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INTRODUCTION 

Electrical engineering is a science dealing with the techniques of utilizing 

electrical and magnetic phenomena for practical use. 

One of the main branches of Electrical Engineering is Electrical Power Engi-

neering. It concerns production of electrical energy from other forms of energy, 

power transmission over long distances, distribution among consumers and con-

version of power into other forms of energy. 

Why does electrical energy have such a wide application? This is because of 

very valuable advantages. 

1. Electrical power can be easily produced from other forms of energy (me-

chanical, chemical, thermal, radiant etc.) and can be effectively transformed into 

the other forms of energy. 

2. The production of relatively big quantities of electrical energy is usually 

concentrated in a relatively small space forms. 

3. Electrical energy can be transmitted at very high speed with low losses for 

hundreds or even thousands of kilometers. 

4. Electrical energy can be easily distributed among consumers. 

5. Electrical devices and machines are safe and simple in service. 

However there is one major disadvantage – electrical energy cannot be stored 

in great quantities. Produce and use immediately! 

Wide application of electronic devices and instrumentation in all aspects of 

engineering is one of the manifestations of modern electronic revolution. Every 

aspect of engineering practice and even of everyday life is affected in some way 

by electrical and electronic devices and instruments. 

Computers and over-all computerization are perhaps the most obvious mani-

festation of this presence. However, many other areas of electrical engineering are 

also important to the practicing engineer, from mechanical engineering to chemi-

cal, nuclear and civil engineering. 

The objective of this manual is to introduce students in English basic princi-

ples of electrical engineering they could meet in their future work. 

We are going to use the International System of Units (also called SI). SI 

units are based on six fundamental quantities which are presented in the  

Table 1. 

Table 1 

Fundamental SI units 

Quantity Unit Symbol 

Length Meter m 

Mass Kilogram kg 

Time Second s 

Electric current Ampere A 

Temperature Kelvin K 

Luminous intensity Candela cd 
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All other units may be derived in terms of the fundamental units (Table 2). 

Table 2 

Electrical quantities 

Quantity Unit Symbol 

Charge Coulomb C 

Voltage Volt V 

Work Joule J 

Power Watt W 

Resistance Ohm Ω 

Conductance Siemens S 

Capacitance Farad F 

Inductance Henry H 

Frequency Hertz Hz 

Magnetic inductance (flux density) Tesla B 

Magnetic flux Weber Ф 

Magnetic field intensity Amperes per meter, A/m H 

Electric field intensity Volts per meter, V/m E 

Flux linkage Weber Ψ 

Magnetic force Ampere – turns At 

 

In practice, one often needs to describe quantities that occur in large multi-

ples or small fractions of units. Standard prefixes are used to denote powers of SI 

and derived units. These prefixes are listed in Table 3 below. 

Table 3 

Standard prefixes 

Prefix Symbol Power 

Atto a 10
-18 

femio f 10
-15

 

Pico p 10
-12

 

nano n 10
-9

 

micro µ 10
-6

 

milli m 10
-3

 

centi c 10
-2

 

deci d 10
-1

 

deca da 10 

Kilo k 10
3
 

mega M 10
6
 

giga G 10
9
 

tera T 10
12

 

peta P 10
15

 

exa E 10
18
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The prefixes most often used in Electrical Engineering are micro, milli, kilo, 

and mega. 

Usually, in general engineering units are expressed in powers of 10 that are 

multiples of 3. For example, 10
-4

s would be referred to as 100·10
-6

 s, i.e. 100 µs, 

or less frequently as 0,1·10
-3

s, i.e. 0.1ms. 
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Chapter 1 
 

SIMPLE DIRECT CURRENT ELECTRIC CIRCUITS 

 

1.1 Circuit Elements and Parameters 

 

A typical simple electric circuit (Fig. 1.1) consists of three elements: a 

source of energy, or power-source, a receiver of energy, or load, and a pair of 

conductors which connect the receiver to the power-source terminals. 

  

 
a 

 
b 

 

Fig. 1.1 – Simple electrical circuit 

 

The source converts mechanical, chemical, thermal, and other kinds of en-

ergy into electromagnetic energy, or simply, into electric energy (generates an 

electromotive force E).  

The receiver, on the contrary, absorbs electrical energy and transforms it into 

mechanical, chemical, thermal, radiant, and other forms of work. 

The wire conductors are used to deliver electrical energy from the source to 

the load. 

In Fig. 1.1 two different representations are shown to illustrate the conceptual 

and symbolic significance of the source-load idea for a simplified electrical cir-

cuit. Symbols of ideal circuit elements in Fig. 1.1,b depict the physical reality of 

Fig. 1.1,a. 

 

Electric current 

Electric current is defined as the time rate of change of charge passing 

through predetermined area 

dq
i

dt
= .                                                    (1.1) 

 

In order for the current to flow there must exist a closed circuit (see Fig. 1.1). 

The arrow in the diagram depicts the direction of the current. 

A current that reverses its direction and magnitude periodically is called al-

ternating current (ac, AC). 
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When the current is able to flow in one direction continuously it is called 

constant, or direct current (dc, DC). For a direct current, instead of (1.1) we may 

write 

q
I

t
= .                                                    (1.2) 

 

The character I is a conventional notation for direct current magnitude as 

well as for effective value of alternating current. 

It is seen from (1.2) that a current strength is equal to the number of electrical 

charges passed through the cross sectional area of a conducting material per sec-

ond.  

The units of current are called amperes (A): 1A=1C/1s, where C, the cou-

lomb, is the unit of electrical charge. The accumulated charge of 6.28 billion elec-

trons is called 1 coulomb. 

 

Electromotive force and voltage 

In the circuit a movement of electrons from one point to another (i.e. the elec-

tric current) will be possible if a difference in electric pressure between the two 

points is available.  

The force that causes electric charge motion can be called one of the follow-

ing: electrical pressure, potential difference, voltage, or electromotive force.  

The electromotive force (EMF) is what produces, or generates the current in 

a closed electrical circuit. The EMF is associated with the capital character Е next 

to symbol of the source of energy in the circuit diagram as depicted in Fig. 1.1. 

The practical unit for the force above is the volt (V). 

In general, a voltage (potential difference) between the two points is defined 

as the work needed for carrying a unit charge from one point of the circuit to an-

other. In other words, if a voltage is applied across a part of the circuit, a current 

will flow in the direction from the point of higher potential towards the point of 

lower potential. The character for a voltage is the capital V. 

 

Resistance and Ohm’s law 

The property of a substance, a circuit element or a device to impede the cur-

rent is called the electric resistance or simply resistance (R). As a consequence, 

current flowing through the element will cause energy to be dissipated in the form 

of heat according to the principle of energy conservation. An ideal resistive ele-

ment (a resistor) is the element that exhibits linear resistance properties. A formal 

expression of that is known as Ohm’s law: the current flowing through a resistor 

is directly proportional to the applied voltage and inversely proportional to its re-

sistance:  
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V
I .

R
=                                                      (1.3) 

In (1.3) R is the value of resistance in ohms (Ω ), where 1Ω  = 1V/A. 

Conventional circuit symbols for both the resistor and the resistance property 

of any element (followed by the element heating) are presented in Fig. 1.2. 

 

 
Fig. 1.2 – Resistor symbols: fixed (a), variable (b, c) 

Energy, work and power of electric current 

Energy is the ability to do work. 

If you apply voltage V across a portion of an electrical circuit with the aim to 

cause current I in it, the work performed by the electric current in that portion of 

the circuit during the time interval t according to (1.2) can be determined from  

W  qV  VIt = = .                                            (1.4) 

If when doing work electric energy is converted into heat only (as in the case 

of current flowing through a resistor or other circuit element obtaining internal re-

sistance) we can get by substitution of (1.2) into (1.3): 

2
W  I Rt  = .                                               (1.5) 

This equation expresses Lenz-Joule Law.   

The joule (J) is the SI unit of work and energy. 

The electric power P is the rate of doing work. A source of energy is the ele-

ment provided with the ability to produce, or generate, electric power. It is the ac-

tive circuit element. Vice versa, a passive element is designed to absorb the 

power.    

Applying the definition of electric power to the equation in (1.4) we’ll have: 

P VI= .                                                   (1.6) 

Hence, electrical power generated by a source, or that dissipated or stored by 

a load is equal to the product of the voltage across the element and the current 

flowing through it. For known resistance R the absorbed power can be determined 

through voltage drop or current flow alone:  

2
P I R=   .                                              (1.7) 

The practical unit of electric power is the watt (W). 
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Ammeter, voltmeter, and wattmeter are used to measure the amount of cur-

rent, voltage, and electric power, respectively. 

Resistors in series 

A practical electrical circuit may contain several loads of different resis-

tances. Often they form rather complicated configuration. Nevertheless, even the 

most involved circuits can be reduced to combinations of circuit elements in par-

allel and in series. 

Two or more circuit elements are said to be in series if the identical current 

flows through each of the elements (Fig. 1.3).  

 
 

           Fig. 1.3 – Resistors in series 

 

It is easy to see that with respect to the source, the three external resistances 

R1, R2, and R3 together with the internal source resistance R0 appear as a single 

equivalent resistance of value Rt, where 

t 1 2 3 0
R R R R R .= + + +                                     (1.8) 

Resistors in parallel. Kirchhoff’s first law 

Two or more circuit elements, e.g. resistors, are said to be in parallel if the 

identical voltage drops across each of the elements. Fig. 1.4 illustrates the notion 

of four parallel resistors located between two junction points, a and b. Usually 

these common points are called nodes, or nodal point junctions. 

A current path between two adjacent nodes of the circuit is known as a cir-

cuit branch. 
 

I1

I2

I3

I4

R1

R2

R3

R4

I
а b

 

Fig. 1.4 – Resistors in parallel 
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To the part of a circuit containing only parallel branches Kirchhoff’s first 

law, or Kirchhoff’s current law (KCL) can be applied. It states that the sum of 

all currents flowing into any node in the circuit is equal to the sum of the currents 

flowing out from this node. For the circuit of Fig. 1.4 this statement results (look 

at a node) in 

1 2 3 4
I I I I I= + + + .                                        (1.9) 

There is another form of KCL: the algebraic sum of all currents in the node 

equals zero: 
n

k

k 1

I 0

=

=∑ .                                               (1.10) 

If voltage between two nodes is constant the currents through parallel 

branches will remain independent from one another, and disconnection of one or a 

few resistors from the circuit doesn’t affect the operation of the rest of the resis-

tors. This explains why lighting lamps, electric motors, and other loads are mainly 

placed in parallel with the source of voltage. 

For the circuit with a group of resistors connected in parallel (see Fig. 1.4) 

the equivalent resistance Rt can be determined as 

4

k 1t 1 2 3 4 k

1 1 1 1 1 1

R R R R R R
=

= + + + =∑  .                        (1.11) 

This expression is valid for any number of parallel-connected resistors. In a 

particular case, when a circuit contains only two connected in parallel resistances 

1
R  and

2
R  the relation (1.11) can be written in the following form: 

1 2

t

1 2

R R
R

R R
=

+

.                                           (1.12) 

 The electrical circuit of Fig. 1.5 where two resistors,
2

R  and R3, connected 

in parallel are placed in series with the third resistor
1

R  is called a series-parallel 

circuit. 

 
 

Fig. 1.5 – A series parallel circuit 
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 The equivalent resistance of this circuit can be determined in turn by reduc-

ing the group of parallel resistances to the single resistance in form (1.12) and 

adding the latter to the resistance of the series part of circuit, that is: 

  

2 3

1

2 3

R R
R R

R R

⋅

= +

+

 .                                      (1.13) 

 

Kirchhoff’s Second Law 

Kirchhoff’s second law, or Kirchhoff’s voltage law (KVL) is a statement 

of the principle of conservation of energy in an electric circuit. KVL says that, in 

a closed circuit, the algebraic sum of electromotive forces is equal to the algebraic 

sum of the voltage drops across the elements of the circuit (loop): 

n m

k k k

k 1 k 1

E I R

= =

=∑ ∑  .                                      (1.14) 

You must use the signs rule when you travel around the circuit for taking 

into account the polarity of the EMF and the voltage drops in (1.14).This conven-

tion may be as follows: move counter clockwise around the circuit (as it’s shown 

in Fig. 1.6) starting with the positive terminal of the largest EMF; voltages acting 

in the same sense are positive (+); voltages acting in the opposite sense are nega-

tive (-). 

 

Fig. 1.6 – A closed loop 

 

 The closed loop shown in Fig. 1.6 and framed by points a, b, c and d is com-

monly a part of the complex circuit. Since each branch here is connected to the 

individual pair of nodes, the branch currents  
1 2 3 4
I ,I ,I ,I  differ in magnitude and 

direction. Therefore, applying Kirchhoff’s second law, we can write for this loop:  

1 2 3 1 1 2 2 3 3 4 4
E E E I R I R I R I R− − = − − + ,                    (1.15) 

where 
i i
I R , i 1 4= …  – voltage drops across each of the loop resistors. 
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1.2 Terms and concepts 

Charge is a fundamental unit of matter responsible for electrical phenomena 

(the quantity of electricity). 

Circuit is interconnection of electrical elements in a closed path. 

SI is the International System of Units. 

Voltage is work or energy required for moving a positive charge of 1 cou-

lomb through a part of the circuit. 

Branch is a current path with one or more elements connecting two nodes. 

Node (nodal point, junction, junction point) – common point of three or 

more branches of the circuit. 

Loop is closed path consisting of two or more branches. 

Resistance is physical property of an element to impede current flow. 

Resistor is a device or an element whose primary purpose will be to impose 

the resistance into a circuit. 

Parallel connection is arrangement of resistors with each resistor having 

the same voltage applied across it. 

Series connection is a chain of resistors when the same current passes 

through each of the resistors. 

Conductance is the inverse of resistance. 

 

1.3 Review Questions  

 

1. What are the units for EMF, voltage, and current? 

2. Define Ohm’s Law for an entire circuit and for a part of the circuit. 

4. What is the difference between the EMF of a source and the voltage at the 

source terminals? 

5. What can you say about the current through the voltage source whose ter-

minals are short circuited? 

6. State Kirchhoff’s current law and Kirchhoff’s voltage law. 

7. Write the relationships for equivalent resistance of series circuit, parallel 

circuit, and series-parallel circuit. 

8. Define electrical energy, work, and power and denote their units. 

9. Formulate Joule-Lenz’s Law. 

 

1.4 Problems 

Examples 

Problem 1. A charge of 5 kC has passed through an element. Energy re-

quired was 20 MJ. Find the voltage across the element. 

Solution 
6

3

W 20 10
V 4 kV

q 5 10

⋅
= = =

⋅

. 
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Problem 2. A constant current of 2A is flowing through an element. Energy 

required for carrying charges is 10 Joules.  

1. What charge is passing through the element every second?  

2. Find the voltage across the element. 

Solution 

q I t 2 1 2 C= ⋅ = ⋅ = , 

W 10
V 5 V

q 2
= = = . 

 

Problem 3. Fig. 1.7 presents a series circuit containing three known resis-

tances R1=30 Ω,  R2=60 Ω,  R3=10 Ω, as well as source voltage V=150 V. Using 

these quantities determine the total resistance Rt, the current I through the circuit,
 

voltage drop across each resistor
,
 and the power PS  supplied by the source and 

dissipated by the resistances. 

Write the equation of the second Kirchhoff’s Law and be sure it’s true. 

Check the condition of power balance.  

 
Fig. 1.7 

Solution 

1. Total resistance of the circuit: 
t 1 2 3

R R R R 30 60 10 100 Ω= + + = + + = .  

2. We can determine current I by using Ohm’s Law for the entire circuit:  

t

V 150
I 1,5A

R 100
= = = . 

3. Application of Ohm’s Law to each circuit resistor will result in voltage drops: 

1 1
V I R 1.53 30 45V= ⋅ = × = , 

2 2
V I R 1.53 60 90V= ⋅ = × = , 

3 3
V I R 1.53 10 15V= ⋅ = × = . 

4. Source power: 

S
P V I 150 1.5 225W= ⋅ = × = . 

 

5. Dissipated power: 
2 2 2

R 1 2 3
P I R I R I R 225W= ⋅ + ⋅ + ⋅ = . 

 

The requirement of power balance states that in the circuit source power and dis-

sipated power must be equal, i.e. 
S R

P P  = . In our case this is true. 
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Problem 4. A parallel circuit is depicted in Fig. 1.8. 

1. Determine the current flowing through each of three resistors, R1=5Ω, R2=10Ω, 

and R3=20Ω and total current drawn from the 100V source. 

2. Calculate dissipated power for the entire circuit and check the validity of the 

first Kirchhoff’s Law. 

 
 

Fig 1.8 

 

Solution 

1. Because of 100V applied across each resistor in the circuit current flows 

through each of the resistors will be: 

1

1

V 100
I 20 A

R 5
= = = , 

2

2

V 100
I 10 A

R 10
= = = , 

3

3

V 100
I 5 A

R 20
= = = . 

2. Also we can calculate equivalent resistance of three resistors connected in par-

allel 

1 2 3

t

1 2 2 3 3 1

R R R 5 10 20 20
R

R R R R R R 50 200 100 7
Ω

⋅ ⋅ ⋅ ⋅
= = =

⋅ + ⋅ + ⋅ + +

 

with the purpose to find the source (i.e. total) current:  

t

t

V 100
I 35 A

R 20 / 7
= = = . 

3. To determine power dissipated by the total resistance we can use  

2

2

t t t

35 20
P I R 3500 W

7

⋅

= ⋅ = = . 

4. Finally, for the circuit in Fig. 1.8 the first Kirchhoff’s Law results in 
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t 1 2 3
I I I I= + + , 

and numerically: 

35=5+10+20=35. 

 

Supplement Problems 

Problem 5. Find the energy required to move 2 coulombs of charge through 

the 4 volts potential difference. 

Problem 6. A current of 10 A is flowing through an element for 5 seconds. 

What energy is required to maintain 10 V voltage drop across that element? 

Problem 7. Modern technology has produced a small 1,5 volt alkaline bat-

tery with a nominal life of 150 joules. For how many days will it power calculator 

that draws a 2mA current?  

Problem 8. Find the power absorbed by a 100 Ohm resistor when it is con-

nected directly to the contacts of 10 V source. 

Problem 9. Simplify the circuit connected to a, b points in Fig. 1.9. Find 

currents flowing through all branches. Determine each voltage drop. 

