications in astronomy where it
IS used to determine the speeds at which luminous heavenly bodies are moving
toward or receding from us. Such Doppler shifts measure only the radial or line-
of-sight components of the relative velocity. Almost all galaxies for which such
measurements have been made appear to be receding from us, the recession
velocity being greater for the more distant galaxies; these observations form the
basis of the concept of the expending Universe.

Let us assume that the radial speed u of a certain light source is low

2
enough for us to neglect the 3539 term in Eq. (4.59). Let us also explicitly show
Cp

a £ option in front of the QE- term — the minus sine corresponding to radial
€eCy
motion away from us and the plus sign corresponding to radial motion towards us.
Then Eq. (4.59) becomes

f= fo(;l"‘—— (4.62)
e Cg
Astronomical measurements involving light are wusually done in
wavelengths rather then in frequencies, so let us replace f with ¢/ I and fy with
c/ Iy where I is the measured wavelength and Iy is the proper wavelength.
Then Eq. (4.62) is written as
uo

c_ca,
I 18 cy
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which leads to

u=2+1=1o
I
This is conventionally written as
DI
u=—=c
I

where DI =|I - Iy| is the wavelength Doppler shift of the light source. If the

source is moving away from us, [ is greater than Iy and the Doppler shift is
called a red shift. (The term means that the wavelength increases). Similarly, if
the source is moving toward us, I is less than Iy and the Doppler shift is called a
blue shift.

Example 4.12

Certain characteristic wavelength in the light from a galaxy in the
constellation Virgo are observed to be increased in wavelength, as compared with
terrestrial sources, by about 0.4%. What is the radial speed of this galaxy with
respect to the Earth? Is it approaching or receding?

Solution.

If Iy is the wavelength for a terrestrial source, then
11=1.0041,.

Since we must have I ¢= Ify =c, we can write this as
f¢=0.0996 fj.

This frequency shift is so small that, in calculating the source speed, we can
use Eqg. (4.62). As a result, we obtain

F1=0.996f, = fof1- 12,
e Cg
Solving yields u/c = 0.004, or u = (0.004)(3" 108 m/s) =1.2"10% m/s. The

galaxy is receding from us; had u turned out to be negative, the galaxy would
have been moving towards us.

Exercises

4.58. Can a galaxy be so distant that its recession speed equals c¢? If so,
will its light ever reach us?
4.59. The “red shift” of radiation from a distant nebula consists of the light

(Hg), known to have a wavelength of 43401078 cm when observed in the
laboratory. It appears to have a wavelength of 6540~ 1078 cm. What is the Speed

of the nebula in the line of sight relative to the Earth? Is it approaching or
receding?
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4.60. The difference in wavelength between an incident microwave beam
and one reflected from an approaching or receding car is used to determine
automobile speeds on the highway. Show that if u, the speed, and f, the

frequency of the incident beam, the change of frequency is approximately aut :
C

4.61. Show that for low speed, the Doppler shift can be written in the
appropriate form
oI _u
C 1

I
where DI is the change in wavelength.
4.62. The rotation period of the Sun at its equator is 24.7 days; its radius is

7.07108 m. What Doppler wavelength shifts are expected for characteristic
wavelength in the vicinity of 5500 A emitted from the edge of the Sun disk?

(3.871072 A).

4.63. A rocket ship is receding from the Earth at a speed of 0.2c. A light in
the rocket ship appears blue to passengers on the ship. What color would it appear
to be to an observer on the Earth? (yellow-orange).

4.14 Propagation of Electromagnetic Waves in Atmosphere

Before we discuss the propagation of EM waves in the atmosphere, it is
necessary to learn a few things about the atmosphere and its various layers. The
atmosphere is the gaseous envelope surrounding our Earth. It is retained to the
earth due to gravitational attraction. As we go up, the air thins out gradually and
air pressure decreases. The atmosphere can be divided into various layers as
shown in Figure 4.16. The layers are known by different names.

Altitude (km) Pressure (mbar)

110 f-------------------=-----1 0.0001
Zone of 100 0.001 Thermosphere
ionized S
molecules: _ 8Q =z 0,016 Mesopause
lonosphere  oq| |
(variable 70 M h
esosphere
height) 60 - 0.25
570 EE—— 1.0 Stratopause
/(g S —— 4.0
b 16 Stratosphere
ZU 64 Tropopause
10 234 Il p2cpiiic
Sea level 0 1013

Figure 4.16 The Earth’'s atmosphere
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The troposphere includes the layer close to the earth and extends up to
about 12 km. This layer is responsible for all the important weather phenomena
affecting our environment. The next layer, called the stratosphere, extends from
about 10-16 km to about 50 km. The mesosphere extends from about 50 km to
about 80 km. The thermosphere extends from 80 km to the edge of the
atmosphere. It receives energy directly from the solar radiation. The ozone layer
Is in the lower stratosphere. This ozone results from the dissociation of molecular
oxygen by solar ultraviolet radiation in the upper atmosphere. Except for the layer
in the upper atmosphere, called ionosphere, which is composed partly of electrons
and positive ions, the rest of the atmosphere is composed mostly of neutral
molecules.

