Метод анализа характеристик локального НДС при растяжении пластин с отверстиями

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»,

Концентрация напряжений является одним из факторов, снижающих усталостную долговечность конструкции. Как бы хорошо ни была спроектирована конструкция, в ней всегда есть концентраторы напряжений в виде отверстий, вырезов, галтельных переходов и др. Наиболее распространенным типом концентраторов являются одиночные и групповые отверстия. Для устранения заусенцев, образующихся после сверления отверстий, выполняют фаску. Вопрос анализа напряженно-деформированного состояния элементов конструкции с отверстиями и определения коэффициентов концентрации напряжений в ней достаточно хорошо изучен [1-7]. Следует отметить, что все расчеты и аналитические зависимости для определения коэффициентов концентрации напряжений справедливы в области упругих деформаций. Однако локальные напряжения в авиационных конструкциях в зоне концентрации напряжений достигают уровня, превышающего предел текучести материала. Таким образом, необходимо учитывать в расчетах нелинейное поведение материала И технологические отклонения при выполнении отверстий.

Методы расчетной оценки усталостной долговечности элементов с отверстиями базируются на результатах испытаний базовых образцов и натурных конструкций, расчета характеристик локального НДС и данных эксплуатации.

Задача конструктора при проектировании зоны, содержащей концентраторы напряжений, состоит в грамотном выборе геометрических параметров, формы и расположения отверстий с учетом результатов проведенных исследований [4].

Целью данной работы является анализ характеристик локального НДС пластин с одиночным отверстием, тремя и пятью отверстиями с фаской 0,8×45°, 0,5×45° и без фаски, а также анализ влияния технологических отклонений на характеристики локального НДС, концентрацию напряжений и деформаций нелинейного поведения материала. При учетом анализе характеристик НДС вблизи концентратора локального не учитывается шероховатость обрабатываемой поверхности и дефекты (заусенцы), возникающие в процессе выполнения отверстий.

В качестве образцов пластин с отверстиями рассмотрены стандартные образцы (B/d=6), применяемые при проведении усталостных испытаний.

Геометрия образцов и основные размеры показаны на рис. 1. Образцы изготовлены из алюминиевого сплава Д16Т [8].

Рис. 1. Образцы пластин с отверстиями:

а – с одним отверстием, б – с тремя отверстиями, в – с пятью отверстиями

Для анализа характеристик локального НДС и определения коэффициентов концентрации напряжений и деформаций применен метод конечных элементов, реализованный в системе ANSYS.

Метод определения характеристик локального НДС и определения коэффициентов концентрации напряжений и деформаций включает в себя:

1. Построение геометрических моделей пластин с отверстиями.

- 2. Разработку расчетных схем.
- 3. Задание кривой деформирования материала.
- 4. Создание конечно-элементных моделей пластин с отверстиями.

5. Задание граничных условий и приложение внешних нагрузок.

6. Формирование расчетных случаев.

7. Расчет характеристик локального НДС пластины с отверстиями.

8. Расчет коэффициентов концентрации напряжений и деформаций.

9. Качественный и количественный анализ распределения главных растягивающих напряжений, деформаций и удельной энергии деформирования в пластине в зоне отверстий.

10. Определение максимальных растягивающих напряжений, деформаций и удельной энергии деформирования эквивалентного отнулевого цикла в зонах их концентрации.

При анализе использованы плоские и трехмерные модели пластин с отверстиями, учтены также условия симметрии.

Конечно-элементные модели пластин с отверстиями показаны на рис. 2-7.

Рис. 2. Конечно-элементная модель пластины с отверстием, фаска 0,5 мм (показана 1/8 модели пластины)

Рис. 3. Конечно-элементная модель пластины с отверстием, без фаски (показана 1/4 модели пластины)

Рис. 4. Конечно-элементная модель пластины с тремя отверстиями, фаска 0,5 мм, перемычка 12 мм (показана 1/8 модели пластины)

Рис. 5. Конечно-элементная модель пластины с тремя отверстиями, без фаски, перемычка 12 мм (показана 1/4 модели пластины)

Рис. 6. Конечно-элементная модель пластины с тремя отверстиями, без фаски, перемычка 12 мм, центральное отверстие смещено на 2 мм (показана 1/2 модели пластины)

Рис. 7. Конечно-элементная модель пластины с пятью отверстиями, без фаски, перемычка 12 мм (показана 1/4 модели пластины)

Образцы нагружаются растягивающими напряжениями, прикладываемыми в сечении брутто. Величина напряжений соответственно составляет 100, 130, 150 и 200 МПа.