 

 
 

Fig. 1.9 

 

Problem 10. Calculate all currents and voltages in the circuit of Fig. 1.10.  

 
 

Fig. 1.10 
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Problem 11. Calculate the resistance between terminals A and B in each of 

the circuits below (Fig. 1.11). Also determine the voltage dropped across each re-

sistor and the current flowing through it if a 6 volt source supplies the circuit. 

 
 

Fig. 1.11 

 

 

1.5 Practice 

“Measurements in DC and AC Electrical Circuits” 

 

Objective: to learn how to use electrical measuring instruments (to investi-

gate characteristics of devices and to carry out measurements with the given accu-

racy). 

Work task 

1. Studying instrument structure and technical requirements necessary for 

carrying out electrical measurements with a given accuracy. 

2. Studying current, voltage, resistance, and active power measurement tech-

niques; expansion of the meter measurement range. 



 

 17

3. Measuring and calculating electrical parameters used when analyzing and 

investigating AC and DC circuits. 

 

Theory and preparation 

 

1. To use electrical instrumentation correctly it is necessary to take into ac-

count the type of the current (AC or DC) you deal with; the expected range of the 

parameter which is to be measured (i.e. voltage, current, or power); the frequency 

(a rate of change) of the current in the circuit; admissible instrumentation error; 

absorbed initial device power; internal resistance and inductance of the instru-

ment, etc. 

Meters are classified in accordance with: 

1)  purpose  ( A – ammeter, V – voltmeter, and W – wattmeter are related to fun-

damental instruments of electrical engineering); 

2)  work system being used. Widely used device systems are as follows:  
 – permanent-magnet measuring system ,

– electromagnetic measuring system , 

– electro-dynamic measuring system , 

– ferromagnetic measuring system ;

 
3)  type of operating current (mark is the conventional symbol for DC in-

strument;  – AC device;  – multifunctional AC/ DC instrument); 

4)  operation frequency for which the device intends (500 Hz, 20…50 Hz);   

5)  class of accuracy of the instrument (0.02, 0.05, etc.); 

6)  operating status (  

 – vertical,  – horizontal); 

7)  isolation test voltage, kV   ( 
 

22 , ). 

 

The ammeter 

Two requirements are practically evident for obtaining the correct measure-

ment of current: 

1. The ammeter must be placed in series with the element whose current is to 

be measured. 

2. The ammeter should not restrict the flow of current (i.e. cause a voltage 

drop), or else it will not be measuring the true current flowing in the circuit. 

An ideal ammeter has zero internal resistance. 

 

The voltmeter 

A voltmeter must also fulfill two requirements: 
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1. The voltmeter must be placed in parallel with the element whose voltage it 

is measuring. 

2. The voltmeter should draw no current away from the element whose volt-

age it is measuring, or else it will not be measuring the true voltage across that 

element. Thus, an ideal voltmeter has infinite internal resistance. 

 

The wattmeter 

Fig. 1.12 depicts the typical connection of a wattmeter in a circuit with an 

electrical load 
L

R . In effect, the wattmeter measures the current flowing through 

the load and, simultaneously, the voltage across it and multiplies the two to pro-

vide a reading of the power dissipated by the load. In Fig. 1.12, I
*
 and V

*
 both are 

the so called generator facing endings of the wattmeter windings.  

 

 
 

Fig. 1.12 – Connection of the wattmeter in the circuit 

 

Practical investigations during the laboratory work are carried out at the labo-

ratory bench that includes:  

- DC and AC power sources, 

- special breadboard for circuit assembling, accompanied with a set of both 

tipped insulated wires and special plugs with mounted electric components being 

investigated, 

- measuring instruments (voltmeter, three ammeters, wattmeter, and oscillo-

scope).  

 

Procedure 

1. Investigation of the simple series-parallel DC circuit 

 

Before carrying out the investigation, be sure you depict the experiment cir-

cuit diagram shown in Fig. 1.13, and a table for necessary measurements re-

cording (Table 1.1). 
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Fig. 1.13 

 

From your instructor, take a recommended value of the input DC voltage and 

prepare a measuring instrument for each branch, i.e. select the device, study speci-

fications, set the range, and evaluate a price of division of a meter. 

Connect the circuit according to the diagram of Fig. 1.13.   

Switch the DC power supply on (after instructor’s permission) and set rec-

ommended input voltage. 

Measure each of the necessary circuit parameters and record your results in 

Table 1.1.  

Table 1.1 

 

Parameter Measured Calculated 

Symbol Vin I VR Vab I1 I2 P R R1 R2 

Unit V A V V A A W Ω Ω Ω 

Value           

 

In the table: Vin is the power supply voltage (circuit input voltage); VR 

– voltage 

drop across the resistor R; Vab- voltage drop across either R1 or R2 parallel 

branch; I1, I2 – branch currents; P – entire circuit dissipation power. 

 

2. Investigation of the simple AC circuit including a resistor and an in-

ductor (capacitor) in series (Fig. 1.14). 

 

Repeat the preparations like those in the previous section. In addition, study a 

phasor (complex) form of voltage and current presentation to be able to operate 

with different concepts of AC power. 
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Fig. 1.14 

 

After connecting the circuit, take the value of the input voltage from the in-

structor and switch the voltage source on. Record your values of circuit parame-

ters in Table 1.2. 

Table 1.2 

 

Parameter Measured Calculated 

Symbol Vin VR VC(cap) P φ I 

Unit V V V W deg A 

Value       

 

In the table: VR – voltage across the resistor; VC – voltage drop across the induc-

tor; VCAP – voltage drop across the capacitor (when connected), φ – phase shift 

between the voltage Vin and the current I. 

 

Summarizing 

 

Calculate unknown values in Tables 1.1 and 1.2.  

Analyze the measured and calculated results to make short conclusions. 

 

Questions to be answered 

 

1. How do we choose a device to measure the electrical quantity? 

2. Describe the main characteristics of your measuring device using symbols on 

its panel. 

3. What is the principle of operation of a device based on a permanent magnet 

system? Electromagnetic system? Electrodynamic measuring system? 

4. In what way should we connect a wattmeter in the electric circuit and obtain 

the price division for this device? 

5. How do we measure the sine wave amplitude and period with the help of oscil-

loscope? 
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Chapter 2 

 

COMPLEX CIRCUIT ANALYSIS 

 

The electric circuit is considered to be complex if there are several power 

sources and (or) complicated connection of elements in it. 

Following methods for complex circuit calculation are generally used: 

1. The method of direct use of Kirchhoff’s laws. 

2. The mesh current method. 

3. The node voltage method. 

4. The method of equivalent transformation of delta-connected resistances 

into wye connection, and vice-versa. 

5. Superposition method. 

6. Equivalent generator method. 

 

2.1 Method of Kirchhoff’s Laws Direct Use 

 

To apply the method one must write both current and voltage Kirchhoff’s 

equations to determine every branch current. The total number of equations is 

equal to the number of unknown currents.  

The rules of equations compilation are as follows: 

a) the first part of the set contains equations written in accordance with the 

first Kirchhoff’s law; the number of equations in this part should be equal to the 

number n of all circuit nodes less one; 

b) remaining equations must be added by using the second Kirchhoff’s law 

applied to independent loops of the circuit. Each of these loops contains at least 

one branch not used in previous loops.  

The following example illustrates the method.  

In Fig. 2.1 a network with three (n = 3) nodes named a,b,c , and five 

branches is shown. EMF of the power sources and circuit resistances are given.  

 

There are five unknown currents we have to determine. 
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To start with the problem we should assume directions of unknown currents 

(the supposed preposition is depicted in the figure), and write two independent 

equations using the first Kirchoff’s law.  

At a node we have  

1 3 4
I  - I  - I  = 0 ;                                          (2.1) 

and at  b node:   

2 3 5
I  + I  - I  = 0 .                                         (2.2) 

To complete the set of five necessary equations we’ll select three closed 

loops (meshes I, II, III in the figure) and, taking directions of mesh currents, apply 

the second Kirchhoff’s law:  

1 1 1 4 4
E  = I R  + I R ,                                       (2.3) 

 
3 3 4 4 5 5

0 = I R  - I R  + I R ,                                  (2.4)    

2 2 2 5 5
-E  = - I R  - I R  .                                   (2.5) 

Note: a mesh is a loop that does not contain other loops. 

All five currents can be determined now. If a solution obtained collected mi-

nus sign, corresponding current actually flows in the opposite direction.  

 

2.2 Node Voltage Method 
 

The direct use of Kirchhoff’s laws for determining the currents in a com-

plex circuit demands solving considerable number of equations, what makes the 

computations extremely time-consuming. However, there are a number of meth-

ods, based on the same Kirchhoff’s laws, that obviate the solution of a set of 

equations or reduce the number of equations and, hence, significantly cut compu-

tation time. 

One of those is a node-voltage method, which may be more effective if the 

circuit contains only two nodes (Fig. 2.2). 
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In accordance with Kirchhoff’s law, the voltage between two nodes (for ex-

ample node voltage 
ab a b

V =  - ϕ ϕ  in Fig 2.2 may be defined as the difference be-

tween EMF Ек of definite circuit branch and the voltage drop IкRк across the re-

sistance in that branch: 

ab k k k
V E I R= − . 

Whence the k - branch current could be derived from 

k ab

k

k

E V
I

R

−

=  .                                               (2.6) 

At the same time, according to First Kirchhoff’s Law, the algebraic sum of 

currents at the node a equals zero: 

        
n n

k ab

k

k 1 k 1 k

E V
I 0

R
= =

−

= =∑ ∑ , 

or     

        
n

k ab

n

k 1 k

k

k 1

E V

R
R

=

=

=∑
∑

. 

This result in 
n

k

k 1 k

ab n

k 1 k

E

R
V

1

R

=

=

=

∑

∑
.                                             (2.7) 

Whence, for the circuit like the network in Fig. 2.2 the node voltage can be 

easily found by parameters of all branches on the base of (2.7).  

After that one can simply use (2.6) to find any required current.  

If one or several EMF have a direction reverse to that shown in Fig. 2.2, 

then EMF must be included in equations (2.6) and (2.7) with a minus sign.  

Often one of the potentials of the node voltage is taken zero (e.g., let in 

Fig. 2.2 be 
b

0ϕ = ). Corresponding node (b) is referred to as a reference node. 

The other node (a) is then called a principal node. 

 

2.3 Loop Current Method 

 

If a circuit with several power sources obtains more than two nodes, the 

currents in it may be found by using loop currents concept. This is one of the most 

universal methods for circuit calculation. 

In a number of cases, a circuit can be considered as consisting of a set of 

adjoining loops (see Fig. 2.1).  
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Let us introduce a notion of the loop current, in addition to the branch cur-

rent. The loop current is an imaginary (virtual) current that passes through the ele-

ments of its own loop only. For example, the circuit shown in Fig. 2.1, and con-

sisting of three meshes, receives three loop currents: 
I II III

I ,I ,I . 

It is evident that the actual current in the adjacent branch would result from 

the currents of two adjacent loops. 

From the other hand the current through the external branch of the loop will be 

equal in magnitude to the corresponding loop current (as the only current in that 

branch) and its sign will depend upon the fact whether its direction is the same as that 

of the loop current or opposite: 

1 I 2 II 3 II 4 I II 5 II III
I  = I , I  = - I , I  = I , I =I  - I , I   = I  - I .            (2.8) 

If for all three loops in Fig. 2.1 we write equations based on Kirchhoff’s second 

law relative to loop currents, that will result in a set  

 
I 1 4 II 4 1

I (R  + R ) - I R  = E  , 

I 4 II 3 4 5 III 5
-I R +I (R + R + R ) - I R  = 0 ,

II 5 III 2 5 2
- I R +I (R + R ) = - E . 

(2.9)

After solving this set of equations and finding all the loop currents one 

could derive the actual currents with the help of (2.8). 

 

2.4 Conversion of Delta-connected Resistances into  

Equivalent Wye Connection  

 

Not always circuits with one power source may be simplified by connection 

of the group of resistances in series, parallel or series-parallel. For example, the 

resistors R1 , R2 and R3 in Fig. 2.3 are wye (or Y) connected, while the resistors R2 

R3 , R4 (or R5 , R6  and R4 ) form a so-called delta (or∆ )configuration. 
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This circuit may be converted into a series-parallel circuit if one or several 

delta-connections of resistances are replaced by their equivalent wye, and vice versa. 

Delta-connected and wye-connected resistances will be equivalent if their 

replacing each other does not change origin node potentials of the circuit. 

If abc delta configuration of the circuit in Fig. 2.3 is replaced by the equiva-

lent wye form like shown in Fig. 2.4 it will result in the conventional series-

parallel connection of resistances. 

 

Typical calculation of the total resistance of this circuit  

b 5 c 6

t 1 a

b c 5 6

( R R )( R R )
R R R ,

R R R R

+ +

= + +

+ + +

 

will greatly simplify each of the currents 
1 5 6

I  ,I , I  derivation. 

In order to determine remaining currents I2 ,I3 and I4, first one must  find 

the potentials of the nodes a, b and c (respectively 
d

0ϕ = ): 

b 5 5 c 6 6 a 5 5 6 1 a
= I R , = I R , = I (R +R ) + I Rϕ ϕ ϕ , 

and then calculate: 

a b a c b c

2 3 4

2 3 4

(  - ) (  - ) (  - )
I  = , I  = , I  = 

R R R

ϕ ϕ ϕ ϕ ϕ ϕ
. 

The two circuits, delta and wye Fig. 2.5, are equivalent if the resistance be-

tween any two terminals of one is equal to the resistance between the same two 

terminals of the other.  

 

Fig. 2.5 – Equivalent delta and wye connections 
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The criterion of equivalence could be satisfied if 

ca ab ab bc bc ca

a b c

ab bc ca ab bc ca ab bc ca

R R R R R R
R , R , R

R R R R R R R R R
= = =

+ + + + + +

,    (2.10) 

and, on the contrary, 

a b b c c a

ab a b bc b c ca c a

c a b

R R R R R R
R R R , R R R , R R R

R R R
= + + = + + = + + .  (2.11) 

Besides, if each delta resistance is of the same value (Rd), the three resis-

tances in the equivalent wye (
w

R ) configuration are identical too:  

w d

1
R R

3
= . 

 

2.5 Superposition method 

 

One of the properties of a linear element or a device is superposition. 

If a device excited by current I1, will exhibit response V1, then similarly, 

excitation I2 will cause response V2, and if we use excitation ( )1 2
I I+  we will 

find a response( )
1 2

V V+ . 

The superposition principle can serve a basis for the method of analysis of 

electric circuits called the superposition method: 

1) in a circuit with many power sources partial currents produced by the ac-

tion of each EMF are consequently determined (other EMFs each time being put 

equal to zero); 

2) the partial current components for the same branch are then algebraically 

added (superimposed) to find the resultant current produced by the combined ac-

tion of all EMFs. 

 

2.6 Calculation of Nonlinear DC Circuits  

 

Nonlinear Circuit Elements 

An electric circuit resistance of which depends upon neither current nor 

voltage is called linear. The relationship between the current flowing through the 

circuit and the applied voltage, i.e. ( )I f V=  is called a volt-ampere character-

istic (I-V characteristic) of the circuit. 

The  I-V characteristic of a linear element or a linear circuit is a straight 

line. Say, line oa in Fig. 2.6 could present an ideal resistor that exhibits linear re-

sistance properties according to Ohm’s law. A resistor made of carbon or metal 

filament is mainly considered to meet these requirements.  
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Often, on the other hand, the electric circuit contains elements for which 

Ohm’s law does not hold, that is the current is not proportional to the applied 

voltage directly. Such elements are called nonlinear. 

 
 

For a nonlinear element I-V characteristic is no longer a straight line, but a 

curve. The example of a nonlinear element is an ordinary incandescent lamp, as in 

this case the resistance does not remain constant but varies greatly with the cur-

rent and temperature of the filament. Corresponding I-V characteristics are pre-

sented in Fig 2.6 by curves 0b (carbon) and 0c (metal filament). 

Other examples of nonlinear elements are the vacuum tubes, semiconductor 

devices and so on.  

If a circuit contains at least one nonlinear element we can speak of nonlin-

ear circuit. For its analysis we can’t use the methods discussed above. The diffi-

culty is that it is not possible, in general, to obtain a closed form analytical solu-

tion, even for a very simple circuit. 

 

Graphical (Load-Line) Analysis of Nonlinear Circuits 

There are some specific ways of nonlinear circuit analysis and calculation. 

One of them is the graphical analysis of a circuit. 

With the knowledge of equivalent circuits we have just acquired, one ap-

proach to analyzing a circuit containing a nonlinear element might be to treat the 

nonlinear element as a load and to compute the equivalent of the remaining circuit 

(an equivalent generator), as shown in Fig. 2.7. Applying KVL, the following 

equation may then be obtained: 

 

1 E
I V

R R
= − + .                                             (2.12) 
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We notice first that equation 2.12 describes the behaviour of any load, lin-

ear or nonlinear, since we have made no assumptions regarding the nature of the 

load voltage and current. Second, it is the equation of a line in the I V−  plane. 

This equation is referred to as the load-line equation; its graphical interpretation is 

very useful and is shown in Fig. 2.8. 

 

The load-line equation is but one of two I V−  characteristics we have 

available, the other being the nonlinear device characteristic. The intersection of 

the two curves yields the solution of our nonlinear system of equations. This re-

sult is depicted in Fig. 2.8. 

Finally, another important point should be emphasized: the linear network 

reduction  methods introduced  in the preceding  sections can always be employed  
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 to reduce any circuit containing a single nonlinear element to the Thevenin 

equivalent form, as illustrated in Fig. 2.9. The key is to identify the nonlinear 

element and to treat it as a load. Thus, the equivalent-circuit solution method 

(equivalent generator method) can be very useful in simplifying problems in 

which a nonlinear load is present.  

 

2.7 Terms and Concepts 

 

Loop current is the current that flows through the elements constituting the 

loop. 

Node voltage is voltage from a reference node to the selected (principal) 

node. 

Reference node is a node selected as the reference for all other nodes. 

Linear element is an element that satisfies the properties of superposition 

and homogeneity. 

Delta connection is the closed connection of three receivers, when the end-

ing of previous receiver is connected with the beginning of following one. 

