Научное наследие профессора И.Г. Немана (1903-1952)

Предисловие редколлегии журнала

Журнал публикует шестую, завершающую статью по материалам докторской диссертации И.Г. Немана «Устойчивость бесконечно длинной ортотропной пластины с наклонными главными направлениями упругости», защите которой помешала преждевременная смерть автора.

Как и во всех предыдущих сообщениях, ниже изложены научные результаты И. Г. Немана, полученные им в 1946-48 гг. и ранее не публиковавшиеся, практически без правок авторского текста.

Редколлегия предполагает знакомство читателя с предыдущими сообщениями автора^{*)}, что исключает необходимость расшифровки в данной статье символов, уже встречавшихся в предыдущих публикациях.

В материалах диссертации И.Г. Немана содержатся также экспериментальные исследования образцов трехслойной березовой фанеры на продольное сжатие и совместное действие продольного сжатия со сдвигом.

Эти исследования подтверждают в целом удовлетворительное совпадение полученных автором экспериментальных данных с расчетными.

Однако публикация этих материалов, по мнению редколлегии журнала, не представляет интереса с учетом современных технологий экспериментальных исследований.

4. Неман И.Г. Устойчивость бесконечно длинной ортотропной пластины с наклонными главными направлениями упругости. Точный метод. Часть 2. Частные случаи нагружения пластины // Авиационно-космическая техника и технология. – 2006. – №3 (29). – С. 86-94.

5. Неман И.Г. Устойчивость бесконечно длинной ортотропной пластины с наклонными главными направлениями упругости. Точный метод. Часть 3. Частные случаи нагружения пластины (продолжение) // Авиационно-космическая техника и технология. – 2006. – №5 (31). – С. 84-92.

^{*)} 1. Неман И.Г. Устойчивость бесконечно длинной ортотропной пластины с наклонными главными направлениями упругости. Часть 1. Приближенный метод. Устойчивость пластины при одностороннем сжатии // Авиационно-космическая техника и технология. – 2005. – №5 (21). – С. 87-95.

^{2.} Неман И.Г. Устойчивость бесконечно длинной ортотропной пластины с наклонными главными направлениями упругости. Часть II. Приближенный метод. Устойчивость пластины при сдвиге и совместном действии сжатия и сдвига // Авиационно-космическая техника и технология. – 2005. – №6 (22). – С. 95-103.

^{3.} Неман И.Г. Устойчивость бесконечно длинной ортотропной пластины с наклонными главными направлениями упругости. Точный метод. Часть I. Вывод общих уравнений для коэффициентов критической нагрузки. Устойчивость пластины при совместном действии двухстороннего сжатия и сдвига // Авиационно-космическая техника и технология.– 2006. – №1 (27). – С. 96-103.

УДК 629.7: 534.1

И.Г. Неман

Харьковский авиационный институт, Украина

УСТОЙЧИВОСТЬ КОНЕЧНЫХ ОРТОТРОПНЫХ ПЛАСТИН С НОРМАЛЬНО ОРИЕНТИРОВАННЫМИ ГЛАВНЫМИ НАПРАВЛЕНИЯМИ С ДВУМЯ СВОБОДНО ОПЕРТЫМИ И ДВУМЯ ЖЕСТКО ЗАДЕЛАННЫМИ СТОРОНАМИ ПРИ СОВМЕСТНОМ ДЕЙСТВИИ ПОПЕРЕЧНОЙ И ПРОДОЛЬНОЙ НОРМАЛЬНЫХ НАГРУЗОК. УСТОЙЧИВОСТЬ ГЕОДЕЗИЧЕСКОЙ КОНСТРУКЦИИ ПРИ ПРОДОЛЬНОМ СЖАТИИ (ПРИБЛИЖЕННЫЙ МЕТОД)

Решена задача устойчивости ортотропной пластины конечных размеров с двумя свободно опертыми и двумя жестко заделанными сторонами при нормально ориентированных направлениях осей упругости относительно действующих продольных и поперечных нагрузок и устойчивости геодезической пластины при продольном сжатии. Результаты получены автором до 1946 года и ранее не публиковались.

