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LIST OF ACRONYMS AND ABBREVIATIONS

EL elementary state

FFB front fuselage beam
FR fuselage rib

FSC front spar continuation
F-state loaded state

RFB rear fuselage beam
RR root rib

SB self-balanced state
WB wingbox



INTRODUCTION

This guidance manual describes the process following the stage of
conceptual design of aircraft. Before the detailed design process could be
started, a designer must know loads applied at structural elements, distribution
of these loads, and internal force factors acting in structural elements. This data
could not be obtained using numerical methods (like finite element analysis)
because detailed geometric parameters of the structure are still unknown at this
stage. Distribution of forces among structural elements depends on their
rigidities, so it can be calculated using analytical methods of structural
mechanics based on elementary parameters of the structure such as typical
thicknesses, cross section areas, material data, etc.

We shall use a few methods in this project including force method and the
Papkovich theorem. All of them are based on the number of assumptions and
simplifications that is why obtained results are not absolutely accurate but still
more than sufficient for starting detailed design process. Calculations will give
us the distribution of normal forces, bending moments, and shear flows acting
in the structural elements under consideration.

Designers use these results to design structure. After that, strength
engineers make checking calculations of stress-strain state, usually using
numerical methods.

This course project is intended to study analytical methods of strength
calculation of spatial structures consisting of plane beams and stiffened shell
elements by calculating stress state of sweptback wingbox.

The information presented in this guidance manual is also covered in [1].
More information about general methods of structural analysis, such as force
method, is available in [2, 3].



1. STRUCTURAL LAYOUT AND DESIGN MODEL
OF SWEPTBACK WINGBOX

Fig. 1.1 shows the structural layout of an ordinar sweptback wing with two
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Figure 1.1. Sweptback wing structure:
1 — front fuselage beam (FFB); 2 — rear fuselage beam (RFB); 3 — fuselage rib (FR);
4 — front spar continuation (FSC); 5 — root rib (RR); 6 — front spar (FS); 7 — rib;
8 — rear spar (RS); 9 — wingbox; 10 — end rib

Air pressure that loads the wing is carried mostly by the wingbox because
the structure before the front spar and behind the rear spar usually transmits
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the load to the wingbox. This means that such structural elements as slats,
aileron, or flaps have no influence on the wingbox rigidity and load carrying
ability.

Typically, wing structure has longitudinal elements that support the wing
skin (stringers). To simplify the model, we assume that the skin carries only
shear loads while tensile loads are carried only by spar caps. In such a model,
areas of spar caps represent not the actual areas but the sum of cross section
areas of skin, stringers, and caps themselves. Thus, it is assumed that the
wingbox consist only of spars and upper and lower skins. Cross section of the
wingbox model is shown in Fig. 1.2.

Figure 1.2. Cross section of wingbox:
AF : AR — cross section areas of front and rear spars; §W — thickness of spar webs;

5p — thickness of upper and lower skins (panels)

Root triangle is a structure consisting of a root rib, a front spar

continuation, and a fuselage rib (see triangle ABC in Fig. 1.1).

We do not consider skins in root triangle in order to simplify the model. In
real structure, lower skin could indeed be not load-carrying due to landing gear
situated in root triangle. To crutially simplify calculations, we remove upper skin
though it becomes a shortcoming of the model. It should be noted that this fact
does not have much effect on final results, especially for structures with thin
skin.

Design model is an idealized spatial system of structural elements jointed
by ideal connections. For this system and for its components, the structural
mechanics laws are valid. Some assumptions made in the model are listed
below:

1. Wingbox and all its elements deform linearly, so relation between

stress and strain is linear, and displacements are small.

2. Two-spar wingbox is a membrane shell with a cross section that is

absolutely rigid in its plane and is flexible outside it.
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. Wing ribs are located continuously by the length of the wingbox; they

are absolutely rigid in their planes and flexible outside them.

. Axial loads (normal stresses) are carried only by spar caps.
. Spar webs and skins carry only shear loads (there are only shear flows

in them, no normal stresses).

. Elements of root triangle and fuselage structure (RR, FR, FSC, FFB,

RFB) are planar beams; they are finitely rigid in their planes and
absolutely flexible outside them.

. Upper and lower skins of a root triangle ABC do not carry loads.

Fuselage structure composed of beams FR, FFB, RFB is a spatial
statically determinate system.

Outer wing (composed of wingbox and FSC) is attached to the fuselage
rib at points B and C (Fig. 1.3).

FFB

ik
Figurel.3. Design model of wing

System as a whole has the same degree of static indeterminacy as the
outer wing because the fuselage structure is statically determinate. There are

two ideal cylindrical hinges at point B and two ideal spherical hinges at

point C

(Fig. 1.4).

The wingbox jointed with FSC is a spatial disk, so it has six degrees of
freedom. Each cylindrical hinge constrains two degrees of freedom in the

system;

each spherical hinge takes away three degrees of freedom. So we

shall possibly have a four times statically indeterminate structure. It is desirable
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to introduce some simplifications to the model in order to make calculations
easier. We can exclude constraints 1 and 2 (see Fig. 1.4) because leaving only

one vertical constraint is enough for points B and C . It is valid becasue FSC
and RR are both planar beams which do not have normal stresses in
transverse direction according to the beam theory.

Figure 1.4. Design model of outer wing

Fuselage rib is a statically determinate beam. FR is attached to the
fuselage in the way shown in Fig. 1.5.

Figure 1.5. Fuselage rib fixation

Fig. 1.6 shows how FFB and RFB are attached to fuselage frames. Due
to the symmetry of the aircraft, we can consider one half of the structure. Thus,
we should apply constraints to the plane of aircraft symmetry: vertical
deflections are allowed, but horizontal deflections (outside the plane of
symmetry) are not.

The input data for course project include:

a) areas of front and rear spar caps, AF and AR (see Fig. 1.4);



b) moments of inertia of front and rear fuselage beams, fuselage rib, and
root rib, |, lges . lIer, Igg correspondingly;

c) thickness of front and rear spar webs, &, :
d) thickness of upper and lower skins (panels), J.;

e) distance from the front spar to the point of load application, X (it is
assumed that aerodynamic forces are reduced to the resultant force,
Fig. 1.7);

f) wing sweep angle, ¥ ;

g) wingbox length, width, and height, Z, b, h correspondingly;

h) fuselage diameter, d ;

) resultant aerodynamic force, F ;
]) material properties.

l\ plane of aircraft symmetry

FFB, RFB

Figure 1.6. Front and rear fuselage beams fixation

Moment of inertia of FSC is the same as moment of inertia of the front

spar. The length of FSC can be calculated as £ = b -tan g.

Fig. 1.7 shows the diagram of a sweptback wing with dimensions, and

Fig. 1.2 gives a cross section of a wingbox.

Task variants for the course project include the parameters AF, AB,

5W, 5p, and X, as well as the type of basic system. Other parameters and

material properties are invariant.

All beams (i.e. RR, FR, FSC, FFB, and RFB), spar webs, and caps are

made of steel 30XICA. Upper and lower skins are made of aluminum alloy
[016T. Properties of these materials (Young's modulus E , shear modulus G
and yeild stress o, ) are given in Table 1.1.

The results of the calculations include:
a) diagrams of normal forces distribution in the spar caps, diagrams of
shear flows distribution in spar webs, upper and lower skins;
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b) diagrams of bending moments distribution in the elements of a root
triangle (RR, FR, FSC) as well as in FFB and RFB;

c) forces in the constraints.
The course project is mainly intended to find out how loads are distributed

among structural members of the root triangle. Thus, the most important results
are the diagrams of bending moments in five beams of the root triangle.

Table 1.1
Materials properties
Material E, MPa G, MPa o, , MPa
30XI'CA 2.10° 7.7 -10% 1250
A16T 7.2-10" 2.8-10* 280
d f‘
| B Qo
FFB N
A
FR
| FSC
RR <
| C
RFB
wing box
0 D
Q

Figure 1.7. Sweptback wing dimensions
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2. ANALYSIS OF THE GIVEN SYSTEM

In order to check the stability and find out the degree of static
indeterminacy, the given system must be properly analysed. Firstly, we carry
out the kinematic analysis, and then check the results with statical analysis.

Outer wing (wingbox and front spar continuation) is attached to the
fuselage structure (front fuselage beam, rear fuselage beam, and fuselage rib).
This fuselage structure is immovable and statically determinate, so we should
conduct the analysis only for the outer wing.