Получены характеристики локального НДС пластин с отверстиями, определены величины главных растягивающих напряжений и деформаций в зоне концентраторов (рис. 8–15).

Рис. 8. Характер распределения главных растягивающих напряжений в пластине с отверстием: а – фаска 0,5×45°, б – без фаски

Рис. 9. Характер распределения главных растягивающих напряжений в пластине с тремя отверстиями: а – фаска 0,5×45°, б – без фаски

Рис. 10. Характер распределения главных растягивающих напряжений в пластине с тремя отверстиями (без фаски, центральное отверстие смещено на 2 мм)

Рис. 11. Характер распределения главных растягивающих напряжений в пластине с пятью отверстиями

Рис. 12. Характер распределения главных растягивающих деформаций в пластине с отверстием: а – фаска 0,5×45°, б – без фаски

Рис. 13. Характер распределения главных растягивающих деформаций в пластине с тремя отверстиями: а – фаска 0,5×45°, б – без фаски

Рис. 14. Характер распределения главных растягивающих деформаций в пластине с тремя отверстиями (без фаски, центральное отверстие смещено на 2 мм)

Рис. 15. Характер распределения главных растягивающих деформаций в пластине с пятью отверстиями

Рассчитаны коэффициенты концентрации напряжений и деформаций (см. рис. 16, 17).

 $σ_{{\scriptscriptstyle{\mathsf{бр}}},}$ ΜΠа

Рис. 16. Влияние уровня нагружения и числа отверстий на коэффициент концентрации напряжений:

- 1 пластина с отверстием Ø 8,006 мм, фаска 0,8×45°;
- 2 пластина с отверстием \varnothing 8,006 мм, фаска 0,5×45°;
- 3 пластина с отверстием Ø 8,006 мм без фаски, 2-D анализ;
- 4 пластина с тремя отверстиями ∅ 8,006 мм, фаска 0,8×45°, крайнее отверстие;
- 5 пластина с тремя отверстиями ∅ 8,006 мм, фаска 0,5×45°, крайнее отверстие;
- 6 пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие;
- 7 пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, центральное отверстие, смещение 2 мм;
- 8 пластина с пятью отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие;
- 9 пластина с пятью отверстиями Ø 8,006 мм, без фаски [2]

 $\sigma_{\text{бр,}}$ МПа

- 1 пластина с отверстием Ø 8,006 мм, фаска 0,8×45°;
- 2 пластина с отверстием Ø 8,006 мм, фаска 0,5×45°;
- 3 пластина с отверстием Ø 8,006 мм без фаски, 2-D анализ;
- 4 пластина с тремя отверстиями ∅ 8,006 мм, фаска 0,8×45°, крайнее отверстие;
- 5 пластина с тремя отверстиями Ø 8,006 мм, фаска 0,5×45°, крайнее отверстие;
- 6 пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие;
- 7 пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, центральное отверстие, смещение 2 мм;
- 8 пластина с пятью отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие

Исходный цикл нагружения приведен к эквивалентному отнулевому циклу по формуле Одинга.

Для этого:

1. Определены значения амплитуды напряжений, деформаций и удельной энергии деформирования в зоне вероятного усталостного разрушения в сечениях по осям отверстий.

2. Рассчитаны максимальные напряжения, деформации и удельная энергия деформирования эквивалентного отнулевого цикла в зоне вероятного усталостного разрушения.

3. Определены максимальные значения рассчитываемых в п. 2 параметров во всем диапазоне эксплуатационных нагрузок.

По результатам расчета построены графики изменения максимальных напряжений, деформаций и удельной энергии деформирования эквивалентного отнулевого цикла во всем диапазоне эксплуатационных нагрузок (рис. 18–20).

