## Дефекты формы ячейки сотового заполнителя, возникающие в процессе формообразования сотопакета, и их регламентация

## Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

Дальнейшее совершенствование конструкций авиационно-космической техники (АКТ) в целях снижения их массы неразрывно связано с применением новых материалов и реализующих их конструктивно-технологических решений (КТР). В числе эффективных КТР все более широкое применение находят трехслойные конструкции с сотовым заполнителем (СЗ), обеспечивающие при существенном снижении массы высокую несущую способность и обладающие рядом других полезных эксплуатационных характеристик [1].

Однако реализация преимуществ сотовых конструкций в значительной степени зависит в первую очередь от технологии производства СЗ, на всех стадиях которого неизбежны отклонения от номинальных параметров, в связи с чем возникла проблема нормирования полей допусков на эти отклонения и дефекты [2].

Методы нормирования ряда дефектов и отклонений от номинальных значений технологических и конструктивных параметров изложены в наших работах [3 -5]. Настоящая статья посвящена анализу дефектов формы ячейки СЗ, возникающих в процессе формообразования сотопакета, и их регламентации.

Дефекты формы ячейки являются следствием влияния следующих отклонений от своих номиналов:

- ширины клеевой полосы  $m{a}_c \pm \Delta m{a}_c$ , равной стороне грани сотовой ячейки;
- шага клеевых полос  $t\pm \Delta t= \Im(a_c\pm \Delta a_c)\pm \Delta t$  ;
- межцентрового расстояния между фиксирующими штырями, используемыми для формирования сотопакета  $I_1 \pm \Delta I_1$  (рис.1);
- размера от сборочной вертикальной базовой планки 1 до центра первого фиксирующего штыря  $I_0 \pm \Delta I_0$  (рис. 1).

На рис. 1 показана схема сборки сотопакета в простейшем фиксирующем прспособлении. Вертикальную базовую планку 1 устанавливает и фиксируют на основании сборочного приспособления, в котором имеются фиксирующие листы фольги и базовые штыри (см. ниже).

Предварительно фольгу нарезают на заготовки требуемой длины в специальной оснастке. Заготовки разделяют на две равные части (пакеты). Каждый пакет устанавливают в сборочную оснастку, торцуют по вертикальной базовой планке и фиксируют. На зафиксированный пакет устанавливают плоский шаблон с отверстиями под фиксирующие базовые штыри.

Для предварительного сверления отверстий в пакетах используют два шаблона. Отверстия в первом шаблоне просверлены на расстоянии ( $I_0 + I_1$ ) от левой базовой грани шаблона 1. Отверстия во втором шаблоне просверлены на расстоянии  $I_1$  от левой стороны шаблона. Расстояние  $I_0$  выбирают произвольно, но кратным  $1,5a_c$ . Размер  $I_1$  равен  $I_1 = 1,5a_c$ . Таким образом,

 $I_0 + I_1 = A \cdot 1,5a_c + 1,5a_c = 1,5a_c(1+A)$ , где A - целое число. Каждый из пакетов сверлят в фиксирующем приспособлении по своему шаблону.



Рис. 1. Схема сборки сотопакета в фиксирующем прспособлении: 1 – вертикальная базовая планка; 2 – основание сборочного приспособления; 3 – фиксирующие базовые штыри; 4 – клеевые полосы; 5 – листы фольги; 6 – небазовые границы листов фольги; 7 – торец базовой границы листов фольги (вдоль рулона); 8 – верхний (замыкающий) лист фольги без клеевых полос; 9, 10 – верхние и нижние обкладные листы

В сборочном приспособлении (рис. 1) устанавливают четыре штыря 3. После этого производят набор сотопакета путем последовательной установки (фиксации отверстий штырями 3) листов фольги с отверстиями из первого и второго пакетов. Верхний лист обезжиренной фольги не имеет клеевых полос. Под нижней и на верхней поверхностях сотопакета подложены обкладные листы 9 и 10 (стеклоткань Э-3-100, вакуумная термостойкая резина толщиной 1 мм, полимерная бумага).