The atmosphere is transparent to visible radiation and we can see the Sun
and the stars through it clearly. However, most infrared radiation is not able to
pass through, as it is absorbed by the atmosphere. Low lying clouds in the
atmosphere also prevent infrared radiation from passing through. The ozone layer
blocks the passage of ultraviolet radiation from the sun.

The behavior of electromagnetic waves of wavelength 1072 m and higher
(called radio waves) in their propagation through the atmosphere is an important
consideration in all modern forms of communication: radio, television,
microwaves etc. At low frequencies, radio waves radiated by an antenna near the
earth travel directly following the surface of the earth. This is called wave along
ground propagation (Figure 4.17).

lonosphere

Transmitter / Space wave

Receiver

Figure 4.17 The three main modes of propagation of electromagnetic waves
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During the daytime, broadcast from medium waveband station can travel
nearly 200 km like this. Above 2 MHz, such waves weaken rapidly with distance.

Radio waves of frequencies between 2 MHz and about 20 MHz are
reflected off the ionosphere. So, in this frequency range, radio waves radiated
from a certain point and reflected by the ionosphere can be received at another
point on the surface. This is known as sky wave, or ionosperic propagation. In this
way, radio waves travel very large distances and can even travel round the earth.

lonosphere does not help in the propagation of waves of frequencies higher
than 30 MHz. Television signals have frequencies in the 100 - 200 MHz range
and penetrate ionosphere (no reflection), therefore, their propagation is not
possible through the sky wave, Such waves can be reseaved only if the receiver
antenna directly intercepts the signal. Thus, television broadcasts are made from
tall antenna to get larger coverage. This is space wave propagation. Radiowaves
with frequencies higher than television signals are the microwaves. In recent
times, microwaves have revolutionized telecommunications. The signals (in this
range) from the broadcasting station are beamed towards a geostationary satellite
which in turn broadcasts it back to the earth. In this way, signals can be
propagated over a the earth's surface.

The Sun is the main source of electromagnetic radiation. It sends out
electromagnetic waves of different wavelengths towards the Earth. As the
electromagnetic waves propagate through the Earth's atmosphere, a major part of
them is absorbed. Most of the infrared radiation is absorbed by the atmosphere,
and the atmosphere gets heated. The visible light is only slightly absorbed. The
electromagnetic radiation from the Sun is quite rich in ultra-violet radiation.
Owing to its small wavelength (high energy), ultraviolet radiation is harmful to
plants and living cells. However, the ozone layer absorbs most of the ultra-violet
radiation and other harmful radiations of lower wavelengths. The ozone layer
converts the ultraviolet radiation into the infrared which further heats up the
atmosphere and the earth's surface

Green—House Effect. The Sun is the source of energy. It emits energy in
the form of visible light, infrared and ultraviolet radiations. The behavior of
atmosphere is different towards different types of radiations. Whereas the ultra
violet radiation and other low wavelength waves are absorbed by the ozone layer,
a large part of the infrared radiation is not allowed by the atmosphere to pass
through it. The earth's atmosphere is transparent to visible light. Therefore, only
visible light and a part of infrared radiation reach the Earth's surface. These
radiations keep the earth's surface warm even at night due to the green house
effect of the atmosphere, as explained below

The Earth gets heated to low temperature only due to the solar energy
reaching its surface. At such a low temperature, the energy emitted from the Earth
lies mostly in the infrared region. Since the Earth's atmosphere is not transparent
to infra-red radiations, these radiations are reflected back. The low lying clouds
and heavy gases like CO, present in the atmosphere reflect infrared radiation back
towards the earth surface. Due to this, the earth's atmosphere becomes richer in
infrared radiation. As this radiation is absorbed by the objects readily, they get
heated in this process. This phenomenon is called the green house effect.
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Questions

4.64. Static crashes are heard on radio when a lightning flash occurs — even
if the lightning occurs far away. Why does this happen? (Ans. A lightning flash
involves tremendous electrical fields and currents which oscillate between the
earth and the clouds or between two groups of clouds. In this electrical activity,
many charges oscillate and produce a wide variety of electromagnetic waves. The
flashes of light we see are emitted by atoms during this intense activity. Those
electromagnetic waves, which have frequencies in radio-wave range, interfere
with radio waves. Since light and radiowaves travel with the same speed, they
arrive at the same time as does the light.)

4.65. Optical telescopes are built on the ground, but X-ray astronomy is
possible only from satellites orbiting the Earth. Why? (Ans. The Earth’s
atmosphere is transparent to visible light and radio waves, but absorbs X-rays.
Therefore, X-astronomy is possible only from satellites orbiting the Earth.)

