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1. KINEMATICS OF PARTICLES
1.4. Main information from the theoretical course

Kinematics is the branch of mechanics, which treats of particle motion as
such, without regard to its cause that is Kinematics deals only with geometrical
aspect of the motion.

Motion is changing in the time domain of a particle’s location with respect
to other point. This point is the origin (datum) of a coordinate system. Position
of a particle is determined with respect to chosen coordinate system by coordi-
nates that are functions of time, so time reference point must be specified too.

Motion of a particle is considered as defined if the following characteris-
tics are specified

—  particle trajectory;

—  particle velocity and acceleration;

—  type of motion (accelerated, decelerated, special points of the trajectory).

Trajectory (path) is the continuous line along which particle travels. The
motion is called rectilinear if path is a straight line; if path is curved line the
motion is curvilinear.

Particle motion can be describes by three methods:

1 Vectorial. The position of a particle in three-dimensional space is speci-
fied by its vector-position F connecting the origin of reference, the point O,

with a point M, where the particle is situated. Vector position F is determined
by its magnitude (module) lFl and direction. The motion is prescribed if vector
7(t) is known as a function of the time

CF=F(t). (1.1)

2 Coordinate. Motion of a particle is prescribed if particle coordinates are
known as a function of the time. For Cartesian coordinate system axes it
means that the following functions are known

x =f(t),
y =h(t), (1.2)
z="T,(t).

3. Natural. It can be realized only if the particle trajectory is given. Natural

method supposes that motion is prescri
jectory is known as function of the time.

To realize the natural method of the particle motion representation it is
necessary to introduce:

bed if the position of a particle on its tra-
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- the reference point (the position of the particle on the trajectory at the
moment when time t equals zero), .

- the positive direction of curvilinear co- Trajectory
ordinate reading, Mo . _
—  time dependence of curvilinear coordi- M

natec = M M = f(t), the last expres- v oo>0
sion is called motion law.

The methods of particle motion representation are interconnected. For
vectorial method we have

F=F(t)=r (t)i +r,(t)j+r,(t)k,

where
x=ry(t), :y=rt), z=r(6)\
So _ :
F=xi+yj+zk. (1.3)
For vector position magnitude we get
r=Jx2+y2+22, (1.4)

Orientation of the vector position is determined by direction cosines:
cos(i,F)=x/r, cos(j,F)=y/r, cos(kF)=z/r. (15)
The relation between coordinate and natural methods may be expressed as

o=+t [J(x)+(y) +(2)dt. (1.6)
0

Signs «+» and «-» specify the direction of a particle motion. If a particle
moves in direction of chosen positive arc reading, sign «+» should be used,
otherwise — sign «-».

Particle velocity.
Particle instantaneous velocity is limiting value of particle displacement
Ar divided by time interval At as the **time interval appropriates zero.
D | SR
V=Ilim=——=—=F. (1.7)
t-0 At dt
So for vectorial method particle velocity is derivative of vector position
with respect to time. Velocity is always a vector tangent to the path, velocity
points to the side of particle motion.
For coordinate method particle velocity is determined as
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V=?=*}:+y.j+2i(" (].8)

where x=V,, y=V,, z=V, are velocity projections on the coordinate

axes X, y, z correspondently.
Velocity magnitude is called speed and is determined as

V=V +V,2+ V2 = [(XP+(y ) +(2)}

(1.9)

Orientation of the velocity is determined by direction cosines:
cos(i,V)=V, /V ,cos(jV)=V,/V, cos(k,V)=V,/V .(1.10)

Motion is called uniform if speed does not vary with time.
For natural method patrticle velocity is

~ . do .
V=V7 =Er, (1.11)

—

where o =g (t) is the law of motion along the trajectory, 7 is unit vector of

tangent to the trajectory.
For speed we have

V=|5(t). (1.12)

Velocity direction is determined by the sign of the derivative ‘;—‘:. If the

derivative is positive (it means that the velocity projection on the tangent to the
trajectory is positive V. = V'), than velocity points to the side of positive direc-

tion of curvilinear coordinate o . If the derivative is'negative (V. =-V), than

velocity points to the side of negative direction of curvilinear coordinate o .
Particle acceleration.
Particle instantaneous acceleration is derivative of velocity or the second
time derivative of particle vector position.

W=V-=r. (1.13)
For coordinate method we may write
W =xi +y]+Zk, (1.14)

where X =W,,y =W,, Z=W, are velocity projections on the coordinate

axes X, Yy, z correspondently.
For acceleration magnitude we may write

6
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W= W2+ W2+ W2 = (X + (VP +(Zf. (@19
Orientation of the acceleration is determined by direction cosines:
cos(i,W)=W, /W ;cos(jW)=W,/W; cos(k W)=W,/W.

For natural method acceleration is represented as the sum of two mutual
perpendicular vectors

WSt W, (1.16)
The first term Wf is called tangent acceleration and may be determined
as
— dV
W.=—=7. (1.17
dt )

The vector Wr is always tangent to the trajectory, magnitude of the acce-
leration W is magnitude of the derivative of the velocity projection on the tan-
gent.
dv.| |d°o|

dt | |dt*|’
Tangent acceleration direction is determined by the sign of the derivative

d’c
2 If the derivative positive, than the tangent acceleration points to the side

\Wr (1.18)

of positive direction of curvilinear coordinate o . If the derivative negative, than

the tangent acceleration points to the side of negative direction of curvilinear
coordinate o .
2

dt2

Comparing signs of the and ?d—f— we can characterize the type of

motion:

— if the derivatives have the same sign motion is accelerated (in this case
velocity and tangent acceleration point to the same side),

— if the derivatives have the opposite signs motion is decelerated (velocity
and tangent acceleration are opposite). So the tangent acceleration cha-
racterizes the variation of velocity magnitude.

The second term W, in the equation (1.16) is called normal acceleration.

For its magnitude we have

W, =—, (1.19)



where V is velocity magnitude, p is radius of curvature of the trajectory at the
given position of a particle.

The normal acceleration is always along the normal to the trajectory and
points toward the center of curvature of the trajectory. The normal acceleration
characterizes the variation of the velocity direction.

The total acceleration magnitude may be determined as

W= W?>+W?2. (1.20)

1.2. Problems solving

Problem 1.1

A law of particle motion along a trajectory is given: s =¢’ — 3¢ (m). Find
the displacement which is passed by the particle during the period of time [0; 3].

Solution :

!
In the given case the law of motion is given in natural form. If s(t) is a mo-
notonic function then the past displacement on the instant of time [t; t;] is cal-

culated as I =s(t,)—s(t,). If the function on the considered segment is not

monotonic then it must be resolved into segments of monotony and we must
summarize displacements on each segment.

Let's examine the function s(t). Let's differentiate it by time and equate to
zero:

§=3-3=0.

This quadratic equation has two roots: t,;= 1, t,= -1, but the second one is
out of the interval [0; 3]. Therefore, there are two segments of monotony of our
function and the displacement, which is passed by the particle during the time
[0; 3],

Ly =1y, +1,=|s(1)=s(0)|+|s(3)-s(1)|= -
=|1-3|+|27-9-1+3|=2+20=22 (m).

Problem 1.2

A particle moves on a plane according to the equations x = 8cos(24t),
y= 7 sin’(12t). Find the equation of the particle’s trajectory, the law of its |
motion along this trajectory, calculating distance from the initial position, the ve- |

. |
|



locity and the acceleration when £, = 7%8 (x and y are given in meters, t—in
seconds).

Solution

The motion of particle is given by coordinate way.

Let's find the equation of trajectory, excluding parameter t from the equa-
~tions of motion:

x = 8cos(24t) = 8(cos’(121) — sin’(121)) = 8(1 — 2sin’(121)).
It follows that
sin’(121) = (8 — x)/16.
Substitute this value to the dependence y(t), we get
y=3,5-7x/I6. (1.21)

This is an equation of line, but the trajectory of the particle is only the
segment MgM; (Fig. 1.1), because according to the given equations of motion
the coordinate x is on the interval (-8; 8), and the coordinate y — on the interval
(0; 7).

A

-4 &
o M
i B
\\ 4/ \\ 3
X m \\
SN
A P
-10 -8 -5 0 5 8 10 X

Fig. 1.1

Let's find the law of particle’s motion along the trajectory. To do this let's
differentiate the dependencies x(t) n y(1):

dx = -8-24sin(24t)dt = -192sin(241)dt;
dy = 168 sin(12t)cos(12t)dt = 84sin(24t)dlt.
Then




do = Jdx’ +dy’ = V1922 + 847 sin( 24t )dt = 209,57 sin( 24t )dt . (1.22)
In order to obtain the equation oft), let’s integrate the expression (1.22):
o(t) = -8,73cos(241) + C. (1.23)

The coordinate o is counted from the initial position of the particle, that is
why when t = 0 o = 0 and equation (1.23) gets a look like

0= -8,73 +C,
From this C =8,73.
Finally, the law of motion will look like
o(t) = 8,73(1 - cos(241)).

These are harmonic oscillations with an amplitude a = 8,73 m and a pe-
riod of oscillations 7= 7/48 s.

In the beginning of motion, when t = 0, the particle is in the extreme posi-
tion M, (8; 0), and in the moment of time t = /48 s, when cos(24t) = 0, —in the
center of oscillations M (0; 3,5). When t = /24 s the particle reaches the

second extreme position M, (-8; 7). For the given t = 77748 s the coordinate
are x = 0, y = 3,5 m, thus the particle is in the center of oscillations.

In order to find the projections of velocity vector to the coordinate axes it
is necessary to differentiate by time the corresponding functions:

V.=x=-8-24sin(24t)=—-192sin(24t) ;
V,=y= 168 sin(12t)cos(12t) = 84 sin(24t).

The magnitude of velocity

V=V:+V] = J1927 sin’ (241 )+ 84 sin’ (241 ) = 209,57 -|sin( 241 )| .

In the instant of time ¢, = 7%8

V,=192 m/s,V, = -84 m/s,

V =209,57 -

24
sin(—-77@
(48 )

= 209,57 m/s.

The direction of ¥, with taking into account the signs of the projections
Vy, Vy, is shown on the Fig. 1.1.
Let's find the acceleration of the particle. Projections of the acceleration
to the coordinate axes are

10



W_=Xx=-192-24cos(24t)=-4608cos(24t),
W,=y=284-24cos(24t)= 2016 cos(24t) .

Att, = 7%8 we get

7 g
W= —4608cos(7” )=0,W,=2016 cos(Tﬂ )=0.

Therefore, the total acceleration of the particle is W = 0. Note that for
straight linear trajectory the radius of its curvature is p=c0.

Problem 1.3

A particle moves along a circle with radius R. The initial velocity is Vo
(Fig.1.2). The acceleration of particle has a constant angle a with the velocity of

it and this angle is constant.Find the value of particle’s velocity as a function of
time.

Solution

The acceleration of a particle has the angle
with a tangent to the trajectory, therefore it is poss- ™~
ible to write W, = W sina, W, =W cosa . On the
other hand,

o Fig. 1.2
n ——E’
_av,
NSOy

It is known that @ = const. Therefore,

' VR
ciga=—-r= ’;2 = const .

n

This is a regular differential equation with separable variables. Let's inte-
grate it and find dependence between the velocity of a particle and time:

k. - edV ciga 1 ctga
[ L= dt , ——=
J.Vz I R R

t+C. (1.24)

11



A constant of integration can be found from the initial condition. It is
known that when t, = 0 the velocity of a particle is V = V. Substituting these

1
values to the equation (1.24) it is found that C = ——.