Приступим к анализу возможных (вероятных) размеров дефектов (отклонений от номиналов), перечисленных выше для обоснования их полей допусков. Такие исследования проводили в работе [6], однако они не были доведены до обоснованного назначения полей допусков.

Допуск на ширину клеевой полосы  $\pm \Delta a_c$  обеспечивается технологическими возможностями формирования ширины выступов и впадин клеенаносящего цилиндра в случае наиболее эффективного способа глубокой печати (рис. 2). Этот допуск составляет  $\pm \Delta a_c = 0,1a_c$  [6]. Так как практически СЗ изготавливают со стороной грани  $a_c \ge 2,5$  мм, то  $\Delta a_c \ge 0,25$  мм. Влиянием изменения  $a_c$  за счет расширения клеевой пленки, связанного с давлением прижатия клеенаносящего цилиндра и высокой смачиваемостью обезжиренной фольги (растеканием клея), можно пренебречь, так как оно составит третий знак после запятой в  $\Delta a_c$ .

В работе [6] отмечено различие предельных значений  $\Delta a_c$  у разных авторов. Так, в [7]  $\Delta a_c = \pm 0,05$  мм, в [8]  $\Delta a_c = \pm 0,1$  мм независимо от  $a_c$ , что можно обосновать возможностями изготовления клеенаносящего устройства, принимаемыми равными для всех размеров  $a_c$ . Последний аргумент представляется вполне оправданным.

Допуск на шаг клеевой полосы  $\Delta t$  также рекомендуется различным: в [7]  $\Delta t = \pm 0,05$  мм, в [8]  $\Delta t = \pm 0,2$  мм.

Однако допуск  $\Delta \boldsymbol{a}_c$  уже влияет на  $\boldsymbol{t}$  :

$$t \pm \Delta t = 3(a_c \pm \Delta a) \pm \Delta t_{\mu} = 3a_c \pm 0,3 \pm \Delta t_{\mu}, \qquad (1)$$

где  $\Delta t$  - полный допуск на шаг клеевых полос, учитывающий все виды погрешностей;  $\Delta t_{H}$  - независимая от  $\Delta a_{c}$  составляющая  $\Delta t$ , связанная с техническими возможностями изготовления клеенаносящего устройства  $\Delta t_{H1}$  и с самими операциями формирования сотопакета  $\Delta t_{H2}$ :

$$\Delta t_{\mu} = \Delta t_{\mu 1} + \Delta t_{\mu 2} \,. \tag{2}$$

Принимая  $\Delta t_{H1}$  равным  $\Delta a_c$  вследствие равных технологических возможностей обеспечения точности размеров  $a_c$  и t, получим допуск  $\Delta t_{H1} = \pm 0,1$  мм для ячеек СЗ малых размеров на стадии нанесения клеевых полос.

В процессе формирования сотопакета возникают дополнительные погрешности, связанные с  $\Delta I_0$  и  $\Delta I_1$ , т.е. интегральными погрешностями, включающими в себя операции изготовления шаблона  $\Delta_w$ , сверления сборочных отверстий по двум шаблонам в заготовках и по шаблону в основании сборочного приспособления  $\Delta_{co}$ , а также погрешности диаметров фиксирующих штырей  $\Delta_{\phi w}$ .

Тогда

$$\Delta t_{H2} = \Delta_{\mu} + \Delta_{co} + \Delta_{\phi\mu}. \tag{3}$$

Принимая в соответствии с рекомендациями [9] для аналогичных технологических операций самолетостроительного производства  $\Delta_{u} = \pm 0,05$  мм,  $\Delta_{co} = \pm 0,3$  мм,  $\Delta_{\phi u} = \pm 0,02$  мм, получаем  $\Delta t_{H2} = \pm 0,37$  мм. С учетом изложенного выше  $\Delta t = \pm (0,3+0,1+0,37)=\pm 0,77$  мм.

