УДК 535(023)

Н.Г. ТОЛМАЧЕВ

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

ГИПОТЕЗА БИ-ВЕЩЕСТВА КАК ИСТОЧНИКА ТАХИОННОЙ ЭНЕРГИИ

Для выявления свойств и параметров нового вида энергии предложена гипотеза би-вещества. В основу этой гипотезы положен постулат энергетического взаимодействия квантов, представляющих две субстанции — «темную» массу и светящееся барионное вещество, а в качестве физического инварианта приняты основные виды энергий этих объектов: потенциальная (E_n) , кинетическая (E_k) и работа (ΔE) , затрачиваемая на их взаимодействие. Использование таких концептуальных положений, а также основных законов классической механики и первого начала термодинамики позволило все физические параметры би-вещества т.е. массы, скорости взаимодействий, плотности, температуры и т.д. представить в виде их эквивалентов через значения энергий квантов $E_{\kappa \bar{b}}$, $E_{\kappa \bar{b}}$, и то дало возможность впервые прийти к пониманию би-вещества как источника принципиально нового вида энергии — тахионный, носителем которой является тахионный квант этого вещества.

Ключевые слова: тахионная энергия, барионный и тахионный кванты, энергетические эквиваленты.

Введение

Прошлое и начало нынешнего столетий ознаменовались выдающимися достижениями в области аэрокосмической науки и техники, базирующихся в основном на законах классической механики и термодинамики.

Наряду с этим стало очевидным, что рост этих достижений существенно сдерживается энергетическими возможностями современных летательных аппаратов, использующих энергию органического топлива и Солнца.

Энергия таких источников и ядерная энергия не могут решить проблему дальних космических перелетов, поскольку существенно снижают полезную нагрузку летательного аппарата.

Для решения такой проблемы уже не раз высказывалась идея использования энергии среды, в которой перемещается летательный аппарат. Так, например, лауреат Нобелевской премии, создатель квантовой электродинамики Р. Фейнман высказал предположение что "в вакууме, заключенном в объеме обыкновенной электрической лампочки, энергии такое большое количество, что её хватило бы, чтобы вскипятить все океаны на Земле".

В последнее десятилетие в этом вопросе наметился существенный прорыв. Исследователи космического пространства путем экспериментальной оценки распределения температуры остаточного космического излучения установили, что материя всей Вселенной состоит примерно на 4% из наблюдаемого барионного вещества, на 26% – из "темной" массы и на 70% – из "темной" энергии, природа ко-

торых пока неизвестна [1, 2] (рис. 1).

Если рассматривать эти субстанции как носители энергии, то следует отметить, что источником уже освоенных видов энергии, таких, как механическая, тепловая, химическая, электромагнитная и ядерная, является наблюдаемое "светящееся" вещество, составляющее незначительную часть в общем материальном балансе.

Проблема "темной" массы и "темной" энергии стала настолько актуальной, что ряд лабораторий Англии, Италии, Испании, Франции и США почти одновременно в 1997 — 2004 гг. наметили и реализуют большие экспериментальные программы по доказательству существования вещества, характеризующего "темную" массу, и по оценке его энергетических свойств.

Столь пристальное внимание к новым субстанциям материального мира объясняется тем обстоятельством, что "темная" масса, которой почти в семь раз больше, чем ныне наблюдаемого "светящегося" барионного вещества, как предполагают, обладает поистине неиссякаемым источником экологически чистой энергии.

Открытие материи небарионного типа со всей очевидностью поставило вопрос о разработке принципиально новых подходов к исследованию её энергетических характеристик во всех субстанциях мироздания, т.е. в барионном "светящемся" веществе, в "темной" массе и в "темной" энергии [2].

Предыдущими исследователями [3] установлено, что принципиально отличающиеся частички, образующие "темную" массу и барионное светящееся вещество, не существуют друг без друга, причем "темная" масса предопределяет свойства и параметры "светящегося" вещества. Однако фундаментальных связей, позволяющих дать количественную оценку таким процессам, пока не установлено.

Постановка и задачи исследований

Соотношение субстанций, приведенных на (рис. 1) и составляющих основу естественного мира, с энергетической точки зрения можно представить и в виде двухобъектовой структуры: т.е. в виде собственно энергии – квинтэссенции и в виде уже овеществленной энергии, "законсервированной" в виде дискретных объектов "темной" массы и светящегося барионного вещества.