0
Then the dependence V(t) will look like

1 V,R

ciga 1 R-Vji-cga’
Rustevil;

V=-

Problem 1.4

A cannon of coast guard shoots from a height of h = 30 m with an initial

velocity Vp = 1000 m/c on the angle a = 45° to the horizon. What distance does
the shell fall from the cannon if the air resistance is neglected?

Solution

In the current problem the law of particle’s motion is not given directly,
therefore it must be found with the help of known conditions.

Let’s introduce coordinate axes, the axis x is horizontal and the axis y is
vertical. Let's write the equation of shell’'s motion in coordinate form. If the air
resistance is not counted then there are no forces, which would induce and ac-
celeration to the shell along the axis x, thus W _= X = 0.

Along the axis y there is a gravity force which acts to the shell and induce
the acceleration of free falling, thus W, = y=-g.

Integrating twice these equations we get
V,= [%d=[ode=C
and
x=[Vdt=[cdat=Crt+C,,

v,= [jat= [(-g)at=-gt+C,,

2
y=[V,dt = [(~gt+C,)t= 52" +Ct+C,

The constant of integration is found from the initial conditions. It is known
that when t =0

12



x(0)=0,y(0)=h, Vx=Vycosa Vy=V;sina
Then
Vy=V,cosa=C, 0=V,cosa0+C; = C;=0,
Vy=V,sina=-g-0+C,, h=-g0/2+V,ysina-0+C,= C,=h.

The law of the shell’'s motion with taking the values of constants into ac-
count is:

x = (Vycosa)t; (1.25)
y =-gf/2 + (V, sina)t + h. (1.26)

The sought-for distance can be found from the equation (1.25), if the time
of the shell's flight is substituted there. The time is found from the equation

(1.26), taking into consideration that in the moment of fall to the ground the
coordinate y = 0.

Substituting the known values we get
-4,9¢ + 707t + 30 = 0.

Having solved this quadratic equation we find one real root t = 144 c.
Then from the equation (a) the desired distance can be found

x=100040,71-144 = 101,8 km.

Note: the maximum distance of firing is a bit more than 50 km for mod-
ern cannons with the given initial velocity.

Problem 1.5

Find the trajectory and examine the
character of motion of the point M, which
is placed on the rocker with length I. The
rocker is a part of a crank mechanism.
The distance between the particle and the o
place where the rocker is joined to the
crank OA is a. The length of the crank is
also / (Fig. 1.3). The angle ¢ changes ac-

cording to the law @(t) = zt, AB = OA.

Solution
Here, the same as in the previous problem, we need to make equations
of motion. In the current case it is rational to use a coordinate way. In order to

13




do this let's direct the abscissa horizontally and the ordinate — vertically and |
let's define the coordinates of the point M:

x = (I+a)cosg,

y = (l-a)sing.
Let's substitute the given dependence @ = 7t into these expressions, we
get the law of the point motion

xX= (l +a)c0s(7rt),
y=(I-a)sin(nt).

The equation of trajectory is a dependence between the point coordinates
y = f(x). It can be obtained by excluding the parameter t from the system
(1.27). In the current case it is optimal to use the following approach: to square
left and right parts of each equation and then summarize them. Then we have

(1.27)

2 2

X .y
(l+a) (-a)

Signing (I+a) = A and (I-a) = B and taking into account that

= cos’ (mt) + sin’ (7).

cos’ (mt) + sin’ (mt)=1,

the equation of trajectory can be found
2 2

X y
4B
Therefore, the particle moves along an ellipse in which semiaxes are A
and B (Fig. 1.4, a).

1,

Fig. 1.4

Let's find the directions of motion. In order to do this let's suppose that in
(a) t = 0. Then in the initial instant the coordinates of the particle M (A; 0), thus

14



the particle is in the position 1. When t increases the coordinate x decreases
and y increases. Therefore, the particle moves along the ellipse anticlockwise.
When t = 0,5 s the coordinates of the article M (0; B), it is in the position 2, etc.

Note, that direction of motion can be also found with the help of direction
of velocity vector. Let’s find its projections:

V.=x= -Arsin(nt);

. (1.28)
V. =y = Brcos(ri.

¥y

When t = 0 we get Vx = 0, therefore, V = Vy = Bzrand the vector is directed
up in the initial position, which also shows that the particle moves anticlockwise.

To prove monotony of the motion there are several ways. Analytical me-
thods of functions’ examination are red in the course of High Mathematics. In
the current case let's use the graph-analytical method, for which we need to
make a hodograph of velocity.

Let's remind that hodograph is a curve which is drawn by a vector tip if its
beginning is fixed in some unmovable point. Hodograph of velocity is drown on
coordinates Vi, Vy. It means that equations of velocity hodograph in parametric
form that look like (1.28). The equation of velocity hodograph can be obtained
by the same way as was used for finding the trajectory of the particle. Let's ex-
clude the parameter t from the equations (1.28) and get the equation of the ve-
locity hodograph

2 2
Vx 4 V.V = I
(Az)’  (Bz)’

Thus when the particle moves along the trajectory the vector of its velocity
moves along an ellipse in which semiaxes are Az and Bz (Fig. 1.4, b).

It is seen from the velocity hodograph that the magnitude of V increases
on the intervals 1 - 2 and 3 - 4 and therefore the particle moves accelerated

and on the intervals 2 - 3 and 4 - 1 the magnitude of V decreases, the particle
moves decelerated.

It is known from the theoretical course that a character of particle’s motion
changes when w, = 0, thus the velocity reaches extreme values — maximum or

minimum. These point are 1’, 2, 3’, 4’ on the hodograph. Vector of total accele-

- dv
ration W = ? is always directed along a tangent line to velocity hodograph so in

these points W = W, and the angle between ¥ and W is equal 7/2.

15



Let's consider an arbitrary position of the particle M on the segment of tra- ||
jectory 1 - 2. A point m on the velocity hodograph corresponds to this position

(Fig. 1.4, a, 6). Let's resolve the total acceleration W, which is directed along a
tangent line to the hodograph ¥, into components W, and W,. As it is known,

W, is directed along the same line as ¥V, and W, is perpendicular to W,, then

W=W, + Wr. Let's note that this is a segment of accelerated motion and that

is why ¥ and W, are directed to the same side.

10.

11.

1.3. Self-control questions

Formulate the ways of particle motion defining.

Formulate the definition of velocity and acceleration of particle when
the vector way of defining motion is used.

Formulate the definition of velocity and acceleration of particle when
the coordinate way of defining motion is used.

How to resolve vectors of velocity and acceleration of particle to the
axes of natural trihedral?

Write the formulas for velocity, tangential and normal accelerations of
particle through angular position.

What conditions does the vector of total acceleration coincide with
the vector of: a) normal acceleration; 6) tangential acceleration in?

How is the character of motion defined when the vector way is used
to do this?

How is the character of motion defined when the coordinate way is
used?

What are the conditions of accelerated and decelerated motion of the
particle when the natural way is used to define its motion?

Write and show on the drawing the relation between the vectors of
total, normal and tangential accelerations.

What is the scalar product of velocity and normal acceleration vec-
tors equal to?

16



1.4. Solving problems on your own

According to the given equations of motion of the particle M determine the
ype of the trajectory and for a moment of time t=t, find its position on the tra-
ectory, its velocity, total, tangential and normal acceleration and a radius of the
rajectory curvature.

All necessary data is given in the Table.

17

Variant Equations of motion ¢
number X =X (t), cm y=y (t), cm e
1 -2t°+3 -5t 112
2 4cos” (Trt/3)+2 4sin® (T1t/3) 1
3 -cos (T1t%/3) +3 sin (Tt%/3)-1 1
4 4t+4 -4/(t+1) 2
5 2sin (T1t/3) -3cos (1t/3)+4 1
6 3t2+2 -4t 112
7 3t%-t+1 5t2 -gt =2 1
8 7sin (11t%/6)+3 2-7cos (Trt’/6) 1
9 -3/(t+2) 3t+6 2
J} 10 -4cos (Trt/3) -2sin(Tt/3)-3 1
11 -41°+1 -3t 112
O 12 5sin?(TTt/6) -5cos?(TTt/6)-3 1
P 13 5cos( Tt2/3) 5sin(TTt2/3) 1
Q 14 = 1% -2/(t+1) 2
i 15 4 cos (TTt/3) -3sin (T1t/3) 1
16 3t 4t°+1 112
17 7sin®(Tt/6)-5 -7cos*(TTt/6) 1
18 1+3cos(Trt?/3) 3sin( Tt%/3)+3 1
19 -5t°-4 3t 1
20 2-3t-6t2 3- -g—t 3t 0
21 Bsin (11t/6)-2 6cos (Trt*/6)+3 1
22 7t%-3 5t 1/4
23 3-3t%+ 4-5t°+5¢/3 1
4 -4cos (1t/3)-1 -4sin (1t/3) 1
25 -6t -2t°-4 1
26 8cos® (TTt/6)+2 -8sin’(TTt/6)-7 1
27 -3-9sin (T1t°/6) -9cos (TTt°/6 )+5 1
28 -4t°+1 -3t 1
29 5t + gt -3 3t2+t+3 1
30 2cos (1t/3)-2 .
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2. THE SIMPLEST MOTIONS OF A RIGID BODY
2.1. Main information from the theoretical course

The simplest motions of a rigid body are translation and rotation about
xed axis.

21.1. Translation

Translation is defined as motion in which a straight line between two
yoints of the body always retains an orientation parallel to its original direction
at all time.

In translation the trajectories of points of rigid body are equidistant curves,
all points have the same velocities and accelerations relative to some reference

— — —

V=V,=..=V

and

- — —

W =W, =..=W,

Therefore motion of one point completely describes the motion of the en-
tire rigid body. We generally choose the motion of the center of mass to denote
the motion of the rigid body.

In the following sketches the samples of translation of rigid bodies are
represented.

In the Fig. 2.1, a slider 3 has translational motion, in the Fig. 2.1, b
framework ABCD (0O+C = 0,A) is in translation, in the Fig. 2.2 slotted link 3
constrained by the supports K and L moves translationally.




Fig. 2.2

2.1.2. Rotation about fixed axis

A rotation is such a motion of a rigid body that one line of the body or of
an extension of the body remains fixed. The fixed line is called the axis of rota-
tion.

Points of the body move in the planes that is perpendicular to the axis of
rotation. Each point moves in a circle of radius equal the shortest distance from
the point to the axis of rotation.

Rigid body position in rotation about fixed axis depends only on its angu-
lar coordinate @ . Let us consider two planes passing through the axis of rota-

tion: fixed o7 and rigidly connected with rotating body o (Fig.2.3).

Fig. 2.3

The angle ¢ that these planes form is measure of rotation. The angle ¢

is regarded as positive if from the positive direction of the axis Oz we can see
rotation of the moving plane contraclockwise. A single revolution is defined as
the amount of rotation in either a clockwise or a counterclockwise direction
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about the axis of rotation that brings the body back to its original posiﬁon. If the
angle ¢ is not divisible to 2z we will say about partial revolutions.

Angular velocity @ and angular acceleration & are kinematical characte-
ristics of a rotating body. These notions may be used for rigid body only (it is
impossible to use these notion for particle).

