
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

166

UDC 004.633 doi: 10.32620/reks.2023.1.14

Maksym BOIKO1,2, Viacheslav MOSKALENKO1,3

1 Sumy State University, Sumy, Ukraine
2 The National Anti-corruption Bureau of Ukraine, Kyiv, Ukraine
3 National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

SYNTACTICAL METHOD

FOR RECONSTRUCTING HIGHLY FRAGMENTED OOXML FILES

A common task in computer forensics is to recover files that lack file system metadata. In the case of searching
for file fragments in unallocated space, file carving is the most often used method, which is ideal for unfrag-

mented data. However, such methods and the tools based on them are ineffective for recovering OOXML files

with a high fragmentation level. These methods do not provide reliable determination of the correct order of

fragments. Techniques for reconstructing documents based on the analysis of words and phrases are also inef-

fective in fragmented OOXML documents. The main reason is that OOXML files are ZIP archives and, as a

result, store data on disk space in a compressed form. This paper proposes a syntactical method for reconstruct-

ing OOXML documents based on knowledge about the internal structure of this file type, regardless of their

content. The details of the implementation of the reconstruction algorithm and the peculiarities of restoring

certain types of local elements of the document were considered. The efficiency of the algorithm was tested on

the Govdocs1 and NapierOne datasets. The proposed method was applied to 4096-byte data blocks, which cor-

respond to the standard cluster size in different file systems. The experimental results confirmed the method's
suitability for practical use with 82.97 % of recovered files, including 34.38 % reconstructed completely, 0.43 %

excluding the last 21 bytes at most, and another 48.16 % excluding embeddings that require other approaches.

In the latter case, obtaining a fully working document without displaying graphic images and other contents of

different embeddings is possible. The presence in OOXML files of CRC-32 hashes of the uncompressed data

stream of each local element allows us to confirm the correctness of information recovery and its integrity un-

ambiguously. Simultaneously, the method's effectiveness depends mainly on data verification methods during the

reconstruction of local elements that occupy at least three clusters in the file. Therefore, this method is supposed

to be improved by developing new mechanisms for verifying XML elements.

Keywords: digital forensics; data recovery; file carving; syntactical file carving; fragmentation; file reconstruc-

tion; Office Open XML; OOXML; DOCX file; ZIP archive; DEFLATE compression.

1. Introduction

1.1 Motivation of research

When investigating economic crimes, computer fo-

rensic experts often face the issue of searching for and

further examining electronic documents and their draft

versions, the circumstances, and chronology of their cre-

ation, etc. Only one workstation of an office worker can

have tens of thousands of available text files, one of the

most common types of which are OOXML documents.

The amount and nature of the deleted information depend

on the features and procedure of the user's actions when

working with data, operating system parameters, and the

type of storage medium used, etc. As a rule, the most sig-

nificant difficulties occur when searching for deleted

files without file system metadata associated with the

data blocks being analyzed.

There are many available data recovery tech-

niques [2 – 4]. The most common and straightforward of

the existing methods is searching for signatures of files’

beginning and end. This method can be classified as gen-

eral since it identifies a wide range of complex file types,

including OOXML documents. However, many difficul-

ties occur when working with fragmented data using this

method.

Along with partially overwritten and/or damaged

data, the most problematic situations occur when data

blocks are out-of-order fragmented. Some studies [5] es-

timate the possible level of fragmentation of Microsoft

Office text documents in NTFS file systems on work-

stations running Windows operating systems. Therefore,

approximately 51 % of the DOCX files were split into

three or more fragments. Simultaneously, 72 % of these

documents had data blocks located on the disk space in a

non-sequential order.

The techniques used in such circumstances are gen-

erally reduced to two separate tasks: identifying data

blocks by type and further reconstruction based on the

file content and/or its internal structure.

 Maksym Boiko, Viacheslav Moskalenko, 2023

Specialized systems of data processing

167

Although OOXML documents contain textual in-

formation, they are de facto ZIP archives. Therefore, an-

alyzing the text in raw data blocks is impossible without

preliminary processing. As a result, context-based statis-

tical models [6 – 9], or their modifications are not very

applicable when reconstructing files of this type.

On the other hand, even small damage up to

4096 bytes in the middle of a compressed bitstream led

to at least an inaccurate reconstruction of the original

texts [10]. As a result, incorrect and/or incomplete reas-

sembly of OOXML file fragments into a single whole

leads to partial and, in the worst cases, completes loss of

access to the contents of the recovered document.

1.2. State of the Art

Researchers [11, 12] consider the problem of

searching uncompressed data fragments containing the

texts of DOCX documents in RAM. Thus, a memory

dump was studied in [11], where the search was per-

formed using keywords obtained from the previously un-

zipped internal contents of the OOXML file. The results

of the experiments depended on the user's actions with

the files. In the best case, extracting about 20.18 % of

blocks with text data was possible. In [12], available parts

of DOCX files were found by searching tags between

which this data can be placed in the "document.xml" ele-

ment. This method retrieved an average of 40.4 % of the

textual content of documents.
In contrast to previous studies, the study [13] was

conducted with compressed data using limited infor-

mation about the internal structure of the OOXML pack-

age. Here, the authors searched for clusters containing the

beginning of the "document.xml" element and then ap-

plied unsupervised learning techniques. On average, they

achieved 54.35 % to 90.54 % of recovered documents for

different input data. However, it seems that in this work,

the authors did not consider the case of fragmenting data

and limited themselves to the first part of the "docu-

ment.xml" element without searching for other data

blocks.
Some researchers [14] have developed docs’ text

recognition software that can work with corrupt the pic-

tured texts. However, the proposed methodology does

not solve the problem of recovering compressed text

data.
The general concept of document reconstruction is

presented in [9]. However, despite the prospects of re-

covering full texts and obtaining a wide range of other

forensically important data, the issue of OOXML file re-

construction is not sufficiently studied. Existing works

mostly ignore it. This is primarily because on disk space,

an OOXML document can look like a set of fragments

related to different types of data, primarily media files.

As a rule, they are already compressed and stored in their

formats, such as JPEG [15], GIF [16, 17], and BMP [18]

and their different modifications [19, 20].
However, it is worth noting that works in related

fields are devoted to a syntactical approach to analyzing

file fragments [8, 21, 25]. This approach can be used to

analyze the content of a specific object by using

knowledge about its internal structure. An example of

this approach is the reconstruction of JPEG, JPG, PNG,

BMP graphic files [8, 21, 22, 23, 24, 25, 26], SQLite da-

tabases [27], DOC files [28], other graphics [29, 30], and

text data [8, 31], etc.
Thus, using information about the internal structure

and content of OOXML files for their reconstruction is a

promising but little-studied approach.

1.3. The purpose and tasks of research

The study develops a syntactical method for recon-

structing OOXML documents based on knowledge about

the internal structure of ZIP archives, the internal struc-

ture of XML elements of the Microsoft Office package,

and the features of the Deflate compression algorithm.

