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Определение запасов устойчивости движения является одним из главных 
вопросов динамического проектирования. Оценка устойчивости движения ракет-
носителей (РН) представляет собой достаточно сложную задачу, так как 
возмущенное движение ракеты описывается системой дифференциальных 
уравнений с переменными коэффициентами, имеющими существенные 
случайные разбросы, а возмущающие воздействия представляют собой 
нестационарные случайные функции. Для исследования этой задачи в ракетной 
технике широко применяется понятие технической устойчивости движения, или 
устойчивости, рассматриваемой на конечном интервале времени по отношению к 
начальным возмущениям и действующим возмущающим силам и моментам [8]. 
Определение запаса технической устойчивости является особо важным моментом 
при оценке управляемости и связано с определением запаса по загрузке 
управляющих органов РН. Максимальную загрузку органов управления с учетом 
разбросов характеристик системы целесообразно определять на участке 
прохождения ракетой максимальных скоростных напоров, т.е. на  ступени 
полета.  

Ι

Сложность задачи по оценке технической устойчивости, как указывалось 
выше, обусловлена тем, что характеристики ракеты и возмущающие воздействия 
описываются случайными функциями, поэтому наиболее корректным методом 
решения задачи является вероятностный подход. Метод статистического 
моделирования является наиболее общим методом решения сложных 
вероятностных задач и позволяет учесть вероятностные характеристики большого 
количества случайных величин.  

Существуют различные методы оценки технической устойчивости объекта, 
например: метод сечений, метод, использующий теорию выбросов случайных 
процессов, метод экстремальных значений [2,3,4,5,6]. 

Эти методы позволяют получить приближенный результат. Для оценки 
степени приближенности вышеперечисленных методов необходимо получить 
результат, наиболее близкий к реальному ― эталонный результат. 

Целью данного исследования является разработка эталонной модели для 
оценки вероятности потери технической устойчивости. 

 
Эталонный объект 

 
Ракета с автоматом стабилизации представляет собой сложную замкнутую 

систему, динамика которой в общем случае описывается нелинейными 
дифференциальными уравнениями с переменными коэффициентами. Эти 
уравнения учитывают влияние жидкого топлива и упругие колебания корпуса 
ракеты. Для отклонения управляющих органов оценка технической устойчивости 
обычно проводится по системе уравнений, описывающей поведение ракеты как 
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абсолютно твердого жесткого тела. Наибольшее возмущающее действие от ветра 
на полет  ступени оказывается в канале рыскания. Динамика ракеты может быть 
описана системой дифференциальных уравнений, которая в канале рыскания 
имеет вид [6]: 
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где ψ ― координата, характеризующая вращение ракеты вокруг центра масс (угол 
рыскания);  

δ ― угол отклонения управляющих органов;  
z ― координата, характеризующая перемещение центра масс ракеты; 

)(taij ― функции независимой переменной t, выражающие закон изменения 
параметров ракеты;  

21 ,TT ― постоянные времени автомата стабилизации (АС); 

ψK ― коэффициент усиления по каналу рыскания, , ― 
постоянная времени дифференцирования; 

ψψ KTK d=′ dT

)(tF  и )(tM ― приведенные возмущающие силы и моменты в функции 
времени;  

gψ ― угол рыскания, измеряемый датчиком угла;  

zK ′― коэффициент усиления по скорости отклонения центра масс.  
Чтобы получить эталонный результат с достаточной для инженерных целей 

точностью, необходимо проведение статистического моделирования большого 
объема. Однако многократное решение системы дифференциальных 
уравнений (1) при сборе статистических данных — задача, существенным 
недостатком которой является время моделирования. Время решения системы (2) 
составляет 5,55 с для одного прохода. Следовательно, время проведения 
статистического моделирования объемом N=1 000 000 составит приблизительно 
1550 ч, что является неприемлемым.  

Поскольку основная загрузка органов управления связана с парированием 
возмущающих моментов, то для сокращения времени интегрирования 
целесообразно в качестве эталона рассматривать только уравнение моментов  

.

