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INTRODUCTION 

This guidance manual describes the process following the stage of 
conceptual design of aircraft. Before the detailed design process could be 
started, a designer must know loads applied at structural elements, distribution 
of these loads, and internal force factors acting in structural elements. This data 
could not be obtained using numerical methods (like finite element analysis) 
because detailed geometric parameters of the structure are still unknown at this 
stage. Distribution of forces among structural elements depends on their 
rigidities, so it can be calculated using analytical methods of structural 
mechanics based on elementary parameters of the structure such as typical 
thicknesses, cross section areas, material data, etc. 

We shall use a few methods in this project including force method and the 
Papkovich theorem. All of them are based on the number of assumptions and 
simplifications that is why obtained results are not absolutely accurate but still 
more than sufficient for starting detailed design process. Calculations will give 
us the distribution of normal forces, bending moments, and shear flows acting 
in the structural elements under consideration. 

Designers use these results to design structure. After that, strength 
engineers make checking calculations of stress-strain state, usually using 
numerical methods. 

This course project is intended to study analytical methods of strength 
calculation of spatial structures consisting of plane beams and stiffened shell 
elements by calculating stress state of sweptback wingbox. 

The information presented in this guidance manual is also covered in [1]. 
More information about general methods of structural analysis, such as force 
method, is available in [2, 3].  
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1. STRUCTURAL LAYOUT AND DESIGN MODEL 
 OF SWEPTBACK WINGBOX 

Fig. 1.1 shows the structural layout of an ordinar sweptback wing with two 
spars.  

 
Figure 1.1. Sweptback wing structure: 

1 – front fuselage beam (FFB); 2 – rear fuselage beam (RFB); 3 – fuselage rib (FR); 
4 – front spar continuation (FSC); 5 – root rib (RR); 6 – front spar (FS); 7 – rib; 

8 – rear spar (RS); 9 – wingbox; 10 – end rib 

Air pressure that loads the wing is carried mostly by the wingbox because 
the structure before the front spar and behind the rear spar usually transmits 
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the load to the wingbox. This means that such structural elements as slats, 
aileron, or flaps have no influence on the wingbox rigidity and load carrying 
ability. 

Typically, wing structure has longitudinal elements that support the wing 
skin (stringers). To simplify the model, we assume that the skin carries only 
shear loads while tensile loads are carried only by spar caps. In such a model, 
areas of spar caps represent not the actual areas but the sum of cross section 
areas of skin, stringers, and caps themselves. Thus, it is assumed that the 
wingbox consist only of spars and upper and lower skins. Cross section of the 
wingbox model is shown in Fig. 1.2. 

 

 
Figure 1.2. Cross section of wingbox:  

FA , RA  – cross section areas of front and rear spars; wδ  – thickness of spar webs; 

pδ  – thickness of upper and lower skins (panels) 

Root triangle is a structure consisting of a root rib, a front spar 
continuation, and a fuselage rib (see triangle ABC  in Fig. 1.1). 

We do not consider skins in root triangle in order to simplify the model. In 
real structure, lower skin could indeed be not load-carrying due to landing gear 
situated in root triangle. To crutially simplify calculations, we remove upper skin 
though it becomes a shortcoming of the model. It should be noted that this fact 
does not have much effect on final results, especially for structures with thin 
skin. 

Design model is an idealized spatial system of structural elements jointed 
by ideal connections. For this system and for its components, the structural 
mechanics laws are valid. Some assumptions made in the model are listed 
below: 

1. Wingbox and all its elements deform linearly, so relation between 
stress and strain is linear, and displacements are small. 

2. Two-spar wingbox is a membrane shell with a cross section that is 
absolutely rigid in its plane and is flexible outside it. 
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3. Wing ribs are located continuously by the length of the wingbox; they 
are absolutely rigid in their planes and flexible outside them. 

4. Axial loads (normal stresses) are carried only by spar caps. 
5. Spar webs and skins carry only shear loads (there are only shear flows 

in them, no normal stresses). 
6. Elements of root triangle and fuselage structure (RR, FR, FSC, FFB, 

RFB) are planar beams; they are finitely rigid in their planes and 
absolutely flexible outside them. 

7. Upper and lower skins of a root triangle ABC  do not carry loads.  
8. Fuselage structure composed of beams FR, FFB, RFB is a spatial 

statically determinate system. 
Outer wing (composed of wingbox and FSC) is attached to the fuselage 

rib at points B  and C  (Fig. 1.3). 

Figure1.3. Design model of wing 

System as a whole has the same degree of static indeterminacy as the 
outer wing because the fuselage structure is statically determinate. There are 
two ideal cylindrical hinges at point B  and two ideal spherical hinges at 
point C  (Fig. 1.4). 

The wingbox jointed with FSC is a spatial disk, so it has six degrees of 
freedom. Each cylindrical hinge constrains two degrees of freedom in the 
system; each spherical hinge takes away three degrees of freedom. So we 
shall possibly have a four times statically indeterminate structure. It is desirable 
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to introduce some simplifications to the model in order to make calculations 
easier. We can exclude constraints 1 and 2 (see Fig. 1.4) because leaving only 
one vertical constraint is enough for points B  and C . It is valid becasue FSC 
and RR are both planar beams which do not have normal stresses in 
transverse direction according to the beam theory. 

Figure 1.4. Design model of outer wing 

Fuselage rib is a statically determinate beam. FR is attached to the 
fuselage in the way shown in Fig. 1.5. 

 
Figure 1.5. Fuselage rib fixation 

Fig. 1.6 shows how FFB and RFB are attached to fuselage frames. Due 
to the symmetry of the aircraft, we can consider one half of the structure. Thus, 
we should apply constraints to the plane of aircraft symmetry: vertical 
deflections are allowed, but horizontal deflections (outside the plane of 
symmetry) are not. 

The input data for course project include: 
a) areas of front and rear spar caps, FA  and RA  (see Fig. 1.4); 
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b) moments of inertia of front and rear fuselage beams, fuselage rib, and 
root rib, FFBI , RFBI , FRI , RRI  correspondingly; 

c) thickness of front and rear spar webs, wδ ; 

d) thickness of upper and lower skins (panels), pδ ; 

e) distance from the front spar to the point of load application, Dx  (it is 
assumed that aerodynamic forces are reduced to the resultant force, 
Fig. 1.7); 

f) wing sweep angle, χ ; 

g) wingbox length, width, and height, , b , h  correspondingly; 
h) fuselage diameter, d ; 
i) resultant aerodynamic force, F ; 
j) material properties. 
 

 
Figure 1.6. Front and rear fuselage beams fixation 

Moment of inertia of FSC is the same as moment of inertia of the front 
spar. The length of FSC can be calculated as FSC b tan χ= ⋅ . 

Fig. 1.7 shows the diagram of a sweptback wing with dimensions, and 
Fig. 1.2 gives a cross section of a wingbox.  

Task variants for the course project include the parameters FA , BA , 

wδ , pδ , and Dx  as well as the type of basic system. Other parameters and 

material properties are invariant. 
All beams (i.e. RR, FR, FSC, FFB, and RFB), spar webs, and caps are 

made of steel 30ХГСА. Upper and lower skins are made of aluminum alloy 
Д16Т. Properties of these materials (Young's modulus E , shear modulus G  
and yeild stress yσ ) are given in Table 1.1. 

The results of the calculations include: 
a) diagrams of normal forces distribution in the spar caps, diagrams of 

shear flows distribution in spar webs, upper and lower skins; 
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b) diagrams of bending moments distribution in the elements of a root 
triangle (RR, FR, FSC) as well as in FFB and RFB; 

c) forces in the constraints. 
The course project is mainly intended to find out how loads are distributed 

among structural members of the root triangle. Thus, the most important results 
are the diagrams of bending moments in five beams of the root triangle. 

Table 1.1
Materials properties 

Material E, MPa  G, MPa  y , MPaσ  

30ХГСА 52 10⋅  
47.7 10⋅  1250  

Д16Т 47.2 10⋅  
42.8 10⋅  280  

 

Figure 1.7. Sweptback wing dimensions 
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2. ANALYSIS OF THE GIVEN SYSTEM 

In order to check the stability and find out the degree of static 
indeterminacy, the given system must be properly analysed. Firstly, we carry 
out the kinematic analysis, and then check the results with statical analysis. 

Outer wing (wingbox and front spar continuation) is attached to the 
fuselage structure (front fuselage beam, rear fuselage beam, and fuselage rib). 
This fuselage structure is immovable and statically determinate, so we should 
conduct the analysis only for the outer wing. 

Outer wing is attached to the fuselage rib by eight rods (1...3, 7...11). It 
consists of two disks, one spatial (wingbox) and one planar (FSC). How the 
front spar continuation is connected to the wingbox (more exactly to the front 
spar) could be represented by three rods 4..6 (Fig. 2.1). 

 

 
Figure 2.1. Numbering of constraints 

The movability of the system (Mov) can be calculated using the formula 

 spatial planar 0Mov 6 D 3 D C C ,= ⋅ + ⋅ − −  (2.1) 

where spatialD , planarD  is a number of spatial and planar disks in the system, 

correspondingly; 
C  is a number of rods (constraints) in the system; 

0С  is a number of support rods (constraints). 
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Substituting spatialD 1= ; planarD 1= ; C 3= ; 0C 8=  into (2.1), we 

obtain 

 Mov 6 1 3 1 3 8 2.= ⋅ + ⋅ − − = −  (2.2) 

This result means that the system is possibly two times statically 
indeterminate. 

Being a necessary but not sufficient condition of geometrical stability, 
kinematic analysis assesses the system quantitatively. Thus, we have to carry 
out a statical analysis to qualitatively assess the system. 

For this we have to compose the matrix of coefficients for the equations of 
static equilibrium. Instead of ideal rods, we apply forces iS  (i  varies from 1 to 
11, Fig. 2.2). 

Figure 2.2. Forces in constraints 

We have three equilibrium equations for FSC, 

 

y 1 6

z 2 3 4 5

K 3 4 6 FSC

F 0, S S 0 ;

F 0, S S S S 0 ;

M 0, S h S h S 0 ,

= + =

= + − − =

= ⋅ − ⋅ − ⋅ =

∑
∑
∑

 (2.3) 

and six equations for the wingbox, 
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x 9 10

y 6 11

z 4 5 7 8

LM 4 7

MO 4 5

MN 6 9

F 0, S S 0 ;

F 0, S S 0 ;

F 0, S S S S 0 ;

M 0, S h S h 0 ;

M 0, S b S b 0 ;

M 0, S b S h 0 .

