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ANALYSIS OF POLLUTANTS IN AIR WITHIN THE TERRITORY
OF UKRAINE USING GEOSTATISTICAL METHODS

Air quality has recently been of great concern, as it directly affects people’s lives. Continuous monitoring of
atmospheric air quality and forecasting the dynamics of its changes are essential steps in assessing its current
state and determining the concentration of pollutants. Therefore, the development of an effective system for as-
sessing and forecasting the quality of atmospheric air has become one of the most important tasks. The subject
matter of this article is geostatistical methods for air quality analysis. The goal is to analyze pollutants in the
air over Ukraine's territory from 1990 to 2021. The dataset on air pollutants was provided by the State Statistics
Service of Ukraine in the form of aggregated tables, which were initially processed for subsequent modelling.
Cartographic modelling of pollutants was performed using geostatistical methods. As a result, this study pre-
sents 13 cartographic models showing the spatial distribution of air pollutants for different regions of Ukraine.
However, because of the lack of official information on the presence of military actions, the results of geostatis-
tical methods cannot be interpreted in the context of the military situation in the eastern part of the country.
Information about military actions can be gathered from various sources, but this would require a considerable
time and effort to structure and systematize the dataset. Conclusions. The method considered in this study cannot
simultaneously consider multiple parameters, such as the value of pollutant indicators and the presence of mil-
itary actions. Additional methods, such as graph theory and regression analysis, are employed to obtain quan-
titative assessments of the modelling results considering all factors influencing the environmental condition. The
chosen method is a straightforward tool for solving environmental problems. Thanks to available GIS systems
like ArcGIS Pro, visualization of the applied geostatistical and mathematical methods is possible. The carto-
graphic models presented in this study cover the entire territory of Ukraine and have administrative boundaries

depending on the location of the pollutant collection station.

Keywords: air quality; data; modelling; GIS; Air Quality Index; kriging geostatistical models.

Introduction

As is well-known, air is one of the primary re-
sources essential for supporting life [1, 2]. Air pollution
is a serious environmental problem worldwide [1, 3], and
it has significant impacts on the quality of the atmos-
phere [1, 4] and human health [1, 5]. Rapid industrializa-
tion and urbanization have led to increased air pollution
levels, with industrial emissions being the main cause of
severe air pollution in industrial areas [1, 6].

Air pollution and its associated issues attract in-
creasing public attention daily because the quality of the
atmospheric environment affects every member of soci-
ety. Consequently, there is a growing demand for the de-
velopment of strategies to manage the environmental
condition and combat pollution. The Donbas region is the
most technogenically burdened area in Ukraine, and the
ongoing military actions have significantly exacerbated
the ecological situation in the eastern part of the country.
Due to active military operations, environmental moni-
toring is not conducted, potentially leading to a cata-
strophic situation in the region. Today, there are many
environmental monitoring systems [7, 8], however, to
solve the problem, it is relevant to build a comprehensive

system for monitoring the environmental situa-
tion [9, 10], considering the features [9], specifics and the
use of multi-purpose strategies in the study areas. Today
there are standardized provisions [10], scientific
schools [11] that explore the issues of complex indicators
of the quality of the functioning of information monitor-
ing systems [12]. To effectively assess and forecast air
quality, data from Earth remote sensing [13], ecological
statistics, and mathematical statistics and modelling are
appropriate. The widespread use of Earth remote sensing
data is primarily due to the efficiency and visibility of
processing data obtained from large areas. Modern satel-
lites of remote sensing data (Terra, Aqua, Landsat 8, Sen-
tinel-2) make it possible to obtain space images of the
studied territories with a frequency of 1 to 8 days and
with a spatial resolution of 250 to 10 meters [14]. Also,
modern methods of data processing make it possible to
create visual cartographic materials, which helps to ef-
fectively solve the problems of environmental monitor-
ing [15, 16].

