Исследование особенностей обтекания профиля при нестационарном движении

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

При современном развитии авиатранспортных средств возникает широкий круг задач, которые требуют решения. Среди этих задач важное место занимают вопросы аэродинамики профиля. В настоящее время существуют работы, посвященные исследованию мгновенно приведенного в движение профиля, которое начинается с постоянной скоростью [1]. В указанных работах используют метод дискретных вихрей, а свободная вихревая поверхность сходит по биссектрисе угла в задней кромке, что неверно. В настоящей работе исследованы особенности нестационарного безотрывного обтекания задней кромки профиля при реальных ускорениях. Задачу решают методом непрерывно распределенного вихревого слоя [2].

Рис. 1. Структура течения в окрестности передней кромки вихревого слоя, прилегающей к задней кромке профиля

В нестационарном движении циркуляция скорости вокруг профиля изменяется, поэтому с задней кромки профиля сходит вихревой слой интенсивностью γ . При обтекании задней кромки профиля могут реализоваться четыре типа течений [3], показанных на рис. 1 (угол раствора профиля в задней кромке показан утрированно большим). Направление схода потока показано стрелкой \vec{V} . Углы между скоростью \vec{V} и гранями профиля обозначены через $\theta_{\rm B}$ и $\theta_{\rm H}$. На рис. 1, а скорость лежит внутри угла между касательными к поверхностям профиля, оба угла $\theta_{\rm R}$ и $\theta_{\rm H}$ меньше π . В этом случае скорости V_R и V_R в вершинах

этих углов равны нулю. Поскольку интенсивность завихренности у удовлетворяет соотношению

$$\gamma = V_{\rm B} - V_{\rm H},\tag{1}$$

то в данном случае $\gamma = 0$, и такое течение реализовываться не может. На рис. 1, б скорость лежит вне угла между касательными к профилю, тогда $\theta_{_{\rm H}} > \pi$, и скорость в вершине нижнего угла стремится к бесконечности. Это противоречит постулату Жуковского-Чаплыгина, и данный вариант также не реализуется. На рис. 1, в скорость направлена по касательной к нижней поверхности профиля, угол $\theta_{R} < \pi$, следовательно скорость $V_{R} = 0$. Скорость V_{H} имеет место, и из равенства (1) следует

$$V_{_{\rm H}} = \gamma \,. \tag{2}$$

В формуле (2) величина у должна считаться отрицательной, так как при $\frac{\partial \Gamma}{\partial t} > 0$ направление вращения γ противоположно направлению обхода циркуляции вокруг профиля. Таким образом, поле течения имеет вид, показанный на рис. 1, в, и реализуется при ускоренном движении профиля. Течение, изображенное на рис. 1, г, возникает при движении с торможением, когда $\frac{\partial \Gamma}{\partial t} < 0$.

Перепад давления определяем из интеграла Коши-Лагранжа [2]

$$\Delta p = \rho \left(V_0 \gamma + \frac{\partial \Gamma}{\partial t} \right). \tag{3}$$

Здесь V₀ - скорость точек вихревой поверхности (скорость в смысле главного значения), которая в плоских задачах может быть определена по формуле

$$\mathbf{V}_0 = \frac{\mathbf{V}_{\scriptscriptstyle \mathrm{B}} + \mathbf{V}_{\scriptscriptstyle \mathrm{H}}}{2} \, .$$

Циркуляция Г в данном случае должна быть подсчитана по замкнутому контуру, охватывающему профиль и проходящему через его заднюю кромку. Она равна сумме интенсивностей вихревых слоев, моделирующих профиль.

Учитывая, что при ускорении $V_{_{\rm B}}=0$, а $V_{_{\rm H}}=\gamma$, получаем

Следовательно,

$$V_0 = \frac{\gamma}{2}$$

На задней кромке профиля перепад давления должен быть равен нулю. Этот перепад должен совпадать с перепадом давления в точке свободной вихревой поверхности, примыкающей к задней кромке профиля. Поскольку $\Delta p = 0$, из формулы (3) имеем

2

$$\left|\frac{\partial\Gamma}{\partial t}\right| = \frac{\gamma^2}{2}.$$

$$\gamma = \sqrt{2}\left|\frac{\partial\Gamma}{\partial t}\right|.$$
(4)

При определении интенсивности вихревых слоев, моделирующих профиль, удобно использовать метод непрерывно распределенного вихревого слоя. Суть метода заключается в том, что неизвестное решение закона распределения интенсивности вихревого слоя вдоль контура профиля заменяем одномерным кубическим сплайном [4]. Сплайн проходит через неизвестные значения интенсивностей γ_i на каждом i-м участке в узловых точках профиля t_i (рис.2).