= + =

= − =

= + + + =

= ⋅ + ⋅ =

= ⋅ + ⋅ =

= ⋅ + ⋅ =

∑
∑
∑
∑
∑
∑

 (2.4) 

Now we have the system of linear equations. The matrix of coefficients for 
it has m 11=  columns and n 9=  rows: 

 

1 2 3 4 5 6 7 8 9 10 11

FSC

S S S S S S S S S S S

1 0 0 0 0 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0

0 0 h h 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 1 0 1 1 0 0 0

0 0 0 h 0 0 h 0 0 0 0

0 0 0 b b 0 0 0 0 0 0

0 0 0 0 0 b 0 0 h 0 0

⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

(2.5)

 

To be geometrically stable, a system must have a matrix which rank is 
equal to the number of rows or number of columns, whichever is less. 
Concerning our problem, we must have non-zero determinants for any of 55 
possible square matrices which could be obtained by striking out any two 
columns in (2.5). 

In the course project, the statical analysis is used to check the stability of 
the basic system. In this case, columns which should be crossed out 
correspond to constraints which are removed to get the basic system, and the 
only condition required is that the deterimant of the obtained square matrix is 
non-zero. 
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3. CHOICE OF BASIC SYSTEM 

We have proved that outer wings are attached to the fuselage structure in 
a statically indeterminate way. The degree of static indeterminacy is two. Thus, 
we have to choose some method of structural mechanics for statically 
indeterminate problems. 

We can solve the problem by different methods (for example, the one 
covered in [4]) but we choose the force method because it suits our purpose 
best. The order of calculation for our problem is typical for any statically 
indeterminate problem solved by the force method: 

1. Choose basic system. 
2. Calculate normal forces and shear flows in the outer wing in loaded 

state (also called F-state). Forces and shear flows in the wingbox are 
calculated using the elementary and self-balanced state of the 
wingbox.  

3. Calculate bending moments in the root triangle in loaded state. 
4. Calculate normal forces, shear flows, and bending moments in the 

basic system in the first unit state.  
5. Calculate normal forces, shear flows, and bending moments in the 

basic system in the second unit state.  
6. Calculate coefficients of equations canonical for the force method; 

determine forces 1X  and 2X . 
7. Draw total diagrams of distribution of normal forces, shear flows, 

bending moments, and constraint forces. 
8. Perform deformation check. 
To apply the force method, the chosen basic system must be 

geometrically stable and statically determinate. To choose it, we have to 
remove two redundant constraints conforming these conditions. We can 
remove any 2 of 11 constraints (the total number of possible basic systems is 

2
11C 55= ), but the basic system should be geometrically stable. Some of 

possible 55 basic systems are not stable. 
To prove that the basic system conforms conditions, we have to strike out 

two columns (those corresponding to removed constraints) in (2.5) and to find 
its determinant. The determinant must be non-zero. 

Fig. 3.1 (a-f) shows examples of basic systems. The points where 
constraints were removed are written near the figures. 
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Figure 3.1. Examples of basic system 
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As an example, we shall consider the basic system with constraints 1 and 
3 (at point B ) removed (Fig. 3.2). 

 

Figure 3.2. Chosen basic system 

To prove that the chosen basic system conforms to conditions, we strike 
out first and third columns in (2.5) and find the determinant of the obtained 
matrix:  

 

2 4 5 6 7 8 9 10 11

FSC

3

S S S S S S S S S

0 0 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0

0 h 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 1 b h

0 1 1 0 1 1 0 0 0

0 h 0 0 h 0 0 0 0

0 b b 0 0 0 0 0 0

0 0 0 b 0 0 h 0 0

− −
− −

− = ⋅

 

(3.1)
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The determinant is non-zero, so the chosen basic system is geometrically 
stable. The system of equilibrium equations has a unique solution and is 
sufficient to find the forces in constraints for the basic system. 

To obtain the equivalent system from the basic system, we apply external 
load (F ) and forces 1X  and 2X  instead of removed constraints. These forces 
are unknown and have to be calculated. The equivalent system for this basic 
system is shown in Fig. 3.3.  

Figure 3.3. Equivalent system 
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4. BASIC SYSTEM IN LOADED STATE 

4.1. Constraint Forces 

The basic system in loaded state (F-state) is shown in Fig. 4.1,a.  
 

 
Figure 4.1. Basic system in F-state and constraint forces: 

a – basic system and external load; b – constraint forces in outer wing 
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Let us determine values and directions of forces iS  in constraints. For 
the purpose, we use equilibrium equations for FSC and wingbox (Fig. 4.1,b). 
We write them so that to instantly find an unknown value with each following 
equation. For FSC, first two equations are: 

 
y 6

L 4 4

F 0, S 0;

M 0, S h 0 S 0.

= =

= ⋅ = ⇒ =

∑
∑

 (4.1) 

The following four ones are for a wingbox: 

 

LM 7 7

y 11 11

MO 5 5

z 7 8 8

F
M 0, S h F 0 S ;

h
F 0, S F 0 S F ;

M 0, S b 0 S 0 ;

F
F 0, S S 0 S .

h

⋅
= ⋅ + ⋅ = ⇒ = −

= − = ⇒ =

= ⋅ = ⇒ =

⋅
= + = ⇒ =

∑
∑
∑
∑

 (4.2) 

The sum of forces for front spar continuation is 

 z 2F 0, S 0 ;= =∑  (4.3) 

Finally, we use two remaining equations for the wingbox to get 

 

( )
( )

( )

MN 9 D

D
9

D
x 9 10 10

M 0, S h F b x 0

F b x
S ;

h
F b x

F 0, S S 0 S .
h

= ⋅ + ⋅ − = ⇒

⋅ −
⇒ = −

⋅ −
= + = ⇒ =

∑

∑

 (4.4) 

Real direction of forces is shown in Fig. 4.2. 
Next we have to find normal forces in spar caps and shear flows in skins 

and spar webs. Actually, we have a two-spar wingbox with a rectangular cross 
section loaded by given forces. Let us check whether this structure is statically 
determinate. For this purpose, we cut the wingbox by the plane z const=  
(Fig. 4.3) and consider equilibrium of the cut portion. Internal force factors 
acting in the section are forces iN  in spar caps and shear flows iq  in skins 
and webs. Totally there are eight unknown values, but we have only six 
independent equilibrium equations. So, the two-spar wingbox with a rectangular 
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cross section is twice statically indeterminate. This problem can be solved by 
different methods, but we shall use the Papkovich theorem which was derived 
specifically for a wingbox. This theorem claims that real stress state of a 
wingbox can be considered as sum of two states, elementary (EL state, the one 
that conforms equilibrium equations) and self-balanced (SB state, the one 
calculated from the condition of minimum complementary potential energy). 

 

Figure 4.2. Constraint forces in basic system 

 
Figure 4.3. Cut portion of wingbox 
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Let us set the notation of wingbox parts. Spar caps 1 and 4 have their 
cross section areas, 1A  and 4A , so that 1 4 FA A A= = . So are spar caps 2 

and 3, 2 3 RA A A= = .  
The similar principle works with thicknesses of wingbox skins: 

1 3 wδ δ δ= =  and 2 4 pδ δ δ= = , respectively. 

4.2. Elementary State 

Elementary state of a wingbox is calculated using the elementary beam 
theory of bending and free torsion of the thin-walled once-closed bar. Two-spar 
wingbox is a thin-walled bar with once-closed contour of a rectangular cross 
section. Skins and spar webs of the wingbox do not carry normal forces, and 
spar caps carry normal forces only. 

Normal Forces in the Caps 

Normal stresses in the i-th spar cap EL
z iσ  are calculated by the formula 

 
EL x i i
z i

x x

M y F z y
,

I I
σ ⋅ ⋅ ⋅

= − = −  (4.5) 

where xM F z= ⋅  is a bending moment in the considered cross section 

( )0 z≤ ≤ ; 

i

h
y

2
= ±  are coordinates of the i-th spar cap( )i 1,4= ; 

24 4
2

x i i i
i 1 i 1

h
I A y A

2= =

⎛ ⎞= ⋅ = ⋅ ⎜ ⎟
⎝ ⎠

∑ ∑  is a moment of inertia of the cross 

section in centroidal principal axes; 

iA  is a cross section area of the i-th spar cap ( )i 1,4= . 

Let us determine normal forces using (4.5): 

 
EL EL
z i z i i i

x

F z h
N A A

2 I
σ ⋅ ⋅

= ⋅ = ⋅ =
⋅

∓  
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( )
i

i4 2

i
i 1

F z h A
C A z ,

h2 A 2
=

⋅ ⋅ ⋅
= = ⋅ ⋅

⋅∑
∓ ∓  (4.6) 

where 

( )
4 2

i
i 1

F h
C

h2 A 2
=

⋅
=

⋅∑
 is a constant coefficient. 

Values of 
EL
z iN  depend on the z -coordinate. That is why we have to 

calculate them for several z -values: z 0; 1; 2; 3 m= . It is convenient to 

write the values of 
EL
z iN  in the table (Table 4.1). 

Table 4.1
Calculation of normal forces in elementary state 

z, m  0 1 2 3 
EL
z1N  0    
EL
z2N  0    
EL
z3N  0    
EL
z4N  0    

 
Fig. 4.4 shows distribution diagrams of normal forces. 

Shear Flows in the Cross Section 

Sign convention: We can assume that the positive direction of shear flow 
is clockwise. 

Shear flows in the elementary state can be determined by the formula: 

 
EL EL EL
i p i 0q q q , i 1,4 ;= + =  (4.7) 

 EL x x
p i 24

x
i

i 1

F S ( s ) F S ( s )
q ,

I h
A

2=

⋅ ⋅
= =

⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

∑
 (4.8) 

where 
EL
p iq  are shear flows in the opened contour; 
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F  is a projection of the resultant aerodynamic force on the y -axis (in our 
case, the projection of the resultant aerodynamic force is equal to the resultant 
aerodynamic force); 

xS ( s )  is a current value of the cross section static moment in centroidal 
principal axes (Fig. 4.5); 

EL
0q  is a shear flow at the origin of angular coordinate S origin (point 0 in 

Fig. 4.5) (it is invariable over cross section); 

xI  is a cross section moment of inertia in centroidal principal axes. 

 
Figure 4.4. Diagrams of normal forces distribution 

 

 
Figure 4.5. Static moment 
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To calculate elementary shear flows, we have to: 
1. Build the diagrams of current values of a cross section static moment 

( )xS s . To do this, we have first to determine the origin of the 

angular coordinate s  (see Fig. 4.5). 

2. Calculate the value of a shear flow 
EL
p iq  by (4.8) and determine its 

direction. For this purpose, we have to consider equilibrium of the 
element KLMNOP  (Fig. 4.6; this element is also shown in Fig. 4.4). 
This element is a portion of a spar cap with adjacent skin and spar 
web. The length of this element is dz . The distribution diagram of 

shear flows 
EL
p iq  is shown in Fig. 4.7,a.  