Wye connection is the connection of three receivers when all their endings 

are connected in one point. 

 

2.8 Review Questions 

 

1. How many Kirchhoff’s equations are to be used in order to find values of 

all currents in a complex circuit? 

2. What advantage has the loop-current method as compared to other methods? 

3. What equations and how many of them can be made up when loop-

current method is used? 

4. How can one define the actual current in a circuit branch by means of the 

loop-currents method? 

5. What electric circuit is called a complex circuit? 

6. Write down equations for defining node voltage and currents in the case 

of a two node circuit. 

7. When do we use the superposition method for electric circuit calculation? 

8. What are the conditions of equivalent conversion of delta-connected re-

sistances into wye-connected? 

9. How can you define the value of wye-connected resistances? 

10. What elements are called nonlinear? 

11. Explain the essence of equivalent conversion method for nonlinear circuits. 

 

2.9 Problems 

Examples 

Problem 1. The resistive circuit is shown in Fig. 2.10. 
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Two voltage sources E1 and E2 and all resistances are known.  

1. Write the equations required to determine all currents with the direct use of  

Kirchhoff’s Laws; 

2. Using mesh current analysis, find all currents.  

 

Solution 

1. There are three nodes 1, 2, 3 and three independent loops (meshes) I, II, III in 

this circuit. Let us set the directions of unknown currents and traveling direction 

around the meshes (clockwise).  

Using the first Kirchhoff’s Law we can make up two equations: 
1 4 3

I +I =I  

and 
2 4 5
I =I +I , and using the second Kirchhoff’s law add three equations more for 

meshes: 

  

                   
1 1 1 3 3

E  = I R +I R , 

               
3 3 4 4 5 5

0 = -I R -I R +I R , 

                 
2 2 2 5 5

-E  = -I R -I R . 

Now all five currents can be found by solving this set of equations. 

2. We define each of the I, II, III mesh currents applying KVL for each of the I, 

II, III mesh:  

              
1 k1 1 3 k2 3

E =I (R +R )+I R , 

       
k1 3 k2 3 4 5 k3 5

0=-I R +I (R +R +R )-I R , 

            
2 k2 5 k3 2 5

-E =-I R +I (R +R ) . 

 

Substitution of the circuit parameters  

k1 k 2 k1 k 2

k1 k 2 k 3 k1 k 2 k 3

k 2 k 3 k 2 k 3

10 I ( 6 7 ) I 13I I ,

0 I I ( 1 2 3 ) I I 6I 3I ,

20 3I I ( 3 10 ) 3I 13I

= + − = −⎧
⎪

= − + + + − = − + −⎨
⎪ − = − + + = − +⎩
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results in the solution of mesh currents: 

k1

9
I A

13
= ; 

k 2
I 1A= − ; 

k 3

23
I A

13
= − . 

The values of actual branch currents will then be as follows: 

1 k1 2 k3 3 k1 k2

4 k2 5 k2 k3

9 23 9 23 32
I I A; I I 1.77 A; I I I ( ) A;

13 13 13 13 13

23 23 10
I I 1A; I I I 1 ( ) 1 A.

13 13 13

= = = − = = = − = − − =

= − = = − = − − − = − =

 

Problem 2. For the resistive circuit (Fig. 2.11) there are known quantities:  

1 2 3
E =220V; E =110V; E =100V;   

1 2 3 L
R =2 ; R =2 ; R =1 ; R =5 Ω Ω Ω Ω . 

Calculate the currents 
1 2 3 L

I , I , I , I  through each resistor. 

 
 

Solution 

1. Let us take the node b as a reference node having 
b
=0ϕ , then the a node 

will be the principal node. 

Using the equation for the node voltage we can find  

1 1 2 2 3 3

AB

1 2 3 L

E q E q E q 220 0.5 110 0.5 100 265
V 120.46V

q q q q 0.5 0.5 1 0.2 2.2

+ + ⋅ + ⋅ +
= = = =

+ + + + + +

. 

2. It’s easy then to find the required currents: 
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1 AB

1

1

2 AB

2

2

3 AB

3

3

AB

L

L

E V 220 120.46
I 49.77 A;

R 2

E V 110 120.46 10.46
I 5.23A;

R 2 2

E V 100 120.46
I 20.46A;

R 1

V 120.46
I 24.09A.

R 5

− −

= = =

− − −

= = = = −

− −

= = = −

= = =

 

 

Supplement Problems 

Problem 3. Find currents I1, I2, I3 for the circuit of Fig. 2.12, if we have the 

known quantities: 
1 2

E =50V; E =100V;  
1 2

R = 5 ; R =30 ;Ω Ω  
3 4

R =20 ; R =10 .Ω Ω   

Note: Apply the direct use of Kirchhoff’s Laws and both node-voltage and 

loop-current methods. 

 
 

Problem 4. For the circuit shown in Fig. 2.13: 

 
 

a) calculate 
1 2 3
I ,I ,I  when  

1 2 3
R =R =R =3  Ω and 

1 2
E =1V; E =3V ; 

b) convince yourself that the energy is conserved in the circuit. 
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Problem 5. On the base of superposition principle find currents in the circuit 

(see Fig. 2.13), if: 
1 2 3 1 2

R =5 , R =30 , R =20 , E =1V; E =3V.Ω Ω Ω  

 

Problem 6. Using the method of equivalent generator calculate the current 

through the resistor R in the circuit of Fig. 2.14 (
1

R =5 ,Ω
2

R =4 ,Ω
3

 R =20 ,Ω  

 R=2 , E=50VΩ ). 

 

  
 

Answer: 4A. 

 

 

2.10 Practice 

“Investigation of DC Circuits Containing Linear and Non-linear Elements” 

 

Objective: to study basic methods of analysis and calculation of direct cur-

rent circuits with linear and non-linear elements, simple and complex DC circuits, 

and to familiarize with types and properties of non-linear elements. 

 

Work task 

1. Measurement and calculation of currents. Proceeding in a circuit with lin-

ear elements and potentials in the given points of a circuit. 

2. Construction of the potential diagram for the circuit under analysis. 

3. Defining currents and voltages in the circuit to be investigated by the 

graphic method. 

 

Theory and Preparation 

Analysis of electric circuits with linear elements can be done with the direct 

use of Ohm’s and Kirchhoff’s laws. Given the EMF of energy sources and values 

of the resistance of resistive elements in a complex electric circuit with several 

branches, then the analysis of such circuits leads to determination of currents in 

the branches. Calculation of currents in the complex circuits is carried out by vari-

ous methods: making use of Ohm’s and Kirchhoff’s laws, the conversion of delta-
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connected resistances into equivalent wye-connection and vise-versa, loop-

current, node-voltage etc. 

Nonlinear circuit calculations don’t use Ohm’s law because they haven’t lin-

ear relationship between current and voltage. Analysis of such circuits are realized 

by graph-analytical methods. 

Experimental work is carried out on the laboratory stand with the use of DC 

power supplies, linear and nonlinear elements specified to the workplace, special 

plugs and conductors for assembling investigated circuits, measuring devices 

needed to conduct necessary experimental works.  

 

Procedure 

 

1. DC circuit with series-parallel connection of linear elements  

 

Before carrying out the investigation, be sure you depict an experiment cir-

cuit diagram (Fig. 2.15) and a table for the necessary measurements recording 

(Table 2.1). 

From your instructor, take the recommended value of the input DC voltage 

and prepare a measuring instrument (select the device, study its specifications, set 

the range). 

Connect the circuit (see Fig. 2.15). 

 

 

Switch the DC power supply on (after instructor’s admission), regulate the 

input voltage taken and measure each of the necessary parameters. Record your 

results in Table 2.1. 

Table 2.1 

 

Parameter Readings Calculations 

Symbol 
in

V  I  
a

ϕ  

b
ϕ  c

ϕ  
d

ϕ  
C

R  
1

I  
2

I  

Unit V A V V  V  V  Ω A A 

Value          
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In the table 
i

ϕ  is the potential of the given point fixed when traveling 

through the investigated circuit; I is the current in unbranched part of a circuit; I1, 

I2 are branch currents. 

 

2. DC circuit with non-linear elements 

 

Repeat the preparations like those in the previous section. After connecting 

the circuit (Fig. 2.16) with nonlinear element NE1, take the value of the input 

voltage from the instructor and switch the voltage source on. Record your values 

of the circuit parameters in Table 2.2.  

 
 

Table 2.2 

in
V , V          

1
NE
I , A          

2
NE
I , A          

 

Repeat the measurements for different values of the input voltage. 

Investigate the circuit from the beginning having replaced NE1 by the ele-

ment NE2. 

 

3. Series connection of nonlinear elements 

 

Set up the circuit with series connection of nonlinear elements taken from the 

previous experiment (Fig. 2.17), and measure quantities specified in Table 2.3 at 

the given input voltage. 
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Table 2.3 

Parameter Measured Calculated 

Symbol 
in

V  I ′  1
V  

2
V  I ′  1

V ′  
2

V ′  

Unit V A V V A V V 

Value        

 

In Table 2.3 V1, V2 are the voltage drops across the elements. 

 

4. Parallel connection of the nonlinear elements 

 

Set up the circuit with parallel connection of the chosen nonlinear elements 

(Fig. 2.18) and measure quantities specified in Table 2.4, at the given input volt-

age. 

 

 
 

Table 2.4 

Parameter Measured Calculated 

Symbol 
in

V  I  1
I  

2
I  I ′  1

I ′  
2

I ′  

Unit V A A A A A A 

Value        

 

Summarizing 

 

1. For experiment 2 design the circuit potential diagram using the values of resis-

tances and measurements of Table 2.1.  

2. Depict volt-ampere characteristics of two nonlinear elements on the basis of 

Table 2.2 and find graphically the quantities specified in Tables 2.3 and 2.4. 

3. Analyze the results and write brief conclusions. 
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Questions to be answered 

 

1. What is an active electric circuit and what elements it consists of? 

2. What is an equivalent circuit? 

3. What laws of electrical engineering are used in analyzing the electric circuits? 

4. How are electric circuits analyzed by the method of converting the delta-

connected resistances into equivalent wye-connected and vice-versa? 

5. How are electric circuits analyzed by the loop-current method? 

6. How are electric circuits analyzed by the node-voltage method? 

7. How is a potential diagram constructed? 

8. How can the circuit analysis be performed for series- and parallel-connected 

nonlinear elements? 
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Chapter 3 
 

ALTERNATING CURRENT CIRCUITS 

 

Alternating current (AC) circuits have largely replaced direct current (DC) 

circuits in commercial power systems for a number of reasons. AC can be trans-

mitted over long distances more readily and more economically than DC, since 

AC voltages can be increased or decreased by mean of transformers. 

As more units are operated electrically in airplanes, the power requirements 

are such that a number of advantages can be realized by using alternating current. 

Space and weight can be saved, since AC devices, especially motors, are smaller 

and simpler than DC devices. In most AC motors no brushes are required, and 

commutation trouble at high altitude is eliminated. Circuit breakers will operate 

satisfactorily under load at high altitudes in AC system whereas arcing is so ex-

cessive in DC systems that circuit breakers must be replaced frequently. Finally, 

most airplanes using a 27 V DC system have special equipment, which requires a 

certain amount of 400 V AC current. 

 

3.1 Sinusoidal current and its representation 

 

A current (or voltage) is called alternating if it periodically changes its di-

rection and instant value. The time of complete cycle of current variations is usu-

ally called the period T of an alternating current. Reversely, the number of the pe-

riods per one second is called AC line natural frequency f 1 / T= . The unit of 

frequency is 1/sec; more often it is called the hertz (Hz). 

The most important of all periodic curves is the sine waveform (Fig. 3.1), 

which is the only periodic function having a derivative and an integral like itself.  

 

Fig. 3.1 –  Graphical representation of sine functions 
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An EMF produced by commercially available AC generators can be pre-

sented in analytical time-domain form as sinusoidal time-varying function: 

m e
e E sin( t )ω ψ= ⋅ ± ,                                       (3.1) 

where the radian (or, angular) frequency 2 fω π=  (radians/s) represents one 

more relevant parameter of a sinusoidal waveform. 

In a closed electric circuit the sinusoidal EMF will excite a sine wave cur-

rent  

( )
m i

i t I sin( t )ω ψ= ⋅ ± ,                                    (3.2) 

and a voltage dropped across the part of the circuit: 

( ) ( )
m

t V sin t
υ

υ ω ψ= ⋅ ± .                                    (3.3) 

Here and routinely in the remainder of the manual we’ll use small letters v , 

i, e to denote instantaneous (at arbitrary moment t) values of different time-

varying signals: a voltage, a current, an EMF, etc. The capital letters Im, Vm, Em 

denote the amplitudes, i.e. the peak values of the signals.  

Symbols 
v ei

, ,ψ ψ ψ   denote the sine wave initial phases, resulting in the 

values of current (voltage, EMF, etc.) at the moment that was chosen as the time 

origin ( t 0ω =  reference point is depicted in Fig. 3.1). 

In general, the phase of a process at any time is defined by the angle 

( )tω ψ+  of the sine wave and is called the phase angle or instant phase. The 

difference between initial phases of two functions, for instance, between 
υ

ψ  and 

i
ψ  in Fig. 3.1, is called the phase difference or phase shift:  φ= 

υ
ψ –

i
ψ . 

 

Average and effective values of AC 

For quantifying the strength of time-varying electrical signals several suit-

able measurements are known. The most common types of measurements are the 

average (or mean, or DC) value of a signal waveform, and the root-mean-

square (or rms) value.  

 The average value of current (voltage, EMF, any alternating quantity) cor-

responds to measuring the mean current or other variable, over a period of time. 

Formally, for AC current (as a periodic function) it is calculated by integrating the 

signal wave form over the interval of half a period:  

( )

T

2

mean

0

2
I i t dt .

T
= ∫                                              (3.4) 

Substitution of ( )
m

i t I sin tω=  in (3.4) will give a simple relation between 

the current amplitude Im and mean value Imean: 
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m

mean m

2I
I 0.637 I

π

= = .                                           (3.5)  

In alternating current engineering, one often deals with the thermal or me-

chanical effects of a current. The intensity of heat generation and in many cases 

the magnitude of mechanical forces in electromechanical devices is proportional 

to the square of the current. The square root of this quantity defines the root-

mean-square (rms) value of the current as follows:  

T

2

0

1
I i dt

T
= ∫ .                                             (3.6) 

More often rms value is called the effective value. Besides, a capital letter 

without indexation is commonly used to denote effective value of AC current. 

The effective I value of the alternating current that flows through a resistor 

R is equivalent to that value I
=

 of the direct current which would cause the libera-

tion of the same quantity of heat by the resistor, i.e. 

( )
T

2 2 2

0

i Rdt I T R I RT
=

= ⋅ =∫ .                            (3.7) 

For a sinusoidal current: 

( )
T

2 2 m

m m

0

I1
I I sin t dt 0.707 I ,

T 2
ω= = =∫                      (3.8) 

i.e. the effective value is 2  times less the current peak amplitude. 

The effective values of an alternating voltage, EMF, magnetic flux, etc. are 

derived similarly. These are the most useful measures of an AC voltage. Voltmeters 

and ammeters, designed for the circuits being operated with the sinusoidal current, 

are usually graduated to indicate the effective values of voltage or current. 

 

Vector Diagrams 

In various calculations it is often necessary to express some current as the 

sum of two or more currents (Fig. 3.2). 
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According to KCL, the resulting current i through the right hand conductor 

equals 
1 2
i i+ . The currents to be added have different amplitude, and besides, 

may pass through their zeros at different moments, i.e. they may have a phase 

shift. 

We could perform currents adding with the help of mathematical conver-

sions or do that graphically having both the current sketches (oscillograms). 

But the same result may be quickly obtained with the help of vector dia-

grams, when another, frequency-domain (or phasor) form of sinusoidal signal 

representation is used. The latter is provided by the use of Euler’s identity: 

j t
e cos t j sin t

ω

ω ω= + .                               (3.9) 

In this case we use expressions for voltage and current sine waves which 

look like 

m

j t
V V e

ω
=

� , 

( )
m

j t
I I e

ω ϕ+

=
� .                                     (3.10) 

In Fig. 3.3 a radius vector Im  being rotated counter clockwise with the an-

gular velocity ω  is shown. It depicts the amplitude of the alternating current. As a 

function of t , the projection of the vector along the Im axis represents the actual 

alternating current ( ) ( )m ii t I sin tω ψ= + . The positive initial phase angle +
i

ψ  

means that at t=0 radius vector Im fronts the Re axis. Reversely, it lags behind that 

when being negative.  

 

Suppose we have to add the current 
1 m1
i I sin tω=  ( 0ψ = ) with the current 

2 m2
i I sin( t 90 )ω= −  ( 90ψ = − ) which, hence, lags i1 

by 90
0
.  We depict the both 

radius vectors as shown in Fig. 3.4.  After that, in order to find the vector Im repre-

senting the resultant current, we only need to combine the vectors Im1 and Im2 by 

the parallelogram rule. That yields:  

2 2

m m1 m2
I I I= +  ,  m2

m1

I
arctg

I
ϕ = .                           (3.11) 
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In equations (3.11) the member Im2 is to be substituted with the minus sign 

in accordance with the direction of the vector Im2 in the plane of Fig. 3.4.  

 
 

Since the projection of the rotating vector in time-domain representation is 

a sine waveform, it follows that the sum of two sinusoidal currents (or voltages) is 

a sinusoidal waveform too. However, the purpose of depicting vector diagrams is 

mostly to define not the instantaneous value of the current at any time but the am-

plitude or, preferably, the effective value, and the phase shift. 

In one picture, a vector diagram may represent different AC line parame-

ters, not current or voltage vectors only, to help one to display their interaction in 

the circuit. 

 

3.2 Voltage-Current Relationships for AC Circuit Elements 

  

Ideal Circuit Elements 

An electrical circuit which provides the flow of electric current is formed 

by the interconnection of various circuit elements. The basic so-called passive cir-

cuit components are a resistor, a capacitor, and an inductor. Fig. 3.5 represents 

circuit symbols for these elements. 