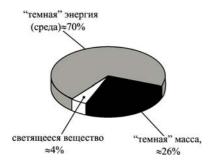


Рис. 1. Структурный состав источников энергии

Объединенную структуру порций "темной" массы и "светящегося" вещества назовем бивеществом (рис. 2).

Рис. 2. Би-вещество в структуре источников энергии

При решении задачи взаимосвязи и взаимозависимости между составляющими объектами би-вещества решающую роль играет момент выбора инварианта, присущего обеим этим субстанциям.

Понятие инвариантности впервые ввел У. Берне, давший этому термину сугубо математическое толкование: "Инвариантность – симметрия некоторого объекта относительно преобразований".

Однако, в физических моделях исследований на роль общего инварианта может претендовать лишь такой фактор, который присущ абсолютно всем физическим явлениям и так или иначе проявляется существенным образом в любых формах строения материи, на любом её уровне, при любых

видах взаимодействий. Эта величина должна присутствовать на уровне деления материи на вещества и предметы, на молекулы, атомы, элементарные частицы, а также на уровне планет, звезд, галактик и Вселенной в целом. Такое требование к всеобщему инварианту необходимо, так как основой каждого макропроцесса является соответствующий микропроцесс, обусловливающий собой общие закономерности.

Единственно возможным инвариантом во взаимодействии объектов в системе "би-вещество" может быть принята лишь энергия, которая присуща всем субстанциям, приведенным на рис. 1.

Энергия, неразрывно объединяющая категории массы, пространства и времени, является основой материального мира и исходной позицией при рассмотрении любых структур и любых физических явлений природы [8].

Поскольку категория энергии справедлива на всех уровнях организации материи, начиная со Вселенной в целом и заканчивая элементарными частицами, нет никакого основания считать, что для квантов "би-вещества" не она является первопричиной их существования.

Используя схему овеществленной части материи (рис. 2) и фактор энергии в качестве общего физического инварианта предлагается гипотеза, заключающаяся в том, что в расширительном толковании вещество (т.е. материю, обладающую массой) образуют кванты "темной" массы и "светящегося" барионного вещества.

Такую объединенную энергетическую субстанцию и принято называть би-веществом. Анализу его свойств и параметров и посвящены дальнейшие исследования.

Решение поставленной задачи

Исследование энергетических свойств бивещества предлагается осуществить с помощью квантово-энергетических моделей, представляющих собой энергетическое взаимодействие барионного и тахионного квантов (рис. 3).

При этом под барионным квантом подразумевается порция "светящегося" вещества, которой присущи наблюдаемые в настоящее время физические параметры, в том числе и скорости его взаимодействия, равные (или меньшие) скорости света.

Тахионный же квант идентифицирует собой пока ненаблюдаемую "темную" массу, обладающую гравитационными свойствами, со скоростями взаимодействия, большими скорости света.

В соответствии с концептуальным положением данной работы оба кванта представим в виде взаимодействующих энергий.

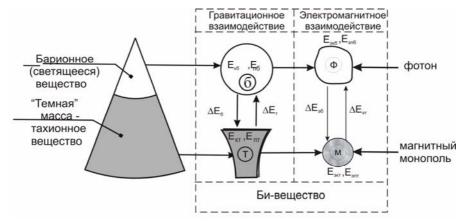


Рис. 3. Схема взаимодействия барионного (б) и тахионного (т) квантов в гравитационном, а также фотона (ф) и магнитного монополя (м) в электромагнитном взаимодействиях: E_{κ} и E_{π} – кинетические и потенциальные энергии квантов; $\Delta E_{6,\tau}$ – работы квантов, затрачиваемые на гравитационное взаимодействие; $E_{3\kappa}$ и $E_{3\pi}$ – кинетические и потенциальные энергии фотона и монополя; $\Delta E_{3\kappa 5}$, $\Delta E_{3\kappa 7}$ – работы, затрачиваемые фотоном (ф) и магнитным монополем (м) на электромагнитное взаимодействие

Полагаем следующее:

та;

квант барионного вида вещества (б) обладает такими видами энергии:

 $E_{\kappa 6}$ – кинетическая энергия барионного кванта; $E_{n 6}$ – потенциальная энергия барионного кван-

 ΔE_{6} – работа, совершаемая барионным квантом;

- квант тахионного вида вещества (т) обладает такими же видами энергии:

 $E_{\mbox{\tiny KT}}$ — кинетическая энергия тахионного квантата;

 $E_{\mbox{\tiny HT}}$ — потенциальная энергия тахионного кванта;

 $\Delta E_{\scriptscriptstyle T}$ – работа, совершаемая тахионным квантом.

