Выбор оптимальных параметров системы стабилизации ракеты-носителя

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

Постановка проблемы

При проектировании летательных аппаратов (ЛА) важнейшей задачей является выбор оптимальных параметров проектируемого объекта, обеспечивающих максимальную надежность ЛА. В статье [1] приведено описание различных критериев оптимизации параметров технических систем - как вероятностных, так и детерминированных. Разработка вероятностных критериев оптимизации помогла преодолеть главный недостаток детерминированных методов, заключающийся в детерминированном учете случайных возмущений. В настоящей статье приводятся результаты исследований по оптимизации параметров системы стабилизации (СС) ракеты-носителя (РН) по критерию вероятности устойчивости (ВУ). Рассматриваемая методика по выбору значений параметров основана оптимальных на модифицированном максиминном критерии оптимизации [1]. Для сравнения в качестве функции цели принимается набор безразмерных аргументов Гаусса одновременно по нескольким линейным моделям (ЛМ) критериальных функций (КФ).

Объект и цель исследования

Движение статически неустойчивой упругой РН в канале рыскания, устойчивость которой обеспечивается автоматом стабилизации, можно описать следующей системой дифференциальных уравнений [2]:

$$\ddot{z} = \dot{a}_{zz} \dot{z} + \dot{a}_{z\psi} \dot{\psi} + a_{z\psi} \psi + a_{z\delta} \delta_{\psi} + \sum_{i=1}^{4} (\ddot{a}_{zs_{\psi_{i}}} \ddot{s}_{\psi_{i}} + a_{\psis_{\psi_{i}}} s_{\psi_{i}});$$

$$\ddot{\psi} = \dot{a}_{\psi z} \dot{z} + \ddot{a}_{\psi \psi} \dot{\psi} + a_{\psi \psi} \psi + a_{\psi \delta} \delta_{\psi} + \sum_{i=1}^{4} (\ddot{a}_{\psi s_{\psi_{i}}} \ddot{s});$$

$$\vdots$$

$$\dot{s}_{\psi_{i}} + \varepsilon_{s_{\psi_{i}}} \dot{s}_{\psi_{i}} + \omega^{2}_{s_{\psi_{i}}} s_{\psi_{i}} = \ddot{a}_{s_{\psi_{i}z}} \ddot{z} + \ddot{a}_{s_{\psi_{i}\psi}} \ddot{\psi} + a_{s_{\psi_{i}\psi}} \psi;$$

$$T_{2} \ddot{\delta} + T_{1} \dot{\delta} + \delta = K_{\phi} \psi + K_{\phi} \dot{\psi} - K_{\dot{z}} \dot{z},$$
(1)

где ψ - отклонение угла рыскания ракеты как твердого тела от программного значения; z - отклонение центра масс от программного значения; δ - угол отклонения управляющих органов; a_{ij} - коэффициенты; T_1, T_2 - постоянные времени AC; K_{ϕ} - коэффициент усиления по каналу рыскания, $K_{\phi} = T_d K_{\phi}$; T_d - постоянная времени дифференцирования; $K_{\dot{z}}$ - коэффициент усиления по

скорости отклонения центра масс; і – количество тонов упругих колебаний; ј - количество баков с топливом.

Параметры a_{ij} , T_1 , T_2 , K_{ϕ} , K_{ϕ} , T_d имеют существенные случайные разбросы.

В качестве условий работоспособности [2] принимаются:

1) упрощенные условия устойчивости системы (1)

$$\frac{(K_{\phi}|a_{Z\delta}|+|a_{Z\phi}|)K_{\dot{Z}}+a_{\phi\phi}K_{\phi}(T_{d}-T_{1})}{|a_{\phi\delta}|K_{\phi}^{2}(T_{d}-T_{1})}-1<0,$$
(2)

$$\frac{a_{q\delta}a_{\delta q}K_{\phi}T_{d}^{2}T_{2}}{(|a_{qq}|T_{2}T_{d}-T_{d}+T_{1})T_{1}} - 1 < 0;$$
(3)

2) условия устойчивости на основании корней системы (1), которые имеют вид:

$$z = x$$
 (вещественные корни);
 $z = x + iy$, (4)

z = x - iy (комплексно-сопряженные корни).

В качестве условий устойчивости принимаются условия

$$R_k < 0, \tag{5}$$

где $R_k = x - вещественные$ корни или действительные части комплексносопряженных корней (4).