  

 

Obviously that for a resistor the voltage-current relationship corresponds to 

Ohm’s Law: 

R
Riυ =       or        

R
i Gυ= ,                                (3.12) 

where R and G  are the resistance and the conductance (the inverse of the resis-

tance) of the resistor, correspondingly. 
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The ideal resistor introduced through Ohm’s law is a useful realization of 

many practical electrical devices. However, in addition to resistance to the flow of 

electric current, which is purely a dissipative (i.e., an energy-loss) phenomenon, 

electric devices may also exhibit energy-storage properties. Two important 

mechanisms for energy storage exist in electric circuits: capacitance and induc-

tance. Appropriately, two ideal circuit elements will be introduced to represent 

these properties: the ideal capacitor and the ideal inductor (see Fig. 3.5). 

A physical capacitor is a device that can store energy in the form of a 

charge separation in an electric field (i.e., by applied voltage), and because of spe-

cial construction (presence of insulating material between conducting plates) does 

not allow for the flow of DC current. Thus, a capacitor acts as an open circuit in 

the presence of DC currents. In a capacitor, the charge separation caused by the 

polarization of the dielectric is proportional to the external voltage, that is, to the 

applied electric field: 

Q
C

V
=  ,                                                 (3.13) 

where the parameter C is called the capacitance of the element. The unit of ca-

pacitance is the coulomb/volt and is called the farad (F).  

From the equation (3.13) we can realize that if the external voltage applied 

to the capacitor changes in time, so will the charge that is internally stored by the 

capacitor. Thus, a time-varying voltage will cause charge to vary in time.   

Using the definition of current: 

( ) dQ
i t

dt
= ,                                                 (3.14) 

one can obtain a relationship between the current and voltage in a capacitor: 

( ) ( )
C

d t
i t C

dt

υ

=                                               (3.15) 

or  

   ( )C 0

0

t

t

1
t idt V

C
υ ′= +∫ .                                         (3.16) 

The significance of the initial voltage, 
0

V , is that at time 
0
t  some charge is stored 

in the capacitor, giving rise to a voltage, ( )C 0
V t , according to the relationship 

Q=CV. 

The third circuit element known as ideal inductor is an element that has 

the ability to store energy in a magnetic field. Inductors are typically made by 

winding a coil of wire around a core. When a current flows through the coil, a 

magnetic field is established. In an ideal inductor, the resistance of the wire is 

zero, so that a constant current through the inductor will flow freely without caus-
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ing a voltage drop (the ideal inductor acts as a short circuit in the presence of DC 

currents).  

If a time-varying voltage is established across the inductor a corresponding 

current will result according the following relationship: 

( ) ( )
L

L

di t
t L

dt
υ = ,                                                (3.17) 

where L is called the inductance of the coil and is measured in henrys (H). 

It is interesting to compare equation (3.17) which defines the behavior of an 

ideal inductor, with expression relating capacitor current and voltage (3.15). We 

note that the roles of voltage and current are reversed in the two elements. This 

duality between inductance and capacitance can be exploited to derive the same 

basic results for the inductor that we already have for the capacitor simply by re-

placing the capacitance parameter, C, with the inductance, L, and voltage with 

current.  

Thus, the inductor current is found by integrating the voltage across the in-

ductor: 

( )
L L 0

t

t
0

1
i t dt I

L
υ= +∫ .                                       (3.18) 

 

 

Steady-state Response of R, L, C Circuits to Sine Input Voltage 

We now analyze the i-v relationship of the three ideal circuit elements with 

the help of the phasor (complex) notation. In the context of AC circuits any one of 

the three ideal circuit elements will be described by a parameter called imped-

ance, which may be viewed as a complex resistance and likely depicted in circuit 

diagrams, e.g. as shown in Fig. 3.6. 

Let the source exiting a circuit with the element be defined by 

( ) j0E j Eeω =  instead of ( )
R

Rm
t V sin tωυ = . This complex voltage appears in 

the sketch together with the parameter ( )Z jω .  

 

Fig. 3.6 – AC circuit in complex/impedance form 
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The current ( )i t  (or ( )I jω  for complex representation) is defined by the 

i υ−  relationship for each circuit element. 

Let us examine the frequency-dependant properties of the resistor, inductor, 

and capacitor, first one at a time. 

 

The resistor 

Ohm’s law dictates the well-known relationship iRυ = . In the case of sinu-

soidal sources the current flowing through the resistor may be expressed as 

( ) RR

R R

m

m
t

V
i sin t I sin t ,

R R

υ
ω ω= = =

�

�                           (3.19) 

Using complex notations for both the voltage and the current, we obtain  

R

R

m

m

V
I

R
=
�

� .                                             (3.20) 

( ) ( ) ( )R
Z j V j / I j Rω ω ω= =   or  

R R
V RI=
� � .                  (3.20′) 

Equation (3.20′) corresponds to Ohm’s law in complex form.  

Finally, we can see that the impedance of a resistor is simply its actual re-

sistance R, which is frequency-independent. 

 

The vector diagram for the equation (3.20) is depicted in Fig. 3.7,a. 

 

The inductor 

Let the inductor voltage be ( )
L Lm
t V sin tυ ω= (resulted from the source volt-

age). Then the following expression may be derived for the steady-state inductor cur-

rent:  

( ) ( )om

L L m

V1
i t dt cos t I sin t 90

L L
υ ω ω

ω

= = − = −∫ .               (3.21) 

Thus, the current is not just scaled version of the source voltage, as it was 

for the resistor. The current lags the voltage (shifted in phase, or delayed) by 90�   
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and its magnitude is 
1

Lω

times the voltage, i.e. the response of the inductor cur-

rent depends on the source EMF frequency, ω .  

In vector form, the relation (3.21) for effective values V and I may be re-

written as: 

L L
V j LIω=
� � ,                                           (3.22) 

where impedance of the inductor ZL(jω)=jωL now appears to behave like a com-

plex frequency-dependant resistor. The pure imaginary impedance jXL =jωL is 

called the inductive (positive) reactance and is measured in ohms. Thus, an in-

ductor will impede current flow in proportion to the sinusoidal frequency of the 

source signal. 

The vector diagram for the equation (3.22) is depicted in Fig. 3.7,b. 

 

The capacitor 

Beginning with (3.15), an analogous procedure may be followed to derive 

the equivalent result for a capacitor:  

( ) om

C m m

c
d d(V sin t )

i t C C CV cos t CV sin( t 90 )
dt dt

υ ω

ω ω ω ω= = = = + , (3.23) 

so that, in vector form: 

C C

1
V I

j Cω
=

� � .                                            (3.24) 

The impedance of the ideal capacitor, ZC(jω), is therefore defined as follows: 

( ) ( )C

j
Z j

C
ω

ω
= − ,                                          (3.25) 

where quantity jX
с
 =j(–1 /ωС) is the capacitive (negative) reactance. Thus, the 

impedance (reactance) of a capacitor is also a frequency-dependant quantity, with 

the impedance of the capacitor varying as an inverse function of frequency. 

The vector diagram Fig. 3.7,c depicts the fact that, for a capacitor, the cur-

rent leads the voltage by 90°. 

 

3.3 Series AC Circuits 

 

Series R–L circuit 

We consider AC networks with more than one circuit element. 

For instance, the series R– L circuit in Fig. 3.8,a can model a practical in-

ductor, where series resistor represents the resistance of the coil wire.  

The each voltage and the current are presented in the figure in a complex 

form. Following complex form of KVL, we have: 
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R L
V V V RI j LI ( R j L )I ZIω ω= + = + = + =
� � � � � � � , 

where 

L
Z R j L R jXω= + = +                                 (3.26) 

 

is the equivalent impedance of the circuit compiled of the AC resistance R and 

inductive reactance XL. Impedance Z is a complex number with the modulus and 

the phase angle (positive) 

 

( )22
Z R Lω= +   ,                                     (3.27) 

L
X

arg Z arctg
R

ϕ = = .                                  (3.28) 

The voltage–current relationship depicted in Fig. 3.8,b, is the vector dia-

gram for the series R,L circuit. 

 

 

 

In constructing this diagram we have chosen I�  (which is common to the 

entire circuit) as the reference vector. Note that I�  lags V�  by the angle ϕ  . 

Now, for reason that will become apparent later, we define power factor as 

R
cos

Z
ϕ =                                               (3.29) 

and state that series R–L circuits have the lagging power factor. 

 

Series R–C circuit 

Now considering the series R–C circuit of Fig. 3.9,a we’ll derive  

R C

1 1
V V V RI j I ( R j )I ZI

C Cω ω
= + = − = − =

� � � � � � � , 
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where Z is the circuit equivalent impedance: 

                                    
C

1
Z R j R jX

Cω
= − = − .                                  (3.30)  

The vector diagram for a series R–C circuit is shown in Fig 3.9,b. This circuit 

 

 

collects the current I�  that leads the voltage V�  because of the negative phase angle φ 

of the equivalent impedance. So is the power factor cos φ of the circuit (leading).  

 

Series R–L–C circuit and voltage resonance 

Finally, for the series RLC circuit shown in Fig. 3.10,a, we obtain the 

equivalent impedance  

L C

1
Z R j( L ) R j( X X )

C
ω

ω

= + − = + − .                    (3.31) 

The instance vector diagram, Fig. 3.10,b shows the lagging power factor 

( )L C
X X> . 
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You may have a chance of getting a leading power factor( )L C
X X< , and the 

unity factor (
L C

X X= ). For the series RLC circuit represented in Fig. 3.10,a the 

vector form of Ohm’s law is as follows: 
.

V
I

1
R j( L )

C
ω

ω

=

+ −

� .                                   (3.32) 

If we have zero equivalent reactance 

1
X L 0

C
ω

ω

= − = ,                                     (3.33) 

then: 

1) the impedance will obtain the minimum value Z R= , and the current I 

will reach the peak value for a given voltage and be limited by the resistance R of 

the circuit only: 

0

V
I

R
= ; 

2) the current is in phase with the voltage (since
L C

X X= , then 
L C

V V=  

and ϕ =0). 

Vector diagrams for this case are shown in Fig. 3.11,a and b.  

The phenomenon for a series RLC circuit corresponding to (3.33) is called 

voltage resonance or series resonance.  

The condition (3.33) shows that the resonance can be obtained either by 

varying the frequency, or by changing L or C. The angular frequency  

o

1

LC
ω =  

derived from the resonance condition is called resonant frequency.  
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Voltage resonance may prove to be dangerous when running the electrical 

installation. This would result from the big values of VL and VC which might be-

come many times greater an applied voltage from the generator. 

Nevertheless, the voltage resonance is very useful in various fields of elec-

trical engineering, electronics, measuring technologies. 

 

3.4 Terms and Concepts 

 

Alternating current is the current changing its direction and magnitude. 

Angular velocity is time rate of changes of an angle rotated around an axis in de-

grees per second or degrees per minute. 

Capacitance(С) is the ability of an element to accumulate electric energy. 

Capacitor is a two-terminal device consisting of conducting plates separated by a 

dielectric and used to introduce capacitance into a circuit. 

Coil is one or more turns of a conductor designed for use in a circuit to produce 

inductance or an electromagnetic field. 

Effective value is a term used to indicate the actual working value of an alternat-

ing current based on its heating effect. Also called the root-mean-square (rms) 

value.  

Effective value of a current is the steady current that is as effective in transfer-

ring power as the average power of the varying current. 

Energy storage is work performed on moving a charge, resulting in energy stor-

age in a capacitor; or work performed to establish a magnetic field resulting in en-

ergy storage in an inductor. 

Equivalent circuit is arrangement of ideal circuit elements that is equivalent to a 

more complex arrangement of elements. A circuit equivalent to another circuit 

exhibits identical characteristics (behavior) at identical terminals. 

Henry (H) is the unit of inductance. It is the amount of inductance in a coil that 

will induce an emf of 1 V in the coil when the current flow is changing at the rate 

of 1 A/s. 

Impedance (Z) is the combined effect of resistance, capacitive reactance, and in-

ductive reactance in an AC circuit; ratio of the phasor voltage V to the phasor cur-

rent I for a circuit element or set of elements so that Z=V/I. Z is measured in 

ohms. 

Inductance (L) is property of an electric device by virtue of which a time varying 

current produces a voltage across the device, or ability of a coil to accumulate the 

magnetic energy. 

Inductive reactance (
L

X ) is the effect of inductance in an AC circuit. The equa-

tion for inductive reactance is 
L

X fL2= π . 
L

X  is measured in ohms. 

Inductor is two-terminal element consisting of a winding of N turns for introduc-

ing inductance into an electric circuit (an inductance coil in other words). 
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Passive element is element that absorbs energy. The energy delivered to it is al-

ways nonnegative (zero or positive). 

Phase shift is phase angle ϕ  associated with a variable x so that 

( )
m

x x tsin= ω − ϕ , or phase angle between a voltage and a current. 

Phasor diagram is relationship of phasors on a plane. 

Power factor is equal to cosθ , where θ  is the phase angle between the sinusoi-

dal steady-state voltage and current; ratio of average power to apparent power. 

Reactance is imaginary part of impedance, denoted as X. 

Resonance is a condition in LC circuit in which capacitive reactance and induc-

tive reactance are equal, also condition in a circuit, occurring at the resonant fre-

quency, when ( )H jω  becomes a real number (nonreactive). 

Tuning is the process of adjusting circuits to resonance at a particular frequency. 

 

3.5 Review Questions 

 

1. What parameters of a sinusoidal waveform do you know? 

2. Define the instantaneous, maximum, average and effective values of AC 

current. 

3. What is impedance? 

4. What can be measured by the instrument, impedance or impedance abso-

lute value? What is the difference between them mathematically? 

5. Explain the phenomenon of voltage resonance. 

6. What electric circuit collects the current that leads the applied voltage? 

7. Write down the relations for computing capacitive and inductive reac-

tance.  

8. Sketch a vector diagram for the series RLC circuit. What is it used for? 

 

3.6 Problems 

 

Examples  

 

Problem 1. For the series RLC circuit (see Fig. 3.10) the known quantities 

are as follows: V = 127 V; ƒ = 50 Hz; R = 6 Ω ; L = 25.5 mH; C = 1590 µF . 

1) Find:  I , VR , VL , VC,. 

2) Draw: a vector diagram corresponding to the circuit. 

 

Solution 

1) First, we compute inductive and capacitive reactances and total imped-

ance: 
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3

L

C -6

2 2

L C

2 2

Lcoil

X  =  L = 2 fL = 314 25.5 10  = 8 ;

1 1 1
X  =  =  = = 2 ; 

C 2 fC 314 1590 10

Z =   R  + (X   - X  )  = 8.5  ;

Z  =   R  + X  = 10 ,

ω π Ω

Ω
ω π

Ω

Ω

⋅ ⋅

⋅ ⋅

 

Then, we can calculate the current effective value: 

V 127
I =  =  = 14.9 A

Z 8.5
, 

and voltage drops across each element: 

R

C C

L L

coil coil

V = IR = 14.9 6 = 89.4 V;

V = IX =14.9 2 = 29.8 V;

V = IX = 14.9 8 = 119.7 V;

V = IZ = 14.9 10 = 149 V.

⋅

⋅

⋅

⋅

 

2) We must follow a series of steps to construct the diagram (Fig. 3.12): 

 

 

 

Step 1. Lay out the I vector which is the same for all elements of the circuit 

and therefore may be chosen as a reference for drawing each voltage drop. For 

convenience, we chose the horizontal direction of the reference vector. 

Step 2. To draw voltage vector diagram we start with the VR , depicting it 

along the I vector with the magnitude have been computed (89.4 V). Note that a 

scale for the voltage is somewhat different to that of the current. 

Step 3. At the right angle (upward because of inductive reactance), draw the 

vector 
L

V� of 119.7 V length starting at the end of the vector VR. Similarly, you 
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could draw voltage vector 
C

V�  down from the end of VR (capacitive reactance re-

sults in Vc leads I ). 

Step 4. To complete vector addition according to equation 
R C L

V = V  + V  + V� � � �  

we transport the origin of the vector 
C

V�  at the end of 
L

V� vector. The length of 
C

V�  

corresponds to the magnitude 29.8 V.  

Step 5. Resulting vector drawn from the origin of VR to the end point of  
C

V�  

will represent the input voltage V� . It is seen that V�  leads I�  by the angleϕ , i.e. 

the circuit exposes inductive reactance.  

 

Problem 2. Find the equivalent impedance of the circuit (Fig. 3.13) if known 

quantities equal: 4

1 2
R  = 100 ; R  = 50 ; L = 10mH; C = 10 F ; = 10  rad/sΩ Ω µ ω . 

 
 

Solution 

First, we determine the impedance of parallel 
2

R  - C circuit:  

2

2

4 6

2
2

j 1.373

ab

1
R

R 50 50j C
Z

1 1 j CR 1 j 51 j 10 10 10 50
R

j C

1.92 j 9.62 9.81 e ( ).

ω

ω

ω

Ω

−

− ⋅

⋅

= = = = =

+ + ⋅+ ⋅ ⋅ ⋅ ⋅
+

= − ⋅ = ⋅

 

Next we compute the equivalent impedance eqZ : 

4 -2

1

j 0.72

eq ab
Z  = R  + j L + Z  = 100 + j 10 10 + 1.92 - j 9.62 = 101.92 + j 90.38 =

= 136.2 e  ( ).Ω
⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅

 

In the end we can see that at the frequency used in the example the circuit 

has an inductive impedance since the reactance is positive (or alternatively, the 

phase angle is positive). 
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Supplement Problems 

Problem 3. A circuit carries a current j0
I = 10 e A⋅

� . The circuit contains 

three series elements with equivalent parameters R = 8Ω ; 
C

X  = 6Ω , 

L
X  = 12Ω . 

Determine: 

a) voltages across the three elements; 

b) voltage across the entire circuit. 
 

Problem 4. For the series RLC circuit like that in Fig. 3.10, where AC 

power supply voltageV = 100V , supply frequency f = 50 Hz , and circuit pa-

rameters L = 0.2 H , C = 10 F , R = 100µ Ω , determine the total impedanceZ , the 

current flow I  , and the phase angle ϕ .  
 

Problem 5. Find 
out

(t)υ  for the circuit shown in Fig. 3.14, if known quanti-

ties 

j

4
L C

I = 10e mA; X  = 1k ; X  = 10 k .

π

Ω Ω  

 

 
 

 

Problem 6. Find voltage across capacitance C of the series RLC circuit at 

resonance, if known quantities are as follows: 
L

V = 20V; R = 10 ; X  = 20Ω Ω . 

