Автоматизация процесса распознавания видов загрязнений для космического мониторинга морских акваторий

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

В настоящее время важной экологической задачей является сохранение природных ресурсов Земли. В связи с необходимостью получения большего объема оперативной информации о природной среде наряду с контактными методами исследований в этой области все большее применение находит дистанционное зондирование Земли из космоса [1].

Преимуществами дистанционных методов исследования земной поверхности по сравнению с традиционными являются масштабность обзора, возможность получения глобальной и локальной информации о природных объектах, а также контроля динамики процессов в реальном масштабе времени. Являясь новейшим и самым совершенным материалом, космические снимки позволяют в более короткие сроки составлять и обновлять различные тематические карты, картографировать слабоизученные, труднодоступные Интегрированный дистанционного территории. анализ зондирования материалами наземных исследований дает возможность более эффективно решать научные и прикладные задачи в области комплексных исследований природной среды, геологии, океанологии, поиска и освоения ископаемых, сельского и лесного хозяйства. Возможность работы с информацией масштабе времени обусловило применение дистанционного зондирования при решении задач экологического мониторинга окружающей среды.

Безусловно, набор задач, решаемых на основе аэрокосмических материалов, очень широк [2]. Поэтому в рамках данной статьи ограничимся областью приложения таких данных к задачам мониторинга морских акваторий.

Черное и Азовское моря играют исключительно важную роль в становлении Украины как высокоразвитой европейской державы. Внутренние и внешние транспортные связи, колоссальный рекреационный потенциал побережий морей, обусловленный благоприятными и разнообразными климатическими условиями, запасы морепродуктов, имеющих промышленное значение, сырья для химической промышленности, стройматериалов, полезных ископаемых и многое другое определяют бассейны этих морей как район стратегических интересов Украины. В то же время их водные ресурсы подвержены существенной антропогенной нагрузке, вносящей заметный вклад в динамику формирования экологической безопасности не только, собственно, морских акваторий, но и побережья. В этой связи представляется актуальной проблема создания эффективной системы мониторинга территориальных вод и морской экономической зоны Украины, средствами которой реализуется функция информационного обеспечения управления их экологической безопасностью.

Элементы такой системы существуют и основаны на периодическом отборе проб воды на определённых участках моря и лабораторном анализе её параметров [3]. Используются также и материалы дистанционного зондирования Земли. Однако эффективность системы можно существенно повысить, если

дополнить ее эффективными методами определения различных видов загрязнений по данным оптических снимков изучаемых территорий [4, 5].

Технологии дистанционного зондирования морских акваторий позволяют идентифицировать скорость приводного ветра, параметры ледовых покровов, температуру поверхностного слоя моря, а также аномалии гидрооптических и гидроэлектрических параметров морских вод [6]. Эти аномалии обусловлены природными процессами, протекающими в море и его береговой зоне, а также антропогенным загрязнением моря растворёнными и взвешенными веществами техногенного происхождения, нефтепродуктами, СПАВ и т.п. В большинстве случаев такие вещества попадают в море с речным и поверхностным стоками, сбросами сточных вод, разливами, сопровождающими аварийные ситуации на судах, в портах и подходах к ним, якорных стоянках, нефтеналивных терминалах. Сказанное выше даёт основание заключить, что технологию космического мониторинга морских акваторий можно основывать на установлении причинноследственных связей между пространственными характеристиками участков моря с аномальными гидрооптическими или гидроэлектрическими параметрами и факторами, обусловившими их.

Для этих целей разработано множество программ как в нашей стране, так и за рубежом [7]. Однако они не специализированные, не учитывают специфику исследуемого объекта. Набор всевозможных функций делает их громоздкими и тяжелыми в освоении, а универсальность не позволяет автоматизировать процесс обработки.

Поэтому актуальна разработка специализированного программного обеспечения для тематической обработки космических снимков.

Разрабатываемое программное обеспечение позволяет визуализировать космические снимки на экране монитора; строить гистограмму изображения; выполнять фильтрацию изображений в целях устранения импульсных помех, шумов аппаратуры и т.д.; нелинейно преобразовывать изображения для контрастирования интересующих оператора объектов; преобразовывать чернобелые изображения в цветные путем использования цветных палитр; создавать искусственные палитры, оптимизированные под конкретные изображения; автоматически выделять контуры объектов изображения, а также маски участков; проводить автоматически кластеризацию объектов на изображении и др.

Программа предназначена для выполнения экологической интерпретации моделей пятнистости моря. Последовательность основных этапов показана на рис.1. Была разработана методика космического мониторинга морских акваторий, которая реализуется с помощью разработанного программного комплекса.

