Сопротивление усталости полосы с отверстием из титанового сплава ВТ6 в условиях фреттинг-коррозии

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

Проектирование срезных болтовых соединений самолетных конструкций из титанового сплава ВТ6 регламентируемой долговечности предусматривает наличие в конструкторской и технологической базах данных характеристик сопротивления усталости различных конструктивных элементов соединений [1].

Целью данной статьи является получение аналитических зависимостей для определения усталостной долговечности полосы с незаполненным отверстием из сплава ВТ6, а также при установке в отверстие болта с радиальным натягом и осевой затяжкой.

Усталостные испытания проведены на образцах полосы с отверстием шириной 35 мм и толщиной 5 мм (рис. 1), изготовленных фрезерованием по контуру из листа титанового сплава ВТ6 в состоянии поставки. Определена усталостная долговечность образцов полосы с отверстием Ø10 мм для следующих вариантов заполнения отверстия:

1) свободное отверстие;

2) в отверстие установлен болт с осевой затяжкой М₃=20 Н · м (σ_{κ} =45 МПа);

3) в отверстие установлен болт с осевой затяжкой M_3 =40 H · м (σ_K =90 MПа);

4) в отверстие установлен болт с радиальным натягом Ψ=0,6 % d и осевой затяжкой M₃=20 H · м (σ_K=45 MПа);

5) в отверстие установлен болт с радиальным натягом $\overline{\Psi}$ =0,6 % d без осевой затяжки.

Под головку болта и гайку устанавливали втулки, которыми шайбы прижимали к образцу полосы с отверстием. В экспериментах использовали шайбы и болты из стали 30 ХГСА, изготовленные по отраслевым стандартам; шайбы были кадмированы.

80

Рис. 1. Образец для исследования влияния радиального натяга и осевой затяжки болта, установленного в отверстие на усталостную долговечность полосы

На рис. 2 показано приспособление для усталостных испытаний образцов полосы с отверстием. Усталостные испытания проведены при коэффициенте асимметрии цикла нагружения r=0,1 на четырех уровнях нагружения, соответствующих величинам амплитуд напряжений σ_a =193; 155; 135; 116 МПа.

Рис. 2. Приспособление для усталостных испытаний образцов полосы с отверстием:

- 1 накладка приспособления; 2 проушина захват; 3 прокладка;
- 4 образец полосы с отверстием; 5 втулка; 6 13 крепежные элементы, 8 – болт 10-50 КД-ОСТ 1 31124-80; 14 – шайба

На рис. 3 показан характер усталостного разрушения образцов со свободным отверстием и с отверстием, заполненным болтом с осевой затяжкой (см. рис. 2, поз 8). Разрушение образцов со свободным отверстием и осевой затяжкой болтов M_3 =20 H · м начиналось от стенки отверстия и происходило по сечению вблизи от его поперечной оси (рис. 3, поз. 1 и 2). При установке болтов с осевой затяжкой M_3 =40 H · м разрушение произошло от повреждения, нанесенного фреттингкоррозией. Усталостная трещина началась в контактной зоне по внешней границе шайбы, распространилась до боковой поверхности образца, а потом произошел статический долом образца (рис. 3, поз. 3). Усталостное разрушение полосы при установке в отверстие болта с радиальным натягом $\overline{\Psi}$ =0,6 % d и затяжкой M_3 =20 H · м начиналось в зоне интенсивной фреттинг-коррозии по внешней границе шайбы (см. рис. 2, поз. 14).