In this study, the research area is the territory of
Ukraine, specifically focusing on the analysis of air qual-
ity as one of the parameters in the environmental moni-
toring system due to the military actions in the eastern
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part of the country. Many air pollutants, such as carbon
monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide
(NO2), suspended particulate matter (SPM), and ozone
(03), have adverse effects on the atmosphere's quality
and human health [1, 11]. High concentrations of these
atmospheric pollutants can be hazardous to health, caus-
ing various health issues such as respiratory difficulties,
headaches, dizziness [1, 12], asthma, lung function im-
pairment, and cardiorespiratory diseases [1, 13]. Air pol-
lution can arise from numerous anthropogenic sources,
including household smoke and heating devices [1, 10],
industrial emissions, vehicle and aircraft emis-
sions, waste burning, and outdoor fires such as forest
fires [1, 17]. These activities release significant amounts
of gaseous emissions (SO2, NO2, CO, H2S, volatile or-
ganic compounds, and hydrocarbons) and particulate
matter (smoke, soot, metallic particles, dust, vapors, and
aerosols), all of which influence air quality. The combus-
tion of automotive fuels (fossil fuels) contributes to the
formation of most of these pollutants [1, 17].

Regarding air pollution measurement, it is essential
to measure the overall air pollution, considering all major
pollutants, to assess the general air quality and trends in
atmospheric air quality across different regions. In this
regard, the Air Quality Index (AQI) serves as a compre-
hensive tool that indicates air pollution levels based on
multiple air pollutants. Compared to individual pollutant
indicators, AQI facilitates the public’s understanding of
air quality levels and raises awareness about air pollution
control. AQI is crucial in drawing attention to daily and
monthly changes in pollutant concentrations in the envi-
ronment and helps in educating and raising awareness
about air quality issues [1, 18]. It also aids in forecasting
and provides extended information about changes in pol-
lutant concentrations in the air [1, 19]. The predictive as-
sessment and extended information are based on standard
reference values of pollutants in the atmosphere, corre-
sponding to "good," "moderate," and "heavy pollution™
levels.

Objectives and novelty

Thus, the purpose of this work is to perform car-
tographic modeling of pollutants based on statistical
methods in the air on the territory of Ukraine to identify
potentially hazardous areas in the regions for further
mathematical modeling and building decision-making
rules based on it.

The novelty of this work is the mapping of a large
sample of pollutants throughout the study area using sta-
tistical methods for further evaluation.

There are a huge number of mathematical statistics
methods for solving environmental monitoring problems,
the results of which are presented in the form of carto-
graphic models. Based on the obtained results, a decision

is made to apply additional methods, or the considered
method can be an independent tool for solving the prob-
lem.

1. Related studies

Most previous studies on air pollution have primar-
ily focused on individual pollutants such as particulate
matter and SO2 [1, 12]. However, in reality, people are
rarely exposed to just one pollutant [1, 13]. Research on
AQI (Air Quality Index) forecasting models is gradually
expanding, and several statistical and machine learning
models are being developed for air quality prediction. In
recent years, a range of machine learning-based air pol-
lution forecasting models have been used to assess vari-
ous pollution levels in different locations.

The most noticeable air pollutants responsible for
air pollution, according to the author’s research, are
PM2.5 [11]. PM2.5 concentrations can be esti-
mated [11, 20] using logistic regression [11, 21] and au-
toregression [22]. Different authors have removed daily
pollution level forecasts [11] by predicting hourly
data [11, 23] using various algorithms [11, 24]. The qual-
ity of air in urban conditions is first evaluated by actively
sampling air particles in each city area. Most countries
currently use air quality assessment methods [11, 25]
with stationary air pollution monitoring stations [11, 26].
These reference stations can provide very accurate read-
ings from a small number of well-selected areas that re-
flect various environments [11, 12].

S. Zhu et al. proposed a two-stage forecasting model
based on Complementary Ensemble Empirical Mode De-
composition (CEEMD), Grey Wolf Optimizer (GWO),
and Support Vector Regression (SVR) to forecast two
major sources of acid rain (NO2 and SO2) [1, 22].