The angular velocity characterizes the time rate of change of angular co-
ordinate. The angular velocity of a rotating body is vector. It is directed along
the axis of rotation of body such that from the end of the vector @ rotation of

‘ the body about the axis of rotation is viewed anti clockwise (Fig. 2.4). Its magni-
tude is module of the time derivative of the angle @

. dp- .-
o=—=rFk=0@k.
7 4 (2.1)

The angular velocity is measured by rad/s or 1/s.

Fig. 2.4

The angular acceleration characterizes the time rate of change of angular

velocity. The angular acceleration of a moving body, commonly denoted by g,
is the time derivative of angular velocity

§=—=@k. (2.2)

Therefore it is evident from this equation that £ is positive or negative
according to the sign of d@, that is, according to whether positive or negative
angular velocity is being taken on. As with angular velocity, we associate sign
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with direction: positive angular acceleration is anti clockwise, and negative an-
gular acceleration is clockwise.

If the angular velocity and angular acceleration have the same direction,
the rotation is accelerated, in opposite case — rotation is decelerated.

There are simple relationships between the angular velocity and angular

acceleration of a rotating body and the velocity and acceleration of any point of
the body.

Let M be any point of the rotating body, p is the shortest distance be-
tween the point M and the axis of rotation O, o the curvilinear coordinate of M
measured from any arbitrarily selected origin M|, on its path, and ¢ the angle
between OM, and OM, measured in radians (Fig. 2.5, a). Then for natural me-
thod of the point motion description we have ‘




7 = pot, (2.3)

S T= i r=p——dt2i’=£pi’, (2.4)
L, =—R=@ pn. (2.5)
P

For vector method (Fig. 2.5, b, ¢) point M coordinates are
X, = pcos@, y, = psing, z,, = const.
Point M position vector is
F (X VaroZn ) = Xogld + Yy + 2,k = peosgi + psingj +z,, k.
Point M velocity is

dr d(pcos;of + psinqp'f 4 zME)

p =

=—psing- wzf + pcos@- a)j =

dt dt
i ] k
=10 0 o|=0&xF. (2.6)
Xn IVu Zm

Point M acceleration is

-~ dv dloxf) dlo) . .

W=—= ( ) = ( ) XF+ ox
dt dt dt dt

Consider the first term of the equation. The first term magnitude is

|ExF|=¢-r-Sin(d,F ), r-Sin(d,F )= p,

|E><F|=g-p. (2.8)
Vector £xF is at the same time directed perpendicular to the vectors &

and 7 , in according with the right hand rule vector € x7 is collinear with unit

vector of tangent for &, > 0, or is opposite to the unit vector of tangent for

¢, <0, so we get that £x7 is tangent acceleration of the point in rotating
body: :

—

ExXF=W.
The second term magnitude is




x| =|@x(dxF)|= - v- Sin(®,7), Sin(®,5) = Sin(z/2)=1
Bx(2xF)|=p. (2.9)

Vector @x v is directed perpendicular to the vectors @ and v at the
same time and in according with the right hand rule points to the axis of rota-
tion, so we get that @x v is normal acceleration of the point in rotating body:

dx(dxF)=W". (2.10)
So for total acceleration we have
W=W"+W", (2.11)

W= plo* + &% (2.12)

These formulas give the magnitudes and direction of the ve-
locity, the tangential acceleration, and the normal acceleration
(centripetal acceleration) of M, and they show that for different
particles of a rotating body these magnitudes are directly propor-
Vm tional to the distances of the particles from the axis of rotation

Fig.2.6  (Fig. 2.6).

2.1.3. Conversation about the simplest motions of a rigid body

There are several variants of conversations of the simplest motions of ri-
gid body. They are
— conversation of translational motion into rotational one or inverse;

— conversation of rotation about some fixed axis into rotation about another
fixed axis;
— conversation of some body translation into translation of another body.

In the Fig. 2.7 the bodies 1 and 5 are in translation, the bodies 2, 3 n 4 rotate.

Transmission of a rotating motion is realized by gear trains, friction gear-
ing (Fig. 2.8 a, b), or by belt transmission (Fig. 2.9, a, b).

For internal-gear train (see Fig. 2.8, a) and for non-crossing belt trans-
mission (see Fig. 2.9, a) driving and driven wheels have the same direction of
rotation.

For external rearing (see Fig. 2.8, b) and for crossing belt transmission
(see Fig. 2.9, b) driving and driven wheels have opposite direction of rotation.

For contact without slipping the velocities of the contacting points I7K (see

Fig. 2.8) are the same. If belt does not slip on the drum the velocities of the
points A and B on the rims of the drums (see Fig. 2.9) are the same.
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Therefore the angular velocities of wheels are inversely proportional to |
the wheels’ radiuses or diameters

o _n_4d (& _1n_4| 2.13) |
w, rn, d; \& r,  dy

If parallel connection of wheels is used in mechanism (see Fig. 2.7, bod-
ies 4 and 4a) the wheels have the same axis of rotation. If the wheels are rigid-
ly connected they have the same angular velocity.

2.2.  Problems solving

Problem 2.1

Acceleration of the point 4 that is on a disk
which rotates around a fixed axis (Fig. 2.10) is

equal to 8 m/s’. Find the angular velocity @ and |

the angular acceleration g of the disk, if its radius |
is R = 0,4 m, and the angle = 30°

Solution

Let's resolve the acceleration of the point
A into normal and tangent:

W, =W"+W*.

Fig. 2.10

For known angle f# we get

W"= W cosf= 8cos30°= 6,8m /s’
W*= W,sinp= 8sin30°= 4m/ S

Remembering that W"=@?R and W'=gR we can get the angular
velocity and angular acceleration of the disk:

’W" 6,8 1 w: 4 1
= = '—_’ =3,8 il = = =10 2 |
@ R d0,4 (S} TR 0,4 [szJ
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Problem 2.2

A wheel rotates with a constant angular acceleration. Calculate the acce-
eration of the point, which is on the distance of 0.2 m from the axis, at t=4 s af-
er the beginning of rotation from the state of rest if the angular velocity at this
nstant of time is equal to 0,3 rad/s.

Solution

As we know & = const and the motion starts from the state of rest so the
angular velocity is found with the help of formula

w(t)=¢et+a, =&t .

Substituting the instant of time t = 4 s into this expression we get the an-
gular acceleration

4
o(d)=c-4=>¢= a)(4 )= 0,3 = 0,075 (rad/s’).
Let's find the acceleration of the point:
W=W"+WF*,

Normal acceleration:
W"=w?r=(0,3)*-0,2=0,018 (m/s’).
Tangent acceleration:
W*=g-r=0,075-0,2=0,015 (m/s’).
Total acceleration of particle:

W=JW" ) +(W )} =3,24+2,25.107 =2,34-107 (m/s).

Problem 2.3

A body rotates uniformly accelerated from the state of rest with the angu-

lar acceleration & ={3, 2, 2. Find velocity and acceleration of a particle that is
on the body and in which radius-vector is 7 = {1, 2, 2} after 2 s after the begin-
ning of motion.

Solution
It is known from the task that & = 3, & = 2, & =2 and initial angular veloci-

ty is @y = 0. Let’s find the projections of angular velocity vector to the coordinate
axes:
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o, = .sxdt = (3dr =3¢+ @, =3t;

o, = |&,dt = 2dt=2t+w,, = 2t;

o, = .gzdt = [2dr =21+ o, =21

Whent=2s-a,=32=6, ®,=22=4, ,=2-2=4.

Let’s find the projections of particle velocity to the axes of Cartesian coor:
dinate system with the help of formulas

V.=0,2-0,y=4-2-4-2=0,

Vyzcozx—wxz=4-1—6'2=—8,
V.=0.y-0,x=6-2-4-1=8.

Then the value of particle velocity is
V=VE+Vi+V:=|0"+(-8) +8° =11,31(m/s).

Acceleration of particle of body, which rotates around a fixed axis, can be

found as the vector sum of normal and tangent accelerations. The first one of
them

W"=@x(®xF)=axV =i"((ayvz —e'ozvy)—7((2)‘_}3r —oy,)+ E(wxvy -
~oy, )=i(4-8+4-8)-j(6-8-0)+k(-6-8-0)=
=64i — 48 — 48k.

The magnitude of normal acceleration

W = /647 + 487 + (48> = /8704 = 93,3 (m/5").
By analogy let’s find the tangent acceleration:

W*=ExF =-i'(('s'yrz —.S'IA"J,)—}:‘(&':,.Jr;r —exrz)+E(£xry —Er. )=
=i(2:2-2-2)-j(3:-2-2-1)+k(3-2-2-1)=—4j + 4k.
The magnitude of tangent acceleration

W*=+16+16 =32 = 5,66 (m/s’).
The total acceleration of the particle

W =J(W" ) +(W*)? =\8704 + 32 = 93,47 (m/s).
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Problem 2.4

A rotor of electric engine starts its rotation from the state of rest and dur-
ing 5 s and run 100 rotations. Find the angular acceleration of the rotor with the
condition that the motion is uniformly accelerated.

Solution

The motion is uniformly accelerated so we can use the formula

st
2

In the current case the motion started form the state of rest so ax and ¢
are equal to zero so

? QJO +w0z

gigle

z 2"
t
The shaft rotates on an angle of 2z rad per one rotation therefore for the
time of 7= 5 s the shaft will rotate on an angle of 200z rad. Thereby,

£ 2—‘:—"’500—”—50 3(rad / s*).

Z

Problem 2.5

The weight 1 moves vertically according to the law

y= x/_sm[ ](m)

and actuates the pulleys 2 and 3 of radii R, =0,5 m, r, =02 m, Rs = 0,4 m
(Fig. 2.11).

Find the acceleration of the point M when =1 s.
Solution

Translation motion of the body I is transformed into rotational motion of
the two-stage pulley 2. The pulleys 2 and 3 are in an external engagement so
they rotate with different directions.

Let's apply the next designations: @, and & — angular velocity and angu-
lar acceleration of the pulley 2; @s and & — angular velocity and angular accele-
ration of the pulley 3.
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Fig. 2.11

Let's find the velocity and acceleration of the weight I from the law of its

motion:
e [ﬁ sin [%tn =42 %cos[%l‘} ;

)= n (= oo (5
W, =y=V,= [\/_2- zcos[z tD = —\/E -‘,Esm [zt}

2

When ¢ =1 s we get Vh,:%(m/s), 5 =—%(m/sz).

The point A4 is on the rope and the pulley simultaneously thus
i i 51y
V,=V,=2(m/s) and WZ=W,=76( /5%).

Let's find angular velocity @, and angular acceleration & of the pulley 2:

4 R,, th @ & a = [1]
— ; y i 2 — — =—| — ;
=, R,, therefore, @, R,"4.05 2.s

W, = w2l insgphip 4
W* =¢g,R, therefore, &, =—= [_]
S A R0 559,55 88
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Taking into account the directions of the vectors V, n Wj"’ we have
@,, >0; and &, <0 (see Fig. 2.11).
The point K is the common one for the pulleys 2 and 3, so
V= apr;= asR;,

WKT =g~ &R;.
After this we get

o (w3z<0) ’

- _”2.0’2_”][.1\ (&5, >0)
R, 8 0,4 16 R

Let's find velocity and acceleration of the point M:

&; =&

V, = o,R, =%-o,4 =017 (m/s);

The directions of the vectors V W ,WT*,W are shown on the Fig. 2.11.