),()()(

1 ψψδδ

δψ

ψψ

ψδψψ

′⋅+⋅=+′⋅

−=⋅+⋅

′KKT

tMtata
 (2) 

В этой системе )()()( tWtatM z ⋅= ψ , где  ― ветровое воздействие на 
ракету.  

)(tW

Поскольку наибольшее значение угла отклонения управляющих органов 
управления приходится на период времени, когда на РН действует максимальный 
скоростной напор, целесообразно рассматривать не всю Ι  ступень, а только ее 
часть — участок с максимальными реализациями )(tδ .  

На рис. 1 показано среднее значение изменения функции )(tδ , полученное 
в результате моделирования объемом 3000 для диапазонов времени [ ]120..0∈t  
(пунктирная линия) и  (сплошная линия). В качестве вектора начальных [ 85..30∈t ]
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условий для интегрирования на интервале [ ]85..30∈t  задаются средние значения 
решений системы (2) в момент времени 30=t с, полученные при моделировании 
на интервале . [ ]120..0∈t

 
Рис. 1. Значения функции )(tδ , полученные моделированием  

для двух диапазонов времени 
 
На рис. 1 видно, что решение системы (2) в сокращенном интервале (с 

максимальными реализациями )(tδ ) является приемлемым и целесообразным 
для сокращения времени статистического моделирования. В табл. 1 приведено 
время решения системы уравнений, описывающей динамику РН для трех 
вышеизложенных вариантов: 

1) решение системы (1) в диапазоне времени [ ]120..0∈t ; 
2) решение системы (2) в диапазоне времени [ ]120..0∈t ; 
3) решение системы (2) в диапазоне времени [ ]85..30∈t . 

Таблица 1 
Вариант 
решения 

Диапазон 
времени t 

Время решения 
системы, с 

1 t Є [0..120] 5,55 
2 t Є [0..120] 1,65 
3 t Є [30..85] 0,85 

По данным, приведенным на рис. 1 и в табл. 1, видно, что проведение 
моделирования системы (2) на участке максимальных реализаций КФ сокращает 
время моделирования почти в 2 раза по сравнению с моделированием на всем 
интервале, и почти в 7 раз по сравнению с моделированием системы (1).  

При проведении статистического моделирования для определения 
технической устойчивости необходимо учитывать случайный характер 
возмущений, разбросов параметров ракеты, автомата стабилизации и 
характеристик атмосферы [6]. Таким образом, условием для оценки технической 
устойчивости РН является сохранение значения угла отклонения органов 
управления в допустимом диапазоне значений на рассматриваемом интервале 
времени: 

|δ (κ,η,t)| < Λ , (3) 
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где δ  ― значение функции угла отклонения управляющих органов РН, эта 
критериальная функция (КФ) изменяется в зависимости от времени t и 
возмущений; 

Λ  ― предельно допустимое значение угла отклонения δ . 
Номинальные значения параметров системы (2) и их разбросы η приведены 

в табл. 2. 
Таблица 2 

Обозначение 
параметра Наименование Номинальное 

значение  Разброс, % 

ψK  Коэффициент усиления по 
каналу рыскания 6 7 

dT  Постоянная времени 
дифференцирования 0,5 25 

1T  Постоянная времени АС 0,1108 20 

ψψa  Рис. 2 25 

ψδa  

Функции, выражающие закон 
изменения параметров ракеты Рис. 3 10 

 
Для учета влияния случайных возмущений и начальных условий на 

устойчивость РН изменение ветровых воздействий во времени задается в виде 
канонического разложения [6] 

,)()()( 0 ∑ ⋅+=
i

ii tVtWtW ϕ  (4) 

где ― систематическая составляющая скорости ветра; )(0 tW )(tiϕ ― неслучайные 
функции, называемые координатными; ― стандартные случайные числа, 
распределенные по нормальному закону. Таким образом, для различных наборов 
чисел  получим некоторые реализации профиля ветра. 

iV

iV

Номинальные значения коэффициентов  и  изменяются по 
времени, как показано на рис. 2 и 3. Графики изменения систематической 
составляющей ветра  и среднего значения координатных функций 

ψψa ψδa

)(0 tW )(tiϕ , 
показаны на рис. 4 и 5.  

