
Відмовостійкі системи

71

UDC 004.3

V. KHARCHENKO, J. PROKHOROVA, S. OSTROUMOV, V. KULANOV

National Aerospace University Named After M.E. Zhukovsky, Ukraine

FAULT-TOLERANT SOPC-BASED APPROACHES
WITH MULTI-VERSION IIP

In this paper different approaches of Infrastructure Intellectual Property (IIP) implementation for System-on-
Programmable-Chip (SoPC) are discussed. Several diversity-oriented SoPC approaches and different techniques
of checking and reconfiguration for fault-tolerant SoPC FPGA-based projects are proposed. It is described fea-
tures of two-version IIP development for application, in particular Ice Protection System (IPS).

Fault-tolerance, Infrastructure IP (IIP), Multiversity, System on Programmable Chip (SoPC)

Introduction

Modern semiconductor technology allows to create

complete systems in one chip, in particularly SoPC

(system-on-programmable-chip). The SoPC technology

possibilities grow extremely fast, introducing more and

more sophisticated applications, especially for advanced

data communications and wireless products. This evolu-

tion leads to complex problems in terms of design and

more specifically in terms of manufacturing test. To

achieve SoPC with high performances, advanced proc-

esses technology is used. But the actual process tech-

nology is becoming more fault-intolerant, which may

slow down yield reliability [1].

To overcome this limitation, design as well as proc-

ess constraints must be taken into account in the early

phases of development. To achieve this close relation

between design and process in order to optimize yield,

the semiconductor industry has adopted a solution based

on embedding a special type of blocks fulfilled different

macro functions in a chip [2]. These blocks are called

Intellectual Property (IP) cores and their integration is

called Infrastructure IP (IIP) [3, 4]. The last phase of

implementing IIP is the integration FPGA chip.

The use of IP cores and IIP provides high-

performance, high reliability, low power, smaller

weight and dimension, and run-time flexibility. [5]. It is

important for aerospace systems (especially for central

control systems [6]), business-critical systems and oth-

ers applications.

Many applications require processor unit (soft-

processor), which is used for control of different func-

tional IP-cores versions and as a handler of tasks [7].

Soft-processor IP-core represents as a computer-based

architecture, which can be used for the processing of

complicated equations.

The ability of different IP-cores implementation en-

ables increasing system fault-tolerance using a few

variants or extension functionality as well as perform-

ance of SoPC [8]. Thus, there are some possible variants

for fault-tolerance support: a) the reservation of IP-cores,

b) adaptive fault-tolerant architecture for IP-cores, c)

multi-version IP-cores development. Also, multi-version

technique is used for detecting and tolerating design

faults which can arise onstream. Especially, it concerns

safety-critical applications such as NPP I&C (Nuclear

power plant informational and control systems), for

which diversity requirements are part of standards [9, 10].

High reliability achievement has been possible be-

cause of different fault tolerance methodologies includ-

ing diversity approach [5]. Diversity approach has been

required by requirements specification in system under

consideration. The using version redundancy for real-

time systems with rigorous requirements in reliability is

© V. Kharchenko, J. Prokhorova, S. Ostroumov, V. Kulanov
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2007, № 8 (27)

Відмовостійкі системи

72

one of the most important methods of common mode

failure (CMF) risk reduction. A system or system part

which consists of two or more IP cores versions is

called multi-version IIP (MIIP) [8].

Therefore, the purpose of the paper is the develop-

ment and implementation of fault-tolerance multi-

version SoPC decisions by using IIP and soft-processor

technologies. It is described the checking and recon-

figuration technique for MIIP-based decisions of SoPC

and elements of IPS design.

1. Multi-version IIP Approach
1.1. Architecture

As it is described above most applications require

processing unit.

Therefore, there are a few IP-cores in such systems:

soft-processor core and additional core which can serve

as functional IP-core or supporting reliability core

(fig. 1) [8].

The first variant (fig. 1, a) has one soft-processor

core which is used as microprocessor and as switching

control unit between additional IP-cores.

The second variant (fig. 1, b) has similar structure as

the first one, but there FPGA chip includes a few soft-

processor cores, which can be used for increase system

performance, and one additional IP-core, which can be

used for additional functionality.