Outer wing is attached to the fuselage rib by eight rods (1...3, 7...11). It
consists of two disks, one spatial (wingbox) and one planar (FSC). How the
front spar continuation is connected to the wingbox (more exactly to the front
spar) could be represented by three rods 4..6 (Fig. 2.1).

plane disk

Figure 2.1. Numbering of constraints

The movability of the system (Mov) can be calculated using the formula

Mov =6-D  +3-D -C-C,, (2.1)
D

spatia planar

where D IS a number of spatial and planar disks in the system,

spatial ’

correspondingly;
C is a number of rods (constraints) in the system:;
CO Is a number of support rods (constraints).

planar
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Substituting D =1:D

obtain

=1;C=3; C, =8 into (2.1), we

spatial planar

Mov =6-1+3:-1-3-8=-2. (2.2)

This result means that the system is possibly two times statically
indeterminate.

Being a necessary but not sufficient condition of geometrical stability,
kinematic analysis assesses the system quantitatively. Thus, we have to carry
out a statical analysis to qualitatively assess the system.

For this we have to compose the matrix of coefficients for the equations of

static equilibrium. Instead of ideal rods, we apply forces Si (I varies from 1 to
11, Fig. 2.2).

y

S

AW\ W»

W\ &2

Figure 2.2. Forces in constraints

We have three equilibrium equations for FSC,
D'F, =0, S, +S,=0;
Y F,=0, S,+S,-S,-S,=0; (2.3)
> M, =0, S;-h-S,-h-S; £, =0,

and six equations for the wingbox,
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ZFX =0, S,+S,=0;

>F, =0, S,-S,=0;

D> F,=0, S,+S,+S,+S;=0; 4
M, =0, S,-h+S,-h=0;

> Myo=0, S,-b+S;-b=0;

> My =0, S;-b+S,-h=0.

Now we have the system of linear equations. The matrix of coefficients for
ithas M =11 columns and N =9 rows:

Sl S2 S3 S4 S5 SG S? S‘8 Sg S10 S11
(1 0 0 0 0 1 0 0 0 0 0)
o 1 1 -1 -1 0 0 0O 0 0 O
0O 0 h -h 0-£4,0 O O O O
O 0 0 0 00 O O 1 1 O
0O 0 0 0 0 1 0 0O 0 0 -1|@5
o 0 0 1 1.0 1 1 0 0 O
0O 0 0 h 00 h O O O O
O 0 0 b b 0 0O 0 0 0 O©
L0 0 0 0 0 b 0O 0O h 0 O

To be geometrically stable, a system must have a matrix which rank is
equal to the number of rows or number of columns, whichever is less.
Concerning our problem, we must have non-zero determinants for any of 55
possible square matrices which could be obtained by striking out any two
columns in (2.5).

In the course project, the statical analysis is used to check the stability of
the basic system. In this case, columns which should be crossed out
correspond to constraints which are removed to get the basic system, and the
only condition required is that the deterimant of the obtained square matrix is
non-zero.

14



3. CHOICE OF BASIC SYSTEM

We have proved that outer wings are attached to the fuselage structure in
a statically indeterminate way. The degree of static indeterminacy is two. Thus,
we have to choose some method of structural mechanics for statically
indeterminate problems.

We can solve the problem by different methods (for example, the one
covered in [4]) but we choose the force method because it suits our purpose
best. The order of calculation for our problem is typical for any statically
indeterminate problem solved by the force method:

1. Choose basic system.

2. Calculate normal forces and shear flows in the outer wing in loaded
state (also called F-state). Forces and shear flows in the wingbox are
calculated using the elementary and self-balanced state of the
wingbox.

Calculate bending moments in the root triangle in loaded state.

Calculate normal forces, shear flows, and bending moments in the

basic system in the first unit state.

5. Calculate normal forces, shear flows, and bending moments in the
basic system in the second unit state.

6. Calculate coefficients of equations canonical for the force method,;

determine forces X, and X,.

7. Draw total diagrams of distribution of normal forces, shear flows,

bending moments, and constraint forces.

8. Perform deformation check.

To apply the force method, the chosen basic system must be
geometrically stable and statically determinate. To choose it, we have to
remove two redundant constraints conforming these conditions. We can
remove any 2 of 11 constraints (the total number of possible basic systems is

B w

C121 =55), but the basic system should be geometrically stable. Some of

possible 55 basic systems are not stable.

To prove that the basic system conforms conditions, we have to strike out
two columns (those corresponding to removed constraints) in (2.5) and to find
its determinant. The determinant must be non-zero.

Fig. 3.1 (a-f) shows examples of basic systems. The points where
constraints were removed are written near the figures.
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Figure 3.1. Examples of basic system
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As an example, we shall consider the basic system with constraints 1 and
3 (at point B ) removed (Fig. 3.2).

Figure 3.2. Chosen basic system

To prove that the chosen basic system conforms to conditions, we strike
out first and third columns in (2.5) and find the determinant of the obtained
matrix:

SZ S4 SS SS S7 S8 SQ SlO S11
0O 0 0 1 0 0 O O O
1 -1 -1 0 0 0 0 0 O
0 -h 0-4,0 0O O O O
O 0 0 00 O 1 1 O
0 0 0 1 0 0 0 0 -1=b-h® @1
o 1 1 0 1 1 0 0 O
O h 0 0 h O O O O
O b b 0 0 0O O 0 O
0 0 0 b 0O O h O O

(BN
\l



The determinant is non-zero, so the chosen basic system is geometrically
stable. The system of equilibrium equations has a unique solution and is
sufficient to find the forces in constraints for the basic system.

To obtain the equivalent system from the basic system, we apply external

load (F ) and forces X1 and X2 instead of removed constraints. These forces

are unknown and have to be calculated. The equivalent system for this basic
system is shown in Fig. 3.3.

Figure 3.3. Equivalent system
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4. BASIC SYSTEM IN LOADED STATE

4.1. Constraint Forces

The basic system in loaded state (F-state) is shown in Fig. 4.1,a.

Figure 4.1. Basic system in F-state and constraint forces:
a — basic system and external load; b — constraint forces in outer wing
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Let us determine values and directions of forces S, in constraints. For

the purpose, we use equilibrium equations for FSC and wingbox (Fig. 4.1,b).
We write them so that to instantly find an unknown value with each following
equation. For FSC, first two equations are:

>'F, =0, S,=0;

(4.1)
>M =0, S,-h=0 = S, =0.
The following four ones are for a wingbox:
ZMLM =0, 87-h+|:'/=0 = 87 =—Fh;/;
>F,=0, S,-F=0=S,=F;
(4.2)

> Myo=0, S;-b=0 = S, =0;

YF,=0, S,+S;=0 = 58=Fh;/.

The sum of forces for front spar continuation is
> F,=0, S,=0; (4.3)

Finally, we use two remaining equations for the wingbox to get

D My =0, Sg-h+F-(b-x,)=0=
F.(bh—xD); "

=S, =—

F-(b-x
ZFX =O, 89+Slo=0 :Slo: ( - D).

Real direction of forces is shown in Fig. 4.2.

Next we have to find normal forces in spar caps and shear flows in skins
and spar webs. Actually, we have a two-spar wingbox with a rectangular cross
section loaded by given forces. Let us check whether this structure is statically
determinate. For this purpose, we cut the wingbox by the plane Z = CONSt
(Fig. 4.3) and consider equilibrium of the cut portion. Internal force factors
acting in the section are forces Ni in spar caps and shear flows (; in skins

and webs. Totally there are eight unknown values, but we have only six
independent equilibrium equations. So, the two-spar wingbox with a rectangular

20



cross section is twice statically indeterminate. This problem can be solved by
different methods, but we shall use the Papkovich theorem which was derived
specifically for a wingbox. This theorem claims that real stress state of a
wingbox can be considered as sum of two states, elementary (EL state, the one
that conforms equilibrium equations) and self-balanced (SB state, the one
calculated from the condition of minimum complementary potential energy).

— S0
Si

Ss” ¢

Figure 4.2. Constraint forces in basic system

Figure 4.3. Cut portion of wingbox



Let us set the notation of wingbox parts. Spar caps 1 and 4 have their
cross section areas, A, and A,, sothat A, = A, = A_. So are spar caps 2
and3, A, = A, = A;.

The similar principle works with thicknesses of wingbox skins:
6, =0;,=0, and , =4, = J,, respectively.

4.2. Elementary State

Elementary state of a wingbox is calculated using the elementary beam
theory of bending and free torsion of the thin-walled once-closed bar. Two-spar
wingbox is a thin-walled bar with once-closed contour of a rectangular cross
section. Skins and spar webs of the wingbox do not carry normal forces, and
spar caps carry normal forces only.

