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LECTURE 1 
1. INTRODUCTION 

 
Mechanics is the branch of the physical sciences that deals with the 

mechanical motion of bodies, i.e. changing of relative position of bodies in 
space in the course of time. 

Our course is subdivided into four parts: statics, kinematics, dynamics, 
and analytical mechanics. 

Statics is the branch of mechanics, which treats of bodies that are at rest 
or in the state of uniform motion. Statics studies the laws of composition of 
forces and the conditions of equilibrium of engineering structures under the 
action of forces. 

Kinematics is study of the geometry of motion without regard to the 
forces the cause that motion. 

Dynamics deals with the action of forces in producing or modifying the 
motion of bodies. 

 
1.1. Basic conceptions: space, time, frame of reference 

 
As you know, motion is changing with time of the particle (or body) 

position with respect to the position of some other particle (or body). Therefore, 
to observe the motion we use two base notions: space and time.  

In Newtonian mechanics ideal model of space is used. The model can be 
visualized by non-limiting rigid body. It is supposed that the space affects the other 
physical phenomena, but the space itself is not affected by those phenomena.  

Such space is called absolute space. The absolute space is Euclid 
space, it means that Euclid’s geometry is valid in the space.  

To determine particle (body) position in space we choose at least one 
frame of reference consisting of two components: a datum or origin and a 
system of three linear independent directions (coordinate axes). In the 
Newtonian mechanics it is postulated that there is at least one fixed frame of 
reference in which all Newton’s laws are valid. Such frame of reference is 
called absolute or inertial. For our purposes we can choose as the inertial 
frame of reference the heliocentric reference (or geocentric reference). Frames 
of reference where objects violate Newton's first law are called noninertial. 

The second ideal model of Newtonian mechanics is the absolute time. It 
is supposed that time runs at the same rate for all the observers in the absolute 
space.  

1.2. Axioms of dynamics 
 
The first three axioms known as Newton’s laws of motion: 
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1. A particle isolated from other bodies remains at rest or 
continues to move in straight line with a constant velocity if the resultant 
force acting on the particle is zero. 

In other words, a particle initially at rest is predicted to remain at rest if the 
resultant force acted on is zero, and an particle in motion remains in motion 
with the same velocity in the same direction: 

1

0 0, .
n

i
i

if F then v or v сonst
=

= = =∑ . 

The converse of Newton's first law is also true: if we observe an object 
moving with constant velocity along a straight line, then the total force on it 
must be zero: 

 
1

0, , 0.
n

i
i

if v or v сonst then F
=

= = =∑   

2. A free particle acted on by a single force is accelerated; the 
acceleration is in the direction of the force and is directly proportional to 
the force and inversely proportional to the mass of the particle 

 .mW F=  (1.1) 

The property, by virtue of which a particle tends to remain at rest or in 
uniform rectilinear motion, and to resist being accelerated, is called inertia. 
Inertial mass is a measure of inertia of the particle which is its resistance to 
rate of change of velocity when a force is applied. An object with small inertial 
mass changes its motion more readily, and an object with large inertial mass 
does so less readily. 

In the solution of problems Eq. (1.1) is usually expressed in scalar 
component form using one of the coordinate systems developed in kinematics 
(Cartesian, natural, polar, cylindrical). Eq. (1.1), or any one of its component 
forms is usually referred to as the equation of free particle motion in inertial 
frame of reference. The equation of motion gives the instantaneous value of 
the acceleration corresponding to the instantaneous values of the forces which 
are acting. 
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3. To every action there is always an equal and contrary reaction. 
The axiom states that forces there are always in pairs.  

It means that if body 1 (Fig.1.1) acts on body 2 with the force 12F  and 

body 2 acts on body 1 with the force 21F , these forces satisfy the equation 

21 12F F= −  

and act along the same line. 

It is important to remember that the forces of action and reaction (e.g. 21F  

and 12F ) do not form a balanced system of forces because they are applied to 
different bodies. 

  

Fig. 1.1 

4. Principle of superposition.  
The resulting acceleration caused by two or more forces is the 

geometrical sum of the accelerations which would have been caused by 
each force individually. 

 

Assume that a force system ( )1 2, ,.., nF F F  acts on a particle 

(concurrent force system). Each force produces acceleration iW : 

.i
i

F
W

m
=  

Resultant force of the concurrent force system is 

1

.
n

i
i

F F
=

= ∑  

Resulting acceleration is  

 
1 1

.
n n

i
i

i i

FF
W W

m m= =

= = =∑ ∑  (1.2) 
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4. The parallelogram law. Two forces applied at one point of a body 
(Fig. 1.2) have as their resultant a force applied at the same point and 
represented by the diagonal of a parallelogram constructed with the two 

given forces as its sides, i.e. a force system ( )1 2,F F  is equivalent to its 

resultant F . 
Magnitude of the resultant can be determined in accordance with cos-

theorem 

 2 2
1 2 1 22 cosF F F F F α= + + . (1.3) 

 

 
 

Fig. 1.2 
 

2. A SINGLE PARTICLE DYNAMICS 
 

2.1. Different forms of free particle equation of motion  
in inertial frame of reference 

 
Consider the equation of free particle motion in inertial frame of reference 

(1.1). There are different forms of the equation. 

Remembering that 
2

2= =
d r dv

W
dt dt  

rewrite eq. (1.1) in vector forms:  

 
2

2

d r
m F

dt
= ; (1.4) 

 
dv

m F
dt

= . (1.5) 
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Coordinate forms (scalar forms) are obtained by projecting of vector 
eq. (1.1) onto coordinate axes: 
a) in a Cartesian coordinate system: 

 ,= + + = + +x y zW W i W j W k xi yj zk  

 

,

,

.

x

y

z

mx F

my F

mz F

⎧ =
⎪ =⎨
⎪ =⎩

 (1.6) 

b) in a natural coordinate system (useful for curvilinear path): 

 

( )2

,

, , 0,

n b

n b

W W W W

W W n W

τ

τ σ
στ

ρ

= + +

= = =
 

 
( )2

,

,

0 .

n

b

m F

m F

F

τσ

σ
ρ

⎧ =
⎪
⎪ =⎨
⎪
⎪ =
⎩

 (1.7) 

Nota. Component 
( )2

m
σ
ρ

 is always positive so nF  (Fig.1.3) is in 

direction of unit vector of principal normal and resultant force acting on the 
particle is in direction of trajectory concavity. 

 
 

Fig. 1.3 
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c) in a polar coordinate system (for plane motion of a particle) 

 ( ) ( )2 0 0

,

, 2 ,

= +

= − = +

r

r

W W W

W r r r W r r p

ϕ

ϕϕ ϕ ϕ
 

where 0r  is unit vector along the position vector in direction of the position 
vector increasing, 0p  is unit vector, it makes angle 090  with 0r  in direction of 

the angle ϕ  increasing (Fig. 1.4). So equation (1.1) in projections on 0r  and 
0p  is: 

 
( )

( )

2 ,

2 .

rm r r F

m r r Fϕ

ϕ

ϕ ϕ

⎧ − =⎪
⎨

+ =⎪⎩
 (1.8) 

 

 
 

Fig. 1.4 
 

The choice of the appropriate coordinate system is dictated by the type of 
motion involved and is a vital step in the formulation of any problem. 

 
2.2. Two problems of dynamics 

 
We encounter two types of problems when applying Eq. (1.1). In the first 

type the acceleration is either specified or can be determined directly from 
known kinematic conditions. The corresponding forces which act on the particle 
whose motion is specified are then determined by direct substitution into 
Eq. (1.1). This problem is generally quite straightforward. 
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If motion is given in coordinate form 

 

( )
( )
( )

1

2

3

,

,

;

x f t

y f t

z f t

⎧ =
⎪

=⎨
⎪ =⎩

 (1.9) 

then force produced this motion has components 

 

( )( )

( )( )

( )( )

2
1

2

2
2

2

2
3

2

,

,

.

x

y

z

d f t
F m

dt

d f t
F m

dt

d f t
F m

dt

⎧
=⎪

⎪
⎪⎪ =⎨
⎪
⎪

=⎪
⎪⎩

 (1.10) 

In the second type of problem the forces are specified and the resulting 
motion is to be determined. If the forces are constant, the acceleration is 
constant and is easily found from Eq. (1.1). When the forces are functions of 
time, position, velocity, or acceleration, Eq. (1.1) becomes a differential 
equation which must be solved to determine the velocity and displacement. The 
Eq. (1.1) have to supplement the proper quantity of initial conditions to obtain 
single-valued solution (6 initial conditions for 3D case). This problem is called 
inverse. 