устойчивость, ортотропная пластина конечных размеров, двухстороннее сжатие, частный случай геодезической пластины, продольное сжатие

§1. Рассматривается задача устойчивости ортотропной пластины при двухстороннем сжатии в системе координат, в которой оси *x* и *y* совпадают с главными направлениями осей упругости (рис. 1)

ортотропную пластину конечной длины

Данная задача отличается от решенной ранее общей задачи [1] тем, что здесь должны быть удовлетворены еще четыре граничных условия

$$W = M_{v_1} = 0$$
 при $y_1 = \pm a$. (1)

Мы удовлетворим этим требованиям, сохранив уравнение связи (30) работы [1], выбирая μ таким, чтобы число полуволн, укладывающихся вдоль стороны y_1 , было конечно, а гребни волны были параллельными оси x_1 . Но последнее условие в нашем случае обеспечивается автоматически тем, что мы главные направления связываем с осями x_1 и y_1 (рис. 1).

При совпадении главного направления (несущего максимальную жесткость) с осью $x_1 \ \beta = 0$, а с осью $y_1 \ \beta = \infty$.

Определим константы характеристического уравнения (7) работы [1].

При $\beta = 0$:

$$A = C = 0; B = \frac{2D_{xy}}{D_x}; D = \frac{D_y}{D_x}; E = 1.$$
 (2)

При $\beta = \infty$:

$$A = C = 0; \ B = \frac{2D_{xy}}{D_y}; \ D = \frac{D_x}{D_y}; \ E = \frac{D_x}{D_y}.$$
 (3)

Найдем корни характеристического уравнения.

Из уравнения (8) работы [1] $\delta_1 = -\delta_2 = \delta$.

Уравнение (10) работы [1] запишется в следующем виде:

$$2\delta\left(\xi^2 - \eta^2\right) = 0, \qquad (4)$$

откуда $\xi = \pm \eta$.

Полученные зависимости показывают, что корни λ_i могут быть записаны в следующей форме:

$$\lambda_1; \ \lambda_2; \ \lambda_3 = -\lambda_2 \quad \text{if } \lambda_4 = -\lambda_1. \tag{5}$$

Коэффициенты нагрузки определяются из формул (9) и (10) работы [1]:

$$\lambda_1^2 + \lambda_2^2 = EK_{q_1} - B\mu^2;$$
 (6)

$$\lambda_1^2 \cdot \lambda_2^2 = D\mu^4 - EK_{q_2}\mu^2 \,. \tag{7}$$

Из (6) получим:

$$EK_{q_1} = \lambda_1^2 + \lambda_2^2 + B\mu^2 \,. \tag{8}$$

Из (7) следует:

$$EK_{q_2} = \frac{D\mu^4 - \lambda_1^2 \lambda_2^2}{\mu^2} = nEK_{q_1}.$$
 (9)

Установим уравнение связи.

Приняв во внимание (5), получим уравнение связи (30) работы [1] в следующем виде:

$$(\lambda_1 - \lambda_2)^2 \sin^2 (\lambda_1 + \lambda_2) =$$
$$= (\lambda_1 + \lambda_2)^2 \sin^2 (\lambda_1 - \lambda_2).$$
(10)

$$(\lambda_1 - \lambda_2)(\sin\lambda_1\cos\lambda_2 + \cos\lambda_1\sin\lambda_2) =$$

= $\pm (\lambda_1 + \lambda_2)(\sin\lambda_1\cos\lambda_2 - \cos\lambda_1\sin\lambda_2).$ (11

Последнее уравнение дает нам следующие возможные две связи:

$$\lambda_1 t g \lambda_1 = \lambda_2 t g \lambda_2 ; \qquad (12)$$

$$\frac{tg\lambda_1}{\lambda_1} = \frac{tg\lambda_2}{\lambda_2} \,. \tag{13}$$

Оба эти уравнения имеют нетривиальные решения, если их аргументы лежат в разных квадрантах (отличающихся на кратное π). Докажем, что уравнение (3) должно быть отброшено. Для этого рассмотрим график тангенсов (рис. 2).

Рис. 2. График тангенсов параметра

Уравнение (2) связывает между собой пару корней λ геометрическим условием равенства площадей прямоугольников, построенных на λ и *tg* λ .

Уравнение (3) связывает эти корни условием их нахождения на одной прямой, проведенной из начала координат.