Problem 2.6

A mechanism, which consists of the drum 6 and a gear, is moved by the

wheel 1 (Fig. 2.12). Find the magnitude and direction of velocity _.P of the

weight P, if @y = 4,5 (1/s), and radiuses of wheels and drum are Ry = 0,2 M, R;
=04m, R;=0,5m, R, = 0,25 m, Rs = 0,6 m. The wheels 4 and 3, and the

wheel 5 and the drum 6 are rigidly joined (@; = @, u @s = @s).
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Solution

To find the velocity of the weight P let’s use the known relations:

R R
?i: -'-R—j,from WhiCh a’z = (0, 'R_i; (2’14)
a, 2
R R
b 3 =-R—3,from which @, = 0, = o, f—; (2.15)

R R
=4 =5 from which &5 = 0y = 0,—*. (2.16)
®s R, R,

@,

After this substitute one-by-one the expression (2.14) into (2.15) and into
the dependence (2.16), we get the angular velocity of the drum 6

R1R4
RS‘RS .

The velocity of weight P is found by the formula

Wy = W5 = Oy

R,R,R 0,2.0,25-0,1
V.=V.=a.R =w.._1_4_5=4,5 2 d )
¥ o AR T R 0,5-0,6

The directions of wheels rotation are shown on the Fig. 2.12.
Thereby the weight P will be moving up with the velocity of 0,076 m/s.

=0,076 (m/ s).
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Problem 2.7

Find the velocity V of jack cup Q lifting. The scheme of jack is shown on
e Fig. 2.13, if the handle P performs n = 10 rotations per minute.

ltisknownthatR,=2m,r;=3m R,=4m,r;=1m, R;=5m.

Solution

First let's analyze the motion of all mechanism links. The wheel 1, and the
ulleys 2 and 3 rotate around fixed axes 0;, 0, and O; respectively. The wheel

; is engaged with the toothed bar 4, which performs linear motion together with
e cup Q that is attached to it. Thereby, to find the velocity of cup it is enough
b find the velocity of toothed bar.

v

Ve

N 0

Fig. 2.13

Knowing how many rotations per minute are performed by the body 1,
et's calculate its angular velocity
TTn T«
D, = —= — (rad/s).
' 30 3

The velocity of point on the edge of the first wheel
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VA=a),R,=—§--2(m/s). l

If there is no slipping the same velocity will be on the edge of the wheel
edge. Then its angular velocity

- .

V. &
@, =—=— (rad/s).
? R, 6( 4

Let's find the velocity of the point B of the wheel 2. The point is placed on
the distance r, from the axis of rotation:

Vy =o,r, =-72-r-(m/s).

In the point B the wheel 2 touches the pulley 3, so

Ve
aJ3=R—3=76(rad/s)

Then the velocity of the toothed bar, in which the cup is attached, is

V(4
V.=w@.,r,=——(m/s).
C 3°3 10
The jack cup moves up with the velocity V. (Fig. 2.13).

2.3. Solving problems on your own

For the following schemes of mechanisms at a moment of time t=t; de-
termine velocity and acceleration of the point M using equation of motion for the.
1% body.

Variant Radiuses, cm Time | Equations of motion

number R,ym| rpb,m | Ry m | r;,m | t,s x(t), m
1 60 45 36 5 1 -5t°-3t-2
2 32 16 32 16 2 7t°+4t-1
3 35 10 10 - 1 4t2-3t+8
4 25 20 50 25 3 -10t*-8t+6
5 20 15 15 7 3 5t°+6t-2
6 80 - 45 30 1 2t%-4t-2
7 30 15 20 : 3/2 3t°+8t-12
8 25 15 10 c 1/2 7t°-3t-8
9 40 20 35 > 2 -7Tt2+4t-1
10 15 10 20 - 1 ot-2t-8
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2.4. Self-control questions

How many independent parameters are necessary to be defined in
order to find a position of rigid body: a) a free one; b) with a fixed
point; ¢) with two fixed points?

Define translation motion of rigid body. What are the properties of
this motion?

Define rotation motion of body around a fixed axis. How to determine
the law of motion?

How to find the velocity of arbitrary point of body, which rotates
around an axis?

What are the magnitude and direction of particle velocity of body,
which rotates around an axis?

How to determine the magnitude and direction of normal acceleration
vector of particle, when body rotates around an axis?

How to find the magnitude and direction of tangent acceleration vec-
tor of particle when body rotates around an axis?

How are the vectors of angular velocity @ and angular acceleration
7 directed when a body rotates around an axis?

How can the character of body rotation around an axis be found if the
Jaw of its motion is given ¢ = p(t)?
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3. PLANE MOTION OF A RIGID BODY
3.1. Main information from the theoretical course
3.1.1. Definition and equations of plane motion

Plane motion is motion in which each point of the moving body remains
at a constant distance from a fixed plane. Each point of the body moves in a
plane that is called the plane of the motion. The axis of rotation of a body re-
mains perpendicular to the plane of the motion during the time of motion. We |
know that the distances between points in rigid body are constant so to pre-
scribe the motion of any point in the body it is enough to know the motion of the
plane figure of the body. This plane figure is obtained by dissecting the body
by the plane of motion of any point. In our following consideration we will speak
about motion of the plane figure instead of the rigid body motion.

In the previous chapters two simple motions of a body (translation and ro-
tation) were considered. We shall now demonstrate that at each instant, the

plane motion of any rigid body can be thought of as the superposition of both a
translational motion and a rotational motion.

Fig. 3.1. Plane motion of a rigid body

Positions of the body are shown tinted at times t and (¢ + 4t) in Fig. 3.1.

Let us select any point A of the body. Imagine that the body is displaced with-
out rotation from its position at time t to the position at time (¢+ 4t) so that

point A reaches its correct final position. The displacement vector for this trans-
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lation is shown at Ar,. To reach the correct orientation for (t + At) ), we must

now rotate the body an angle A¢g about an axis of rotation which is normal to

the plane and which passes through point A.

What changes would occur had we chosen some other point B for such a
procedure? Consider Fig. 3.1 where we have included an alternative proce-
dure by translating the body so that point B reaches the correct final position.
Next, we must rotate the body an amount A@ about an axis of rotation which is

normal to the plane and which passes through B in order to get to the final
orientation of the body. Thus, we have indicated two routes. We conclude from

- the diagram that the displacement A7, differs from AF,, but there is no differ-

ence in the amount of rotation A@. Thus, in general, A7 and the axis of rota-
tion will depend on the point chosen, while the amount of rotation Ap will be

the same for all such points.

Conclusion: Any displacement of a body in plane motion can be accom-
plished by means of a translation of the body followed by a rotation, or vice
versa. By means of a translation, one point of the body could be put into its final
position, and by a rotation about that point the body could be put into its final
position. The point of the body chosen for the translation and for center of rota-
tion is called the pole or the base point.

To characterize the translational component of the plane motion it is
enough to prescribe the position of the pole as function of time. To characterize
the rotational component of the plane motion it is enough to prescribe the angle
of rotation about the axis crossing the pole as function of time

x, = fi(t),
Yi=fr(t),
p= fs(t)'

This system of equations is called the equations of plane motion of a
body.

3.1.2. Point position

Let us consider the point A of the plane figure as the pole (Fig.3.2). Let us
choose two coordinate systems:

o the first Oxy is fixed,
+ thesecond Ax,y, is moving, Ax,y, has motion of translation with respect
to the fixed coordinate system.
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Fig. 3.2. Determination of a point B position in plane motion of a body

Position vector of point B is f
Fy=F, +p (3.1

wherein 7, = x,i + ] is the vector position of the pole A in the fixed frame of
reference O xy , p is vector position of the point B in the frames of reference

Ax,y,, the magnitude of g is constant, p = AB, the orientation changes with
time.

3.1.3. Point velocity

Determine velocity of point B

d(7, +p s,
5 =l (7 +P) _dr,  db. (3.2)
dt dt dt | dt

dar, . L b
The first term It is the velocity v, of the pole A.

Let us analyze the second term. From the point of view of observe at the
origin O (see Fig. 3.1 ) in fixed reference Oxy the position and orientation of the
vector p alter. Let us resolve the motion of the vector o on the translation with

the base point A and rotation about A. In the step of translation the position of
p line of action alters but the orientation is fixed, therefore the o and the ,5'

are the equivalent vectors. During the second step the vector ;'5' rotates about
the point A through an angle d¢, therefore the time rate of change of p as
seen from fixed reference Oxy characterizes rotation of p about the base point
A:
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dp 'V
—‘?t—=01Xp=VBA, (3.3)

where @ = ‘;—fﬁ is vector of angular velocity of the body rotation about the

pole A. It points along the axis perpendicular to the plane of figure in direction
where rotation is viewed anti clockwise. The magnitude of angular velocity does
not depend on the choosing of the pole.

The vector Vg, is directed perpendicular to the P in accordance with the
direction of body rotation (Fig. 3.3).

As a result we get
v, +V,, =V, +@xp. (3.4)

The velocity of a point is equal to the vector sum of the velocity base
point and the velocity of the point relative to the chosen pole.

Vg

O e
Fig. 3.3. Determination of a point velocity for plane motion of a body
3.1.4. Equiprojectivity

For two points A and B of a rigid body in plane motion (Fig. 3.4) we cah
write

Vp =V, + Vs, =7+ (BxAB),
V, AB=¥, AB+(&x AB)-AB.

But the vector Vg, = @ X AB is perpendicular to the vector AB, so
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Fig. 3.4. Equiprojectivity

(E)XE)-E:O,

v, AB=v , - AB. (3.5)
Or '
v, AB-cosf=v , -AB-cosa, (3.6)
Vy-cosf=v, -cosa,
AA'=BB'. (3.7)

So the projections of the two points’ velocities onto the line connecting the
points are equal.

3.1.5. Instantaneous center of zero velocity (ICZV)

If angular velocity of a rigid body in plane motion is non-zero, in the plane
figure moving with the body there is unique point that momentarily has zero ve-
locity. This point is called instantaneous center of zero velocity (ICZV) and
usually denoted as P. Choosing the ICZV as pole the velocity of any point may
be determined as

V, =V, +7,, =@x PB. (3.6)

The last equation means that for any point of rigid body in plane motion:

1) the magnitude of the velocity of is directly proportional to the distance
between the point and ICZV,

2) the vector of velocity is perpendicular to the segment connecting the

point and ICZV and points in direction corresponding to the body’s angu-
lar velocity.
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The foregoing equation and equation for velocity of a point in the rotating
ody are the same so we can consider the plane motion of a body as rotation

bout axis passing throw the ICZV. The position of ICZV varies with time.

Methods of ICZV position determinations are presented in the Table 3.1.

Table 3.1
Cases What are given Position of ICZV Determination
of angular ve-
locity
1 1. Directions of the ve- N Va
locities of two points A \"/'B\ Va o AT
and B. B
2. Magnitude of point A el
velocity. P‘:_-) ................ A
8. Naisnot bV
2 1. Directions and ks AV Vg
magnitudes of the veloc- i Va ~  AB
ities of two points A and
B. /!
2 Gyis T, l(\ g
Al
3 1. Directions and mag- o V=V,
nitudes of the velocities Wil ®T7AB
of two-points A and B. 7y [
2isiigle F R ,,-é‘t @
Vg #V,. A~ B ey b e A
4 1. Directions and mag- = L @ = (- in-
nitudes of the velocities Getnia A stantaneous
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3.1.6. Acceleration of a point

To determine an acceleration of a point in the rigid body that has plane
motion let us differentiate the equation (3.4) with respect to time

—

The first term d;; is acceleration of the base point 7% 4. The time deriva-

—

tive %—- is angular acceleration of the body £ rotation about the pole A (Fig.