3. Calculate values of shear flows 
EL
0q . 

 

 
Figure 4.6. Portion of spar cap with adjacent skin and web 

 

We can choose the direction of EL
0q  arbitrary, for example, anticlockwise 

(Fig. 4.7,b). From the equilibrium condition, we get 

 ( )EL EL
3 F 0 d

p p

M 0, q ds q ds F b x 0 .ρ ρ= ⋅ ⋅ − ⋅ ⋅ + − =∑ ∫ ∫  (4.9) 
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Figure 4.7. Shear flows in elementary state: 

a – opened contour; b – closed contour; c – total shear flows 

Hence, 

 
( )EL

F 1 dEL
0

q b h F b x
q ,

2 b h

⋅ ⋅ + ⋅ −
=

⋅ ⋅
 (4.10) 

where p  is the perimeter of the contour; 

ρ  is the perpendicular to the contour element ds .  

If 
EL
0q 0< , we must reverse the direction of shear flows 

EL
0q . 

Then we calculate the total shear flows in the elementary state 
EL
iq  using 

(4.7) and build its distribution diagram (see Fig. 4.7,c).  
 
To check calculations, we can write these equilibrium equations: 

 

EL EL
y 4 2

EL EL
1 d 2 3

F 0, F q h q h 0 ;

M 0, F x q h b q h b 0 .

= − ⋅ − ⋅ =

= ⋅ − ⋅ ⋅ − ⋅ ⋅ =

∑
∑

 (4.11) 

The elementary shear flows 
EL
iq  are invariable of coordinate z , because 

the resultant force F  is a constant value along the wingbox. 
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4.3. Self-balanced State of Wingbox 

Let us show that for two-spar wingboxs, a self-balanced state exists, for 
which the resultant vectors of internal forces and moments are zero. 
Considering the cut portion of wingbox, we write six equilibrium equations 
(directions of iN  and iq  are chosen arbitrary as shown in Fig. 4.3): 

 

z 1 2 3 4

S R 1 2

Q R 1 4

x 1 3

S T 1 2

y 2 4

P 0, N N N N 0 ;

M 0, N h N h 0 ;

M 0, N b N b 0 ;

P 0, q b q b 0 ;

M 0, q b h q h b 0 ;

P 0, q h q h 0 .

−

−

−

= + + + =

= ⋅ + ⋅ =

= ⋅ + ⋅ =

= − ⋅ + ⋅ =

= ⋅ ⋅ + ⋅ ⋅ =

= ⋅ − ⋅ =

∑
∑
∑
∑
∑
∑

 (4.12) 

Hence, 1 3 2 4N N N N= = − = − , or in other words, normal forces in 
spar caps in self-balanced state are equal by number but opposite by direction: 

 ( ) ( ) ( )i 1SB SB
z i zN z 1 N z .

+= − ⋅  (4.13) 

The SB
zN  (normal force in spar cap) is a function of z -coordinate. 

From (4.12), we obtain that ( )SB
1 3 2 4q q q q q z= = − = − = , or, in 

other words, 

 ( ) ( ) ( )i 1SB SB
iq z 1 q z .

+= − ⋅  (4.14) 

To find the relation between ( )SBq z  and ( )SB
zN z , we cut the portion 

of spar cap with adjacent skin and spar web (Fig. 4.8, this portion is also shown 
in Fig. 4.4). For this portion, the sum of projections of the forces onto the z -
axis must be zero: 

 ( ) ( )SB SB
z zF 0, dN z 2 q z dz 0 .= − ⋅ ⋅ =∑  (4.15) 

Hence, 

 ( ) ( )SB
SB zdN z1

q z .
2 dz

= ⋅  (4.16) 
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Figure 4.8. Portion of spar cap with adjacent skin and spar web 

In the considered structure portion, shear flows ( )SBq z  that give the 

projection onto the z -axis are codirectional because the resultant vector of 
moments must be zero. 

Taking into account the signs of ( )SB
iq z  and ( )SB

z iN z , we obtain 

 ( ) ( )SB
z iSB

i

dN z1
q z , i 1,4 .

2 dz
= − ⋅ =  (4.17) 

For the first (i=1) spar cap is subjected to tension (force 
SB
z 1N ), the self-

balanced state of the wingbox is shown in Fig. 4.9. 
 

 
Forces acting in the wingbox elements in F-state are the sum of forces in 

elementary and self-balanced state: 

 
( ) ( ) ( ) ( ) ( )i 1F EL SB
z i z i zN z N z 1 N z ;

+= + − ⋅  (4.18) 

 
( ) ( ) ( ) ( )i 1 SB
F EL EL z

i p i 0

1 dN z
q z,s q q .

2 dz

+−
= + + ⋅  (4.19) 
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Figure 4.9. Self-balanced state of wingbox 

Here, 
SB
zN  is an unknown function. To determine this function, we use 

the Castigliano variational principle (principle of minimum complementary 
potential energy). The principle claims that for linearly deformed systems, only 
real stress state gives the minimum complemenrary potential energy. Let us 
write the expression for potential energy of the wingbox. Because 

x y 0σ σ= =  and only one shear stress zsτ  (shear along the s -axis) is non-

zero, we get 

 ( )z z zs zs
V

1
U dV ,

2
σ ε τ γ= ⋅ ⋅ + ⋅ ⋅∫  (4.20) 

where 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

F F
z i z i z i

z i z i
i i i i

i i

F F
zs ii i

zs i zs i
i i i i

i i

N z N z
, ,

A E E A

dV A dz ,

q z,s q z,s
, ,

G G

dV S dz .

σ
σ ε

τ
τ γ

δ δ
δ

= = =
⋅

= ⋅

= = =
⋅

= ⋅ ⋅

 (4.21) 

Substituting this into (4.20), we obtain 
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( ) ( )( ) ( ) ( )( )2 2F F
4 4

z i i i

i 1 i 1i i i i0

N z q z,s S
U dz ,

2 E A 2 G δ= =

⎛ ⎞⋅⎜ ⎟= +⎜ ⎟⋅ ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠
∑ ∑∫  (4.22) 

where iS  are equal to the width of the skins and the height of the spar webs 

( 1 3S S b= = , 2 4S S h= = ), and  is a length of the wingbox. 
The integrand in (4.22) can be written as: 

 

( ) ( )( ) ( ) ( )( )2 2F F
4 4

z i i i

i 1 i 1i i i i

N z q z,s S

2 E A 2 G
Φ

δ= =

⋅
= + =

⋅ ⋅ ⋅ ⋅∑ ∑  

 
( ) ( )( )2i 1EL SB

4 z i z

i 1 i i

N z 1 N

2 E A

+

=

+ − ⋅
= +

⋅ ⋅∑  

 

( )
2i 1 SB

EL z
i i

4

i 1 i i

1 dN
q S

2 dz
.

2 G δ

+

=

⎛ ⎞−
+ ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠+
⋅ ⋅∑  (4.23) 

The integrand in (4.22) is a function of z -coordinate and of functions 

SB
zN  and 

SB
SB z
z

dN
N

dz
′ = , so we have a functional 

 ( )SB SB
z z

0

U z, N , N dz .Φ ′= ∫  (4.24) 

Thus, to find the function 
SB
zN , we have to minimize the functional Φ . 

We can write the Euler condition for the minimum of the functional 

( )SB SB
z zz,N ,NΦ ′ : 

 SB SB
z z

d
0 .

N dz N

Φ Φ⎛ ⎞∂ ∂
− =⎜ ⎟⎜ ⎟′∂ ∂⎝ ⎠

 (4.25) 

Let us determine the summands in (4.25) using (4.23): 
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( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

i 1 i 1EL SB
4 z i z

SB
i 1z i i

i 1 EL4
2 i 1 z iSB

z
i 1 i i

N z 1 N z 1

N E A

1 N z
1 N z

E A

Φ
+ +

=

+
⋅ +

=

+ − ⋅ ⋅ −∂
= =

∂ ⋅

− ⋅
= − ⋅ ⋅ =

⋅

∑

∑
  

 ( ) ( ) ( )i 1 EL4
z iSB

z N
i 1 i i

1 N z
N z A ,

E A

+

=

− ⋅
= ⋅ +

⋅∑  (4.26) 

where the numerical coefficient NA  is 

 
4

N
i 1 i i

1
A .

E A=

=
⋅∑  (4.27) 

Next, 

 

( ) ( )

( ) ( )

i 1 i 1SB
EL z
i i

4

SB
i 1 i iz

i 1 EL4 4
SB i ii
z

i 1 i 1i i i i

1 1dN
q S

2 dz 2

GN

1 q SS
N z

4 G 2 G

Φ
δ

δ δ

+ +

=

+

= =

⎛ ⎞− −
+ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟∂ ⎝ ⎠= =

′ ⋅∂

− ⋅ ⋅′= ⋅ + =
⋅ ⋅ ⋅ ⋅

∑

∑ ∑

  

 ( ) ( )i 1 EL4
SB i i
z q

i 1 i i

1 q S
N z A ,

2 G δ

+

=

− ⋅ ⋅′= ⋅ +
⋅ ⋅∑  (4.28) 

where numerical coefficient qA  is 

 
4

i
q

i 1 i i

S
A .

4 G δ=

=
⋅ ⋅∑  (4.29) 

Finally,  

 
( ) ( )

EL
i 1 i

SB 4 i
z

qSB
i 1 i iz

dq
1 SdN zd dzA

dz dz 2 GN

Φ
δ

+

=

− ⋅ ⋅′⎛ ⎞∂
= ⋅ + =⎜ ⎟⎜ ⎟′ ⋅ ⋅∂⎝ ⎠

∑  
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 ( ) ( )i 1 EL4
SB i i
z q

i 1 i i

1 S dq
N z A .

2 G dzδ

+

=

− ⋅′′= ⋅ + ⋅
⋅ ⋅∑  (4.30) 

Substituting the derivatives (4.26) and (4.30) into the Euler equation 
(4.25), we obtain 

 SB SB
z N z qN A N A′′⋅ − ⋅ +   

 
( ) ( )i 1 i 1EL EL4 4

z i i i

i 1 i 1i i i i

1 N 1 S dq
0.

E A 2 G dzδ

+ +

= =

− ⋅ − ⋅
+ − ⋅ =

⋅ ⋅ ⋅∑ ∑  (4.31) 

Thus, 

 SB SBN
z z

q

A
N N

A
′′ − ⋅ =   

 
( ) ( )i 1 i 1EL EL4 4

z i i i

i 1 i 1q i i i i

1 N 1 S1 dq
.

A E A 2 G dzδ

+ +

= =

⎛ ⎞− ⋅ − ⋅
⎜ ⎟= ⋅ − ⋅
⎜ ⎟⋅ ⋅ ⋅⎝ ⎠
∑ ∑  (4.32) 

Let us denote 

 N

q

A
A

α =  (4.33) 

and 

 ( ) ( ) ( )i 1 i 1EL EL4 4
z i i i

i 1 i 1q i i i i

1 N 1 S1 dq
f z .

A E F 2 G dzδ

+ +

= =

⎛ ⎞− ⋅ − ⋅
⎜ ⎟= ⋅ − ⋅
⎜ ⎟⋅ ⋅ ⋅⎝ ⎠
∑ ∑  (4.34) 

Substituting this into (4.32), we get 

 ( ) ( ) ( )SB 2 SB
z zN z N z f z .α′′ − ⋅ =  (4.35) 

The solution of this equation can be written as 

 ( )SB
z 1 2 z partialN z C sinh z C cosh z N ,α α= ⋅ + ⋅ +  (4.36) 

where 1C , and 2C are coefficients obtained from the boundary conditions, α  is 
a coefficient calculated from wingbox geometry and material properties data, 
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z partialN  is a partial solution dependent on the external load type. The partial 

solution for the single resultant force loading is zero. 