Из уравнений (8) и (9) определяем параметр *n*:

$$n = \frac{1}{\mu^2} \frac{D\mu^4 - \lambda_1^2 \lambda_2^2}{\lambda_1^2 + \lambda_2^2 + B\mu^2}.$$
 (14)

Для определенного *n* при фиксированном μ мы получим из уравнений (2) и (3) разные пары значений λ_1 и λ_2 . Но при заданном *n* та пара λ , которая дает большее произведение, должна дать меньшую сумму квадратов, и наоборот. Из уравнения (8) видим, что нам нужно оставить то уравнение, которое дает меньшую сумму квадратов.

Допустим, одно из уравнений дает пару значений

то должно быть $\lambda_1 \lambda_2 > \lambda_1^* \lambda_2^*$.

Но отсюда $(\lambda_1 - \lambda_2)^2 < (\lambda_1^* - \lambda_2^*)^2$

и $\lambda_1 - \lambda_2 < \lambda_1^* - \lambda_2^*$.

Итак, меньшую сумму квадратов дает та пара значений λ, которая лежит ближе между собой.

Рассматривая рис. 2, видим, что при нашем требовании постоянства n уравнение (12) дает пару корней λ , лежащих ближе между собой, чем значения, полученные из уравнений (13).

Следовательно, уравнение (13) может быть отброшено. Из уравнений (8) и (9) определяем λ_2 :

$$\lambda_2^2 = \frac{D\mu^4 - n\mu^2 \lambda_1^2 - nB\mu^4}{n\mu^2 + \lambda_1^2}$$
(15)

при

 $D\mu^2 - n\lambda_1^2 - nB\mu^2 \ge 0$ λ_2 – вещественно.

при

 $D\mu^2 - n\lambda_1^2 - nB\mu^2 < 0$ λ_2 – мнимое.

В последнем случае уравнения (12) и (13) переписываем в следующем виде:

$$\lambda_1 t g \lambda_1 = -\overline{\lambda}_2 t h \overline{\lambda}_2 ; \qquad (16)$$

$$\frac{tg\lambda_1}{\lambda_1} = \frac{th\overline{\lambda}_2}{\overline{\lambda}_2}$$
, где $\overline{\lambda}_2 = i\lambda_2$. (17)

При любом $\overline{\lambda}_2$ нетривиальные решения получаем с минимальным значением λ_1 для уравнения (16) при $\frac{\pi}{2} < \lambda_1 < \pi$, а для уравнения (17) при $\pi < \lambda_1 < \frac{3}{2}\pi$.

Уравнения (8) и (9) показывают, что при определенном $\overline{\lambda}_2$ меньшие значения обоих коэффициентов K_q получаются при меньшем λ_1 . Следовательно, уравнение (17) может быть отброшено.

Приведем технику подсчета графика совместного действия усилий.

Вычисленные кривые $\lambda tg\lambda$ для первой и второй четверти, $(-\lambda tg\lambda)$ – третьей четверти показаны на рис. 3.

Рис. 3. Графики (λtgπ) для 1, 2 и 3 квадрантов

Пользуясь данным графиком, можно построить графики совместного действия усилий для пластинки с любым соотношением сторон при любом соотношении жесткостей.

Для конечной пластины со сторонами *а* и 2*в* имеем

$$\frac{\mu a}{g} = K\pi, \qquad (18)$$

где *К* – произвольное целое число, дающее число полуволн. Приняв какое-либо *К* из уравнения (18), определяем соответствующие ему µ. Проводим ряд прямых, параллельных оси абсцисс, и берем отсе-

каемые ими значения на кривой 1 и соответствующие им λ_1 кривой 2. Вставив эти значения μ_1 λ_1 и λ_2 , в уравнения (8) и (9), получаем пару значений коэффициентов устойчивости K_{q_1} и K_{q_2} , по которым строим линию совместного действия усилий.

Данное построение нужно вести также и для кривых 3 и 4.

Отметим, что $\overline{\lambda}_2^2$ в уравнение (8) входит с отрицательным знаком.

Построив линии K_{q_1} и K_{q_2} для значений K = 1, 2, 3, оставляем те отрезки, которые дают их наименьшие значения. При подсчете значений K_{q_1} и K_{q_2} удобно пользоваться следующими четырьмя точками, дающими наиболее простое выражение искомых величин.