3.5). The vector £ points along the axis perpendicular to the plane of figure. Di-
rection of the angular acceleration coincides with direction of angular velocity if
@ and @ have the same sign. The angular velocity does not depend on the

choosing of the pole.

The term & x p can be considered as tangent acceleration W;A of point B
in rotation about the pole A, its magnitude is

W, =¢&-AB. (3.7)

Tangent acceleration W; . is always perpendicular with AB and points in
direction of angular acceleration (see Fig. 3.5).

The term @x(@x p) can be considered as normal acceleration wr of
point B in rotation about the pole A, its magnitude is

W! =’ - AB. (3.8)

Normal acceleration W;A points from point B to the pole A (see Fig. 3.5).
So total acceleration of the point B in rotational motion about chosen pole

Ais
Wea=W s+ W sa (3.9)

and
We=Wit+Wei+Wpa=W s+ W 4. (3.10)

The absolute acceleration of a point is equal to the vector sum of the ac- |
celeration of the base point and the acceleration of the point in rotational mo-
tion about chosen base point.
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O =

Fig. 3.5. Determination of a point acceleration for plane motion of a body

In practice a point's acceleration is determined by scalar algebra and
geometry, by vector algebra, or by graphical construction (see samples).

3.1.7. Formal differentiation of angular velocity expression
as methods of angular acceleration determination

If body moves so that the distance from some point to the ICZV is con-
stant (for example, body surface has constant curvature and the body rolls
without slipping on fixed surface (see Table 3.1, case 5)) angular acceleration
can be determined by formal differentiation of angular velocity expression

d[VAJ
1 d(v 1
g=92 _ \AP) _lif 4P = const|= () _ Wi (3.11)
dt dt AP dt AP

3.1.8. Instantaneous center of zero acceleration

If at the same time angular velocity and angular acceleration of a rigid
body in plane motion are non-zero, in the plane figure moving with the body
| there is a unique point that momentarily has zero acceleration. This point is
called instantaneous center of zero acceleration (ICZA) and usually denoted as
Q.

Choosing the ICZA as pole the acceleration of any point may be deter-
mined as
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W= WQ +W;3Q +W;Q = W;Q +W;Q, (3.12)
Wy, = ©°BQ, (3.13)
Wy =€BQ, (3.14)

W, = BQJo' +&. (3.15)

The ICZA position is determined in accordance with the following rela-
tions (Fig. 3.6, a)

&
tgﬂ =T
o’ (3.16)

AQ=—L.
Vo' +&’ (3.17)

where S is angle formed by the point's acceleration and the semiline in which
Q is situated, the angle g is drawn from the vector of the point's acceleration in

direction of the angular acceleration, 4Q is the distance between the point and
ICZA along the semiline.

Fig. 3.6

An acceleration of any body’ point makes the same angle g with a seg-
ment connecting this point with ICZA (Fig. 3.6, b).
On the Fig. 3.6, b it is shown that the acceleration distribution is such as

though at the given moment of time plane body rotates about axis passing
through ICZA. -
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3.2. Problems solving V,

Problem 3.1

The rod AB with length 10/2m
(Fig. 3.7) is in plane motion. At consider-
ing moment of time the magnitudes and
- directions of velocities of points A and B

(V,=V,), direction of acceleration of

point B and also the magnitude and di-
rection of acceleration of point A (

W,=40m/s’) are known. Determine
angular acceleration of the rod AB.

~

Fig. 3.7

Solution
Instantaneous center of zero velocity of the rod AB at given moment of
time does not exist, as velocities of points A and B are parallel and equal by
magnitude, i. e. AP — «, therefore w=0.
The ICZA position is determined in accordance with the following rela-
tions

&
tgﬂ g o,
@
it means that
T
p= >

Two semilines are drawn at the angle 4 from the points A and B accele-
rations. The ICZA is at the point of intersection of semilines, therefore

AQ = ABsin45° = 102 €= 10 (m).

The angular acceleration can be determined using the relation
/4
AQ=—~2—,
Vo'+é’
We have @ =0,s0 W, =AQ - ¢ and
e=W,/(AQ) =40/10 =4 (1/s?.
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In accordance with the points accelerations’ directions the angular accele-
ration is counterclockwise, so ¢, < 0.

Problem 3.2

Determine velocity and acceleration of point B of ellipsograph (Fig. 3.8),
and also angular velocity of the link AB at the given moment of time, if

V,.==2m/s,W, =-4m/s’,AB=0,8m.

/|

Fig. 3.8

Solution

Velocity of point B is directed upwards along the OY-axis. Therefore in-
stantaneous center of zero velocity (ICZV) is on intersection of perpendiculars
to velocities of points A and B, i. e. at point P. Angular velocity of the rod AB at
given moment of time is

Vv

A

w=_-_,

AP
' i

where AP = AB-sina=0,8-5in30°=0,4(m) , then o =5(—) (w,<0).
S

Let's determine velocity of point B according the Equiprojectivity theorem
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lVAlcosa=|l78|cosy, (3.18)
y=90°—a=90°-30°=60°.
-rom (3.18) we get

V o
v, = Acosa=2cos30 23 (m/ s).
cosy cos 60°

Having chosen point A as a pole, let's apply the formula of acceleration
Jistribution for point B:

WB=WA+W;A+W;A. (3.19)
Let's show vectors WB ,W;’A,W; , on the figure and project vector equality

3.19) on axes B¢ and Bn:

W._ cosy=-W cosa+W,,;
B Y A BA (3.20)
W,siny =-W , sina+W,,,
where W' =@’ - AB=25-0,8=20(m /s’ ).
Having solved the system of equation (3.20), we find
_ e . ope
w, = Was W, cosa i 20—-4 0’85=33,2(M/S'?),
cosy 0,5
W' =W,siny—W, sina=33,2-085-4-0,5=28,2(m/s’).
Since
W, =¢&-AB
angular acceleration of the link AB
w; od
Mmoo 284 < 350000 /5%,
AB 0,8

According to the direction of the vector WB‘ L we'llfind g, > 0.

Problem 3.3

Crank 1 with length 04 = 6m oscillates in vertical plane and actuates the
wheel 2 with radius r = 2m , that rolls without slipping on the concave circular

arc (Fig. 3.9).
At given moment of time @, = 2rad /s and &, = Irad /s”.
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Determine accelerations of points M and P of the wheel for this particular
instant.

Fig. 3.9

Solution

Let's determine velocity of the point A:
V,=@,-04=2-6=12(m/s).
As ICZV of the wheel 2 is in point P, the angular velocity of the wheel 2:
V, 12

———fe e =—§ _J.
V== g g o

Let’s determine the acceleration of point A:
WA = W:o * W:o’
where W' =w;0A=4-6=24(m/s’) , vector W', is directed toward the
axis O.
Wi, =g0A=1-6=6(m/s’),W:, LOA.
Then

W, =J(W;)2+(W;)2 =247 +6> =24,74(m/ 5°).

Let's consider the wheel 2 (Fig. 3.10). Since at wheel motion along cylin-
drical surface the distance from the point A to ICZV does not change, so for de-
termining € of the wheel the method of formal differentiation is used:
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8 —
= At dt

Y =—4A=—_=3(1/5%).
AP dt AP 2

AP

_do,, d( VA}_ 1dv, W, 6

When determining &,, we take into account, that point A motion is dece-

srated: vectors. I, and W? are directed into opposite sides.

For determining the acceleration of point P (ICZV), the formula of accele-
ation distribution is used, choosing point A as a pole:

W,=Wi+W;+W, +W,,, (3.21)
W! =@ -AP=6-2=72(m/s’),
W, =¢,-AP=3-2=6(m/s’).
Projecting equation (3.21) on axes Px and Py, we obtain
Wy =-W;+W,, =—6+6=0,
W, =-W;+W,, =24+72=96(m/s’).

Thus the acceleration of point P (ICZV) is directed to the wheel center
and equals 96 m/s?.

For determining the acceleration of point M the point A is chosen as a
pole and according to the formula of velocities distribution we'll get:
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W, = S+ W, s
Yy =l - AM =72(m/s’ )W, =¢&,- AM =6(m/s’).

Projections of equation (3.22) on axes M¢& and Mn:

WM\_g =-Wi+W,, =—6+72= 66(m/s’ ),
Wiy =—Wi + Wy ==24+6=18(m /s’ ).
Finally we have:

W, = Wis + Wi, =18 +66° =68,4(m/s°).

Problem 3.4

Crank OA rotating by the law

/4
gv:? moves (drives) the wheel 1

with radius r, = 0,5m, which rolls with-
out slipping on the wheel 2 with radius
r,=Im (Fig. 3.11). At the moment
t = Is find the acceleration of the point

coinciding with instantaneous center of
zero velocity of the wheel 1.

Fig. 3.11

Solution

Instantaneous velocity center of the wheel 1 rolling without slipping on the
fixed wheel 2 is at the contact point of these wheels (point P).

At first we determine the velocity of the point A. Angular velocity of the
crank OA at the moment 7= Is:

r
; T
@y, =P = [?t‘?) =nat’ =n(rad/s),
and the angular acceleration:

B4 =¢'=(7zt2) =2nt=2n(rad /s’ ),

and point A velocity
56




OA=r,+r,=1,5(m),
V,=@,, - 0A=15z(m/s).
Let's determine the acceleration of the point A:
W, =W"+W;,
where W' =w},-0A=1,57" (m/sz),vector W" is directed to the O-axis,
W =g,,-0A=3n(m/s*),W; LOA.
It should be noted @,,,, >0 and &,,, > 0.

ICZV of the wheel 1 is at the point P, that's why angular velocity of the
wheel 1 is

V, 1z
wlz == =

AP 0,5
Since for the wheel 1 the distance between the point A and ICZV does

not change, so for determining € of the wheel the method of formal differentia-
tion is used:

=3n(1/s).

do d(V 1 dv, W, 3=x
g =0 A V) L8V Pa_ 2T _gu(1/5%).
dt dt\ AP AP dt AP 0,5
For determining the acceleration of the point P (ICZV) the formula of ac-
celeration distribution is used, point A is chosen as a pole(Fig. 3.12):

WP=W:+W;+W:A+W;A, (3.23)




Wy =0 -AP=(31)"-0,5=4,52"(m/s*),
Wyo=&,-AP=6m-0,5=3n(m/5s’).
Having projected (3.23) on the axes Px and Py we obtain:
W, =W’ -W: =3r-3r=0,
Wy, =W, +Wp, =4,512" —1,57° = 32" (m / 5°).

Therefore acceleration of the point P (ICZV) is directed to the center of
the wheel 1.

Problem 3.5

The crank OA rotates about center
O with the constant angular velocity

@®,, = 2rad /s and actuates the wheel 1
with radius r, =0,2m that-rolls on the |
wheel 2 with radius r,=0,4m (Fig. |

3.13). The wheel 2 is rotated about point |
O with the constant angular velocity |

o, = 0,5(s"').
Determine velocity and acceleration
2 of the point B of the wheel 1.