To calculate normal forces 
( )F
z iN  (i 1,4= ) in spar caps, we can use 

three equilibrium equations: xM 0=∑ , yM 0=∑ , zF 0=∑ . 

Therefore, the problem is once statically indeterminate. So, there will be only 
one self-balanced state of the wingbox. 

Let us deterimne the coefficients 1C  and 2C  in (4.36) from the boundary 
conditions for a basic system in F-state (see Fig. 4.1). First, we calculate the 
coefficients NA  by (4.27), qA  by (4.29), and α  by (4.33). In the chosen basic 

system (see Fig. 4.2), the wingbox is loaded by forces 7S  and 8S  obtained 
from equilibrium equations. The forces acting in spar caps (4.18) are the sums 
of forces in elementary and self-balanced states. For the first spar cap, we 
have 

 
( ) ( ) ( ) ( )F EL SB
z1 z1 z1N z N z N z .= +  (4.37) 

Let us specify boundary conditions for (4.36) which are applicable for the 
first spar cap: 

 ( )

SB
z1 1 2 2

F EL
z1 z1 1z

z 0, N C 0 C 1 0 C 0 ;

z , N N C sinh 0α
=

= = ⋅ + ⋅ = ⇒ =

= = + ⋅ = ⇒
 

 
( )F EL
z1 z1

1

N N
C .

sinhα
−

⇒ =  (4.38) 

Then, 

 ( ) ( )i 1SB
z i 1N z 1 C sinh z ,α+= − ⋅ ⋅  (4.39) 

and shear flows will be equal to 

 

( ) ( )

( ) ( )( )

( )

SB
z iSB

i

i 1 P EL
z1 z1

i 1

dN z
q z

2 dz

1 N N
cosh z

2 sinh

1 B cosh z ,

α
α

α
α

+

+

= − =
⋅

− ⋅ ⋅ −
= − ⋅ =

⋅

= − ⋅ ⋅

 (4.40) 
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where the numerical coefficient 

 

( )( )F EL
z1 z1N N

B .
2 sinh

α

α

⋅ −
= −

⋅
 (4.41) 

To find the direction of shear flows ( )SBq z  in skins and spar webs, we 

cut the portion and consider its equilibrium. To build the distribution diagrams of 

normal forces and shear flows, we calculate the values of 
SB
z iN  and 

SB
z iq  in 

different sections (for example, at four z -values from 0 to the length of the 
wingbox). It is convenient to present these calculations as a table (Table 4.2). 
We also have to put the signs of normal forces and shear flows into this table.  

Table 4.2
Calculation of normal forces and shear flows in self-balanced state 

z, m  0 1 2 3 
zα  0    

sinh zα  0    
cosh zα  1    

SB
zN  0 ±    
SB
zq    

 
It is not convenient to determine directions of shear flows by some signs, 

because in this case, we have to define the sign rule which could be difficult to 
imagine and understand. It is more natural to draw the directions of shear flows 
directly into the table. Students should always include units of variables listed in 

the table. For example, the filled row for 
SB
zq  could look like: 

 
SB
zq , kN

m  
 

4.4. Diagrams in Loaded State 

To build distribution diagrams of normal forces and shear flows in the 
loaded state, we have simply to sum two diagrams for elementary and self-
balanced state: 

 



35 

 

( )

( )

F EL SB
zi zi zi

F EL SB EL EL SB
i i i p i 0 i

N N N ;

q q q q q q , i 1,4 .

= +

= + = + + =
 (4.42) 

 

Using values from Tables 4.1 and 4.2, we can determine 
( ) ( )F
z iN z  and 

( ) ( )F
z iq z  by (4.42) and fill Table 4.3. Total distribution diagrams of normal 

forces in spar caps 
( ) ( )F
z iN z  in F-state are illustrated by Fig. 4.10, and shear 

flows in webs and skins – by Fig. 4.11. 
 

Table 4.3
Calculation of normal forces and shear flows in F-state 

z, m  0 1 2 3 
EL
z1,4N  ∓ ∓ ∓ ∓ 
EL
z2 ,3N  ∓ ∓ ∓ ∓ 
SB
zN  0 ± ± ± 

( ) ( )F F
z1 z4N ; N  0 ∓ ∓ ∓ 
( ) ( )F F
z2 z3N ; N  0 ∓ ∓ ∓ 

EL
0q  

EL
F 1,3q  

EL
F 2q  

EL
F 4q  

SBq   
( )F
1, 3q      
( )F
2q   
( )F
4q   
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Figure 4.10. Normal forces in spar caps in F-state, in elementary state 

and in self-balanced state 
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Figure 4.11. Shear flows in skins and spar webs in elementary state, 

in self-balanced state and in F-state 
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4.5. Loaded State of Root Triangle 

Finding the distribution of bending moments along root triangle beams, 
we have to consider moments that are transferred from the outer wing structure 
to the root triangle structure. Conventionally, moments are shown in figures as 
vectors perpendicular to the plane in which couple of forces acts. The law of 
signs for moments can be formulated as when we look from the end of the 
vector, we see the anticlockwise direction of the force couple. 

For the chosen basic system (see Fig. 4.1,a), we have forces 7S , 8S , 

9S , 10S  and 11S  at point C  (see Fig. 4.2). The root triangle structure is 
loaded by the same forces but with opposite direction. Fig. 4.12 shows the top 
view of the wingbox, the front spar continuation, and the root triangle structure. 
Forces 7S  and 8S  give a moment 1 7M S h= ⋅ , and forces 9S  and 10S  give 

a moment 2 9M S h= ⋅ . These moments load the rear fuselage beam, the 

fuselage rib, and the root rib at point C . 

 
Figure 4.12. Loading of root triangle structure 
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In the chosen basic system, the front spar continuation and the front 

fuselage beam are not loaded (because corresponding constraint forces are 
zero). 

Moments 1M  and 2M  at point C  can be resolved into projections, 

1 1M M sin χ′ = ⋅ , 1 1M M cos χ′′ = ⋅  and 2 2M M cos χ′ = ⋅ , 

2 2M M sin χ′′ = ⋅  correspondingly. The beam does not carry forces that act 
outside its plane, or in other words, the beam carries only moments whose 
vectors are perpendicular to the beam plane. Thus, the moments 1M′  and 2M′  

load only fuselage rib, and the moments 1M′′  and 2M′′  load only rear fuselage 
beam. 

Let us build distribution diagrams of bending moments in root triangle 
beams in F-state. Directions from which we look at beams when we draw 
diagrams are shown in Fig. 4.12 (small arrows). 

The root rib is loaded by shear flows 
( )F
iq  (see Fig. 4.11) and known 

forces 9S , 10S , 11S  (see Fig. 4.2). The equation of the root rib moment 

( aM∑ , see point a  in Fig. 4.13) is: 

 

( ) ( ) ( )

( )
( ) ( ) ( )( )

F F
RR 4 1

RR

F F
RR 1 4 2

M x q h x q x h ;

M 0 0 ;

M b q q h b M .

= − ⋅ ⋅ + ⋅ ⋅

=

= − ⋅ ⋅ =

 (4.43) 

The bending moment diagram is shown in Fig. 4.13. 
Front spar continuation and front fuselage beam are not loaded, so the 

bending moments in them are zero (see Fig. 4.13). 
Fuselage rib is loaded at point C  by the difference of moments 

1 1M M sin χ′ = ⋅  and 2 2M M cos χ′ = ⋅ . It is also loaded by the reaction 
force at point B, but to build the diagram we do not have to calculate it: we just 
have to know that the diagram of bending moment produced by the 
concentrated force is linear. The fuselage rib is fixed at point B  with a single 
hinge, so the moment at this point is zero. So, the fuselage rib moment 

equation is linear: ( )FR 1 2

x
M M M

b
′ ′= − ⋅ . The diagram is shown in Fig. 

4.13. 
Rear fuselage beam is loaded at point C  by the sum of moments 

1 1M M cos χ′′ = ⋅  and 2 2M M sin χ′′ = ⋅ . The RFB is fixed at the plane of 
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symmetry in such a way that there are no vertical constraints and no vertical 
forces, consequently. Thus, the bending moment in it is constant. The diagram 
is shown in Fig. 4.13. 

So, we have found all normal forces and shear flows in the wingbox as 
well as bending moments in the root triangle structure in the F-state. The 
following step is to find these internal force factors in two unit states. 

 

Figure 4.13. Bending moment diagrams in root triangle beams in F-state 
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5. FIRST UNIT STATE OF BASIC SYSTEM 

In the first unit state, we apply the unit force 1X 1=  instead of the 
vertical constraint #1  (see Fig. 2.1). Fig. 5.1 shows the basic system in the 
first unit state. 

Figure 5.1. Basic system in first unit state 

To find the values of constraint forces 
( )1
iS 1= , we have to write 

equilibrium equations for the front spar continuation and the wingbox. Solving 
these equations, we get 

 

( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

1 1
6 11

1 1 1 1 FSC
4 5 7 8

1
2

1 1
9 10

S S 1 ;

S S S S ;
h

S 0 ;

b
S S .

h

= =

= = = =

=

= =

 (5.1) 

Directions of constraint forces applied to the wingbox and FSC are shown 
in Fig. 5.2. 
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Figure 5.2. Constraint and external forces in first unit state 

For some basic systems, it can appear that the wingbox is not loaded at 
all (root rib and other beams are, however, loaded). In this case, normal forces 
and shear flows are zero, and we shall consider bending moments in the root 
triangle only. 