Наличие  $\Delta t$  вызывает искажение правильной формы шестигранной ячейки C3, предопределяемой операцией формирования сотопакета и проявляющейся на последней стадии его растяжки (рис. 2).



Рис. 2. Схема возможного искажения формы ячейки вследствие наличия отклонений  $\Delta t$  и  $\Delta a_c$ : а – операция формирования сотопакета; б – операция растяжки сотопакета

Для среднестатистической ячейки неправильной формы ( $b_c \pm \Delta b_c$ ) можно записать (рис. 2):

$$2(b_{c} \pm \Delta b_{c}) = (t \pm \Delta t) - (a_{c} \pm \Delta a_{c}), \qquad (4)$$

где  $b_c$ ,  $a_c$  - номинальные параметры граней СЗ;  $t = 3a_c$  - номинальный шаг.

Так как  $\boldsymbol{b}_c = \boldsymbol{a}_c$ , то из (4) следует

$$\pm \Delta b_c = \frac{\pm \Delta t \mp \Delta a_c}{2}.$$
 (5)

При обоснованных выше полях допусков  $\Delta t$  =0,77 мм и  $\Delta a_c$  =0,1 мм получим  $\Delta b_c$  =±0,34 мм.

Необходимо отметить, что изложенный выше анализ ориентирован на высокий уровень технологии производства СЗ для изделий АКТ.

Вследствие зависимости размеров  $a_c$  и  $b_c$ , которая вытекает из принятой гипотезы неизменности полупериметра ячейки, зависимыми являются и допуски  $\Delta a_c$  и  $\Delta b_c$ , т.е. из четырех предельных вариантов их сочетаний:  $\Delta a_c$ ,  $\Delta b_c$ ;  $\Delta a_c$ ,  $\Delta b_c$ ;  $\Delta a_c$ ,  $\Delta b_c$ ;  $\Delta a_c$ ,  $\Delta b_c$  реализуемы тольmax max min min max  $\Delta a_c$ ,  $\Delta b_c$ ,  $\Delta a_c$ ,  $\Delta b_c$ ,  $\Delta a_c$ ,  $\Delta b_c$  реализуемы тольмеханические характеристики (ФМХ) СЗ необходимо рассмотреть эти два варианта на основе отношений ФМХ СЗ, определяемых формулами [10]:

$$\overline{E}_{-z1} = \frac{E_{-z}(\Delta a_c, -\Delta b_c)}{E_{-z}^{H}} = \frac{0,75a_c(2a_c + \Delta a_c - \Delta b_c)}{[1,5a_c + (\Delta a_c - 0,5\Delta b_c)](a_c - \Delta b_c)}; \quad (6)$$

$$\overline{G}_{xz1} = \frac{G_{xz}(\Delta a_c, -\Delta b_c)}{G_{xz}^{H}} = \frac{1,33a_c[1,5a_c + (\Delta a_c - 0,5\Delta b_c)]}{(2a_c + \Delta a_c - \Delta b_c)(a_c + \Delta a_c)};$$
(7)  
$$- G_{-}(\Delta a_c - \Delta b_c) = \frac{15a_c(2a_c - \Delta b_c)}{(2a_c - \Delta b_c)(a_c - \Delta b_c)};$$

$$\overline{G}_{yz1} = \frac{G_{yz}(\Delta a_c, -\Delta b_c)}{G_{yz}^{H}} = \frac{1,5a_c(2a_c - \Delta b_c)}{[1,5a_c + (\Delta a_c - 0,5\Delta b_c)](a_c + \Delta a_c)}; \quad (8)$$

$$\overline{\sigma}_{-ez1} = \frac{\sigma_{-ez}(\Delta a_c, -\Delta b_c)}{\sigma_{-ez}^{H}} = \frac{1,5a_c^2}{(a_c - \Delta b_c)[1,5a_c + (\Delta a_c - 0,5\Delta b_c)]}; \quad (9)$$

