Оценка вероятности потери технической устойчивости ракеты-носителя методом ускоренного статистического моделирования

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

Постановка проблемы, цель работы

Важным моментом при оценке управляемости ракеты-носителя (PH) является определение запаса технической устойчивости движения. Для решения этой задачи в работе [1] была разработана эталонная модель. Оценка вероятности технической устойчивости ракеты-носителя (PH) в вышеупомянутой работе произведена методом статистического моделирования. В результате проведенных исследований получен доверительный интервал вероятности потери устойчивости движения PH ($Q_d \in [3.5 \cdot 10^{-5} \dots 6.1 \cdot 10^{-5}]$ при объеме статистического моделирования N=1000000).

Метод оценки вероятности технической устойчивости РН, изложенный в работе [1], рассматривает устойчивость объекта на конечном интервале времени с учетом начальных возмущений и постоянно действующих возмущающих сил и моментов. Этот метод является наиболее подходящим для решения сложных вероятностных задач, т.к. позволяет учесть вероятностные характеристики большого количества параметров, имеющих случайные разбросы, и получить значение вероятности потери технической устойчивости, наиболее близкое к реальному значению, т.е. эталонное значение. Однако этот метод имеет существенный недостаток — большие затраты машинного времени на проведение эксперимента [1]. Эту проблему решает метод ускоренного статистического моделирования (УСМ) путем проведения моделирования с аппроксимирующей моделью исходной критериальной функции (КФ).

Целью данного исследования является определение приемлемости оценки вероятности потери технической устойчивости ракеты-носителя методом УСМ.

Объект исследования

Динамика ракеты в канале рыскания I ступени полета PH описывается системой дифференциальных уравнений с переменными коэффициентами. На этом участке ракета проходит максимальные скоростные напоры, и органы управления испытывают максимальную нагрузку. Поскольку основная загрузка органов управления на рассматриваемом этапе связана с парированием возмущающих моментов, то для сокращения времени проведения статистического моделирования в работе [1] рассматривались только уравнения моментов и автомата стабилизации. Для возможности сравнения полученных здесь результатов с эталонными [1] мы сохранили ту же динамическую схему.

$$a_{\psi\psi}(t) \cdot \psi + a_{\psi\delta}(t) \cdot \delta = -M(t);$$

$$T_1 \cdot \delta' + \delta = K_{\psi} \cdot \psi + K_{\psi'} \cdot \psi',$$
(1)

где ψ — координата, характеризующая вращение ракеты вокруг центра масс (угол рыскания); δ — угол отклонения управляющих органов; $a_{ij}(t)$ — функции, выражающие закон изменения параметров ракеты; T_1 — постоянная времени автомата стабилизации (AC); K_{ψ} — коэффициент усиления по каналу рыскания, $K_{\psi'} = T_d K_{\psi}$; T_d — постоянная времени дифференцирования; $\overline{M}(t)$ приведенный возмущающий момент в функции времени; $\cdot \psi_g$ — угол рыскания, измеряемый датчиком угла; $K_{z'}$ — коэффициент усиления по скорости отклонения центра масс. В этой системе $\overline{M}(t) = a_{\psi z}(t) \cdot W(t)$, где W(t) — ветровое воздействие на ракету.

Номинальные значения параметров системы (1) и их разбросы приведены в табл. 1.

Таблица 1

Обозначение параметра	Наименование	Номинальное значение	Разброс, %
K_{ψ}	Коэффициент усиления по каналу рыскания	6	7
T_d	Постоянная времени дифференцирования	0,5	25
T_1	Постоянная времени АС	0,1108	20
$a_{\psi\psi}$	Функции выражающие закон	См. рис. 1	25
$a_{\psi\delta}$	изменения параметров ракеты	См. рис. 2	10

Ветровые воздействия, учитывающие влияние случайных возмущений и начальных условий на устойчивость РН, представляются в виде канонического разложения [2]

$$W(t) = W_0(t) + \sum_i V_i \cdot \varphi_i(t), \tag{2}$$

где $W_0(t)$ — систематическая составляющая скорости ветра; $\varphi_i(t)$ — неслучайные функции, называемые координатными; V_i — стандартные случайные числа, распределенные по нормальному закону. Задавая V_i и подставляя их в (2) получим реализации профиля ветра с учетом высотной корреляции его значений.