Рис. 3. Характер усталостного разрушения титановых образцов полосы с отверстием:

1 – свободным; 2 – заполненным болтом, установленным с осевой затяжкой до M₃=20 H · м; 3 – заполненным болтом, установленным с осевой затяжкой до M₃=40 H · м

На рис. 4 приведены результаты усталостных испытаний полосы с отверстием при различных вариантах установки болтов. Стрелками отмечены результаты испытаний для несломавшихся образцов, цифрами рядом – их количество при данном числе циклов нагружения. Пересчет амплитуды напряжений от цикла с коэффициентом асимметрии r = 0,1, для которого проведены усталостные испытания, к максимальным напряжениям эквивалентного по повреждаемости отнулевого цикла проведен по формуле, полученной в работе [3].

$$\sigma_{\max 0} = \frac{2\sigma_{0,1}}{(1-r)^{0,7}}.$$

Обработка экспериментальных данных проведена по методике, изложенной в работе [2]. В результате корреляционного анализа определено линейное корреляционное уравнение для двух случайных величин x=lg N и y=lg $\sigma_{max 0}$, оценки основных отклонений S_X, S_Y, коэффициента корреляции r_{1/1}. Была определена оценка меры индивидуального рассеяния вокруг эмпирической линии регрессии для величины y_i=lg σ_1 и оценка меры индивидуального рассеяния логарифма числа циклов или осредненной дисперсии по уровням напряжений с

использованием выражения $S_y^2 = S_y^2(1 - r_{1/1}^2);$ $S_x^2 = S_x^2(1 - r_{1/1}^2).$

Уравнение линии регрессии для кривой усталости $\sigma^{\mathsf{m}}_{\mathsf{max}_{\mathsf{o}i}}$ N_I=C задано в

Рис. 4. Результаты усталостных испытаний полосы с отверстием из сплава ВТ6 при различных вариантах установки болтов: 1 – кривая усталости сплава ВТ6; 2, 3, 4, 5 – кривая усталости полосы с отверстием из сплава ВТ6; 2 – свободное отверстие; 3 – болт установлен с затяжкой М₃=40 H · м (О_К=90 МПа); 4 - М₃=20 H · м (О_К=45 МПа); 5 – болт установлен с Ψ=0,6 % d и M₃=20 H · м; • - свободное отверстие; + - M₃=40 H · м; • - M₃=20 H · м; ▼ - Ψ=0,6 % d, M₃=20 H · м; 0 - Ψ=0,6 % d Значения показателя степени m как постоянной C, коэффициентов линии регрессии A и B определены в результате регрессионного анализа результатов усталостных испытаний образцов полосы с отверстием и приведены в табл. 1.

Таблица	1
---------	---

Вариант заполнения отверстия	А	В	m	С	σ_{max0}	İgσ _{max 0}
(1) Свободное отверстие	3,0816	-0,1364	7,33	$3,88 \cdot 10^{22}$	1207 · N⁻ _{0,1364}	2,393
(2) Затяжка болта М₃=40 Н · м; Фк=90 МПа	3,8327	-0,2568	3,894	8,41 · 10 ¹⁴	6803 · N⁻ _{0,2568}	2,371
(3) Затяжка болта М ₃ =20 Н ⋅ м; Ф _К =45 МПа	3,6046	-0,2212	4,521	1,98 · 10 ¹⁶	$\begin{array}{c} \textbf{4024} \cdot \textbf{N}^{\text{-}} \\ \text{0,2212} \end{array}$	2,365
 (4) Радиальный натяг Ψ =0,6 % d; Затяжка болта М₃=20 H ⋅ м; Ок=45 МПа 	3,564	-0,1974	5,066	1,135 ₈ · 10 ¹	3664 · N⁻ _{0,1974}	2,4235

Продолжение табл.1

S _{IgN}	lgN	$SIg\sigma_{max0}$	r _{1/1}	$\hat{\mathbf{S}}_{IgN}$	$\stackrel{\wedge}{S}_{Ig\sigma_{max0}}$	S _A	S_B
0,435	5,049	0,06659	0,89	0,1983	0,096	0,0496	0,7691
0,2636	5,6908	0,07668	0,85	0,1389	0,042	0,0336	0,4527
0,37	5,5995	0,09585	0,854	0,1925	0,0499	0,0497	0,5367
0,2318	5,7793	0,049	0,934	0,0828	0,0175	0,02618	0,5877

В табл. 1 представлены также средние значения $I\overline{gN}$ и $I\overline{g\sigma}_{max\,0}$, оценки дисперсий коэффициентов A и B уравнения эмпирической линии регрессии S_A, S_B и оценки меры индивидуального рассеяния вокруг эмпирической линии регрессии

 \hat{S}_{IgN} , $\hat{S}_{Ig\sigma_{max0}}$.