In case of a loaded wingbox (see Fig. 5.2), loading forces are self-
balanced (sum of forces is equal to zero). Thus, the stress state of the wingbox 
can be considered self-balanced, so no elementary forces and shear flows 
exist. Hence, forces and shear flows in the wingbox are equal to self-balanced 
ones. Normal forces can be found as (4.36):  

 
( ) ( ) ( ) ( )1 1 1
z 1 2N z C sinh z C cosh z .α α= ⋅ + ⋅  (5.2) 

Constants 
( )1
1C  and 

( )1
2C  are found from boundary conditions: 

 

( ) ( )

( ) ( ) ( )

1 1
zi 2

1 1 1
z1 1 4

z 0, N C 0 ;

z , N C sinh Sα

= = =

= = ⋅ = − ⇒
 

 
( )

( )1
1 4

1
S

C .
sinhα

⇒ = −  (5.3) 

Substituting this into (5.2), we get 
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( ) ( ) ( ) ( ) ( ) ( )1i
1 1 4i 1

zi 1
1 S

N z 1 C sinh z sinh z .
sinh

α α
α

+ − ⋅
= − ⋅ ⋅ = ⋅  (5.4) 

Shear flows are: 

 
( ) ( )

( ) ( )1
1 zi

i

dN z1
q z

2 dz
= ⋅ =   

 
( ) ( )

( ) ( )
1i 1

14 i 11 S
cosh z 1 B cosh z .

2 sinh
α

α α
α

+
+− ⋅ ⋅

= − ⋅ = − ⋅ ⋅
⋅

 (5.5) 

where 
( )

( )1
1 4S

B
2 sinh
α

α
⋅

= −
⋅

. 

Direction of shear flows 
( ) ( )1

iq z  can be found by way of considering 

equilibrium of a small portion of the spar cap with adjacent skin and web, as it 
was done in the F-state (see Fig. 4.6). 

To build distribution diagrams of normal forces and shear flows, we have 

to find values of 
( ) ( )1
ziN z  and 

( ) ( )1

iq z  in different sections (at four z -values 

from 0 to the length of the wingbox). It is convenient to present these 
calculations as a table (see Table 5.1). 

 

Table 5.1
Calculation of normal forces and shear flows in first unit state 

z, m  0 1 2 3 
zα  0    

sinh zα  0    
cosh zα  1    

( )1
zN  0    

( )1
q      

 
Fig. 5.3 shows distribution diagrams of normal forces and shear flows in 

the wingbox in the first unit state.  
Forces from the wingbox are transferred to the root triangle structure. 

Forces 
( )1
7S  and 

( )1
8S  give the moment 

( ) ( )1 1
1 7M S h= ⋅ , and forces 

( )1
4S  and 
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( )1
5S  give the moment 

( ) ( )1 1
3 4M S h= ⋅  (

( )1
3M  is equal to 

( )1
1M  but has the 

opposite direction). Forces 
( )1
9S  and 

( )1
10S  give the moment 

( ) ( )1 1
2 9M S h= ⋅  

(Fig. 5.4). 
 

Figure 5.3. Diagrams of distribution of normal forces and shear flows in first unit state

In Fig. 5.4, moments 
( )1
1M  and 

( )1
2M  can be resolved into projections as 

it was done in the F-state. After that we can build distribution diagrams of 
bending moments in root triangle beams and in fuselage beams. 

The root rib is loaded by shear flows 
( )1

iq  and forces 
( )1
6S , 

( )1
9S , 

( )1
10S  

and 
( )1
11S  (Fig. 5.5). The root rib moment equation ( aM∑ , see point a  in 

Fig. 5.5) is: 
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Figure 5.4. Loading of root triangle structure in first unit state 

 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1 1 1 1
RR 64 1

1
RR

1 1 1
RR 16

M x q h x q x h S x ;

M 0 0 ;

M b S b M .

= ⋅ ⋅ − ⋅ ⋅ + ⋅

=

= ⋅ =

 (5.6) 

The bending moment diagram is linear (see Fig. 5.5). 

Front spar continuation is loaded by the force 1X 1=  (see Fig. 5.2) at 

the left end, so the FSC moment equation ( aM∑ , see point a in Fig. 5.5) is:  

 

( ) ( )
( ) ( )

( ) ( ) ( )

1
FSC 1

1
FSC

1 1
FSC 3FSC

M x X x ;

M 0 0 ;

M M .

= ⋅

=

=

 (5.7) 
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The diagram is shown in Fig. 5.5. 
 

 
Figure 5.5. Diagrams of distribution of bending moments in first unit state 

Fuselage rib is loaded by the sum of moments, 
( ) ( )1 1
1 1M M sin χ′ = ⋅  

and 
( ) ( )1 1
2 2M M cos χ′ = ⋅ , at the right end. The FR fixing at the left end does 

not carry moments, so the value of the bending moment at the left end is zero. 
The diagram is linear (see Fig. 5.5). 
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Front fuselage beam is not loaded, so the bending moment diagram is 
zero (see Fig. 5.5). 

Rear fuselage beam is loaded by the sum of two moments, 
( )1
1M′′

 and 
( )1
2M′′

, at the left end (these moments have opposite directions). Let us show 
that they are equal by value: 

 

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 1 7

FSC FSC

FR FR

1 1 1
2 2 9

FSC FSC

FR FR

M M cos S h cos

bb
h ;

h

M M sin S h sin

bb
h .

h

χ χ

χ χ

′′ = ⋅ = ⋅ ⋅ =
⋅

= ⋅ ⋅ =

′′ = ⋅ = ⋅ ⋅ =
⋅

= ⋅ ⋅ =

 (5.8) 

Here FR  is the length of the fuselage rib. Hence, the sum of the 

moments 
( )1
1M′′

 and 
( )1
2M′′

 is zero, so RFB is not loaded and the bending 
moment diagram is zero (see Fig. 5.5). 
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6. SECOND UNIT STATE OF BASIC SYSTEM 

In the second unit state, we apply the unit force 2X 1=  (Fig. 6.1) 
instead of the constraint # 3  (see Fig. 2.1). 

 

 
Figure 6.1. Basic system in second unit state 

The order of calculations for the second unit state is the same as for the 
first one. Constraint forces are found from equilibrium equations:  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2
6 9 10 11

2 2 2 2 2
2 4 5 7 8

S S S S 0 ;

S S S S S 1 .

= = = =

= = = = =
 (6.1) 

Fig. 6.2 shows directions of these forces. 

Wingbox is loaded by the self-balanced system of forces (
( )2
4S , 

( )2
5S , 

( )2
7S , and 

( )2
8S ), so, by analogy with the first unit state, only self-balanced 

normal forces and shear flows exist in the wingbox. Normal forces can be found 
as: 

 
( ) ( ) ( ) ( )2 2 2
z 1 2N z C sinh z C cosh z .α α= ⋅ + ⋅  (6.2) 
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Figure 6.2. Constraint and external forces in second unit state 

Constants 
( )2
1C  and 

( )2
2C  are found from the boundary conditions: 

 

( ) ( )

( ) ( ) ( )

2 2
zi 2

2 2 2
z1 1 4

z 0, N C 0 ;

z , N C sinh Sα

= = =

= = ⋅ = − ⇒
 

 
( )

( )2
2 4

1
S

C .
sinhα

⇒ = −  (6.3) 

Substituting this into (6.2), we get 

 
( ) ( ) ( ) ( ) ( ) ( )2i
2 2 4i 1

zi 1
1 S

N z 1 C sinh z sinh z .
sinh

α α
α

+ − ⋅
= − ⋅ ⋅ = ⋅  (6.4) 

Shear flows are equal to  

 
( ) ( )

( ) ( ) ( ) ( )2 2i 1
2 zi 4

i

dN z 1 S1
q z cosh z

2 dz 2 sinh
α

α
α

+− ⋅ ⋅
= ⋅ = − ⋅ =

⋅
 

 ( ) ( )2i 1
1 B cosh z ,α+= − ⋅ ⋅  (6.5) 
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where 
( )

( )2
2 4S

B
2 sinh
α

α
⋅

= −
⋅

. 

Direction of shear flows 
( ) ( )2

iq z  can be found by way of considering 

equilibrium of a small portion of spar cap with adjacent skin and web, as it was 
done in the F-state (see Fig. 4.6). 

Distribution diagrams of normal forces and shear flows are built after the 

values 
( ) ( )2
ziN z  and 

( ) ( )2

iq z  were calculated in different sections (at four 

z -values from 0 to the length of the wingbox). It is convenient to present these 
calculations as a table (Table 6.1). The diagrams are shown in Fig. 6.3. 

 

 
Figure 6.3. Diagrams of distribution of normal forces and shear flows 

in second unit state 
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Table 6.1
Calculation of normal forces and shear flows in the 2nd unit state 

z, m  0 1 2 3 
zα  0    

sinh zα  0    
cosh zα  1    

( )2
zN  0    

( )2
q      

Forces 
( )2
4S , 

( )2
5S , 

( )2
7S , and 

( )2
8S  transferred from the wingbox to the 

root triangle structure give moments that are equal in value but opposite in 

direction. Forces 
( )2
7S  and 

( )2
8S  give the moment 

( ) ( )2 1
1 7M S h= ⋅ ; and forces 

( )2
4S  and 

( )2
5S  give the moment 

( ) ( )3 1
3 4M S h= ⋅  (Fig. 6.4).  

 

Figure 6.4. Loading of root triangle structure in second unit state 
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As we did it for the first unit state, we resolve moments 
( )2
1M  and 

( )2
3M  

into projections to find the moments that load beams of the root triangle and the 
fuselage structure. 

Root rib is loaded only by shear flows 
( )2

iq . Thus, the bending moment is 
zero (Fig. 6.5). 

 
Figure 6.5. Diagrams of distribution of bending moments in second unit state 
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Front spar continuation is loaded by two moments 
( )2
3M  applied at both 

ends, so the bending moment is constant (see Fig. 6.5). 

Fuselage rib is loaded by the moment 
( )2
3M′

 at the left end and by the 

moment 
( )2
1M′

 at the right end. These moments are equal, so the bending 
moment is constant (see Fig. 6.5). 

Front fuselage beam is loaded by the moment 
( )2
3M′′

 at the right end. At 
the left end, FFB is fixed so that there are no vertical constrains. Thus, the 
bending moment diagram is constant (see Fig. 6.5). 

Rear fuselage beam is loaded and fixed analogously to the FFB (it is 

loaded by the moment 
( )2
1M′′

). The diagram is also constant (see Fig. 6.5). 
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7. DETERMINATION OF CANONICAL EQUATIONS COEFFICIENTS. 
TOTAL DIAGRAMS 

7.1. System of Canonical Equations 

The system of canonical equations for the force method for two-times 
statically indeterminate problem is 

 
11 1 12 2 1F

21 1 22 2 2F

X X 0 ;

X X 0 .