Предполагаем также, что каждый из объектов обладает собственной системой координат, начало отсчета в которых совпадает с энергетическими центрами каждого из квантов, перемещающихся как в объекте, так и в системе объектов.

При такой особенности рассматриваемой модели категории массы (М), расстояния (R) и времени (τ) естественно являются производными от взаимодействующих энергий:

- для барионного кванта $M_6(E)$, $R_6(E)$ и $\tau_6(E)$;
- для тахионного кванта $M_{\tau}(E)$, $R_{\tau}(E)$ и $\tau_{\tau}(E)$.

Поскольку каждый из объектов характеризуется в собственной системе координат, то в общем виде согласно модели, представленной на рис. 2, $R_6(E) \neq R_7(E)$ и $\tau_6(E) \neq \tau_7(E)$. В этом состоит коренное отличие предлагаемой модели от ньютоновской.

Наиболее существенное отличие предложенной модели от исходной модели А. Эйнштейна заключается в том, в его теории рассматривается моно-

объект с параллельно движущейся инерциальной системой координат, не обладающей, естественно, ни энергией, ни массой.

В предлагаемой же модели рассматриваются два объекта с собственными энергиями и массами и неизбежными затратами энергии на взаимодействие друг с другом.

На основе модели, предложенной на рис. 2, введем понятие потенциалов взаимодействующих квантов:

- потенциал барионного кванта

$$\gamma_{\delta} = \frac{\Delta E_{\delta}}{E_{\kappa \delta}} = \frac{E_{\kappa \delta} - E_{\pi \delta}}{E_{\kappa \delta}}; \qquad (1)$$

- потенциал тахионного кванта

$$\gamma_{\mathrm{T}} = \frac{\Delta E_{\mathrm{T}}}{E_{\mathrm{KT}}} = \frac{E_{\mathrm{KT}} - E_{\mathrm{\Pi T}}}{E_{\mathrm{KT}}}.$$
 (2)

Представим величину кинетической энергии, которой обладает каждый из взаимодействующих квантов, максимальной ко всем остальным видам энергии в виде выражения

$$E_{K} = f_{M} \cdot f_{U}^{2}, \qquad (3)$$

где $f_{_{\rm M}}$ — энергетическая зависимость, определяющая массу кванта;

 f_{υ} — энергетическая зависимость, определяющая скорость центров масс квантов, обусловленная следующим соотношением:

$$f_{\mathcal{V}} = \frac{f_{\mathcal{R}}}{f_{\tau}} \,, \tag{4}$$

где f_R — энергетическая зависимость, определяющая расстояние между центрами масс;

 f_{τ} — энергетическая зависимость, определяющая время передачи взаимодействия.

Величины энергий, аналогичные потенциаль-

ным энергиям кванов, выразим через потенциалы взаимодействующих квантов, энергетические зависимости масс и расстояний при условии, что взаимодействующие кванты движутся равномерно с ускорением $1\ \text{m/c}^2$:

$$E_{\Pi\bar{0}} = \frac{f_{K\bar{0}}}{\gamma_{\bar{0}}} f_{MT} l_{M} / c^{2}; \qquad (5)$$

$$E_{\Pi T} = \frac{f_{RT}}{\gamma_{T}} f_{M6} 1 \text{m/c}^{2}.$$
 (6)

Работы взаимодействующих квантов определим из условия сохранения энергии, которое представим в виде, аналогичном первому закону термодинамики [4]:

$$\Delta E_{6} = E_{\kappa 6} - E_{\pi 6}; \qquad (7)$$

$$\Delta E_{\rm T} = E_{\rm KT} - E_{\rm HT} \,. \tag{8}$$

Принимая за аксиому третий закон механики Ньютона, который гласит, что силы взаимодействия двух объектов равны между собой, представим последние в виде:

$$F_{\delta} = F_{T} = F_{\delta T} = \frac{\gamma_{\delta} f_{M\delta} f_{MT}}{\gamma_{T} f_{R\delta} f_{RT}} \frac{f_{\tau \delta}}{f_{\tau T}}.$$
 (9)