На рис. 4 показаны эмпирические линии регрессии, полученные в результате обработки экспериментов. Точками нанесены результаты усталостных испытаний полосы с отверстием. Кривая 1 показывает усталостную долговечность сплава ВТ6, рассчитанную по формуле σ_{max0} =1993·N^{-0,101}, приведенную в работе

[3]. Точками 6 показаны результаты усталостных испытаний полосы с отверстием, в которое установлен болт с радиальным натягом Ψ =0,6 % d без затяжки. Образцы не доводились до разрушения. Ha разрушения, уровне соответствующем Отахо=238 МПа, образцы сняли с испытаний по достижении N=3250000 циклов, а на уровне -- σ_{max0} =295 МПа образцы сняли с испытаний по достижению N=1150000 циклов. Образец, снятый с испытаний на уровне О_{тах0}=238 МПа, удалось разрушить на более высоком уровне напряжений О_{тах0}=295 МПа после N=250000 циклов нагружения на этом уровне. Осмотр разрушенного образца показал наличие следов интенсивной фреттинг-коррозии на стенке отверстия, которая и привела к усталостному разрушению образца полосы с отверстием.

Анализ характера усталостного разрушения образцов полосы с отверстием, заполненным болтом с радиальным натягом $\overline{\Psi}$ =0,6 % d и осевой затяжкой M₃=20 H · м, показал, что фреттинг-коррозия под шайбами значительно уменьшила положительное влияние радиального натяга на усталостную долговечность полосы. Для радиального натяга $\overline{\Psi}$ =0,6 % d фреттинг-коррозия, вызванная затяжкой M₃=20 H · м, привела к уменьшению усталостной долговечности более чем в 3,3 раза.

На рис. 5 приведена кривая (1) усталостной долговечности полосы с отверстием, заполненным болтом с радиальным натягом $\overline{\Psi}$ =0,6 % d и осевой затяжкой M₃=20 H·м. Положительное влияние радиального натяга нейтрализовало негативное влияние концентрации напряжений, вызванное отверстием, на ее усталостную долговечность. Основной причиной усталостного разрушения стала фреттинг-коррозия в контактной зоне полосы с шайбой. Кривая 2 получена в результате расчета усталостной долговечности гладкой полосы в зоне фреттинг-коррозии по методике, приведенной в работе [4]: $\sigma_{max0 dp}$ =1884·N^{-0,4164}, N > 500000.

В диапазоне чисел циклов до разрушения N \in [2·10⁵,1,4·10⁶] получено удовлетворительное соответствие результатов расчета с экспериментом. Относительная погрешность меньше 50 % при высоких уровнях нагружения, когда фреттинг-коррозия еще недостаточно развита. При низких уровнях нагружения $\sigma_{max0} < 300$ МПа и N > 300000 погрешность - менее 20%.

85

Рис. 5. Сравнение расчетной и экспериментальной усталостных долговечностей полосы с отверстием, заполненным болтом с радиальным

натягом Ψ =0,6 % d и осевой затяжкой М₃=20 Н \cdot м (σ_{κ} =45 МПа) в зоне

фреттинг-коррозии [4]; $\sigma_{max0 dpp}$ =61334 \cdot N^{-0,4164} при N > 500000,

На рис. 6 приведены кривые усталости полосы с отверстием из сплава ВТ6,

построенные по формулам для $\sigma_{max0} = 10^{A} \cdot N^{B}$ (см. табл.1, колонка 6). Видно, что при долговечностях N > 1,4·10⁶ осевая затяжка болта становится неэффективным средством повышения усталостной долговечности полосы с отверстием. Усталостная долговечность полосы с болтом, установленным с затяжкой, понижается до значений долговечности со свободным отверстием.