Z. Qingping et al. developed a hybrid general re-
gression neural network with Ensemble Empirical Mode
Decomposition (EEMDGRNN), which relies on data
preprocessing and analysis for one-day PM2.5 concentra-
tion forecasts. Although this approach yields accurate re-
sults, it has significant temporal complexity [26].

Accurate AQI forecasts are of significant value to
governments, businesses, and the public in making in-
formed decisions. Although several models have been
proposed for air quality forecasting, the issue of their
forecasting accuracy has not been fully resolved among
the existing models, casting doubt on their effective-
ness [27].

Statistical models, such as multiple linear regres-
sion and autoregressive [1, 28] integrated moving aver-
age, can be simple and effective tools for air quality fore-
casting [29, 30], but their forecasting accuracy remains
low [31, 32]. Similarly, standalone artificial intelligence
models, such as support vector machines, k-nearest
neighbors (KNN), and artificial neural networks, cannot
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provide satisfactory and accurate forecasts because of the
non-stationary  nature of pollutant  concentra-
tions [33, 34].

In their research, P. Bhalgat et al. presented an inte-
grated model for forecasting air pollution levels using Ar-
tificial Neural Networks (ANN) and kriging. This model
uses a linear regression protocol and a multilayer percep-
tron (ANN) for forecasting the next day. The AR and
ARIMA models have successfully predicted SO2 values,
but further research is needed for PM2.5 forecasting and
AQI calculations [33].

The suggested hybrid models attempt to combine
different models for air quality forecasting; however,
there is still a lack of research on the effectiveness and
accuracy of hybrid models; therefore, their rationality re-
quires further examination [1, 35].

2. Materials and methods of the research

2.1. Standardization of AQI

In recent years, the problem of air pollution has
been exacerbated by several factors, such as population
growth, urbanization, rapid economic development, in-
dustrialization, increased traffic, and energy consump-
tion, as well as increased military actions. To reduce the
level of air pollution, air quality indicators have been cal-
culated, and national air quality standards have been es-
tablished to protect public health. The Air Quality Index
(AQI) is calculated using a linear function (1) based on
the concentration of pollutants. The numerical values of
AQI with corresponding pollution levels are presented in
Table 1 [13].

C
I = IHigh _C—_CLOW*(C_CLOW)+ Low (1)

High

where | — the (Air Quality) index, C — the pollutant
concentration, Ciow — concentration breakpoint that is
<= C, Cuigh — concentration breakpoint that is >= C,
lLow — the index breakpoint corresponding to Ciow,
Inigh — the index breakpoint corresponding to Chigh.

2.2. Data sources

This study uses data on emissions of pollutants into
the atmosphere from stationary sources of pollution pro-
vided by the State Statistics Service of Ukraine. The da-
taset contains information on sulfur dioxide (SO2), nitro-
gen oxide (NO2), ammonia (NH3), carbon monoxide
(CO), PM10, PM2.5, lead (Pb), copper (Cu), zinc (Zn),
chromium (Cr), cadmium (Cd), mercury (Hg), nickel
(Ni), and arsenic (As) for the period from 1990 to 2021.
For some pollutants, data are unavailable for the period

from 1990 to 2004. PM10 and PM2.5 are represented as
substances in the form of suspended solid particles with
sizes greater than 2.5 micrometers and less than 10 mi-
crometers. Due to a lack of prior information, the data on
pollutants are generalized for the entire territory of
Ukraine. The State Statistics Service does not provide re-
gion-specific information for the entire set of pollutants.
An exception is made for carbon dioxide (CO2), for
which regional information is available from 2004 to
2021, excluding temporarily occupied territories such as
the Autonomous Republic of Crimea and Sevastopol. For
Donetsk and Luhansk regions, the data are generalized
and averaged because of difficulties or impossibility in
collecting data throughout the entire territory.