Рис. 18. Влияние уровня нагружения и числа отверстий на изменение максимальных главных растягивающих напряжений эквивалентного отнулевого цикла:

- 1 пластина с отверстием Ø 8,006 мм, фаска 0,8×45°;
- 2 пластина с отверстием Ø 8,006 мм, фаска 0,5×45°;
- 3 пластина с отверстием Ø 8,006 мм, без фаски, 2-D анализ;
- 4 пластина с тремя отверстиями Ø 8,006 мм, фаска 0,8×45°, крайнее отверстие;
- 5 пластина с тремя отверстиями ∅ 8,006 мм, фаска 0,5×45°, крайнее отверстие;
- 6 пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие;
- 7 пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, центральное отверстие, смещение 2 мм;
- 8 пластина с пятью отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие

 $σ_{\text{бр,}}$ ΜΠa

- Рис. 19. Влияние уровня нагружения и числа отверстий на изменение максимальных главных растягивающих деформаций эквивалентного отнулевого цикла:
 - 1 пластина с отверстием Ø 8,006 мм, фаска 0,8×45°;
 - 2 пластина с отверстием Ø 8,006 мм, фаска 0,5×45°;
 - 3 пластина с отверстием Ø 8,006 мм, без фаски, 2-D анализ;
 - 4 пластина с тремя отверстиями ∅ 8,006 мм, фаска 0,8×45°, крайнее отверстие;
 - 5 пластина с тремя отверстиями Ø 8,006 мм, фаска 0,5×45°, крайнее отверстие;
 - 6 пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие;
 - 7 пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, центральное отверстие, смещение 2 мм;
 - 8 пластина с пятью отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие

- 1 пластина с отверстием Ø 8,006 мм, фаска 0,8×45°;
- 2 пластина с отверстием Ø 8,006 мм, фаска 0,5×45°;
- 3 пластина с отверстием Ø 8,006 мм, без фаски, 2-D анализ;
- 4 пластина с тремя отверстиями ∅ 8,006 мм, фаска 0,8×45°, крайнее отверстие;
- 5 пластина с тремя отверстиями ∅ 8,006 мм, фаска 0,5×45°, крайнее отверстие;
- 6 пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие;
- 7 Пластина с тремя отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, центральное отверстие, смещение 2 мм;
- 8 пластина с пятью отверстиями Ø 8,006 мм, без фаски,
 2-D анализ, крайнее отверстие

В целях удобства использования, полученные результаты представлены в виде таблиц (см. табл. 1–5).

Таблица 1

Значения коэффициентов концентрации напряжений для различных конфигураций пластин с отверстиями

N⁰	Наименование	Κσ		
п/п		_{ббр} = =100 МПа	_{ббр} = =130 МПа	_{ббр} = =150 МПа
1	Пластина с отверстием ∅8,006 мм, фаска 0,8 мм	3,36	2,90	2,61
2	Пластина с отверстием ∅8,006 мм, фаска 0,5 мм	3,19	2,77	2,42
3	Пластина с отверстием ∅8,006 мм, без фаски	3,06	2,75	2,39
4	Пластина с тремя отверстиями Ø8,006 мм, фаска 0,8 мм (крайнее отверстие)	2,88	2,84	2,51
5	Пластина с тремя отверстиями ∅8,006 мм, фаска 0,5 мм (крайнее отверстие)	2,75	2,73	2,40
6	Пластина с тремя отверстиями Ø8,006 мм, без фаски (крайнее отверстие)	2,63	2,63	2,37
7	Пластина с тремя отверстиями Ø8,006 мм, без фаски, центральное отв. смещено на 2 мм (центральное отверстие)	2,85	2,85	1,90
8	Пластина с пятью отверстиями Ø8,006 мм, без фаски (крайнее отверстие)	2,62	2,62	2,36

Таблица. 2

Значения коэффициентов концентрации деформаций для различных конфигураций пластин с отверстиями

Nº	Наименование	Κε		
п/п		σ _{бр} =	σ _{бр} =	σ _{бр} =
		=100 МПа	=130 МПа	=150 МПа
1	Пластина с отверстием Ø8,006 мм, фаска 0,8 мм	3,28	2,76	2,45
2	Пластина с отверстием Ø8,006 мм, фаска 0,5 мм	3,17	2,71	2,38
3	Пластина с отверстием Ø8,006 мм, без фаски	3,05	2,71	2,37
4	Пластина с тремя отверстиями Ø8,006 мм, фаска 0,8 мм (крайнее отверстие)	2,81	2,75	2,4