 

 

3.7 Practice 

“Investigation of Single-phase AC Circuits with Series Resistor,  

Inductor and Capacitor” 

 

Objective: to gain practical skills in performing AC circuit analysis and car-

rying out the bench-top investigation of the circuits that contain connected in se-

ries energy-loss and energy-storage elements, and are energized by the single-

phase sinusoidal power source.  

 

Work task 

1. Studying practical methods of an AC circuit analysis and calculation. 
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2. Computing the simplest series RLC circuits with the help of complex and 

vector form of circuit variables representation.  

3. Practical investigation of the circuits containing series resistor, inductor, 

and capacitor when supplied by a single-phase sinusoidal current. 

4. Calculation of unknown electric quantities on measured parameters of 

the circuit.  

Theory and preparation 

 

To provide for analysis of a single-phase sinusoidal AC circuit with real en-

ergy dissipating (energy-loss) and energy-storage elements one can use an equiva-

lent circuit containing combination of ideal circuit elements (R,L,C), properly 

connected. Electrical processes happened to this circuit must follow phenomena 

in the real circuit as much as possible. 

For instance, in Fig. 3.15 the elements of a low-pass filter are shown. These 

elements are a physical inductor and a resistor connected in series.  

 

 
 

For analytic investigation of the filter and receiving the result close to the 

physical reality, we have, in turn, to represent the inductor by the series connec-

tion of the coil inductance L and its wire resistance Rw. The equivalent circuit is 

then analyzed by one of the known methods (e.g. presented above in this chapter). 

To carry out practical experiments with circuits of the objectives you must 

study the circuits operation carefully and, beforehand, draw the three following 

circuit diagrams: for series connection of the inductor and resistor, series connec-

tion of a capacitor and the resistor, and series connection of the resistor, the induc-

tor, and the capacitor. Besides, you must prepare the three blank tables for the fol-

lowing recording of experiment data, in accordance with the forms shown below 

for, study necessary measuring instruments, be ready to answer test questions. 

NB:  a variometer is used in the work as an inductive element; the device 

consists of two interconnected inductor coils which may be located at variable an-

gle to each other for changing the inductance; the natural frequency of a power 
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source is 50 Hz; at the same time it can be measured during the investigation if 

necessary. 

   

Procedure 

 

1. Investigation of connected in series resistor and inductor  

From your instructor, take a recommended value of the input AC voltage and 

prepare a measuring instrument for each branch (i.e., select the device, study 

specifications, set the range, and evaluate a price of division of the meter). 

Connect the circuit according to the diagram of Fig. 3.16. Set the variometer 

coils at the angle 90°.     

Switch the AC power supply on (after instructor’s admission), and regulate 

the voltage Vin across the input of the circuit. 

 

 
 

Measure each of the necessary circuit parameters and record your results in 

Table 3.1, where VR,Vvar are the voltage drops across the resistor and the variome-

ter; Ra – the variometer ohmic resistance; Z var – the magnitude of the variometer 

impedance; XL – the variometer reactance; cosϕ  – the circuit power factor. 

 

Table 3.1 

 

Parameter Measured Calculated 

Symbol Vin I VR Vvar P R Zvar XL Va VL f cosϕ  

Unit V A V V W Ω  Ω  Ω  V V Hz - 

Value             

 

 

2. Investigation of connected in series a resistor and a capacitor  

Repeat the procedure of previous section for the circuit shown in Fig 3.17.  
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Measure each of the necessary circuit parameters and record your results in 

Table 3.2, where Vcap is the voltage drop across the capacitor; Xc – the capacitor   

 

 

Table 3.2 

Parameter Measured Calculated 

Symbol Vin I VR Vcap P XC C R S cosϕ  

Unit V A V V W Ω  F Ω  VA - 

Value           

 

reactance; S – the apparent power; cosϕ  – the circuit power factor. 

 

3. Investigation of R–L–C series circuit. Tuning the circuit in resonance 

Repeat the procedure of preceding sections for the circuit shown in 

Fig. 3.18.  

 

 

Measure each of the necessary circuit parameters and record your results in 

Table 3.3 where, in addition to the parameters that have already been introduced,  

α  is the angle between variometer coils.  

The circuit is tuned in resonance by changing variometer inductance, that is, 

by varying the parameterα  (Table 3.3).  
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Table 3.3 

Readings Calculations 

α  I VR Vvar Vcap P R Ra Zvar XL VL cosϕ  L 

degrees A V V V W Ω  Ω  Ω  Ω V - H 

0            

30            

60            

90            

120            

150            

180            

 

NB: try to investigate a fine resonance tuning by the accurate variation of L.  

 

Summarizing  

 

Using experimental data (see the Tables 3.1 to 3.3), calculate the unknown 

parameters of all three AC electric circuits. 

1. Using the calculated values (see Table 3.3) construct dependence curves 

of 
C LK

I ,V ,V  and cosϕ  as f ( L ) in one coordinate system. 

2. Construct the equivalent scheme of replacement of the electrical circuits 

during investigation of voltage resonance for 0 ,90α =

� �  and 180� , and construct 

vector diagrams for these cases. 

3. Make conclusions according to the results of the completed work. 

 

Questions to be answered 

 

1. What features affect a phase shift between the voltage and the current in 

AC circuit? 

2. What is an inductive and capacitive reactance? 

3. What does resonant frequency depend on? 

4. What is the effective value of a current? R.m.s value? Mean value? 

5. How can one compute the effective value of the AC circuit current if pa-

rametersR,L,C of the circuit as well as parameters of supply voltage are known? 

6. What parameters does a circuit impedance depend on? 

7. In what circuit and at what condition will a voltage resonance happen? 

8. What features of a voltage resonance do you know? 

9. In what way can energy-storage parameters of the inductor and the ca-

pacitor be measured? 
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Chapter 4 

 

ALTERNATING-CURRENT NETWORKS 

 

 

4.1 Powers in AC Circuit 

 

The objective is to introduce the notion of AC power, i.e., power absorbed 

by both resistive and complex loads. 

Let ( )
m

t V sin t=υ ω  and ( )
m

i t I tsin( )= −ω ϕ  be a steady-state voltage 

and current delivering by AC power source to an arbitrary load Z = R + jX. From 

here on, let us assume that the reference phase angle of the source voltage is zero, 

so that a phase shift between the voltage and the current caused by the load im-

pedance Z and resulted in the current waveform i(t) equalsϕ .  

The instantaneous power p dissipated by a circuit element is given by the 

product of the instantaneous voltage and current: 

( ) ( ) ( ) ( ) ( )
m m

p t  = t i t =V I sin t sin t  - υ ω ω ϕ⋅ .                  (4.1) 

It is customary in AC power analysis to employ the effective (rms) values 

of the voltage and current: 
m m

V V / 2 , I I / 2= = . The detail solution resulted 

from (4.1) may reveal the fact that the instantaneous power is equal to the sum of 

an average component VIcosϕ  and a sinusoidal component VIsin(2ωt–ϕ) oscil-

lating at a frequency doubled in comparison with the original source frequency.  

The notion of average power P corresponding to the introduced voltage 

and current waveforms can be obtained by integrating the instantaneous power 

over the period of the sinusoidal signal: 

( )
T

m m

0

1 1
P p t dt V I cos VI cos

T 2
= = =∫ ϕ ϕ .                        (4.2) 

Note that the average power is always positive, even though the instantane-

ous power (4.1) can be negative for brief periods of time.  

The phase angle of the load is of very importance in the absorption of 

power by the load impedance Z = R + jX. As illustrated in equation 4.2 the aver-

age power dissipated by an AC load is dependant on the cosine of the angle of the 

impedance. That’s why the term 
R

cos
Z

ϕ =  that was introduced in the preceding 

chapter is referred to as the power factor. The power factor is equal to zero for a 

purely inductive or capacitive load and equals one (i.e., maximum value) for a 

pure resistance load. Thus, the main definition of the power factor is given by  

P
cos

VI
ϕ = .                                                (4.3) 
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If one studies expression (4.1) for the instantaneous power in detail , it will 

be found that the power consists of three components: the mentioned average 

power represented in a form P = I
2
R, a time-varying component Pcos(2ωt) with 

zero average value (power fluctuations in the resistive component of the load R; 

and a time-varying component I
2
Xsin(2ωt) = Qsin(2ωt) with zero average value 

(due to the power fluctuation in the reactive component X of the load). The term 

Q is called the reactive power in contrary to the active power P. Due to the fact 

that P corresponds to the power absorbed by the load resistive part, R = ReZ, the 

active power P is also called the real, or true, power. Q power is associated with 

the load reactance X = ImZ and therefore represents an exchange of energy be-

tween the source and the reactive (energy-storage) part of the load. 

The units of P and Q are watts (W) and volt-amperes reactive (VAR), re-

spectively. 

One more idea related to the AC power is a fictitious quantity called the 

complex power, S� : 

�S VI
∗

=
�� ,                                                 (4.4) 

where the asterisk denotes the complex conjugate. You may easily verify that 

S�  = VIcosϕ + jVIsinϕ , or  S�  = P + jQ.                      (4.5) 

The complex power S�  may be interpreted graphically as a vector in the complex 

plane, as shown in Fig. 4.1. 

The magnitude of S� , measured in volt-amperes (VA), is called apparent 

power owing to one’s capability to compute this quantity having measurements 

of the rms values of the load voltage and current directly, without regard for the 

difference in phase between them.  

 
 

Note again that whereas active power is never negative, reactive power fol-

lowing the circuit reactance can have any sign. For instance, in Fig. 4.2 a positive, 

i.e. inductive reactive power Q is given.  
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The complex power and graphical AC power representation shown in Fig. 

4.2 simplify calculation of AC load power considerably. 

 

4.2 Parallel AC Circuits. Circuit Admittance 

 

When the current and the voltage in any series part of the AC circuit have a 

difference in phase, then we consider the voltage across this section consisting of 

two components: active and reactive. At the same time, in network analysis the 

current occurs to be splinted into two components, the active component I
a 

 that is 

in phase with the voltage, and the reactive component I
r
, that leads or lags the 

voltage by 90
0
. 

For instance, for the circuit containing a resistance R and an inductance L 

connected in parallel and excited by a source voltage V the vector diagram can be 

depicted as it’s shown in Fig. 4.3. 

 
 

From the vector diagram, it follows that  

2 2

a r
I I I= + ; ( )

r a
arctg I / Iϕ = ; 

a r
I  = I cos ; I  = I sin .ϕ ϕ  

In accordance with the conception of Ohm’s law we may write:  

V
I Y V

Z
= = ⋅ , 
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where the inverse of impedance 
1

Y
Z

=  is called the admittance. 

Now for the current flow components we have: 
a
I VY cosϕ=  and 

r
I VY sinϕ= . If we define the AC conductance G  = Y cosϕ  and the suscep-

tance B =  Y cosϕ   we can simplify the component denotations:  

a r
I = GV; I = BV .                                            (4.6) 

Further, if we divide all the sides of the right triangle in Fig. 4.3 by V, we’ll 

obtain the so-called admittance triangle shown in Fig. 4.4. Conductance G and 

susceptance B will be the triangle legs and the hypotenuse will represent the ad-

mittance Y. Hence, the following identities are true: 

2 2
Y G B= + ;  

B
tg

G
ϕ = . 

 

  
 

It is easy to derive relationships between the conductance with the suscep-

tance, on one hand, and the resistance with the reactance, on the other: 

2

R
G

Z
=    and   

2

X
B

Z
= ,                                      (4.7) 

2

G
R

Y
=    and   

2

B
X

Y
= .                                      (4.8) 

In a particular case of pure resistive circuit ( X = 0 ) we have B 0= , and 

1
Y G

R
= = .  

Let the parallel R-L circuit in Fig. 4.5 be presented in a complex form. 

For this circuit 
R L

V V V= =
� � �  and according to the first Kirchhoff’s law 

R L

V V
I I I (G jB ) V Y V

R j Lω

= + = + = − ⋅ = ⋅

� �

� � � � � ,                   (4.9) 

where 
L

Y = G jB−  is a complex admittance, 
1

G
R

=  is a conductance, 
L

L

1
B

X
=  

is an inductive susceptance.  
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Note that inductive susceptance, when related to the conductance, is always 

negative because of the lagging current. 

 

 
 

By the analogy, for a parallel R-C circuit we can get 
C

I
Y G jB

V
= = +

�

�

, 

where 
C

C

1
B C

X
ω= =  is a positive capacitive susceptance.  

Finally, for a generalized parallel R-L-C circuit (Fig. 4.6,a) we’ll have the 

current equation 
R C L

I I I I= + +
� � � �  that results in the complex admittance  

C L

I 1
Y G j( C ) G j( B B )

V L
ω

ω

= = + − = + −

�

�

.             (4.10) 

 

 
 

Fig. 4.6,b depicts a vector diagram for the case when BC < BL (lagging 

power factor). Notice, that when drawing vector diagrams with regard to parallel 

circuits, we establish V� as a reference vector, because it is the same for each ele-

ment of the circuit. 
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4.3. Current Resonance 

 

If two complementary energy-storage elements of AC circuit (inductor and 

capacitor) are both connected in parallel with respect to the exciting source, the 

circuit may meet a current resonance, when reactive branch currents exceed a to-

tal current drawn from the source considerably. 

The circuit diagram of Fig. 4.6,a depicts a practical example of the network 

we want to analyze now. In the picture, the resistance R represents possible 

equivalent losses of the practical inductor and capacitor, while the inductance L 

and capacitance C denote pure energy-storage properties of the reactive elements. 

Ohm’s law for this parallel circuit is expressed by the following relation: 

2 2

C L
I V G ( B B )= + − .                               (4.11) 

The general condition of current resonance will be satisfied if the same 

values of the capacitive and inductive susceptance, 
C L

B B= , occur. This yields 

the minimum circuit current in accordance with (4.11). The equal values of the 

opposite circuit susceptances mean  

1
C

L
=ω

ω

, 

 whence we define the resonant frequency 
0

1

LC
ω = ; if parameters L and C of 

the circuit are given the voltage source must be set at this value of the circuit exci-

tation frequency for the resonance to take place.  

 

 
 

Another condition for the resonance to occur is when the source’s excitation 

is fixed. In this case, to tune the resonance we need to vary the capacitance, or the 
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inductance, or both circuit parameters simultaneously.  

Fig. 4.7,a illustrates frequency-dependant curves (frequency responses) 

demonstrating three branch currents of the parallel L-C-R circuit as well as the 

current I of the entire circuit when frequency ω of sinusoidal excitation is being  

changed.  

Fig. 4.7,b explains the current resonance with the help of the vector diagram. 

At resonance, since the capacitive current equals the inductive one in magnitude 

but is opposite in direction, the resulting source current will become purely resis-

tive (i.e., co-phased with the applied voltage), thus reaching the least possible 

magnitude.     

 

4.4. Phase-shift Compensation. Power Factor Correction 

 

It is possible to improve the power factor of a load owing to the procedure 

called power factor correction – that is, by placing a suitable reactance in paral-

lel with the load so that reactive power component generated by the additional re-

actance is of opposite sign to the original load reactive power. The following ex-

ample illustrates typical power factor correction for industrial, mostly inductive 

loads.   

The power factor cos φ of a predominantly inductive element can be raised 

by connecting a capacitor in parallel with it (Fig. 4.8,a). The explanation can be 

found in the diagram of Fig. 4.8,b, where 
1
I�  denotes the current flowing through the 

inductive element,  I2 is the current through the correcting capacitor, 
2 C
I I=
� � , and I�  is 

the resultant current of the source. 

As it can be seen from the diagram, the resultant phase shift φ2 is less than 

the phase shift φ1 of the origin load. Consequently, cos φ2 > cos φ. 

 

        
 

Fig. 4.8 – Phase-shift compensation 

It is easy to determine the capacitance necessary to raise the power factor to 

unity: you need to reduce the phase shift from the given value φ1 to zero.  

First you compute the complex power in order to determine the positive re-
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active component ImS = QL caused by the origin load and, as a result, depending 

on cos φ1. Then, from an equal and opposite reactive power component Qc = QL, 

we compute the reactance of compensating capacitor 2

C L
X V / Q= . Finally, substi-

tuting 
C

X 1 / Cω= , we determine  
2

L
C Q / Vω= ,                                          (4.12) 

or, alternatively: 

                        ( )
1 22

P
C tg tg

V
ϕ ϕ

ω
= − ,                                (4.13) 

if the true power P of the load is given and the power factor required (cos φ2) is 

not equal to 1. 

 

4.5 Three-phase Power Circuits 

 

Most of electric power systems use three-phase power, when simultaneously 

three sinusoidal voltages are generated out of phase with respect to each other. 

The reasons are as follows. The first reason is higher efficiency due to lower 

weight of the conductors and other components per unit of power. Further, a 

three-phase system can provide a steady, constant supply of power with low 

amount of pulsation.   

Three-phase voltages being displaced in phase by 120�  are called balanced if 

they have equal amplitudes and frequency:  

 

A m
V sin tυ ω= , 

B m
V sin( t 120 )υ ω= −

� , 

C m
V sin( t 120 )υ ω= +

�  

or 

i t

mA m
V V e

ω

=
� , 

i ( t 120 )

mB m
V V e

ω −

=

�

� , 

i ( t 120 )

mC m
V V e

ω +

=

�

� . 

 

A three-phase power source can be assembled in a form of wye configura-

tion to produce the three-phase power like that shown in Fig. 4.9. 

 

Fig. 4.9 – Representation of three-phase voltages 
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The construction principle of the wye-connected source is given by Fig. 

4.10. From here on we will use conventional effective (not amplitude) values for 

all voltage and current quantities. 

 

 

Fig. 4.10 – A three-voltage source connected in wye 

 

Three AC sources in Fig. 4.10,a join with each other at the neutral node N. 

Individual source  voltages developed with respect to the N node, 
A

V� , 
B

V� , 
C

V� , are 

called phase voltages. The phase voltages along with a few supplement voltages and 

currents related to the integrated three-phase source are shown in Fig. 4.10,b in a form 

of a vector diagram. In the diagram one can see the voltages denoted by 
AB

V� , 
BC

V� , 

CAV�  and called line voltages. The vector line voltages may be computed relative to 

the reference phase voltage  j0
AV Ve=

� : 

j30 j90 j150
AB BC CAV 3Ve , V 3Ve , V 3Ve

−

= = =
� � � . 

