УДК 621.7.044

В.К. БОРИСЕВИЧ, С.И. МОЛОДЫХ, В.В. ТРЕТЬЯК

Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Украина

ПРОБЛЕМЫ МНОГОФАКТОРНОГО МОДЕЛИРОВАНИЯ ИМПУЛЬСНЫХ ПРОЦЕССОВ ПРИ ИЗГОТОВЛЕНИИ ОБОЛОЧЕК ДВОЙНОЙ КРИВИЗНЫ

Рассмотрены проблемы математического моделирования и экспериментальных исследований поведения быстро двигающейся заготовки при импульсных процессах деформирования. Предложена гипотеза для математического моделирования импульсной правки, даны технологические рекомендации для изготовления оболочек двойной кривизны с небольшими прогибами.

многофакторное моделирование, импульсные процессы, листовая штамповка взрывом, импульсная правка, оболочки двойной кривизны, точность и разнотолщинность листовой детали

Введение

Проведение математического моделирования и экспериментальных исследований импульсных процессов, связанное с анализом поведения быстро двигающейся заготовки и ее столкновением с поверхностью жесткой матрицы, являются достаточно сложными по нескольким причинам.

Первая причина – это сложность и многофакторность физики самого процесса. Взаимодействие летящей после действия жесткого импульса от заряда БВВ заготовки с препятствием – матрицей или пуансоном, сопровождается комплексной деформацией растяжения–сжатия и изгиба–сдвига в плоскости листа заготовки, упругого отскока от удара, нагрева с разупрочнением, деформацией матрицы. Причем эти процессы происходят практически одновременно [1].

Перечисленные факторы сильно осложняют процесс наблюдения и трактовку полученной формы деталей. Выделение влияния каждого из факторов связано с огромным количеством опытов и большими материальными расходами.

Второй причиной является высокая скорость происходящих явлений и трудность визуализации пространственного взаимодействия. Из-за высоких скоростей происходящих явлений непосредственно наблюдать такой процесс практически не представляется возможным. Поэтому целесообразно обратиться к косвенным методам исследования, наблюдая остаточные напряжения, деформации и конечные формы изделий.

Наиболее эффективным оказывается использование математического моделирования посредством конечно-разностных моделей и сопоставление результатов практики и теории при одинаковых условиях. Проверку основных допущений можно производить по конечному результату. При хорошем совпадении результатов моделирования и эксперимента можно говорить об адекватности модели процесса правки и промежуточных состояниях детали в процессе изготовления [2].

Решение проблемы

Выдвинута и подтверждена гипотеза о том, что импульсная правка взрывом пространственных оболочек не вызывает деформаций в листовых деталях, поскольку реализуется объемное сжатие, которое не приводит к изменению формы. Результаты гипотезы анализировались с помощью математического моделирования. Такая модель реализуется очень редко и расчет ограничивается заготовками, у которых необходимая конечная форма

© В.К. Борисевич, С.И. Молодых, В.В. Третьяк АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2008, № 1 (48) близка к форме движения заготовки – эллипсоиду. Реальным является процесс косого столкновения, который сопровождается продольным и поперечным сдвигом металла. С целью проверки принципиальных отличий плоского и косого столкновения был проведен эксперимент с метанием плоских металлических заготовок на плоскую матрицу. Схема метания представлена на рис. 1.

Рис. 1. Схема експеримента по метанию пластин

При планировании эксперимента диапазон устанавливающихся зарядов менялся от 5 до 50г. Высота подвески заряда выбиралась согласно известных рекомендаций, связанных с эффективностью воздействия ударной волны на заготовку, а также обеспечением равномерной нагрузки по всей поверхности пластины *H*=0,5*Д*.

Дистанционная проставка высотой 10мм обеспечивала отсутствие волнового канала между матрицей и заготовкой, что соответствует схеме метания и сохраняет подобие натурной модели штамповки.

Скорости столкновения рассчитывались с помощью математического моделирования, а также измерялись гребенкой контактных датчиков. Варьирование скорости – от 20 до 200 м/с.

После столкновения пластины подвергались измерению микротвердости на поверхности столкновения. Из пластин изготовлены образцы для растяжения из кольцевой, периферийной и центральной зон (рис. 2).

При анализе измерений уровня твердости и остаточных напряжений оказалось, что зона повышенной твердости имеет кольцевую форму, а уровень остаточных напряжений в ней отвечает границе прочности материала заготовки. Это установлено экспериментально.

Зона повышенной твердости

Рис. 2. Образцы для испытаний. Пунктиром показана форма движущейся заготовки

При этом соседние зоны плоского столкновения (центр и периферия) практически не имеют остаточных деформаций и не упрочняются.