The variant (Fig. 1, c) has a few soft-processors and

a few additional IP-cores.

This one is the most complex, but has all possibili-

ties to support reliability and additional functions simul-

taneously.

1.2. Checking and Reconfiguration
Techniques

The system with MIIP includes checking and recon-

figuration block to provide detection and tolerating of

different faults.

FPGA chip

Soft-
processor

IP-core
V1

IP-core
V2

IP-core
Vn...

a

FPGA chip

Soft-
processor 2

IP-core

Soft-
processor 1

Soft-
processor m

...

b

FPGA chip

Soft-
processor 2

Soft-
processor 1

Soft-
processor m...

IP-core
V1

IP-core
V2

IP-core
Vn...

c

Fig. 1. SoPC architecture variants

The several architectures are represented bellow:

1) double-channel system where both versions of

project and their checking means are embedded in one

chip, it is shown in Fig. 2, where V1 – first version,

V2 – second version, CRB – checking and reconfigura-

tion block;

Відмовостійкі системи

73

FPGA
chip

V1

V2

CRB

Fig. 2. Two-version system with IP cores

embedded in one FPGA

2) double-channel system where either of the two

diverse projects is embedded in separate chip and

checking and reconfiguration scheme is distributed

between two chips (fig. 3). This structure is proposed in

[5];

V1

FPGA chip

CRB

V2

FPGA chip

CRB

Fig. 3. Two-version system
with distributed architecture

3) four-channel system which consists of chan-

nels allocated in two subsystems including first and

second versions in each subsystem. Either of the two

subsystems is embedded in a single chip. CRB is em-

bedded in a separate chip too (fig. 4). Functional models

and schemas of multi-channel computer systems recon-

figuration means [11] can be used for CRB design.

FPGA
chip

V1 V2

CRB

V1 V2

FPGA
chip

FPGA
chip

Fig. 4. Two-version system with four channels

Besides, it is possible designing majority three-

version IIP (based on one- or three-chip realization).

The application of MIIP allows to decrease prob-

ability of CMF and reliability as a whole. Probabilities

of up state for one-version and two-version two-channel

IIP (fig. 2) are calculated according to following for-

mula:

1
2

1)2(cdpp ppppP −= ,

2
22

2)2(cdpdp pppppP −= ,

where pp qp −= 1 , dd qp −= 1 , qp, qd – probabilities of

version failures because of physical and design faults;

pc1, pc2 – probabilities of checking and reconfiguration

means up states for one- and two-version structures

respectively.

Increasing reliability due MIIP using can be esti-

mated by index

2

1

PP P=δ .

Відмовостійкі системи

74

If pc1, = pc2, then

p

dp

p
pp

P
−

−
=

2
2

δ .

As MIIP-based system is designed from high-

reliable components, probabilities of components down

states can sum up with inessential inaccuracy. There-

fore,
2

1 1c p dq q q q≈ + + ; 2
2 2 ()c p dq q q q≈ + + ;

(2)d d p dq q q q q∆ ≈ − − .

If qp, = qd then
2

d dq q q∆ ≈ − .

Thus, two-version structure allows essentially to de-

crease probability of down state of IIP-decision.

1.3. IP Cores Synchronization

Reconfiguration technique takes into account fea-

tures of different version synchronization and ability of

embedded checking means. SoPC operate with multiple

asynchronous clocks at very high frequencies. SoPC

systems have multiple interfaces, some using standards

with very different clock frequencies. IP blocks consist-

ing of SoPC can operate with both the one clock signal

and independent operating frequency. Therefore SoPC

design contemplates developing of synchronization

subsystem. It is provide high performance of SoPC and

absence of faults in interaction process [12].

The Checking and reconfiguration block should re-

ceive synchronous data from IP cores.

The technique of synchronization is following.

When CRB receives data from first IP core (one ver-

sion) and doesn’t receive data from second IP core

(other version), this block provides latency as long as

data from the second IP core will be received into CRB

similar as first input data from the second IP core. After

the data from both IP cores arrived to CRB checking

and reconfiguration are carried out.

2. Implementation of MIIP
2.1. SOPC-based IPS

The main purpose of IPS is the heaters control.

These heaters are located on the empennage, on the

wing and on propellers (fig. 5).