Цель данного исследования:

 провести выбор оптимальных значений параметров СС по критериальным функциям, соответствующим упрощенным условиям устойчивости (2) и (3);

• провести выбор оптимальных значений параметров СС по характеристическим корням системы;

• провести сравнительный анализ эффективности и полученных результатов оптимизации параметров СС двумя вышеописанными способами.

Методика исследования

В процессе выбора оптимальных параметров используется построение линейных моделей КФ – классической, граничных секущей и касательной ЛМ - и вычисление безразмерных аргументов Гаусса (U_i) по каждой модели, соответствующих вероятности устойчивости системы. Рассматриваемый критерий оптимизации (равно как и вероятностный максиминный критерий [1]) применяет гипотезу о нормальном распределении КФ и ее ЛМ.

Для определения направления оптимизации задают величины шага α по вектору параметров, строят ЛМ, затем сравнивают наборы аргументов Гаусса по

ЛМ, соответствующие полученным значениям параметра, и делают вывод о направлении изменения параметра.

Алгоритм оптимизации носит итерационный характер. В процессе оптимизации происходит замена значения параметра предыдущего шага новым значением следующего шага в случае, если последнее соответствует большим аргументам U_i , либо уменьшение коэффициента шага в обратном случае. Изменение параметра продолжается до достижения коэффициентом шага минимального допустимого значения.

При оптимизации в наборах аргументов Гаусса по ЛМ значения U_i , удовлетворяющие условию $U_i^r - U_z \ge 0$ (где U_z - аргумент Гаусса, соответствующий заданному допустимому значению ВУ), не принимают во внимание; целью оптимизации является максимально возможное увеличение значений $U_i^r < U_z$.

Алгоритм оптимизации параметров

1. Задание начального вектора параметров и начальной величины шага изменения параметров α_0 .

2. Формирование матрицы Гаусса на основании системы дифференциальных уравнений (1) для вычисления корней системы в виде z = x, z = x + iy, z = x - iy.

3. Нахождение невозмущенных значений КФ (действительные части корней системы (1)).

4. Построение ЛМ КФ в виде $\lambda = \lambda_0 + \sum_{i=1}^n b_i \eta_i$ (где b_i - коэффициенты линеаризации, λ_0 - свободный член).

4.1. КЛМ проходит через точку исходной КФ $\lambda(\eta) = \lambda(0) = \lambda_0$, в которой случайные возмущения параметров отсутствуют. Для построения КЛМ λ_0 принимаются равными $\lambda_{0i} = \lambda_i(0)$, т.е. невозмущенным значениям КФ. Коэффициенты линеаризации определяются по формуле $b_i = \frac{\lambda(\Delta \eta_i) - \lambda(-\Delta \eta_i)}{2\Delta \eta_i}, i = \overline{1, n}$, где $\Delta \eta_i$ - вариация і-й компоненты вектора η , равная $\Delta \eta_i = 2\sigma_i$, σ_i - с.к.о. і-й компоненты вектора η , $\lambda(\Delta \eta_i)$ либо $\lambda(-\Delta \eta_i)$ - значения КФ для вектора η , у которого все компоненты, кроме і-й, равны нулю, а і-я компонента равна $\Delta \eta_i$ либо $-\Delta \eta_i$.

4.2. СГЛМ имеет две общие точки с исходной КФ: точку $\lambda_0, \eta_k = 0$ и точку $\eta_k^* = \frac{\Lambda_0 b_k \sigma_k^2}{\sum_{i=1}^{n} b_i^2 \sigma_i^2}$ - точку пересечения КФ с границей работоспособности ($k = \overline{1, n}$).

Для построения данной модели предварительно строят КЛМ, а затем КоЛМ - линейную модель, компланарную классической и проходящую через точку $\eta_k^* = \frac{\Lambda_0 b_k \sigma_k^2}{\sum\limits_{i=1}^n b_i^2 \sigma_i^2}$. КоЛМ строят путем «параллельного сдвига» КЛМ до пересечения с