Окончание табл. 2

N⁰	Наименование	Κε		
п/п		σ _{бр} =	σ _{бр} =	σ _{бр} =
		=100 МПа	=130 МПа	=150 МПа
5	Пластина с тремя отверстиями			
	Ø8,006 мм, фаска 0,5 мм	2,72	2,70	2,36
	(крайнее отверстие)			
6	Пластина с тремя отверстиями			
	Ø8,006 мм, без фаски (крайнее	2,82	2,82	2,40
	отв.)			
7	Пластина с тремя отверстиями			
	Ø8,006 мм, без фаски,	2.61	2.60	2 36
	центральное отв. смещено на	2,01	2,00	2,50
	2 мм (центральное отверстие)			
8	Пластина с пятью отверстиями			
	Ø8,006 мм, без фаски	2,62	2,62	2,36
	(крайнее отверстие)			

Таблица 3

Значения максимальных главных напряжений эквивалентного отнулевого цикла для различных конфигураций пластин с отверстиями

Nº	Наименование	$\sigma_{ m 1max}^{ m 0}$, МПа		
п/п		_{ббр} = =100 МПа	_{ббр} = =130 МПа	_{ббр} = =150 МПа
1	Пластина с отверстием ∅8,006 мм, фаска 0,8 мм	335	370	375
2	Пластина с отверстием ∅8,006 мм, фаска 0,5 мм	327	365	369
3	Пластина с отверстием Ø8,006 мм, без фаски	306	355	359
4	Пластина с тремя отверстиями Ø8,006 мм, фаска 0,8 мм (крайнее отверстие)	287	369	370
5	Пластина с тремя отверстиями ∅8,006 мм, фаска 0,5 мм (крайнее отверстие)	282	363	365
6	Пластина с тремя отверстиями Ø8,006 мм, без фаски (крайнее отверстие)	263	342	354
7	Пластина с тремя отверстиями Ø8,006 мм, без фаски, центральное отв. смещено на 2 мм (центральное отверстие)	285	360	371
8	Пластина с пятью отверстиями Ø8,006 мм, без фаски (крайнее отверстие)	262	340	354

Таблица 4

Значения максимальных главных деформаций эквивалентного отнулевого цикла для различных конфигураций пластин с отверстиями

Nº	Наименование	$arepsilon_{1\mathrm{max}}^{0}$, МПа		
п/п.		_{ббр} = =100 МПа	_{ббр} = =130 МПа	_{ббр} = =150 МПа
1	Пластина с отверстием ∅8,006 мм, фаска 0,8 мм	0,00454	0,0048	0,0047
2	Пластина с отверстием ∅8,006 мм, фаска 0,5 мм	0,00445	0,0048	0,0047
3	Пластина с отверстием ∅8,006 мм, без фаски	0,0042	0,0048	0,0048
4	Пластина с тремя отверстиями Ø8,006 мм, фаска 0,8 мм (крайнее отверстие)	0,0039	0,005	0,0048
5	Пластина с тремя отверстиями Ø8,006 мм, фаска 0,5 мм (крайнее отв.)	0,0038	0,0049	0,0048
6	Пластина с тремя отверстиями Ø8,006 мм, без фаски (крайнее отверстие)	0,0036	0,0047	0,0048
7	Пластина с тремя отверстиями Ø8,006 мм, без фаски, центральное отв. смещено на 2 мм (центр. отв.)	0,0039	0,0051	0,0049
8	Пластина с пятью отверстиями Ø8,006 мм, без фаски (крайнее отверстие)	0,0032	0,0041	0,0047

Таблица 5

Значения максимальной удельной энергии деформирования эквивалентного отнулевого цикла для различных конфигураций пластин с отверстиями

Nº	Наименование	w _{1max} , МПа		
п/п		_{ббр} = 1=00 МПа	_{ббр} = =130 МПа	_{ббр} = =150 МПа
1	Пластина с отверстием Ø8,006 мм, фаска 0,8 мм	1,52	1,88	1,95
2	Пластина с отверстием Ø8,006 мм, фаска 0,5 мм	1,46	1,84	1,92
3	Пластина с отверстием Ø8,006 мм, без фаски	1,30	1,74	1,77
4	Пластина с тремя отверстиями Ø8,006 мм, фаска 0,8 мм (крайнее отверстие)	1,12	1,83	1,88