δ δ
δ δ

⋅ + ⋅ + Δ =⎧
⎨ ⋅ + ⋅ + Δ =⎩

 (7.1) 

Here jkδ  and jFΔ  are generalized displacements. Generalized 

displacement means the displacement between two points in the direction of 
the corresponding generalized force. Generalized force here is a couple of unit 
forces. We have two generalized forces, the first one being a couple of forces 

1X  (one applied to FSC, and the other to FR and FFB), and the second one 

being a couple of forces 2X . 
(7.1) means that generalized displacements (at the directions of unit 

forces) are zero at points where constraints were removed. 
We understand the indices of δ  in (7.1) as follows. jkδ  is a generalized 

displacement at the point (where the unit force jX  was applied instead of a 

constraint) in the direction of the unit force jX 1=  in the k-th unit state (when 

the basic system is loaded by the unit force kX 1= ), j 1,2 ; k 1,2= = . 

jFΔ  is a generalized displacement at the point (where the unit force jX  

was applied instead of a constraint) in the direction of jX 1=  in the F-state 

(when the basic system is loaded by the external load F), j 1,2= . 

jkδ  and jFΔ  are the sums of values for the wingbox and for the root 

triangle structure: 

 
WB RT WB RT

jk jk jk jF jF jF; .δ δ δ= + Δ = Δ + Δ  (7.2) 

These values are determined by the Mohr’s formula:  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

n

n

j kj k s4 4
zi ziWB i i

jk
i 1 i 1i i i i0 0 0

jj s FF4 4
ziWB izi i

jF
i 1 i 1i i i i0 0 0

j k5
n nRT

jk
n 1 n n0

j F5
nRT n

jF
n 1 n n0

q qN N
dz dsdz ;

E A G

q qN N
dz dsdz ;

E A G

M M
dx ;

E I

M M
dx ,

E I

δ
δ

δ

δ

= =

= =

=

=

⋅⋅
= +

⋅ ⋅

⋅⋅
Δ = +

⋅ ⋅

⋅
=

⋅

⋅
Δ =

⋅

∑ ∑∫ ∫ ∫

∑ ∑∫ ∫ ∫

∑ ∫

∑ ∫

 (7.3) 

where s  is a length of the skin (b ) or height of the spar webs (h ); 

n  is a length of the root triangle beam (FR, RR, FFB, RFB, FSC), 

n 1,5= ; 

i iE A⋅  are rigidities of spar caps which carry normal forces ( )i 1,4= ; 

i iG δ⋅  are rigidities of skins and spar webs which carry shear loads 

( )i 1,4= ; 

n nE I⋅  are rigidities of root triangle beams, which carry bending 

moments ( )n 1,5= ; 

( ) ( )1 2 F
zi zi ziN ,N , N  are normal forces acting in spar caps in the first unit 

state, in the second unit state, and in the F-state; 
( ) ( )1 2 F

ii iq ,q , q  are shear flows acting in skins and spar webs in the first 
unit state, in the second unit state, and in the F-state; 

( ) ( ) ( )1 2 F
n n nM , M , M  are bending moments acting in the root triangle 

beams in the first unit state, in the second unit state, and in the F-state. 

It is convenient to combine all diagrams (
EL
ziN , 

SB
ziN , 

( )j
ziN , 

EL
iq , 

SB
iq , 

( )j
iq , 

( )F
nM , 

( )j
nM ) into tables (Tables 7.1–7.3). We do so to avoid errors then 

performing calculations and to make them more obvious. 
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Table 7.1
Distribution diagrams of normal forces in spar caps 

 F-state 1st unit state 2nd unit state 
Cap 

# 
EL
z iN  

SB
z iN  ( )1

z iN  
( )2
z iN  

1  

FC A z− ⋅ ⋅  
 

1C sinh zα⋅  
 

( )1
1C sinh zα− ⋅

 
( )2
1C sinh zα− ⋅

2  

RC A z− ⋅ ⋅  
 

1C sinh zα− ⋅
 

( )1
1C sinh zα⋅  

 
( )2
1C sinh zα⋅  

3  

RC A z⋅ ⋅  
 

1C sinh zα⋅  
 

( )1
1C sinh zα− ⋅

 
( )2
1C sinh zα− ⋅

4  

FC A z⋅ ⋅  
 

1C sinh zα− ⋅
 

( )1
1C sinh zα⋅  

 
( )2
1C sinh zα⋅  

Comment. C  is the coefficient from (4.6). 

Table 7.2
Shear flows in wingbox 

 
F-state 1st unit state 2nd unit state 

EL EL
F 0q q+  

SB
iq  

( )1

iq  
( )2

iq  

1. 
Upper 
skin 

 
EL EL
F1 0q q+  

 
B cosh zα⋅

 
( )1

B cosh zα⋅
 

( )2
B cosh zα⋅

2. 
Rear 
spar 
web 

 
EL EL
F 2 0q q+  

 
B cosh zα⋅

 
( )1

B cosh zα⋅
 

( )2
B cosh zα⋅

3. 
Lower 
skin 

 
EL EL
F1 0q q+  

 
B cosh zα⋅

 
( )1

B cosh zα⋅
 

( )2
B cosh zα⋅

4. 
Front 
spar 
web 

 
EL
0q  

 
B cosh zα⋅

 
( )1

B cosh zα⋅
 

( )2
B cosh zα⋅
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Table 7.3
Distribution diagrams of bending moments in root triangle and fuselage beams 

 F-state 1st unit state 2nd unit state 

1. RR  
 2M  

 

 
( )1
2M  

 

2. FSC  
 

 
( )1
3M  

 

 
( )2
3M  

3. FR 
 

 1 2M M′ ′−  
 

( ) ( )1 1
1 2M M′ ′+  

 

  

 
( )2
1M′

 

4. FFB   
 

 
( )2
3M′′

 

5. RFB  
 1 2M M′′ ′′+  

  
( )2
1M′′

 
 

After filling the tables, we have to calculate six coefficients of canonical 
equations: 1FΔ , 2FΔ , 11δ , 12δ , 21δ , and 22δ  (note that 12 21δ δ= ). 

7.2. Example of Calculating Coefficients in Canonical Equations 

Let us discuss how to find 11δ  and 1FΔ . They are calculated by formulae: 

 

( ) ( )

( ) ( )

( ) ( )n

WB RT WB WB,N WB,q
11 11 11 11 11 11

1 14
zi ziWB,N

11
i 1 i i0

1 1s4
WB,q i i
11

i 1 i i0 0

1 15
n nRT

11
n 1 n n0

; ;

N N
dz ;

E A

q q
ds dz ;

G

M M
dx .

E I

δ δ δ δ δ δ

δ

δ
δ

δ

=

=

=

= + = +

⋅
=

⋅

⋅
=

⋅

⋅
=

⋅

∑ ∫

∑ ∫ ∫

∑ ∫

 (7.4) 
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To calculate them, we need some integration formulae: 

 2

2

2

1
sinh x dx cosh x ;

1
cosh x dx sinh x ;

1 1
sinh x dx sinh x cosh x x ;

2 2
1 1

cosh x dx sinh x cosh x x ;
2 2

x cosh x sinh x
x sinh x dx .

α α
α

α α
α

α α α
α

α α α
α

α αα
α α

= ⋅

= ⋅

= ⋅ ⋅ − ⋅

= ⋅ ⋅ + ⋅

⋅ = −

∫

∫

∫

∫

∫

 (7.5) 

First, we calculate 
WB,N
11δ : 

 

( ) ( )
( )( ) ( )( )2 21 1

1 1 z1 z24
zi ziWB,N

11
i 1 i i 1 20 0 0

N NN N
dz

E A E A E A
δ

=

⋅
= = + +

⋅ ⋅ ⋅∑ ∫ ∫ ∫  

 

( )( ) ( )( )2 21 1
z3 z4

3 40 0

N N
.

E A E A
+ +

⋅ ⋅∫ ∫  (7.6) 

 According to the given data, we have 1 4 FA A A= = , 

2 3 RA A A= = . Absolute values 
( )1
ziN  of normal forces in the self-balanced 

state are also equal: 
( ) ( ) ( ) ( )1 1 1 1
z1 z2 z3 z4N N N N= = = . Therefore,  

 

( )( ) ( )( )
( )( )

2 21 1WB,N
z1 z111

F R0 0

21
1

F R 0

2 2
N N

E A E A

2 1 1
C sinh z dz

E A A

δ

α

= + =
⋅ ⋅

⎛ ⎞
= ⋅ + ⋅ ⋅ =⎜ ⎟

⎝ ⎠

∫ ∫

∫
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( )( ) ( )

( )( ) ( )

21
1 F R

2

F R 0

21
1 F R

F R

2 C A A
sinh z dz

E A A

2 C A A

E A A

α
⋅ ⋅ +

= =
⋅ ⋅

⋅ ⋅ +
= ×

⋅ ⋅

∫
  

 
z

1 z
sinh z sinh z ...

2 2
α α

α =

⎡ ⎤× ⋅ ⋅ − =⎢ ⎥⎣ ⎦
 (7.7) 

Then calculating 
WB,q
11δ  by (7.4), we have to take into account that shear 

flows are not variable by the s -coordinate. Thus,  

( ) ( )

( ) ( )

( )

( ) ( )

( )

i

1 1

i i
1 1s

i i0i i
i 1 1

i i0 0
i i

i i0

q q
b dz , i 1,3 skins ,

Gq q
ds dz

G q q
h dz , i 2,4 webs .

G

δ
δ

δ

⎧ ⋅
⎪ ⋅ =

⋅⋅ ⎪
= ⎨⋅ ⎪ ⋅

⋅ =⎪ ⋅⎩

∫
∫ ∫

∫
 (7.8) 

We know that spar webs are made of steel 30ХГСА (shear modulus is 

SG ), and upper and lower skin is made of aluminum alloy Д16Т (shear 

modulus is AG ). Absolute values 
( )1

iq  of shear flows in self-balanced state are 

equal: 
( ) ( ) ( ) ( )1 1 1 1

1 2 3 4q q q q= = = . Substituting (7.8) into (7.4), we get 

 

( )( ) ( )( )
( )( ) ( )( )

2 21 1

1 2
WB,q
11

A 2 S 10 0

2 21 1

3 4

A 2 S 10 0

q q
b dz h dz

G G

q q
b dz h dz

G G

δ
δ δ

δ δ

= ⋅ + ⋅ +
⋅ ⋅

+ ⋅ + ⋅ =
⋅ ⋅

∫ ∫

∫ ∫
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( )( )
( )( )

( )( )

21

A 2 S 1

2
1

0

21

A 2 S 1

b h
2 B

G G

B cosh z dz

b h
2 B

G G

δ δ

α

δ δ

⎛ ⎞
= ⋅ ⋅ + ×⎜ ⎟⋅ ⋅⎝ ⎠

× ⋅ =

⎛ ⎞
= ⋅ ⋅ + ×⎜ ⎟⋅ ⋅⎝ ⎠

∫  

 
z

1 z
sinh z cosh z ...