С учетом выражений (5) и (6) получим энергетический эквивалент

$$F_{\tilde{0}} = F_{T} = \frac{E_{K\tilde{0}}^{3/2} E_{KT}^{1/2} \Delta E_{T}^{1/2}}{E_{R\tilde{0}}^{3/4} E_{RT}^{3/4} \Delta E_{\tilde{0}}^{1/2}}.$$
 (10)

Использование выражений (1) – (8) и предложенного закона изменения силы (9) дает возможность [5] получить энергетические эквиваленты радиусов взаимодействий, масс и времен взаимодействия квантов би-вещества (табл. 1).

Таким образом, основные параметры квантов би-вещества представлены в виде степенных зависимостей от шести видов энергий.

Поскольку и масса, и расстояние, и время получили энергетическую идентификацию, то все параметры, замеряемые в системе "СИ", имеют своё индивидуальное измерение через энергии квантов би-вещества.

Таблица 1 Энергетические эквиваленты физических параметров барионного (б) и тахионного (т) квантов би-вещества

		Единицы измерения	
Наименование	Функциональные зависимости	в системе "СИ"	В долях энергий
Радиусы взаимодействия квантов	$\begin{split} f_{R6} = & \frac{E_{\pi 6}^{3/4} E_{\pi T}^{3/4} \Delta E_{T}^{3/2}}{E_{\kappa 6}^{3/2} E_{\kappa T}^{1/2} \Delta E_{T}^{1/2}} \\ f_{RT} = & \frac{E_{\pi 6}^{3/4} E_{\pi T}^{3/4} \Delta E_{6}^{1/2} \Delta E_{T}^{1/2}}{E_{\kappa 6}^{3/2} E_{\kappa T}^{1/2}} \end{split}$	М	$\frac{\pi^{3/2}P}{\kappa^2}$
Массы взаимодействующих квантов	$\begin{split} f_{M6} &= \frac{E_{nT}^{1/4} E_{\kappa 6}^{3/2} \Delta E_{\mathrm{T}}^{1/2}}{E_{n6}^{3/4} E_{\kappa T}^{1/2} \Delta E_{6}^{1/2}} \\ f_{M_{\mathrm{T}}} &= \frac{E_{n6}^{1/4} E_{\kappa 6}^{1/2} E_{\kappa T}^{1/2} \Delta E_{\mathrm{T}}^{1/2}}{E_{nT}^{3/4} \Delta E_{6}^{1/2}} \end{split}$	кг	$\frac{\kappa}{\pi^{1/2}}$
Времена передач взаимодействия	$\begin{split} f_{\tau\delta} &= \frac{E_{n\delta}^{3/8} E_{nT}^{7/8} \Delta E_{\delta}^{5/4}}{E_{\kappa\delta}^{5/4} E_{\kappa T}^{3/4} \Delta E_{T}^{1/4}} \\ f_{\tau_{T}} &= \frac{E_{n\delta}^{7/8} E_{nT}^{3/8} \Delta E_{\delta}^{1/4} \Delta E_{T}^{3/4}}{E_{\kappa\delta}^{5/4} E_{\kappa T}^{3/4}} \end{split}$	С	$\frac{\pi^{5/4}p}{\kappa^2}$

• здесь к, п, р – кинетическая (к) и потенциальная (п) энергии, а р – работа

В таком представлении квантов би-вещества однозначно определяется понятие массы как суммы масс барионного и тахионного квантов, отпадает понятие пространства и времени как объединенной сущности – «единого пространства-времени», в которой массе отводится роль отстраненного от него параметра. В действительности же масса, пространство и время являются тремя материализованными

параметрами энергий взаимодействия квантов бивещества.

Необходимо также подчеркнуть, что приведенные в табл. 1 энергетические эквиваленты соответствуют только условиям гравитационного взаимодействия квантов, поскольку использованное в проведенной идентификации выражение для определения силы (9) присуще только такому виду взаимодействия.

При рассмотрении же электромагнитного взаимодействия квантов би-вещества следует иметь в виду, что такой вид взаимодействия осуществляют не сами кванты, а их частицы: фотон (как частица барионного кванта) и магнитный монополь (как частица тахионного кванта) (рис. 2).