границей работоспособности, т.е. путем изменения лишь свободного члена КЛМ - $\lambda^{r_0} = \lambda_0^{r-1} - \alpha \Delta \lambda^{r-1}$ (где $\Delta \lambda^{r-1}$ - абсолютная погрешность аппроксимации, $0.1 < \alpha < 0.5$ коэффициент приращения свободного члена). Процесс построения КоЛМ носит $\varepsilon_{\lambda}^{r} \leq \varepsilon_{\lambda}^{r-1}$,(где характер. При нарушении условия итерационный \mathcal{E}_{λ} относительная погрешность аппроксимации КФ) уменьшается коэффициент а. Выполнение условия $|\varepsilon_{\lambda}| \leq \varepsilon_{d}$ (где ε_{d} - допустимое значение относительной аппроксимации) означает. погрешности модель итерации что r-й аппроксимирует удовлетворительно КΦ окрестности границы в работоспособности И пригодна оценки вероятности потери для работоспособности. С целью лучшей аппроксимации КФ полученную КоЛМ разворачивают таким образом, чтоб она пересекала исходную КФ в точке λ_0 , -

коэффициенты b_i меняются: $b_i' = b_i \frac{\Lambda - \lambda_0}{\Lambda - \lambda_0^{(r)}}, i = \overline{1, n}$. «Развернутая» таким образом

КоЛМ является СГЛМ.

4.3. КГЛМ проходит через точку λ_0 исходной КФ. Для построения данной модели необходимо предварительно получить КЛМ. Процесс построения КГЛМ носит итерационный характер:

находят точку пересечения КЛМ с границей работоспособности $\eta_k^* = \frac{\Lambda_0 b_k \sigma_k^2}{r};$

$$p_k^* = \frac{120^{\circ} k^{\circ} k}{\sum_{i=1}^n b_i^2 \sigma_i^2}$$

определяют абсолютную и относительную погрешности аппроксимации; вычисляют значения коэффициентов *b*.

$$b_{r_i} = rac{\lambda(\eta^{*r-1} + \Delta\eta_i) - \lambda(\eta^{*r-1} - \Delta\eta_i)}{2\Delta\eta_i}, (i = \overline{1, n}, \Delta\eta_i = 2\sigma_i)$$
 и свободный член

$$\lambda_r = \lambda(\eta^{*r-1}) - \sum_{i=1}^n b_i^r \eta^{*r-1}, r = 1,2,3,...$$
 г-й итерации, а также проверяют условия $\varepsilon_{\lambda}^r \leq \varepsilon_{\lambda}^{r-1}$

(при его нарушении уменьшается шаг итерации $\Delta \eta^{*r} = \alpha \Delta \eta^{*r}$, 0.1 < α < 0.5) и $|\varepsilon_{\lambda}| \leq \varepsilon_{d}$ (выполнение которого означает, что модель г-й итерации удовлетворительно аппроксимирует КФ в окрестности ее пересечения с границей работоспособности).

5. Определение безразмерных аргументов Гаусса на основании построенных ЛМ по формуле $u_{\Lambda} = \frac{\Lambda - m_{\lambda}}{\sigma_{\lambda}}$, где m_{λ} и σ_{λ} - параметры распределения линейной модели. На основании центральной предельной теоремы КЛМ, СГЛМ и

линейной модели. На основании центральной предельной теоремы КЛМ, СГЛМ и КГЛМ имеют нормальный закон распределения. На основании теорем о числовых характеристиках ФСА находят их параметры распределения: математическое

ожидание
$$M[\lambda] = m_{\lambda} = \lambda_0$$
 и с.к.о. $\sigma_{\lambda} = \sqrt{D_{\lambda}} = \sqrt{\sum_{i=1}^{n} (b^i)^2 D}$ (где D_i ($i = \overline{1, n}$) - дисперсии случайных разбросов).

6. Выбор направления изменения оптимизируемого параметра, который состоит в получении аргументов Гаусса U_i по построенным ЛМ для значений параметра, равных $a = a_0 \alpha$ (где a_0 - начальное значение параметра, $\alpha = 0.2$ и - 0.2), и сравнении полученных наборов U_i .

7. Поиск минимальных $U_i < U_z$, соответствующих вероятности, меньшей заданного допустимого значения. Пошаговое изменение оптимизируемого параметра в направлении увеличения минимальных U_i . Уменьшение коэффициента шага Δa при невыполнении условия $\{U^{r-1}\} < \{U^r\}$ (где U^r - набор минимальных аргументов Гаусса на г-м шаге).

Пункты 2 - 6 повторяются до достижения заданного значения коэффициента шага $\alpha_{\scriptscriptstyle dop}$.

<u>Примечание</u>. Для случая оптимизации по упрощенным условиям устойчивости (2) и (3) пункт 2 включает лишь вычисление значения КФ по соответствующей формуле.

Блок-схема алгоритма выбора оптимальных значений параметров изображен на рис. 1.