Table 1
Air Quality Index Categories

Air Quality
Index levels
of health
concern

Numeri-

Meanin
cal Value 9

Air quality is considered
satisfactory, and air
pollution poses little or
no risk.

Air quality is acceptable;
however, for some pol-
lutants there may be a
moderate health concern
for a very small number
of people who are unu-
sually sensitive to air
pollution.
Members of sensitive
groups may experience
health effects. The gen-
eral public is not likely
to be affected.
Everyone may begin to
experience health ef-
fects; members of sensi-
tive groups may experi-
ence more serious health
effects.

Good

Moderate 51-100

Unhealthy
for sensitive
groups

101 - 150

Unhealthy | 151 —200

Health alert: everyone
may experience more se-
rious health effects.

Very un-

healthy | 201300

Health warnings of
emergency conditions.
The entire population is

more likely to be af-

Hazardous >300

fected [2]

Using built-in analysis tools in ArcGIS Pro, a pre-
liminary analysis of air pollutants on the territory of
Ukraine from 1990 to 2021 was conducted (Fig. 1). Such
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visualization tools make it easier to understand and ana-
lyze changes in air pollutants. The analysis of tabular data
in ArcGIS Pro is performed in the Python programming
language using the Matplotlib and Pandas libraries. The
capabilities of the ready-made GIS environment allow to
embed additional modules in the Python language, so that
analysis and visualization tools can be modified to solve
a specific problem. The standard set of features allows
you to visualize data in any conventional way — a bar
chart (histogram, line chart), line chart, pie chart, scatter
plot, geographic, "sun rays". It is such a diagram as a ge-
ographical one that can be supplemented with an author's
script to solve a specific task if this is not considered by
the developers. All other types of charts have ready-made
built-in tools for quick use and analysis of the original
dataset. To analyze the distribution of pollutants in the air
on the territory of Ukraine from 1990 to 2021, a grouped
bar chart was built. The height of each column corre-
sponds to the value of each pollutant in the air in the
country. This type of primary analysis of statistical data
has the following advantages: maximum clarity, simple
construction of a bar chart even without the use of a spe-
cial GIS and programming language, various visualiza-
tion subtypes for solving specific problems, and the abil-
ity to combine with other types. The disadvantage is the
lack of information content with many categories and the
impossibility of providing continuous variables.

2.3. Kriging

Spatial interpolation techniques can be divided into
two main categories: deterministic and geostatistical ap-
proaches. To put it simply, deterministic methods do not
attempt to capture the spatial structure in the data. They
only use predefined mathematical equations to predict

values at unsampled locations (by weighing the attribute
values of samples with known location). In contrast, ge-
ostatistical approaches intend to fit a spatial model to the
data. This enables us to generate a prediction value at un-
sampled locations (like deterministic methods) and to
provide users with an estimate of the accuracy of this pre-
diction. Deterministic methods gather the triangulated ir-
regular network (TIN), inverse distance weighting (IDW)
and Trend surface analysis techniques. Geostatistical ap-
proaches include kriging and its variants — ordinary
kriging, simple kriging, regression kriging or kriging
with an external drift, co-kriging, and point kriging /
block-kriging [10]. In this article, we will use ordinary
kriging.

In general, kriging is the most commonly used geo-
statistical approach for spatial interpolation. Kriging
techniques rely on a spatial model between observations
(defined by a variogram) to predict attribute values at un-
sampled locations. One of the specificity of kriging meth-
ods is that they do not only consider the distance between
observations but also capture the spatial structure in the
data by comparing observations separated by specific
spatial distances two at a time [10].

Ordinary kriging is a mathematical interpolation
method that solves the problem of interpolating results
(outputs, responses) obtained at a limited number of lo-
cations for air quality [10]. Kriging weights come from a
semi-variogram that was developed by examining the
spatial structure of the data. To create a continuous sur-
face or map of the phenomenon, predictions are made for
locations in the study area based on the Semi Variogram
and the spatial arrangement of measured values that are
nearby. Ordinary kriging approaches are available in var-
ious forms, but all are based on the concept of a basic
linear regression algorithm.