Normal Forces in the Caps

Normal stresses in the i-th spar cap O'ZE IL are calculated by the formula

aZEiL=—MX|'y‘=—F'IZ'yi , (4.5)

X X

where M, =F -Z is a bending moment in the considered cross section

(0<z</);

h . T
Y, = iE are coordinates of the i-th spar cap(l =1, 4);

4 4 h 2
|, = ZAi Yyl = ZAi ‘| = | is a moment of inertia of the cross
i=1 i=1 2
section in centroidal principal axes;

A is a cross section area of the i-th spar cap (i =1, 4).

Let us determine normal forces using (4.5):
F-z-h

NE!'=0'E.L-A.= —A.:
Zi Zi i 'F 2.| i

X
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=FC-A -z, (4.6)

4
2. ZA (fy)
where C = IS a constant coefficient.

Z-ZAi(%)Z

Values of NZi depend on the Z-coordinate. That is why we have to

calculate them for several Z-values: Z=0:; 1; 2: 3 M. It is convenient to

write the values of NI+ in the table (Table 4.1).

Table 4.1
Calculation of normal forces in elementary state
Z, M 0 1 2 3
Nioy 0
N> 0
N> 0
N>, 0

Fig. 4.4 shows distribution diagrams of normal forces.

Shear Flows in the Cross Section

Sign convention: We can assume that the positive direction of shear flow

is clockwise.
Shear flows in the elementary state can be determined by the formula:

a7 =0, +0o . i=14; (4.7
EL_F'Sx(S)_ I:'Sx

qpi - | T4 (rs])z ’
A (3)

EL :
where (i are shear flows in the opened contour;

(4.8)
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F is a projection of the resultant aerodynamic force on the Y -axis (in our

case, the projection of the resultant aerodynamic force is equal to the resultant
aerodynamic force);

S, (S ) is a current value of the cross section static moment in centroidal
principal axes (Fig. 4.5);

qc',EL Is a shear flow at the origin of angular coordinate S origin (point O in
Fig. 4.5) (it is invariable over cross section);

IX IS a cross section moment of inertia in centroidal principal axes.

el
N,

Z

Figure 4.4. Diagrams of normal forces distribution

h h
A, 2 (A;*+A;) 2
A s _x A
A X A
h
(A +A, 'Asj"?

Figure 4.5. Static moment
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To calculate elementary shear flows, we have to:
1. Build the diagrams of current values of a cross section static moment

S, (S) To do this, we have first to determine the origin of the
angular coordinate S (see Fig. 4.5).
2. Calculate the value of a shear flow qE

direction. For this purpose, we have to consider equilibrium of the

element KLMNOP (Fig. 4.6; this element is also shown in Fig. 4.4).
This element is a portion of a spar cap with adjacent skin and spar

web. The length of this element is dz. The distribution diagram of
shear flows qE'I‘ Is shown in Fig. 4.7,a.

L .
. by (4.8) and determine its

EL
3. Calculate values of shear flows (.

ar

L L N

/ l
Ne; +dNg;

K

!
K

Figure 4.6. Portion of spar cap with adjacent skin and web

We can choose the direction of OE - arbitrary, for example, anticlockwise
(Fig. 4.7,b). From the equilibrium condition, we get

D> M, =O,IqFEL-p-ds—_[qOEL-p-ds+F(b—xd)=O . (4.9)
p p
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EiL

qr’_-. | _-F b-x,

1 q':?
—
4
Figure 4.7. Shear flows in elementary state:
a — opened contour; b — closed contour; ¢ — total shear flows
Hence,
EL
i, _qFl-b-h+F-(b—xd)
qO - ’

2-b-h
where P is the perimeter of the contour;
P is the perpendicular to the contour element ds.

If qEL < 0, we must reverse the direction of shear flows qOEL :

(4.10)

Then we calculate the total shear flows in the elementary state qiEL using

(4.7) and build its distribution diagram (see Fig. 4.7,c).

To check calculations, we can write these equilibrium equations:

> F, =0, F-g;*-h-qg;"-h=0;
M, =0, F-x4-0; -h-b-qg5"-h-b=0.

(4.11)

EL L _
The elementary shear flows (J;" are invariable of coordinate Z, because

the resultant force F is a constant value along the wingbox.
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4.3. Self-balanced State of Wingbox

Let us show that for two-spar wingboxs, a self-balanced state exists, for
which the resultant vectors of internal forces and moments are zero.
Considering the cut portion of wingbox, we write six equilibrium equations

(directions of Ni and (; are chosen arbitrary as shown in Fig. 4.3):
D> P, =0, N +N,+N;+N,=0;
D Mgr=0, N-h+N,-h=0;
Y Mor=0, N-b+N,-b=0;

(4.12)
> P, =0, -qg,-b+q,;-b=0;
> Mg =0, g,-b-h+q,-h-b=0;
>'P, =0, q,-h-q,-h=0.
Hence, N, =N; =—=N, =—=N,, or in other words, normal forces in
spar caps in self-balanced state are equal by number but opposite by direction:
NSE(z) = (-1)"" -N$8 (2). (4.13)

The NZSB (normal force in spar cap) is a function of Z -coordinate.

From (4.12), we obtain that , =(; =-—(Q, =—(, = qSB (Z) or, in
other words,

9% (z)=(-1)" -q* (2). (4.14)

To find the relation between qSB (Z) and NfB (Z) we cut the portion

of spar cap with adjacent skin and spar web (Fig. 4.8, this portion is also shown
in Fig. 4.4). For this portion, the sum of projections of the forces onto the Z-
axis must be zero:

ZFZ=O’ dN;*(z)-2-9*(z)-dz=0. (4.15)
Hence,
1 dN.°(2)

4.16
2 dz (4.16)

> (z)=
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Figure 4.8. Portion of spar cap with adjacent skin and spar web

In the considered structure portion, shear flows qSB (Z) that give the

projection onto the Z-axis are codirectional because the resultant vector of
moments must be zero.

Taking into account the signs of qiSB (Z) and NZSiB (Z) we obtain

NSB L
B(z)_—l d - ) i=1,4. (4.17)

For the first (i=1) spar cap is subjected to tension (force stf), the self-
balanced state of the wingbox is shown in Fig. 4.9.

Forces acting in the wingbox elements in F-state are the sum of forces in
elementary and self-balanced state:

NG (2) = N3 (2) +(-1) 7 N; (2) (4.18)

()7 NP ()

2 dz

a7 (z.8)=0a5; +a5" + (4.19)
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Figure 4.9. Self-balanced state of wingbox

SB . : : : :
Here, NJ° is an unknown function. To determine this function, we use

the Castigliano variational principle (principle of minimum complementary
potential energy). The principle claims that for linearly deformed systems, only
real stress state gives the minimum complemenrary potential energy. Let us
write the expression for potential energy of the wingbox. Because

o,=0, = O and only one shear stress 7,. (shear along the S -axis) is non-

zero, we get
1
=5 \_!' 0, 6,+7,¥,)-dV, (4.20)
where
(F)(Z) o, (F)(Z)
i = 15 TE A
dv, =A -dz,
© . (4.21)
r _=qi (Z,S) }, = ZSI_ (Z S)
zs i 5, ) zs i Gi Gi 5| y
dv,=6-S, .-dz.

Substituting this into (4.20), we obtain

29



U=j i(N%Fi)_(.Z))Z”ZA:( i(F)(,Z’S))Z'Si dz, @22

where Si are equal to the width of the skins and the height of the spar webs
(S, =S;=Db,S,=S5, =h), and £ is alength of the wingbox.
The integrand in (4.22) can be written as:

cp=i( N (2 ) (q(F)(ZS)) _

2-E, -A izl 2.G, -6

s (N2 (2)+(=1)™ NE)
=Zl:( 2.E -A ) *

gt + (—1)i+l . dN;® 2 .S
a | 2 dz !
+2

(4.23)
i=1 2 'Gi §|
The integrand in (4.22) is a function of Z-coordinate and of functions
e dNZP
N>® and N> = —Z— so0 we have a functional
dz
4 ’
U =I¢(z, NSB, NP )dz . (4.24)
0

Thus, to find the function NZSB, we have to minimize the functional @.
We can write the Euler condition for the minimum of the functional

qb(z,NfB | NfB'):

00 _d| oo |_,
anNE azl e |0 (4.25)

Let us determine the summands in (4.25) using (4.23):
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0 4 NZE:- (Z)+(_1)i+1 . NZSB (Z) _(_1)i+1
5NQZZB =zl:( E,-A ) =
e () SN

1 i+1 N
=N®(z)- A, +Z( ) (Z) (4.26)
i=1
where the numerical coefficient Ay is

A, = Z— . (4.27)

Next,

[qEL + (_1)i+l .deB }-S (_1)I+l
od Al 2 dz |
2

2
6NZSB' - i=1 G' 5 -
, 1)|+1
=N>* (- =
( ) Z4 G -0 ; 2-G, 6'
|+1
=N*'(2)-A +Z( 2 G 5 , (4.28)
where numerical coefficient Aq IS
4
S.
A, =§4-G.l 5 (4.29)
Finally
_ EL
. (_1)l+1 dql S




i+1. EL
=N*"(2)- A, "'2(2123 6‘8 dg'z . (4.30)

Substituting the derivatives (4.26) and (4.30) into the Euler equation
(4.25), we obtain

NSE. A —N®". A+

q

;( 1)|+1 NEL Z(_l)i+1_5i .dqiEL _o.