Как и в предыдущем случае, основным фактором, реализующим электромагнитное взаимодействие, рассматриваем силу Лоренца [6]

$$F = e_6 v_6 B_6 = \gamma_{96} M_{96} \frac{R_{96}}{\tau_{96}^2}, \qquad (11)$$

где e_6 – электрический заряд;

Вб – магнитная индукция;

υб – скорость взаимодействия;

М_{эб} – масса фотона,

 $R_{\text{эб}}$ – радиус взаимодействия фотона;

 $\tau_{\mathfrak{I}\delta}$ – время взаимодействия.

Благодаря такому представлению силы взаимодействия фотона и магнитного монополя удалось обобщенные характеристики электромаг-нитного взаимодействия представить через значения $M_{\rm 36}$, $R_{\rm 36}$, $\tau_{\rm 36}$:

- абсолютная электрическая проницаемость

$$\varepsilon_{\tilde{0}} = \frac{M_{9\tilde{0}}}{R_{9\tilde{0}}^2}; \qquad (12)$$

- элементарный электрический заряд

$$l_{\tilde{0}} = \frac{M_{9\tilde{0}}}{R_{9\tilde{0}}\tau_{9\tilde{0}}}; \tag{13}$$

- магнитная постоянная

$$\mu_{06} = \frac{R_{96}^3 \tau_{9696}^2}{M_{96}}.$$
 (14)

Такое представление основных электромагнитных характеристик с учетом энергетических эквивалентов M_{36} , R_{36} , τ_{36} (табл. 1) позволяет все параметры электромагнитного взаимодействия фотона и магнитного монополя выразить через энергии $E_{3\kappa}$, E_{3n} , ΔE_{3} (рис. 2) в виде их энергетических эквивалентов (табл. 2).

Как следует из табл. 1 и 2, энергии квантов предопределяют не только гравитационное и электромагнитное взаимодействие, но и физические параметры вещества.

Таблица 2 Энергетические эквиваленты физических параметров барионного (б) и тахионного (т) квантов (при электромагнитном взаимодействии)

	Функциональные	Единицы измерения	
Физические параметры	Зависимости	в системе «СИ»	В долях энергии
1	2	3	4
Силы электрического тока	$I_{6}(E_{9}) = \frac{E_{9K6}^{11/2} E_{9KT}^{3/2} \Delta E_{9T}^{3/2}}{E_{9H6}^{9/4} E_{9HT}^{9/4} \Delta E_{96}^{9/2}}$ $I_{T}(E_{9}) = \frac{E_{9K6}^{9/2} E_{9KT}^{5/2} \Delta E_{9T}^{3/2}}{E_{9H6}^{9/4} E_{9HT}^{9/4} \Delta E_{96}^{9/2} \Delta E_{9T}^{3/2}}$	A	$\frac{\kappa^7}{\pi^{9/2}p^3}$
Электрические напряжения	$U_{6}(E_{9}) = \frac{E_{9116}^{15/8}E_{9117}^{11/8}\Delta E_{96}^{13/4}}{E_{9K6}^{13/4}E_{9K1}^{3/4}\Delta E_{97}^{5/4}}$ ктрические напряжения $U_{T}(E_{9}) = \frac{E_{9116}^{11/8}E_{9117}^{15/8}\Delta E_{96}^{5/4}\Delta E_{97}^{3/4}}{E_{9K6}^{13/4}E_{9K7}^{3/4}}$		$\frac{\pi^{13/4}p^2}{\kappa^4}$
Электрические сопротивления	$\begin{split} R_{C6}(E_9) &= \frac{E_{9n6}^{33/8} E_{9nT}^{29/8} \Delta E_{96}^{31/4}}{E_{9\kappa6}^{35/4} E_{9\kappa T}^{9/4} \Delta E_{9T}^{11/4}} \\ R_{CT}(E_9) &= \frac{E_{9n6}^{28/8} E_{9nT}^{33/8} \Delta E_{96}^{11/4} \Delta E_{9T}^{9/4}}{E_{9\kappa6}^{31/4} E_{9\kappa T}^{13/4}} \end{split}$	Ом	$\frac{\pi^{31/4}p^5}{\kappa^{11}}$
Электрические постоянные	$\varepsilon_{06}(E_{9}) = \frac{E_{9K6}^{9} E_{9KT}^{2} \Delta E_{9T}^{3}}{E_{9H6}^{9/2} \Delta E_{9HT}^{7/2} \Delta E_{96}^{8}}$ $\varepsilon_{0T}(E_{9}) = \frac{E_{9K6}^{8} E_{9KT}^{3}}{E_{9H6}^{7/2} E_{9HT}^{3} \Delta E_{36}^{3} \Delta E_{9T}^{2}}$	Ф/м	$\frac{\kappa^{11}}{\pi^8 p^5}$