Solution 1

At the problem the point K that is
Fig. 3.13 contact point of the wheel 1 and 2 is not
ICZV for the wheel 1.
Let's determine the velocities of the points A and K:

V,=0y, 0A=a,,(r,+1,)=2-0,6=1,2(m/s); \
V,=w,1,=0,5-0,4=0,2(m/s). |

Directions of the vectors VA and f/"K are shown on the Fig. 3.14. There-
fore ICZV of the wheel 1 is at the point P and angular velocity of the wheel 1 is: &

o Y _ViVe _1,2-0.2

AK 1, 0,2

=5(1/5).
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Fig. 3.14

So long as a velocity of a point of a plane figure is proportional to the dis-
ance to ICZV, it can be written:

V. r+PK
Vo PR
The velocity of the point B is determined by the formula ¥, = @®,BP,
ubstituting in it @, and BP = 2r, + PK . Then we obtain:
Ve=2V,-V,=2-1,2-0,2=2,2(m / s).

For finding the acceleration of the point B the formula of acceleration dis-
ribution is used, chosen point A as a pole:

W,=W,+W} +W,,
Let’s find the acceleration of the point A:
W, =W"+W:

(3.24)

vhere W/ =}, - 04 =2,4(m /s"), vector W; is directed to the O-axis;
Vi=€,,0A4=0,since ®,, = const and &,, = 0.

Then W =W + - Magnitudes of components W; and W;A in the expres-
ion (a) are calculated by the formulas

W, =o;AB=5’ -0,2=5(m/s2),
W, =€AB=0, since , = const and ¢, = 9.
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The vector W: is directed to the pole A (see Fig.3.8) and codirected with

W;’A, that's why the magnitude of the point B acceleration is equal to the sum
of the magnitudes of these vectors:

10.

11.
12.

13

14.

15.

W,=W,+W; =2,4+5=7,4(m/s’).

3.3. Self-control questions

What is plane motion? Write equations of this motion.

How are angular velocity and angular acceleration of a body deter-
mined at plane motion?

How do angular velocity and angular acceleration of a plane body
depend on pole choice?

Write a formula of velocities distribution of points at plane motion of a
rigid body? Show all vectors on a figure.

Formulate the Equiprojectivity theorem of a plane body. Give graphi-
cal (geometrical) illustration.

Give the definition of ICZV of a plane body. What are the conditions
of its existence?

What is the figure of the velocities distribution of the plane bogy’s
points if the pole coincides with ICZV?

Name the methods of ICZV finding.
For the plane body at time t VA =I78 =I7C =... Where is ICZV?
What is angular velocity equal to?

Where is ICZV of the movable curve at its rolling without slipping on
a fixed curve?

Write the formula of accelerations distribution of plane body points?

Points A, B belong to a plane body. At a given moment
£, < 0,m, < 0. Show on a figure the accelerations W ;;, ,W [

Points A, B belong to a plane body. At a given moment
g, > 0,m, < 0. Show on a figure the accelerations W, ,W,,.

Points A, B belong to a plane body. What are the angles
tana tanay,if @, =Wg, "W, ,a, =W, "W, ?

What is ICZA? What are the conditions of its existence?

60




3.4. Solving problems on your own
Problem 3.6

For the given position of plane mechanism
(AB=AD=0A=10 cm) where the angular velocity of

OA is @, =1rad/sand the angular acceleration
of OA is &, =2 rad/s’, determine the velocity
178 and acceleration WB of the point B.

Problem 3.7

For the given position of plane mechanism (OA=10 cm) where the an-
gular velocity of OA is @, = 2 rad/s and the angular acceleration of OA is
g,=1 rad /s? , determine the velocity l_/"B and acceleration WB of the point
B.

A
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Problem 3.8

The wheel of radius r=20 cm rolls to the
right without slipping and, at the instant consi-

dered, the center C has the velocity V,. = 10
cm/s and the acceleration W, =10 cm/s? to

the left. Determine the velocity ¥, and accele-
ration W’P of the point P, the velocity l-/; and
. acceleration W, of the point A (@ = 45°).

The wheel of radius r=10 cm
rolls without slipping along fixed circle
(OC =30 cm) and, at the instant con-
| sidered, the center C has the velocity

V. = 10cmls, the angle between the
acceleration W, and the velocity is
a = 135°. Determine the velocity V,
and acceleration WB of the point B,

the velocity I7A and acceleration WA
of the point A.

e The wheel of radius r=20 cm rolls
™ without slipping along fixed circle (OC
h =40 cm) and, at the instant considered,

the center C has the velocity V. =10

cm/s, the angle between the accelera-
tion W, and the velocity is @ = 30°. De-

termine the velocity 178 and acceleration
WB of the point B, the velocity I7A and
acceleration WA of the point A.
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Problem 3.11

The wheel of radius r=10 cm rolls
without slipping along fixed circle
(R=20 cm) and, at the instant considered,

the center C has the velocity V. =10
cm/s, the angle between the acceleration
W, and the velocity is @ =30". Deter-

mine the velocity ¥, and acceleration W,
of the point P, the velocity '73 and accele-
ration WB of the point B.

Problem 3.12

Crank OA=40 cm rotates about fixed axis Oz (Oz is perpendicular to the
plane of sketch) causing the second disk to roll without slipping along fixed

surface (R=30 cm). The OA angle of rotation is given by @ = 2t—2t° , rad. At
the instant considered t=2 s, de-
termine the velocity ¥, and ac-

celeration WB of the point B.
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Problem 3.13

For the given positon of plane mechanism (O:B=20 cm,
OA=AC=CB=10 cm) where the angular velocity of OA is @, = I rad/sand

the angular acceleration of OA is g, =1 rad/ s’ , determine the velocity VC
and acceleration W’C of the point C.

Wy

o\1
)

C B

Q

ey _“,_,.—-#"/
-

N
N

i o,
Problem 3.14

For the given position of plane mechanism (OA=AC=10 cm) where the
angular velocity of OA is @, = I rad/sand the angular acceleration of OA is

g, =1 rad /s’ , determine the velocity VC and acceleration WC of the point
C.

A
,,,,, S
il e B
0
(s :
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Problem 3.15

For the given position of plane mechanism W,
(OA=AB=10 cm) where the velocity of the point

B is V,=10 cm/s and the acceleration is

W, =3 cm/s?, determine the angular velocity
®,, and acceleration &,, of the rod OA.

Problem 3.16
For the given position of plane mechanism (OB=0A= =5 cm, O,0=AB,
CD=10 cm) where the angular velocity of OA is @, =1 rad/s and the angu-

lar acceleration. of OA is g, =1 md/ s’ , determine the angular velocity @Dcp
and acceleration &, of the rod CD.
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4. COMPOUND MOTION OF POINT

41. Main information from the theoretical course
4.1.1. Definitions

If motion of a particle is at the same time considered in two frames of ref-
erences fixed (main) and moving (additional) such particle motion is called
compound.

Motion of the particle determined with respect to the fixed reference is.
called absolute. Motion of the particle determined with respect to the moving
reference is called relative. Motion of the moving reference with respect to the
fixed reference is called bulk (transport).

Let us consider special point that belongs to moving reference and at
some time this point coincides with the particle. Motion of the special point is
called bulk motion of the particle.

Consider the sample. There is an observer on a platform. Train moves
past the observer, a goes along the train corridor. The motion of the passenger
along the corridor is relative motion. Point of the train where passenger is at
this time moves with respect to the observer, this motion is bulk one, motion of
the moving passenger with respect to the observer on the platform is absolute.

Let us denote as V W absolute velocity and acceleration of the particle
correspondently, l/;,,Wr relative velocity and acceleration of the particle corres-

pondently and l_/; We bulk (transport) velocity and acceleration of the particle.

Main aim of problems on particle compound motion is determination of re-
lations between kinematical characteristics in absolute, relative and bulk mo-
tion.

4.1.2. Determination of a particle position

Let us consider a body that is in plane motion. Two coordinate systems
are chosen (Fig. 4.1):

e the first Oxyz is fixed;

e the second Ax,y,z, is moving, Ax,y,z, has motion of translation with re-
spect to the fixed coordinate system, the translation |s charactenzed by
coordinates of the origin A in the fixed reference 7, = x i+ vAj

o the third Ax,y, is moving and rigidly connected with the body so Ax, y,

is in plane motion with respect to the fixed coordinate system and at the
same time rotates about axis Az,, the rotation is characterized by angle of

rotation ¢ .

69



There is a particle ivi moving on the surface of the body. Position of the

particle in the moving reference is given by vector position AM = p, the mag-
nitude and direction of p change with time. Position of the particle in the fixed

reference is given by vector position OM =F :

F=F,+p.

Yi

Relative
motion
trajectory

X

Fig. 4.1. Determination of a point position in compound motion of a body

4.1.3. Velocity of a particle in compound motion

Let us consider the problem of particle velocity determination. In accor-
dance with the velocity definition we have

i; _dF _d(FA+ﬁ)_dFA+dﬁ
S F dt dt dt

dar, . _
The first term 7 is the velocity of the pole A.

Let us analyze the second term. From the point of view of an observer at
the origin O (in fixed reference) (Fig. 4.2) the orientation of the p changes due

to the body (and reference Ax,y, ) rotation with angular velocity @, and at the |

same time the magnitude and orientation of the p change due to relative mo-
tion of the particle in the moving reference. Therefore
1000 baxh qfiel j9seast
—=@QXPpP+—=O.Xp+V,.
bl T b
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The term @, x p gives us the velocity in rotation about origin A of the

-~
—

point in the body where the particle M is, the term % characterizes the
relative velocity of the particle and is called first local time derivative.

As a result we get

V,=V,+@,Xp+V,.

The sum v, +@,x p gives us the velocity of the point that belongs to

the moving reference (or the body) and coincides with the particle, so
V,+@,xp=V,
and
Vo=V, +V,.

The absolute velocity of a particle in compound motion is equal to the

vector sum of the bulk and relative velocities.

The last equation in Russian school of mechanics is known as theorem
of velocities addition.

Relative
otion
[ectory v

=Y

Fig. 4.2. Determination of a particle absolute velocity in compound motion

4.1.4. Acceleration of a particle in compound motion

Let us consider the problem of particle acceleration determina-

tion. In accordance with the acceleration definition we have
Wa;_di"a =di?e+dv,
dt dt dt

Ao i wy ARISHRL 2i@@IOMANUC 2R B 1 @B
=—(vA+a)exp)+ - = X0+ @ X —— et
dt i dt dt dt dt




Vectors p and v" are given in moving reference so

&, . _ @,
=m,XV, +
dt dt
and
dp = LR o
/=0 XD0+—=@0 Xp0+V
TR S i
therefore
Wé=—2+—xp+d),X a)exp+—p Tao, XV, + s
dt i dt dt
Let us denote as
d;f‘ =W, the origin A acceleration;
4
__d;:f = £, angular acceleration of the moving reference (or the body);
&, -
=W,
dt
We get

W, =W, +&xp+d,x(&,xp)+d,x% +d,x3" +W".
In accordance with the relation for acceleration of a point of a rigid body in

plane motion it is possible to denote the first three terms as bulk acceleration of
the particle
W,=W,+&,x(®,xp)+Exp.
The sum of fourth and fifth terms is denoted as Coriolis acceleration
(@,x7,)+(8,x7,)=2(a,%x¥,)=W,,,
W, =2@,%7V,.
Coriolis acceleration magnitude is
W, =20,v, - sina,

wherein « is angle between the vectors @, and v, .