Методика космического мониторинга состоит из ряда этапов. Обязательным является наличие моделей объектов исследования, включающих в себя все виды загрязнений, характерных для рассматриваемых акваторий. В конечном результате различные загрязнения удобно представлять в виде моделей пятнистости.

Новизна данной разработки состоит в том, что данные, поступающие в программу для обработки, будут анализироваться автоматически, что исключает возможные ошибки, связанные с собственным видением оператора. При обработке снимков выполняется определенный набор операций, который позволяет в конечном итоге определить тип загрязнения. Были выделены основные дешифровочные признаки, проанализировав которые, можно сделать вывод о природе интересующего участка (см. рис. 2). В разрабатываемом

программном обеспечении рассмотрены только два из них – форма и яркость. Текстура пятен и динамика их изменений анализируются оператором для более детального изучения.



Рис. 1. Методика космического мониторинга морских акваторий

Рис. 2. Определение видов загрязнений

На рис. 3 – 6 показаны некоторые этапы обработки снимка Азовского моря. Все операции выполнялись с помощью разрабатываемой программы.

Рис. 3. Снимок Азовского моря со спутника Terra MODIS

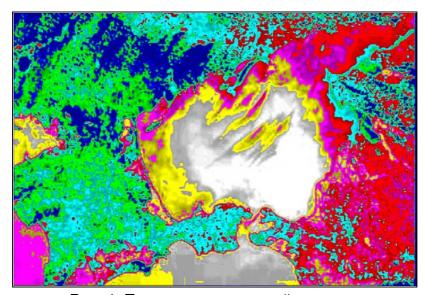


Рис. 4. Применение цветовой палитры

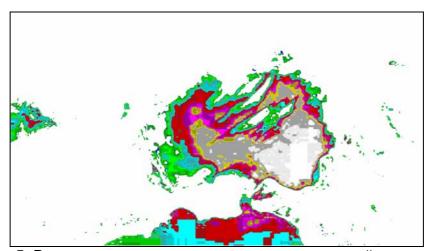


Рис. 5. Выделение аномальных участков на морской акватории

Рис. 6. Оконтуривание интересующего участка

Выводы

В статье представлены результаты разработки технологии мониторинга морских акваторий по материалам их космических съёмок в оптическом диапазоне. Технология основана на методике картографирования пятнистости моря — оконтуривания участков с квазиоднородными значениями зональных яркостей, вариации которых обусловлены растворенными и взвешенными веществами, а также поверхностными пленками. Картографирование пятнистости реализуется разработанным программным комплексом, предназначенным для тематической обработки снимков. Классификация пятнистости осуществляется с использованием разработанных дешифровочных признаков основных видов загрязнения моря. В дальнейшем планируется полная автоматизация процесса определения типов загрязнений, что позволит избежать ошибок оператора при обработке пачки изображений.

Список литературы

- 1. Перспективы практического применения материалов космических съемок Земли при управлении чрезвычайными ситуациями / Г.Я. Красовский, В.С. Готынян, В.В. Брук, Е.В. Славков: Матеріали Третьої Укр. наради користувачів аерокосм. інформації. К., 20 24 листопада 2000. С.117 128.
- 2. С.Х. Кубланов, Р.В. Шпаківський. Моніторинг довкілля: Навч. пос. К.: ДІПКПК МЕУ, 1998. 92 с.
- 3. Е.П. Буравлев, В.С. Стогний. Проблемы мониторинга водного бассейна // Химия и технология воды. 1993. Т.15. № 7 8. С.516 522.
- 4. В.В. Брук. Исследование загрязнения водных объектов взвешенными веществами по материалам космических съемок: Дис. ... канд. техн. наук. Харьков. 1991.
- 5. Brown Steven W., Johnson B. Carol. Advances in radiometry for ocean color. Earth Observing Systems VIII // Proc. of SPIE. Vol. 5151. 2003.– P. 441-453.
- 6. Г.Я. Красовский, В.А. Петросов. Інформаційні технології космічного моніторингу водних екосистем і прогнозу водоспоживання міст.-К.: Наукова думка, 2003. 224 с.
- 7. Комп'ютеризовані регіональні системи державного моніторингу поверхневих вод: моделі, алгоритми, програми / В.Б. Мокін, М.П. Боцула, Г.В. Горячев та ін.; За ред. В.Б. Мокіна: Монографія. Вінниця: «УНІВЕРСУМ-Вінниця», 2005. 310 с.