It can be seen that the magnitude of the line voltage is equal to 3  times 

the magnitude of the phase voltage. Besides, it is obvious for the wye connection 

that the phase current is the same as the line current. Thus, we have 

line phaseV 3V= , line phaseI I= .                                   (4.14) 

A delta-connected three-phase system and related vector diagram are pre-

sented in Fig. 4.11 a, and b, respectively. From Fig. 4.11 one can obtain the fol-

lowing relationships between the phase and line voltages and corresponding cur-

rents: 

line phaseV V= , line phaseI 3I= .                                  (4.15) 

In Fig. 4.10,b and Fig 4.11,b the currents are arbitrarily depicted as lagging 

the voltages.  
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From (4.14) and (4.15) it is clear that, for any connection, the apparent 

three-phase power is given by  

line line phase phaseS 3V I 3V I= ⋅ = ⋅ ,                                    (4.16) 

that yields the active and reactive components  

line line
P 3V I cosϕ= ⋅ ⋅    and      

line line
Q 3V I sinϕ= ⋅ ⋅ ,         (4.17) 

where φ is the angle by which phaseV�  leads  phaseI�  as it is depicted in Fig. 4.10,b 

and Fig. 4.11,b.  

 

 
 

Fig. 4.11 – Three-phase source connected in delta 

 

Just as voltage sources can be connected in wye and delta configurations, so 

impedances can be connected to constitute three-phase loads. To have its advan-

tages a three-phase power system must employ a three-phase load that consists of 

the balanced (i.e., equal) parts as well. One of the important features of the bal-

anced system is that it does not require a forth wire (the neutral connection), since 

the current through that wire (if installed) is actually zero. 

For the balanced three-phase power system one can use per-phase approach 

consisting in a reduction of the circuit to one phase and in further study of the sin-

gle-phase circuit in usual manner. 

In conclusion, we wish to emphasize the following: as an impedance Z of 

the AC circuit is analogous to pure resistance R  of the DC circuit, then most of 

the rules and laws, e.g. Ohm’s law, Kirchhoff’s laws etc., developed for DC cir-

cuits are equally applicable for AC circuits. 
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4.6 Terms and Concepts 

 

Apparent power is the product of the rms voltage the rms current. It is de-

noted VI with units of volt-amperes, VA. 

Active (true, real, in-phase) power is the power dissipated by the resis-

tance in AC circuit.  

Complex power is the sum of the average power and the reactive power. 

Reactive power is the power associated with the inductive or capacitive re-

actance in AC circuit, imaginary part of the complex power with units of volt-

amperes reactive, VAR. 

Admittance is the reverse of the impedance, i.e. the ratio of the complex 

current to the complex voltage of an element or set of elements. 

Susceptance (inductive and capacitive) is the imaginary part of the admittance. 

Conductance is the real part of the admittance, the inverse of the resistance 

of a resistor in units of siemens, S. 

Current resonance is a condition in parallel LC circuit in which capacitive 

susceptance and inductive susceptance are equal; also a condition in a circuit, oc-

curring at the resonant frequency, when the current through the entire circuit col-

lects a minimum value. 

Resonant frequency is a frequency at which, in LCR circuit, the current is 

in phase with the applied voltage. For a parallel resonant circuit the resonant fre-

quency corresponds to the state when its admittance is not reactive. 

Power factor is equal to cosφ, where φ is the phase angle between the sinusoi-

dal steady-state voltage and current; ratio of the average power to the apparent power. 

Three-phase power source is the arrangement in which three sinusoidal 

voltages are generated out of phase with each other (0° , 120° , –120° ).  

Neutral node (or simply the neutral) is the point of wye configuration 

where the three AC sources are all connected together. 

Line is the conductor connecting each source of the three-phase power sys-

tem to a load. 

Phase voltage is the potential difference between the line and the neutral.  

Line voltage is the voltage between two lines of the three-phase power source. 

 

4.7 Review Questions 

 

1. What relations can be used to determine branch currents in a parallel AC circuit?  

2. Explain the notions of susceptance and admittance. 

3. Can you explain what the current resonance is? 

4. What is active, reactive and apparent AC power and what are their units? 

5. What is phase-shift compensation used for? 

6. What types of three-phase circuit connection do you know?  

7. What are the relations between the phase and line voltages, the phase and line 
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currents for delta- and wye-connected loads? 

 

4.8 Problems 

Examples 

Problem 1. For an AC circuit = 200sin377t (V)υ  and 

i = 8sin(377t - 30 )( A )
�  are given. Determine (a) the power factor, (b) true power, 

(c) apparent power, and (d) reactive power. 

Solution 

(a) The current lags the voltage by ϕ = 30° .  

Hence power factor cosϕ = cos30° = 0.866 lagging; 

(b) From the given data, first we compute ( )V 200 / 2=  V and 

I 8 / 2=  A.  

Then, the true power ( ) ( )P VI cos 200 / 2 8 / 2 0.866 692.8ϕ= = =  W; 

(c) the  apparent power ( ) ( )S VI 200 / 2 8 / 2 800= = =  VA; 

(d) the reactive power ( ) ( )Q VI sin 200 / 2 8 / 2 0.5 400ϕ= = =  VAR. 

 

Problem 2. Find the impedance and the current of the parallel AC circuit 

(Fig. 4.12) if 
t

E  = 120  V; 
L

X  = 12  Ω; 
C

X  = 4 ; R = 5Ω Ω .  

Determine the circuit phase angle. 

 

Fig. 4.12 

Solution 

(a) Invert R, XL , 
and XC  to find G, BL, and BC : 

G = 1/R = 1/5 = 0.2 S; 

BL = 1/XL = 1/12 = 0.083 S; 

BC = 1/XC =1/4 = 0.25 S. 

(b) From the admittance triangle, determine the admittance: 

( )( ) ( )( )2 22 2

C L
Y G B B 0.2 0.25 0.083 0.2606= + − = + − =  S. 
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(c) Determine the total current I of the circuit, applying Ohm’s law: 

I = E⋅Y  = 120 V⋅ 0.2606 S  = 31.25 A. 

(d) To calculate the phase shift between the current and the applied voltage 

study the admittance triangle and compute: 

sin ϕ  = (BC - BL)/Y = 0.167/0.2606 = 0.641 , whence ϕ  = 39.8°. 

The total current I leads the applied voltage E. Why? 

 

Problem 3. Find the steady-state voltage 
S

V  for the circuit (Fig. 4.13) when  

iS (t) = 10cos1000t A,  R1 = R2 = 10 Ω , L = 10 mH , C = 100 µF . 
 

 

Fig. 4.13 

 

Solution 

Applied complex voltage can easily be obtained from the complex form of 

Kirchhoff’s current law: 

( )S 1 S 2 S 3 1 2 3 S S
V Y V Y V Y Y Y Y V I+ + = + + =
� � � � � ,   

where rms complex current ( ) j0
SI 10 / 2 e=

� . 

Compute the circuit branches admittance, when knowing that the AC cur-

rent radian frequency ω = 1000 rad/s : 

Y1 = 1/R1 = 1/10 , 

Y2 = 1/(10 + jωL) = 1/(10 + j10) , 

Y3 = jωC = j0.1. 

Substituting these quantities into above equation we have   

S
I�  = (1/10 + 1/(10 + j10) + j/10)

S
V�  =( ) j0

10 / 2 e ,  

or  

(0.15 + j0.05) 
S

V�  = 10 / 2 , 

whence complex voltage (amplitude) will be 
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mS
V�  = 10e

j0
/0.158e

j18.4°
 = 63.3e 

–j18.4°
. 

Finally, we may write the steady-state voltage waveform: 

( )S
tυ  = 63.3cos(1000t – 18.4° ). 

 

Problem 4. A 3-phase power source with 120 V phase voltage supplies a 

wye-connected load with impedance (36 + i48) Ω  in each leg. 

Calculate (a) the line voltage, (b) the line current, (c) the power factor, and 

(d) total 3-phase active power dissipated by the load. 

Solution 

(a) 
L P

V 3V 3 120 207.8= = ⋅ =  V; 

(b) 2 2

L P P
I I V / Z 120 / 36 48 2= = = + =  A; 

(c) cos ϕ  = R/Z = 36/60 = 0.6 lagging ; 

(d) dissipated power 
L L

P 3V I cos 3 207.8 2 0.6 432ϕ= = ⋅ ⋅ ⋅ =  W. 

 

Problem 5. Load impedances 36 + j48  are connected in delta, and the line 

voltage across the impedance equals 207.8 V.  

Calculate (a) the phase current, (b) the line current, (c) the power factor, 

and (d) the total (active) power. 

Solution 

(a) p LI V / Z 207.8 / 60 3.46= = = A;  

(b) L pI 3I 3 3.46 6= = ⋅ = A;  

(c) cos ϕ  = R/Z = 36/60 = 0.6 lagging ; 

(d) 
L L

P 3V I cos 3 207.8 6 0.6 1296ϕ= = ⋅ ⋅ ⋅ =  W. 

 

Supplement problems 

Problem 6. Given data: ( ) ( )t 70.7 sin 314t 20υ = −

�  V, 

( ) ( )i t 2.12 sin 314t 10= +
�  A. 

 

(a) What phase shift is there between the voltage and the current? 

(b) What is the waveform frequency, in Hz? 

(c) Write down V and I parameters in an exponential form. 

(d) Calculate the instantaneous, average, reactive, and apparent power as 

well as the power factor. 
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Problem 7.  75 Ω  resistor is connected with 10 µF capacitor in parallel. 

Find a series RC circuit which is equivalent to the former by the impedance. An 

excitation angular frequency equals  1000 rad/s . 

 

Problem 8. An inductor coil possesses a resistance of 30 Ω  but its induc-

tance is unknown. The coil is connected in parallel with 100 Ω resistor. This set, 

when applied across a 100-V, 60-Hz source terminals, draws 400 W.  

Determine the value of the inductance. 

Answer: L = 26.53 µH. 

 

Problem 9. A parallel RL circuit consuming 480 W at 120 V has the lagging 

power factor 0.8. You must bring the factor close to unity by connecting a capaci-

tor in parallel with the R-L. Find the value of required capacitance, if the source 

frequency is 60 Hz. 

Answer: C = 66.3 µF. 

 

Problem 10. For parallel circuit in Fig. 4.14 V = 120 V; R1 = 1 Ω; XL = 6 Ω; 

XC = 9.95 Ω.  

Find: currents I1, I2, I; current phase angles ϕ1, ϕ2, ϕ . Draw the vector dia-

gram. 

 

Problem 11. For the circuit in Fig. 4.15  L = 0.5 H ; R = 30 Ω ; C = 50 µF; 

V = 60 V. Find: Z, I , I1 , I2 , resonant frequency ƒ0 , resonant current I(ƒ0) and 

draw the vector diagram related to resonance. 

 

 
 

Fig. 4.14 

 
 

Fig. 4.15 

 

Problem 12. A balanced 3-phase network with phase voltage Va = 120e 
j0
 

is shown in Fig. 4.16. Determine: 1) Ia; 2) Van; 3) the total power dissipated by 

line resistors RL;  4) the total power entered the circuit. 
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4.9 Practice 

4.9.1 “Investigation of Single-phase AC Circuits with Parallel Resistor, 

Inductor and Capacitor” 

 

Objective: to develop practical skills in performing AC circuit analysis and 

carrying out the bench-top investigation of the circuits that contain energy-loss 

and energy-storage elements connected in parallel. 

 

Work Task 

 

1. Computing the simplest parallel RLC circuits with the help of complex 

and vector forms of circuit variables representation.  

2. Practical investigation of the circuits containing parallel resistor, induc-

tor, and capacitor supplied by a single-phase sinusoidal current. 

3. Calculation of unknown electric quantities based on the circuit parame-

ters collected during the measurements.  

 

Theory and Preparation 

 

The elements to be investigated during the work will be the inductor, and 

sets of capacitors and resistors. Remember that practical inductor coil possesses a 
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loss resistance together with the inductance and therefore must be viewed in the 

equivalent form as series connection of LC and 
C

R .  

To carry out practical experiments with the circuits of objectives you must 

study the circuits operation carefully and, beforehand, draw the following three 

circuit diagrams: for parallel connection of the inductor and resistor, parallel con-

nection of a capacitor and resistor, parallel connection of the inductor and the ca-

pacitor. Besides, following the forms shown below, you must prepare three blank 

tables for coming measurements and computations recording. Study of the neces-

sary measuring instruments is of special importance, as well as readiness to an-

swer test questions. 

 

 

Procedure 

 

1. Investigation of connected in parallel the resistor and inductor 

(Fig. 4.17)  

From your instructor, take a recommended value of the input AC voltage and 

prepare a measuring instrument for each branch (i.e., select the device, study 

specifications, set the range, and define the scale spacing of the meter). 

In accordance with the diagram in Fig. 4.17, connect the circuit having two 

parallel branches and applied with the meters.  

 

 
 

 

After instructor’s admission, switch the AC power supply on and regulate 

the voltage across the input of the circuit. 

Measure each of the necessary circuit parameters and record your results in 

Table 4.1. 
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Table 4.1 

Parameter Measured Calculated 

Symbol I  R
I  

C
I  P  c

Z  
c

g  
c
b  

Ac
I  

Lc
I  S  cosϕ  

Unit A A A W Sm Sm Sm A A VA - 

Value            

 

 

2. Investigation of connected in parallel the resistor and capacitor  

Repeat the procedure of the previous section for the circuit shown in Fig. 4.18. 

 

 
 

Measure each of the necessary circuit parameters and record your results in 

Table 4.2.  

 

Table 4.2 

Parameter Measured Calculated 

Symbol I  R
I  

C
I  P  Y  g  b  C  Q  S  cosϕ

Unit A A A W Sm Sm Sm A VAR VA - 

Value            

 

 

3. Investigation of R–L–C parallel circuit. Tuning the circuit at resonance 

The experiment circuit diagram is shown in Fig. 4.19. 

Beforehand, the capacitance value 
0

C  that is necessary to reveal the current 

resonance in this circuit must be computed. The value of supply voltage fre-

quency 50 Hz  which is the resonant frequency now, and the value of the variome-

ter inductance which one can derive from the computed data of preceding experi-

ments, are used to do that. 
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Now, repeat the procedures of preceding sections and measure each of the 

necessary circuit parameters; record your results in Table 4.3. 

NB: a fine tuning of the circuit may be needed for clear resonance detection 

in the circuit with practical elements. It is performed by changing the circuit ca-

pacitance within the range 0.25
0

C  to 2
0

C , where 
0

C  is the above calculated theo-

retical capacitance.  

 

Table 4.3 

 

Parameter Measured Calculated 

Symbol C  I  coil
I

cap
I  P  c

g  
c
b  

Ac
I  

Lc
I  cosϕ  

Unit mkF A A A W Sm Sm A A - 

Value           

 

When carrying out the experiment copy oscillograms relating to the input 

voltage as well as the input current, those have been investigated for different val-

ues of the capacitance, i.e. for C equal to 
0 0 0

0.25C , C , 2C . 

 

Summarizing 

 

1. Using results of the experiments (see Tables 4.1 to 4.3) calculate the nec-

essary unknown quantities. 

2. In the same figure, construct the plots for Lc capI ,I ,I , and cosϕ  as func-

tions of circuit capacitance C. 

3. Draw circuit equivalents which feature a behavior of the R-L-C circuit 

for different value of the capacitance. 

4. Make conclusions. 
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Questions to be answered 

 

1. Write the complex Ohm’s law form for a part of the circuit with an in-

ductor and a capacitor connected in parallel. 

2. What is the admittance of the circuit with an inductor and resistor in par-

allel? 

3. What ways of current resonance revealing do you know? 

4. Depict a vector diagram for parallel connection of an inductor and a ca-

pacitor. 

5. How can active and reactive components of the current be determined in 

the electrical circuit with parallel connection of inductor and capacitor? 

6. What is the way for measuring a waveform period with the help of oscil-

loscope?  What about a phase shift? 

7. How can you determine the branch impedance for the electrical circuit of 

sinusoidal current? 

8. How can you calculate an effective value of the current in unbranched 

part of a linear circuit with sinusoidal current? 

9. What is the resonance condition for AC circuit? 

10. What factors does a resonant frequency in parallel circuit depend on? 

 

 

4.9.2 “Investigation of Wye-Wye Three-Phase Circuit”  

 

Objective: to collect practical experience in analysis and application of 

three-phase electric power. 

 

Introduction 

 

Three-phase power circuits including both balanced and arbitrary (unbal-

anced) loads are subjects of investigation in this practice. 

During the analysis and practical experiments different kinds of the power 

(active, reactive, apparent) must be recognized and determined, the line and phase 

currents and voltages as well as the voltage between neutral points of the source 

and receiver and the current I0 through neutral conductor are to be defined, meas-

ured, evaluated and used correctly in calculations offered.  

 

Procedure 

 

Experimental part of the work is carried out on the bench with the applied 

three-phase power source, the set of conventional measuring instruments, and a 

number of loads. Those different load elements will be resistors, capacitors and 

inductors. 
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For carrying out the work it is necessary: 

1) to depict a circuit diagram with necessary instruments for investigating the 

balanced operation of three-phase circuit (Fig. 4.20);  

2) to set up the circuit. Turn on the phase source after instructor’s checking 

and write down the readings of meters into Table 4.4; 

3) to make similar experiments for unbalanced wye-connected load both 

without neutral wire and with it, with the breaking of linear conductor and short 

circuit in one phase; to write the results of all experiments into the Table 4.4. 

 

 

 

Table 4.4 

 

№ Mode Vab Vbc Vca Va Vb Vc Ia Ib Ic V0 I0 P 
1

p

V

V
 

1 Balanced load 

 

             

2 Unbalanced 

three-wire load 

             

3 Unbalanced 

four-wire load 

             

4 Open circuit 

(one phase) 

             

5 Short circuit 

(one phase) 
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Summarizing 

 

1. Using the experimental data (see Table 4.4) it is necessary to calculate 

the values given in the table. 

2. On the experimental data (see Table 4.4) you have to build vector dia-

grams for all modes of operation. 

3. Make conclusions. 

 

Questions to be answered 

 

1. What is a three-phase balanced system of EMF? 

2. How are the receivers of a three-phase system connected in wye? 

3. What two kinds of voltages and currents are there in three-phase sys-

tems? 

4. What relationship is there between line and phase voltages when the re-

ceivers are wye-connected? 