This paper does not consider the recovery of embedded

data in OOXML documents (for example, graphic im-

ages).
To achieve this goal, we must solve the following

tasks:
- identify the key elements of the OOXML package

as a ZIP archive to specify its fragments;

- develop a syntactical method for restoring an

OOXML document without considering embeddings;

- analyze the effectiveness of the developed method

on publicly available datasets.

The main contribution of the researched method is

an approach to recovering highly fragmented OOXML

files from unallocated space and RAM. Also, this method

allows to achieve access to the partial texts of damaged

OOXML documents, their internal metadata, etc.
Structurally, the paper consists of the following sec-

tions. An analysis of the OOXML file structure and a de-

scription of the syntactical method for reconstruction are

presented in Section 2. Section 3 describes the datasets

used to evaluate the method’s effectiveness and provides

the analysis. Section 4 contains a discussion of the ob-

tained results. The last section provides the conclusions

of the paper and directions for future research.

2. Syntactical method

for reconstructing OOXML files

2.1. Analysis of OOXML files structure

Since the 90s, the main format of Microsoft Office

has become binary files with the standard extensions

*.doc, *.xls, *.ppt. However, starting with Microsoft

Office 2007, XML-based files – Office Open XML

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

168

documents – began to be used by default [32]. The last

ones had the standard extensions *.docx, *.xlsx, *.pptx.

In 2006, the Ecma International – European associ-

ation for standardizing information and communication

systems – adopted the OOXML files format as the Ecma-

376 standard. In 2008, the specification was approved by

the International Organization for Standardization and

the International Electrotechnical Commission as

ISO/IEC:29500.

Office Open XML documents are a regular ZIP ar-

chive that consists of a number of related elements. Such

a ZIP archive is also called a package. It has a similar

structure to Microsoft Office documents, spreadsheets,

and presentations that differs in that the majority of their

content is stored in XML elements of various structures

in directories named "word", "xl", and "ppt", respec-

tively. In the following, we will use examples based on

Microsoft Word documents.

Fig. 1 shows the typical internal structure of a

DOCX file, where [32]:

- "[Content_Types].xml" file – a content-type item

that describes the content stored in the package elements,

including media type, subtype, and other optional param-

eters;

- other XML files – elements that contain different

parts of the document, such as main document story,

properties, headers, footers, comments, metadata, etc.

From the forensic viewpoint, a brief description of the

most important elements of the OOXML package is

given in Table 1;

- RELS files – package-relationship ZIP items that

indicate the types of relationship between the initial and

final parts of the package. These items do not affect the

content of other elements.

Fig. 1. Typical contents of a DOCX package

Simultaneously, each above elemen has its own

clearly defined standard structure [32] and contains in-

formation that may be important in resolving issues oc-

curring in computer forensics [33, 34].

Table 1
Descriptions of some XML elements

Title Description

app.xml

Extended file metadata such as total

editing time, hyperlinks, the number

of pages, words, characters, etc.

core.xml

Basic file metadata such as the name

of the document's author, the

username who last modified it; con-

tent created, last modified, and last

printed timestamps, etc.

document.xml Main content of the document

comments.xml
Information about each comment, its

author, date and time of its creation

people.xml

Contact information for each person

who authored at least one comment
or revision in the document

settings.xml

All document properties, including

those that allow establishing links

between different versions of files

2.2. Analysis of the structure

of OOXML files as ZIP archives

The ZIP file format was introduced in 1989 by

PKWARE. Details of the specification and a general de-

scription of the internal structure of this file type are pro-

vided by the developer in the form of application notes

[35], which are periodically updated.

From the viewpoint of the internal structure of an

OOXML document as a ZIP archive [32], it starts with a

sequence of local file headers and file data. Each element

of the archive has its header with its metadata. In some

cases, descriptors may follow the file data. There are rec-

ords of the central directory at the end of the archive file.

They contain a copy of the metadata for each local ele-

ment and its location, etc. All of this is summarized by

the last record, which contains metadata of the central di-

rectory and information about its location. A simplified

structure of a ZIP archive is shown in Fig. 2.

Fig. 2. The structure of a ZIP file

Specialized systems of data processing

169

Additionally, each mentioned above element of the

archive has its own signature [35]:

- local file header - 0x504b0304;

- central directory header - 0x504b0102;

- end of the central directory - 0x504b0506;

- descriptor - 0x504b0708.

2.3. Deflate compression method

Local elements of an OOXML file can be stored in

an archive with or without compression [32]. As a rule,

PNG, JPG, JPEG, GIF, TIFF files, XLSX tables, PPTX

presentations, and other media data remain uncom-

pressed. Simultaneously, XML, RELS elements, and em-

beddings in the form of BIN, EMF, WMF, PPT, DOC,

XLS, DTTF, and DOCX files are stored in a compressed

state.

Deflate is a typical compression method used in

OOXML documents [32, 36]. One of the main features

of this algorithm in the context of this work is the ability

to restore part of the compressed data before the point of

stream corruption [37].

2.4. Proposed reconstruction method

The proposed method is based on the use of

knowledge about the internal structure of OOXML files,

in particular:

- the internal structure of ZIP archives – to deter-

mine the locations of key clusters of an OOXML docu-

ment and verify data. Every local element has a unique

signature, detailed information on its exact location from

the beginning of the file, and other metadata. Mentioned

data are contained in the central directory, whose records,

in turn, have their own signature and occupy the last clus-

ters of the file;

- features of the deflate compression algorithm – to

find the potential next cluster in the chain. Such clusters

can be detected by appending their data to the end of the

damaged compressed stream and the absence of errors

during the subsequent decompressing of the resulting

fragment;

- the internal structure of individual XML elements

of the OOXML package – to filter out false positives.

This is possible by comparing the decompressed stream

with the typical structure of these elements.

The algorithm for reconstructing OOXML files

consists of the following steps:

1. Search for clusters containing the central direc-

tory data and local headers.

2. Determining the correct location of the detected

clusters.

3. Sequential iterative – by searching the cluster by

cluster – determination of the location of other data

blocks with their verification.

1) At the first stage, all clusters are actually divided

into three groups, for which:

- searching for clusters containing signatures of cen-

tral directory headers and its end – 0x504b0102 and

0x504b0506, respectively. These clusters are the last

clusters of the file and contain detailed information about

the location of local elements;

- searching for clusters containing signatures of lo-

cal file headers – 0x504b0304. These clusters contain

comprehensive information about each local element and

the initial part of the compressed data.

2) At the next stage is to place the clusters with the

central directory records in the correct order; for this pur-

pose is to find the first record of the central directory in

each detected cluster and to determine the relative offset

of the local header in its offsets 42-45. Subsequently, the

clusters are arranged in an ascending order of the de-

tected indicators.