Из табл. 1 видно, что утонение образцов №3 и 4 составляет 5%, а остаточный после столкновения резерв пластичности составляет всего 0,6 - 1,4%.

Объяснение этому факту авторы видят в том, что заготовка в процессе метания и движения с большими скоростям (около 200 м/с) изгибается, превращаясь в волну (пунктир на рис. 2), которая при столкновении с матрицей имеет кольцевые зоны косого столкновения, в которых материал упрочняется по максимуму. Этот факт имеет хорошую повторяемость при разных условиях нагрузки. Меняются лишь размеры кольца и степень их укрепления.

Для измерения распределения твердости по толщине заготовки из препаратов кольцевой зоны изготовлены специальные клиновидные шлифы. В распределении твердости по периферии наблюдается ее повышение на 30% только в узкой зоне, прилегающей к контактной поверхности. На глубине более 0,3 мм твердость остается неизменной.

Можно сделать вывод, что даже поверхностный наклеп приводит к исчерпыванию ресурса пластичности материала и требует использования термообработки после каждой нагрузки заготовки при правке ее ударом о матрицу. Таким образом, выявлены самые значимые факторы – степень деформаций и остаточный резерв пластичности материала после деформации в разных зонах заготовки. Степень деформации определена по распределению микротвердости.

Экспериментально получено подтверждение, что именно косое столкновение приводит к пластическим деформациям, причем угол столкновения имеет решающее значение вместе со скоростью столкновения. Глубина зоны наклепа не превышает 30%.

Аналогично таким деталями можно представить обшивки небольшой кривизны, а также сварные детали с прогибом не более 15%. Такой узкий диапазон обусловлен значительными трудностями использования прессовых технологий, в связи с малыми деформациями в упругой зоне, и полным или близким к нему пружинением.

Импульсная правка-прокатка вероятно должна устранить проблему пружинения за счет локальной деформации в складке. Исследования в данном направлении проводились в три этапа: на модельных препаратах, натурных деталях сферической формы и натурных дета лях параболической формы (сечения типа лепестков и отражателей для антенн).

Для сферических образцов круглой и трапецеидальной формы использовали вытяжную полусферическую матрицу Ø500мм.

Таблица 1

Обработка, место вырезки		№ обр.	t0	σ ₀₂	$\sigma_{\scriptscriptstyle \! \!$	δ_p	δ_5
			ММ	Мпа	Мпа	%	%
Конечное состояние		02	0,98	231	331	19	37,9
G40	Центр	11	0,97	259	340	16,5	36,7
	Кольцо	14	0,93	382	413	1,4	18,6
G10	Центр	21	0,96	228	338	18,5	41,2
	Кольцо	24	0,93	353	374	0,6	19,2

Остаточные деформации образцов

Заготовки толщиной 1,0–2,0 мм вырезали из стали 08кп и алюминиевого авиационного сплава АмГЗ без допуска на обрезку фланца. Схема штамповки – безбассейновая вытяжка – правка взрывом без прижимной свертки.

Круглая заготовка Ø200 мм фиксировалась по контуру резиновой накладкой и вакуумировалась.

Трапецеидальная заготовка длиной 400мм и шириной 200мм предварительно вальцевалась вдоль длинной стороны на радиус кривизны матрицы 250 мм. Таким образом, заготовка опиралась о матрицу длинной стороной. Резиновая накладка 10мм перекрывала контур заготовки на 30 мм и обеспечивала герметизацию при вакуумировании.

Заряд сферической формы помещался в полиэтиленовый мешок с водой на расстоянии 100мм от поверхности заготовки *H*=0,5*Д*.

Кривизну поверхности измеряли индикаторным трехточечным кривизномером с пересчетом малых значений по формуле.

 $\chi = 1/R = 2f / [f2 + (b/2)^2],$

гдеf – показания индикатора прогиба;

b – базовое расстояние между сопротивлениями индикатора;

R – радиус кривизны поверхности.

После подрыва заряда наблюдается полная проштамповка заготовки и плотное ее прилегание к матрице.

Однако в центральной части купола заметный дефект в виде волновой пуклевки в сторону заряда высотой до 8 мм и площадью до 50 см 2 (рис. 3).

Измерения толщины детали показали, что в волновой зоне - в центре купола сосредоточенные увеличения толщины до 15%, в отличие от ожидаемого расчетного утонения 5%. Аналогичное явление наблюдали и по оси симметричных заготовок.

Возникновение подобного дефекта не может быть объяснено существующей теорией и отрицает правильность рекомендаций по назначению дистанций взрыва.