Case 1. Force is constant (force of gravity) or function of time (force of 
interaction between core and magnetizing coil driven by alternating current): 

 

( )
( )
( )

1

2

3

,

,

.

x

y

z

F f t

F f t

F f t

⎧ =
⎪

=⎨
⎪ =⎩

 (1.11) 

Case 2. Force is function of particle coordinates 
Force of elasticity 

 elF cr= − , (1.12) 
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_

_

_

,

,

.

el x

el y

el z

F cx

F cy

F cz

= −

= −

= −

 (1.13) 

Gravitational force 

 1 2
2

m m
F f r

r
= − , (1.14) 

 

1 2
2

1 2
2

1 2
2

,

,

.

x

y

z

m m
F f x

r
m m

F f y
r

m m
F f z

r

= −

= −

= −

 (1.15) 

Case 3. Force is function of particle velocity. 
Aerodynamics drag force acting on particle in rectilinear motion is 

 ( ) , ( ) .ad ad x

v x
F f v F f v

v v
= − = −  (1.16) 

For a particle under the action of aerodynamics drag force directly 
proportional to the speed  

 ( ) ( ) .ad x

x
F f v f v kv kx

v
= − = = = −  (1.17) 

For a particle under the action of aerodynamics drag force directly 
proportional to the speed squired  

 2 2( ) ( ) .ad x

x
F f v f v kv kx

v
= − = = = −  (1.18) 

The example of problem about particle motion under the action of 
aerodynamics drag force will be considered at the end of the lecture. 

Lorentz force (Axis Ox is parallel to magnetic field H ) is 
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0 0
L

i j k

F ev H ex ey ez

H

= × = . (1.19) 

Summarizing. In general case force is function of time, particle position 
and velocity: 

 ( ), , ,F f t r r=  (1.20) 

 

( )
( )
( )

1

2

3

, , , , , , ,

, , , , , , ,

, , , , , , .

x

y

z

F f t x y z x y z

F f t x y z x y z

F f t x y z x y z

⎧ =
⎪

=⎨
⎪ =⎩

 (1.21) 

Equations (1.6) can be rewriting with help of equations (1.21) in the 
following form 

 

( )
( )
( )

1

2

3

, , , , , , ,

, , , , , , ,

, , , , , , .

mx f t x y z x y z

my f t x y z x y z

mz f t x y z x y z

⎧ =
⎪

=⎨
⎪ =⎩

 (1.22) 

The system (1.22) is system of second order differential equations with 
respect to unknown functions ( ), ( ), ( )x t y t z t . This system is termed main 
differential equations of particle motion in inertial frame of reference. 

The first integral of the system (1.22) is  

 

( )
( )
( )

1 1 2 3

2 1 2 3

3 1 2 3

, , , , , , , , , 0,

, , , , , , , , , 0,

, , , , , , , , , 0.

t x y z x y z C C C

t x y z x y z C C C

t x y z x y z C C C

Φ

Φ

Φ

⎧ =
⎪

=⎨
⎪

=⎩

 (1.23) 

The second integral of the system (1.22) is  

 

( )
( )
( )

1 1 2 3 4 5 6

2 1 2 3 4 5 6

3 1 2 3 4 5 6

, , , , , , , , , 0,

, , , , , , , , , 0,

, , , , , , , , , 0.

t x y z C C C C C C

t x y z C C C C C C

t x y z C C C C C C

Ψ

Ψ

Ψ

⎧ =
⎪

=⎨
⎪

=⎩

 (1.24) 
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The equations (1.23) and (1.24) can be satisfied by the substituting the 
six initial conditions into equations and solving for the constants 1 2 6, ,...,C C C : 

 when 0t =  
0 0 0

0 0 0

, , ,

, , .

x x y y z z

x x y y z z

= = =⎧
⎨ = = =⎩

 

Final equations of the particle motion are 

 

( )
( )
( )

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

( ) , , , , , , ,

( ) , , , , , , ,

( ) , , , , , , .

x t f t x y z x y z

y t f t x y z x y z

y t f t x y z x y z

⎧ =
⎪

=⎨
⎪ =⎩

 (1.25) 

So the second problem of dynamics is Cauchy problem or initial value 
problem. 

 
2.3. Constrained and unconstrained motion  

 
There are two physically distinct types of motion. The first type is 

unconstrained motion where the particle is free of mechanical guides and 
follows a path determined by its initial motion and by the forces which are 
applied to it from external sources. An airplane or rocket in flight and an 
electron moving in a charged field are examples of unconstrained motion. 

The second type is constrained motion where the path of the particle is 
partially or totally determined by restraining guides. An ice hockey puck moves 
with the partial constraint of the ice. A train moving along its track and a collar 
sliding along a fixed shaft are examples of more fully constrained motion. The 
forces acting on a particle during constrained motion can be broken into two 
groups: 
− applied from outside sources (applied forces) 
− forces on the particle from the constraining guides (reactions) 

All forces, both applied and reactions must be accounted for in equation 
of motion: 

 ,mW F N= +  (1.26) 

where F  is resultant of applied forces, 

  N  is resultant of reactions. 
The choice of a coordinate system is frequently indicated by the number 

and geometry of the constraints. Thus, if a particle is free to move in space, as 
is the center of mass of the airplane or rocket in free flight, the particle is said to 
have three degrees of freedom since three independent coordinates are 
required to specify the position of the particle at any instant. All three of the 
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scalar components of the equation of motion would have to be applied and 
integrated to obtain the space coordinates as a function of time. If a particle is 
constrained to move along a surface, as is the hockey puck or a marble sliding 
on the curved surface of a bowl, only two coordinates are needed to specify its 
position, and in this case it is said to have two degrees of freedom. If a particle 
is constrained to move along a fixed linear path, as is the collar sliding along a 
fixed shaft, its position may be specified by the coordinate measured along the 
shaft. In this case the particle would have only one degree of freedom. 

 
2.4. Examples  

 

2.4.1. Free particle motion 

 
Example 1. A particle of a mass m=2 kg moves along a horizontal x-axis 

under action of the force 5cos( )xF tπ= . Determine the velocity of the particle 
at the moment t=4 s if at t0=0 the velocity is V0=0. 

 
Solution 

 
The particle moves only along x-axis that’s why we write the projection of 

the general equation of free particle motion on x-axis: 

 ( )

( )

,

5cos 0.5 ,

5
cos 0.5 ,

mW F
x x

mx t

dx
x t

dt m

=

=

= =

  

 ( )5
cos 0.5 ,dx t dt

m
=   

 

( )5
cos 0.5 ,dx t dt

m
=∫ ∫   

 ( ) 1

5
sin 0.5 .

0.5
x t C

m
= +  (1.27) 

Initial condition is: at 0t =  (0) (0) 0V x= = . 
Substituting 0t =  into equation (1.27) we get: 
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 ( ) 1 1

5
(0) 0 sin 0.5 0

0.5
x C C

m
= = ⋅ + = , 

 1 0C = . 

So velocity is ( )5
sin 0.5

0.5
V t

m
= . At time 4,t s=  velocity of the particle 

is: 

 ( ) ( )5
4 sin 0.5 4 4.55 .

0.5 2

m
V

s
⎛ ⎞= ⋅ = ⎜ ⎟⋅ ⎝ ⎠

 

Answer: (4 s) 4.55
s

m
V

⎛ ⎞ =  ⎜ ⎟
⎝ ⎠

. 

 
Example 2. A 18-N body moves in the air and traces out the paths, 

represented in fig. 10. Its initial velocity is V0 = 700 m/s. The missile launching 
velocity makes an angle of 75° with the horizontal. Determine the increase in 
the altitude reached (in kilometers) and increase in the range of flight, if there is 
no air resistance. 

 

 
 

Fig.1.5 
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Solution 
 
In Fig. 1.5 a real path of the missile is shown (air resistance is took into 

account). Let us analyze the missile motion if air resistance is neglected. 
Idealize missile by a particle. 

General equation of free particle motion in vector form is (1.1) 

 .=mW F  (1.28) 

Only gravity force acts on the particle (fig. 1.6) so equation (1.28) is 

 .=mW P  (1.29) 

 
Fig.1.6 

 
Projecting equation (1.29) along x and y we get: 

 ) 0,x mx =  (1.30) 

 ) .y my P= −  (1.31) 

To find the particle velocity components we have to integrate these 
equations. For equation (1.30): 

 0, 0,
dx

x x
dt

=    = =   

 0dx dt=  therefore 1,x C=  
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 1,
dx

x C
dt

= =  (1.32) 

 1 2.x C t C= +  (1.33) 
In the same manner integrate equation (1.31): 

 

3

,

,

;

,

my P

P
m

g

y g

dy
y g

dt

dy gdt y gt C

= −

= ; 

= −

= = −

= −   ⇒  = − +∫ ∫

  

 3;y gt C= − +  (1.34) 

 3( ) ,dy gt C dt= − +∫ ∫  

 
2

3 4.
2

t
y g C t C= − + +  (1.35) 

Use initial conditions (particle coordinates and velocity components at time t=0 
s) to find the constants of integration: 

 
0

0

(0) 0,

(0) 0,

(0) cos 5 ,

(0) sin 5 .

x

y

x V

y V

=⎧
 ⎨ =⎩

=  7 °⎧
⎨ =  7 °⎩

  

Putting to the equations (1.32) – (1.35) we get: 

 

1 0

2

3 0

4

(0) cos 75 ,

(0) 0,

(0) sin 75 ,

(0) 0.

x C V

x C

y C V

y C

= =  °

= =
= =  °

= =

  

Finally equations of particle motion are: 

 0 cos 75 ;x V t=  °  (1.36) 
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2

0 sin 75
2

t
y g V t= − + ° . (1.37) 

Next we find the maximum altitude reached by the missile and the range 
of flight if there is no air resistance. The particle has maximum altitude ( maxy ) at 

time 1t  when the velocity y-component y  is zero: 

 
1 0

0
1

0 sin 75 ,

sin 75
.

y gt V

V
t

g

= = − + °
°

=
  

Substituting t1 into equation (1.37) we get the maximum altitude: 

 

2 2
0 0

max 1 02

2 2 2 2 2 2
0 0 0

sin 75 sin 75
( ) sin 75

2

sin 75 sin 75 sin 75
23.3 ( ).