Рис. 1. Блок-схема алгоритма выбора оптимальных значений параметров

Результаты исследования

Номинальные значения и случайные разбросы параметров, соответствующие времени полета t=70 с. первой ступени PH «Циклон-3», предоставленные научно-производственным предприятием «Хартрон-Аркос», приведены в табл. 1.

					Таблица 1
Параметр	Разброс,%	Значение	Параметр	Разброс,%	Значение
a'_{zz}	25	-0,0169	\mathcal{E}_{s1}	5	0,228
$a'_{z\psi}$	5	-0,715	E _{s2}	5	0,0497
$a_{z\psi}$	5	-36,09	<i>E</i> _{<i>s</i> 3}	5	0,0546

Параметр	Разброс,%	Значение	Параметр	Разброс,%	Значение
$a_{z\delta}$	5	-1,441	<i>E</i> _{<i>s</i> 4}	5	0,7493
$a_{\psi z}$	4	0,0027	$a_{\psi s1}$	10	-0,0066
$a_{\psi\psi}$	10	-0,0616	$a_{\psi s2}$	10	-0,0121
$a_{\psi\psi}$	30	1,8113	$a_{\psi s3}$	10	-0,0043
$a_{\psi\delta}$	10	-0,295	$a_{\psi s 4}$	10	-0,0041
\mathcal{E}_{q1}	15	0,2511	$a_{s\psi 1}$	10	-26.0652
\mathcal{E}_{q2}	20	0,4005	$a_{s\psi 2}$	10	-26,9907
ω^2_{q1}	35	247,8232	$a_{s\psi 3}$	10	-32,5062
ω^2_{q2}	45	630,5364	$a_{s\psi 4}$	10	-44,212
$a_{q\delta 1}$	10	-2,4192	T_1	40	0,1108
$a_{q \delta 2}$	10	-1,7115	T_2	40	0,002
ω^2_{s1}	10	26.0652	T_d	20	0,5
ω^2 s 2	10	26,9907	K _z	50	0,009
ω^2 s 3	10	32,5062	K_z	40	0,009
ω^2_{s4}	10	44,212	K_{ψ}	30	10
a_{qq}	40	-233,7707	$a_{\delta q}$	20	-0,1444

Окончание табл. 1

• Закон распределения всех коэффициентов – нормальный.

• Математическим ожиданием каждого коэффициента m_{ij} является значение этого коэффициента при нулевых разбросах, среднеквадратичное отклонение σ_{ij} для каждого коэффициента a_{ij} находят по формуле $\sigma_{ij} = \frac{\Delta_{ij}}{3}$.

• В качестве оптимизируемых параметров приняты коэффициент усиления по каналу рыскания K_{ϕ} (начальное значение 10) и постоянная времени дифференцирования T_{d} (начальное значение 0,5).

• Так как вполне удовлетворительным значением ВУ при проектировании объектов авиационной техники является 0.9999999 (т.е. U_i =5,3), то в качестве допустимого заданного аргумента принимают U_i =6.

Выбор оптимальных значений параметров K_{ϕ} и T_{d} для упрощенных КФ (2) и (3)

• Невозмущенные значения КФ (2) и (3) соответственно равны -0,3464 и - 1,1014.

• Значения безразмерного аргумента Гаусса U_i по ЛМ при исходных значениях K_{a} и T_d таковы:

для КФ (2) $U_{KЛM}$ =3,58, $U_{CГЛM}$ =4,85, $U_{KГЛM}$ =2,85; для КФ (3) $U_{KЛM}$ =22,49, $U_{CГЛM}$ =285,2, $U_{KГЛM}$ =42,64.

• Начальное значение коэффициента шага для K_{ϕ} равно +2, для T_d -0.1.

- Минимальное допустимое значение коэффициента шага 0.0001.
- Оптимальные значения параметров соответственно равны:

 $K_{\phi} = 14,02$, $T_{d} = 0,55$.

- Невозмущенные значения КФ (2) и (3) соответственно таковы:
- -0,5415 и -1,1467.

• Полученным оптимальным значениям K_{ϕ} и T_d соответствуют следующие значения аргумента Гаусса U_i по линейным моделям:

для КФ (2) $U_{KЛM}$ =7,99, $U_{CГЛM}$ =19,64, $U_{KГЛM}$ =5,52; для КФ (3) $U_{KЛM}$ =17,13, $U_{CГЛM}$ =31,77, $U_{KГЛM}$ =19,73.

Время выполнения оптимизации – 4 с.