$$\overline{\tau}_{xz1} = \frac{\tau_{xz} (\Delta a_c, -\Delta b_c)}{\tau_{xz}^{H}} = \frac{0.9a_c [0.5(a_c - \Delta b_c) + 1.15(a_c + \Delta a_c)]}{[(a_c + \Delta a_c) + 0.5(a_c - \Delta b_c)](a_c - \Delta b_c)}; (10)$$

$$\overline{\tau}_{yz1} = \frac{\tau_{yz} (\Delta a_c, -\Delta b_c)}{\tau_{yz}^{H}} = \frac{1.5a_c}{[(a_c + \Delta a_c) + 0.5(a_c - \Delta b_c)]}; (11)$$

$$\overline{E}_{-z^2} = \frac{0,75a_c(2a_c - \Delta a_c + \Delta b_c)}{\left[1,5a_c + (0,5\Delta b_c - \Delta a_c)\right](a_c + \Delta b_c)};$$
(12)

$$\overline{G}_{xz2} = \frac{1,33a_c \left[1,5a_c + (0,5\Delta b_c - \Delta a_c)\right]}{\left(2a_c - \Delta a_c + \Delta b_c\right)\left(a_c - \Delta a_c\right)};$$
(13)

$$\overline{G}_{yz2} = \frac{1,5a_c(2a_c + \Delta b_c)}{\left[1,5a_c + (0,5\Delta b_c - \Delta a_c)\right](a_c - \Delta a_c)};$$
(14)

$$\overline{\sigma}_{-ez2} = \frac{1,5a_c^2}{(a_c + \Delta b_c)[1,5a_c + (0,5\Delta b_c - \Delta a_c)]};$$
(15)

$$\overline{\tau}_{xz2} = \frac{0.9a_c [0.5(a_c + \Delta b_c) + 1.15(a_c - \Delta a_c)]}{[(a_c - \Delta a_c) + 0.5(a_c + \Delta b_c)](a_c + \Delta b_c)};$$
(16)

$$\overline{\tau}_{yz2} = \frac{1,5a_c}{\left[\left(a_c - \Delta a_c\right) + 0,5\left(a_c + \Delta b_c\right)\right]}.$$
(17)

В формулах (6) – (17) учтено, что номинальные значения  $a_c = b_c$ , исключены параметры, входящие как в числитель, так и в знаменатель, а также принято, что угол раскрытия ячейки СЗ  $\beta$  не имеет приращения  $\Delta\beta$ . Как видно, ФМХ с индексом 1 (6) – (11) реализуют влияние +  $\Delta a_c$  и –  $\Delta b_c$ , а с индексом 2 - (12) – (17) +  $\Delta b_c$  и –  $\Delta a_c$ . Результаты расчета по этим формулам сведены в таблицу.

Из таблицы видно, что во всем рабочем диапазоне ячеек C3 (2,5  $\leq a_c \leq$  10 мм) при положительном  $\Delta a_c$  и отрицательном  $\Delta b_c$  все ФМХ C3 или растут, или практически остаются без изменения.

При отрицательном допуске  $\Delta a_c$  и положительном  $\Delta b_c$  имеют место допустимое значение снижения  $\tau_{xz}$  и  $\tau_{yz}$  и несколько завышенное уменьшение параметров  $E_{-z}$  (9% при  $a_c$  =2,5 мм, снижающемся до 2% при  $a_c$  =10 мм) и  $\sigma_{-ez}$ (14% при  $a_c$  =2,5 мм и 4% при  $a_c$  =10 мм).