If the central directory is correctly restored, in the

vast majority of cases, the first entry will contain data on

the "[Content_Types].xml" element with an offset value

of 0x00000000. All other elements will have succes-

sively increasing local offsets. Simultaneously, there may

be extreme cases when the headers of the first central di-

rectory entry and/or its end (footer) are divided between

clusters. These missing clusters can be found separately

in this situation, but this is uncritical for file reconstruc-

tion.

Fig. 3 shows an example of a central directory,

where its first entry and end are highlighted in red, and

consistently increasing offsets of local headers and the

central directory itself relative to the beginning of the file

are highlighted in blue. The latter values are stored in Lit-

tle-Endian byte order.

After reconstructing the central directory, it is nec-

essary to analyze its entries and determine the sequence

of local elements, their names, information about their

compression type, compressed data sizes, CRC-32

hashes, the offset of the local element header relative to

the beginning of the file, etc. After that, based on the off-

sets of local file headers, it is necessary to determine the

location of each cluster where the local elements begin

(Fig. 4) and set all unfilled cluster chains – their begin-

ning, length, and end (Fig. 5).

3) In the third stage, the local elements of large

sizes, namely their compressed data, are reconstructed

separately one by one. For example, Fig. 6 shows a struc-

ture of the local header, additional field, and compressed

content of a typical first element of an OOXML docu-

ment named "[Content_Types].xml".

Depending on the number of unknown clusters, two

similar algorithms are used separately for each local ele-

ment, differing only at the data validation phase.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

170

Fig. 3 Example of a central directory for a DOCX document

Fig. 4 Information about the initial clusters of local elements

Fig. 5 The top row shows the clusters divided into three groups based on the results of the first stage (blue indicates

clusters with local headers, orange - with records of the central directory, and white - clusters whose location needs

to be determined); the bottom row shows their locations based on the results of the second stage

Specialized systems of data processing

171

Fig. 6 Example of a structure of the local header, additional field,

and compressed content of a typical first element of an OOXML document

Fig. 7 Situation with one skipped cluster

Thus, when only one cluster remains unknown

among the data of a local element, it is possible to define

the skipped fragment by calculating the CRC-32 hashes

of the uncompressed data stream of this local element.

This case is simplified in Fig. 7.

Therefore, if the length of the unknown fragment is

equal to one cluster, the following steps should be taken:

1) from the cluster preceding the unknown frag-

ment, cut the last part starting from the beginning of the

compressed data stream of the last local element present

in this cluster;

2) add the data from the cluster whose location is

unknown to the data obtained in step 1;

3) from the cluster that follows the unknown frag-

ment, cut the first part of the data starting from the zero

offset and ending with the local header of the first local

element in this cluster, and then add this byte stream to

the data obtained in step 2. Occasionally, the part of the

data to be cut may end with the beginning of the de-

scriptor (bytes '0x504b0708');

4) attempt to unzip the obtained compressed stream;

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

172

5) if the attempt fails, repeat the process from step

2 with the next cluster, the location of which is still un-

determined;

6) in the case of a successful attempt to calculate the

CRC-32 hashes of decompressed data;

7) if the CRC-32 hash value does not match the

value specified in the central directory, repeat the process

from step 2 with the next cluster, the location of which is

still undetermined;

8) if the CRC-32 hash value matches the value spec-

ified in the central directory, the cluster search process is

considered complete.

In other words, this is searched for a cluster for

which there are no stream corruption points when filling

the space between the beginning and end of the com-

pressed data, and the uncompressed data has a CRC-32

hash value identical to that specified in the corresponding

central directory entry, in the local element header and/or

in the corresponding descriptor.

The logic of the search process is shown schemati-

cally in Fig. 8, and the input and the result are shown in

Fig. 9.

Unlike the previous case, if there is a sequence of

length k of unknown classifiers with their total number n,

the number of possible combinations is n!/(n-k)!. It will

tend to the value nk for large values of n. In real cases,

achieving a positive result for a full search task is un-

likely and time-consuming.

In addition, OOXML documents belong to complex

files and may contain embeddings of other data types,

some of which are stored in uncompressed form. Such

elements have not been studied in the context of this work

and require the use of separate methods for their recon-

struction.

Therefore, for local elements that occupy at least

four clusters in a file, it is proposed to determine one next

cluster in the chain at each step, for which the following

actions should be performed (using XML files as an ex-

ample):

1) from the cluster preceding the unknown frag-

ment, cut the last part starting from the beginning of the

compressed data stream of the last local element present

in this cluster;

2) add the data from the cluster whose location is

unknown to the data obtained in step 1;

3) attempt to unzip the obtained compressed stream;

4) if the attempt fails, repeat the process from step

2 with the next cluster, the location of which is still un-

determined;

5) in the case of a successful attempt to compare the

XML structure of the decompressed part of the data with

the typical XML structure of the corresponding local el-

ement of the OOXML package;

6) in the case of a damaged XML structure, repeat

the process from step 2 with the next cluster, the location

of which is still undetermined;

7) in the case of a correct XML structure, the cluster

search process is considered complete;

8) further repeat the search process until the last

cluster in the chain is found;

9) add the data from all detected clusters to the data

obtained in step 1, and add the first part of the data from

the cluster that follows the end of the unknown fragment,

starting from the zero offset and ending with the local

header of the first element present in this cluster. Occa-

sionally, the part of the data to be cut may end with the

beginning of the descriptor (bytes '0x504b0708');

10) conduct verification by calculating the CRC-32

hash of decompressed data.

The logic of the search process is shown schemati-

cally in Fig. 10, and the input and result are shown in

Fig. 11.

It is also possible that the header of a local element

is located on the border of two clusters and is divided be-

tween them. This is not a problem because, in this case,

according to the data of the central directory, it is neces-

sary to sequentially calculate the offset of the local file

header relative to the beginning of the archive and then

to calculate the offset of the beginning of the compressed

stream relative to the beginning of the cluster, and finally

search for the corresponding data block.
If the last cluster of the local element is unknown, it

is necessary to define the size of its compressed stream

from the central directory, then determine the size of the

last fragment, and use only the first part of the clusters of

the corresponding length when searching.
It is worth paying more attention to the stage of ver-

ification of intermediate data, which is key when search-

ing for clusters of local elements with two or more un-

known fragments. Here, verifying the decompressed data

by hashes is impossible, so the first step is to look for a

cluster that may be the next in the chain. This uses a fea-

ture of the deflate algorithm when the decompressor can

restore a part of the compressed local file to the beginning

of the corrupt bitstream [37]. When another piece of in-

formation is added to the initial part of the compressed

data, any bitstream is potentially valid [10]. As a result,

these situations are possible when trying to decompress:
- an error;

- false positive decompressed data stream, where

the first part of the content has a typical XML structure,

and the last fragment contains an erroneous set of char-

acters (Fig. 14);

- successfully unzipped data, where all the content

has a typical XML structure (Fig. 15).

