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Физическое моделирование при проектировании новых образцов промыш-

ленной техники до настоящего времени являлось одним из наиболее распростра-
ненных методов исследования закрученных течений. В настоящее время оно по-
степенно уступает место численному моделированию. Отбор вариантов числен-
ных результатов может значительно снизить затраты на окончательные дорого-
стоящие натурные физические исследования, и, следовательно, на этапе проек-
тирования математическое моделирование предпочтительней с точки зрения ско-
рости и стоимости исследований.  

В данной работе рассматривается трехмерное закрученное течение в вих-
ревой камере плазмотрона с термоэмиссионным катодом (рис. 1). Закрутка газа 
осуществляется с помощью вихревой камеры 2, в которой вращательный импульс 
сообщается газу за счет его тангенциального ввода в камеру через отверстия 1. 
Кроме пространственной стабилизации дуги по оси z  закрутка также обеспечива-
ет вращение радиальных участков дуги, а вместе с ними и перемещение опорных 
пятен дуги по поверхности электродов, распределяя тепловой поток и эрозию 
равномерно по окружности. Ослабление закрутки приводит к дестабилизации дуги 
и снижению напряжения горения дуги с самоустанавливающейся длиной. Аэроди-
намика течения в сливном электроде 
(аноде) 4 оказывает существенное 
влияние на характер горения дуги в 
нем [1]. Кроме того, для защиты катода 
3 от отравления атмосферным возду-
хом [2] очень важно знать газодинами-
ческие характеристики и характер за-
крученного потока в прикатодной об-
ласти для прогнозирования его отрав-
ляемости в приэлектродной области.  

Моделирование трехмерных те-
чений связано с известными практиче-
скими трудностями, такими как исполь-
зование разнесенных сеток, медленная 
сходимость численного алгоритма ре-
шения и т.д. Решение турбулентной 
задачи требует сгущения расчетной 
сетки в областях с большими градиентами искомых переменных, а также вблизи 
твердых стенок. Все эти проблемы значительно осложняют физико-
математическую постановку задачи в рассматриваемой области.  

 
Рис. 1. Схема проектируемой вихревой 

камеры 

Для численного исследования поставленной задачи используются система 
уравнений Навье – Стокса [3], включающих законы сохранения массы, импульса и 
энергии нестационарного пространственного течения в рамках подхода Эйлера в 
декартовой системе координат ( , i = 1, 2, 3), в общем виде: ix
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где t  – время;  – скорость газа; u ρ  – плотность газа; P  – давление газа;  – 
внешние массовые силы, действующие на единичную массу газа; 

iS
E  – полная 

энергия единичной массы газа;  – тепло, выделяемое тепловым источником в 
единичном объеме газа; 

HQ
ikτ  – тензор вязких сдвиговых напряжений;  – диффу-

зионный тепловой поток, нижние индексы означают суммирование по трем коор-
динатным направлениям. 

iq

Кроме того, используются уравнения состояния инертного газа ( )RTP=ρ , 
где R  – газовая постоянная моделируемого газа, а также эмпирические зависи-
мости вязкости и теплопроводности этого газа от температуры.  

Для моделирования турбулентных течений упомянутые уравнения Навье – 
Стокса осредняются по Рейнольдсу, т.е. используется осредненное по малому 
масштабу времени влияние турбулентности на параметры потока, а крупномас-
штабные временные изменения осредненных по малому масштабу времени со-
ставляющих газодинамических параметров потока (давления, скоростей, темпе-
ратуры) учитываются введением соответствующих производных по времени. В 
результате уравнения имеют дополнительные члены – напряжения по Рейнольд-
су, а для замыкания этой системы уравнений используются уравнения переноса 
кинетической энергии турбулентности и ее диссипации в рамках ε−k  модели 
турбулентности [4].  