2 2

V Vg
y y t V

g g

V V V
km

g g g

° °
= = − + ° =

° ° °
= − + = =  

 

Maximum range of flight (xmax) corresponds to the particle position when 
0t >  and 0y = : 

 

2
2

0 2

2 2 0

0 sin 75 ,
2

sin 75 0.
2

t
y g V t

g
t t V

= = − + °

⎛ ⎞− + ° =⎜ ⎟
⎝ ⎠

 

There are two roots of the equation: 2 0.t =  and 0
2

2 sin 75V
t

g

°
= . The first 

corresponds to initial position  0x = , the second root is flight duration so 
substituting 2t  into equation (9) we get the maximum flight range: 

 
2

0 0
max 2 0

2 sin75 2 cos75 sin75
( ) cos75 25 ( ).

V V
x x t V km

g g

° ° °
= = ° = =   

Now we should compare 2 cases: without air resistance and with it. 
The maximum altitude and the flight range in the case with air resistance 

we can determine using the figure 10: max_ max_11.5 , 8.5 .AR ARy km x km=   =   
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The increase in altitude is 

max max_ 23.3 11.5 11.8( )ARy y y kmΔ = − = − = . 

The increase in range of flight is  

max max_ 25 8.5 16.5( )ARx x x kmΔ = − = − = . 

Answer: 11.8( ), 16.5( ).y km x kmΔ =  Δ =  
 
 
Example 3. A flexible thread, fixed at the point A, passes through a 

smooth fixed ring O (Fig.1.7). A small ball of mass m (kg) is attached to a free 
end of the thread. The natural length of the thread is l=AO. A force equal to 
k2m (N) must be applied to elongate the thread 1 m. When the thread is 
stretched along the straight line AB until its length is doubled, then the ball is 
given a velocity V0, perpendicular to AB. Find the path of the ball. Neglect the 
effect of gravity and assume that the tension in the thread is proportional to its 
extension. 

 
Solution 

 
Idealize the ball by a particle. Under condition of 

gravity neglecting there is only one force acting on the 
particle, it is tension force that is directed along the 
thread.  

General equation of free particle motion in 
vector form is (1.1) 

 = =mW F T . (1.38) 

Choose rectangular coordinate system with 
origin at O. 

Projecting the equation (1.38) on the axes x and 
y we get: 

 

 
) ,

) .
x

y

x mx T

y my T

=⎧
⎨ =⎩

 (1.39) 

 Fig. 1.7 
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The force 2T k m=  must be applied to elongate the thread 1m. To 
elongate the thread on l OMΔ =  (m) the force 2T k m l= Δ  must be applied. 

The vector T  is opposite with vector OM . Then  

 2 ;T k mOM= −   

 

2 2

2 2

cos cos ;

sin sin .

x

y

T k mOM OM x k mx

T k mOM OM y k my

α α

α α

⎧ = − = = = −⎪
⎨

= − = = = −⎪⎩
  

System (1.39) can be rewritten as: 

 
2

2

,

,

mx k mx

my k my

⎧ = −⎪
⎨

= −⎪⎩
 

or after simplification 

 
2

2

0;

0.

x k x

y k y

⎧ + =⎪
⎨

+ =⎪⎩
 (1.40) 

The system obtained is system of the second order homogeneous linear 
differential equations. They are independent and can be solved separately.  

Characteristic equation for the first equation of system (1.40) is: 

 

2 2

2 2

1,2

0,

,

.

k

k

ki

λ

λ
λ

+ =

= −
= ±

  

Roots are complex values, that’s why x-coordinate equation is 

 1 2cos ( ) sin ( )x c kt c kt=  +  , (1.41) 

where 1c   and 2c   are constants of integration. 
To find x-component of velocity we have to differentiate the equation (1.41) 

 1 2sin ( ) cos ( )x

dx
v c k kt c k kt

dt
= = −  +  . (1.42) 

Solve the second equation of the system (1.40) in the same manner: 
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2

2 2

2 2

1,2

0,

0,

,

,

y k y

k

k

ki

λ

λ
λ

+ =

+ =

= −
= ±

 

 3 4cos ( ) sin ( ),y c kt c kt=  +   (1.43) 

 3 4sin ( ) cos ( ).
dy

y c k kt c k kt
dt

= = −  +   (1.44) 

To find constants of integration c1, c2, c3, c4 we have to use initial 
conditions. According to the statement of the problem at initial moment of time 
the particle was at point B and the velocity is perpendicular to y-axis, so 

 at t=0: 
0

(0) 0,

(0) ,

(0) ,

(0) 0.

x

y l

x v

y

=⎧
⎪ =⎪
⎨ =⎪
⎪ =⎩

  

Putting t=0 into equations (1.41), (1.42) we get: 

 
1

0
2 0 2

(0) 0,

(0) .

x c

V
x c k V c

k

= =

= =   ⇒  =
 

Putting t=0 into equations (1.43), (1.44) we get: 

 3

4 4

(0) ,

(0) 0 0.

y c l

y c k c

= =
= =   ⇒  =

 

Finally equations of the particle motion in parametrical form are  

 
0 sin( );

cos( ).

V
x kt

k
y l kt

=

=
 (1.45) 

To find the path of the ball we need to exclude the parameter t. 
Rewriting (1.45) 
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 0

sin( ) ;

cos( ) .

xk
kt

V

y
kt

l

=

=
 (1.46) 

squaring and summing equations (1.46) we obtain: 

 ( ) ( )
2 2

2 2

0

sin( ) cos( ) ,
xk y

kt kt
V l

⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

  

but ( ) ( )2 2
sin( ) cos( ) 1kt kt+ =  so 

 
2 2 2

2 2
0

1.
x k y

V l
+ =  

This is equation of ellipse. The general form of ellipse equation is 

 
( ) ( )2 2

0 0
2 2

1
x x y y

a b

− −
+ = , 

where x0, y0 are coordinates of the center and a, b are semi axes. In our case 

0
0 0 0, , .

V
x y a b l

k
= =  =  =   

Answer: 
2 2 2

2 2
0

1
x k y

V l
+ = . 

 
Example 4. Missile of mass m moves vertically. At initial 

moment of time its velocity was 0v . If the air drag force is given 

by 2
сопрF kv=  where k  is constant, derive the maximum height 

and duration of missile lift. 
 

Solution 
 

Equation of free particle motion in vector form is 

 .admW F G= +   (1.47) 

Fig. 1.8 
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Choose the x  direction collinear with direction of missile motion, so that 

0x =  if 0h = . Draw free-body diagram (Fig. 1.8): show air drag force adF , 

gravity G . The two forces are directed down therefore choose axis x  positive 

direction down too. 
Apply equation of motion in the x -direction to get 

 
2.mx gm kx= +  (1.48) 

For determination of duration of missile lift we can rewrite the equation in the 
following form  

 ,
dx

x
dt

=  

 2.
dx k

g x
dt m

= +   

By separating of the variables we 

 
2

.
dx k

dt
m mg x
k

=
+

 

We can integrate using notation 2 m
c g

k
=  

 
0

2 2
0

,
v T

v

dx k
dt

c x m−

=
+∫ ∫  

 

01 1
( )

vv k
arctg arctg t

c c c c m

−
− =

 

or 0( ).
vk

v c tg c t arctg
m c

= ⋅ −  (1.49) 

For maxt t=  ( maxt  is duration of missile lift) 0:v =  

 
0

max0 ,
vk

c tg c t arctg
m c

⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠
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 0
max 0,

vk
c t arctg

m c
− =  

 0
max .

vm
t arctg

ck c
=  (1.50) 

The maximum height of missile lift is obtained by integrating eq. (1.49) 
with known limits ( )max0,t  for time and ( )max0, x  for distance: 

 0( ),
vdx k

v c tg c t arctg
dt m c

= = ⋅ −  

 0( ) ,
vk

dx c tg c t arctg dt
m c

= ⋅ −  

 

max max

0

0 0

0 0
max max

0 0
max max

( ( )) ;

ln cos ln cos ,

ln cos ln cos

x t
vk

dx c tg c t arctg dt
m c

v vm k m
x c t arctg arctg

k m c k c

v vm k m
x c t arctg arctg

k m c k c

= −

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= − − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= − − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫

 

 

0
max

0

cos
ln .

cos

vk
c t arctg

m m c
vk

arctg
c

⎛ ⎞−⎜ ⎟
⎝ ⎠= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1.51) 

Now we put equation (1.50) into the equation (1.51) 
 

 

0 0

max
0

cos

( ) ln
cos( )

v vk m
c arctg arctg

m ck c cm
x t

vk arctg
c

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= − =
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0

0

1
ln 0 ln cos( )

cos( )

vm m
arctg

vk k carctg
c

⎛ ⎞
= − = − − =⎜ ⎟

⎝ ⎠
 

20

0
2

22 2
0 0

, ,

ln cos( ) 1 1
cos

1
1

v k
arctg c

c gm
vm

arctg gm
k c

kvtg gm kv
gm

α

α
α

= =

⎛ ⎞= == =⎜ ⎟ = = =⎝ ⎠ + ++
 

 
2 2

0 0

ln ln .
2

m gm m gm

k gm kv k gm kv

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

Answer: the maximum height of missile lift is 

max 2
0

( ) ln
2

m gm
h x t

k gm kv

⎛ ⎞
= = ⎜ ⎟+⎝ ⎠

, and duration of missile lift is 

0
max

vm
t arctg

ck c
= . 