Pollutants in Ukraine 1991 - 2021

As

3000

2500 1

2000 1

Value

1500 1

1000

500 1

&

Pollutant

Fig. 1. Levels of air pollutants on the territory of Ukraine from 1990 to 2021
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The estimate at location u can be expressed as (2).

Z(u)= Y Mu)Z(u,), 6

a=1

where Z (u,) is the random variable model at location u.
The u,’s are the n data locations, the A, (u)’s are the ordi-
nary kriging weights and Z(u) is the estimated value.
Here the weights A, (u) are subject to the system.

The Semi Variogram approach is a geostatistical
function that describes in numerical terms (or represents
graphically) the predictability relationship between
points of data at some distance from each other. This pre-
dictability constrains the confidence within which the es-
timation of a value is made; therefore, an estimate of the
risk is quantified.

Simple kriging is the simplest kriging variant. In
this case, the deterministic trend, m, is known and con-
sidered constant over the entire field under study.

Regression kriging is similar to ordinary kriging in
that it considers that the deterministic trend is not con-
stant over the whole field but depends on the spatial lo-
cation of the observation.

When one disposes of a high spatial resolution aux-
iliary variable Vo and wants to capture the spatial varia-
bility or correlation of a second variable V1, co-kriging is
of particular interest. In fact, the objective is to evaluate
the spatial structure of V; regarding Vo with the samples
available and then interpolate this spatial structure at un-
sampled locations. As previously stated, Vi is generally
time-consuming and or expensive to obtain and it ismuch
easier to use auxiliary data to improve the prediction of
V1 at unsampled locations. Co-kriging is more difficult
to implement than the other kriging techniques, but it
might result in better predictions if it is performed cor-
rectly. All the kriging techniques aim at predicting the
value of a variable at specific unsampled locations. These
locations can be considered spatial points (or more pre-
cisely as pixels in the grid of interpolation). Conse-
quently, these kriging approaches are also referred to as
point kriging methods. When the uncertainty is relatively
large, one might want to smooth the interpolated results
by performing kriging on a larger area than single pixels.
This type of kriging interpolation is known as block
kriging. This has the advantage of lowering prediction er-
rors over the map. Obviously, it comes with the risk of
losing some useful information but when the uncertainty
is too important, it might be worth it [10].

Therefore, spatial interpolation techniques are sum-
marized and structured in Table 2.

This work was carried out to achieve the following
objectives:

— to quantify atmospheric emissions from major
industrial sources located in the city and its vicinity.

— to evaluate the influence of these industrial
sources on the air quality of the city [10].

— to study the influence of traffic on roads on air
pollution [10, 27].

Table 2

Spatial interpolation techniques
Methods

Deterministic Geostatistics methods

methods
1.Triangulated Ir- 1.0rdinary  Kriging —
regular  Network solves the interpolation

(TIN) — uses prede-
fined mathematical
equations to predict
values at unsam-
pled locations.

problem for air quality by
considering a  spatial
model and variogram.

2. Inverse Distance
Weighting (IDW) —
Weighs  attribute
values of known
samples based on
distance to predict
values at unsam-
pled locations.

2. Simple Kriging — as-
sumes a constant deter-
ministic trend over the en-
tire field.

3. Trend Surface
Analysis — predicts
values at unsam-
pled locations using
predefined mathe-
matical trends.

3. Regression Kriging —
considers spatially varying
deterministic trends.

Kriging

4. Co-Kriging — evaluates
spatial structure regarding
an auxiliary variable (\V0)
and interpolates the spatial
structure of the variable of
interest (V1) at unsampled
locations using samples of
both VO and V1.