A option for verifying the content of the restored

part of the local element to filter out false positives is to

reconstruct the XML tree to its typical structure and

check its integrity. This process is shown schematically

in Fig. 12 on the example of the element "footnotes.xml",

Specialized systems of data processing

173

the simplified structure of which is shown in Fig. 13.

Simultaneously, it additionally checks for incrementally

increasing identifiers specified in the attributes of the

"w:footnote" element. Generally, the essence of this pro-

cess is the same for all other elements of the OOXML

package but differs in detail depending on the complexity

of the internal structure of the XML tree.

Fig. 8 The clusters marked in white are checked for compliance one by one

Fig. 9 The top row shows the clusters whose location was unknown, and the bottom row shows their location

according to the interim results of the third stage (clusters with local headers and central directory records

are highlighted in blue, and clusters whose location has been determined are highlighted in green)

Fig. 10 The clusters marked in white are checked for compliance one by one

Fig. 11 The top row shows the clusters whose location was unknown, and the bottom row shows their location

according to the interim results of the third stage (clusters with local headers and central directory records

are highlighted in blue, clusters whose location has been determined are highlighted in green)

Fig. 12 Data manipulation before verification

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

174

Fig. 13 Simplified internal structure of the "footnotes.xml" element

Fig. 14 An example of a false positive result during decompression

Fig. 15 An example of successful decompression

Specialized systems of data processing

175

3. Results of experiments

3.1. Preparing data for testing

The input is a DOCX document evenly divided into

N-byte size parts. The last fragment of the document after

the last byte is filled with 0x00 characters up to the size

of N bytes. After that, all the obtained fragments are ran-

domly mixed and presented as an input array for further

analysis. It is necessary to obtain the correct order of frag-

ments and restore the original document, and if this is not

possible, restore parts of its XML elements.

Since the standard cluster size in various file sys-

tems in the vast majority of real tasks is 4096 bytes, this

value of N was used here.

3.2. Datasets description

In order to test the suitability of the proposed

method for reconstructing OOXML documents, two da-

tasets, Govdocs1 [38] and NapierOne [39], were used.

The md5 hashes of all files from each dataset were com-

pared before conducting the experiments. Also, files

smaller than 4096 bytes were ignored.

Govdocs1 dataset [38] (created in 2009) contains

different files. Among the 163 DOCX documents, 157

unique files are larger than 4096 bytes.

NapierOne dataset [39] (created in 2021) contains

data from publicly available web resources from the

gov.uk domain, including 5000 DOCX documents (4992

unique);

Tables 2, 3, and fig. 16 provide general information

about file sizes in the mentioned datasets. Table 4 pro-

vides information about the size characteristics and com-

pression type of the vast majority of local elements in

DOCX files.

3.3. Analysis of results

To test the effectiveness of the proposed method,

we used the Govdocs1 and NapierOne datasets described

above, as well as the following software tools: Anaconda

Navigator 2.3.2, python 3.8.8, HxD Hex Editor 2.5.0.0,

Microsoft Office 365 version 16.0.16026.20002, Au-

topsy 4.20.0.

Table 2

Information about file sizes in datasets

Dataset Unique files File size, bytes Av. file size, bytes Av. file size, clusters

Govdocs1 157 10229–9494595 214150 52.8

NapierOne 4992 11451–14580050 303552 74.61

Table 3

Information about file sizes in datasets

Dataset
File size, clusters

1-8 9-16 17-24 25-32 33-40 41-48 49+

Govdocs1
Files 86 17 10 8 8 2 26

% 54.78 10.83 6.37 5.10 5.10 1.27 16.56

NapierOne
Files 1071 1314 665 418 227 191 1106

% 21.45 26.32 13.32 8.37 4.55 3.83 22.16

Fig. 16 Information about file sizes in datasets

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

176

Table 4

Information about local elements

Element name Files

Element compressed size,

bytes
Compressed

elements,

%

Elements that occupy

at least 3 clusters

min max average Elements %

[Content_Types].xml
157 358 613 410 100 0 0.0

4992 346 1085 452 100 0 0.0

document.xml
158 695 243512 20080 100 85 53.8

5296 348 2534430 26218 100 3708 70.02

*.rels
390 185 3576 302 100 0 0.0

22098 184 15259 292 100 7 0.03

settings.xml
158 618 9330 1837 100 8 5.06

5297 590 34186 2233 100 275 5.19

styles.xml,

stylesWithEffects.xml

158 1527 8759 2720 100 6 3.8

7293 1501 137209 4326 100 654 8.97

numbering.xml
119 567 22587 3068 100 10 8.4

4238 464 17187 2618 100 272 6.42

app.xml
157 374 6495 629 100 1 0.64

4992 308 15513 539 100 1 0.02

core.xml
157 327 540 404 100 0 0.0

4992 311 822 382 100 0 0.0

header*.xml,

footer*.xml

244 301 5468 540 100 1 0.41

12205 301 479616 1175 100 159 1.30

footnotes.xml,

endnotes.xml

160 356 2070 386 100 0 0.0

7720 360 44797 591 100 18 0.23

word/theme/*.xml
157 1635 1808 1689 100 0 0.0

5102 997 3241 1634 100 0 0.0

item*.xml,

itemProps*.xml

80 133 1249 235 100 0 0.0

16414 2 31603 409 100 5 0.03

webSettings.xml
158 164 3490 336 100 0 0.0

5297 164 35288 533 100 14 0.26

fontTable.xml
158 380 836 540 100 0 0.0

5297 380 1612 647 100 0 0.0

custom.xml
10 157 420 298 100 0 0.0

2039 223 2066 444 100 0 0.0

word/diagrams/*.xml
0 – – – – – –

380 793 12616 1931 100 14 3.68

word/charts/*.xml
0 – – – – – –

492 162 6851 1576 100 1 0.2

*.png, *.jpeg,

*.gif, *.jpg,

*.dat, *.tiff,

*.tif, *.svg, *.tmp

430 113 1812417 52843 0 369 85.81

10338 35 3496512 81312 0.10 7857 76.00

*.bin, *.emf,

*.wmf, *.ppt,

*.doc, *.xls, *.dttf

99 242 565986 50820 100 59 60.20

2526 142 9159432 162342 100 1268 50.20

*.docx
0 – – – – – –

45 10632 3380231 257913 100.0 45 100.0

*.xlsx, *.pptx
0 – – – – – –

176 8475 14478286 456897 0 176 100.0

Specialized systems of data processing

177

Table 5

Information about the number of files with large local elements

Dataset
Number of files with elements

that occupy at least 3 clusters

Number of files with XML

elements that occupy

at least 3 clusters

Number of files with

uncompressed elements

Govdocs1 111 (70.70 %) 88 (56.05 %) 53 (33.76 %)

NapierOne 4314 (86.42 %) 3753 (75.18 %) 3329 (66.69 %)

Table 6 summarizes the overall results for the num-

ber of reconstructed files from each dataset, showing the

number and percentage of:

a) fully reconstructed OOXML documents;

b) fully reconstructed OOXML documents that par-

tially lack the end of the central directory – the last part

of up to 21 bytes;

c) fully reconstructed OOXML documents exclud-

ing uncompressed embeddings in the following formats:

PNG, JPEG, GIF, etc.;

d) fully reconstructed OOXML documents except

for also compressed embeddings in formats such as EMF,

WMF, DOC, XLS, PPT, DOCX, etc.;

e) OOXML documents whose reconstruction pro-

cess failed with errors;

f) OOXML documents that were excluded from the

analysis due to the presence of XLSX, PPTX embed-

dings.