2-G. -6 dz

(4.31)

Thus,

_ﬁ.NjB =
A

q

GO NE s, aar
SO ] e

Let us denote

s’
NZ

a= |—* (4.33)

and

~1)™* - NE- ~1)*".s, dg™
O DR e Xer o R
Substituting this into (4.32), we get
N> (2)-a® N (2) =1 (2). (4.35)
The solution of this equation can be written as

N>®(z)=C,-sinhaz+C,-coshaz+N (4.36)

Z partial ?

where C_, and C, are coefficients obtained from the boundary conditions, & is
a coefficient calculated from wingbox geometry and material properties data,
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N, partial 1S & partial solution dependent on the external load type. The partial
solution for the single resultant force loading is zero.
F) .« 2 .-
To calculate normal forces Nii) (1 =1,4) in spar caps, we can use

three equilibrium  equations: ZI\/IX =0, ZI\/ly =0, ZFZ =0.
Therefore, the problem is once statically indeterminate. So, there will be only
one self-balanced state of the wingbox.

Let us deterimne the coefficients Cl and C2 in (4.36) from the boundary

conditions for a basic system in F-state (see Fig. 4.1). First, we calculate the
coefficients AN by (4.27), Aq by (4.29), and @ by (4.33). In the chosen basic

system (see Fig. 4.2), the wingbox is loaded by forces S7 and Ss obtained

from equilibrium equations. The forces acting in spar caps (4.18) are the sums
of forces in elementary and self-balanced states. For the first spar cap, we
have

NS (2)=NE-(2)+ N3 (2). (4.37)

Let us specify boundary conditions for (4.36) which are applicable for the
first spar cap:

z=0, N>’ =C,-0+C,-1=0 = C,=0;
z=¢, N{Y=N| +C,-sinha/=0=

(F) _ EL
=C, = Nz_l A . (4.38)
sinh a?

Then,
1 _
NS?(z)=(-1)" -C,-sinhaz, (4.39)
and shear flows will be equal to

NSB( )
SB — __ zi\"J
a7 (2)= 2.dz
_1 i+1. . N(P)—NEL
=—( ) a.( 2 Zl)-Coshaxz= (4.40)
2-sinhaf

= (—1)i+l .B-coshaz,
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where the numerical coefficient

(N(F) Nfl'-)
= . (4.41)
2-.-sinhaf

To find the direction of shear flows qSB (Z) in skins and spar webs, we
cut the portion and consider its equilibrium. To build the distribution diagrams of

sB SB .
normal forces and shear flows, we calculate the values of N7 and Q. in

different sections (for example, at four Z-values from O to the length of the
wingbox). It is convenient to present these calculations as a table (Table 4.2).
We also have to put the signs of normal forces and shear flows into this table.

Table 4.2
Calculation of normal forces and shear flows in self-balanced state

Z,m
az
sinhaz
coshaz

NSB
Z
SB

q, \ \

1 2 3

O |kr|IO|0o|Oo

I+

It is not convenient to determine directions of shear flows by some signs,
because in this case, we have to define the sign rule which could be difficult to
imagine and understand. It is more natural to draw the directions of shear flows
directly into the table. Students should always include units of variables listed in

the table. For example, the filled row for qZSB could look like:

qs®, KN/ 5¢.2 | 1 86.9 |1 224.2 ) 16316 |

4.4. Diagrams in Loaded State

To build distribution diagrams of normal forces and shear flows in the
loaded state, we have simply to sum two diagrams for elementary and self-
balanced state:
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N = NE- 4+ NSE
(F) _ ~EL SB _ ~EL EL SB i _a A (4.42)
P =0; +0;7 =0, +0, +q;, 1=14.

Using values from Tables 4.1 and 4.2, we can determine NgFi) (Z) and

q{7(2) by (4.42) and fil Table 4.3. Total distribution diagrams of normal

forces in spar caps NgFi)(Z) in F-state are illustrated by Fig. 4.10, and shear

flows in webs and skins — by Fig. 4.11.

Table 4.3
Calculation of normal forces and shear flows in F-state
Z, M 0 1 2 3
NS, T T T T
NS, T T T T
N>® 0 + + +
(F). n(F) - - -
NZl : N24 0 F ¥ F
(F). pn(F) - - -
sz : N23 0 ¥ F F
EL
do ‘
EL 1
Jr1s L
EL ——
dr > C
EL -
e L
SB
q \ \ \ \
(F) 1 1 1 1
1,3 | -] | -] [ L
(F) - = - = - = - =
’ B R R
F - T - T - T - T
e Lo | Lo L o L__]
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Figure 4.10. Normal forces in spar caps in F-state, in elementary state
and in self-balanced state
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o = o
= -~ o
_..-"'f il ;..-—""' .rf
(F) _ _EL EL SB
// d; =qs; *q, *q;

Figure 4.11. Shear flows in skins and spar webs in elementary state,
in self-balanced state and in F-state
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4.5. Loaded State of Root Triangle

Finding the distribution of bending moments along root triangle beams,
we have to consider moments that are transferred from the outer wing structure
to the root triangle structure. Conventionally, moments are shown in figures as
vectors perpendicular to the plane in which couple of forces acts. The law of
signs for moments can be formulated as when we look from the end of the
vector, we see the anticlockwise direction of the force couple.

For the chosen basic system (see Fig. 4.1,a), we have forces S7, 88,

Sy, Sy and S;; at point C (see Fig. 4.2). The root triangle structure is

loaded by the same forces but with opposite direction. Fig. 4.12 shows the top
view of the wingbox, the front spar continuation, and the root triangle structure.

Forces S, and S, give amoment M, =S, -h, and forces Sy and S, give
a moment M, =S, -h. These moments load the rear fuselage beam, the
fuselage rib, and the root rib at point C .

8 B

Figure 4.12. Loading of root triangle structure
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In the chosen basic system, the front spar continuation and the front
fuselage beam are not loaded (because corresponding constraint forces are
zero).

Moments |\/|1 and |\/|2 at point C can be resolved into projections,
M;=M,:-siny, M/=M,-cosy and M;=M,-cosy,
MJ = M, - Sin g correspondingly. The beam does not carry forces that act
outside its plane, or in other words, the beam carries only moments whose
vectors are perpendicular to the beam plane. Thus, the moments M; and M,
load only fuselage rib, and the moments I\/li' and M;’ load only rear fuselage

beam.

Let us build distribution diagrams of bending moments in root triangle
beams in F-state. Directions from which we look at beams when we draw
diagrams are shown in Fig. 4.12 (small arrows).

The root rib is loaded by shear flows qi(F) (see Fig. 4.11) and known
forces Sy, S,,, S;; (see Fig. 4.2). The equation of the root rib moment

(DM, . see point & in Fig. 4.13) is:
Mer (x)==0{7-h-x+qP - x-h;
Mer (0)=0; (4.43)
e (5)= (a7 =) -h-b =,

The bending moment diagram is shown in Fig. 4.13.
Front spar continuation and front fuselage beam are not loaded, so the
bending moments in them are zero (see Fig. 4.13).

Fuselage rib is loaded at point C by the difference of moments
M; =M, -Sin y and M, =M, -COS g. It is also loaded by the reaction

force at point B, but to build the diagram we do not have to calculate it: we just
have to know that the diagram of bending moment produced by the

concentrated force is linear. The fuselage rib is fixed at point B with a single
hinge, so the moment at this point is zero. So, the fuselage rib moment

X
equation is linear: Mg =(|\/|{ —M;)-E. The diagram is shown in Fig.