Окончание табл. 2

1	2	3	4
Напряженности магнитных полей	$\begin{split} H_{6}(E_{9}) &= \frac{E_{9K6}^{7} E_{9KT}^{2} \Delta E_{9T}^{2}}{E_{9H6}^{3} \Delta E_{9HT}^{3} \Delta E_{96}^{6}} , \\ H_{T}(E_{9}) &= \frac{E_{9K6}^{6} E_{9KT}^{3}}{E_{9H6}^{3} E_{9HT}^{3} E_{96}^{2} \Delta E_{9T}^{2}} \end{split}$	А/м	$\frac{\kappa^9}{\pi^6 p^4}$
Магнитные индукции	$\begin{split} \mathbf{B_{6}}(\mathbf{E_{9}}) &= \frac{\mathbf{E_{916}^{3/4}E_{91T}^{3/4}\Delta E_{96}^{3/2}}}{\mathbf{E_{9K6}^{3/2}E_{9KT}^{1/2}\Delta E_{9T}^{1/2}}}\\ \mathbf{B_{T}}(\mathbf{E_{9}}) &= \frac{\mathbf{E_{916}^{3/4}E_{91T}^{3/4}\Delta E_{96}^{1/2}\Delta E_{9T}^{1/2}}}{\mathbf{E_{9K6}^{3/2}E_{9KT}^{1/2}}} \end{split}$	Тл	$\frac{\pi^{3/2}p}{\kappa^2}$
Магнитные постоянные	$\begin{split} \mu_{06}(E_9) &= \frac{E_{9\pi6}^{15/4} E_{9\pi T}^{15/4} \Delta E_{96}^{15/2}}{E_{9\kappa6}^{17/2} E_{9\kappa T}^{5/2} \Delta E_{9T}^{5/2}} \\ \mu_{0T}(E_9) &= \frac{E_{9\pi6}^{15/4} E_{9\pi T}^{15/4} \Delta E_{96}^{5/2} \Delta E_{9T}^{5/2}}{E_{9\kappa6}^{15/2} E_{9\kappa T}^{7/2}} \end{split}$	Гн/м	$\frac{\pi^{15/2}P^5}{\kappa^{11}}$

Если воспользоваться методом определения этих энергий с помощью фундаментальных физических констант, таких, как число Авогадро, газовая постоянная, нормальная температура и т.п., изложены в работе [7], то нетрудно найти численные значения соответствующих энергий (табл. 3).

Анализ энергетических эквивалентов, приведенных в табл. 1 и 2, а также численных значений параметров носителей энергий (табл. 3) позволяет

высказать несколько обобщений, характеризующих би-вещество как источник тахионной энергии.

Первое. В каждом кванте би-вещества формируется диахотическое единство потоков энергии, т.е. тахионный квант обладает свойством одновременно выступать и в качестве ресурса, и в качестве потребителя энергии. Он потребляет и отдает энергию в форме, которая необходима для существования бивещества.