Table 7 presents statistical information on the re-

sults of reconstructing individual local elements.

Table 8 shows the number of successfully recovered

clusters of "document.xml" files and, accordingly, the

percentage of their fragments partially recovered for

cases where errors occurred during the reconstruction of

this element. Additionally, the largest reconstructed frag-

ments among the files from the Govdocs1 and NapierOne

datasets were local elements of "document.xml", which

occupied 60 and 223 clusters, respectively. At the same

time, the reconstructed files themselves had sizes of 2319

and 702 clusters, respectively.

As a result of testing the proposed method's effec-

tiveness, as seen in Table 6, it was possible to achieve an

efficiency rate of 82.97 % for document reconstruction

on two datasets in total. Simultaneously, 34.38 % of files

were fully reconstructed, 0.43 % were reconstructed ex-

cept for the last 21 bytes at most, and another 48.16 % of

documents were reconstructed without errors except for

embedding. In the latter case, the documents had fully re-

covered texts, internal metadata, parameters, etc., but had

gaps in place of media data. In essence, this is a simpli-

fied version of detecting fragments of a document with-

out images in unallocated space and then reconstructing

the file. The simplification lies in the total dataset being

thousands of times smaller than in real cases, and all frag-

ments a priori belong to the same document.

The emphasis was placed on the recovery of XML

elements that contain the main content of the OOXML

document and are most common among the elements that

occupy at least three clusters. As can be seen in Table 4,

such elements include the "document.xml" file, which

occupies at least 3 clusters in 69.5 % of cases; the "styles-

WithEffects.xml", "settings.xml", "styles.xml", "num-

bering.xml" - 5.2 % to 8.9 %; as well as both structurally

similar "header*.xml" and "footer*.xml", which are large

in a little more than 1 % of cases in total. The elements

"footnotes.xml", "endnotes.xml" and "webSettings.xml"

were also accounted for. Other XML and RELS ele-

ments, which in few cases can reach large sizes or whose

structure can differ significantly from the typical one,

were ignored.

4. Discussion

Testing the algorithm's effectiveness showed that

the proposed method of reconstructing OOXML docu-

ments works. The best effectiveness of reconstructing

OOXML files was achieved on the Govdocs1 dataset.

This could be due to the fact that the NapierOne dataset

was created in 2021, and, as a result, the documents in it

(in particular, the local elements "document.xml") have a

more complex structure.

As can be seen in Table 7, the largest number of er-

rors when restoring individual local elements – about

14 % – was observed when working with "docu-

ment.xml" files. All other XML elements were success-

fully reconstructed in 99 % of the cases. This can be ex-

plained by the fact that most of the errors occurred at the

last stage of the search when filtering out false positives,

namely, during the process of comparing the XML struc-

ture of the decompressed part of the data with the typical

XML structure of the corresponding local element. In the

case of the "documents.xml" files, this number of errors

was caused by their complex structure with different ele-

ments, including elements with graphic data, etc. Errors

in the reconstruction of data blocks related to, for exam-

ple, the "header*.xml" and "footer*.xml" files were also

mainly caused by the presence of media data. Modifying

methods similar to [40] may be helpful in the latter cases.

The relatively simple structure of the other XML ele-

ments and/or their small sizes made achieving such effi-

ciency in their reconstruction possible.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

178

Table 6

Results of reconstructing OOXML files

Dataset

(unique files)

Fully

restored

Fully re-

stored

but with-

out a

footer

Fully restored,

but with miss-

ing uncom-

pressed em-

beddings of

other data

types

Fully recov-

ered, but with

missing com-

pressed em-

beddings of

other data

types

With errors

Skipped files

(with XLSX,

PPTX

embeddings)

Govdocs1

(157)

153

(97.45 %) 4

(2.55 %)

0

(0.00 %) 99

(63.06 %)

1

(0.64 %)

36

(22.93 %)

17

(10.83 %)

NapierOne
(4992)

4119
(82.51 %) 783

(15.69 %)
90

(1.80 %) 1671

(33.47 %)

21

(0.42 %)

2090

(41.87 %)

337

(6.75 %)

Table 7

Information about reconstructing OOXML local elements

Element name Files

Number of elements that occupy

at least 3 clusters
With errors

Elements % Elements %

document.xml
158 85 53.8 2 1.27

5296 3708 70.02 754 14.24

*.rels
390 0 0.0 0 0.0

22098 7 0.03 3 0.01

settings.xml
158 8 5.06 1 0.63

5297 275 5.19 2 0.04

styles.xml,

stylesWithEffects.xml

158 6 3.8 0 0.00

7293 654 8.97 4 0.05

numbering.xml
119 10 8.4 1 0,84

4238 272 6.42 1 0.02

app.xml
157 1 0.64 0 0.00

4992 1 0.02 1 0.02

core.xml
157 0 0.0 0 0.00

4992 0 0.0 0 0.00

header*.xml,

footer*.xml

244 1 0.41 0 0.00

12205 159 1,30 52 0.43

footnotes.xml,

endnotes.xml

160 0 0.0 0 0.00

7720 18 0.23 1 0.01

item*.xml,

itemProps*.xml

80 0 0.0 0 0.00

16414 5 0,03 1 0.01

webSettings.xml
158 0 0.0 0 0.00

5297 14 0.26 0 0.00

Table 8

Information about reconstructing "document.xml" elements

Element name
With errors Number of clusters occupied by

elements with errors

Successfully identified clusters

Elements % Clusters %

document.xml
2 1.27 41 6 14.63

754 14.24 18215 2154 11.83

Specialized systems of data processing

179

As can be seen in Table 8, the proposed method for

reconstructing OOXML files allows extracting 85.76 %

to 98.73 % of full texts from documents for different

cases. A similar problem was solved in [13], where the

authors obtained a result of 54.35 % to 90.54 % of the

detected texts of documents in the RAM under other in-

put data and conditions. However, it seems that the au-

thors did not consider fragmented data blocks that did not

contain the signatures of the local file headers

0x504b0304 since the key data structures were searched

for by this expression, ignoring other significant parts of

OOXML files. Also, fragments, where local header sig-

natures were located on the borders of non-contiguous

clusters, could be skipped. As for elements that occupy

several non-contiguous data blocks in unallocated space,

it is highly likely to skip text from intermediate fragments

using the signature-based data recovery method.