2 2
α α

α =

⎛ ⎞× ⋅ ⋅ + =⎜ ⎟
⎝ ⎠

 (7.9) 

Then, we calculate 
RT
11δ  from (7.4) as 

 

( ) ( )
( )( )

( )( ) ( )( )

n RR

FSC FR

21
1 1 RR5

n nRT
11

n 1 n n S RR0 0

2 21 1
FSC FR

S FSC S FR0 0

MM M
dx dx

E I E I

M M
dx dx

E I E I

δ
=

⋅
= = +

⋅ ⋅

+ + +
⋅ ⋅

∑ ∫ ∫

∫ ∫

 

 

( )( ) ( )( )FFB RFB

2 21 1
FFB RFB

S FFB S RFB0 0

M M
dx dx.

E I E I
+ +

⋅ ⋅∫ ∫  (7.10) 

To find these integrals, we can use analytical methods or the 
Vereschagin’s rule (it will be described later). 

1FΔ  is calculated as follows: 

 ( ) ( )

WB RT WB WB,N WB,q
1F 1F 1F 1F 1F 1F

1 F4
ziWB,N zi

11
i 1 i i0

; ;

N N
dz ;

E A

Δ Δ Δ Δ Δ Δ

Δ
=

= + = +

⋅
=

⋅∑ ∫
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( ) ( )1s F4
WB,q ii
11

i 1 i i0 0

q q
ds dz ;

G
Δ

δ=

⋅
=

⋅∑ ∫ ∫  

 

( ) ( )n
1 F5

nRT n
11

n 1 n n0

M M
dx .

E I
Δ

=

⋅
=

⋅∑ ∫  (7.11) 

All calculations are similar to those we perfomed to find 11δ , but here we 
have to multiply diagrams in the unit state by diagrams in the F-state: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1F F
z1 z1WB,N z1 z2

1F
1 20 0

1 1F F
z1 z1z1 z2

1 20 0

1 1EL SB EL SB
z1 z1z1 z1 z2 z2

1 20 0

1
1 1 1

10

N N N N
2 dz 2 dz

E A E A

2 N N N N
dz dz

E A A

N N N N N N2
dz dz

E A A

2 C sinh z A A z C sinh z
dz

E A

2 C

α α

⋅ ⋅
Δ = ⋅ + ⋅ =

⋅ ⋅

⎛ ⎞⋅ ⋅⎜ ⎟= ⋅ + =
⎜ ⎟
⎝ ⎠

⎛ ⎞⋅ + ⋅ +⎜ ⎟= ⋅ + =
⎜ ⎟
⎝ ⎠

⋅ ⋅ ⋅ ⋅ ⋅ + ⋅
= +

⋅

⋅
+

∫ ∫

∫ ∫

∫ ∫

∫
( ) ( )

( )

1
1 2 1

20

1
1

0

2 21 1

1 20 0

sinh z A A z C sinh z
dz

E A

2 C
2A z sinh z dz

E

C C
sinh z dz sinh z dz

A A

α α

α

α α

⋅ ⋅ ⋅ ⋅ − ⋅
=

⋅

⎛⋅
= ⋅ ⋅ ⋅ +⎜

⎝
⎞

+ ⋅ − ⋅ =⎟
⎠

∫

∫

∫ ∫
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( )

( )

( )

1
1

0

1 2 1 2

1 2 0

1
1

2
z

2 C
2A z sinh z dz

E

C A A
sinh z dz

A A

2 C z 1
2A cosh z sinh z

E

α

α

α α
α α =

⎛⋅
= ⋅ ⋅ ⋅ +⎜

⎝
⎞⋅ −

+ ⋅ =⎟⋅ ⎠

⎛⋅ ⎛ ⎞= ⋅ ⋅ ⋅ − ⋅ +⎜ ⎜ ⎟
⎝ ⎠⎝

∫

∫  

( )1 2 1

1 2 z

C A A 1 z
sinh z cosh z ...

A A 2 2
α α

α =

⎞⋅ − ⎛ ⎞+ ⋅ ⋅ ⋅ − =⎟⎜ ⎟⋅ ⎝ ⎠ ⎠
 (7.12) 

Now we calculate 
WB,q
1FΔ : 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1s F F4
WB,q i 1i 1
1F

i 1 i i A 20 0 0

11 1FF F
32 432 4

S 1 A 2 S 10 0 0

1 EL SB
1 11

A 2 0

1 1EL SB EL SB
2 2 4 42 4

S 1 0 0

q q q q
ds dz b dz

G G

q qq q q q
h dz b dz h dz

G G G

2b
q q q dz

G

h
q q q dz h q q q dz

G

δ δ

δ δ δ

δ

δ

=

⋅ ⋅
Δ = = ⋅ +

⋅ ⋅

⋅⋅ ⋅
+ ⋅ + ⋅ + ⋅ =

⋅ ⋅ ⋅

= ⋅ ⋅ + +
⋅

⎛ ⎞
+ ⋅ ⋅ + + ⋅ ⋅ + =⎜ ⎟⋅ ⎝ ⎠

=

∑ ∫ ∫ ∫

∫ ∫ ∫

∫

∫ ∫
( ) ( )

( ) ( )

( ) ( )

1 EL
1

A 2 0

1 EL
2

S 1 0

1 EL
4

0

2b
B cosh z q B cos h z dz

G

h
B cosh z q B cosh z dz

G

B cosh z q B cosh z dz

α α
δ

α α
δ

α α

⋅ ⋅ ⋅ + ⋅ +
⋅

⎛
+ ⋅ ⋅ ⋅ − ⋅ +⎜⋅ ⎝

⎞
+ ⋅ ⋅ − ⋅ =⎟

⎠

∫

∫

∫
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( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

1 1EL
21

A 2 A 20 0

11 EL
22

S 2 S 20 0

11 EL
24

S 2 S 20 0

1 1 EL ELEL
2 41

A 2 S 2

2 b B q 2 b B B
cosh z dz cosh z dz

G G

h B q h B B
cosh z dz cosh z dz

G G

h B q h B B
cosh z dz cosh z dz

G G

h B q q2 b B q
G G

α α
δ δ

α α
δ δ

α α
δ δ

δ δ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= + +

⋅ ⋅

⋅ ⋅ ⋅ ⋅
+ ⋅ − +

⋅ ⋅

⋅ ⋅ ⋅ ⋅
+ − =

⋅ ⋅

⎛ ⎞⋅ ⋅ +⋅ ⋅ ⋅⎜= +
⎜ ⋅ ⋅⎝

∫ ∫

∫ ∫

∫ ∫

( ) ( )

( ) ( ) ( )

( ) ( )

0

1 1

2

A 2 S 2 0

1 1 EL ELEL
2 41

z 0A 2 S 2

1 1

A 2 S 2

cosh z dz

2 b B B 2 h B B
cosh z dz

G G

h B q q2 b B q 1
cosh z

G G

2 b B B 2 h B B
G G

α

α
δ δ

α
δ δ α

δ δ

=

⎟ ⋅ +
⎟
⎠

⎛ ⎞⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟+ − ⋅ =
⎜ ⎟⋅ ⋅⎝ ⎠

⎛ ⎞⋅ ⋅ +⋅ ⋅ ⋅⎜ ⎟= + ⋅ ⋅ +
⎜ ⎟⋅ ⋅⎝ ⎠

⎛ ⎞⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟+ − ×
⎜ ⎟⋅ ⋅⎝ ⎠

∫

∫

  

 
z

1 z
sinh z cosh z ...

2 2
α α

α =

⎛ ⎞× ⋅ ⋅ + =⎜ ⎟
⎝ ⎠

 (7.13) 

At last, we find 
RT
1PΔ : 

 

n RR

FSC FR

(1 ) (1 )( F ) ( F )5
n RRRT n RR

1F
n 1 n n S RR0 0

(1 ) (1 )( F ) ( F )
FSC FRFSC FR

S FSC S FR0 0

M M M M
dx dx

E I E I

M M M M
dx dx

E I E I

Δ
=

⋅ ⋅
= = +

⋅ ⋅

⋅ ⋅
+ + +

⋅ ⋅

∑ ∫ ∫

∫ ∫
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FFB RFB

(1 ) (1 )( F ) ( F )
FFB RFBFFB RFB

S FFB S RFB0 0

M M M M
dx dx .

E I E I
⋅ ⋅

+ +
⋅ ⋅∫ ∫  (7.14) 

These integrals can be calculated using analytical methods or the 
Vereschagin’s rule. The latter is a more obvious way but it can be used only 
when at least one of two moments is a linear function or a constant value. In 
our case, this condition is always fulfilled, so we can use Vereschagin’s rule for 
all beams. 

To calculate the integral ( ) ( )1 2
0

M x M x dx⋅∫ , we have only to find 

the centre of gravity coordinate c.g.1x  for the first diagram ( )1M x  and 

multiply the area of the first diagram 1A  by the value of 2M  at the 

coordinate c.g.1x : 

 ( ) ( ) ( )1 2 1 2 c.g.1
0

M x M x dx A M x .⋅ = ± ⋅∫  (7.15) 

In these formulae, we use “+” when 1M  and 2M  diagrams are co-
directed, and “-” when they have opposite directions. 

For example, for diagrams shown in Fig. 7.1, we get (for 2 m= ) 

 ( ) ( ) ( )1
1 2 2

0

M 2
M x M x dx M

2 3
⋅ ⎛ ⎞⋅ = − ⋅ =⎜ ⎟

⎝ ⎠∫   

 ( )2 32 30 10
100 kN m .

2 3
⋅

= − ⋅ = − ⋅  (7.16) 

 
 

 
 

Figure 7.1. Example diagrams of bending moments 1M  and 2M  
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If any diagram (or both) is not triangular (Fig. 7.2), we have to consider it 
as the sum of two diagrams and perform calculations by the following formulae: 

 

( ) ( )1 2 11 12 21 22
0 0

11 21 11 22
0 0

M M dx M M M M dx

M M dx M M dx

⋅ = + ⋅ + =

= ⋅ + ⋅ +

∫ ∫

∫ ∫
 

 12 21 12 22
0 0

M M dx M M dx .+ ⋅ + ⋅∫ ∫  (7.17) 

All integrands in this final formula are moments with triangle or constant 
diagrams. Thus, we can calculate them by the Vereschagin’s rule. 

Figure 7.2. Example diagrams of bending moments 1M  and 2M  

7.3. Total diagrams 

After we calculated coefficients in canonical equations jk jF,δ Δ , we can 

find the unknown values 1X  and 2X  from (7.1). 
We start with calculating total values of normal forces, shear flows, 

bending moments, and constraint forces. To do this, we simply sum the 
corresponding values in F-state, first unit state (multiplied by 1X ), and second 

unit state (multiplied by 2X ): 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2F
z i z iz i z i 1 2

1 2F
i i 1 2i i

1 2F
n nn n 1 2

1 2
i ii i 1 2

N N N X N X , i 1..4 ;

q q q X q X , i 1..4 ;

M M M X M X , n 1..5 ;

S S S X S X , i 1..11.