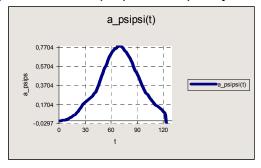


Рис. 1. Номинальное значение коэффициента $a_{\psi\psi}(t)$

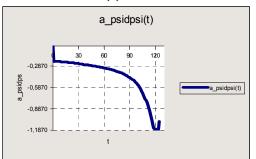
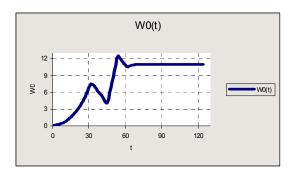


Рис. 2. Номинальное значение коэффициента $a_{w\delta}(t)$

Графики изменения систематической составляющей ветра $W_0(t)$ и среднего значения функций $\varphi_i(t)$ показаны на рис. 3 и 4.



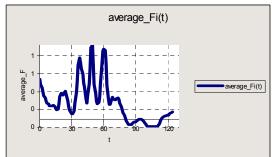


Рис. 3. Систематическая составляющая скорости ветра $W_0(t)$

Рис. 4. Среднее значение координатных функций $\varphi_i(t)$

Вероятность потери технической устойчивости будет определяться вероятностью выхода за допустимый уровень значения отклонения управляющих органов $\delta(t)$. В качестве условия технической устойчивости рассмотрим условие

$$|\delta\left(\kappa,\eta,t\right)| < \Lambda\,,\tag{3}$$

где δ — угол отклонения управляющих органов PH, эта критериальная функция (КФ) изменяется в зависимости от времени t и возмущений (параметрических η и внешних к); Λ — предельно допустимое значение угла отклонения δ .

Методика исследования. Основные результаты

Применение метода УСМ позволяет получить вероятность технической устойчивости с заданной точностью и значительно сокращает время моделирования по сравнению с обычным статистическим моделированием.

Порядок оценки технической устойчивости РН методом УСМ:

- 1) задание объема моделирования N и N_L объема сохраняемых максимальных значений $\delta(t)$;
- 2) генерация нормальных случайных чисел v_i ;
- 3) задание необходимых параметров системы дифференциальных уравнений (1) с учетом случайных разбросов параметров ;
- 4) построение аппроксимирующих моделей КФ для всех моментов времени на исследуемом отрезке;
- 5) нахождение N_{Λ} максимальных реализаций КФ, вычисленных по аппроксимирующей модели;
- 6) сортировка и сохранение массивов случайных реализаций КФ и разбросов параметров, соответствующих найденным максимальным реализациям КФ:
- 7) решение системы уравнений (1) и сохранение полученного статистического материала;

- 8) сортировка полученного массива реализаций КФ для фиксированного момента времени и определение количества реализаций, превысивших допустимую границу устойчивости РН (см. условие (3));
- 9) определение вероятности потери технической устойчивости РН при заданных условиях:

$$Q = \frac{N_{\Lambda}}{N} \,, \tag{5}$$

где N_{Λ} — количество значений функции случайного аргумента, превысивших границу Λ ; N — объем моделирования.

Для оценки технической устойчивости на исследуемом интервале времени построены следующие граничные модели КФ[4]:

- классическая линейная модель (КЛМ);
- компланарная линейная модель (КНЛМ);
- секущая граничная линейная модель (СЛМ);
- квадратичная модель (КМ);
- многомерная аппроксимирующая квадратичная модель (МКМ).