In contrast to this work, the method proposed in this

study allows for detecting the above non-contiguous data

blocks. This possibility is proven by the fact that the larg-

est successfully reconstructed "document.xml" elements

were 60 and 223 clusters for the Govdocs1 and Na-

pierOne datasets, respectively. In the former case, 60

fragments were found among about 2300 other clusters,

and in the latter case, among 702 clusters. This can be

roughly compared to searching for data blocks of the

"document.xml" element among the unallocated space.

Additionally, the proposed method allowed the re-

covery of about 11 % of OOXML documents in which

the reconstruction of the "document.xml" elements failed

(Table 8).

During the study, if a document contains an unfilled

sequence of 2-4 clusters size, identifying these missing

fragments by completely searching through all possible

options was not a goal. Although such a task is quite fea-

sible with a limited number of clusters, it is far from real

cases.

It is also worth paying attention to the following

fact, which did not affect the results of the current study

but may cause uncertainty when recovering from unallo-

cated space OOXML files and ZIP archives in general.

For example, if the header of the end of the central direc-

tory is located on the border of two non-contiguous clus-

ters (less than 1 % of cases in general), when only one or

two of its bytes (0x50 or 0x504b) are contained in the

former of them, it is impossible without additional anal-

ysis to exactly determine whether these bytes are the be-

ginning of the signature of the next record of the central

directory or its end. As a result, there is an ambiguity

about the actual archive size and number of its elements.

Conclusions

For the first time, a syntactical method for recon-

structing OOXML files has been developed which can be

used to recover highly fragmented OOXML documents.

The method is based on the analysis of the internal struc-

ture and content of this file type and is suitable for search-

ing fragments of OOXML files in unallocated space and

RAM.

The high efficiency of OOXML file reconstruction

using this particular method exceeds the results obtained

by other researchers and has been experimentally proven.

The method's effectiveness was evaluated on public da-

tasets such as Govdocs1 and NapierOne.

The practical significance of the proposed method

lies in reconstructing OOXML documents based on the

use of knowledge about the internal structure of OOXML

files, regardless of the language of the document

and/or its content. Its main advantage over other re-

search [11, 12] is that it works with compressed data

streams and does not require decompressing the entire

text for its reconstruction. The proposed method al-

lows improving the OOXML file carving techniques and

approaches used in [13] and to search for data blocks of

OOXML documents that do not have clear markers, such

as the signatures of local file headers, etc.

The obtained scientific results show its effective-

ness at the level of 82.97 % of successfully reconstructed

documents, among which 34.38 % of files were entirely

reconstructed, 0.43 % were fully reconstructed except for

the last 21 bytes at most, and another 48.16 % of docu-

ments were reconstructed without errors except for em-

beddings. Simultaneously, 85.76 % to 98.73 % of the an-

alyzed OOXML files had fully recovered the main texts

of the documents. Additionally, about 11 % of the main

texts were restored from OOXML documents whose re-

construction was completed with errors.

Although the method presented in this paper was

applied to data fragmented into 4096-byte chunks, which

corresponds to the standard cluster size in various file

systems, it is quite possible to apply it to data blocks of

arbitrary sizes.

Theoretically, the proposed algorithm allows recov-

ering any ZIP archive or a specific part of it that uses the

deflate compression method. To achieve this, first it is

necessary to study the structure of its local elements and

determine the markers by which the data will be verified.

This study does not solve the issue of reconstructing

OOXML documents that contain uncompressed embed-

dings in the form of files with a similar internal structure

(for example, XLSX and PPTX files). Here, it is neces-

sary to separate the local elements of the embedded file

from similar or analogous elements of the main docu-

ment.

Additionally, local elements such as PNG, JPEG,

GIF, JPG, and EMF, etc., were not processed because

they de facto belong to other data types with their own

internal structure and require separate methods for their

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

180

reconstruction. In these cases, the text of the recon-

structed files will be fully viewable, for example, in the

Microsoft Word application but without displaying me-

dia data

Future research should be focused on increasing

the proposed method's efficiency by reducing the number

of errors when comparing XML structures at the last

stage of the algorithm. This can be done by applying

models and methods of intellectual analysis (for example,

using dictionary-based techniques). Another important

direction of research should be the question of recovering

highly fragmented OOXML files in unallocated space

and memory dumps.

Contribution of authors: conceptualization of the

problem, supervision and editing of work – Viacheslav

Moskalenko; development of the method, analysis and

visualization of the results – Maksym Boiko.

All authors have read and agreed with the published

version of the manuscript.

References

1. Cantrell, G., & Runs Through, J. The five levels

of data destruction: A paradigm for introducing data re-

covery in a computer science course. 2019 International

Conference on Computational Science and Computa-

tional Intelligence (CSCI), Las Vegas, NV, USA, 2019,

pp. 133-138. DOI: 10.1109/CSCI49370.2019.00029.

2. Ali, N. U. A., Iqbal, W., & Shafqat, N. Analysis

of windows OS’s fragmented file carving techniques: A

systematic literature review. Advances in Intelligent Sys-

tems and Computing, 2019, vol. 800, pp. 63-67. DOI:

10.1007/978-3-030-14070-0_10.

3. Ramli, N. I. S., Hisham, S. I., & Razak, M. F. A.

Survey of File Carving Techniques. In Lecture Notes on

Data Engineering and Communications Technologies,

2021, vol. 72, pp. 815-825. DOI: 10.1007/978-3-030-

70713-2_74.

4. Sari, S. A., & Mohamad, K. M. A Review of

Graph Theoretic and Weightage Techniques in File Carv-

ing. Journal of Physics: Conference Series, 2020, vol.

1529, iss. 5, article no. 052011. DOI: 10.1088/1742-

6596/1529/5/052011.

5. van der Meer, V., Jonker, H., & van den Bos, J.

A contemporary investigation of NTFS file fragmenta-

tion. Forensic Science International: Digital Investiga-

tion, 2021, vol. 38(Suppl.), article no. 301125. DOI:

10.1016/j.fsidi.2021.301125.

6. Lee, H., Lee, H.-W. Block based Smart Carving

System for Forgery Analysis and Fragmented File Iden-

tification. Journal of Internet Computing and Services,

2020, vol. 21, no. 3, pp. 93–102. DOI:

10.7472/jksii.2020.21.3.93.

7. Memon, N., & Pal, A. Automated reassembly of

file fragmented images using greedy algorithms. IEEE

Transactions on Image Processing, 2006, vol. 15, iss. 2,

pp. 385-393. DOI: 10.1109/TIP.2005.863054.