2.4.2. Constrained particle motion  

 
Example 5. A 53 10⋅  kg airliner has four engines each of which produces 

a nearly constant thrust of 180 kN during the takeoff roll.  Determine the length 
s  of runway required if the takeoff speed is 220 km/h. Neglect air and rolling 
resistance. 

Solution 
 

Consider airplane as a particle. The airplane moves along straight 
horizontal line, so the airplane motion is constrained with one degree of 
freedom. 

General equation of constrained motion in vector form is (1.26) 

.= +mW F N  
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For solution choose one coordinate axis x collinear with airplane 
trajectory and with origin at airplane initial position (Fig. 1.9). 

 

 
 

Fig. 1.9 
 

Draw free-body diagram of the airplane treated as a particle: 

− applied forces are total thrust force 4T T∑ = , gravity G , lifting   

force L ; 

− reaction is normal force N . 
Rewrite the equation for the given problem 

 .mW T G L N∑= + + +  (1.52) 

In x-direction we get 

 .mx T∑=  (1.53) 

In the equation there is one unknown only. It is coordinate x as function 
of time. 

Determine the first integral of Eq. (1.53): 

 ,
T

x
m

∑=  (1.54) 

rewrite x  as 
dx

dt
: ,

Tdx

dt m
∑= separate variables and integrate 

,
T

dx dt
m

∑=
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,

T
dx dt

m
∑=∫ ∫

  

 1,
T

x t C
m

∑= +  (1.55) 

where 1C  is the first constant of integration, it has dimension of velocity (m/s). 
Determine the second integral of Eq. (1.55): 

 
1,

Tdx
x t C

dt m
∑= = +

 

 
1 ,

T
dx t C dt

m
∑⎛ ⎞

= +⎜ ⎟
⎝ ⎠  

 
1 ,

T
dx t C dt

m
∑⎛ ⎞

= +⎜ ⎟
⎝ ⎠∫ ∫

  

 
2

1 2 ,
2

T t
x C t C

m
∑= + +  (1.56) 

where 2C  is the second constant of integration, it has dimension of 
displacement (m). 

Ascertain initial conditions for determination of constants 1C  and 2C : 

when 0t s=  then airplane coordinate 0 0x m=  and velocity 0 0 /x m s=  Put 
the initial conditions into Eq. (1.55) and (1.56) 

 0 10 0 ,
T

x C
m

∑= = +  (1.57) 

 
2

0 1 2

0
0 0 ,

2

T
x C C

m
∑= = + +  (1.58) 

then 

 1 0 0 / ,C x m s= =  (1.59) 

 2 0 0 .C x m= =  (1.60) 
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Substituting constants C1 and C2 in equations (1.55) and (1.56) we get 

 ,
Tdx

x t
dt m

∑= =  (1.61) 

 
and equation of motion is 

 
2 3

2 2
5

4 180 10
1.2 .

2 3 10 2

T t
x t t

m
∑ ⋅ ⋅

= = =
⋅ ⋅

 (1.62) 

Using Eq. (1.61) for airplane velocity determine time when velocity is 
220 / 61.1 /km h m s= : 

 3

5

61.1,
25.46 .

4 180 10
3 10

takeoff

x
t s

T
m

∑

= = =
⋅ ⋅

⋅

 (1.63) 

Put the time into Eq. (1.62) and determine the length of runway 

 ( ) 21.2 25.46 778.035takeoffs x t m= = ⋅ = . (1.64) 

Answer: the length of runway is 778.035m . 
 
Example 6. A 54 kg particle initially at rest moves under the action of 

driving force 27 =F N  inside smooth circular tube ( 3r m= ) in horizontal 

plane. Determine the horizontal component of normal reaction at 6 t s=  if 

force direction is always collinear with particle velocity (Fig. 1.10). 
Nota. Velocity is always tangent to the particle trajectory. 
 

 
 

Fig. 1.10 
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Solution 
 

Motion of the particle is constrained because the circular tube 
(constraint) specifies the particle trajectory. 

General equation of constrained motion in vector form is (1.26) 

 .= +mW F N   

The trajectory is curvilinear so it is useful to analyze the particle motion 

in natural coordinate system ( , ,n bτ ) (Fig. 1.11). 
 

 
 

Fig. 1.11 
 

Form free-body diagram (Fig. 1.12): 

− applied forces are driving force F  and gravity G , 
− the tube normal reaction N has two components in the vertical 

vertN  and horizontal horizN  direction.  

                  
     a         b  

Fig. 1.12 
 
Rewrite the equation (1.26) for the given problem 



32 

 .mW F G N= + +  (1.65) 

In scalar form we have  

 ) ,mW Fττ =   

 ) ,n
horizn mW N=   

 ) 0 .vertb G N= − +   

Remembering that W τ σ= , 
( )2

nW
r

σ
=  we get  

 ) ,m Fτ σ =  (1.66 a) 

 
( )2

) ,horizn m N
r

σ
=  (1.66 b) 

 ) 0 .vertb G N= − +  (1.66 c) 

In system (1.66) there are three unknowns: , ,horiz vertN Nσ . It is clear 

from the second equation that horizN  is function of σ  so first we need to 

determine function ( )tσ  using the τ -equation (1.66 a): 

 .
F

m
σ =  (1.67) 

Present σ  as 

 ,
d

dt

σσ =  

put into (1.67) 

 ,
d

m F
dt

σ
=  

separate variables  
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 ,
F

d dt
m

σ =  

Integrate  

 
.

F
d dt

m
σ =∫ ∫

 

For constant driving force magnitude we get 

 ,
F

t C
m

σ = +  (1.68) 

consider initial condition: when 0t =  then 0 0 0v σ= =  so 

 0 0 ,
F

t C
m

σ = +   

or  

 0 0 ,
F

C
m

= +   

from which 0C =  and 

 .
F

t
m

σ =   

Now determine horizN  using n-equation of system (1.66b) at 6 t s= : 

 
( )2 2 2

54 27
6 162 .

3 54horiz

m F
N m t N

r r m

σ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Answer: horizontal component of normal force at 6 t s=  is 162 .N  
 

Example 7. A 5 kg particle moves from a state of rest along a smooth 
guide with a radius R situated in a horizontal plane under the action of driving 
force 0.5 ,F t N= . Determine the velocity of the particle at time 30 s if the force 

makes a constant angle 50° with the velocity vector. 
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Solution 
 

Motion of the particle is constrained because the smooth circular guide 
(constraint) specifies the particle trajectory. Draw sketch illustrating the problem 
statement (Fig. 1.13, a). Remember that force must point in direction of the 
trajectory concavity, Fig. 1.13, b presents wrong direction of the force. 

 

                       
a      b  

 
Fig. 1.13 

 
Use natural coordinate system because motion is curvilinear. Tangent 

axis is directed along the tangent to trajectory, normal one is directed to the 
center of curvature.  

General equation of constrained motion in vector form is (1.26) 

 .= +mW F N   

Form free-body diagram (Fig. 1.14, a): 
 

                  
     a         b  

Fig. 1.14 
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− applied forces are driving force F  and gravity G ; 

− the tube normal reaction N has two components in the vertical 

vertN  and horizontal horizN  direction.  

Projection of the equation onto tangential axis is: 

 ) cosmW Fττ α= .  

Presenting Wτ  as 
dV

dt
 we get: 

 

2

1

0.5 cos ,

0.5cos
,

0.5cos
,

0.5cos
,

0.5cos
.

2

dV
m t

dt
dV

t
dt m

dV tdt
m

dV tdt
m

t
V C

m

α

α

α

α

α

=

=

=

=

= +

∫ ∫

  

To find constant of integration 1C  consider initial condition: when 0t =  

then 0 0=v  so 

1 1

0.5cos 0
(0) 0 .

2
V C C

m

α
= = + =  

So 1 0C =  and 
20.5cos

2

t
V

m

α
= . 

At time t=30 s we have:  
20.5cos50 30

(30s) 28.9 .
5 2 s

m
V

° ⎛ ⎞= =  ⎜ ⎟
⎝ ⎠

 

Answer: (30s) 28.9 .
s

m
V

⎛ ⎞=  ⎜ ⎟
⎝ ⎠
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Example 8. Determine a velocity of a particle M of a conical pendulum 
which at cord length OM=1 m circumscribe a cone with an angle at vertex 

45α = ° (Fig. 1.15)
   

Solution 
 

 
 

Fig. 1.15 
 

Particle moves curvilinear so natural coordinates ( , ,n bτ ) are used. Motion 
is constrained by cord. 