Определение влияния установки болта в отверстие в полосе на ее усталостные характеристики определялось при помощи эффективного коэффициента концентрации напряжений (К_ס): К_о = $\frac{\sigma_{max0}}{\sigma_{max07}}$, где σ_{max0} - максимальные напряжения для гладкой полосы при числе циклов до разрушения N_i, вычисленные по формуле σ_{max0} =1993·N^{-0,101} [3];

 σ_{max0n} — максимальные напряжения в сечении брутто для полосы со свободным или заполненным отверстием при том же числе циклов до разрушения N_J.

Рис. 6. Кривые усталости полосы с отверстием из сплава ВТ6: 1 – кривая усталости сплава ВТ6; 2, 3, 4, 5 – кривые усталости полосы с отверстием из сплава ВТ6; 2 – свободное отверстие; 3 – затяжка болта M_3 =40 H · м; 4 – затяжка болта M_3 =20 H · M; 5 – радиальный натяг $\overline{\Psi}$ =0,6 % d, затяжка М₃=20 Н · м

Для исследованных вариантов установки болта в отверстие в полосе получены формулы для расчета К_σ, которые приведены в табл. 2.

Таблица 2

Вариант установки болта	К _σ	K _{oj/1}	K _{Nj/1}
(1) Свободное отверстие	1,651 · N ^{0,0354}	1	1
(2) М ₃ =40 Н ⋅ м	0,293 · N ^{0,1558}	5,636 ⋅ N ^{-0,1204}	$2,168 \cdot 10^{-8} \cdot \sigma_{max 0}^{3,436}$
(3) М ₃ =20 Н ⋅ м	0,495 · N ^{0,1202}	3,334 · N ^{-0,0848}	5,103 \cdot 10 ⁻⁷ \cdot $\sigma^{^{2,809}}_{_{max 0}}$
(4)	0,544 · N ^{0,0964}	3,036 ⋅ N ^{-0,061}	$2,925 \cdot 10^{-5} \cdot \sigma_{max 0}^{2,264}$

На рис. 7 представлены зависимости эффективного коэффициента концентрации напряжений от числа циклов до разрушения для исследованных вариантов установки болта в отверстие.

Эффективность радиального натяга и осевой затяжки болтов как средств повышения усталостной прочности полосы с отверстием определялось через

коэффициент $K_{\sigma j/1}$: $K_{\sigma j/1} = \frac{\sigma_{\max 0 j}}{\sigma_{\max 0 1}}$, где $\sigma_{\max 0 j}$ – максимальные напряжения для

полосы с установленным в отверстие болтом при числе циклов N_J;

ј – номер строки в табл. 1;

 σ_{max01} – максимальные напряжения в полосе со свободным отверстием при числе циклов $N_{\rm J}.$

Рис. 7. Эффективные коэффициенты концентрации напряжений для полосы с отверстием при различных вариантах установки болта в отверстие: 1 - свободное отверстие; 2 - М₃=40 Н · м; 3 - М₃=20 Н · м;

4 - $\overline{\Psi}$ =0,6 % d, M₃=20 H· м

Значения К_{ој/1} для различных вариантов установки болта в отверстие приведены в табл. 3.