Рис. 2. Задание кубическим сплайном закон распределения интенсивности вихревого слоя $\gamma(\bar{\ell})$ вдоль профиля длиной ℓ

На каждом i-м участке контура профиля закон распределения интенсивности вихревого слоя $\gamma(\bar{\ell})_i$ можно представить в виде

$$\gamma(\overline{\ell})_i = \sum_{k=1}^4 C_{i,k} \cdot \overline{\ell}^{k-1}$$
,

где С_{і,к} - коэффициенты сплайна, определяющие сам закон распределения;

l - безразмерная относительная длина участка профиля, которая изменяется в пределах 0...1.

Для прохождения кубического сплайна необходимо выполнить условия непрерывности сплайна по функции, по первой и второй производным в узловых точках, и прохождению через исходные точки сплайна. Если число точек в контуре профиля составляет n, то количество неизвестных при обычной интерполяции составляет 4n. Указанные условия непрерывности дают только 4n-2 уравнения. Поэтому дополнительными выступают условия, заключающиеся в том, что вторые производные на концах контура профиля равны нулю. В матричном виде эти условия можно записать в следующем виде:

$D \times C = \Phi$,

где С – вектор коэффициентов сплайна, имеющий вид

 $0 \ 0 \ 0$. 0 0 . . 0 0 . 0 0... 0 0 0 0 0 0 $^{-1}$ 1 0 D = 0 0 -1 0 0 . . . 3 0 . -1-1. . . 0 0 0 0 -13 0 0 1 . 0 3 0 0 . 0 1 0 . 0 0 0 0 . . 0 0

При этом неизвестные значения интенсивностей Ф выражаем через неизвестные коэффициенты закона распределения интенсивности С. Для определения коэффициентов С находим обратную матрицу \overline{D} и тем самым выражаем коэффициенты С через значения интенсивностей Ф, т.е.

$C = \overline{D} \times \Phi$.

Значение интенсивностей Ф в узловых точках определяем из условия непротекания на контуре профиля. Учитывая вихревую пелену, сошедшую с задней кромки профиля, интенсивность которой для каждого момента времени находим из формулы (4), для некоторой точки р на профиле можно записать условие непротекания

$$\oint_{l} \frac{\gamma(l)dl}{r_{p}^{'}(l)} = V_{p}^{'} + \int_{0}^{L} \frac{\gamma_{n}(L)dL}{R_{p}^{'}(L)},$$

где r_p - расстояние от участка численного интегрирования до точки на профиле, в котором учитываем угол между нормалями к поверхностям участка и точки;

V_p - скорость от набегающего потока в точке с учетом угла между вектором скорости и нормалью в точке непротекания на профиле;

R_p - расстояние от участка численного интегрирования на свободной пелене до точки на профиле, в котором учитываем угол между нормалями к поверхностям участка и точки;

l,L - длины соответственно поверхности профиля и вихревого следа;

 $\gamma(l), \gamma_{\pi}(L)$ - соответственно закон изменения интенсивности вихревой по длине профиля и вихревого следа.

Таким образом, определяем закон изменения интенсивности вихрей, образующих контур профиля.

Перепад давления в каждой точке профиля определяем по выражению (3). Основные аэродинамические коэффициенты вычисляют из интегралов

$$c_{y} = -\oint c_{p} \cos(n, y) dl,$$
$$m_{z} = -\oint c_{p} [x\cos(n, y) - y\cos(n, x)] dl.$$

где с_р - коэффициент давления;

1 - длина контура профиля, отнесенная к его хорде;

х,у – координаты точек профиля, отнесенных к его хорде;

n – нормаль к поверхности профиля в точке (x,y).

По предложенной методике проводили расчеты аэродинамических характеристик профиля NACA2210 при геометрических параметрах и внешних условиях, представленных в таблице. Рассматриваемое движение профиля – прямолинейное ускоренное.