General equation of constrained motion in vector form is (1.26) 

 .= +mW F N  

  

For this problem gravity force represents applied force and tension force 
is reactive one. So 

 .= +mW G T   

Projecting on the axes we get: 

 ) 0,mWττ =  (1.69) 

 ) sin ,nn mW T α=  (1.70) 

 ) cos .bb mW mg T α= −  (1.71) 



37 

Binormal acceleration is always zero: 0bW = . So from  equation (1.71) we get: 

 .
cos

mg
T

α
=  

Substituting this expression to equation (1.70) we obtain: 

 
sin tan ;

cos
tan .

n

n

mg
mW mg

W g

α α
α

α

= =  

=  
  

From the other hand 
2

n

V
W

ρ
= , where sinOMρ α=  is a radius of the 

trajectory curvature. So  

 

2

2

tan ;

tan ;
sin

tan sin .

V
g

V
g

OM

V g OM

α
ρ

α
α
α α

=  

=  

= ⋅

  

Substituting values we get 9.8 tan 45 1 sin 45 2.6 .
s

m
V

⎛ ⎞= ⋅ ° ⋅ ⋅ ° =  ⎜ ⎟
⎝ ⎠

 

 
Example 9. A small rocked propelled vehicle of mass m travels down 

the circular path of effective radius r  under the action of its weight and 
constant trust T  from its rocket motor (Fig. 1.16). If the vehicle starts from rest 
at A determine its speed v  when it reaches B and the magnitude N  of the 
force exerted by the guide on the wheels just prior to reaching B. neglect any 
friction and any loss of mass of the rocket. 

 
Fig. 1.16 
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Solution 
 
The vehicle motion is constrained because the vehicle travels circular 

surface (trajectory is given beforehand). So it is useful to specify the vehicle 

motion in natural coordinate system ( , ,n bτ ). 
Draw free-body diagram of the vehicle treated as a particle: thrust force 

T , gravity G  and reactive force N that is normal reaction of the guide 
(Fig. 1.17), the reaction is in the vertical plane. 

 
 

Fig. 1.17 
 

Equation of constrained motion in vector form is 

 .mW T G N= + +  (1.72) 

For curvilinear motion acceleration has two components: tangent and 
normal (Fig. 1.18) 

 
Fig. 1.18 
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 .nW W Wτ= +   

So equation (1.72) in scalar form is the following system: 

 ( )2

) ,

) ,

m T G сos

n m G sin N
r

τ σ ϕ

σ
ϕ

= + ⋅

= − ⋅ +
 (1.73) 

whereσ  is path of the vehicle along the circle of radius r , σ  is circular arc; 
 ϕ  is angle subtending the arc σ . 

There are three unknowns in the system: , , Nσ ϕ , . So the system must 
be supplement by equation of constraint (circular guide is constraint): 

 , ,r r rσ ϕ σ ϕ σ ϕ= ⋅ = ⋅ = ⋅ , (1.74) 

then 

 ( )2

,

.

mr T G Cos

r
m G Sin N

r

ϕ ϕ

ϕ
ϕ

= + ⋅⎧
⎪
⎨

= − ⋅ +⎪
⎩

 (1.75) 

We are asked about velocity at point B, B Bv rσ ϕ= = ⋅ . Position of 

point B can be specified by angle 
2B

π
ϕ =  as: B Brσ ϕ= ⋅ . So to obtain the 

answer we need to determine function ( )ϕ ϕ  from the system. 

Rewrite ϕ  as 

 
1 1

.
d d d d

d d
dt dt d dt d d

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ
= = = =  (1.76) 

Put Eq.(1.76) into the first equation of the system (1.75): 

 
1

,mr d T G сos
d

ϕ ϕ ϕ
ϕ

= + ⋅   

 ( ) ,mr d T G сos dϕ ϕ ϕ ϕ= + ⋅   
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 ( ) ,mr d T G сos dϕ ϕ ϕ ϕ= + ⋅∫ ∫  

 ( )
2 1

,
2

T G sin C
mr

ϕ
ϕ ϕ= + ⋅ +  (1.77) 

where C  is the constant of integration, it has dimension of velocity squared 
2

m

s
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Ascertain initial condition for determination of constants C : when 

0 0ϕ =  then vehicle velocity 0 0 0 /r m sσ ϕ= =  and so 0 0 /rad sϕ = . From 
Eq. (1.77) we get 

 ( )
2

0 1
0 0 0 ,

2
T G sin C

mr

ϕ
= = ⋅ + ⋅ +  (1.78) 

 0,C =  (1.79) 

and 

 ( )2
.T G sin

mr
ϕ ϕ ϕ= + ⋅  (1.80) 

Vehicle velocity 

 ( )2
.

r
r T G sin

m
σ ϕ ϕ ϕ= = + ⋅  (1.81) 

At point B 
2B

π
ϕ =  so 

 
2

2 .
2 2B B B

r T
v r T G sin r g

m m

π π π
σ ϕ ⎛ ⎞ ⎛ ⎞= = = + ⋅ = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (1.82) 

Using the second equation from the system (1.75) determine N : 

 
( )2 2

3 .B
B

T
r g

r m
N m G sin m G T mg

r r

π
ϕ

ϕ π

⎛ ⎞+⎜ ⎟
⎝ ⎠= + ⋅ = + = +  (1.83) 
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Answer: at point B vehicle velocity 2B B

T
v r g

m

π
σ ⎛ ⎞= = +⎜ ⎟

⎝ ⎠
 and normal 

force is 3 .N T mgπ= +  
 

Example 10. High-speed land racer of mass m moves horizontal. At 

initial moment of time its velocity was 0v . If the air drag force is 2
adF kv=  

where k  is constant, determine the time t required for it to reduce its speed 
twice and the distance traveled. Neglect dry friction. 

 
Solution 

 
The racer (Fig. 1.19, a) moves along straight horizontal line, so the 

racer motion is constrained with one degree of freedom. For solution choose 
one coordinate axis x collinear with racer trajectory and with origin at racer 
initial position (Fig. 1.19, b). 

      

  
a                                                                    b 

Fig. 1.19 
 
Draw free-body diagram of the racer treated as a particle: air drag force 

adF , gravity G , pressing force P and normal force N (see Fig. 1.19, b). 
Equation of motion in vector form is 

 .= + + +admW F G P N  (1.84) 

In x-direction we get 

 2 .admx F kx= − = −  (1.85) 

In the equation there is one unknown only. It is coordinate x as function 
of time. 

Rewrite (1.56) using equality 
dx

x
dt

= , we get 
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 2 .
dx k

x
dt m

= −  (1.86) 

Separate variables and integrate with given limits: initial velocity 0v , final 

velocity 0
2

v
 : 

 

0

0

2

2
0

,

v
t

v

dx k
dt

x m
= −∫ ∫  (1.87) 

 
0 0

2 1
,

k
t

v v m

⎛ ⎞
− − = −⎜ ⎟

⎝ ⎠
 

 
0

1 m
t

v k
= . (1.88) 

So time of deceleration is function of the initial speed. 
Determine the distance: 
integrate Eq. (1.87) 

 
2

,
dx k

dt
x m

= −∫ ∫  

 1

1
,

k
t C

x m
− = − +  

initial condition for 1C : when 0t =  then 0x v= , so 1
0

1
C

v
= −  and  

 
0

1 1
,

k
t

v m v
= +  

now again separate variables  

 
0

1 1
,

k
t

dx m v
dt

= +  
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0

,
1

dt
dx

k
t

m v

=
+

 (1.89) 

use substitution of variables in Eq. (1.89) 

 0

1
, ,

k k m
z t dz dt dt dz

m v m k
= + = =

 

and integrate 

 

2

,

ln .

m dz
dx

k z
m

z x C
k

=

= +

∫ ∫
 

Now replacing z , we get 

 2
0

1
ln .

m k
t x C

k m v
+ = +  

Initial condition: when 0t =  then 0x v= , so 2
0

1
ln

m
C

k v
=  and 

 
0 0

1 1
ln ln ,

m k m
x t

k m v k v
= + −  

on combining the logarithmic terms, we obtain 

 0
0 0

1 1
ln ln ln 1 .

m k m m k
x t v t

k m v k v k m
= + − = +  (1.90) 

There is another way of the Eq. (1.57) solution for determination the 
distance traveled: 

 
2

2( )
,

2

dx dx xdx d x k
x

dt dx dx dx m
= = = −  



44 

 
2

2

( )
2 .

d x k
dx

x m
= −  

Integrating we get 

 2
3ln 2 ,

k
x x C

m
= − +  

when = 0x v  we take x=0 and so = 2
3 0lnC v , and  

 

2 2
0

2
0
2

ln 2 ln ,

ln 2 ,

k
x x v

m

v k
x

x m

= − +

=
 

for 0

2

v
x =  we have 

 
2

0
2

0

ln ln 4 .
2 2

2

vm m
x

k kv
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1.91) 

Substitute 0,2 4000k m kg= =  we get 13680 x m= . 

Answer: time of deceleration  is function of the initial speed 
0

1
.

m
t

v k
=  

Distance traveled during the velocity decreasing is not function of the 

initial speed value 
2

0
2

0

ln ln 4
2 2

2

vm m
x

k kv
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
2.5. Problem for self solution 

 
Problem 1. A bucket which weighs 280 kgf descends into a mine with 

uniform acceleration. During the first 10 sec it drops 35 m. Find tension in the 
cable holding the bucket. (1 kgf=10 N). 