Fig. 5. IPS heaters

IPS consists of few parts. They are: heaters and its

control block. The control block has the next constitu-

ents: input logic, calculation block (soft-processor) and

switching device. Input logic and calculation block are

developed on the one FPGA chip. Switching device is a

powerful switch for commutation nearly thirty-forty

amperes for heaters. Thus, it is an additional block.

Input logic receives and handles discrete signals.

These signals influence heaters’ on time period and

power up time.

Soft-processor core is needed for the heater status

tracing because it is necessary to measure voltage and

current then to evaluate heater resistance and to sum

this information as diagnostic signals. Interval of heater

resistance is known thus, it is possible to define a short

circuit or an interruption.

According to the description above it is possible

next variant (fig. 6) which consists of a few versions of

functional IP-cores and a few versions of soft-

processor-cores and CRB.

There are two versions of soft-processor-core and

functional IP-core which can be implemented by using a

few hardware definition languages (HDL). According

Відмовостійкі системи

75

to IPS, VHDL is used for one channel, JHDL (Java

HDL) [13-15] – for second channel, and schematic

design project – for the simplest logic and for CRB.

Quartus-II is used for VHDL design version and JHDL

CAD

Tools – for JHDL design implementation.

FP G A ch ip

S oft-
processor 2

S oft-
processor 1

IP -core
V 1

IP -core
V 2

C R B

Fig. 6. IPS variants based on SoPC decisions

All these languages can be imported to any modern

CAD Tools (e.g. Quartus II, Xilinx ISE, etc.).

2.2. JHDL Version Implementation

To develop second IPS version implementation

JHDL CAD Tools are used. JHDL is a set of FPGA

CAD tools developed at BYU that allows the user to

design the structure and layout of a circuit, debug the

circuit in simulation, net list and interface with back-

end tools for synthesis [14]. One of the main advantages

of using JHDL is Java-based object-oriented design

approach [15].

IPS development process of JHDL version consists

of the following stages:

1) project specification;

2) general (coarse-grain) structural description of

the system (system behavioral model);

3) project fragmentation;

4) structural and schematic system blocks

implementation (fine-grain approach - block behavioral

models);

5) Java-class implementation of each system blocks

taken separately (*.java, *.class);

6) Java IPS implementation (*.jar);

7)

8) project verification;

9) project deployment.

Proposed technique feature of JHDL-version im-

plementation is behavioral model usage.

System behavioral model allows tracking system pa-

thology. The output signals of the IPS are compared

with the behavioral model ones in a real-time mode

(fig 7).

The IPS behavioral model and it blocks ensure sys-

tem verification on different stages of project design.

To be convinced of the behavioral model correct-

ness work the whole system in a visual mode is per-

formed (fig. 8).

The source code fragment of a frequency divider

behavioral model and its final implementation is on fig.

9 and 10 respectively.

The Control System Implementation can be de-

signed not only in JHDL (Java), but also one can

choose another CAD Tools (e.g. Quartus II, Xilinx

ISE). JHDL allows converting various projects (differ-

ent designers, CAD Tools, etc.) from EDIF files format

to Java class, supplying multi-version approach as well.

Fig. 7 Project verification model

Відмовостійкі системи

76

Fig. 8. Ice protection system – visual implementa-

tion

Fig. 9. Frequency divider behavioral

model source code

Fig. 10. Frequency divider JHDL source code

2.3. Checking and Reconfiguration
Block Architecture

As shown in Fig. 11 system has two different ver-

sions of IP cores (V1, V2).

Fig. 11. Checking and reconfiguration technique

for diversity project

The Input Data enter V1 and V2. Some part of the

data is stored in the Block of the Reference Valuation

Generation (BRVG), where the reference valuation is

generated. The reference valuation is used for compari-

son of output data from V1 and V2. Moreover, results

from V1 and V2 compare too.

Results of comparison come into the Block of Mak-

ing Decision (BMD) where release version is chosen

and formed the Output Data and Checking Result Sig-

nal. If the reference valuation and output data from V1

are equal then V1 is the release version and if the refer-

ence valuation and output data from V2 are equal then

V2 is the release version too.

If output data from one of two versions and the ref-

erence valuation aren’t equal this version doesn’t use

for the Output Data forming.