I еометрические пар	аметры профиля и внешние условия	
_		7

I еометрия		Внешние условия		
Длина хорды, м	3,3		Разгон	Торможение
		Начальная	60	60,5
		скорость, м/с		
Угол атаки, град.	15	Конечная	60,5	60
		скорость, м/с		
Количество точек	198	Ускорение, м/с ²	2	-2

На рис. 3 и 4 показаны аэродинамические следы, образующиеся в случае разгона и торможения соответственно.

Рис. 4. Аэродинамический след при торможении

На рис.5 и 6 изображены распределения относительной вихревой интенсивности (относительно скорости движения профиля) вдоль хорды профиля при разгоне и торможении.

—— – верхняя поверхность (разгон); —— – нижняя поверхность (разгон)

Рис. 6. Распределение относительной вихревой интенсивности вдоль хорды профиля при торможении:

—— – нижняя поверхность (торможение);

— – верхняя поверхность (торможение)

На рис. 7 показано сравнение распределения давления по профилю при разгоне и торможении.

Рис. 7. Распределение давления по поверхности профиля при разгоне и торможении:

На рис.8 и 9 показано сравнение коэффициентов аэродинамической подъемной силы и моментов (относительно носика профиля). Здесь относительную величину \bar{t} определяем как

$$\overline{\mathbf{t}} = \mathbf{t} \cdot \sqrt{\frac{\dot{\mathbf{V}}}{b}}$$

где V - ускорение, с которым движется профиль;

b - хорда профиля.

Учитывая особенности схода вихревого следа с задней кромки профиля при ускорении, видим, что вихрь сходит против часовой стрелки (см. рис. 3), чем обуславливается закручивание следа против часовой стрелки. При торможении вихрь сходит отрицательный, и след закручивается по часовой стрелке, причем сходит по касательной к верхней поверхности задней кромки профиля.

В результате при расчете случая ускоренного движения давление на нижней и верхней поверхностях профиля меньше, чем при торможении (см. рис.7). На верхней поверхности у задней кромки при ускорении значение коэффициента давления стремится к единице. При торможении, наоборот, на нижней поверхности коэффициент давления стремится к единице.

Коэффициент аэродинамической силы подъемной силы при ускорении за счет сходящего против часовой стрелки вихревого следа уменьшается по сравнению со стационарным движением профиля при этих же условиях, что видно из рис.8, а коэффициент продольного момента увеличивается (см. рис. 9). При торможении вследствие сходящего по часовой стрелке вихревого следа увеличивается коэффициент подъемной силы и уменьшается коэффициент продольного момента.

Рис. 8. Сравнение коэффициентов аэродинамической подъемной силы при ускорении и торможении (для стационарного движения профиля с_у = 1,98 при таких же условиях):

—— – торможение; —— – разгон

—— – торможение; —— – разгон

Предложенная методика, учитывающая особенности схода вихревого следа с задней кромки профиля, позволяет получить точные результаты при расчетах нестационарного прямолинейного движения профиля по ускорению.

Таким образом, вычисления по предложенной методике при ускоренном и замедленном прямолинейном движении профиля показали значительное различие его аэродинамических характеристик. Для приведенного расчета разница между аэродинамическими характеристиками составила 19%. Это отражает значимость влияния нестационарности на аэродинамические характеристики крыла в целом.

Список литературы

- Математическое моделирование плоскопараллельного отрывного обтекания тел // Белоцерковский С.М., Котовский В.Н., Ништ М.И., Федоров Р.М.; Под ред. С.М. Белоцерковского. – М.:Наука. Гл. ред. физ-мат. лит., 1988. – 232 с.
- Тюрев В.В. Методы расчёта обтекания несущей поверхности, испытывающей произвольные деформации // Доповіді Національної академії наук України. Математика. Природознавство. Технічні науки. – 2001. – №4. – С. 56-60.
- Тюрев В.В. Поведение линий тока в окрестности критической точки в потоке идеальной несжимаемой жидкости // Прикладные задачи аэромеханики. – Харьков, 1987. – С. 54-59.
- Тюрев В.В. Модельные задачи теории крыла при сплайновой аппроксимации интенсивности вихревой поверхности // Открытые информационные и компьютерные интегрированные технологии. – Харьков, 1998. – Вып. 2. – С. 204 - 207.