Значения энергий в квантах би-вещества

Таблица 3

Вид взаи-		Единицы измере- ния	Численные значения	
мо- действия	Физические параметры		В барионном кванте (б)	в тахионном кванте (т)
Гравитационное	Энергии: – кинетическая – потенциальная – работа	Дж	$E_{\kappa 6} = 3,771279 \cdot 10^{-21}$ $E_{\pi 6} = 9,3036834 \cdot 10^{-50}$ $\Delta E_{6} = 3,771279 \cdot 10^{-21}$	$E_{\text{KT}} = 7,7850123 \cdot 10^{71}$ $E_{\text{IIT}} = 7,7850123 \cdot 10^{71}$ $\Delta E_{\text{T}} = 2,246108 \cdot 10^{-21}$
	Массы носителей энер- гий	КГ	$M_6=1,1295258\cdot10^{-12}$	$M_{\rm r}=2,786545\cdot10^{-41}$
	Скорости передачи взаимодействия	м/с	υ ₆ =5,7782481·10 ⁻⁵	$v_{\rm T}=1,671146\cdot10^{56}$
Электромагнитное	Энергии: – кинетическая – потенциальная – работа	Дж	$E_{3K6} = 7,3909301 \cdot 10^{-22}$ $E_{3H6} = 7,3909301 \cdot 10^{-22}$ $\Delta E_{36} = 3,2258002 \cdot 10^{-44}$	$E_{\text{3HT}} = 9,9999998 \cdot 10^{-1}$ $E_{\text{3HT}} = 9,99999998 \cdot 10^{-1}$ $\Delta E_{\text{3T}} = 1,025681 \cdot 10^{-88}$
	Массы носителей энер- гий	КΓ	$m_{\phi} = 8,2234833 \cdot 10^{-39}$	$m_{M}=8, 2234833\cdot10^{-39}$
	Скорости передачи взаимодействия	м/с	υ _φ =2,997916·10 ⁸	υ _м =1,1,102735·10 ¹⁹

Второе. Ранжирование взаимодействующих квантов определяется отношением совершаемой ими работы к величине собственной потенциальной

энергии, т.е. величиной
$$\frac{\Delta E}{E_{\pi}}$$
 .

Чем меньше эта величина, тем выше ранг рассматриваемого кванта:

– по абсолютным значениям энергий, которым обладают взаимодействующие кванты:

$$E_{\kappa\tau} >>> E_{\kappa\delta}$$
;

$$E_{\Pi T} >>> E_{\Pi \bar{0}}$$

тахионный (почти на 100 порядков) превосходит барионный вид вещества;

на взаимодействие барионный квант расходу-

ет всю свою кинетическую энергию
$$\left(\frac{\Delta E_{\vec{0}}}{E_{\kappa \vec{0}}} = 1, 0\right)$$
,

тогда как у тахионного кванта отношение $\frac{\Delta E_{_{\rm T}}}{E_{_{\rm KT}}}$ <<< 1,0 , т. е. эта система затрачивает на взаи-

модействие совершенно незначительную долю своей кинетической энергии;

- у тахионного кванта величина потенциальной энергии чрезвычайно велика и равна ее кинетической энергии, тогда как у барионного – потенциальная энергия почти на 29 порядков ниже его кинетической энергии;
- скорости передачи гравитационного взаимодействия этими квантами также существенно разнятся: тахионный квант передает этот вид взаимодействия на 48 порядков выше скорости света.

Сопоставление квантов и по другим параметрам свидетельствует о том, что барионный вид материи соподчинен тахионному, поскольку тахионная энергия по свойствам является первородной для барионных квантов.

Выводы

Выявление свойств и параметров нового вида энергии – тахионной – осуществлено на основе гипотезы би-вещества.

В основу этой гипотезы положен постулат энергетического взаимодействия квантов, представляющих две субстанции — "темную" массу и "светящееся" барионное вещество, а в качестве физического инварианта приняты основные виды энергий этих объектов: потенциальные ($E_{\rm n}$), кинетические ($E_{\rm k}$) и работы (ΔE), затрачиваемые на их взаимодействие

Использование таких концептуальных положений, а также основных законов классической меха-

ники и первого начала термодинамики позволило все физические параметры би-вещества, т.е. массы, скорости взаимодействий, плотности, температуры и т.д., представить в виде их эквивалентов через значения $E_{\kappa 6}, E_{n 6}, \Delta E_{6}$ и $E_{\kappa 7}, E_{n 7}, \Delta E_{7}$, что дало возможность впервые прийти к пониманию бивещества как источника принципиально нового вида энергии — тахионной, носителем которой является тахионный квант этого вещества.

Путем сопоставления величин энергий взаимодействующих квантов, скоростей передачи взаимодействий, температур и других физических параметров установлено, что тахионный вид энергии является определяющим при формировании физических параметров барионного вещества, в том числе и гравитационного и электромагнитного взаимодействий между квантами и микрочастицами бивещества.

Источником развития в би-веществе признаются энергетические несоответствия между барионным и тахионным квантами, и прежде всего неравенство энергий, затрачиваемых ими на взаимодействие друг с другом (поскольку $\Delta E_6 > \Delta E_T$), что и является причиной вечности движения барионных объектов.