|                        | $\Delta a_c = +0,1$ мм; $\Delta b_c = -0,34$ мм |                      |                      |                               |                        |                        | $\Delta a_{c}$ =-0,1 мм; $\Delta b_{c}$ =+0,34мм |                      |                      |                               |                         |                        |  |
|------------------------|-------------------------------------------------|----------------------|----------------------|-------------------------------|------------------------|------------------------|--------------------------------------------------|----------------------|----------------------|-------------------------------|-------------------------|------------------------|--|
| а <sub>с</sub> ,<br>мм | $\overline{E}_{-z1}$                            | $\overline{G}_{xz1}$ | $\overline{G}_{yz1}$ | $\overline{\sigma}_{_{-6Z1}}$ | $\overline{	au}_{xz1}$ | $\overline{	au}_{yz1}$ | $\overline{E}_{-z2}$                             | $\overline{G}_{xz2}$ | $\overline{G}_{yz2}$ | $\overline{\sigma}_{_{-6Z2}}$ | $\overline{\tau}_{xz2}$ | $\overline{	au}_{yz2}$ |  |
| 2,5                    | 1,12                                            | 0,99                 | 1,83                 | 1,18                          | 1,15                   | 1,02                   | 0,91                                             | 1,01                 | 1,46                 | 0,86                          | 0,95                    | 0,98                   |  |
| 10                     | 1,03                                            | 0,98                 | 1,95                 | 1,04                          | 1,03                   | 1,00                   | 0,98                                             | 1,00                 | 2,04                 | 0,96                          | 0,96                    | 0,99                   |  |

Влияние допусков  $\pm \Delta \boldsymbol{a}_c$  и  $\pm \Delta \boldsymbol{b}_c$  на ФМХ СЗ

Таким образом, обоснованные выше поля допусков на дефекты формы ячейки, возникающие в процессе формирования сотопакета, с учетом погрешностей операций нанесения клеевых полос практически обеспечивают регламентированные ФМХ СЗ.

## Список литературы

- Сливинский В.И., Ткаченко Г.В., Колоскова А.Н. Объективные предпосылки эффективного применения сотовых конструкций // Вопросы проектирования и производства конструкций летательных аппаратов. – Х.: НАКУ «ХАИ». 2001. - Вып. 25(2). - С. 109-115.
- Гайдачук В.Е., Мельников С.М. О проблеме допусков в технологической механике сотовых заполнителей и конструкций // Вопросы проектирования и производства конструкций летательных аппаратов. – Х.: НАКУ «ХАИ», 2004.
   - Вып. 39(4). - С. 35-48.
- Мельников С.М. Дефекты, возникающие в процессе обезжиривания фольги при изготовлении сотового заполнителя // Вопросы проектирования и производства конструкций летательных аппаратов. – Х.: НАКУ «ХАИ», 2005. -Вып. 43(4). - С. 96-102.
- Мельников С.М. Взаимосвязь полей допусков на прочность клея при неравномерном отрыве и его нанос на фольгу в производстве сотовых заполнителей // Вопросы проектирования и производства конструкций летательных аппаратов. Х.: НАКУ «ХАИ», 2006. Вып. 44(1). С. 114-119.
- Кириченко В.В., Мельников С.М. Факторы, определяющие технологическую погибь граней ячеек сотового заполнителя из металлической фольги и возможности ее нормирования // Вопросы проектирования и производства конструкций летательных аппаратов. – Х.: НАКУ «ХАИ», 2006. - Вып. 45(2). -С. 62-70.
- Колоскова А.Н. Определение предельно допустимых отклонений изготовления сотового заполнителя // Космічна наука і технологія. – Додаток, 2004. – 10. - №1. – С. 83-86.
- 7. Ендогур А.И., Вайнберг М.В., Иерусалимский К.М. Сотовые конструкции. Выбор параметров и проектирование. - М.: Машиностроение, 1986. – 200 с.
- 8. Панин В.Ф. Конструкции с сотовым заполнителем. М.: Машиностроение, 1982. 152 с.
- 9. Зернов И.А., Коноров Л.А. Теоретические основы технологии и процессы изготовления деталей самолетов. - М.: ГНТИ Оборонгиз, 1960. – 631 с.
- 10. Мельников С.М. Анализ влияния дефектов металлической фольги в состоянии поставки на физико-механические характеристики сотового заполнителя // Вопросы проектирования и производства конструкций летательных аппаратов. Х.: НАКУ «ХАИ», 2006. - Вып. 3(46).