Рассматривая механизм складчатого движения заготовки, которое было рассмотрено выше, можно предположить механизм сдвига металла заготовки в сторону движения складки. При симметричном сближении складки, в куполе образуется избыток материала, что вызывает сжимающие напряжения и при определенных условиях (малая толщина металла) потерю устойчивости формы в виде пуклевки.

Этот эффект в качестве набора материала можно использовать в некоторых схемах для изготовления деталей, которые имеют углубление (выштамповку в центре) или для полуфабрикатов, которые подлежат последующей вытяжке с утонением в куполе. При достаточной стойкости материала на сжатие можно получать утолщение в куполе или управлять разнотолщинностью заготовки.

Для избежания подобного эффекта необходимо изменить форму движения заготовки, тем самым изменить параметры складки и углов столкновения.

Рис. 3. Потеря устойчивости в виде пуклевки в центре купола трапециевидной заготовки

Рис. 4. Экспериментальная деталь – лепесток

Уменьшая складку и углы столкновения, можно уменьшить сдвиг металла в сторону центра, ослабляя сжатие и избегая потери стойкости формы.

С этой целью авторы уменьшили рекомендованную дистанцию взрыва более чем в два раза – до 0,1 – 0,25R. На экспериментальных деталях трапециевидной формы в плане при новых условиях получена гладкая поверхность купола без дефектов потери устойчивости (рис. 4).

Это также повлекло за собой снижение величины заряда, а, значит, повысило и КПД процесса. Отработку такого решения в промышленном эксперименте вели на трех типах обшивок небольших радиусов кривизны центрифуг (рис. 5).

Материал обшивок – АМГ-6, толщиной 4 мм, при кривизне 11000 мм, и габаритах 1200 мм, давал в статике 100% пружинения. Найдена оптимальная скорость столкновения, выше которой отклонения увеличиваются из-за упругого отскока деталей от матрицы (рис. 6).

Использование взрыва по прежним рекомендациям давало неисправимый дефект в центре и недостаточную точность профиля.

Применив разработанную авторами технологию, удалось избежать всех неприятностей, и получить

Рис. 5. Три типа лепестков малого прогиба двойной кривизны $R_{\kappa p}$ =11м

кондиционные детали высокой точности. Максимальное отклонение не превысило 0,88 мм.

При этом кривизна деталей в центре может быть больше кривизны матрицы при уменьшенной дистанции взрыва, но при увеличении отклонений на периферии деталей. То есть, можно управлять точностью деталей и ее распределением по поверхности. При этом отклонения будут зависеть только от разброса характеристик металла и характеристик параметров заряда.

Как видно из графика, с увеличением импульса и скорости столкновения, отклонения от матрицы уменьшаются согласно высказанных гипотез, но только до определенного значения скорости, после которой достигаемая точность снижается.

Рис. 6. График отклонений деталей 1200×700 мм S2-3 мм, «обшивка параболическая» в зависимости от скорости столкновения (импульса)

Установлено, что с увеличением толщины заготовки в диапазоне от 1 до 3 мм оптимальная скорость растет, а точность снижается. С увеличением прочности материала, например, при переходе на нержавеющую сталь, оптимальная скорость также растет, а усредненные отклонения остаются практически неизменными. Алюминиевые сплавы типа Амг-6 требуют больших импульсов, чем сталь аналогичной толщины и отклонения увеличиваются в 1,5 раза.

Экспериментально установлено, что уменьшение дистанции ниже рекомендованной приводит к перештамповке средней части (кривизна больше, чем матрица) и недоштамповке периферии (кривизна меньше, чем матрица). Наибольшие отклонения сосредоточены по краям деталей до 50 мм (рис. 7).

вдоль длинной стороны

Рис. 7. Поле отклонений [мм] по поверхности обшивки

Особенно отклонения заметны в угловых зонах детали. Это можно объяснить краевым эффектом от волн разгрузки, и некоторой асимметрией установки заряда.

Большая часть поверхности имеет отклонение до 1 мм, что превышает точность 8 квалитета на базе 1200 мм.

Применение технологических допусков величиной до 50 мм с последующим их удалением позволяет уменьшить среднее отклонение вдвое (до 0,5 мм), и повысить точность готовых обшивок.

Экспериментальная отработка технологии правки лепестков двойной кривизны показала правильность выдвинутой гипотезы.

Литература

 Дель Г.Д. Технологическая механика. – М.: Машиностроение, 1978. – 174 с.

2. Борисевич В.К., Нарыжный О.Г., Молодых С.И. Влияние передающей среды на деформирование и точность детали при импульсной штамповке // Авиационно-космическая техника и технология. – 2007. – № 11 (47). – С. 173-181.

Поступила в редакцию 5.02.2008

Рецензент: д-р техн. наук, проф. В.П. Герасименко, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.