4.66. Some scientists have predicted that a global nuclear war on the Earth
would be followed by a severe “nuclear winter” with a devastating effect on life
on Earth. What might be the basis of this prediction? (Ans. Scientists estimate
that in case of global nuclear war, the clouds produced will cover probably the
whole of the sky In that case, solar radiation would be prevented from reaching
the earth and it will result in what they call nuclear winter on the Earth.)

4.67. Explain the “green house effect” of Earth's atmosphere.

4.68. What is the role of ozone layer in the atmosphere?

4.69. If the Earth did not have atmosphere, would its average surface
temperature be higher or lower than what it is now? (Ans. The infrared radiation,
emitted by earth is retained by the Earth's atmosphere due to the green house
effect, and this keeps the earth warm. If the Earth did have atmosphere, its
average temperature would have been low.)

4.70. Discuss the significance of the greenhouse effect in the atmosphere.

Summary

Maxwell's equations, which incorporate all the basic relationships of
electric and magnetic fields and their sources (charges and currents), predict the
existence of electromagnetic disturbances that can propagate through empty space
and travel with a speed equal to the measured value of the speed of light. The
simplest such a wave is a plane wave in which E and B are uniform over any
plane perpendicular to the propagation direction, so that E and B are zero
everywhere to the left of a certain plane and have constant values everywhere to
the right of it. For such a wave disturbance to be consistent with Faraday's law,
the two field magnitudes must be related by

E =cB,
or
B =eqgmpCE
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where c is the propagation speed. For both of these requirements to be satisfied,
¢ must be given by
1

Jeomy

Electromagnetic waves are transverse; the E and B fields are
perpendicular to the direction of propagation and to each other. There is a definite
ratio between E and B in a wave, and the waves travel in vacuum with a definite

and unchanging speed c.
The energy density in an electromagnetic wave can be expressed as

c= =3710% mys.

1 2. 1 2 2
=—eqampE“+—B“ =enE“.
200 om 0

0
The energy-flow rate (power per unit area) is given by the Pointing vector
V. 1 V_V
S=—E"B.

Mo
The time-average value of the magnitude EB/mg of the Pointing vector is

called the intensity of the wave. These waves also carry momentum; the
momentum per unit volume has magnitude

1dp_S _EB

Adt ¢ mgc
When an electromagnetic wave travels through a dielectric, the wave speed
v is given by
v=_C
n
For a sinusoidal electromagnetic wave traveling in the + x-direction, both
E and B are sinusoidal functions of the quantity (wt - kx), and at each point the
smusmdal variations of E and B are in phase. For a wave in the - x direction, E
and B are sinusoidal functions of (wt + kx).
The electromagnetic spectrum covers a range of frequencies from at least 1
to 1024 Hz and a correspondingly broad range of wavelengths. Visible light is a

very small part of this spectrum, with wavelengths of 4~ 107" to 77207" mor
400 to 700 nm.
The Doppler frequency predicted by the theory of relativity, is
1-u/c
ft= fo

J-wie?
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Key Terms

Speed of light — ckopocTh cBeTa

Energy density — mioTHOCTh SHEPTHH

Pointing vector — BekTop [loitHTHHTa

Intensity — uHTEeHCUBHOCTH

Index of refraction — nokasaresb npeaoMICHHS
Doppler effect — s dexr dommiepa

Red shift — xpacHoe cmereHne

Electromagnetic wave — ssekTpoMarHiuTHas BOJHA
Gap — 3a3op, IPOMEKYTOK

Spark — uckpa

Spark gap — HCKpOBO# MPOMEKYTOK

Standing wave — crosiuast BoJIHA

Natural frequency — cobcTBeHHast yacToTa

Loop — KoHTYD, NeTs

To match — moaxoauTh, COrIaCOBBIBATHCS

Tuning fork — kamepTon

Restricted — cBsi3aHHBII, OrpaHUYCHHBIN

Plane wave — mtockas BoyiHa

Index of refraction — xoadduiueHT nMpesoMIcHHs
Energy flow — notok sueprun

Radiation — u3nydenue

Perfect reflector — uneanbHbIN OTpaXkaTeb
Reflectivity — koaddunmeHT orpakenus

Tail — xBoct

Torsion balance — kpyTuibHBIE BeChI

Fiber — BO1OKHO, HUTH

Beam — nyu

Absorption — morsomeHue

Electromagnetic spectrum — ciekTp 3JeKTpOMarHUTHBIX BOJIH
Infrared — nundpakpacHsbrit

Visible — BumumpbIit

Ultraviolet — ynerpaduonerossrii

X-rays — peHTT€HOBCKHE JTy4d

Gamma-rays — g -nmyau

Doppler effect — apdexr dommiepa

Doppler shift —gonmnepoBckuii caBur

Galaxy — ramaktuka

Radiation pressure — gaBiieHue u3nyucHus (CBeTa)
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