УДК 629.7.01

И.Н. Шепель,

Метод определения характеристик общего напряженнодеформированного состояния фюзеляжа легкого вертолета

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

Представлен метод определения характеристик общего напряженно-деформированного состояния фюзеляжа вертолета с помощью интегрированных систем CAD/CAM/CAE (Siemens NX, ANSYS). Разработана последовательность расчета и анализа характеристик общего напряженно-деформированного состояния фюзеляжа легкого вертолета. Проведен анализ коэффициентов запаса прочности элементов фюзеляжа.

Ключевые слова: фюзеляж, конечно-элементная модель, сила, момент, напряжение, деформация.

На ранних этапах проектирования фюзеляжей вертолетов проводили аналитические расчеты напряженно-деформированного состояния (НДС) [4-8]. Данные методы позволяли получить довольно точные данные, но при этом были довольно громоздкими и трудозатратными. С появлением вычислительной техники стало возможным применять для таких расчетов метод конечных элементов [1-3], реализованный в пакете ANSYS.

Целью данной работы является усовершенствование метода определения характеристик общего напряженно-деформированного состояния всего фюзеляжа вертолета для проведения дальнейшего анализа его статической прочности.

Рассмотрение схемы отсека фюзеляжа с выносными узлами [1] приводит к погрешностям при расчете НДС, так как отбрасываемые части конструкции имеют свои конструктивные и жесткостные особенности, которые влияют на напряженно-деформированное состояние отсека фюзеляжа. Это приводит к тому, что краевые условия, прикладываемые к отсеку фюзеляжа, искажают полученный результат и, как следствие, снижают точность самого расчета.

Для того, чтобы избежать данных неточностей, предлагается несколько изменить расчетную схему рис. 2. При данной расчетной схеме в расчете участвует практически весь фюзеляж, кроме килевой балки, которую заменяет выносной узел В. Данное небольшое упрощение не сказывается на результатах расчета, поскольку за счет длины хвостовой балки погрешности в интересующих местах фюзеляжа становятся нулевыми.

При такой расчетной схеме возрастает количество элементов в модели (рис. 3 – 4), что приводит к повышению затрат времени, необходимого на большую проработку конечно-элементной (КЭ) модели и повышению требований к вычислительным мощностям техники.

Для того, чтобы избежать данных недостатков, предлагается модифицировать метод, предложенный в предыдущей работе (рис.5). На первом этапе предлагается строить модель с укрупненными КЭ элементами, что позволит несколько уменьшить затрачиваемые вычислительные мощности. После этого вычленить интересующий отсек и провести более точный его расчет с более детализированными конструктивными элементами.

Конечно-элементная модель фюзеляжа вертолета создается таким же образом, как и в предыдущей работе, вся конструкция с ее стыками и заклепочными соединениями упрощается и омоноличивается, что позволяет упростить конечно-элементную модель и избавиться от необходимости применения контактных элементов в модели. Узлы балочных элементов совпадали с узлами оболочечных элементов на поверхностях, к которым крепят балочный элемент. В местах крепления основных стоек шасси к узлам шпангоутов отсека фюзеляжа вертолета наложены условия совместности линейных перемещений по всем направлениям.

Рис. 2. Расчетная схема фюзеляжа

Поскольку фюзеляж вертолета имеет нерегулярную конструкцию в месте стыка хвостовой балки и фюзеляжа, то это приводить к неравномерности КЭ сетки. В данном случае, возникает необходимость поузлового наложения совместности деформаций по всему контуру сечения хвостовой балки.

К фюзеляжу приложены следующие нагрузки: тяга рулевого винта – 2.4 кН; крутящий момент от рулевого винта – 2.7 кН. Сосредоточенные массы: пассажиры – 75 кг, промежуточный редуктор – 17 кг, хвостовой редуктор с втулкой хвостового винта и лопастями – 39 кг, двигатели – по 103 кг, и навесные топливные баки – 465кг.

Рис. 3. Конечно-элементной модели фюзеляжа вертолета

Рис. 4. Конечно-элементная модель отсека фюзеляжа вертолета

Рис. 5. Метод определения характеристик общего напряженно-деформированного состояния отсека фюзеляжа вертолета

По полученным расчетным данным можно выделить некоторые критические зоны напряжений.

Максимальные напряжения достигают в зоне силового шпангоута № 6 (рис. 6) на внутренней полке в верхней трети боковой части шпангоута.

Рис. 6. Зона максимальных напряжений на шпангоуте № 6

Второй опасной зоной является стык хвостовой балки и фюзеляжа (рис. 7). В данном месте создается концентрация напряжений вследствие совместной работы сил тяжести и тяги рулевого винта.

Рис. 7. Зона максимальных напряжений на шпангоуте № 12

Открытые информационные и компьютерные интегрированные технологии № 57, 2012

Рис. 8. Зона максимальных напряжений в зоне шпангоута № 1 и переднего правого окна

Зона окна является одной из наиболее напряженных зон, поскольку является конструктивной нерегулярности конструкции (рис. 8). Также такими зонами концентрации являются шпангоуты *№1,5,7* и *8* (рис. 9).