Все линейные модели определены в виде [3,4]

$$\lambda(t) = \delta_0(t) + \sum_{i=1}^k \delta_i(t) \cdot v_i + \lambda_0(t) + \sum_{i=1}^n b_i(t) \cdot \eta_i,$$

где $\lambda(t)$ — линейная модель КФ; $\lambda_0(t)$ — значение КФ при нулевых разбросах; $b_i(t)$ — коэффициенты линейных моделей КФ; η_i — случайные разбросы параметров, $i=\overline{1,n}$ (n — количество параметров со случайными разбросами), $\eta_i=v_i\cdot\sigma_i$, v_i — случайные числа, распределенные по нормальному закону, σ_i — с.к.о. разбросов параметров; $\delta_0(t)$ — систематическая составляющая ветровых возмущений; $\delta_i(t)$ — значение КФ при действии возмущения i-й функции $\varphi_i(t)$.

Квадратичная модель определена в виде

$$\lambda(t) = \delta_0(t) + \sum_{i=1}^k \delta_i(t) v_i + \lambda_0(t) + \sum_{i=1}^n b_i(t) \cdot \eta_i + \sum_{i=1}^n c_i(t) \cdot \eta_i^2,$$

где $b_i(t)$ и $c_i(t)$ — коэффициенты квадратичной модели КФ.

Модель многомерной аппроксимации КФ определена в виде

$$\lambda(t) = \delta_0(t) + \sum_{i=1}^k \delta_i(t) \cdot v_i + \lambda_0(t) + \sum_{i=1}^n b_i(t) \cdot \eta_i + \sum_{i=1}^n c_i(t) \cdot \eta_i^2 + \sum_{i < j} d_{ij}(t) \cdot \eta_i \cdot \eta_j ,$$

где $b_i(t), c_i(t)$ и $d_{ii}(t)$ — коэффициенты модели КФ.

Полученные значения некоторых коэффициентов для линейных и квадратичных моделей представлены в виде графиков на рис. 5 - 14.

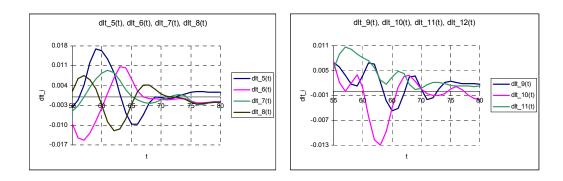


Рис. 5. Значения КФ при действии возмущения і-той $\varphi_i(t)$ функции ($\delta_i(t)$, i=1..11)

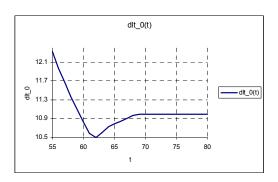


Рис. 6. Значение КФ при действии систематической составляющей ветровых возмущений $\delta_0(t)$

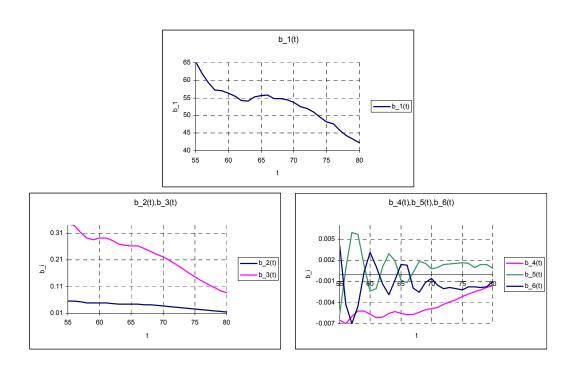


Рис. 7. Коэффициенты линейных моделей КФ $b_i(t)$ для КЛМ и КНЛМ

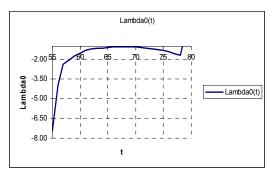


Рис. 8. Значение КФ при нулевых разбросах ($\lambda_0(t)$) для КНЛМ

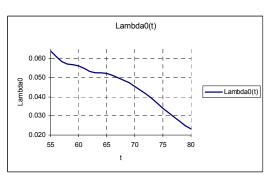
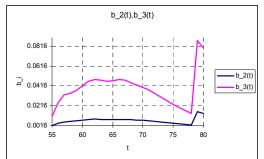