Таблица 3

Ν	5·10 ⁴	10 ⁵	2·10 ⁵	4·10 ⁵	5·10 ⁵	6·10 ⁵	8·10 ⁵	10 ⁶	1,2·10 ⁶
$k_{\sigma 2/1}$ =5,635·N ^{-0,1204}	1,532	1,409	1,296	1,193	1,161	1,136	1,097	1,068	1,045
$k_{\sigma 3/1}$ =3,334·N ^{-0,0848}	1,332	1,256	1,184	1,117	1,096	1,079	1,053	1,033	1,017
$k_{\sigma 4/1}$ =3,036·N ^{-0,061}	1,569	1,504	1,442	1,382	1,364	1,348	1,325	1,307	1,293

Эффективность осевой затяжки и радиального натяга определяется коэффициентом повышения выносливости $K_{Nj/1} = \frac{N_J}{N_1}$, где N_J – выносливость

полосы с отверстием заполненным болтом при той же величине $\sigma_{\text{max01}}.$

В табл. 4 приведены значения коэффициентов повышения выносливости для исследованных вариантов установки болтов в отверстие в полосе.

Таблица 4

σ _{max01} , МПа	200	250	300	350
NJ	528024	102841	27018	8727
$K_{\text{N2/1}}\text{=}2,168\cdot10^{\text{-8}}\cdot\sigma_{_{\text{max}0}}^{^{3,436}}$	1,747	3,762	7,037	11,95
$K_{N3/1}$ =5,103 · 10 ⁻⁷ · $\sigma_{max0}^{2,809}$	1,484	2,777	4,635	7,14
$K_{N4/1}$ =2,925 · 10 ⁻⁵ · $\sigma_{max0}^{2,264}$	4,738	7,853	11,867	16,82

Выводы

- 1. По результатам усталостных испытаний получены аналитические зависимости для определения усталостной долговечности полосы с отверстием при различных вариантах установки болта.
- Эффективность применения радиального натяга и осевой затяжки болтов определена при помощи эффективных коэффициентов концентрации напряжений и коэффициентов повышения выносливости полосы с отверстием.
- 3. Выносливость полосы с отверстием возрастает более всего при совместном применении радиального натяга Ψ=0,6 % d и осевой затяжки M₃=20 H·м. При базовой выносливости полосы со свободным отверстием N₁ = 8727 циклов применение радиального натяга и затяжки дает повышение выносливости в 16,8 раза, а при N₁ = 528024 циклов - в 4,738 раз. При возрастании базовой долговечности полосы со свободным отверстием из-за вредного влияния фреттинг-коррозии эффективность применения затяжки и радиального натяга значительно снижается.
- 4. Применение болтов, установленных с радиальным натягом Ψ =0,6 % d без осевой затяжки, повышает выносливость полосы с отверстием более чем в 3,3 раза по сравнению со случаем, когда болт установлен с радиальным натягом Ψ =0,6 % d и осевой затяжкой М₃=20 H ⋅ м, т.к в этом случае не возникает фреттинг-коррозия под шайбами.

Список литературы

- Гребеников А. Г. Методология интегрированного проектирования сборных самолетных конструкций регламентируемой долговечности // Открытые информационные и компьютерные интегрированные технологии. - Х.: НАКУ «ХАИ». - 2003. - Вып. 23. – С. 191 – 200.
- Конструкционная прочность материалов и деталей ГТД /Балашов Б. Ф., Дульнев Р.А., Захарова Т. П., Козлов Л. А., Петухов А. Н., Сизова Р. Н. - Труды ЦИАМ. - № 835. 1979 – 522 с.
- 3. Гребеников А. Г., Клименко В. Н. Сопротивление усталости титанового сплава ВТ6 // Вопросы проектирования и производства конструкций летательных аппаратов. Х.: НАКУ «ХАИ». 2005. Вып. 42(3). С. 37 46.
- 4. Гребеников А. Г., Клименко В. Н. Методика определения влияния фреттингкоррозии на усталостную долговечность гладких конструктивных элементов из титанового сплава ВТ6 // Открытые информационные и компьютерные интегрированные технологии. – Х.: НАКУ «ХАИ». - 2005. – Вып. 29. – С. 57 – 68.