 
Problem 2. An aircraft weighing 2000 kgf flies horizontally with an 

acceleration of 5 m/sec2 and an instantaneous speed of 200 m/sec. The air 
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drag at this speed is proportional to the square of the speed; when the speed of 
1 m/sec is attained the air drag equals 0.05 kgf. Assuming that the force of 
resistance is directed opposite to the velocity, determine the tractive force of 
the propeller, if the angle between the flight direction and the tractive force 
is 10°. 

 
Problem 3. In a test of resistance to motion in an oil bath a small steel 

ball of mass m (Fig. 1.20) is released from rest at the surface (y = 0). If the 
resistance to motion is given by R = kv where k is a constant, derive an 
expression for the depth h required for the ball to reach a velocity v. 

 

 
 

Fig. 1.20 
 

Problem 4. Fig. 1.21 shows the velocity graph of the upward motion of a 
lift weighing 480 kgf. Find the tensions T1, T2, T3 in the cable holding the lift 
during the three periods of time: (1) from t = 0 to t = 2 sec; (2) from t = 2 sec to t 
= 8 sec; (3) from t = 8 sec to t =10 sec. 

Answer: T1 =602.4 kgf; T2 = 480 kgf; T3 = 357.6 kgf. 

 
 

Fig. 1.21 
Problem 5. An aircraft dives vertically and attains a speed of 1000 km/h. 

Reaching this speed the pilot pulls the aircraft out tracing an arc of radius  
R = 600 m in vertical plane. The weight of the pilot is 80 kgf. He is subjected to 
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pressure from the seat during this flight. Find the maximum pressure exerted 
on the pilot. 

Answer: 1130 kgf. 
 
Problem 6. A body of weight P is given a push and moves along a rough 

horizontal plane. It travels the distance s = 24.5 m during 5 sec and then 
comes to rest. Determine the coefficient of friction f. 

Answer: f = 0.2. 
 
Problem 7. An aircraft flies horizontally. The air resistance is proportional 

to the square of the speed. At a speed of 1 m/sec the air resistance equals 0.05 
kgf. The tractive force is constant and equals 3080 kgf and it makes an angle of 
10° with the direction of the movement of the aircraft. Determine the maximum 
speed of the aircraft. 

Answer: Vmax=246 m/sec. 
 
Problem 8. A body falls from a height without any initial velocity. The air 

resistance is R = k2pv2 where v is the velocity of the body, and p is its weight. 
Determine the velocity of the body attained after time t. Also find the limiting 
velocity. 

Answer: 
1 1

; .
kgt kgt

kgt kgt

e e
v v

k e e k

−

∞−

−
= =

+
 

 
Problem 9. Determine the tension P in the cable which will give the 100-

lb block a steady acceleration of 5 ft/sec2 up the incline (Fig. 1.22). 
Answer: P = 43.8 lb. 
 

 

Fig. 1.22 
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Problem 10. The system is released from rest with the cable taut (Fig. 
1.23). Neglect the small mass and friction of the pulley and calculate the 
acceleration of each body and the cable tension T upon release if (a) μs = 0.25, 
μk = 0.20 and (b) μs = 0.15, μk = 0.10. 

 
 

Fig. 1.23 
 
Problem 11. The pulley arrangement of Prob. 16 is modified as shown in 

the Fig. 1.24. For the friction coefficients μs = 0.25 and μk = 0.20, calculate the 
acceleration of each body and the tension T in the cable. 

Answer: aA= 1.450 m/s2 down, aB = 0.725 m/s2 up, T= 105.4 N. 
 

 
 

Fig. 1.24 
 

Problem 12. In a test to determine the crushing characteristics of 
styrofoam packing material, a steel cone of mass m is dropped so that it falls a 
distance h and then penetrates the material (Fig. 1.25). The resistance R of 
styrofoam to penetration depends upon the cross-sectional area of the 
penetrating object and thus is proportional to the square of the cone 
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penetration distance x, or 2R   kx= − . If the cone comes to rest at a distance 
x d= , determine the constant kin terms of the test conditions and results. 

Answer: ( )3

3mg
k h d

d
= + . 

 
 

Fig. 1.25 
 

Problem 13. Determine the height h and tension T in the cord for the 
conical pendulum of mass m and length I which rotates about the vertical axis 
at the angular rate θ ω=  (Fig. 1.26) 

 

 
 

Fig. 1.26 
 



49 

2.6. Short problems 
Problem 1. A particle of a mass m=10 kg moves along a curvilinear 

trajectory under action of a force F=20 N. Determine a velocity of the particle at 
the moment when a radius of curvature of the trajectory is ρ =12m and an 
angle between the force and the velocity vector is 35°. 

Problem 2. A particle moves along a curvilinear trajectory under action of 
a force 5 0.3 .F nτ= +  determine a mass of the particle if at a moment t=20 sec 
its acceleration is W=0.6 m/sec2. 

 
Problem 3. A particle of a mass m=2 kg moves in a plane 

Oxy under action of the force, the projections of which are 
( ) ( )2sin 0.5 , 5cos .x yF t F tπ π=  =  Determine a magnitude of the 

particle acceleration at a moment t=1 sec. 
 
 
 
Problem 4. A particle 1 of a mass m=30 kg moves in 

vertical plane in the tube 2, bent by an arc of a circle of a radius 
R=12 m (Fig. 1.27). Determine a tangential acceleration of a 
particle in the given position. 

Fig. 1.27 
 

 
Problem 5. A particle M of a mass m=8 kg moves 

in horizontal plane along an arc of a radius R=18 m (Fig. 
1.28). Determine the angle α in degrees between the 
force F  and the velocity v  at a moment when the 
velocity of the particle is 3 / secv m=  and tangential 
acceleration is 20.5 / secW mτ = . 

 

Fig. 1.28 
 

Problem 6. A particle moves along a curvilinear trajectory under action of 
the force, a tangential component of which is Fτ= 0,2t2 and a normal component 
is Fn = 8 N. Determine a mass of the particle if at a moment t = 10 s its 
acceleration is W = 0,7m/sec2.  

 
Problem 7. A particle with a mass m = 5 kg moves along a curvilinear 

trajectory under action of a force, the projection of which on a tangent is 
Fτ = 7 N, on a normal is Fn = 0,1t2. Determine a magnitude of the particle 
acceleration at a moment t = 12 s. 
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Problem 8. A particle М moves along the 
parabola s – s in a vertical plane under action of 
gravitational force (Fig. 1.29). Determine the 
particle velocity at the position В if at the position 
А its velocity is vA = 30 m/s and ОА= 600 m. 

 
 
 

Fig. 1.29 
 

Problem 9. A particle М moves in a vertical 
plane under action of gravitational force (Fig. 1.30). 
Determine a maximal height of ascent h in km if at 
initial moment the particle velocity is v0 = 600 m/s. 

 
 
 
 

Fig. 1.30 
 
Problem 10. A particle of a mass т = 15 kg moves from a state of rest 

along a smooth guide with the radius R situated in a horizontal plane under 
action of the force F = 0,5 t. Determine the particle velocity at the moment of 
time t = 30 s if the force makes a constant angle 50° with the velocity vector. 

 
LECTURE 2 

2.7. Differential equation of particle motion 
in noninertial frame of reference 

 
It is know from particle kinematics that often in technique motion of a 

particle is analyzed with respect to fixed and moving references at the same 
time. It is compound motion of the particle. However, Newton's second law of 
motion is valid in inertial (fixed) frame of reference only: 

 mW F= , (2.1) 

where W  is the acceleration of the particle in the fixed frame of reference 
(absolute acceleration); 

F  is the resultant of the force system applied to the particle. 
The absolute acceleration is 

 = + +
e r cor

W W W W , (2.2) 
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where 
e

W  is bulk or transport acceleration; 

  
r

W  is relative acceleration;
cor

W  is Coriolis acceleration. 
So 

 ( )+ + =
e r cor

m W W W F . (2.3) 

If we are interested in relative motion of the particle we need to rewrite 
equation (2.3) in the following form  

 = − −
r e cor

mW F mW mW . (2.4) 

We denote terms in the right side of the equation as: 

 
e e

J mW= − , (2.5) 

e
J  is bulk force of inertia or force of inertia of moving space; 

 
cor cor

J mW= − , (2.6) 

Cor
J  is the Coriolis force. 
 

So for moving frame of reference differential equation of free particle 
motion is 

 = + +
e cor

rmW F J J .  (2.7) 

The inertial force features. 
• They are not real Newtonian forces because there are not bodies that 

produce these forces. So forces of inertia are fictive. 
• The magnitudes of inertial forces are functions of mass of the particle 

under consideration. 
• Forces of inertia are determined by kinematical characteristics of the 

moving frame of reference.  
Differential equation of constraint  particle motion in non-inertial frme is 

 
r e cor

mW F N J J= + + + ,  (2.8) 

where is resultant of reactions acting on the particle. 
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2.8. Classical mechanics relativity principle 
 
First we analyze the conditions under which the forces of inertia are zero. 

To do this we have to remember the conditions under which the appropriate 
accelerations are zero. 