Рис. 9. Значение КФ при нулевых разбросах ($\lambda_0(t)$) для КЛМ и СЛМ



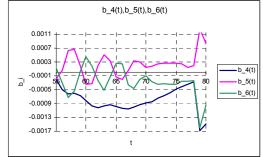
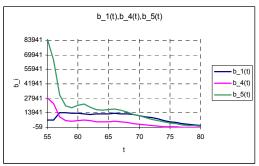


Рис. 10. Коэффициенты линейных моделей КФ $b_i(t)$ для СЛМ



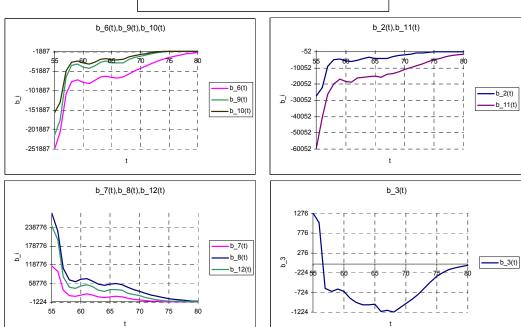


Рис. 11. Коэффициенты линейных моделей КФ $b_i(t)$ для КМ

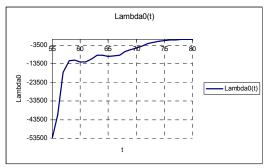


Рис. 12. Значение КФ при нулевых разбросах ($\lambda_{\scriptscriptstyle 0}(t)$) для КМ

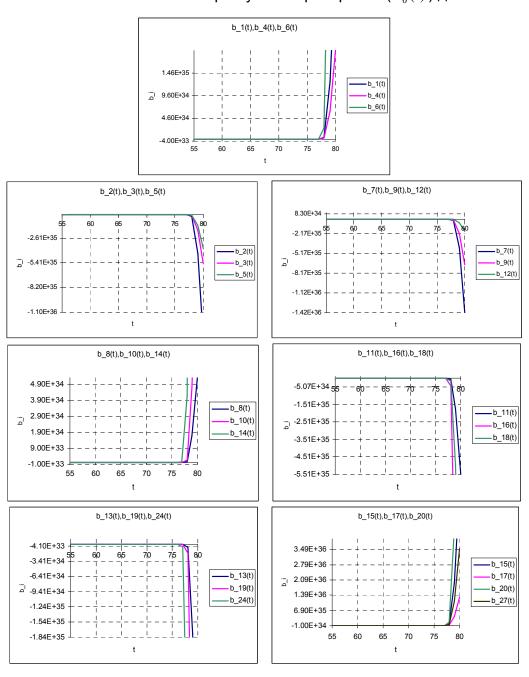


Рис. 13. Коэффициенты линейных моделей КФ $b_i(t)$ для МКМ

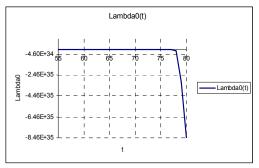


Рис. 14. Значение КФ при нулевых разбросах ($\lambda_0(t)$) для МКМ

Как отмечалось выше, для оценки технической устойчивости исследуемого объекта построены граничные модели и проведено УСМ [5,6] на интервале времени $t \in [30..85]$. Моделирование осуществлялось в объеме N=1000000. В качестве предельно допустимого значения угла отклонения управляющих органов принято значение $\Lambda = 0,3$. По полученному статистическому материалу определена вероятность потери технической устойчивости Q (5). Замеры затрат машинного времени показали, что для одинакового объема статистического материала УСМ заняло 30 минут, в то время как обычное статистическое моделирование проводилось примерно 240 часов.

В табл. 2 приведены полученные результаты.

		Таблица 2
Способ моделирования	$N_{_{\Lambda}}$	Q
КЛМ	2	2,0E-06
КНЛМ	2	2,0E-06
СЛМ	2	2,0E-06
KM	30	3,0E-05
MKM	72	7,2E-05

Анализ результатов, приведенных в табл. 2, показывает, что использование граничных линейных моделей при исследовании технической устойчивости методом УСМ является неприемлемым, т.к. приводит к большой погрешности конечного результата (отличие от эталонного результата на порядок). Модели КМ и МКМ позволяют получить весьма приемлемый по точности результат.