4.13.
Rear fuselage beam is loaded at point C by the sum of moments
M; =M, -coS y and MJ =M, -Sin y. The RFB is fixed at the plane of
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symmetry in such a way that there are no vertical constraints and no vertical
forces, consequently. Thus, the bending moment in it is constant. The diagram
Is shown in Fig. 4.13.

So, we have found all normal forces and shear flows in the wingbox as
well as bending moments in the root triangle structure in the F-state. The
following step is to find these internal force factors in two unit states.

X

(F)
3

RR qf"""q;ﬂf 0

{i’ﬂq

T T T 7. T

'Sﬂ Py
2
FSC g 0 0
M._,I \\Mgl
i i ==
M'II'M.?l
FFB i 0 0
M-f" \\\MEH
RFB }b
M,” +M2”

Figure 4.13. Bending moment diagrams in root triangle beams in F-state

40



5. FIRST UNIT STATE OF BASIC SYSTEM

In the first unit state, we apply the unit force Yl =1 instead of the

vertical constraint #1 (see Fig. 2.1). Fig. 5.1 shows the basic system in the
first unit state.

Figure 5.1. Basic system in first unit state

— 1)
To find the values of constraint forces Si” =1, we have to write
equilibrium equations for the front spar continuation and the wingbox. Solving
these equations, we get

) =@

Se =S11 =1;
=0 =0 =0 =0 Zeg .
4 =5 =7 =Og = ho
—) (5.1)
> =0;
§9=§9=%.

Directions of constraint forces applied to the wingbox and FSC are shown
in Fig. 5.2.
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a (1)
/ Sy

-
- & (1)
| =1 35
-
1—[1"'-')
S¢

Figure 5.2. Constraint and external forces in first unit state

For some basic systems, it can appear that the wingbox is not loaded at
all (root rib and other beams are, however, loaded). In this case, normal forces
and shear flows are zero, and we shall consider bending moments in the root
triangle only.

In case of a loaded wingbox (see Fig. 5.2), loading forces are self-
balanced (sum of forces is equal to zero). Thus, the stress state of the wingbox
can be considered self-balanced, so no elementary forces and shear flows
exist. Hence, forces and shear flows in the wingbox are equal to self-balanced
ones. Normal forces can be found as (4.36):

N (z)=Ci’-sinhaz +Cs -coshaz . (5.2)

—(1 —(1
Constants Cg and C(z) are found from boundary conditions:

z=0, Ny =Cs =0;

—(1) _ =) =)

z=/¢, N;1 =C;, -sinhaf=-S;," =
I st -
1] = . .
sinhaf

Substituting this into (5.2), we get
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W (@)= ()" sinnaz = S cinhaz s

Shear flows are:

_1 dN (z)

—(1) ( )

i+1 —(1) - .
) _(—Zl)sir;:;:; coshaz=(-1)"-B"

=
4

-coshaz . (5.5)

where §(1) a_. :
" 2.sinha/

—(1
Direction of shear flows qi( )(Z) can be found by way of considering

equilibrium of a small portion of the spar cap with adjacent skin and web, as it
was done in the F-state (see Fig. 4.6).
To build distribution diagrams of normal forces and shear flows, we have

—(1 —(1
to find values of N(zi)(Z) and qi( )(Z) in different sections (at four Z-values

from O to the length of the wingbox). It is convenient to present these
calculations as a table (see Table 5.1).

Table 5.1
Calculation of normal forces and shear flows in first unit state
Z,Mm 0 1 2 3
a’ 0
sinhaz 0
coshaz 1
@ 0
VA
—(1 B B B B
q i S B e S F o S SO

Fig. 5.3 shows distribution diagrams of normal forces and shear flows in
the wingbox in the first unit state.
Forces from the wingbox are transferred to the root triangle structure.
o =)

—(1 — —(1
Forces Sg) and Sg) give the moment M1~ =S7 " - h, and forces Sﬁ) and
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§§1) give the moment Mgl) = §£11) -h (Mgl) is equal to Mgl) but has the

0 g0

—(1 —(1
opposite direction). Forces Sg) and Sgo) give the moment M2" = Sg
(Fig. 5.4).

/

Ve

/

Figure 5.3. Diagrams of distribution of normal forces and shear flows in first unit state

. () () . o
In Fig. 5.4, moments M1~ and M2~ can be resolved into projections as
it was done in the F-state. After that we can build distribution diagrams of
bending moments in root triangle beams and in fuselage beams.

a0 = =

—(1
The root rib is loaded by shear flows qi( ) and forces Se ', So°, S1o

4+ S€e point a in

—(1
and Sﬁl) (Fig. 5.5). The root rib moment equation (ZI\/I
Fig. 5.5) is:
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Figure 5.4. Loading of root triangle structure in first unit state

M (x)=0 h-x-g-x-h+5¢ -x

M (0)=0; (5.6)
M (b) =55 b =M.

The bending moment diagram is linear (see Fig. 5.5).
Front spar continuation is loaded by the force X1 =1 (see Fig. 5.2) at

the left end, so the FSC moment equation (Z |\/| , See point ain Fig. 5.5) is:

|\/||:sc (X) X - X
M (0)=0; (5.7)
Ml(:ls)c (/ FSC) |\/|(1).
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The diagram is shown in Fig. 5.5.

—(1)

aS— T
. _-_9
T ] o
A Sﬁﬁ) Egm a ﬁ) —(‘U o= )
va _ 2
x’l M_J”
FSC ‘
bo—
FR 0
W /

L
é o 0
i 0

Figure 5.5. Diagrams of distribution of bending moments in first unit state

—IIﬁJ

T T T T3

— 1 —_ .
Fuselage rib is loaded by the sum of moments, M g) = Mg) sin y

_' —_
and M (2) = I\/I(z) COS 7, at the right end. The FR fixing at the left end does

not carry moments, so the value of the bending moment at the left end is zero.
The diagram is linear (see Fig. 5.5).
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Front fuselage beam is not loaded, so the bending moment diagram is
zero (see Fig. 5.5).

) 1
Rear fuselage beam is loaded by the sum of two moments, M 1~ and
— 1
M 27, at the left end (these moments have opposite directions). Let us show
that they are equal by value:

M) =M .cos =5y -h.cos z =

=/FSC.h_ b — b-Zrsc .
h 4R 4er

M o) =My .sing=55-h-sin g =

Yesc b'/FSC.

=E-h- =
h 4eq 4er

Here Z 5 is the length of the fuselage rib. Hence, the sum of the

(5.8)

— 1 — 1
moments M 1) and M 2 is zero, so RFB is not loaded and the bending
moment diagram is zero (see Fig. 5.5).
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6. SECOND UNIT STATE OF BASIC SYSTEM

In the second unit state, we apply the unit force Yz =1 (Fig. 6.1)
instead of the constraint # 3 (see Fig. 2.1).

Figure 6.1. Basic system in second unit state

The order of calculations for the second unit state is the same as for the
first one. Constraint forces are found from equilibrium equations:

c@) =) =) _ @) _

Se =S9 =S10 =S11 = 6.)

—(2 —(2 —(2 —(2 2 '

(2 ) ( ) S( ) ( ) S( ) 1
Fig. 6.2 shows directions of these forces.

—(2) —(2

Wingbox is loaded by the self-balanced system of forces (Sﬁ ), g),
—_— 2 J—

§ ), and Sg )) so, by analogy with the first unit state, only self-balanced

normal forces and shear flows exist in the wingbox. Normal forces can be found
as:

~(2)

_gz)(z)=(_3§ .sinha@z+C3’-coshaz. 6.2)
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k3

Figure 6.2. Constraint and external forces in second unit state

—(2 —(2
Constants Cg and C(z ) are found from the boundary conditions:

2=0, Ni =C3 =0;

z7=¢, N2 =C?.sinhaz=-59 =
—(2)
o cPo__Sv (6.3)
sinhaf

Substituting this into (6.2), we get

NG (z) (—1)'+l c? sinhaz=(;i1r?h'j; -sinhaz . (6.4)

Shear flows are equal to

_( ) i+1 =(2)
_(2)( )__ Nle(Z) ( 2)SlnhaS/4 COShaZ _
=(-1)"-B B? .coshaz, (6.5)
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—(2) _ a- _212)

"~ 2.sinha?

—(2
Direction of shear flows qi( )(Z) can be found by way of considering

equilibrium of a small portion of spar cap with adjacent skin and web, as it was
done in the F-state (see Fig. 4.6).

Distribution diagrams of normal forces and shear flows are built after the

s
=
)
)
o
|

—(2) —(2) o |
values Nz (Z) and (, (Z) were calculated in different sections (at four

Z -values from 0 to the length of the wingbox). It is convenient to present these
calculations as a table (Table 6.1). The diagrams are shown in Fig. 6.3.