8. Ravi, A., Kumar, T. R., & Mathew, A. R. A

method for carving fragmented document and image

files. 2016 International Conference on Advances in Hu-

man Machine Interaction (HMI), Kodigehalli, India,

2016, pp. 1-6. DOI: 10.1109/HMI.2016.7449170.

9. Shanmugasundaram, K., & Memon, N. Auto-

matic reassembly of document fragments via context

based statistical models. 19th Annual Computer Security

Applications Conference, 2003. Proceedings., Las Ve-

gas, NV, USA, 2003, pp. 152-159. DOI:

10.1109/CSAC.2003.1254320.

10. Brown, R. D. Improved recovery and recon-

struction of DEFLATEd files. Digital Investigation,

2013, vol. 10(Suppl.), pp. S21–S29. DOI:

10.1016/J.DIIN.2013.06.003.

11. Al-Sharif, Z. A., Bagci, H., Abu Zaitoun, T., &

Asad, A. Towards the memory forensics of ms word doc-

uments. Advances in Intelligent Systems and Computing,

2018, vol. 558, pp. 179-185. DOI: 10.1007/978-3-319-

54978-1_25.

12. Taşdelen, Kubilay & Süzen, Ahmet. Analysing

and Carving MS Word and PDF Files from RAM Images

on Windows. Tehnički vjesnik, 2022, vol. 29, no. 5, pp.

1714-1720. DOI: 10.17559/TV-20210218122046.

13. Ali, N. U. A., Iqbal, W., & Afzal, H. Carving of

the OOXML document from volatile memory using un-

supervised learning techniques. Journal of Information

Security and Applications, 2022, vol. 65, article no.

103096. DOI: 10.1016/j.jisa.2021.103096.

14. Dergachov, K., Krasnov, L., Bilozerskyi, V. &

Zymovin, A. Methods and algorithms for protecting in-

formation in optical text recognition systems. Radioelec-

tronic and Computer Systems, 2022, no. 1, pp. 154-169.

DOI: 10.32620/reks.2022.1.12.

15. Standard ECMA TR/98 JPEG File Interchange

Format (JFIF). Available at: https://www.ecma-interna-

tional.org/publications-and-standards/technical-re-

ports/ecma-tr-98/. (accessed 12 january 2023).

16. G I F (tm) Graphics Interchange Format (tm) A

standard defining a mechanism for the storage and trans-

mission of raster-based graphics information. Com-

puServe Inc., 1987. Available at:

https://www.w3.org/Graphics/GIF/spec-gif87.txt.

(accessed 12 january 2023).

17. Ali, Hamza A. & Ne’ma, Bashar M. Effective

Variations on Opened GIF Format Images. IJCSNS,

2008, vol. 8. No. 5, pp. 70-75.

18. Bitmap Image File (BMP), Version 5. Sustaina-

bility of Digital Formats: Planning for Library of Con-

gress Collections. Available at: https://www.loc.gov/

https://www.sciencedirect.com/journal/digital-investigation/vol/10/suppl/S
https://hrcak.srce.hr/tehnicki-vjesnik

Specialized systems of data processing

181

preservation/digital/formats/fdd/fdd000189.shtml.

(accessed 12 january 2023).

19. Fedorchenko, I., Oliinyk, A., Stepanenko, A.,

Korniienko, S., Kharchenko, A., & Laktionov, V. Devel-

opment of a method for compressing images on the basis

of JPEG algorithm. Technology Audit and Production

Reserves, 2020, vol. 2, no. 2(52), pp. 32-34. DOI:

10.15587/2706-5448.2020.202433.

20. Barannik, V., Krasnorutsky, A., Shulgin, S.,

Yeroshenko, V., Sidchenko, Y., & Hordiienko, A. Image

compression based on classification coding of constant-

pitched functions transformers. Radioelectronic and

Computer Systems, 2021, no. 3, pp. 48-62. DOI:

10.32620/reks.2021.3.05.

21. Ali, R. R., & Mohamad, K. M. RX_myKarve

carving framework for reassembling complex fragmenta-

tions of JPEG images. Journal of King Saud University -

Computer and Information Sciences, 2021, vol. 33, iss.

1, pp. 21–32. DOI: 10.1016/J.JKSUCI.2018.12.007.

22. Chang, X., Wu, J., & Hao, F. JPEG fragment

carving based on pixel similarity of MED-ED. Chinese

Control Conference (CCC), Guangzhou, China, 2019,

pp. 8862-8866. DOI: 10.23919/ChiCC.2019.8865161.

23. Durmus, E., Korus, P., & Memon, N. Every

Shred Helps: Assembling Evidence from Orphaned

JPEG Fragments. IEEE Transactions on Information Fo-

rensics and Security, 2019, vol. 14, iss. 9, pp. 2372-2386.

DOI: 10.1109/TIFS.2019.2897912.

24. Hilgert, J. N., Lambertz, M., Rybalka, M., &

Schell, R. Syntactical Carving of PNGs and Automated

Generation of Reproducible Datasets. Digital Investiga-

tion, 2019, vol. 29(Suppl.), pp. S22-S30. DOI:

10.1016/j.diin.2019.04.014.

25. Tang, Y., Fang, J., Chow, K. P., Yiu, S. M., Xu,

J., Feng, B., Li, Q., & Han, Q. Recovery of heavily frag-

mented JPEG files. DFRWS 2016 USA - Proceedings of

the 16th Annual USA Digital Forensics Research Con-

ference, 2016. DOI: 10.1016/j.diin.2016.04.016.

26. Uzun, E., & Sencar, H. T. Jpg Scraper : An Ad-

vanced Carver for JPEG Files. IEEE Transactions on In-

formation Forensics and Security, 2020, vol. 15, pp.

1846-1857. DOI: 10.1109/TIFS.2019.2953382.

27. Zhang, L., Hao, S., & Zhang, Q. Recovering

SQLite data from fragmented flash pages. Annales Des

Telecommunications – Annals of Telecommunications,

2019, vol. 74, pp. 251-460. DOI: 10.1007/s12243-019-

00707-9.

28. Lin, W., & Xu, M. A Microsoft Word docu-

ments carving method based on interior virtual streams.

Advanced Materials Research, 2012, vol. 433–440, pp.

3028-3032. DOI: 10.4028/www.scientific.net/AMR.

433-440.3028.

29. Paixão, T. M., Berriel, R. F., Boeres, M. C. S.,

Koerich, A. L., Badue, C., de Souza, A. F., & Oliveira-

Santos, T. Self-supervised deep reconstruction of mixed

strip-shredded text documents. Pattern Recognition,

2020, vol. 107, article no. 107535. DOI:

10.1016/J.PATCOG.2020.107535.

30. Bhawal, S., & Tabassum, M. Forensic image re-

construction based on efficient morphological opera-

tional model. Advances in Intelligent Systems and Com-

puting, 2019, vol. 814, pp. 297-307. DOI: 10.1007/978-

981-13-1501-5_26.