For the bulk acceleration of a particle M, that moves in moving reference 
Axyz  we have 

 е en e
A MA MAW W W W τ= + + =  

 

terms that characterize rotation ofacceleration of
moving reference about its origin Amoving system origin A

( )

( )

е е е
A

n е е е
А А

W AM AM

W W AM AMτ

ω ω ε

ω ω ε

= + × × + × =

= + + × × + × . (2.9) 

The first two terms of equation (2.9) characterize acceleration of moving 
system origin A. The acceleration components are zero if origin of the moving 
reference has uniform rectilinear motion. 

The second two terms characterize rotation of moving reference about its 
origin A. The terms are zero if the moving reference has translation motion. 

Conclusion: the moving space force of inertia is zero if moving reference 
has translational uniform rectilinear motion. 

For the Coriolis acceleration we have 

 rеcor vW ×= ω2 . (2.10) 

The Coriolis acceleration is zero if : 

1) moving reference has translation motion ( 0еω = ); 
2) the relative velocity of the particle is parallel to the axis of rotation 

(instantaneous or fixed) of moving reference ( е rvω ). 
The two cases are realized if moving reference has translational uniform 

rectilinear motion. 
So, if moving reference has translational uniform rectilinear motion, the 

both forces of inertia are zero and therefore equation (2.8) coincides with the 
equation (2.1) written for inertial (fixed) frame of reference. You can see that 
the second Newton’s low holds in such moving reference and so the moving 
reference is inertial one. 

 
Principle of relativity: any frame of reference will be inertial if it is in 

uniform rectilinear translational motion in relation to inertial frame of reference. 
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Or from Albert Einstein: The Foundation of the General Theory of 
Relativity, Part A, § 1. 

Special principle of relativity: If a system of coordinates K is chosen so 
that, in relation to it, physical laws hold good in their simplest form, the same 
laws hold good in relation to any other system of coordinates K' moving in 
uniform translation relatively to K. 

 
Galileo Galilei first described this principle in 1632 in his “Dialogue 

Concerning the Two Chief World Systems” using the example of a ship 
traveling at constant speed, without rocking, on a smooth sea; any observer 
doing experiments below the deck would not be able to tell whether the ship 
was moving or stationary. Today one can make the same observations while 
travelling in an aeroplane with constant velocity. The fact that the earth on 
which we stand orbits around the sun at approximately 30 km/s offers a 
somewhat more dramatic example. 

 
2.9. The relative resting conditions  

 
The particle is in the rest relative to a moving frame of reference if its 

relative velocity is zero during some time interval, 0=rv . So, the Coriolis force 
is zero. The equation (2.8) in this case has the following view  

 
e

F J 0.+ =  (2.11) 

Eq.(2.11) is the relative resting conditions. 
 

2.10 . Examples 

2.10.1. Law of relative motion 

Example 1. The projectile moves along a flat trajectory at latitude 60 . Its 
velocity is 900 m/s. The range of flight is 18 km. Determine the projectile 
deflection from the aim as a result of Earth rotation. Neglect air resistance.  

 
Solution 

 
Motion of the projectile is considered in two frames of references: 
- fixed Oxyz  with origin in the center of the Earth (Fig. 2.1), motion of the 

Earth about the Sun is neglected; 
- and moving reference 1 1 1Ax y z  with the origin at the initial position of the 

projectile, reference 1 1 1Ax y z  is rigidly connect with Earth, so the reference 
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rotates about the Earth axis of rotation, the moving reference angular velocity 

vector eω  points toward North Pole, and has magnitude -57.27 10  
rad

s
⋅ , 

angular velocity of Earth rotation is 

  52
7.27 10 ,

24 3600
−= = ⋅

⋅Earth

rad

hours s s

πω  

axis 1Ay  coincides with direction of the projectile motion. 
Equation of projectile motion relative the moving reference is 

 
r e cor

mW F J J= + + , (2.12) 

where Coriolis force is = −
e CorJ mW . 

The Coriolis acceleration of the projectile is 

 2cor е rW vω= × .  

In the problem 1x -component of velocity is neglected because it is 

substantially smaller then velocity 1y -component. And in the problem it is 

assumed that the trajectory is flat ( 1z -component of velocity is zero), therefore 

action of gravity and bulk force of inertia 
e

J  is neglected.  

So  

2 ( , ) 2 60= = =cor е r е r е
yW v Sin v v Sinω ω ω  

 -5 22 7,275 10 900 sin 60 0.113 / .= ⋅ ⋅ ⋅ ⋅ = m s  (2.13) 

Coriolis acceleration points out from the paper perpendicular to the plane 
of sketch (see Fig. 2.1, a), so Coriolis force points into the paper along the 

negative direction of axis 1Ax (see Fig. 2.1, a). Fig. 2.1, b characterizes view in 

B-direction. 

The projection of equation (2.12) onto the axis 1Ax  is 

 1
cormx mW= . (2.14) 
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rv  
CorJ

z  

CorJ  
CorW

rv  

view from B-direction 

1x

1y  

x  

y

e
Earth ω=

60
O 

B1y  

A 

1z  

1x

 
       a                                                            b  

  Fig. 2.1 
Integrating twice we have 

 
2

1 1 02

corW t
x C t C= + + . (2.15) 

When = 0t  we have 1 0x =  and 1 0x =  so 

 1 0 0C C= = . 

The duration of motion can be determined from the equation of the 
missile uniform motion along the trajectory (along axis 1Аy ) 

 1 0 900
m

y v
s

= = , 

integrating we get 

 1 900 ,y t m= , 

for t  equals duration of fly  

 1

0

18000 / 900 20 
y

t s
v

= = = . 

Substituting in the equation (2.15) we get deflection 22,68 m. 
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Example 2. The body A 
uniformly rotates about fixed vertical 
axis z1 with a constant angular 
velocity 8 / sece radω π=  (Fig. 2.2). A 
ball M of a mass 0.02m kg=   moves in 
cylindrical channel of the body A. The 
ball is attached to the end of 
horizontal spring, the coefficient of 
stiffness of which is 20 /k N m=  . At 
initial moment the ball was on the 
distance 0.2OM m=   and had the 
initial velocity 0 2 / secV m=  . 

Find an equation of a relative 
motion of the ball x(t) and a normal 
reaction of the channel фt 0.2 sect =  . 
The length of unstretched spring is 

0 0.1l m=  .   Neglect a friction force. 
Fig. 2.2 

 
Solution 

 
1. We are asked about law of the particle relative motion that is motion 

with respect to the rotating rectilinear channel. So the moving frame of 
reference Oxyz we connect with the channel. Motion of moving reference is 
charectirised in fixed (inertial) reference 1 1 1 1O x y z  The motion is rotation about 

fixed axis 1 1O z ,  so all points of the moving frame have acceleration and the 
moving frame is non-inertial. 

Conclusion: relative motion is rectilinear along Ox x in Oxyz , bulk motion 

is rotation of the reference Oxyz  about 1 1O z , in 1 1 1 1O x y z . 
2. The channel is a constraint for the ball so we use main equation of 

motion in non-inertial frame of reference for constrained particle (2.8): 

 .= + + +r e CormW F N J J   

Prepare FBD for the particle at time t (Fig. 2.3), assume that the spring is 
elongated. Applied forces are: gravity force mg  directed down, force of spring 

sprF  is directed opposite elongation of the spring, according to Hook’s law: 

 ( )0sprF k l k OM l= Δ = − , 
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Fig. 2.3  
 

where OM  is the shortest distance between the particle and axis of rotation 

and for the problem OM  can be expressed in terms coordinate x  as 

 OM x= , 

so 

 ( )0sprF k l k x l= Δ = − . 

Let’s analyze normal reaction. When the body A doesn’t move 
(Fig. 2.4, a), normal reaction N is determined by equilibrium equation 

 0 G N= + , (2.16) 

so N G= − , it is vertical an so is applied in the lowest point of that is point of 
contact. 
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When the body A moves with the channel (Fig. 2.4 b) we don’t know 
direction of reaction and its application point. So we resolve the normal force 
into two components: yN  and zN : 

 
2 2

,

.

= +

= +

y z

y z

N N N

N N N
  

 
 

     
 

a       b 
Fig. 2.4 

 
Bulk and Coriolis forces of inertia must be applied. 
 
In accordance with eq. (2.5) Bulk force of inertia is: 

 e eJ mW= − ,  

where eW  is bulk acceleration that is for rotating moving reference: 

 е en e
O MO MOW W W W τ= + + .  

Acceleration of the origin O 0oW = , because O is on the fixed axis of rotation. 

Bulk normal acceleration is calculated according to the formula 

 2 2en e e
MOW OM xω ω= ⋅ = .  

Bulk tangential acceleration is e e
MOW OMτ ε= ⋅ . Bulk angular 

acceleration 0eε = , because angular velocity e constω = . So the total bulk 
acceleration is equal only to normal component: 
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 2 ,e en e
MOW W xω= = ⋅

 
 2 .e eJ m xω= ⋅ ⋅  

Coriolis force of inertia is calculated according to the formula (2.6): 

 cor corJ mW= − ,  

where corW  is Coriolis acceleration: 

 2cor e rW Vω= × .  

According to right-hand rule Coriolis acceleration is directed 
perpendicular to the plane of Fig. 2.3 and points into the paper. Coriolis force of 
inertia is opposite, so it points out of the paper. 