—(2
N

1

s,

I

)2

Figure 6.3. Diagrams of distribution of normal forces and shear flows
in second unit state
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Table 6.1
Calculation of normal forces and shear flows in the 2" unit state

Z, M 0 1 2 3
az 0

sinhaz 0

coshaz 1
—(2
NG 0
—(2 —_— —_—— —_— —_—
q” — — R i —

=2 = =) =(2) .

Forces S4 7, S5, S7 7, and Sg * transferred from the wingbox to the
root triangle structure give moments that are equal in value but opposite in
—(2 —(2 —((2) —=(1
direction. Forces Sg ) and Sg ) give the moment Mg ) = g) - h; and forces
—(2 —(2 —((33) =1

51 ) and Sf; ) give the moment I\/Ig - g) -h (Fig. 6.4).
a2
|
b
' |
an (2
M I
3 Ma
|
! —||(2
MTIIH B
| X
b ©

Figure 6.4. Loading of root triangle structure in second unit state
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()

L . . —(2)
As we did it for the first unit state, we resolve moments M1 ~ and M3

into projections to find the moments that load beams of the root triangle and the
fuselage structure.

—(2
Root rib is loaded only by shear flows qi( ). Thus, the bending moment is
zero (Fig. 6.5).

‘i’f?)
ke
Ji.zm _ RR E"’ME 0 0
—(2)
i \ 3
P E{:}
FSC
PO
=(2) 3
/’Ms Mfl(:‘-'} \
"‘i : i v,
M,
= 1(2) __
M, ~ T
:1 FFB A\
Talt
M, \
:I s a1(2)
M,

Figure 6.5. Diagrams of distribution of bending moments in second unit state
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—(2
Front spar continuation is loaded by two moments Mg ) applied at both
ends, so the bending moment is constant (see Fig. 6.5).
— 2
Fuselage rib is loaded by the moment M g ) at the left end and by the
— 2
moment M 1 ° at the right end. These moments are equal, so the bending

moment is constant (see Fig. 6.5).
I 2

Front fuselage beam is loaded by the moment M 3 ° at the right end. At
the left end, FFB is fixed so that there are no vertical constrains. Thus, the
bending moment diagram is constant (see Fig. 6.5).

Rear fuselage beam is loaded and fixed analogously to the FFB (it is
— 2

loaded by the moment M 1 *). The diagram is also constant (see Fig. 6.5).
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7. DETERMINATION OF CANONICAL EQUATIONS COEFFICIENTS.
TOTAL DIAGRAMS

7.1. System of Canonical Equations

The system of canonical equations for the force method for two-times
statically indeterminate problem is

O, Xy +0, X, +A; =0;

(7.1)
0, - X+, X,+A,.=0.

Here ij and AJ-F are generalized displacements. Generalized

displacement means the displacement between two points in the direction of
the corresponding generalized force. Generalized force here is a couple of unit
forces. We have two generalized forces, the first one being a couple of forces

Yl (one applied to FSC, and the other to FR and FFB), and the second one

being a couple of forces X 2.
(7.1) means that generalized displacements (at the directions of unit
forces) are zero at points where constraints were removed.

We understand the indices of & in (7.1) as follows. 5jk Is a generalized

displacement at the point (where the unit force Yj was applied instead of a

constraint) in the direction of the unit force Yj =1 in the k-th unit state (when

the basic system is loaded by the unit force Yk =1), j = ﬁ k= ﬁ
AjF IS a generalized displacement at the point (where the unit force Yj

was applied instead of a constraint) in the direction of X ; =1 in the F-state

(when the basic system is loaded by the external load F), j =1,2.
ij and AjF are the sums of values for the wingbox and for the root

triangle structure:

WB RT . _ AWB RT
0, =0, +0, ; A=A +A . (7.2)

These values are determined by the Mohr’s formula:
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4 zﬁ(ﬁ)_—(k) 4 /Sc_l(j)'c_l(k)
WB zi zi i i
D e 2 | e
4 zﬁ(j)_N(_F) 4 zsc—l_(i)_ (F)
WB _ - zi i i
A'} _Z:l:‘! E A dz+.z=1:‘!“!—d(3i'6] sdz ;
s 4 1) 220 (73)
JFIQ(T =ZI = dx :
n=1 o n 'n
4 aU)

where S is a length of the skin (D) or height of the spar webs (h );
Z_ is a length of the root triangle beam (FR, RR, FFB, RFB, FSC),

n

are rigidities of spar caps which carry normal forces (i =1, 4) ;

A
G, 5, are rigidities of skins and spar webs which carry shear loads

moments =1, 5);
—(1) =(2) NF . . . .
zi Nz, N_; are normal forces acting in spar caps in the first unit
state, in the second unit state, and in the F-state;

—(1) —(2)

q, .4, . ti are shear flows acting in skins and spar webs in the first
unit state, in the second unit state, and in the F-state;

T =) () . o .
n , Mn", MY’ are bending moments acting in the root triangle
beams in the first unit state, in the second unit state, and in the F-state.
. . . . <)
It is convenient to combine all diagrams (NZEiL, NfiB, Nz, qiEL, qiSB,

—(J —(]
qi( ), MrgF), |\/|$1 )) into tables (Tables 7.1-7.3). We do so to avoid errors then

performing calculations and to make them more obvious.
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Table 7.1

Distribution diagrams of normal forces in spar caps

F-state 1% unit state 2" unit state
Ca EL SB —(1 —(2
#p I\Izi Nzi (z|) (2|)
. e, \.H_% \H.H_%
1 [Ty B T P P
- —(1) . —(2) .
—C-A.-z| C;-sinhaz | _gW . sinhaz | -C¥ - sinhaz
- N“‘\., M e M i
, M B T O T B T e
- —(1) . —(2) .
—C-A,-z |C,-sinhaz | Y .sinhagz | C?.sinhaz
e . e B
3 %D%I" _ EB.IH.___ 5_ e T O T
- —(1) . —(2) .
C-Ay-z | C-sinhaz | _¢W . sinhaz | -C2 . sinhaz
A ‘ ® T ‘ é’[“u. . B T B T
- —(1) . —(2) .
C-A.-z |-C,-sinhaz | ¢ . gsinhqz ®) . sinh az
Comment. C is the coefficient from (4.6).
Table 7.2
Shear flows in wingbox
F-state 1% unit state 2" unit state
EL EL SB —(1) —(2)
d +0, o) g, d;
1 | | ; | I | I |
T e P
skin | Uy +d, |B-coshaz |BY .coshaz |B" -coshaz
2' = = " e, jp—j— - T F o T
Rear |____* :____* ___‘ ___*
Mol 95 +q5- | B-coshaz |BY.coshaz | BY -coshaz
O I i I S B S
Lower ' |
\ EL EL —1 —(2
skin | Or; +Jo B.coshaz B()-coshaz B( )-coshaz
4. ey —— — — e ey
Front *_ =) ! : *_ =) *_ =)
EL — . | =@ —(2
ﬁvpeabr do B-coshaz |B®.coshaz | BY .coshaz
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Table 7.3
Distribution diagrams of bending moments in root triangle and fuselage beams

F-state 1% unit state 2" unit state
1.RR M2: M(l) : ‘
- il
2. FSC . : i ) - ~i@
3.FR M{ —M; M M b M '(2)
[] L11
4. FFB g o g 7 —(2)
M 3
sres | LLLLL . M
MY+ M2 —

After filling the tables, we have to calculate six coefficients of canonical

equations: A, A,c, 8,4, 0,5, 0,,,and &,, (note that &, = &,,).