Coriolis acceleration characterizes the change in relative velocity due to
the bulk motion and the change in bulk velocity due to the relative motion.
Coriolis acceleration is zero if:

1) we = 0, it means bulk motion is translation;
2) v, =0, it means the particle does not move in moving reference;

3) sin ¢ =0, it means @ || ¥,.
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Coriolis acceleration sense is established by the right-hand rule for the
sross product.
As a result we get
W, =W, +W, +W,,-
The absolute acceleration of an article in compound motion is vector sum
of bulk relative and Coriolis accelerations (Fig. 4.3)). This relation is known as
Coriolis’ law.

Relative motion
trajectory

O E

Fig. 4.3. Determination of particle absolute acceleration in compound motion
4.2. Problems solving
Problem 4.1

A car moves along equator from the west to the east (Fig. 4.4). What di-
rection does the Coriolis acceleration have?

Solution

In comparison with the Earth a car can be considered as a point. Its
movement along a road is relative motion and a rotation together with the Earth
is bulk (transport) one. Vector of the Earth angular velocity is directed along its
axis from the South pole to the North one. Direction of relative velocity vector is

- shown on the Fig.4.4.
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Fig. 4.4

To determine direction of Coriolis acceleration the relative velocity vector
should be rotated on right angle in the direction of bulk (transport) rotation.
Therefore the Coriolis acceleration is directed to the Earth center.

Problem 4.2

On the platform, moving along a straight line with constant velocity, a un-
iformly rotating drum with radius R with horizontal axis is situated. What direc-
tion does the absolute acceleration of point M have on a rim of the drum
(Fig. 4.5)?

J \ )y VM
N
A
AEF] o
0 //"/////////;5;7_79
Fig. 4.5
Solution

Main reference system (xOy) is connected with fixed plane and auxiliary
one (x'O4y’) is connected with moving platform. We note, that in this case bulk
(transport) motion is rectilinear translation and relative motion is rotation.
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Absolute acceleration of the point M is determined according Coriolis
theorem:

W, =W +W,+W,,

Frame acceleration ﬁ/ is equal to zero, because the platform moves
along a straight line with constant velocity. Relative acceleration is equal to the
sum of normal and tangent accelerations:

W =W"+W"
Since the drum rotates uniform (@, = const ), so

E =

i 0.
dt

Therefore W =¢R=0.

Normal acceleration W) =@’R is not equal to zero and is directed to

axis of rotation A (see Fig. 4.5).
Coriolis acceleration

W, =2d,xV,.
But at translational motion the frame angular velocity @, = 0, that's why
this component of absolute acceleration is equal to zero too.

Therefore absolute acceleration of the point M
W,=W.
and is directed to the center of the drum.
Problem 4.3

Link AC rotates in indicated direction (Fig. 4.6) and moves slider C and
the crankshaft BC. What is the angle between the vectors of absolute velocity
and Coriolis acceleration?

Solution

Auxiliary reference system is connected with rotating oscillating arm and
main one with the fixed plane. Relative motion of the slider is its moment along
AC, and transport one is rotation together with AC about the axis, perpendicular
to the drawing plane (vector of the angular velocity is directed to us). Since
point C is rigidly connected with the link BC, so its absolute velocity is directed
perpendicular BC in the direction of rotation, and relative one — from C to A.

Then Coriolis acceleration will be directed vertically downwards (vector ¥, is ro-
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tated on 90° in direction of the frame rota-
tion, e. i. counterclockwise), and required
angle is 150°.

Fig. 4.6
Problem 4.4

Ring with radius R=0,3 m rotates about axis O, which is perpendicular to
the plane of the ring, according to the law @ = (t’ —6t)rad (Fig. 4.7). Along

the ring from the point O counterclockwise the point M
moves according to the law

a(t)=0M=0,37rcos(%t](m), where o(t) is arc

coordinate. The distance O04=0,1 m.
Find the absolute velocity and acceleration of the
point at t=1s.

Solution

For investigation of the point compound motion the
reference systems are chosen. Main (fixed) Osxyz is
connected with the fixed point O4, and auxiliary (mova-
ble) O, — with rotating ring.

Let's mark out relative and bulk motion of the point.

For it the motion of the whole body about point O, is mentally stop, then
the point will move curvilinearly along the circle with radius R=0,3 m. This mo-
tion is relative one. For determining the bulk motion the point motion along the
circle is mentally stopped. Then the point together with the body will rotate
about fixed axis, i. e. auxiliary reference system is in rotational motion about
point O, according to the known law @(¢). This is its bulk motion.

Let's determine the point position at the given moment of time

. 0,3%
2

Fig. 4.7

o(l)= 0,3ncos[”3'1 ) (m).
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At point motion along a circle a central angle, arc length and circle radius
are connected by the equation o = a R (Fig. 4.8).

From here

The distahce between the point M and axis of rotation:
0,M=\(0,0,) +(0,M) =(0,0+R) +R".

Substituting known values we’'ll get O,.M = 0,5m.

Knowing the law of ring rotation let's determine bulk angular velocity and
angular acceleration: @, =@=2t—-6, i. e. at t=1s @, =—4(rad/s),

E,=@=2(rad /s) (&, = const).
Thus at the given moment of time the ring rotation is decelerated
(sez >0,m0, < 0) clockwise (a)t,z < 0).

Absolute velocity of the point is equal to the geometric sum of relative and
bulk velocities:

V=V +V.
Let's determine the projection of the vector l7'r on the unit vector of the

circle tangent 7 (the circle is trajectory of relative motion, @ >0 for counter-
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clockwise direction, so 7 points in this direction) - For it the law of relative mo-
tion specified in a natural form is differentiated by the time:

g’
At the moment ¢ = Is the relative velocity
Vi(1)=—-0,05z/3=-0,86(m/s).

Vector of the relative velocity is collinear with the unit vector of tangent to
the trajectory of relative motion (circle).

Since bulk point motion is rotation together with the body about fixed axis
passing through the point O, bulk velocity is calculated as the product of body
angular velocity and the shortest distance between the point and the axis of ro-
tation:

2 -l 0,1r° sin[%t](m /s)

V.=, -h=a,-0O,M.

Henceatr=Is Ve=4-0,5=2(m/s).

The vector of bulk velocity is directed perpendicular to O4M to the side of
body rotation.

Since the angle between relative and bulk velocities is not equal to 90°,
the absolute point velocity can be found by the cosine theorem:

V,=\V2+V?+2VV, cosB.
cos B is determined from the triangle O;0O,M:
o,M
oM
Then absolute velocity V, = 2,6m / s.
The point acceleration is determined according to the Coriolis theorem:
W =W+ W, +W

cor®

cos B = =0,6 = B = 53°.

The point in relative motion moves along the ring (curvilinear trajectory),
that's why

W.=W"+W’.
The law of point relative motion is given in the natural form. Tangent ac-

celeration is determined as derivative by the time of the relative velocity projec-
tion on the 7 :
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v
dt
Thusatt=1s W' =-0,5m/s".

r

| -

r

=—0,0337" cos [%t]

Signs of W' and V7 coincide, i. e. vector of tangent acceleration is colli-
near with the vector of relative velocity (Fig. 4.9).

Fig. 4.9

2

r

Normal acceleration is W =——, where p — radius of curvature of point

trajectory.
Trajectory of the relative motion is circle with the radius R, that's why ra-
dius of curvature is equal to R.

Then
2 2
| i G R 2,46(m / s7).
| P 0,3

Normal acceleration is directed along the principal normal to the trajectory of
- relative motion to the side of trajectory concavity, i. e. to the circle center.
| As it was mentioned above, bulk motion is rotation about fixed axis O,. The
acceleration of the point M is equal to the sum of normal and tangent accelerations.
Normal acceleration is

W'=w-OM=4°-0,5=8(m/s’)
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and is directed to the axis of rotation along O/;M.
Tangent acceleration is

W =6,0M=2-0,5=1(m/s’)

Vectors of tangent and normal accelerations are orthogonally related (on
the Fig. 4.9 it is taken into account, that &, < 0).

Coriolis acceleration is
er = 2&39 X Vr’ Wcar = Zwe ’ Vr ’ Siﬂ@,
where @ is the angle between the vectors @, and V..

The vector of bulk angular velocity is directed along the axis of rotation of
the body and points to the side, from where rotation is viewed counterclock-
wise. This axis is perpendicular to the figure plane. Body rotation is clockwise.
Thus the vector of angular velocity on the figure 4.9 is directed from us. The

vector of relative velocity is on the figure plane, that's why the angle ;p=%

and
W _=2.4.0,86=6,8(m/s’).

cor

The vector Wm according to the rule of cross product must be perpendi-
cular to the vectors @, and l_;r (i. e. is in the figure plane perpendicular to Vr)

—

and directed to the side, from where the shortest rotation from @, to V, is coun-
terclockwise, i. e. to the circle center. We note, that for determining the direc-
tion of W,,, Zhukovsky rule can be used.

To find the magnitude of absolute acceleration let's rewrite expression (a)
in detail:
W=W'+W +W"+W +W,_,.

Let's project this vector equality on axes 0,§ and O,n (see Fig. 4.9) and
find the projections W, and Wm:

We=W"+W;sinB+W/ cosp+W, =
=2,46+1-0,8+8-0,6+6,8=14,86 (m/s’ );
W,=WScosf—W' —W,]sinf =
=1-0,6-0,5-8-0,8=—6,3(m/s’).
Then
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W= W, +W;

Problem 4.5

The point B (Fig. 4.10) moves along the diagonal of the rectangular frame
according to the law S = OB =0,8t°(m ). The frame rotates in indicated on

the figure direction according to the law @ =¢—¢".

Determine the absolute velocity and acceleration of the point B at ¢ = 2s
(a=30°).

//5
[

Fig. 4.10

Solution

The main reference system — Cartesian coordinates x, y, z — is connected
with a fixed axis of rotation, and auxiliary one — coordinates x’, y°, z" - with the

rotating frame (axis Oy’ is perpendicular to the frame plane). Then absolute

motion is the motion of the point B relative to the main reference system, bulk

motion is the rotation of auxiliary system (frame), relative one is moment of the

point B along the S-axis which is directed along the frame diagonal (Fig. 4.11).
The shortest distance BN from the point B to the axis of rotation at # = 2s :

OB=0,8-2°=3,2(m) and BN =OBsina=3,2-0,5=1,6 (m).
The kinematic characteristics of bulk motion at # = 2s is calculated:
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— angular velocity

. d
o, =¢J=Et-(t—t3)=1—2t2=I—2-22=—7(rad/s);

— angular acceleration

d
g, =-ﬂ"—-=—4t=—8(rad/s2).
dt

The vectors @, and &,are shown on the Fig. 4.11.

2.

v 4/ Lt

> P AR

Fig. 4.11

The absolute velocity of the point B is determined according to the theo-
rem of velocity summation:
V.=V +V.