1. K_{q_1} изолированного действия нагрузки. В этом случае n = 0. Из уравнения (9) получаем:

$$\lambda_1^2 \lambda_2^2 = D\mu^4 \quad \text{или} \quad \lambda_1 \lambda_2 = \sqrt{D}\mu^2 \,. \tag{19}$$

Параметры λ_1 и λ_2 находятся следующим построением (рис.4).

Рис. 4. Определение параметров λ_1 и λ_2 для квадантов 1 и 2

Проводятся несколько горизонталей и на оси λ строятся полуокружности на диаметрах $0\lambda_1$. Радиусом $\sqrt[4]{D}\mu$ засекаем полуокружности. Берем λ_1 и λ_2 , соответствующие той полуокружности, на которой радиус $\sqrt[4]{D}\mu$ и нормаль к λ_2 пересекаются.

2.
$$EK_{q_1} = \lambda_1^2 + \lambda_2^2 + B\mu^2$$

 $2\lambda_2 = 0.$ (20)

Уравнение связи дает:

$$\lambda_1 t g \lambda_1 = 0 \, .$$

Отсюда $tg\lambda_1 = 0$ и $\lambda_1 = \pi$,

$$EK_{q_1} = \pi^2 + B\mu^2 \,, \tag{21}$$

$$EK_{q_2} = D\mu^2 . (22)$$

3. $\lambda_2^2 = -\lambda_1^2 \lambda_1 t g \lambda_1 = -\lambda_1 t g \lambda_1$. Отсюда

$$\lambda_1 = 0,753\pi$$
; (23)

$$EK_{q_1} = B\mu^2 ; \qquad (24)$$

$$EK_{q_2} = \frac{D\mu^4 + 0.321\pi^4}{\mu^2} \,. \tag{25}$$

4. К_{а2} – изолированное действие нагрузки

В этом случае $n = \infty$. Из уравнения (8) получаем:

$$\lambda_2^2 = -\left(\lambda_1^2 + B\mu^2\right); \tag{26}$$

$$\lambda_1 t g \lambda_1 = -\sqrt{\lambda_1^2 + B\mu^2} t h \sqrt{\lambda_1^2 + B\mu^2} , \qquad (27)$$

 λ_1 и λ_2 находятся следующим построением графика (рис. 5).

Проводим несколько горизонталей, пересекающих кривые 1 и 2, и горизонталь на расстоянии $\sqrt{B}\mu$ от оси абсцисс. Проводим дуги радиусами $\overline{\lambda}_2$. Берем ту пару λ_1 и λ_2 , для которых вертикаль λ_1 пересекается с дугой $\overline{\lambda}_2$ на горизонталь $\sqrt{B}\mu$. Используем формулу (9). С большой точностью определение λ_1 и λ_2 может быть произведено на основании того, что $th\sqrt{\lambda_1 + B\mu^2}$ в этом случае практически равен 1. Отсюда λ_1 находится как точка, для которой ордината $\lambda_1 t g \lambda_1$ равна отрезку прямой, соединяющей начало координат с точкой пересечения ординаты линией $\sqrt{B}\mu$.

Рис. 5. Определение параметров λ_1 и λ_2 для третьего кваданта

Проведенные нами построения для нескольких пластин показали, что линия совместного действия K_{q_1} и K_{q_2} для какого-либо принятого значения μ может практически считаться прямой. Отсюда следует чрезвычайно быстрый способ построения графика стоместного действия усилий. Прямую строим по двум точкам. За таковые принимаем точки, соответствующие $\lambda_2 = 0$, $\lambda_2^2 = -\lambda_1^2$, K_{q_1} и K_{q_2} подсчитываются по формулам (21), (22) и (24), (25). Через полученные две точки проводим прямую. Получающаяся ломанная внутренняя (по отношению к началу координат) линия из отрезков этих прямых, подсчитанных для разных μ , дает кривую совместного действия.

Наши построения этих графиков показали, что только до тех пор, пока максимальное число волн не

больше трех, имеет смысл рассчитывать специальный график устойчивости пластины. В остальных случаях достаточная инженерная точность получается при пользовании графиком устойчивости для бесконечно длинной пластины.