 
 
 Рис. 2. Номинальное значение  Рис. 3. Номинальное значение 
 коэффициента   коэффициента  )(taψψ )(taψδ
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 Рис. 4. Систематическая  Рис. 5. Среднее значение  
 составляющая скорости ветра   координатных функций )(0 tW )(tiϕ  

 
 

Методика исследования и основные результаты 
 
Для решения системы дифференциальных уравнений (2) выбрана система 

Matlab, т.к. она является приемлемой базой для решения технических задач и 
удовлетворяет следующим требованиям: 

 
• максимально быстро и оптимальным образом производит расчеты; 
 
• удобно оперирует массивами данных большого объема; 

 
 
• имеет широкую библиотеку встроенных функций для удобной работы 

с данными; 
 
• выполняет множество компьютерных задач для поддержки научных и 

инженерных работ — начиная от сбора и анализа данных до 
разработки приложений; 

 
 
• совмещает возможности платформы для технических вычислений, 

визуализации данных с возможностью интеграции с другими 
приложениями и внешними базами данных. 

 
Порядок оценки технической устойчивости РН методом прямого 

статистического моделирования: 
 

1) задание объема моделирования  и N
x

N  — объема сохраняемых 

максимальных значений )(tδ ; 
 
2) генерация нормальных случайных чисел ; iv

 

 34



 
3) задание необходимых параметров дифференциальной системы 

уравнений с учетом случайных разбросов параметров; 
 
4) решение системы уравнений (2) и сохранение полученного 

статистического материала - максимальных значений )(tδ ; 
 

 
5) сортировка полученного массива реализаций максимальных значений и 

определение количества реализаций, превысивших допустимую границу 
устойчивости РН (см. условие (3)); 

 
6) определение вероятности потери технической устойчивости РН  при 

заданных условиях: 
Q

N
NQ Λ= , (5) 

где ― количество значений функции случайного аргумента, 
превысивших границу ; — объем моделирования. 

ΛN
Λ N

 
Как было описано выше, для оценки технической устойчивости РН 

рассматривается система (2). Для диапазона времени  проведено 
статистическое моделирование в объеме N=1000000 и сохранен массив 
максимальных реализаций 

[ 85..30∈t ]

)(tδ . Для Λ =0,3 (предельно допустимое значение угла 
отклонения управляющих органов) количество значений КФ, превысивших эту 
границу устойчивости, =48. По формуле (5) определена вероятность потери 
технической устойчивости исследуемого объекта: . 

ΛN
5108,4 −⋅

 
Оценка погрешности результата 

 
Оценим погрешность полученного результата, используя понятия 

доверительной вероятности и доверительного интервала [7]. Значение 
доверительной вероятности для аэрокосмической техники =0,95. 
Доверительный интервал определяет величина приемлемой погрешности оценки 

dP

QQ β=∆ , где β  ― относительная погрешность Q . Тогда доверительный интервал 
будет определяться диапазоном значений QQ ∆± . Поскольку результат 
статистического моделирования имеет нормальное распределение, для очень 
малых значений  (Q <0,0001) относительная погрешность находится по 
следующей формуле [7]: 

Q

QN
U d

⋅
=β , (6) 

 
где  ― безразмерный аргумент функции Гаусса, соответствующий 
доверительной вероятности, 

dU
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Таким образом, доверительный интервал для оценки :  Q

∈dQ  [3,5Е-05.. 6,1Е-05] 
(  ― доверительный интервал вероятности потери технической 

устойчивости РН). 
dQ

 
Выводы 

 
 

1. В результате проведенных исследований получено эталонное значение 
вероятности потери технической устойчивости РН. Для разработанной 
эталонной модели она составила 4,8Е-05 при объеме статистического 
моделирования N=1000000 реализаций. 

 
2. Оценена погрешность полученного результата и определен доверительный 

интервал ∈dQ  [3,5Е-05.. 6,1Е-05].  
 

3. Существенным недостатком прямого статистического моделирования 
являются большие затраты времени на интегрирование системы 
дифференциальных уравнений (моделирование объемом 1000000 
проводилось на ПК с процессором Intel 2400МГц и оперативной памятью 
256 М около 240 часов). 
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