The projection of the relative velocity on the S-axis is found. Since the
motion is given in the natural form this projection is

V = LA TS G
s dt

At t=2s we obtain V, =1,6-2=3,2(m/s). Since the velocity pro-
jection is positive the vector IZ points along the S-axis in direction of OB in-

creasing (see Fig.4.11).
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When determining bulk velocity of the point B it is taken into account that
auxiliary reference system rotates about fixed axis. Then in accordance with
the definition of bulk point motion:

Ve =@, X OB.
From here it follows that vector I-/:_, is directed perpendicularly to the frame
plane (see Fig. 4.11). The magnitude of bulk velocity
V,=w,- BN

At t = 25 the velocity willbe V, =1,6-7=11,2(m/s).
To find the magnitude of absolute velocity the vectors l;'; and V. are

r

summarized geometrically. The directions of these vectors are defined ('Z is
directed along the frame diagonal and 178 is perpendicular to it). We note, that

an angle between 17; and 17, is right, then the magnitude of the absolute veloci-
ty is calculated according the Pythagorean theorem:

V. =W +V? =\11,22+3,2 = 11,65 (m / 5).

According to the Coriolis theorem the absolute acceleration of the point:
W =W+ W, +W, .
The projection of the relative acceleration vector W, on the S-axis is
equal to the time derivative of equation of the relative velocity motion:

dv,  d(1,61)
Wr — S —
N dt

Since this projection is positive the vector Wr as the vector l'/; is directed

in the side of OB increasing (Fig. 4.12).
We take notice that in relative motion the point moves along the straight

line (W,” = 0) and its motion is uniformly accelerated (W. = const ).

Since the bulk point motion is rotational, W, is equal to the sum of normal
and tangent accelerations:

=1,6(m/s”).

W, =W W,
We take notice that in relative motion the point moves along the straight
line (W," = 0) and its motion is uniformly accelerated (W, = const ).
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Fig. 4.12

Since the bulk point motion is rotational, We is equal to the sum of normal
and tangent accelerations:

W =W+ W
Magnitudes and directions of these components are determined. It is
known that W, = @_ xV,. Therefore the magnitude of normal acceleration

W"=aV, sin90°=w’BN =7°-1,6=78,4(m/s’).
The vector W is directed to the axis of rotation along BN.
It is known that tangent acceleration
W: =&, X OB.
Its magnitude
W =¢gBN=8-16=12,8(m/s’).

The vector of tangent acceleration is collinear with the vector of bulk ve-
locity V, (see Fig. 4.12).

Coriolis acceleration is determined by the formula Wm = 2@, xl7r, from
which it follows that
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Wcar =2we .l/r ’Si"?,

where @ is angle between the vectors @, and l;",, ¢=a=30° (see Fig. 4.12).
Substituting known values we'll obtain

W, _=2-7-3,2-5in30°=22,4(m/s’).

The direction of Coriolis acceleration is found according Zhukovsky's rule.
For it vector V, is projected on a plane which is perpendicular to the axis of ro-
tation and rotate the projection in the direction of rotation — counterclockwise —
on the right angle. Thus the direction of Coriolis acceleration coincides with the
direction of bulk tangent acceleration vector.

For finding absolute acceleration it is reasonable to project the vector
equality

W =W +W'+W' +W,,

on axes of movable coordinate system:

W =-W. cosa=-1,6-0,85=~1,36(m/s’);

a\,v

W, =W;+W,, =12,8+22,4=352(m/s’);
W, =W, sina—W,=1,6-0,5-78,4=-77,6 (m/s’).

Then the absolute acceleration is
W, = W2+ W, + W] =\1,36+35,2° +77,6’ =85,2(m/5’)

Problem 4.6

Determine the absolute velocity of the point M at ¢ = 1 s if its law of mo-
tion along the diagonal of square plate is AM =0 = 0,5t m.

The links OA and O4B rotates according to the law @ = 0,25z ¢, the dis-
tance 0A=0,B=0,5 m (Fig. 4.13).

Solution
In this problem you should pay attention on rational choice of an auxiliary

reference system. It is reasonable to connect it with the plate ABCD which has
translation motion. At this fact the bulk point motion is rectilinear.
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Fig. 4.13

The main reference system (xOy) is connected with the fixed rotational
axis of the one of the link. (Fig. .4.14).

}/r ?

Fig. 4.14

From the equation of rotation we'll find thatat t = 1s @ =z /4, therefore

the point O, A and M is on the one straight line.
According to the theorem of velocities summing

V=V +V.
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From the definition of a point bulk velocity and features of a translational

motion we'll obtain

V.=V, ieV,=V,=0,04.
The angular velocity of the link
@py, =P=0,257 (rad/s),

therefore the link rotates counterclockwise.

Then
V.=0,25-7-0,5=0,125z(m/s) and V, L OM .
At rectilinear motion by the known law
V,=0=t

at the moment of time ¢ = I s the relative point velocity V,, = Im/'s.

Since V,, > 0, the vector V_is directed to the side of & increasing.
The angle between 17’8 and 17’, is right, that's why the magnitude of the

absolute velocity is found by the Pythagorean theorem:

—

o N

10.

v.= W2 +v? =\(0,125z)" + I’ =1,07 (m/s).

4.3. Self-control questions

A point is in compound motion. What are absolute, relative and bulk motions?
Write the formula expressing the relationship between absolute and rela-
tive derivatives of the vector given at auxiliary reference system.

Give the definitions of absolute, relative and bulk velocities of a point that
is in compound motion.

Formulate the theorem of velocities summing for a point that is in com-
pound motion.

A point is in compound motion. Bulk motion is rotation about axis. How is
bulk velocity of a point determined?

A point is in compound motion. Bulk motion is translation. How is bulk ve-
locity of a point determined?

Formulate the theorem of velocities summing at compound motion of a point.
Formulate the theorem of accelerations summing at compound motion of a
point.

A point is in compound motion. Bulk motion is rotation about axis. How is
bulk acceleration of a point determined?

How should an auxiliary reference system move in order that bulk accele-
ration of a point (at its compound motion) is equal to zero?
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11. Give the definition of Coriolis acceleration. How are its magnitude and di-
rection determined?

12. What is Zhukovsky method for calculation and construction of the Coriolis
acceleration vector?
13. When is Coriolis acceleration equal to zero?

14. \What should relative motion of a point be in order that relative acceleration
is equal to zero?

4.4. Solving problems on your own
Problem 4.7

The disc (R=20 cm) rotates about
axis Oz. The disc angle of rotation is giv-

en by @=2t—2t’, rad. The point M
moves along the diameter of the disc.
Point position is given by

OM=S= 205:}:3‘—2£ , cm. At t=1's de-

termine absolute velocity ¥, and abso-

X —
N lute acceleration of the point W .

Problem 4.8

s m———s T The square with side a=20 cm
rotates about axis Oz perpendicular
to the plane of sketch. The square
angle of rotation is given by @ = 2¢°,

rad. The point M moves along the
side of the square. Point position is
given by OM=Xy=5t" cm.

At t=1s determine absolute ve-
locity V,, and absolute acceleration

of the point W .
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Problem 4.9

The point M moves in the slot at
the same time that the dick rotates
about its center O (the distance between
the slot and the center is a=10 cm). The
disc angle of rotation is given by

= 3¢ rad. Point position is given by
@

OM=S8= 20sjn£6‘i , cm. At t=1s de-

termine absolute velocity ¥/, and abso-

lute acceleration of the point Wy,

Problem 4.10

The disc (R=20 cm) rotates about axis Oz.
The disc angle of rotation is given by @ = £’ rad.
The point M moves along the rim of the disc. Point
pdsition is given by OM =8 = S5zt° , cm. Att=1s ‘
determine absolute velocity ¥y, and absolute acce- ¥ A
leration of the point W} . 7 M

Problem 4.11 N

The point M moves along the tube
of the radius R=30 cm, rotating with the
angular velocity @ = 2ts”', accoding to

|®)
the law OM = S = 10xt’ cm.

Determine V;, and W att=1s, if
a=10 cm.
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Problem 4.12

The point M moves along the
| tube of the radius R=30 cm, rotat-

ing with the angular velocity
| ®=2ts", according to the law
) M OM = S = 30xt’ cm.
| Determine V,, and W, at
- lo, t;=1s, if a=10 cm.

p— | amamis’ | 182
m w
Problem 4.13 \

The plate rotates about axis Oz with constant angular velocity @ = 2t
rad/s . The point M moves along the circular slot with radiuses R=20 cm. Point

&)
position is given by OM = § = 5zt’ , cm. At t=1 s determine absolute velocity
V¢ and absolute acceleration of the point W
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Problem 4.14

The rectangle rotates about axis Oz with angular velocity @ = 2¢ rad/s .
The point M moves along the diagonal of the rectangle. Point position is given
by OM=2t", cm. At t=1 s determine absolute velocity ¥}, and absolute accele-

ration of the point W, .

v
Problem 4.15 zZ

Disc (R=20 cm) rotates about axis Oz and at % %
ti=1s has angular velocity @, = 2 rad/s and an-

gular acceleration &, = 2 rad/s’ . Point M moves

along the disc rim. The point position is given by | ®
v ™

OM = S = 10xt’ cm. At t=1 s determine absolute

velocity V2 and absolute acceleration of the point

we.
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4.5. List of exam questions

Basic conceptions: rigid body, force, force system, rigid body equilibrium.
Statics problems. Statics axioms.

Moment of force about a center: magnitude, direction.

Moment of force about an axis: magnitude, methods of calculation.
Couple. Couple vector moment: direction, magnitude. The features of
couple.

Total vector and total moment of a force system. Methods of total vector
and total moment determination. Statics invariants.

Reducing of the general force system. Total vector and total moment.
Dependence of the total vector and total moment on the particular center
of reduction selected.

Force system resultant. Varignon’s theorem.

Special force systems. Conditions of equilibrium.

Free and constrained body. Constraints and their reactions. Common
types of constraints and their reactions (2-D and 3-D). Construction of
free body diagram.

Statically determinate and indeterminate rigid body. The crucial steps in
solving equilibrium problem for a single body.

Equilibrium of system of rigid bodies. External and internal forces, the fea-
tures of internal forces. Method of section (method of isolating of con-
nected system members).

Center of gravity and its coordinates. Ways of definition of the center of
gravity position.

The ways of particle motion representation. Trajectory, velocity and acce-
leration of a particle in terms of reéctangular coordinates x,y,z.

The ways of particle motion representation. Velocity and acceleration of a
particle in terms of path variables.

The ways of particle motion representation. Normal W" and tangent W*
accelerations of a particle in terms of rectangular coordinates x,y,z.
Conditions of accelerated, decelerated or uniform motion of a particle.
Researching of particle motion (type of motion determination) for different
methods of particle motion representation.

The simplest types of rigid body motion: translation, rotation about fixed
axis. The features of these motions.

Velocity of point in rigid body in plane motion with respect to any base
point. Angular velocity of rigid body in plane motion. Angular velocity in-
dependence of particular base point selected.

Plane motion of rigid body. Ways of particle velocity determination: with
respect to a base point (pole), according to the equiprojectivity principle.
Plane motion of rigid body. Instantaneous center of zero velocity: defini-
tion, ICZV existence condition, the ways of definition of ICZV position.
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22.

23.

Plane motion of rigid body. Ways of particle acceleration determination:
with respect to a base point (pole), with respect to instantaneous center of
zero acceleration

A particle motion observed from a system which itself is in plane motion.
Basic conceptions: absolute, relative and transport motion. Absolute ve-
locity of a particle.

A particle motion observed from a system which itself is in plane motion.
Basic conceptions: absolute, relative and transport motion. Absolute ac-
celeration of a particle. Coriolis acceleration: magnitude, direction, condi-
tions under which Coriolis acceleration is equal to zero.
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