Траектория оптимизации параметра K_{ϕ} по упрощенным условиям устойчивости представлена на рис. 2.

Рис. 2. Траектория оптимизации параметра *К*_{*φ*} по упрощенным условиям устойчивости

Выбор оптимальных значений параметров K_{ϕ} и T_d для КФ (4)

Ниже приводятся только корни системы (1), реагирующие на изменения значений оптимизируемых параметров K_{ϕ} и T_{d} , остальные корни в оптимизации не участвуют.

• Корни системы (1) при исходных значениях параметров равны:

-44.5226, -9.5524, -0.6374+0.7803i, -0.6374-0.7803i, -0.0639+0.3665i, -0.0639-0.3665i. • Невозмущенные значения КФ (вещественные корни и действительные части комплексно-сопряженных корней) таковы: -44.5226, -9.5524, -0.6374, -0.0639. Значения безразмерного аргумента Гаусса U_i по ЛМ при исходных значениях K_{ϕ} и T_d представлены в табл. 2.

		Таблица 2
$U_{_{K\!J\!I\!M}}$	$U_{\it CГЛM}$	$U_{{ m K}{ m \Gamma}{ m I}{ m M}}$
3,28	4,40	7,49
2,90	300,4	9,55
4,13	6,3	7,19
1,46	2,33	0.88

Начальное значение коэффициента шага для K_{ϕ} равно +2, для T_d - -0.1. Минимальное значение коэффициента шага – 0.0001.

Оптимальные значения параметров K_{d} и T_{d} : K_{d} = 12,28; T_{d} = 0,5.

Корни системы (1) при оптимальных значениях параметров равны: -44.5176, -9.6708, -0.5801+1.2317i, -0.5801-1.2317i, -0.0645+0.2660i, -0.0645-0.2660i.

Невозмущенные значения КФ, соответствующие оптимальным значениям параметров таковы: -44.5176, -9.6708, -0.5801, -0.0645.

Соответствующие оптимальным значениям параметров значения аргументов *U_i* представлены в табл. 3.

		Таблица 3
$U_{{\it K\!\it Л}{\it M}}$	$U_{{\it CFJM}}$	$U_{{ m KFJIM}}$
3,28	4,40	7,49
2,96	244,7	18,4
5,95	6,67	6,80
6,61	9,25	10,77

В табл. 4 приведены для сравнения полученные безразмерные аргументы Гаусса при исходных и оптимальных значениях параметров K_{ϕ} и T_{d} .

Таблица 4

Исходные параметры	Оптимальные параметры	Исходные параметры	Оптимальные параметры	Исходные параметры	Оптимальные параметры
U _{KЛM}		U _{сглм}			
3,28	3,28	4,40	4,41	7,49	7,49
2,90	2,96	300,4	244,7	9,55	18,4
4,13	5,95	6,3	6,67	7,19	6,80
1,46	6,61	2,33	9,25	0.88	10,77

Время выполнения оптимизации – 2.8 мин.

Траектория оптимизации параметра K_{ϕ} по характеристическим корням системы (1) представлена на рис. 3.

Выводы

В результате проведенной оптимизации значительно увеличены значения безразмерных аргументов Гаусса, а следовательно, и вероятности устойчивости системы. Выполнение оптимизации параметров по упрощенным условиям устойчивости занимает примерно в 40 раз меньше машинного времени и менее требовательно к ресурсам компьютера по сравнению с оптимизацией по корням системы. Однако метод оптимизации по корням позволяет более полно учесть всю специфику проектируемого объекта.

Список литературы

1. Лежнина М.В. Оптимизация параметров систем стабилизации ракетносителей по критерию вероятности устойчивости// Открытые информационные и компьютерные интегрированные технологии. - Х.: НАКУ «ХАИ». – 2004. – Вып. 23. - С. 107-111.

2. Игдалов И.М., Кучма Л.Д., Поляков Н.В., Шептун Ю.Д. Ракета как объект управления: Учебник /Под ред. акад. С.Н. Конюхова. – Днепропетровск: АРТ-ПРЕСС, 2004.– 544 с.

3. Сухоребрый В.Г. Вероятностные методы проектирования технических объектов. – Х: ХАИ, 1990. – 103 с.

4. Ермаков С.М., Михайлов Г.А. Курс статистического моделирования. – М.: Наука, 1976. – 319 с.

5. Айзенберг Я.Е., Сухоребрый В.Г. Проектирование систем стабилизации носителей космических аппаратов. – М.: Машиностроение, 1986.- 220с.