§2. Устойчивость геодезической панели при продольном сжатии (приближенный метод)

Положим $D_y = D_x$; $D_{xy} = 0$. Такая характеристика с достаточной точностью соответствует решетчатой конструкции Виккерса. Если такую панель рассматривать как ортотропную пластину, то получаем:

$$K_{q_{H}} = 2\sqrt{\frac{D_{y}}{D_{x}}} = 2; \ K_{q_{0}} = 4\sqrt{\frac{D_{y}}{D_{x}}} = 4; \ \beta_{0} = 4\sqrt{\frac{D_{x}}{D_{y}}} = 1.$$
 (28)

Т.е. поставив решетку под углом 45° к сторонам заделки, получаем критическую нагрузку в 2 раза выше, чем в переплетах с нормально и горизонтально расположенными стержнями.

§3. Критическая нагрузка геодезической панели при сдвиге

Характеристики жесткостей те же, что и в случае сжатия. Определим K_{th} .

Для $\beta = 0$; $D_{xy} = 0$; $D_y = D_x$ уравнения (2) работы [2] дают:

$$\frac{2}{\sqrt{1+\alpha^4}} \left(1-\alpha^4\right) + 6 = 0$$

или

$$\alpha^8 - 11\alpha^4 - 8 = 0.$$
 (29)

Отсюда: $\alpha = \pm \sqrt[4]{5,5 + \sqrt{38,25}}$. Уравнение (1) работы [2] дает: $K_{th_0} = 3,54$.

То же значение получаем для $\beta = \infty$.

Найдем экстремум K_{t_2} . Для β_1 и β_3 :

$$\frac{\partial^2 K}{\partial \alpha^2} = \frac{\partial^2 K}{\partial \beta^2} > 0$$

И

$$\frac{\partial^2 K}{\partial \alpha^2} \cdot \frac{\partial^2 K}{\partial \beta^2} - \left(\frac{\partial^2 K}{\partial \alpha \partial \beta}\right)^2 < 0.$$

Оба экстремума дают максимумы K_t . В данном случае

$$K_{t_{\beta_1}} = K_{t_{\beta_2}} = 5,65$$

Для нахождения минимальных значений разыскиваем добавочные корни из уравнений (8) и (9) работы [2]. Уравнение (9) этой работы дает:

$$\beta^{2} + \alpha^{2} = \frac{(1 - \beta \alpha)(1 - \beta^{2} \alpha^{2})}{1 + \beta \alpha}$$

или

$$(1+\beta\alpha)\left[\left(\beta^{2}+\alpha^{2}\right)-\left(1-\beta\alpha\right)^{2}\right] = 0.$$
 (30)

Отсюда имеем следующие возможные связи:

$$(1+\beta\alpha)=0$$
 и $\beta^2+\alpha^2=(1-\beta\alpha)^2$. (31)

Используя первую связь в уравнении (8) работы [2], получаем:

$$\left(\beta^{2} + \alpha^{2}\right)^{3} - 6\left(\beta^{2} + \alpha^{2}\right)^{2} - 36\left(\beta^{2} + \alpha^{2}\right) - 40 =$$
$$= \left(\beta^{2} + \frac{1}{\beta^{2}} - 10\right) \left[\left(\beta^{2} + \frac{1}{\beta^{2}}\right)^{2} + 4\left(\beta^{2} + \frac{1}{\beta^{2}}\right) + 4 \right] = 0.$$
(32)

Первый сомножитель равен

$$\beta = \pm \sqrt{5 \pm \sqrt{24}} \; .$$

Соответственно

$$\alpha = \mp \sqrt{5 \pm \sqrt{24}} \; .$$

Эти значения дают

$$\frac{\partial K}{\partial \alpha} = \frac{\partial K}{\partial \beta} = 0.$$

Определяем знак $\frac{\partial^2 K}{\partial \alpha^2}$. Для нашего соотноше-

ния $(1+\beta\alpha)=0$, тогда получаем:

$$\frac{\partial^2 K^*}{\partial \alpha^2} = \frac{\beta \left[-14\beta^6 - 12\beta^4 + 8\beta^2 - 4 + \frac{2}{\beta^2} \right]}{4 \left(1 + \beta^4 \left(\beta - \frac{1}{\beta} \right)^2 \right)}.$$
 (33)

Отсюда:

$$\frac{\partial^2 K}{\partial \alpha^2} > 0 \quad \text{при } \beta_7 = -\sqrt{5 + \sqrt{24}} \quad \text{и } \beta_8 = +\sqrt{5 - \sqrt{24}}$$