5. Point Kriging — predicts
the value of a variable at
specific unsampled loca-
tions.

6. Block Kriging -
smoothest interpolated re-
sults over a larger area to
reduce prediction errors.

3. Results

After the primary assessment of the statistical data,
the evaluation of the air pollutants” samples is conducted
using a GIS approach. The data on the concentrations of
sulfur dioxide (SO2), nitrogen oxide (NO2), ammonia
(NH3), carbon monoxide (CO), PM10, PM2.5, lead (Pb),
copper (Cu), zinc (Zn), chromium (Cr), cadmium (Cd),
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mercury (Hg), nickel (Ni), and arsenic (As) from station-
ary stations on the territory of Ukraine for the period
1990-2021 were imported into ArcGIS Pro and inter-
preted using Kriging according to formula (1). The spa-
tial distribution mapping of air pollutants on the territory
of Ukraine presented in this work is shown in Fig. 2 to 5.
US Geological Survey (USGS) data are used to deter-
mine the geographical boundaries of each air pollutant on
Ukraine's territory [13].

In the context of the cartograms illustrating the spa-
tial distribution of pollutants in Ukraine for the period
from 1990 to 2021 (presented in Fig. 2 to 5), it's im-
portant to note that the data for the years 2022 and 2023
is currently unavailable in the public domain. The color
gradations on the cartograms represent the quantitative
differences between pollutants for the specified years up
to 2021. Any changes or developments in air quality re-
lated to pollutants in the years 2022 and 2023 have not
been incorporated into the visualization because of the
unavailability of public data for that period. Regarding
the years 2022 and 2023, similar cartographic represen-
tations and analyzes will be conducted once the relevant

Spatial distribution of As in Ukraine 1990 - 2021
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data becomes publicly accessible. The forthcoming car-
tograms will provide a comprehensive view of pollutant
distribution, allowing for a comparative analysis similar
to that conducted for the years 1990 to 2021. The intent
is to maintain consistency and enable a holistic under-
standing of the evolution of air quality in Ukraine over
the specified time range.

The data are classified into 15 ranges in which light
shades correspond to low values and dark shades corre-
spond to high values. A range of 15 classes is optimal for
representing differences in pollutant amplitude, and the
fewer quantitative characteristics for each pollutant, the
fewer classes may be needed to make the mapping model
informative. As seen from the obtained cartographic ma-
terial, the concentration of each air pollutant ranges from
32 to 523 Kg/Mg.

Stations for collecting quantitative characteristics of
a pollutant are also presented on cartographic models of
spatial distribution and are designated in the legends as
“Sample location”.

Spatial distribution of Cd in Ukraine 1990 - 2021
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Fig. 2. Spatial distribution of pollutants on Ukraine's territory from 1990 to 2021:
1-As;2-Cd;3-Cr,4-Cu
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Fig. 3. Spatial distribution of pollutants on Ukraine's territory from from 1990 to 2021:
1 -Hg; 2 - NH3; 3—Ni; 4-NO2
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Fig. 4. Spatial distribution of pollutants Ukraine's territory from 1990 to 2021:
1 -Pb; 2 - PM10; 3 -PM2.5; 4 — SO2
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The largest number of collection stations are pre-
sented in the central part of Ukraine; the greater the num-
ber of collection stations, the larger the set of a priori in-
formation, which means the results of geostatic modeling
should be better. However, no quantitative assessment of
the results of geostatistical modelling is performed in this
work.

Because not all regions have stations for collecting
information on air pollutants, and during periods of
armed conflict, environmental monitoring in the eastern
part of the country is difficult or not conducted, the con-
structed cartographic model of spatial distribution of air
pollutants for the eastern part of Ukraine may not be
100% informative. Linear regression methods are applied
to assess the effectiveness of the modelling in the interval
from [0,1].