Поэтому для моделей КМ и МКМ определим объем моделирования с целью получения конечного результата с заданными точностью и доверительной вероятностью. Зададим точность конечного результата (вероятности потери технической устойчивости), равную 30% при доверительной вероятности P_d =0,95 (традиционная для аэрокосмической техники доверительная вероятность).

Объем статистического моделирования вычислим по формуле [3]

$$N = \frac{U_d^2}{\beta^2 \cdot Q},\tag{6}$$

где U_d — безразмерный аргумент функции Гаусса, соответствующий доверительной вероятности; Q — вероятность потери технической устойчивости РН; β — относительная погрешность Q. Для заданной точности 30% относительная погрешность $\beta=0.3$.

Для заданной доверительной вероятности P_d =0,95 получаем:

$$U_d = \arg\Phi(rac{1+P_d}{2})\,,\; \Phi$$
 — функция Гаусса;
$$U_d = \arg\Phi(rac{1+0.95}{2}) = 1{,}96\,.$$

По формуле (3) вычислим объемы моделирования:

для КМ

$$N_{KM} = \frac{1.96^2}{0.3^2 \cdot 3 \cdot 10^{-5}} = 1.42 \cdot 10^6;$$

• для МКМ

$$N_{MKM} = \frac{1.96^2}{0.3^2 \cdot 7.2 \cdot 10^{-5}} = 5.93 \cdot 10^5.$$

В результате УСМ, проведенного для вычисленных объемов, получены следующие значения вероятности потери технической устойчивости:

для КМ

$$Q_{KM} = 3.5 \cdot 10^{-5}$$
;

• для МКМ

$$Q_{MKM} = 5.2 \cdot 10^{-5}$$
.

Таким образом, обе оценки вероятности потери технической устойчивости попадают в доверительный интервал, полученный для эталонной модели.

Выводы

- 1. Для оценки вероятности потери технической устойчивости РН применение УСМ позволяет значительно сократить время моделирования. Для рассмотренного здесь примера выигрыш составил около 500 раз.
- 2. Использование квадратичных моделей и многомерных аппроксимирующих квадратичных моделей при проведении УСМ для оценки вероятности

- потери технической устойчивости РН позволяет получить результат с заданной точностью при заданной доверительной вероятности.
- 3. Результаты УСМ, полученные с использованием линейных граничных моделей, могут быть использованы лишь на начальных этапах проектирования РН.

Список литературы

- 1. Никифорова М.И. Эталонная модель для оценки вероятности потери технической устойчивости ракеты-носителя // Открытые информационные и компьютерные интегрированные технологии. Х.: НАКУ «ХАИ». 2007. Вып. 35. С. 30 36.
- 2. Игдалов И.М., Кучма Л.Д., Поляков Н.В., Шептун Ю.Д. Ракета как объект управления: Учебник /Под ред. акад. С.Н. Конюхова. Днепропетровск: APT-ПРЕСС, 2004. –544 с.
- 3. Лежнина М.В., Сухоребрый В.Г. Проектная оценка вероятности достижения объектами аэрокосмической техники предельных состояний. Х.: НАКУ «ХАИ», 2005. 184 с.
- 4. Лежнина М.В., Сухоребрый В.Г. Алгоритмы построения граничных линейных моделей критериальных функций для оценки вероятности работоспособности объектов аэрокосмической техники// Открытые информационные и компьютерные интегрированные технологии. Х.: НАКУ «ХАИ». 2002. Вып. 12. С. 63 74.
- 5. Сухоребрый В.Г. Оценка вероятности работоспособности технических объектов с помощью ускоренного статистического моделирования// Авиационно-космическая техника и технология. Х.: ХАИ. 2000. Вып. 19. С. 215 218.
- 6. Сухоребрый В.Г., Айзенберг Е.Я. Ускоренное статистическое моделирование для оценки вероятности устойчивости динамических систем со случайными параметрами // Математическое моделирование динамических процессов в системах с жидкостью. К.: ИМ АН УССР. 1988. С. 128 136