31. Alothman, A. F., Wahab Sait A. R. Managing

and Retrieving Bilingual Documents Using Artificial In-

telligence-Based Ontological Framework. Comput Intell

Neurosci., 2022 vol. 2022, article no. 4636931. DOI:

10.1155/2022/4636931.

32. Standard ECMA-376 Office Open XML File

Formats. Available at: https://www.ecma-interna-

tional.org/publications-and-standards/standards/ecma-

376/. (accessed 12 january 2023).

33. Didriksen, E. Forensic Analysis of OOXML

Documents, 2014. Available at: https://ntnuopen.

ntnu.no/ntnu-xmlui/bitstream/handle/11250/198656/

EDidriksen.pdf. (accessed 12 january 2023).

34. Fu, Z., Sun, X., Liu, Y., & Li, B. Forensic inves-

tigation of OOXML format documents. Digital Investi-

gation, 2011, vol. 8, iss. 1, pp. 48-55. DOI:

10.1016/j.diin.2011.04.001.

35. ZIP File Format Specification, version 6.3.10,

PKWare, Inc., 2022. Available at: https://pkware.

cachefly.net/webdocs/casestudies/APPNOTE.TXT. (ac-

cessed 12 january 2023).

36. Fu, Z., Sun, X., Zhou, L., & Shu, J. New foren-

sic methods for OOXML format documents. Lecture

Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bio-

informatics), 2014, vol. 8389, pp. 503-513. DOI:

10.1007/978-3-662-43886-2_36.

37. Brown, R. D. Reconstructing corrupt DE-

FLATEd files. Digital Investigation, 2011, vol.

8(Suppl.), pp. S125-S131. DOI: 10.1016/

j.diin.2011.05.015.

38. Garfinkel, S., Farrell, P., Roussev, V., & Dinolt,

G. Bringing science to digital forensics with standardized

forensic corpora. Digital Investigation, 2009, vol.

6(Suppl.), pp. S2-S11. DOI: 10.1016/j.diin.2009.

06.016.

39. Davies, S. R., Macfarlane, R., & Buchanan, W.

J. NapierOne: A modern mixed file data set alternative to

Govdocs1. Forensic Science International: Digital In-

vestigation, 2022, vol. 40, article no. 301330. DOI:

10.1016/J.FSIDI.2021.301330.

40. Chukhray, A., & Havrylenko, O. The method of

student’s query analysis while intelligent computer tutor-

ing in SQL. Radioelectronic and Computer Systems,

2021, no. 2, pp. 87-96. DOI: 10.32620/reks.2021.2.07.

https://www.sciencedirect.com/journal/digital-investigation/vol/10/suppl/S

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

182

Надійшла до редакції 12.09.2022, розглянута на редколегії 20.02.2023

СИНТАКСИЧНИЙ МЕТОД РЕКОНСТРУКЦІЇ OOXML-ФАЙЛІВ

З ВИСОКИМ РІВНЕМ ФРАГМЕНТАЦІЇ

Максим Бойко, В’ячеслав Москаленко

Поширеною задачею комп’ютерно-технічної експертизи є відновлення файлів, для яких відсутні метадані

файлової системи. Для пошуку фрагментів файлів у нерозподіленому просторі найчастіше застосовується ме-

тоди відновлення за сигнатурами (карвінг), які ідеально підходять для нефрагментованих файлів. Однак

подібні методи і основані на них інструменти, неефективні для відновлення OOXML-файлів, які мають висо-

кий рівень фрагментації. Дані методи не забезпечують достовірного визначення правильного порядку фраг-

ментів. У зв’язку з тим, що OOXML-файли являють собою ZIP-архіви та, як наслідок, зберігають дані на дис-

ковому просторі в стисненому вигляді, то в такому разі також неефективними є техніки реконструювання

документів на базі аналізу слів, словосполучень тощо. У роботі пропонується синтаксичний метод рекон-

струкції OOXML-документів, який базується на використанні знань про внутрішню структуру цього типу

файлів незалежно від їх вмісту. Розглянуто деталі реалізації алгоритму відновлення та особливості віднов-

лення окремих типів локальних елементів документу. Тестування ефективності алгоритму здійснювалося на

наборах даних Govdocs1 і NapierOne. Пропонований метод розглянуто на прикладі розмірів блоків даних ро-

зміром 4096 байт, що відповідає стандартному розміру кластера різних файлових систем. Експериментальні

результати підтвердили придатність методу для практичного використання з загальним показником у 82,97 %

відновлених файлів, серед яких 34,38 % реконструйовано повністю, 0,43 % – за винятком останніх максимум

21 байт, ще 48,16 % – за винятком вкладень до документів, які потребують інших підходів. В останньому

випадку досягнуто можливості отримання повністю робочого документа без відображення в ньому графічних

зображень, вмісту інших вкладень тощо. Наявність в OOXML-файлах ґеш-кодів CRC-32 розархівованого по-

току даних кожного локального елемента дозволяє однозначно підтвердити коректність відновлення інфор-

мації та її цілісність. При цьому ефективність методу суттєвим чином залежить від способів верифікації даних

при реконструкції локальних елементів, що займають у файлі щонайменше три кластери. Тому даний метод

передбачається розвивати шляхом розробки нових механізмів верифікації xml-елементів.

Ключові слова: комп’ютерно-технічна експертиза; відновлення даних; карвінг файлів; синтаксичний

карвінг файлів; фрагментація; реконструкція файлів; Office Open XML; OOXML; файл DOCX; ZIP-архів; стис-

нення DEFLATE.

Бойко Максим Володимирович – асп. каф. комп’ютерних наук, Сумський державний університет,

Суми, Україна; ст. детектив, Управління аналітики та обробки інформації, Національне антикорупційне бюро

України, Київ, Україна.

Москаленко В’ячеслав Васильович – канд. техн. наук, доц., доц. каф. комп’ютерних наук, Сумський

державний університет, Суми, Україна; докторант каф. комп’ютерних систем, мереж та кібербезпеки,

Національний аерокосмічний університет ім. М. Є. Жуковського “Харківський авіаційний інститут”, Харків,

Україна.

Maksym Boiko – PhD student of Computer Sciences Department of Sumy State University, Sumy, Ukraine;

senior detective, Information Processing and Analysis Department, the National Anti-corruption Bureau of Ukraine,

Kyiv, Ukraine,

e-mail: mboiko25@gmail.com, ORCID: 0000-0003-0950-8399.

Viacheslav Moskalenko – PhD, Associate Professor of Computer Science Department of Sumy State Univer-

sity, Sumy, Ukraine; Doctoral Student of Department of Computer Systems, Networks and Cybersecurity, National

Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,

e-mail: v.moskalenko@cs.sumdu.edu.ua, ORCID: 0000-0001-6275-9803, Scopus Author ID: 57189099775.

mailto:mboiko25@gmail.com