Разработанные в данном разделе квантовоэнергетические модели и полученные энергетические эквиваленты являются основой для решения ряда фундаментальных задач, связанных с исследованием особенностей тахионной энергии и ее влияния на свойства и параметры вещества в субстанции, именуемой "темной" массой, и на расширение наших представлений о барионном "светящемся" веществе.

Литература

- 1. Ройзен Н. Новый сюрприз Вселенной: темная энергия / Н. Ройзен // Наука и жизнь. 2008. № 3. С. 52-68.
- 2. Ксанфомалити Л. Темная Вселенная / Л. Ксанфомалити // Наука и жизнь. 2005. № 5. С. 58-68.
- 3. Блинков С.Н. Гамма-всплески и невидимое вещество / С.Н. Блинков // В мире науки. 2003. № 3. С. 34-40.
- 4. Планк М. Принцип сохранения энергии / М. Планк. М: Изд-во ин. лит., 1938. 202 с.
- 5. Толмачов М.Г. Метод оцінки параметрів "фізичного вакууму" за допомогою енергетичних моделей виміру / М.Г. Толмачов // Вісті Академії інженерних наук України. 2007. № 3 (33). С. 232—237.
- 6. Толмачев Н.Г. Определение параметров фотона и магнитного монополя в их электромагнитном взаимодействии / М.Г. Толмачев // Авиационно-

```
космическая техника и технология. — 2008. — Н.Г. Толмачев. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — ньй ресурс]. — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{ c. } [\exists x \in x] \} — X: XAU, 2007. — 39 \text{
```

Поступила в редакцию 16.06.2008

Рецензент: д-р техн. наук, проф. проф. кафедры проектирования самолетов и вертолётов В.И. Рябков, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.

ГІПОТЕЗА БІ-РЕЧОВИНИ ЯК ДЖЕРЕЛА ТАХІОННОЇ ЕНЕРГІЇ

М.Г. Толмачов

Для виявлення властивостей і параметрів нового виду енергії запропоновано гіпотезу бі-речовини. В основу цієї гіпотези покладено постулат енергетичної взаємодії квантів, які являють собою дві субстанції — «темну» масу й світну баріонну речовину, а як фізичний інваріант прийнято основні види енергій цих об'єктів: потенціальна (E_{π}), кінетична (E_{κ}) і робота (ΔE), що витрачається на їх взаємодію. Використання таких концептуальних положень, а також основних законів класичної механіки й першого начала термодинаміки дозволило всі фізичні параметри бі-речовини, тобто маси, швидкості взаємодій, щільності, температури й т.ін. представити у вигляді їхнїх еквівалентів через значення енергій квантів $E_{\kappa 6}$, E_{n6} , ΔE_{6} і $E_{\kappa 7}$, E_{n7} , ΔE_{τ} , що дало можливість уперше прийти до розуміння бі-речовини як джерела принципово нового виду енергії — тахіонної, носієм якої є тахіонний квант цієї речовини.

Ключові слова: тахіонна енергія, баріонний та тахіонний кванти, енергетичні еквіваленти.

HYPOTHESIS OF BI-SUBSTANCE AS A SOURCE OF TACHYON ENERGY

N.G. Tolmachev

The hypothesis of bi-substance is offered in the section, for detection of properties and parameters of a new kind of energy. The postulate of energy interaction of quanta representing two substances – "dark" mass and luminous baryon substance is put in a basis of this hypothesis, and the basic kinds of energies of these objects are accepted as physical invariant: potential (E_{π}), the kinetic (E_{κ}) and work (ΔE) spent on their interaction. Usage of such conceptual postulates and main laws of classical mechanics and the first law of thermodynamics has allowed to present all physical properties of bi-substance i.e. masses, speed of interactions, densities, temperatures, etc. as their equivalents through values $E_{\kappa G}$, $E_{\pi G}$, ΔE_{G} and $E_{\kappa T}$, $E_{\pi T}$, ΔE_{τ} ; that has enabled for the first time to come to understanding of bi-substance as a source of essentially new kind of energy – tachyon, which carrier is tachyon quantum of this substance.

Key words: tachyon energy, baryon and tachyon quanta, energy equivalents.

Толмачев Николай Григорьевич – канд. техн. наук, ст. науч. сотр., Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков, Украина.