Σ

Σ

Σ

Σ

= + ⋅ + ⋅ =

= + ⋅ + ⋅ =

= + ⋅ + ⋅ =

= + ⋅ + ⋅ =

 (7.18) 

It is convenient to present these calculations as a table (Tables 7.4 and 
7.5).  

Table 7.4
Calculation of total normal forces and total shear flows 

z, m  0 1 2 3 
( )F
z 1,4N  ∓ ∓ ∓ ∓ 

( )F
z 2 ,3N  ∓ ∓ ∓ ∓ 

( )1
z 1N X⋅  0 ± ± ± 

( )2
z 2N X⋅  0 ∓ ∓ ∓ 

( ) ( ) ( )1 2F
z 1,4 z 1,4z 1,4 z 1,4 1 2N N N X N XΣ = + +  0 ∓ ∓ ∓ 

( ) ( ) ( )1 2F
z 2 ,3 z 2 ,3z 2 ,3 z 2 ,3 1 2N N N X N XΣ = + + 0 ∓ ∓ ∓ 

( )F
1,3q    
( )F
2q    
( )F
4q    
( )1

1q X⋅    
( )2

2q X⋅    

( ) ( ) ( )1 2F
1,3 1,3 1 21,3 1,3q q q X q XΣ = + ⋅ + ⋅    

( ) ( ) ( )1 2F
2 2 1 22 2q q q X q XΣ = + ⋅ + ⋅    

( ) ( ) ( )1 2F
4 4 1 24 4q q q X q XΣ = + ⋅ + ⋅    



67 

Table 7.5 
Calculation of total distribution diagrams of bending moments in beams 

Root 
triangle 
beam 

F-state, 
1st unit state, 
2nd unit state, 

Total 
diagrams 

Formulae for the moments for each of 
states 

1. RR 
 

 
 

 

( )
F

2BM M ;=  

( )
( ) ( )1 1

2 1BM M X ;= ⋅  

( )2
M 0 ;=  

( )
( )1
22 1BM M M X .Σ = − ⋅  

2. FSC 

 

 
 

 

 

( )
F
BM 0 ;=  

( )
( ) ( )1 1

3 1AM M X ;= ⋅  

( )
( )

( )
( ) ( )2 2 2

3 2C AM M M X ;= = ⋅  

( )
( ) ( )2 1
3 32 1AM M X M X ;Σ = ⋅ − ⋅  

( )
( )2
3 2CM M X .Σ = ⋅  

3. FR 
 

 

( )
F

1 2BM M M ;′ ′= −  

( )
( ) ( ) ( )1 1 1

1 2 1BM ( M M ) X ;′ ′= + ⋅  

( )
( )

( )
( ) ( )2 2 2

1 2B AM M M X ;′= = ⋅  

( )
( )2
1AM M ;Σ ′=  

( )
( )

( ) ( )

2
11 2 2B

1 1
1 2 1

M M M M X

( M M ) X .

Σ ′′ ′= − − ⋅ +

′ ′+ + ⋅
 



68 

End of Table 7.5 
 

Root 
triangle 
beam 

F-state, 
1st unit state, 
2nd unit state, 

Total 
diagrams 

Formulae for the moments for each of 
states 

4. FFB 

 

 

FM 0 ;=  
( )1

M 0 ;=  

( )
( )

( )
( ) ( )2 2 2

3 2D AM M M X ;′′= = ⋅  

( ) ( )
( )2
3 2D AM M M X ;Σ Σ ′′= = ⋅  

5. RFB 
 

 

( ) ( )
F F

1 2E BM M M M ;′′ ′′= = +  

( )1
M 0 ;=  

( )
( )

( )
( )2 2

B EM M= =
( )2
1 2M X ;′′ ⋅  

( ) ( )
( )2
11 2 2E BM M M M M X .Σ Σ ′′′′ ′′= = + − ⋅

 

Fig. 7.3 shows total distribution diagrams of normal forces ziN∑
 and shear 

flows iq∑ . Total distribution diagrams of bending moments in the root triangle 
and fuselage beams are shown in Table 7.4 (refer to Fig. 7.4 to see total 
constraint forces according their actual directions). 

After we calculated total normal forces, shear flows, and bending 
moments, we have to perform the deformation check of the stress state of the 
wingbox. The check shows whether calculations are correct and accurate or 
not. For this perpose, we have to calculate the displacement which we already 
know. For example, we can consider any mutual displacement at points A , B , 
or C  as they should be equal to zero. 



69 

 
 
 
 
 
 
 
 

 
Figure 7.3. Total distribution diagrams of normal forces and shear flows 
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Figure 7.4. Total forces in constraints 
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8. DEFORMATION CHECK 

To perform the deformation check, we should choose a basic system. It 
has to differ from the basic system in the F-state. 

For example, we choose a basic system in which constraints # 3  and 
#11  (Fig. 2.1) are removed (Fig. 8.1). Then we have to apply the unit force 

dX 1=  at points B or C instead of one thrown out constraint in the same 

direction. We apply the force dX 1=  at point B . In this case, we have to find 

the generalized displacement at point B  at the direction of force dX 1= . 
Point B  belongs to FSC, FR, and FFB. 

 

Figure 8.1. Basic system for deformation check 

Let us determine values and directions of forces 
( )d
iS  in the constraints. 

We find them from the equilibrium equations for the FSC and the wingbox 
(Fig. 8.2): 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

d d d d
1 6 9 10

d d d d d
2 4 5 7 8

S S S S 0 ;

S S S S S 1 .

= = = =

= = = = =
 (8.1) 
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Figure 8.2. Constraint forces in basic system for deformation check 

In the state dX 1= , the wingbox is loaded by the self-balanced system 
of forces, and normal forces and shear flows are 

 

( ) ( ) ( ) ( )

( ) ( )

d di 1
zi 1

d i 1

i

N z 1 C sinh z ;

q 1 B cosh z ,

α

α

+

+

= − ⋅

= − ⋅
 (8.2) 

where 

 

( )
( )

( )
( )

d
d 4

1

d
d 4

S 1
C ;

sinh sinh

S
B .

2 sinh 2 sinh

α α

α α
α α

= − = −

⋅
= − = −

⋅ ⋅

 (8.3) 

Fig. 8.3 shows distribution diagrams of normal forces 
( )d
ziN  and shear 

flows 
( )d

iq . 
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Figure 8.3. Diagrams of distribution of normal forces and shear flows 

in state dX 1=  

 
Force couples at points A , B , and C  (see Fig. 8.2) give moments 

 
( ) ( ) ( ) ( )d d d d
1,3 4 7M X h S h S h h .= ⋅ = ⋅ = ⋅ =  (8.4) 

Bending moments 
( )d

M  are transferred from the wingbox to the root 
triangle structure at points B and C, so we have to resolve them into projections 
perpendicular to the beams FFB, FR, and RFB (Fig. 8.4). Fig. 8.5 shows 
distribution diagrams of bending moments in the beams.  
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Figure 8.4. Loading of root triangle structure in state dX 1=  

Let us find generalized horizontal displacement at point B. It is calculated 
by the Mohr’s formula 

 
( ) ( ) ( )d

4
zizi

B
i 1 i i0

N z N z
dz

E A

∑

=

⋅
Δ = +

⋅∑ ∫   

 
( ) ( ) ( ) ( )n

d ds4 5
ni i n

i 1 n 1i i n n0 0 0

q z q z M M
dsdz dx .

G E Iδ

∑ ∑

= =

⋅ ⋅
+ +

⋅ ⋅∑ ∑∫ ∫ ∫  (8.5) 

This displacement should be equal to zero. 
The terms of (8.5) are calculated in the similar way as the coefficients in 

canonical equations. However, in this case we have to consider two states, F-
state of the basic system and the unit state of basic system chosen for 
deformation check. 

We have to find the percentage of calculation errors by the formula 
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1 2

1 2

2 D D
100% .

D D
γ

⋅ −
= ⋅

+
 (8.6) 

where 1D  is the sum of all positive terms in (8.5), and 2D  is the sum of all 
negative terms in (8.5). 

The percentage of errors must not exceed 3% . 

Figure 8.5. Diagrams of distribution of bending moments in state dX 1=  



76 

REFERENCES 

1. Скопинцев, Б. И. Напряженное состояние стреловидного крыла 
[Текст] : учеб. пособие / Б. И. Скопинцев, Ю. Е. Бушков. – Х.: 
Харьк. авиац. ин-т, 1991. – 64 с. 

2. Строительная механика летательных аппаратов [Текст] : учебник 
для авиационных специальностей вузов / И. Ф. Образцов, 
Л. А. Булычев, В. В. Васильев и др. ; под ред. И. Ф. Образцова. – 
М. : Машиностроение, 1986. – 536 с. 

3. Megson, T. H. G. An Introduction to Aircraft Structural Analysis [Text] / 
T. H. G. Megson. – Burlington, Ma [etc.] : Butterworth-Heinemann : 
Elsevier, 2010. – 638 p. 

4. Zender, G. W. An Approximate Method of Calculating the 
Deformations of Wings Having Swept, M or W, Λ, and Swept-Tip Plan 
Forms [Text] / G. W. Zender, W. A. Brooks // NACA Technical Note / 
National Advisory Committee for Aeronautics. – Washington, DC, 
1953. – Vol. 2878. – 28 p. 

 
 



 

Навчальне видання 
 
 

Вакуленко Сергій Володимирович 
Решетнікова Рената Юсуфівна 

 
 
 
 
 
 
 

 
 
 
 
 

НАПРУЖЕНИЙ СТАН СТРІЛОПОДІБНОГО КРИЛА 

 
(Англійською мовою) 

 
 

Редактор Є.В. Пизіна 
Технічний редактор Л.О. Кузьменко 

 
 
 
 
 

Зв. план, 2013 
Підписано до друку 27.05.2013 
Формат 60×84 1/16. Папір офс. №2. Офс. друк 
Ум. друк. арк. 4,2. Обл.-вид. арк. 4,74. Наклад 250 пр. Замовлення 184. Ціна вільна 
 
  

Національний аерокосмічний університет ім. М.Є. Жуковського 
«Харківський авіаційний інститут» 
61070, Харків-70, вул. Чкалова, 17 

http://www.khai.edu 
Видавничий центр «ХАІ» 

61070, Харків-70, вул. Чкалова, 17 
izdat@khai.edu 

 
Свідоцтво про внесення суб’єкта видавничої справи до Державного 
реєстру видавців, виготовлювачів і розповсюджувачів видавничої 

продукції сер. ДК № 391 від 30.03.2001 