Checking and reconfiguration block allows to in-

crease fault tolerance of complicated system detect and

tolerate faults of IP core due to design faults or hard-

ware physical faults.

Conclusion

There are different SoC decisions for creating so-

phisticated fault-tolerant systems. Described approach

and proposed decisions are one of possible directions of

the self-repairing chips development.

Implementation of multiversity increases depend-

ability in comparing with one-version structure. In case

of four-channel systems reliability measure is reduced

but trustworthiness is extended.

Features of modern FPGA and their tools are like

that implementation of version redundancy is normal

Відмовостійкі системи

77

process. There are many different languages, models of

implementation on chip and testing methods.

Considered MIIP-based decisions, checking and

reconfiguration means are used in two-version project

(on HDL and Java HDL) for aircraft Ice Protection

System.

JHDL CAD Tool gives a great flexibility in ICS de-

sign process. This approach allows to implement ICS

system behavioral model and to compare the state of the

target system with JHDL hardware description in a real

time mode.

In this paper some design stages of ICS JHDL ver-

sion implementation and the example of behavioral and

hardware models for frequency divider (as part of IPS)

were considered.

References

1. Barkalov A., Wegrzyn M. Design of control

units with programmable logic. – University of Zielona

Gora Press, 2006. – 150 p.

2. Zorian Y. What is an Infrastructure IP? // IEEE

Design & Test of Computers. – 2002. – Vol. 19, no. 3. –

Р. 5-7.

3. Forli L., Portal J.M., Nee D., Borot B. Infra-

structure IP for back-end yield improvement // ITC

International Test Conference. – 2003. –Р. 1129-1134.

4. Tabatabaei S., Ivanov A. Embedded timing

analysis: A SoC infrastructure // IEEE Design & Test of

Computers. – May-June 2002. – 19(3). –Р. 22–34.

5. Kharchenko V.S., Tarasenko V.V., Ushakov

A.A. Fault tolerant embedded digital FPGA systems. –

KhAI, Kharkiv, Ukraine, 2004. – 210 p.

6. Mikrin E.A. On-board spacecraft control com-

plexes and software development for them. – M.:

MSTU, 2003. – 336 p.

7. Gould J. Designing flexible, high-performance

embedded systems // X cell journal, 58, third quarter

2006. – Р. 66-70.

8. Ostroumov S.B. , Kharchenko V.S. , Usha-

kov A.A. Fault-tolerant infrastructure IP-cores for SoC:

basic variants and realizations // IEEE East-West De-

sign & Test Workshop, Sochi, Russia, 2006. – Р. 194-

197.

9. IAEA NS-G-1.3 (International standards).

10. NP 306.5.02/3.035-2000 (National standards

of Ukraine).

11. Kharchenko V.S., Prokhorova J.N. Fault toler-

ant systems with FPGA-based reconfiguration devices //

Proceedings of IEEE East-West Design & Test

Workshop, Sochi, Russia, September 15-19, 2006. –

Р. 190-193.

12. Chernikov V., Viksne P., Shelukhin A., Pan-

filov A. Synchronization subsystem of 1879bm3 system

on chip for high speed mixed signal processing // In-

formation technologies in science, education, telecom-

munication and business, 2005. – Р. 335-336.

13. Kulanov V.A. Analysis of the Digital systems

developing by using JHDL design tools // ICTM-2006

Thesis of reports, Kharkiv, Ukraine, 2006. – Р. 297.

14. Hutchings B.L., Bellows P., Hawkins J., Hem-

mert S., Nelson B., Rytting M. A CAD suite for high

performance FPGA design // J. M. Arnold, K. L. Pocek,

editors, Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa,

CA,. IEEE Computer Society, IEEE Computer Society

Press, April 1999. – Р. 12–24.

15. Bellows P., Hutchings B.L. JHDL – an HDL

for reconfigurable systems // Proceedings of the IEEE

Symposium on Field-Programmable Custom Comput-

ing Machines, J. M. Arnold, K. L. Pocek, Eds., Napa,

CA, IEEE Computer Society, IEEE Computer Society

Press, April 1998. – Р. 175–184.

Поступила в редакцию 12.01.2007

Рецензент: д-р техн. наук, проф. А.М. Романкевич,
Национальный технический университет Украины
«КПИ», Киев.