4. Discussion

The significance of environmental air quality mon-
itoring necessitates continuous improvement in assessing
and forecasting air pollutants. Kriging, the current ap-
proach, relies on routine monitoring data, resulting in a
sizable dataset with uneven spatial distribution. To en-
hance accuracy, employ complementary mathematical
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methods is crucial. In this study, we propose the integra-
tion of non-linear regression methods tailored for non-
uniform spatially distributed data. This addition offers
distinct advantages, allowing the assessment and predic-
tion of air quality levels with parameters exhibiting non-
linear dependencies. Consequently, more accurate simu-
lation results can be obtained over a vast geographical
area.

Mathematical statistical methods, supplemented by
mathematical modeling such as regression, serve as ver-
satile and universal tools for assessing and predicting air
quality. This blend provides a robust foundation for com-
prehensive analysis and forecasting, accommodating the
complex dynamics inherent in air quality assessment.

The presented methodology for constructing carto-
graphic models of air pollutants is universally applicable,
effectively addressing challenges in environmental mon-
itoring and aiding in decision-making processes. Its ver-
satility enables its application across diverse territories,
serving as an asset in various environmental contexts.

During times of active hostilities, traditional
monitoring stations may be incapacitated or inaccessible
to the public, particularly in conflict-ridden regions such
as Ukraine. Consequently, access to real-time
environmental data and monitoring is confined to
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specialized professionals. In such critical circumstances,
real-time environmental monitoring is imperative to
gather crucial information about external factors influ-
encing the overall regional situation. This information is
vital for informed decision-making, enabling effective
planning and implementation of measures aimed at the
restoration and stabilization of affected regions.

Conclusions

The main contribution of this research lies in the in-
tegration of geostatistical analysis and cartographic mod-
eling to comprehensively characterize the spatial distri-
bution of air pollutants across Ukraine from 1991 to
2021. Despite limited prior data availability, the study
creatively combines geostatistical modeling with regres-
sion analysis techniques, allowing for a quantitative as-
sessment of the mathematical modeling results. This in-
novative approach enhances our ability to visualize and
interpret air pollutant patterns through the development
of effective cartographic models.

Furthermore, this research justifies the suitability of
employing Kriging, a well-established geostatistical
method widely used in the field. The rationale for its
adoption stems from its ease of implementation and ready
availability as a built-in tool in Geographic Information
Systems (GIS). Kriging’s strength lies in its applicability
for deterministic modeling without imposing significant
constraints. However, it's essential to acknowledge and
address the limitations associated with Kriging, such as
challenges in estimating internal variance for new study
points, use of Gaussian or Matérn functions within exist-
ing GIS systems, and the complexity of applying low-or-
der polynomial trends while commonly relying on uni-
versal constant mean values.

By navigating these methodological considerations
and limitations, this study aims to significantly contribute
to a more nuanced understanding of air pollution distri-
bution in Ukraine, providing valuable insights for effec-
tive environmental management and informed policy-
making in the region.
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AHAJII3 3ABPYTHIOIOUYHWX PEUOBHUH Y MTOBITPI HA TEPUTOPIi YKPATHA
3A TOIMOMOT' OO TEOCTATUCTHYHUX METO/I1B