7.2. Example of Calculating Coefficients in Canonical Equations

Let us discuss how to find 511 and AlF . They are calculated by formulae:

5. G4 ST GU L SN, g
s =3 aﬁ? '.q_'(l) ds dz o
i=10 0 Y
n o= 25;1 ME) '_IW) dx .



To calculate them, we need some integration formulae:

. 1
sinhax dx =—-coshax :
a

1 .
coshax dx = —-sinhax
a

Isinhzax dx=i-sinhax-coshax—£-x . (7.5)
2a 2

1 . 1

Icoshzax dx =—-.sinhax-coshax +=-x:
2a 2

XxcoshaXx sinhax

Ix-sinhax dx =
a a

. WB N
First, we calculate 8y, ' :

(7.6)

According to the given data, we have A =A,=A.,

—(1
A, = A, = A;. Absolute values N(zi) of normal forces in the self-balanced

N = N52) = N3] = 52

state are also equal: . Therefore,

44 2 44 2
D j(N(le) b j(N(zll)) -
E'AF 0 E'AR 0

¢, 2
_2. i+i .I(Cgl).sinhaz) dz =
E (A A)9
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(_( )) (A +AL)

EA A Isinhzazdz=
A J
(_(1)) (A +A )
E-A-AL

= ... (7.7)
z=/¢

X i-sinh az-sSinh az—E
2a 2

Then calculating 6?/\1/8’(1 by (7.4), we have to take into account that shear
flows are not variable by the S -coordinate. Thus,

(=0 )
‘s —(l) _(1) b'j-q(la (;I dZ |=1,3 (Sk|nS),
_” __ds,dz=4{ ° ' (7.8)
00 Gi+9 £qt g
h-_.' 1 dz, i=2,4 (webs).
0 Gi'5|

We know that spar webs are made of steel 30XI'CA (shear modulus is

GS), and upper and lower skin is made of aluminum alloy O16T (shear
—(1

modulus is G, ). Absolute values ql( ) of shear flows in self-balanced state are

—(O)| _ O] _ 7O _|[z®

4, |=92 |=9s |T |4,

equal: . Substituting (7.8) into (7.4), we get

SVBd = . j( )dz+h j( )dz+
+b - j( )dz+h j( )dz=
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N2
=2-(B(1)) . b + h X
G,:0, Gg-6

f(50 i
x_[( -cosh az) dz =
0

=2-(§(1))- b + h X
GA'az Gs'51

1 . Z
x| —-sinhaz-coshaz +— =... (7.9)
2a 2 )\,
Then, we calculate &' from (7.4) as
—0Y
g o (MR)
Mn"-Mn
o, = dx = dx +
- é-! n’ In ‘(‘)‘ ES ’ IRR
oy \2 2
Cesc (MSS)C) g (Ml(leZ)
+ dx + I dx +
0 s’ 0 Es ’ IFR
— - 2
Zrrs (MSF)B) (MglzB)
+ dx + dx. (7.10)
0 S FFB S IRFB

To find these integrals, we can use analytical methods or the
Vereschagin’s rule (it will be described later).

A, is calculated as follows:

A =47+ &7 45 =4+ 470
¢ o) F
4 4N N()
WBN zZi Zi
Zl!
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4 2s 1) (F)
WEa = ”'qi —dsdz;
i=1 00 Gi al
5 4 ) 2 (F)
Mn - M
T=Zf EJ”dx. (7.12)
n=1 g n n

All calculations are similar to those we perfomed to find &, ,, but here we
have to multiply diagrams in the unit state by diagrams in the F-state:

e q® N e qW  \(F)
A\ll\I/:B’N =2.IN21 Nzl dZ+2-J‘N21 sz dZ=
» E-A  E-A,
—(1) (1)
legz) dZ —

N(le)(NzElL+Nf’f) /N(zll).(NZEZL+Nsz)

A,

0

—) _. -
2.C; .smhaz-(A-Al-z+C1-S|nhaz)dz+

E-A,

2.CcM . sinh az-(A-A,-z-C, -sinh az)dZ B
E-A, -

+

O Sy

0

2.cH £
— -(2A-Iz-sinhazdz+
E

c. 4 C, ¢
+—iujsmh2azdz——iszmhzazdz -
A 1 A

1 2 0
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_2. c

V4
(2A-Iz-sinhazdz+
0

£
+Cl (A, _Al)-_[sinhzazdzj =
A A,

—(1) 7
=2 -G | 2A- (— coshaz—i smhaz) +
E . a a’ .y
C. (A -A) [
+— (A, 1)- 1 -sinhaz-coshaz—i) =... (112
Al'AZ \Za 2 z=4¢
Now we calculate 4%
s 2s =@ _(F) ¢ W) ()
AYBA = 9 9 gsdz=p-[I Y9 g4
ol |=1‘!-'!- i 0, '!- A9
(=@ () (=W _(F) ¢~ (F)
+h qu 2 +b-jq3 3 dz+h jq‘l i gz =
0 s O 0 GA' 2 0 s 'Y
2b  f—
=GA-52 0q1 (af* +a; )d2+

0
h f_(l) EL
+ ‘[ |B -coshazz-(q2 —B-coshaz)dz+
0

+j§(l) coshaz-(qs" —B-cosh az)dzj =
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_2.b-BY.q" ¢ 2.b-B-B"

coshazdz + cosh®’azdz +
65 1 s
(1) ~EL ¢ r.2W ¢
+h B4, Icoshazdz—h B-B Icoshzazdz+
Gs' 2 0 Gs' 2
h.BO. qEL! h-B. B()/
+ _"coshazdz— Icoshzazdz—
Gs' 2 0 Gs 2

~ 2_b_§(1)_qu . h.B(l).(q§L+q4 )
G,-5, G. -5,

J-Icoshazdz+
0

+(2bBB() 2.h.8.8"

G, -6, G, - 6,

] Icoshz azdz =
0

2.b- EL h-B(l)- EL+ EL Z
_| 2P 8" ql + (q2 q4) -i-coshaz +
GA 52 Gs'52 a 2=0
2-b-B-B"” 2-h.-B-B”
+ X
G, -9, G, - 6,
1 . Z
x(—-smhaz-coshaz+—) =... (7.13)
2a 2 )|,_,
At last, we find 477 :
—(1) (F) lor (1) (F)
Z“‘Mn M _ J‘ MRR MRR dX+
n=1 g 0 Es'lRR
lrsc (1) (F) VIR VIG
+I Mesc - Megc dx IMFR Mer dx +
0 Es' FSC 0 s "'FR
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e (1) (F) e (1) (F)
N ‘.- Mers - Mccg dx + J- Mrrs + Mgeg dx 7.14)
0 ES ’ IFFB 0 ES ’ IRFB

These integrals can be calculated using analytical methods or the
Vereschagin’s rule. The latter is a more obvious way but it can be used only
when at least one of two moments is a linear function or a constant value. In
our case, this condition is always fulfilled, so we can use Vereschagin’s rule for
all beams.

¢
To calculate the integral Il\/ll(x)- M, (X)dX , we have only to find
0

for the first diagram |\/|1(X) and
multiply the area of the first diagram A, by the value of M, at the

the centre of gravity coordinate X, ;

coordinate X,

4
IMl(x)-Mz(x)dx =iA1-I\/|2(xC_g_l). (7.15)
0

In these formulae, we use “+” when |\/|1 and |\/|2 diagrams are co-

directed, and “-” when they have opposite directions.
For example, for diagrams shown in Fig. 7.1, we get (for £ =2 m)

3
=_2'30.10=-1oo (sz-m3). (7.16)
2 3
M, kN-m M, kN-m

W m-..l
30 l [ I

Figure 7.1. Example diagrams of bending moments |\/|l and |\/|2
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If any diagram (or both) is not triangular (Fig. 7.2), we have to consider it
as the sum of two diagrams and perform calculations by the following formulae:

Z £
[M, <M, dx =j(|v|11+|v|12)-(|v|21+|v|22)dx =

0

jM -M,, dX +_"M11 M,, dX +
.
kA

1+ M, dX +_|'M12 -M,, dx . (7.17)
0

All integrands in this final formula are moments with triangle or constant
diagrams. Thus, we can calculate them by the Vereschagin’s rule.

15 M, M,,
5 m
e~ = +
W10 10 10

M2 M21 M22

W=|5||||||||+W
5
15 10

Figure 7.2. Example diagrams of bending moments |\/|l and |\/|2

7.3. Total diagrams

After we calculated coefficients in canonical equations ij , AjF , We can

find the unknown values X, and X, from (7.1).

We start with calculating total values of normal forces, shear flows,
bending moments, and constraint forces. To do this, we simply sum the

corresponding values in F-state, first unit state (multiplied by Xl), and second
unit state (multiplied by X, ):
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LS,

(2

NZ =N £ NZ7 - X, +N37 - X, ,
o =, 03,
MZ = MO+ MY X, + MY X
S¥=S +57.X,+57.X,,

Il
=
N

I
=
N

n=1.5:

1 =1..11.