Окончание табл. 5

Nº	Наименование			
п/п		_{ббр} = =100 МПа	_{ббр} = =130 МПа	_{ббр} = =150 МПа
5	Пластина с тремя отверстиями ∅8,006 мм, фаска 0,5 мм (крайнее отверстие)	1,1	1,79	1,84
6	Пластина с тремя отверстиями ∅8,006 мм, без фаски (крайнее отверстие)	0,96	1,62	1,73
7	Пластина с тремя отверстиями Ø8,006 мм, без фаски, центральное отв. смещено на 2 мм (центральное отверстие)	1,13	1,77	1,90
8	Пластина с пятью отверстиями ∅8,006 мм, без фаски (крайнее отверстие)	0,95	1,60	1,72

Анализ полученных результатов показывает следующее:

1. Пластина с одиночным отверстием обладает наихудшими характеристиками НДС из всех рассмотренных в работе вариантов.

2. Выполнение дополнительных отверстий (вариант – три и пять отверстий) приводит к уменьшению величины действующих напряжений и деформаций в зоне концентрации напряжений в 1,16–1,24 раза.

3. Выполнение фаски приводит к незначительному росту концентрации напряжений и деформаций по сравнению с концентрацией напряжений и деформаций в пластинах с отверстиями без фаски.

4. Смещение оси центрального отверстия на 2 мм приводит к увеличению коэффициента концентрации напряжений и деформаций в среднем в 1,004 раза. По своим характеристикам пластина со смещенным центральным отверстием близка к пластине с отверстием.

5. Применение трех отверстий вместо одного приводит к снижению максимальных главных растягивающих напряжений эквивалентного отнулевого цикла в 1,01–1,18 раза, максимальных главных растягивающих деформаций эквивалентного отнулевого цикла в 1,17 раза и максимальной удельной энергии деформирования эквивалентного отнулевого цикла в 1,04 – 1,36 раза.

6. Использование пяти отверстий вместо одного приводит к снижению максимальных главных растягивающих напряжений эквивалентного отнулевого цикла в 1,05–1,25 раза, максимальных главных растягивающих деформаций эквивалентного отнулевого цикла в 1,23 раза и максимальной удельной энергии деформирования эквивалентного отнулевого цикла в 1,12–1,53 раза.

Выводы:

1. Разработан метод определения характеристик локального НДС пластин с концентраторами напряжений в виде одиночных и групповых отверстий.

2. Разработанный метод учитывает пластическое поведение материала пластины и историю нагружения.

3. Исследовано влияние выполнения фаски и смещения оси отверстия на характеристики локального НДС и концентрацию напряжений и деформаций.

4. Полученные данные могут быть использованы для прогнозирования усталостной долговечности пластин с отверстиями.

Список литературы

1. Петерсон Р. Коэффициенты концентрации напряжений. Графики и формулы для расчета конструктивных элементов на прочность. – М.: Мир, 1977. – 302 с.

2. Савин Г.Н., Тульчий В.И. Справочник по концентрации напряжений. К.: Вища школа, 1976. – 412 с.

3. Хейвуд Р. Б. Проектирование с учетом усталости / Пер. с англ; Под ред. Образцова И. Ф. – М.: Машиностроение, 1969. – 504 с.

4. Гребенников А.Г. Методология интегрированного проектирования и моделирования сборных самолетных конструкций. – Х., Нац. аэрокосм. ун-т «ХАИ», 2006. – 532 с.

5. Исследование концентрации напряжений в нижних панелях крыла методами фотоупругости / В.П. Рычик, А.Е. Литвиненко, Е.Т. Василевский и др.// Усталостные характеристики летательных аппаратов. – Х., 1977. – Вып. 1. – С. 66–74.

6. Волов А.Г.,. Гребеников В.А, Гуменный А.М. Влияние локального утолщения на характеристики действительного НДС и циклическую долговечность пластин с зенкованным отверстием // Открытые информационные и компьютерные технологии. – Х., 1998. Вып. 21. – С. 211-229

7. Гребеников А.Г., Светличный С.П. Исследование овализации отверстий и напряженно-деформированного состояния в пластине с усталостной трещиной в системе ANSYS 5.3 // Открытые информационные и компьютерные технологии. – Х., 1998 – Вып. 2. – С. 79-95.

8. Авиационные материалы. Т.4. Алюминиевые и бериллиевые сплавы / Под общ. ред. докт. техн. наук Р.Е. Шалина. М.: ОНТИ – 1982. – 627 с.