Onvea Bymenko, Anna Tonuui

SIKiCTh TIOBITPSI OCTaHHIM YacOM BHKJIMKAE BEIMYC3HE 3aHEMOKOEHHS, OCKUILKMA BOHO 0OE3MOCepPEIHBO BILUIUBAE
Ha KUTTS Jozaeil. [TocTiiHUN MOHITOPHHT SIKOCTI TOBITPS Ta MPOrHO3YBaHHS JAWHAMIKKA HOTO 3MiH € HEOOXiTHUM
€TaroM OLIIHIOBaHHSI HOT0 IMOTOYHOr'0 CTaHy Ta BU3HAUCHHS KOHIIEHTpallii 3a0pyJHIOI0YNX pedoBrH. ToMy po3podka
€(eKTUBHOI CHCTEMH OILIIHKM Ta MPOTHO3YBAHHS SKOCTI MOBITPS CTajla OJHUM i3 HaWBaXJIMBILIMX 3aBJaHb. Y I
PpoOOTi MPOBOAUTHCS aHaTi3 3a0pYJHIOIOYHX PEUOBUH Ha TepuTopii Ykpainu y nepiox 3 1990-2021 pokis. HabGip
JIAHUX TIPO 3a0pY/IHIOIOU1 PEYOBUHHM Y MOBITPI MPEJCTABICHUIN JEPKABHOIO CIIY)KOOI0 CTATUCTUKU Y KpaiHU Y BUTIISII
y3arajibHeHHX TaOJIHIb, sIKi OYIIU EPBUHHO OIpallbOBaHi JyIs MOJabIIoro MojentoBanns. Kaprorpadiune monento-
BaHHS 3a0pYyIHIOIOYHX PEYOBHH MIPOBEACHO 13 3aCTOCYBAHHAM IeOCTaTHCTHYHUX METONIB. SIK pe3ynbTat, MpeacTaB-
neHo 13 kaprorpagiqHUX MOJIENEei MPOCTOPOBOIrO PO3IOIiTY 3a0pYIHIOIOUNX PEUOBHH ITOBITPS ISl PI3HUX PEriOHIB
VYxpainu. Y 3B's3Ky 3 BincyTHicTIO odiuiiiHol iHpopMalii npo HasBHICTH OOHOBUX Mil, pe3yJIbTaTH 3aCTOCYBaHHS
re0CTaTUCTUYHUX METOJIB HE MOXKYTh OyTH IHTEPIPETOBaHI B KOHTEKCTI BIHCHKOBOI CUTYaIlil HA CXOAi KpaiHu. [H-
(dopmartist mpo 00ioBI Aii Moxke OyTH 3i0paHa 3 pi3HUX JPKEpEl, MPOTE e BUMAaraTuMe BEJIMKKX BUTPAT 38 YacOM JIJIst
CTPYKTYPYBaHHsI Ta cUCTeMaTH3allii Habopy JaHuX. MeTo, 1110 pO3IIIsSIAETHCS B POOOTI, HE MOXKe OYTH 3aCTOCOBaHUIA
3 ypaxyBaHHAM JIEKIJIbKOX IapaMeTpiB OHOYACHO, a caMe 3HAUeHHs [TOKa3HHUKa 3a0pyAHIOI0Y0] pEYOBHHY Ta HAsB-
HICTh 0OMOBHX Aiif. J{JIs IIbOrO 3aCTOCOBYIOTBCS JOAATKOBI METOM Teopil rpadis, perpeciiiHoro anamisy Iuist ofep-
JKaHHS KUIbKICHHUX OILIIHOK PE3YJIbTATIiB MOJICTIOBAHHSI 3 yPaxXyBaHHIM YCiX (hakTOpiB BIUTUBY HA €KOJOTIYHY CUTYya-
uito. Bubpanuii MeTon € mpocTHM IHCTPYMEHTOM JIJIsl BUPIILICHHSI €KOJIOTiYHUX 3aBaanb. 3aBusku rotoBumM ['1C cuc-
TemaM, TakuM Ik ArcGISPro, € MOXJIMBICTB Bi3yautizailii 3aCTOCOBYBaHUX T'€OCTATUCTUYHHUX TAa MATEMATUYHUX METO-
niB. Kaprorpadiuni mozeni, npeacrasiieHi B poOOTi, MOKPUBAIOTh YCIO TEPUTOPI0 YKpaiHU Ta MAIOTh aIMiHiCTpaTH-
BHI KOPJIOHH B 3aJIEKHOCTI BiJ] PO3TAIIIOBAHOI CTaHIIi{ 300py Mpo 3a0pyAHIOBATIbHY PEUOBUHY.

Karwuosi cioBa: sikicth noBitpsi; AaHi; mogentoBanHs; ['IC; iHIEKC SKOCTI MOBITPSI; F€OCTATUCTUYHI MOJEINI
KpITiHTY.
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