5. What relationship is there between line and phase currents when receiv-

ers are delta-connected? 

6. What are the conditions of getting symmetrical system of currents in a 

three-phase system of EMF? 

7. What changes occur in a three-phase unbalanced system with wye-

connected load? 

8. What is neutral displacement? 

9. How can you determine analytically the neutral displacement in an un-

balanced three-phase system? 

10. What is it necessary to do for restoring the symmetry of phase voltages 

into unbalanced phase load? 

11. Determine the current through neutral wire for balanced and unbalanced 

receivers? 

12. What happens in a three-phase system with wye-connected receivers 

when one of phases is disconnected? 

13. What happens with wye-connected receivers when one of the phases is 

short circuit? 

14. How to build a vector diagram for a three-conducting system using all 

measurements and calculations for distributed loading, disconnecting and short 

circuiting one of the phases? 

15. Build vector diagram for a three-phase system with three or four wye-

connected receivers for three or four wires? 
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Chapter 5 

 

MAGNETIC CIRCUITS 

 

Various electromechanical transducers such as electric machines and appa-

ratus, as well as sensors and measuring instruments operate on the basis of elec-

tromechanical energy conversion. The magnetic field forms a necessary connec-

tion between electrical and mechanical energy.  

 

5.1 Parameters of Magnetic Field 

 

Magnetic fields are generated by electric charge in motion, and their effect is 

measured by the force they exert on a moving charge. It is convenient to represent 

the magnetic field by means of the lines of force (Fig. 5.1) when we visualize the 

strength of a magnetic field by observing the density of these closed lines in 

space.   

The quantities used to quantify the strength of a magnetic field are the mag-

netic flux Ф, in units of webers (Wb) and the magnetic induction (often called 

magnetic flux density) B  in units of webers per square meter, or teslas (T). 

First of all the intensity and the direction of a magnetic field at each point 

are defined by the magnetic induction vector B  shown in Fig. 5.1. 

  

Fig. 5.1 – Current and magnetic field interrelation 

 

The magnetic flux Ф is then defined as the integral of the flux density (the 

magnetic induction) over some surface area s:  

n

S

Ф B ds= ∫� .                                                      (5.1) 

If the flux is uniform in bounds of the area s and perpendicular to the sur-

face, the preceding integral can be approximated by the simpler expression 
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Ф B s= ⋅ .                                                        (5.2) 

From here on, in discussing magnetic induction (also, following magnetic 

field intensity) we shall assume that the field is a scalar field, i.e. let it lies in a 

single spatial direction. This will simplify many explanations.  

The magnetic field always accompanies the electric current, i.e. the current 

generates a magnetic field. In detail, discussion of the matter will follow later in 

this chapter. Now we shall restrict our consideration to the problem of determin-

ing the surrounding magnetic field produced by the current when we know the 

magnitude and the direction of the current. For this purpose we must apply the 

fundamental law of total current. 

  

To explain the law let us introduce one more vector quantity called the 

magnetic field intensity H which is measured in units of amperes per meter(
A

m
) 

and also characterizes the strength of the magnetic field (Fig. 5.2). The reason of 

introducing the magnetic field intensity is that it is independent of the properties 

of the materials used in the construction of magnetic circuits. Thus, a given mag-

netic field intensity H will give rise to different magnetic induction (the flux den-

sity) B in different materials. For example, in vacuum the magnetic field intensity 

and magnetic induction are related by   

0

0

0

B
H

µ
= ,                                                     (5.3) 

where a constant 
0

µ  is called the magnetic permeability of free space.  

In the above context it is useful to define sources of magnetic energy in 

terms of magnetic field intensity; in analogy with electromotive force this source 

could be termed magnetomotive force. 

The law of the total current states that the vector integral of the magnetic 

field intensityH around a closed path l (see Fig. 5.2) is equal to the total current I 

linked by the closed path:  
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n

1 2 3

i 1

Hdl I I I I

=

= = − −∑∫� ,                                    (5.4) 

where dl  is an increment in the direction of the closed path. 

Consider typical examples. 

Example 1. For the case of a long wire carrying current I and of a circular 

path of radius r surrounding the wire (see Fig. 5.1), determine the magnetic field 

intensity H. 

In this simple case we can see that the magnetic field intensity H following 

after the induction B, which is constant due to the constant conductor current, can 

be determined by the known right-hand rule. This rule states that if the direction 

of the current (into the page in the sketch) points to the direction of the thumb of 

one’s right hand, the resulting magnetic field encircles the conductor in the direc-

tion in which the other four fingers will encircle it. Hence, the closed-path integral 

in (5.4) results in 

H dl 2 r Hπ=∫� , 

since the circular path and the magnetic field are in the same direction.  

The magnitude of the magnetic field intensity is then given by 

I
H

2 rπ
= . 

 

Example 2. A practical inductor coil, shown in Fig. 5.3 and having w turns uni-

formly wound around a toroidal iron core with the cross-sectional area S, is ener-

gized with the current I. What is the magnetic field intensity inside this structure? 

The structure geometry is given. 

 
 

Fig. 5.3 – Practical toroidal inductor 

 

For such a coil, with w turns, the lines of force  associated with the magnetic 

field (lm is the mean path of the magnetic flux lines) link all the turns of the conduct-

ing coil, so that we have effectively increased, w times, the current linked by the flux 

lines. Therefore the law of total current takes the form: 
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m
H l I w⋅ = ⋅ , 

that implies         

m

I w
H

l

⋅

= .                     

 

Note that the path of the flux is enclosed within the ferromagnetic structure preferen-

tially. 

The product I·w is a very important and useful quantity in electromagnetic 

circuits. It is this product that defines magnetizing, or magnetomotive force (often 

abbreviated mmf):  

F I w= ⋅ .                                                    (5.5) 

Although dimensionally equal to amperes, the units of this force are the 

ampere-turns ( A t⋅ ). 

 

5.2 Current and Magnetic Field Interrelation 

 

The operation of the electric motors and generators is based on two phe-

nomena: a) – electromagnetic induction, and b) – electromechanical interaction 

between a current-carrying conductor and a magnetic field.  

A current-carrying conductor placed in a magnetic field.  

The force the magnetic field exerts on a charge of q moving at velocity v is 

given by the equation 

  F = qvBsina,                                            (5.6) 

where B is the magnetic induction of the field which direction makes the angle a 

with the velocity vector v ; the direction of this force is at right angles with the 

plane formed by the vectors B and v. 

 

 

 

If the charge is moving through a conductor of l length, for the conductor in 

the field the force (Fig 5.4) can be written as 

  F BlI sinα= .                                         (5.7) 

This relationship is known as Ampere’s law.  
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The force will take the greatest value if 90α =

� , i.e. when the conductor is 

at right angle (as depicted in Fig. 5.4) with the direction of the magnetic lines. In 

this case we haveF BlI= . 

The simplest method to find the pointing of the force results from the left-

hand rule that states: if the palm of one’s left hand is placed to intercept the mag-

netic lines (see Fig. 5.4) and the four fingers show the direction of the current, the 

extended thumb will point the direction of the force exerting on the conductor. 

Ampere’s law plays a very important role in electrical engineering, as it pro-

vides for the basis of computing the torque in both power electric machines (those 

like motors and generators) and numerous measuring instruments. 

 

Electromagnetic induction 

Electromagnetic induction phenomenon lies in the fact that a changing mag-

netic field induces a voltage, and therefore a current, in a closed conductor bound-

ing the surface with the changing magnetic flux. The quantitative relationship be-

tween the magnitude of the induced electromotive force, e , and the rate of change 

of the magnetic flux was formulated by Maxwell: 

dФ
e

dt
= − .                                               (5.8) 

This is known as the law of electromagnetic induction.  

Besides, the equation (5.8) defines the direction of the induced emf. The 

minus sign denotes the principle discovered in 1833 by the Russian academician 

Lenz and known as Lenz’s Law: a change in the magnetic flux through a 

closed conducting circuit induces in the latter an emf of such a direction that 

the current produced by it and the mechanical force associated with it oppose 

to any change of the magnetic flux. 

In practical applications, the size of the voltages induced by the changing 

magnetic field can be significantly increased if the conducting wire is coiled many 

times around, so as to multiply the area crossed by the magnetic flux lines many 

times over. 

The sum of the fluxes linked with all the turns of the coil is called the flux 

linkage and is denoted by ψ . If all the turns are linked with the same flux Ф  (see 

Fig. 5.5, a), then w Фψ = ⋅  and total induced emf: 

d
e

dt

ψ
= −  .                                                (5.9) 

Note that equation (5.9), relating the derivative of the flux linkage to the in-

duced emf, is analogous to the equation describing current as the derivative of 

charge i.e.  i = dq/dt. This fact discovers a possibility to view flux linkage as the 

dual of charge in a circuit analysis sense.  
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If the coil, consisting of w  turns, is intersected by different fluxes 

1 2 n
Ф ,Ф ,...,Ф  like those shown in Fig. 5.5, b, then the emf of the coil must be rep-

resented by the sum of the electromotive forces induced in separate groups of 

turns, i.e. 

 

n 1 2 n1 2
dФ d(Ф Ф ... Ф )dФ dФ

e ...
dt dt dt dt

+ + +⎛ ⎞
= − + + + = −⎜ ⎟

⎝ ⎠
. 

 

In this case the flux linkage is defined as 

n

k k

k 1

w Фψ

=

= ⋅∑ .                                          (5.10) 

What are the physical mechanisms that can cause magnetic flux to change 

and therefore to induce an electromotive force? Two such mechanisms are possi-

ble. The first consists of physically moving a permanent magnet in the vicinity of 

a coil. The second requires that we first produce a magnetic field by means of 

electric current and then vary the current, thus varying the associated magnetic 

field. The latter method is more practical, since if does not require the use of per-

manent magnets and allows variation of field strength by convenient varying the 

applied current. The voltages induced by such a way are often called transformer 

voltages.   

 

5.3 Properties of Ferromagnetic Materials 

 

The note made in previous sections for a concentration of the magnetic field 

within a core underlines a distinguishing feature of ferromagnetic materials lead-

ing to their wide use in numerous electric machines, devices, and instruments: in 

the presence of a magnetic material the magnetic induction (magnetic flux lines 

density) would be far greater, for a given field intensity, than if the conductor 

were surrounded by air or other nonmagnetic material. 
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Recognizing the relationship (5.3) we can derive the magnetic induction in 

the material from the given field intensity with the help of the notion permeabil-

ity of the medium,µ :  

B =µ H = 
0

µ µ′ H .                                        (5.11) 

Note that the permeability of a material is factored as the product of the 

permeability of free space 7 H
4 10

m
π

−

⋅  times the so-called relative permeability, 

which varies greatly according to the medium. For various types of steel, for exam-

ple, the latter takes values in the hundreds or thousands (300 to 80000). Compare: for 

air and for most electrical conductors and insulators  µ ’ is equal to 1. 

The magnetic induction in ferromagnetic materials is not linearly propor-

tional to the field intensity, so that their ratio 

B

H
µ =  

is not a constant, but depends on the value of H . This is because all magnetic 

materials exhibit a phenomenon called saturation. Fig 5.4 illustrates the general 

behavior of all magnetic materials. The curve B-H, or magnetization curve, is 

nonlinear, exhibiting how the induction increases in proportion to the field inten-

sity until it cannot do so any longer. A practical conclusion from this fact is fol-

lowing: as the material reaches saturation, further increases in the mmf (or, equiva-

lently, in the driving current) do not cause further increases in the magnetic flux.  

Magnetization curves B-H are useful services for determining the magnetic 

field in ferromagnetic cores in practice.  An instance of B-H curve depicted in Fig. 5.6 

is called the initial magnetization curve. 
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In the case of alternating magnetizing (magnetization followed by demag-

netization, and back) the process doesn’t follow the initial magnetization curve, 

but runs along a hysteresis loop in accordance with the picture in Fig. 5.7. 

 
 

The upper branch of the loop corresponds to the decrease of induction in the 

material after preceding primary or any other opposite cycle of material forward 

magnetization (during those the mmf increases). When the mmf is exactly zero 

the material displays the residual (or remanent) induction 
r

B . To bring the flux 

density to zero we must further decrease the mmf, i.e. produce a negative current. 

The abscissa 
c

H  is called the coercive force.  

The result of this process, by which an excess magnetomotive force is re-

quired to magnetize or demagnetize the material, is a net energy loss. It can be 

shown that this loss is related to the area between the curves of Fig. 5.7. 

Materials with a comparatively low coercive force, i.e. with the narrow hys-

teresis loop, are called “soft magnetic materials”. These are various formed 

irons, as well as permalloy and (silicon) siliferous steel. Soft magnetic materials 

are most suitable to operate in alternating magnetic fields. 

Materials with a relatively high coercive force form the group of “hard 

magnetic materials” which are used in permanent magnets manufacturing. 

 

5.4 Magnetic Circuit Computation  

It is possible to analyze the operation of electromagnetic devices such as the 

one depicted in Fig. 5.3 by means of magnetic equivalent circuits, similar in many 

aspects to the equivalent electrical circuits.  
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Ohm’s law for a magnetic circuit 

Let us derive the dependence between the mmf, F I w= ⋅ , and the magnetic 

flux Ф . For the toroidal coil with a ferromagnetic core and similar magnetic 

structures we relate the mmf of the coil to the product of the magnetic field inten-

sity H and the length of the magnetic mean path 
m
l : 

m
H l I w⋅ = ⋅ .  

Since 
0
H Bµ µ′ =  and BS Ф= , the mmf is then equal to the magnetic flux 

times the length of the magnetic path, divided by the permeability of the material 

times the cross-sectional area: 

 

     F= Ф * 
m
l / 

0
Sµ µ′ .                                      (5.12) 

 

A review of this formula reveals that the magnetomotive force I·w  may be 

viewed as being analogous to the voltage source in a series electrical circuit, and 

that the flux, Ф , is equivalent to the electrical current in a series circuit. The ratio 

m
l  to 

0
Sµ µ′  is then convenient to apply as the term of magnetic resistance (as-

signed name – reluctance): 

m

mag

0

l
R

Sµ µ
=

′

. 

 

After that the equation (5.7) can be written in the form: 

mag mag

Iw F
Ф

R R
= = ,                                         (5.13) 

which is equivalent to Ohm’s law for electric circuit. 

Fig. 5.8 depicts the equivalent circuit analogy representing the magnetic 

circuit of Fig. 5.3 which Ohm’s law equivalent (5.13) is applicable to. 

 

 

 

Fig. 5.8 – Analog circuit representation of toroidal inductor 

 

Some assumptions were taken in the example that allowed to simplify the 

problem of magnetic circuit analysis and made approximate quantitative solution 

possible in a few simple steps. Those assumptions were: 1) all of the magnetic 

flux is linked by all of the turns of the coil; 2) the flux is confined exclusively 
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within the magnetic core; 3) the density of the flux is uniform across the cross-

sectional area of the core. The usefulness of this approximate method is that you 

can quickly calculate the magnetic flux in given structure (a direct problem) or 

evaluate the necessary coil current and number of turns for the desired flux or flux 

density in given structure geometry (an inverse problem). 

Consider the direct problem analysis for a magnetic structure similar to that 

has just been analyzed but having an air gap. The structure geometry is shown in 

Fig. 5.9. In general, air gaps are very common in magnetic structures; in rotating 

machines, for example, air gaps are necessary to allow for free rotation of the in-

ner core (armature) of the machine; also, air gap serves as a working part in the 

assembly called electromagnet, etc.  

 

 
a 

 

b 

Fig. 5.9 – Magnetic circuit with air gap and its analog equivalent 

 

The equivalent circuit for the structure of Fig. 5.9,a may be drawn as shown 

in Fig. 5.9,b, where Rmk is the reluctance of path lk , for k = 1, 2,… 4, and Rgap is 

the reluctance of the gap. In accordance with (5.12) the reluctances can be ex-

pressed as follows: 

m

mag

0

l
R

Sµ µ
=

′

,          
gap

0

R
S

δ

µ
=

′

, 

where the magnetic structure is considered to have a uniform cross-sectional area; 

Sk = S, for k = 1, 2,… 4, but s′  is different from s (because of fringing S ′  is 

greater than S); and  the permeability of the gap is given by 
0

µ . 

Now, for the given magnetizing force, the magnetic flux as well as the in-

duction established in the structure can be easily found using Ohm’s law equiva-

lent.   

The inverse problem is considerably more complicated. In order to solve it 

one must find the magnetization forces corresponding to several given values of 

magnetic flux.  
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If the cross-sections 
k

S  of some parts of the core are different, the magnetic 

induction in them will also differ and can be determined in each cross-section by  

k

k

Ф
B

S
= , 

where Ф  is the given magnetic flux, which is uniform in all the sections. 

For each portion of the ferromagnetic core the magnetic field intensity 
k

H  

is determined by the values of the magnetic induction 
k

B  evaluated from the ap-

propriate magnetization curve (see Fig. 5.6). 

For the nonmagnetic portion of the circuit field intensity 
0

H  is determined by  

0

0

0

B
H

µ
= . 

Since H  remains constant in the bounds of each portion and changes when 

crossing from one portion to another only, the integral form of the law of total 

current can be replaced by the summation: 
n

k k

k 1

Hdl H l

=

=∑∫� . 

Hence, the total current law will take the form that is analogous to 

Kirchhoff’s voltage law for electric circuit: 
n

k k

k 1

I w H l

=

⋅ =∑ , 

In the foregoing example  

 

1 1 2 2 1 1 0
I w H l 2H l H ( l ) Hδ δ⋅ = + + + + . 

 

From this equation it is easy to find the magnetizing force of the coil required to 

establish a given magnetic flux Ф . 

If the number of turns is assumed to be known, then one can find the re-

quired current of the coil: 
n

k k

k 1

H l

I
w

=

=

∑
. 

In the foregoing example, the magnetic flux was given and the magnetizing 

force of the coil was determined. 

 

5.5 Terms and Concepts 

 

Ampere-turn  is the magnetizing force produced by a current of 1 A flow-

ing through one turn of a coil. Ampere-turns = amperes ×  number of turns of wire 

in the coil. 
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 Coil  is one more turns of a conductor designed for use in a circuit to pro-

duce inductance or an electromagnetic field. 

 Counter electromotive force (cemf)  is a voltage developed in the arma-

ture of a motor that opposes the applied emf. The same principle applied to any 

inductor through which an alternating current is flowing. 