и $\frac{\partial^2 K}{\partial \alpha^2} < 0 \quad \text{при } \beta = +\sqrt{5 + \sqrt{24}} \quad \text{и } \beta = -\sqrt{5 - \sqrt{24}}$.

$$\frac{\partial^{2} K^{*}}{\partial \alpha \partial \beta} = \frac{\beta \left[-4\beta^{6} + 32\beta^{4} + 8\beta^{2} + 24 + \frac{4}{\beta^{2}} \right]}{4 \left(1 + \beta^{4} \left(\beta - \frac{1}{\beta} \right)^{2} \right)}; \quad (34)$$
$$\frac{\partial^{2} K^{*}}{\partial \beta^{2}} = \frac{\beta \left[-2\beta^{4} + 4\beta^{2} - 8 + \frac{12}{\beta^{2}} + \frac{14}{\beta^{4}} \right]}{4 \left(1 + \beta^{4} \left(\beta - \frac{1}{\beta} \right)^{2} \right)}, \quad (35)$$

и
$$\frac{\partial^2 K}{\partial \alpha^2} \frac{\partial^2 K}{\partial \beta^2} - \left(\frac{\partial^2 K}{\partial \alpha \partial \beta} \right)^2 > 0$$
 как для β_7 , так и для

β₈.

$$K_{t_{\beta_7}} = K_{t_{\beta_8}} = 2,83$$

Второй множитель дает мнимые значения β .

Вторая связь приводит уравнение (8) работы [2] к следующему виду:

$$72\beta\alpha(\beta^{2}\alpha^{2}+1)(\beta^{2}\alpha^{2}-4\beta\alpha+1)=0.$$
 (36)

βα не дает корней. Действительно, при этом получаем такие значения:

$$\beta=\pm 1\;,\;\alpha=0$$
или $\beta=0\;,\;\alpha=\pm 1\;.$

Но при первых значениях $\frac{\partial K}{\partial \beta}$, при вторых $\frac{\partial K}{\partial \alpha}$ не обращаются в нуль. Второй множитель дает мнимое значение β и α . Третий множитель дает полученные корни β_1 и β_4 .

Итак, мы получили два максимума:

$$K_{t_{\text{max}}} = 5,65$$
 при $\beta_1 = 1,93$ и $\beta_4 = -0,518$,

и два минимума:

$$K_{t_{\min}} = 2,83$$
 при $\beta_7 == -3,14$ и $\beta_8 = 0,318$

Практические направления β₁ и β₄ и соответственно β₇ и β₈ равноценны. Получилось это вследствие одинаковости жесткостей по взаимно перпендикулярным направлениям.

§4. Геодезическая панель с жесткостями

$$\frac{D_y}{D_x} = \frac{1}{2} \qquad D_{xy} = 0$$

Критическая нагрузка сжатия:

$$K_{qH} = 2\sqrt{\frac{D_y}{D_x}} = 0,578;$$

$$K_{q0} = 4\sqrt{\frac{D_y}{D_x}} = 1,156;$$

$$\beta_0 = 4\sqrt{\frac{D_x}{D_y}} = 1,86.$$
(36)

Критическая касательная нагрузка K_{th} .

Для
$$\beta = 0$$
, $D_{xy} = 0$ и $\frac{D_y}{D_x} = \frac{1}{12}$ уравнение (2) ра-

боты [2] дает:

$$\frac{\alpha^8}{44} - \frac{11\alpha^4}{12} - 8 = 0.$$
 (37)

Отсюда: $\alpha = \pm 3,44$ и $K_{t_{\beta_0}} = 1,905$.

Для $\beta = \infty$ соответственно получаем:

$$\frac{8\alpha^8}{144} + \frac{11\alpha^4}{12} - 1 = 0.$$
 (38)

Отсюда $\alpha = \pm 1,007$ и $K_{t_{H_{\alpha}}} = 0,55$.