Тензор вязких сдвиговых напряжений определяется следующим образом: 
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где tl µµµ += ; lµ  – коэффициент динамической вязкости, tµ  – коэффициент 
турбулентной вязкости, ijδ  – дельта-функция Кронекера ( ijδ = 1 при ji = ; ijδ = 0 

при ji ≠ ), k  – кинетическая энергия турбулентности. В соответствии с ε−k  мо-
делью турбулентности, tµ  определяется через величины кинетической энергии 
турбулентности k  и диссипации этой энергии ε : 
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Кинетическая энергия турбулентности k  и диссипация этой энергии ε  оп-
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ределяются в результате решения следующих двух уравнений: 
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гравитационного ускорения в координатном направлении ; 
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2εC εσ = 1.3; kσ = 1. 
Диффузионный тепловой поток моделируется с помощью уравнения 
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где k = 1, 2, 3; cσ = 0.9; Pr  – число Прандтля;  – удельная теплоемкость при 

постоянном давлении; T – температура газа. 
pc

В качестве граничных условий задавались: на входе в вихревую камеру 
плазмотрона – суммарный расход аргона 60 мг/с с температурой 300 К; на выходе 
из плазмотрона – атмосферное давление 101325 Па. На твердых стенках задава-
лись условия непротекания и прилипания. Т.к. теплообмен газа с поверхностью не 
рассчитывается, тип стенки был выбран адиабатический. 

Полученная система дифференциальных уравнений решалась в солвере 
CosmosFloworks 2005 [5] на адаптивной расчетной сетке. Для дискретизации этих 
уравнений использовался метод конечных объемов [6]. Соответственно, собст-
венно дискретизация непрерывной математической модели состояла в том, что 
значения физических переменных рассчитывались (и хранились) только в центрах 
расчетных ячеек, а на гранях этих ячеек рассчитывались потоки массы, импульса, 
энергии, необходимые для расчета этих значений. При этом пространственные 
производные аппроксимировались с помощью неявных разностных операторов 
второго порядка точности. Потоки рассчитывались с использованием их аппрок-
симации вперед второго порядка точности, основанной на модифицированных 
неявных QUICK-аппроксимациях Леонарда [6] и методе минимизации полной ва-
риации TVD [7]. При дискретизации по времени использовался метод расщепле-
ния операторов для более эффективного расчета давления и скорости. В соот-
ветствии с методом типа SIMPLE [8], давление рассчитывалось в результате ре-
шения дискретного эллиптического уравнения, полученного алгебраическими 
преобразованиями дискретных уравнений сохранения массы и импульса с учетом 
граничных условий для скорости. 
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Результаты численного исследования поставленной задачи представлены в 
виде линий тока одинаковых скоростей на 
рис. 2 и зависимости продольной скоро-
сти потока по оси канала плазмотрона на 
рис. 3.  

К выходу из плазмотрона ослабле-
ние закрутки (рис. 2), обусловленное не-
большим начальным массовым расходом, 
может вызывать дестабилизацию элек-
трической дуги. Из рис. 3 видно, что про-
дольная скорость  меняет знак, т.е. 
возникает обратный поток газа по оси ка-
нала плазмотрона. С точки зрения защи-
ты катода от отравления атмосферным 
воздухом, а также диффузии воздуха во 
встречном потоке плазмообразующего 
инертного газа наличие обратного потока 
крайне не желательно. 

0zV

В настоящее время можно выска-
зать предположение, что обратные потоки 
в канале плазмотрона можно избежать повышением расхода плазмообразующего 
газа, что требует проведения дальнейших исследований. 

Рис. 2. Линии тока одинаковых 
ростей в канале плазмотронско а 

 
Рис. 3. Зависимость продольной 

корости по оси плазмотронас  

Перспективы дальнейших исследований. В дальнейшем планируется 
провести численные эксперименты с помощью разработанной математической 
модели на разных расходах инертного газа, с целью опровержения или подтвер-
ждения данного предположения, а также получения зависимостей окружных и 
продольных скоростей от расхода плазмообразующего газа. 

Выводы. Разработанная математическая модель может быть использова-
на для исследования и прогнозирования поведения закрученных вихревых пото-
ков в канале плазмотрона и расчета основных газодинамических параметров те-
чения газа в плазмотроне. 
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