Рис. 9. Зона максимальных напряжений на шпангоутах № 5, 7 и 8

Таблица	2.
---------	----

	Зоны	Рассматриваемые случаи нагружения		
Элементы конструкции		1	2	3
		$n_{2} = 3.5$	$n_{2} = -1$	Аварийная посадка
		f	f	f
Вырез окна		1.6	3.3	2.67
Шпангоут №1	Зона 1	2	20	1.6
	Зона 2	1.6	20	1.7
Шпангоут №5		2.67	10	2.7
Шпангоут №6		1.6	10	1.6
Шпангоут №7		2.67	10	2.67
Шпангоут №8		2.67	10	2.67
Шпангоут №12	Зона 1	2.67	20	4

Коэффициенты запаса прочности для различных полетных случаев

Наиболее опасными участками, нуждающимися в дальнейшем расчете, являются в шпангоуте №3 место крепления поперечной полки, а в шпангоуте №6 – крепление главного редуктора.

Полученные параметры НДС фюзеляжа вертолета являются исходными данными для проведения дальнейшего анализа статической прочности различных модифицикаций конструкции исследуемого летательного аппарата.

Выводы

Разработан метод определения характеристик общего напряженнодеформированного состояния фюзеляжа вертолета. Метод апробирован при расчёте НДС отсека фюзеляжа гражданского вертолета. Получены значения напряжений и перемещений в данной конструкции фюзеляжа. Определены коэффициента запаса прочности конструктивных элементов фюзеляжа, который составляет *f=1.6*.

Список литературы

1. Метод определения характеристик общего напряженно-деформированного состояния отсека фюзеляжа вертолета [Текст] / А.Г. Гребеников, Л.Р. Джемилев, Д.Ю. Дмитренко идр. // Открытые информационные и компьютерные интегрированные технологии: сб. науч. тр. Нац. аэрокосм. ун-та им. Н. Е.

Жуковского «ХАИ». – Вып. 51. – Х., 2011. – С. 17 – 29.

Метод определения характеристик общего напряженно-деформированного состояния отсека фюзеляжа самолёта методом конечных элементов [Текст] / А. Г. Гребеников, Ю. Н. Геремес, П. О. Науменко, С. П. Светличный // Открытые информационные и компьютерные интегрированные технологии: сб. науч. тр. Нац. аэрокосм. ун-та им. Н. Е. Жуковского «ХАИ». – Вып. 33. – Х., 2006. – С. 5 – 15.
Басов, К. А. ANSYS: Справочник пользователя [Текст] / К. А. Басов. – М.: ДМК Пресс, 2005. – 640 с.

4. Михеев, Р.А. Прочность вертолетов [Текст] / Р.А. Михеев. – М.: Машиностроение, 1982. – 280 с.

5. Стригунов, В. М. Расчёт на прочность фюзеляжей и герметических кабин самолётов [Текст] / В. М. Стригунов. – М.: Машиностроение, 1974. – 228 с.

6. Кан, С.Н. Расчет самолета на прочность [Текст] / С.Н. Кан, И.А. Свердлов. – М.: Машиностроение, 1966. – 519 с.

7. Сперанский, М.К. Взаимное влияние несущего винта и фюзеляжа одновинтового вертолёта на режиме висения [Текст]/ Сперанский М.К. / Технические отчеты.-М.: БНИ ЦАГИ,1964.-Вып. 268.-М.-С.11-15

8. Авдонин, А.С. Прикладные методы расчета оболочек и тонкостенных конструкций [Текст] / А.С. Авдонин. – М.: Машиностроение, 1969. – 403 с.

Рецензент: кан-т техн. наук, доцент, А. А. Кирпикин, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков

Метод визначення характеристик загального напруженодеформованого стану фюзеляжу вертольота

Наведено метод визначення характеристик загального напруженодеформованого стану фюзеляжу вертольота за допомогою інтегрованих систем CAD / CAM / CAE (Siemens NX, ANSYS). Розроблено послідовність розрахунку і аналізу характеристик загального напружено-деформованого стану фюзеляжу легкого вертольота. Проведен аналіз коефіцієнтів запасу міцності елементів фюзеляжу.

Ключові слова: фюзеляж, відсік, скінченно-елементна модель, сила, момент, напруга, деформація.

The method for determining characteristics of the general stress-strain state of the helicopter's fuselage

The method for determining characteristics of the general stress-strain state of the helicopter's fuselage using CAD / CAM / CAE integrated systems (Siemens NX, ANSYS) has been presented. Calculating and analyzing characteristics sequence of the light helicopter's fuselage general stress-strain state has been developed. The analysis of the fuselage safety factors has been conducted.

Keywords: the fuselage, the finite-element model, force, moment, stress, strain.