Найдем экстремум K_{t_0} :

$$\beta = \sqrt{1 + 2\sqrt{13} \cos\left(\frac{1}{3} \arccos\sqrt{\frac{1}{13}}\right)} = 2,75 ,$$

$$\beta_3 = -\sqrt{1 - 2\sqrt{13} \sin\left(\frac{1}{3} \arcsin\sqrt{\frac{1}{13}}\right)} = -0,5695 .$$

 $\frac{\partial^2 K}{\partial \alpha^2} \frac{\partial^2 K}{\partial \beta^2} - \left(\frac{\partial^2 K}{\partial \alpha \partial \beta} \right)^2 < 0 \ \text{ как для } \beta_1 \text{, так и для } \beta_3 \text{.}$

 $\frac{\partial^2 K}{\partial \alpha^2} = \frac{\partial^2 K}{\partial \beta^2} > 0 \ \ \mbox{как для} \ \ \ \beta_1 \,, \ \mbox{так и для} \ \ \beta_3 \,.$

Оба экстремума дают максимум K_t :

 $K_{t_{\beta_1}} = 0,636$: $K_{t_{\beta_3}} = 5,23$.

Для нахождения минимальных значений $K_{t \min}$ разыскиваем добавочные корни из уравнений (8) и (9) работы [2].

Уравнение (8) работы [2] дает:

$$8 \Big[(1-2\beta\alpha)^{2} - (1-2\beta\alpha) (\beta^{2} + \alpha^{2}) + \beta^{2}\alpha^{2} \Big] + \\ +8T\beta^{3}\alpha^{3} \Big[\beta\alpha (2-\beta\alpha)^{2} + (2-\beta\alpha) (\beta^{2} + \alpha^{2}) + \beta\alpha \Big] - \\ -T[(\beta^{2} + \alpha^{2})^{3} - (\beta^{2} + \alpha^{2})^{2} (1-4\beta\alpha + \beta^{2}\alpha^{2}) + \\ + (\beta^{2} + \alpha^{2}) (16\beta\alpha - 52\beta^{2}\alpha^{2} + 16\beta^{3}\alpha^{3}) + \\ + 20\beta^{2}\alpha^{2} - 80\beta^{3}\alpha^{3} + 20\beta^{4}\alpha^{4} \Big] = 0.$$
(39)

Уравнение (9) работы [2] дает:

$$\beta^{2} + \alpha^{2} = \frac{\left(1 - \beta \alpha\right)\left(1 - T\beta^{2} \alpha^{2}\right)}{1 + T\beta \alpha}.$$
 (40)

Откуда для βα получаем следующее уравнение:

$$\begin{pmatrix} T^{3} - 11T^{4} - 8T^{5} \end{pmatrix} \beta^{7} \alpha^{7} - \begin{pmatrix} 21T^{3} - 15T^{4} - 24T^{5} \end{pmatrix} \beta^{6} \alpha^{6} - \\ - \begin{pmatrix} 10T^{2} - 65T^{3} + 71T^{4} \end{pmatrix} \beta^{5} \alpha^{5} + \begin{pmatrix} 58T^{2} + 91T^{3} + 13T^{4} \end{pmatrix} \times \\ \times \beta^{4} \alpha^{4} + \begin{pmatrix} 13T + 91T^{2} + 58T^{3} \end{pmatrix} \beta^{3} \alpha^{3} - \\ - \begin{pmatrix} 71T - 65T^{2} + 10T^{3} \end{pmatrix} \beta^{2} \alpha^{2} + \begin{pmatrix} 24 + 15T - 21T^{2} \end{pmatrix} \beta \alpha - \\ - \begin{pmatrix} 8 + 11T - T^{2} \end{pmatrix} = 0.$$
 (41)

Совместные последние два уравнения имеют вещественные корни

$$\beta = 689$$
, $\alpha = 1,0087$ и $\beta = 1,0087$, $\alpha = 689$.

При этих значениях $K_{t \min} = 0.52$.

Литература

 Неман И.Г. Устойчивость бесконечно длинной ортотропной пластины с наклонными главными направлениями упругости. Точный метод. Часть I. Вывод общих уравнений для коэффициентов критической нагрузки. Устойчивость пластины при совместном действии двухстороннего сжатия и сдвига // Авиационно-космическая техника и технология.– 2006. – №1 (27). – С. 96-103.

2. Неман И.Г. Устойчивость бесконечно длинной ортотропной пластины с наклонными главными направлениями упругости. Часть II. Приближенный метод. Устойчивость пластины при сдвиге и совместном действии сжатия и сдвига // Авиационно-космическая техника и технология. – 2005. – №6 (22). – С. 95-103.