(7.18)

It is convenient to present these calculations as a table (Tables 7.4 and

7.5).
Table 7.4
Calculation of total normal forces and total shear flows
Z, m 0
NgFl)Ar ¥ + + ¥
N§F2)13 7 7 F ¥
N(zl)-X1 0 + + +
N(f)-xz 0 T ¥ ¥
szl,4 = N§|=1),4 +N(zli,4 X, +N(221),4 X, 0 + + +
NZZZ’3 = N§F2)3 + N(Z:L;B Xl +N(222),3 XZ 0 + + +
(F) |~~~
1,3 L I L Il L I L |
;) SRR R A Fo
;) RN e [
a. X, 1 e T
C_](Z)-Xz e b e
r _F, =0 —(2) |~~~
q1,3— 1,3 +q1,3-X1+q1,3-X2 | L [ L L |
qf=q§F)+c_|(21)-X1+c_|(22)-x2 o oM A 4
aZ =qF +q X, +q) - X, R O T
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Table 7.5

Calculation of total distribution diagrams of bending moments in beams

i ROOt StF-s_tate, Total Formulae for the moments for each of
riangle |1 unit state, diaarams states
beam [2" unit state, 9
c 5 F .
] M) =M. ;
e g ME:ILB))=M(21)'X1 ;
1. RR - . ~L | ) M(2)=O;
1 it _(l)
Mé)=|\/|2—|\/|2 - X,
F _N-
M) =0
—1) (1) _
= M(A) - M3 * Xl ’
- A | E A (2) (2)  (2) _
2. FSC ‘ ([T Mgy =My =Ms - X, |
C A . -
| M(}i\)='\"gz)'xz—'\/'gl)'x1:
—(2)
I\/Ié) =Mz - X, .
I\/I(FB) = M{ - M; :
MO (W M) x, ;
A B
S M) =M =M 17X, ;
g (B) (A) 2
8.FR | A | AT —1(2)
B M(ZA) =Mi";
[(LITTTTTT
' ) MZ =M/ M’ =M ). X
() — VT V2 mIVEL ® 2 t
H(MD+M )X, .
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End of Table 7.5

Root F-state,

i st s Total Formulae for the moments for each of
riangle |1° unit state, di
beam 2" unit state,| 2'adrams states
MF=0:
| M =0
A
4.FFB | f0eou—t | —((2)  —(2) —"(2) _
o e Mgy =My =Mt X
[] 7] —"( ) _
Moy =M@y =M s - X, ;
E B M(E) = M(B) =M/ +M7;
£ B M(l) =0;
5. RFB TTTTTT] @ _ @) _ 2@ _
’ ) M) =M =M1 X,
QIITTTTI]
E : ME = MZ =MI+MI M 5 - X,

Fig. 7.3 shows total distribution diagrams of normal forces szi and shear

flows qiZ

. Total distribution diagrams of bending moments in the root triangle

and fuselage beams are shown in Table 7.4 (refer to Fig. 7.4 to see total
constraint forces according their actual directions).

After we calculated total normal forces, shear flows, and bending
moments, we have to perform the deformation check of the stress state of the
wingbox. The check shows whether calculations are correct and accurate or
not. For this perpose, we have to calculate the displacement which we already
know. For example, we can consider any mutual displacement at points A, B,

or C as they should be equal to zero.
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Figure 7.3. Total distribution diagrams of normal forces and shear flows
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Figure 7.4. Total forces in constraints
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8. DEFORMATION CHECK

To perform the deformation check, we should choose a basic system. It
has to differ from the basic system in the F-state.

For example, we choose a basic system in which constraints # 3 and
#11 (Fig. 2.1) are removed (Fig. 8.1). Then we have to apply the unit force

Xd =1 at points B or C instead of one thrown out constraint in the same
direction. We apply the force X4 =1 at point B . In this case, we have to find

the generalized displacement at point B at the direction of force X4 =1.
Point B belongs to FSC, FR, and FFB.

Figure 8.1. Basic system for deformation check

—(d
Let us determine values and directions of forces Si( ) in the constraints.
We find them from the equilibrium equations for the FSC and the wingbox
(Fig. 8.2):

s’ =5 =8 =58 =o;

cd) @) _z) —(d)=§(d)_1

SZ=4=5=7 8 =

(8.1)
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Figure 8.2. Constraint forces in basic system for deformation check

In the state Yd =1, the wingbox is loaded by the self-balanced system
of forces, and normal forces and shear flows are

where

—(d
Fig. 8.3 shows distribution diagrams of normal forces N(zi
—(d)

flows g,

NG (z) (—1)I+1 smhaz
_( )_( 1)'+ B.coshaz,

()

c@___ S+ _ 1
" " sinhas  sinha?’
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2-S|nha/__2-sinha/'

(8.2)

(8.3)

and shear



//

Figure 8.3. Diagrams of distribution of normal forces and shear flows
instate Xg =1

Force couples at points A, B, and C (see Fig. 8.2) give moments
Mid=X".h=5".h=5"-h=h. 6.4

—(d
Bending moments M ) are transferred from the wingbox to the root
triangle structure at points B and C, so we have to resolve them into projections
perpendicular to the beams FFB, FR, and RFB (Fig. 8.4). Fig. 8.5 shows
distribution diagrams of bending moments in the beams.
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Figure 8.4. Loading of root triangle structure in state Xa =1

Let us find generalized horizontal displacement at point B. It is calculated
by the Mohr’s formula

This displacement should be equal to zero.

The terms of (8.5) are calculated in the similar way as the coefficients in
canonical equations. However, in this case we have to consider two states, F-
state of the basic system and the unit state of basic system chosen for
deformation check.

We have to find the percentage of calculation errors by the formula
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2-|D, - D, |
D.|+[D|

y = -100% . (8.6)
where D1 is the sum of all positive terms in (8.5), and D2 is the sum of all
negative terms in (8.5).

The percentage of errors must not exceed 3%0.

—(d)
a,

.
t'd) RR %ﬁf)‘ 0 0

!

—id

FSC N

g |(d) A l(d

=

FR

FFB ‘*~

| S G Gb gF'D SR L\ Q=
=

RFB —
MTII(J' /

Figure 8.5. Diagrams of distribution of bending moments in state Xa=1

75



REFERENCES

. CkonnHues, b. . HanpsikeHHOe coCTosiHMe CTPenoBUOHOrO Kpbina
[Tekct] : y4eb. nocobue / Bb. . CkonunHues, tO. E. bywkoB. — X.:
XapbK. aBnay. nH-T, 1991. — 64 c.

. CTpoutenbHaa MexaHuka netaTenbHbIX annapaTtoB [TekcT] : y4ebHuk
ONS  aBMAUMOHHBLIX cneuunanbHocTenm By3oB [/ W. ®. O6pasuos,
J1. A. bynblues, B. B. Bacunbes n gp. ; nog pea. N. ®. Obpasuosa. —
M. : MawmnHocTpoeHue, 1986. — 536 c.

. Megson, T. H. G. An Introduction to Aircraft Structural Analysis [Text] /
T. H. G. Megson. — Burlington, Ma [etc.] : Butterworth-Heinemann :
Elsevier, 2010. — 638 p.

. Zender, G.W. An Approximate Method of Calculating the
Deformations of Wings Having Swept, M or W, A, and Swept-Tip Plan
Forms [Text] / G. W. Zender, W. A. Brooks // NACA Technical Note /
National Advisory Committee for Aeronautics. — Washington, DC,
1953. — Vol. 2878. — 28 p.

76



HaB4anbHe BnaaHHS

BakyneHko Ceprin Bonognmmposuy
PeweTHikoBa PeHaTta KOcydiBHa

HAMPY)XXEHUA CTAH CTPIJTIONOAIBEHOIO KPUNA

(AHMINCBKOK MOBOIO)

Pepaktop €.B. NusiHa
TexHivyHmm pegaktop J1.0. KysbmeHko

3B. nnaH, 2013
MignucaHo oo apyky 27.05.2013

dopmaTt 60x84 1/16. Manip odc. Ne2. Odpc. apyk
YM. gpyk. apk. 4,2. O6bn.-sug. apk. 4,74. Haknag 250 np. 3amoBneHHs 184. LliHa BinbHa

HauioHanbHMin aepoKocMidHUI yHiBepcuTeT iM. M.E. XKyKOBCbKOro
«XapKiBCbKUM aBiaLlinHUN IHCTUTYT»
61070, XapkiB-70, Byn. Ykanosa, 17
http://www.khai.edu
BuaasHuuunm ueHTp «XAl»
61070, XapkiB-70, Byn. Ykanosa, 17
izdat@khai.edu

CgigouTBO NpO BHECEHHSA CcyD’ekTa BUAABHMYOI cnpasu Ao [epaBHOro
peecTpy BMAaABLIB, BUTOTOBIIOBAYIB | pO3NOBCIOAXKYBaYiB BUAABHUYO!
npoaykuii cep. AK Ne 391 Big 30.03.2001