 Eddy currents  is currents induced in the cores of coils, transformers, and 

armatures by the changing magnetic fields associated with their operation. These 

currents cause great losses of energy. For this reason such cores are composed of 

insulated laminations that limit the current paths. 

 Electromagnet   is a magnet formed in a way when an iron core is placed 

in a current-carrying coil. 

 Electromagnetic induction  is the transfer of electric energy from one con-

ductor to another by means of a moving electromagnetic field. A voltage is pro-

duced in a conductor as the magnetic lines of force intersect or link with the con-

ductor. 

 Electromagnetism is the magnetism produced by the flow of electric cur-

rent. 

 Ferromagnetic materials is magnetic materials composed largely of iron. 

 Flux  is electrostatic or magnetic lines of force. 

Flux linkage (ψ) is sum of the fluxes linked with all the turns of the coil. 

 Henry (H) is the unit of inductance. It is the amount of inductance in a coil 

that will induce an emf of 1 V in the coil when the current flow is changing at the 

rate of 1 A/s. 

 Hysteresis is the ability of a magnetic material to withstand changes in its 

magnetic state. When a magnetomotive force (mmf) is applied to such a material, 

the magnetization lags the mmf because of a resistance to change in orientation of 

the particles involved. 

 Ideal transformer is model of a transformer with a coupling coefficient 

equal to unity and with the primary and secondary reactance’s very lange com-

pared to the impedances connected to the transformer terminals. 

 Induction motor is an ac motor in which the rotating field produced by the 

stator induces a current and an opposing field in the rotor. The reaction of the 

fields creates the rotation force. 

 Lenz’s law is a law stated by H.F.E. Lenz in 1833 to the effect that an in-

duced current in a conductor is always in such a direction that its field opposes the 

change in the field causing the induced current. 

Magnetic induction (magnetic flux density) defines the intensity and direc-

tion of magnetic field. 

Magnetic field is state produced either by current flow or by a permanent 

magnet that can induce voltage in a conductor when the current changes in the 

conductor. 
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 Magnetomotive force (mmf) is magnetizing force, measured in gilberts or 

ampere-turns. 

 Mutual inductance is the inductance of a voltage in one coil due to the 

field produced by an adjacent coil. Inductive coupling is accomplished through 

the mutual inductance of two adjacent coils. 

 Permeability (µ ) is the property of a magnetic substance determining the 

flux density produced in the substance by a magnetic field of a given intensity. 

The equation is B/Hµ = , where B is flow density in gauss and H is the field in-

tensity in oersteds. The permeability of air is 1. 

 Primary winding is the input winding of a transformer. 

Relay is an electromagnetic device having a fixed core and a pivoting me-

chanical linkage. An electric switch operated by an electromagnet. 

Reluctance is the property of a material that opposes the passage of mag-

netic flux lines through it. 

Residual magnetism is the magnetism that remains in a deenergized elec-

tromagnet. 

Self-inductance is the property of a single conductor or a coil that causes it 

to induce a voltage in itself whenever there is a change of current flow. 

Solenoid is an electromagnetic device having a movable core. An electri-

cally operated switch. 

Transformer is a device used to increase or decrease the voltage in an AC 

circuit. It couples electric energy between circuits by means of mutual inductance. 

Turns ratio is ratio n equal to 
1 2

w / w , where 
1

w turns=  in the primary 

and 
2

w turns=  in the secondary of an ideal transformer. 

Magnetic induction (magnetic flux density) B, (T – tesla) defines the in-

tensity and direction of magnetic field. 

 

5.6 Review Questions 

 

1. What is the magnetic induction? 

2. What is the magnetic field intensity? 

3. What is the mmf and magnetic resistance? 

4. Formulate Ampere’s circuit law. 

5. Why do we use magnetic relative permeability of a substance? 

6. What does the left-hand rule explain? 

7. State the right-hand rule. 

8. What is the law of total current related to? 

9. Set the direct problem of magnetic circuit analysis. 

10. State the reverse problem. 
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5.7 Problems 

 

Examples 

Problem 1. The rectilinear conductor of l=0.5m  length is placed in an uni-

form magnetic field with B=1T induction and is carrying a current I=30A . The 

wire conductor is located at the angle 
1

6

π

α =   in one case, and 
2

2

π

α =   in an-

other. Determine the force F exerting on the conductor. 

Solution 

According to Ampere’s law the force acting on the conductor in the mag-

netic field for the two above cases is as follows: 

 

1 1
F BIl sin 1 30 0.5 0.5 7.5( H )α= = ⋅ ⋅ ⋅ = , 

2 2
F BIl sin 1 30 0.5 1 15( H )α= = ⋅ ⋅ ⋅ = . 

 

Problem 2. The coil with the number of turns w=300  is uniformly wound 

around a cast steel ring core having the rectangular cross-section. An inner diame-

ter of the ring is d=20 sm , an outer diameter is D=24sm , the ring is of b=6sm  

height and 
D-d

a= =2sm
2

 width.  

Determine the coil current I , for which the magnetic flux in the core will 

be 3
1.0 10 WbΦ

−

= ⋅ , assuming that: 1) the ferromagnetic ring is closed; 2) the 

ring core has an air gap 5mmδ = ; and 3) the ring is manufactured of a nonmag-

netic material. 

Solution 

The cross-sectional area of the magnetic core equals 

2D d 24 20
S b 6 12sm

2 2

− −

= ⋅ = ⋅ = . 

 

1) As the magnetic induction in the core is determined by 
3

c 4

1.0 10
B 0.835T

S 12 10

Φ
−

−

⋅

= = =

⋅

, 

 

the magnetic field intensity in the closed core can be found, for example, with the 

help of B-H curve like that shown in Fig. 5.4 . Let it be 
c

A A
H =5 =500 

sm m
. 

The average length of the field line (the average core length) we have to 

calculate to find the magnetizing force is as follows: 

av av

D d 24 20
l D 3.14 69.2sm 0.692m

2 2
π π

+ +
= ⋅ = ⋅ = ⋅ = = . 
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Then, for the closed core, we’ll get the magnetomotive force: 

1 av av
F H l 500 0.692 346At= ⋅ = ⋅ = .  

 

Hence, the driving current of the coil is given by: 

c av
H l 346

I 1.15A
w 300

⋅

= = = . 

 

2) If the ring has the air gap we analyze the magnetic circuit as consisting 

of two parts (magnetic and nonmagnetic) connected in series. Neglecting the flux 

dissipation, we can assume that magnetic inductions in the air gap and in the 

magnetic core are the same: 

0 c
B =B =0.835T . 

 

The magnetic field intensity in the air gap is then defined by 

50

0 7

0

B 0.935 A
H 6.68 10

m4 10µ π

+

−
= = = ⋅

⋅

. 

 

Again, the magnetic field intensity in the steel core can be determined with 

the help of B-H curve, for the operation point associated with 
c

B =0.0835T : 

c

A
H =500

m
. 

 

Thus, for the case when the inductor core got the air gap the magnetomo-

tive force is found on the basis of solving the equation: 
3 5

2 2 c av 0
F w I H l H 500 0.678 0.5 10 6.68 10 677.5Aδ

−

= ⋅ = ⋅ + ⋅ = ⋅ + ⋅ ⋅ ⋅ = . 

 

Whence, the coil must be energized by the current: 

2
F 667.5

I 2.25A
w 300

′ = = = . 

 

3) In the same coil being wound around a completely nonmagnetic core, the 

magnetic induction 
c 0

B =B =0.835T  might be established because of the amount 

of the magnetic field intensity 

0

0 7

0

B 0.835 A
H 668000

m4 10µ π
−

= = =

⋅

, 

resulted from the winding current  

c av
H l 668000 0.692

I 1535A
w 300

⋅ ⋅

= = = . 
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Problem 3. An inductor coil with w=500  turns is placed in the uniform 

field, which magnetic induction grew up from 0 to 0.8 T in time 0.1 s. There is a 

resistor R=20Ω  that is connected to the coil terminals.  

Determine the current induced in the coil by the flux changing, also the 

power dissipated by the resistor, if the inductor coil cross-sectional area 2
S=12sm  

and winding wire resistance 
c

R =24Ω . 

 

Solution 

The emf induced in the coil: 

4d dB 0,8
e w wS 500 12 10 4,8V

dt dt 0 ,1

Φ
−

= − = − = − ⋅ ⋅ ⋅ = − . 

 

After computing the total resistance R=24Ω  of the circuit we determine 

the coil current: 

V 4,8
I 0 ,2 A

R 24
= = =  

 

and the resistor dissipated power  
2 2

P I R (0,2 ) 20 0,8W= = ⋅ = . 

 

Supplement problems 

Problem 4. Two wire conductors of  l=2m  length, each conducting the 

current 
1 2

I = I =100A  in the same direction, are placed in space parallel each other 

at the distance a=5sm .    

Determine forces 
1

F  and 
2

F  acting on each conductor, and the direction of 

interaction between them. Point the direction of the magnetic field induction that 

the conductor currents gave rise to.  

Answer: 
1 2

F =F =F=0,08H . 

 

Problem 5. Linear conductor with the length l=0,3m , through which the 

current I=12A  flows, is placed in uniform magnetic field with the magnetic in-

duction B=0,5T . Determine the force working on the conductor, if it’s spaced: 

a) perpendicularly to the flux lines; 

b) lengthwise to the magnetic field lines. 

 

Problem 6. Uniform magnetic field with the magnetic induction B=1,0T  

worked on the linear current-conducting wire with the force F=0,5H . The con-

ductor is perpendicular to the magnetic field lines and has the length l=20sm . 

Determine the current flow through the conductor.  
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Problem 7. Determine the number of turns and the conductor length for cy-

lindrical coil winding, if the coil length l=20sm  and its diameter d=1,6sm . With 

the current in the winding I=3A the magnetic flux collects value 7
3 10 WbΦ

−

= ⋅ . 

Determine the magnetic field intensity in the inner space of the coil. 

 

Problem 8. A cylindrical coil of l=15sm  length and 2
S=6,5sm cross-

section area contains w=600  turns. 

Determine the inductance of such a coil without any ferromagnetic core and 

with the core with 800µ =  permeability. 

How much will the coil inductance change, if the length and magnetic core 

permeability are increased three and four times, respectively, and the number of 

turns is decreased by two? 

 

Problem 9. Upon the ring made of electro-technical steel (the outer diame-

ter D=42mm , the inner diameter d=30mm , the height b=8mm ), 200 turns of 

wire was uniformly wound. 

Determine the magnetic flux in the ring if the winding carries the current 

I=0.5A ; find the coil inductance. 

 

Problem 10. Taking conditions of the previous problem determine the cur-

rent flow through the coil for creating the same core magnetic flux, if the core 

ring collected the air gap 0.5mmδ = . 

 

Problem 11. Under what conditions is the force worked on the conductor 

with the current in the magnetic field absent? 

 

Problem 12. How does the intensity of the magnetic field depend upon the 

substance surrounding the source of the field? 

 

5.8 Practice 

«Investigation of Inductive-Coupled Circuits» 

 

Objective: to gain skills of analysis and practical investigation of AC cir-

cuits that experience the magnetic coupling between each other (inductive-

coupled circuits). 

 

Work task 

1. Determining the value of mutual inductance of two coils. 

2. Conducting the experiments needed for variometer winding parameters 

determination, as well as the magnetic coupling factor calculation. 
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Theory and preparation 

In addition to self-inductance L, it is always important to see the magnetic 

coupling that can occur between neighboring circuits each containing an inductor.  

In the inductive-coupled circuits the magnetic flux linkage of each circuit is 

created both by the current flowing in the same circuit and the current flowing 

through the other one: 

1 full 1 1 2
L i M i ,ψ = ⋅ ± ⋅  

2 full 2 2 1
L i M i ,ψ = ⋅ ± ⋅  

where M  is the quantity called mutual inductance. The mutual inductance is de-

fined by the equation v2 = Mdi1/dt that is analogous to the expression v =Ldi/dt 

defining the self-induction of an inductor coil. 

In the expressions above the “plus” sign corresponds to the same (called 

agreed) directions of self-induction flux and mutual induction flux, and “minus” 

corresponds to the counter (opposite) direction of the fluxes. 

To emphasize the problem of the matched or mismatched interaction of 

self-induction and mutual induction fluxes and to indicate the polarity of the cou-

pling, the concept of the same terminal names in neighboring coils is introduced: 

if the dots shown in Fig. 5.10 for this purpose are at the same ends of the coils, the 

voltage induced in coil 2 by a current in coil 1 has the same polarity as the voltage 

induced by the same current in coil 1; otherwise the voltages are in opposition.  

The electromotive forces induced in the two coils are defined by the law of 

electromagnetic induction: 

1 full 1 2
1 1

d di di
e L M

dt dt dt

ψ
= = − ± ; 

2 full 2 1
2 2

d di di
e L M

dt dt dt

ψ
= = − ± . 

 

Or in a complex form:  

1 1 1 2
E j L I j M Iω ω= − ⋅ ⋅ ⋅ ± ⋅ ⋅ ⋅� ; 

2 2 2 1
E j L I j M Iω ω= − ⋅ ⋅ ⋅ ± ⋅ ⋅ ⋅� . 

 

If needed, mutual inductance can be determined experimentally (explaining 

schematics one can find in Fig. 5.10 and 5.11).  
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An approach to do that is as follows. 

First, connect the both coils in series with the agreed position as shown in 

Fig. 5.10, and energize the circuit with a voltage V. In this case we may write 

 

1 2 1 2
V R R j ( L L 2M ) Iω= + + ⋅ ⋅ + + ⋅⎡ ⎤⎣ ⎦
� � . 

 

Then, connect the coils in series-opposite direction (see Fig. 5.11) and write 

down the following equation: 

1 2 1 2
V R R j ( L L 2M ) Iω= + + ⋅ ⋅ + − ⋅⎡ ⎤⎣ ⎦
� � . 

 

It is easy to see from these relations that equivalent inductive reactance of 

the circuit for the agreed and opposite connections will be as follows: 

 

agree 1 2X ( L L 2M )ω= ⋅ + + , 

opposite 1 2X ( L L 2M )ω= ⋅ + − . 

 

If we measure the circuit reactance for both those connections, the mutual 

inductance may be calculated as 

agree oppositeX X
M

4 ω

−

=

⋅

, 

 

where w is the current supply radian frequency. 

The value of mutual inductance can also be determined in a different way.  

When we have the open circuit operation of the secondary winding in the 

circuit called the air transformer (Fig. 5.12) with the sine voltage 
1

V  applied 

across the primary winding, the electromotive force induced in the secondary 

winding due to the primary current, 
2 10

E j M Iω= − ⋅
� , appears at the output in the 

form of the open-circuit secondary voltage V20. Hence, the mutual inductance of 

two coupled inductors of the arrangement like that in Fig. 5.12 can be found from   

20

10

V
M

Iω

=

⋅

, 
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where the term I10  is called the open-circuit transformer supply current. A trans-

former consumes this current when operating in the open circuit mode.                                

 

 
 

The power of magnetic coupling of two coils is characterized by a coeffi-

cient of coupling (magnet coupling factor) 

 

1 2

M
k

L L

= .  

 

Also, with the help of the relation 

M 1

2

2L 2L

jX I
I

R jX

⋅

= −

+

�

� … 

derived from the transformer equations that corresponded to transformer opera-

tion with a load, one can evaluate the transformer turns ratio (transformation fac-

tor): 

2 M

T

1 2L

I X
k

I X
= = , 

where X2L  is the total secondary reactance, including both reactance of the secon-

dary coil and the load. 

Procedure 

 

Experimental work is carried out on the laboratory stand with the use of the 

block of single-phase AC voltage sources, the variometer, special plugs with 

mounted elements and conductors for circuit assembling, measuring devices. 

 

1. Investigation of Two Inductive-coupled Series Coils 

In order to carry out the work it is necessary: 

- to examine the stand, the object of investigation, as well as measuring in-

struments with the related characteristics written down in the test report.  
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The object to investigate the mutual inductance of two inductors will be the 

variometer known from preceding sections of this handbook (this concerns the 

necessary instruments too). The two variometer coils should be connected in se-

ries for both agreed and opposite interaction of the inductors; 

- to draw the circuit diagram of the experiment shown in Fig. 5.13; 

- to prepare the blank for measurement and following calculation re-

cordings (Table 5.1). 

 

Table 5.1 

Measured Calculated 

in
V  I  P  ke

R  
ke

Z  
ke

X  
ke

L  M  
Coils 

connection 
V  V  W  Ω  Ω  Ω  H  H  

agreed         

opposite         

 

After that set up the circuit. Taking the admission of the instructor you may  

switch the stand on and write down your readings in the table. 

 

2. Open circuit test of the transformer without the ferromagnetic core 

 

Draw the scheme corresponding to open circuited of the air transformer, in-

cluding the devices of the measurement of the quantities appointed in the Table 

5.2 (see Fig. 5.12). 

The note. Active resistance of the secondary winding should be measured 

by the digital device, and its inductance should be calculated using the data of ta-

ble 5.1. 
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Set up the circuit. To switch on the stand after the correctness of connec-

tions was checked by the teacher, to write down readings of all meters in the Ta-

ble 5.2 for all positions of the mobile coil. 

 

Table 5.2 

α  1
I  

0
P  

20
V  

k1
Z  

k1
R  

k1
X  

k1
L  

k 2
L  

k 2
R  M  K  

degrees A  W  V  Ω  Ω  Ω  H  H  Ω  H  - 

0
 

           

30            

60            

90            

120            

150            

180            

 

 

Summarizing 

 

1. Calculate the values specified in the Table 5.1 and 5.2 using experimen-

tal data. 

2. Construct depends M f ( )α=  and k f ( )α=  according to the Table 5.2. 

3. Make the conclusions according to results of experimental work. 

 

Questions to be answered 

 

1. What circuits are called inductive – coupled? 

2. How is the full magnetic linkage determined? 

3. How are expressed the electromotive forces of self-induction and mutual 

inductance in the coils? 

4. In which way and according to what scheme can we obtain the value of 

mutual induction of two coils? 

5. How is the complex the current determined in inductive-coupled coils, 

connected in series? 

6. Make the system of equations in complex form for balance of voltages 

for primary and secondary circuits of the transformer. 

7. How are the coefficients of coupling of two coils determined? 
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