The magnitude of Coriolis acceleration is 

 ( )2 sin , .= ⋅ ⋅cor e r e rW V Vω ω   

An angle between bulk angular velocity (along axis of rotation 1 1O z ) and 

relative velocity is 90°, so ( )sin , 1e rVω =  and 

 2 2cor e r eW V xω ω= ⋅ = ⋅ , 

so value of Coriolis force is 

 2cor eJ m xω= ⋅ .  

3. Rewrite equation (2.8) for for the problem in vector form views as: 

 r e Cor
spr y zmW mg F N N J J= + + + + +

.  

Projecting this vector equation on axes of moving reference Oxyz  we get: 

 

) ,

) ,

) .

e
spr

Cor
y

z

x mx F J

y my N J

z mz N mg

⎧  = − +
⎪⎪  = −⎨
⎪  = −⎪⎩
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There are 5 unknown values: , , , ,y zx y z N N    and only 3 equations. We 

should add equations of constraints to be the system closed: 

 
0,

0.

y const y

z const z

=   ⇒ =
=   ⇒  =

 

Rewriting equations  

 

2
0) ( ) ,

) 0 2 ,

) 0 .

e

y e

z

x mx k x l m x

y N m x

z N mg

ω
ω

⎧  = − − +
⎪  = −⎨
⎪  = −⎩

 

From the 2nd equation of the system we get 2y eN m xω= . 

From the 3d equation we get zN mg= . 
Considering 1st equation:  

 
2

0

2
0

( ) ,

,

e

e

mx k x l m x

mx kx kl m x

ω

ω

= − − +

= − + +  

 

rewrite
 

 

 2 0 .e

k kl
x x

m m
ω⎛ ⎞+ − =⎜ ⎟

⎝ ⎠
 (2.17) 

This is differential equation of the second order, linear, inhomogeneous. 
The general solution will be a sum of homogeneous and inhomogeneous part: 

 .h inhx x x= +   

Present solution of the homogeneous equation as 

 ,h tx ceλ=  

then first and second differentials are 

 
2

,

.

h t

h t

x c e

x c e

λ

λ

λ

λ

=

=
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Substituting these expressions to homogeneous part of the equation 
(2.15) we have: 

 

2

2 2

0,

0.

e

t t
e

k
x x

m

k
c e ce

m
λ λ

ω

λ ω

⎛ ⎞+ − =  ⎜ ⎟
⎝ ⎠

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

  

Characteristic equation is: 

 2 2 0,+ − =e

k

m
λ ω   

determine λ : 

 

2 2

2
1,2

,

.

e

e

k

m

k

m

λ ω

λ ω

= −

= ± −
  

Let’s find a magnitude of a constant  

 ( )22 20
8 19.2 .

0.02e

k
i

m
ω π− = − =  

The result is virtual so the solution of homogeneous part will be 

 ( ) ( )1 2cos 19.2 sin 19.2hx c t c t= + .  

Present solution of inhomogeneous equation as: 

 0inh inhx A so x=      = .  

Then we substitute inhx A=  into equation (2.15): 

 

2 0

0
2

,

.

e

e

klk
A

m m

kl
A

k m

ω

ω

⎛ ⎞− =⎜ ⎟
⎝ ⎠

=
−
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So the total solution of differential equation is: 

 ( ) ( ) 0
1 2 2
cos 19.2 sin 19.2 .= + = + +

−
h inh

e

kl
x x x c t c t

k mω
 (2.18) 

To find unknown constants of integration the initial conditions are used: 
When 0t = : 

 0 0

0 0

0.2 ,

2 / sec.

x OM m

x V m

= =

 = =  
 

Substituting 0t =  to equation (2.18) we have: 

 

( )

0
1 02

0
1 0 22

(0)

20 0.1
0.2 0.07 .

20 8 0.02

= + = ,
−

⋅
= − = − = −

− − ⋅

e

e

kl
x c x

k m

kl
c x m

k m

ω

ω π

  

Differentiating equation (2.18) we have: 

 ( ) ( )1 219.2 sin 19.2 19.2 cos 19.2 .= − +x c t c t  (2.19) 

Substituting  0t =  to equation (2.19): 

 2 0(0) 19.2x c x= = ,  

 0
2

2
0.1 .

19.2 19.2

x m
c

s
= = =   

So equation of relative motion is  

 ( ) ( )0.07cos 19.2 0.1sin 19.2 0.27, .= − + +x t t m  

For relative velocity we get 

 ( ) ( )0.07 19.2 sin 19.2 0.1 19.2 cos 19.2 , .
m

x t t
s

= ⋅ ⋅ + ⋅ ⋅   

At 0.2t =  sec: 

 ( ) ( )0.07cos 19.2 0.1sin 19.2 0.27 0.24 ( ),= − + + =  x t t m  

 ( ) ( )0.07 19.2 sin 19.2 0.1 19.2 cos 19.2 2.3 ( / ).= ⋅ ⋅ + ⋅ ⋅ = −  x t t m s  
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So the reactions will be: 

 2 2 0.02 8 ( 2.3) 2.3 ( ),= = ⋅ ⋅ − = −  y eN m x Nω π  

 0.02 9.8 0.2 ( ),= = ⋅ =  zN mg N  

 
( ) ( ) ( )2 22 2 2.3 0.2 2.3 .= +  = − + =  y zN N N N  

Answer: ( ) ( )0.07cos 19.2 0.1sin 19.2 0.27x t t= − + + , ( )2.3N N=  . 
 

2.10.2. Problems on relative resting condition 

 
Example 3. A small object A is held 
against the vertical side of the rotating 
cylindrical container of radius r due to 
centrifugal action (Fig. 2.5). If the 
coefficient of static friction between the 
object and the container is μs, determine 
the expression for the minimum rotational 
rate θ = ω of the container which will keep 
the object from slipping down the vertical 
side. 

 
Solution 

In this problem relative rest of the 
body A is considered. So an equation of 
relative rest of a particle is used: 

0.+ + =eF N J  

Coordinate axes of moving reference system are connected with rotating 
container (Fig. 2.6). Gravity force mg  is active force and directed down. 
Friction force fF  is directed opposite movement of the object A. It slips down, 

so friction force is up. Normal force is directed perpendicular to the wall of 
container. 

Bulk force of inertia is calculated according to the formula 

e eJ mW= − , 

where bulk acceleration is = +n
e e eW W W τ . 

Fig. 2.5   
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Fig. 2.6 

 
Bulk force of inertia is calculated according to the formula 

 e eJ mW= − ,  

where bulk acceleration is n
e e eW W W τ= + . 

Normal component of bulk acceleration is 

 2 .n
eW rω=  

Tangential component of bulk acceleration is zero ( eW rτ ε= ⋅ , 0ε ω= = ). 
So  

 
2n n

e e eJ J mW m rω= = = ⋅ ⋅ . 

Vector equation of relative rest for the problem is: 

 0.+ + + =e
fmg F N J  (2.18) 

Projecting equation (2.18) on axes ,x y  of moving reference system: 

 
) 0;

) 0.

f

n
e

x mg F

y J N

− =

 − =
  

Rewrite using relation for friction force f sF Nμ= ⋅ : 



65 

   ) 0;sx mg Nμ− ⋅ =  (2.19) 

 2) .y m r Nω =   (2.20) 

Substituting eq. (2.20) into eq. (2.19) we get: 

 

2 0,

.

− ⋅ =

=
⋅

s

s

mg m r

g

r

μ ω

ω
μ

  

So if the container rotates with this angular velocity, the body A will be in the 
state of rest. 

Answer: 
s

g

r
ω

μ
=

⋅
. 

 

Example 4. The small object is 

placed on the inner surface of the 

conical dish at the radius shown (Fig. 

2.7). If the coefficient of static friction 

between the object and the conical 

surface is 0.30, for what range of 

angular velocities co about the 

vertical axis will the block remain on 

the dish without slipping? Assume that speed changes are made slowly so that 

any angular acceleration may be neglected. 

 

Solution 

The problem is about relative resting conditions. Bulk motion for the 

particle is rotation with the dish. Let us consider the two limit cases: the first is 

case when particle tends to slip down, in Fig. 2.8 it is presented by direction of 

impending velocity, and the second when particle tends to slip up (Fig. 2.9). 

Fig. 2.7   
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eJ

frF

mg

N

impv  

eW  

axis of rotation 

wall of dish 

eω  

x  

y

 
Fig. 2.8 

Present relative resting conditions (eq. (2.11)) for the first case  

 0
e

frmg F N J+ + + = , 

where frF  is friction force:  

 frF Nμ= , 

N  is normal reaction, 
e

J  is bulk force of inertia that is 

 ( )2

1
e eJ m rω= . 

Projecting onto the axes ,x y  we get : 

 ) sin30 cos30 0e
frx mg F J− − = , 

 ) cos30 sin30 0ey mg N J− + − = , 
or  

 ( )2

1) sin30 cos30 0ex mg N m rμ ω− − = , 

 ( )2

1) cos30 sin30 0ey mg N m rω− + − = . 

Normal force N  and angular velocity of the dish 1
eω  are unknowns in the 

system. Solving with respect to angular velocity, we obtain 

 
( )

1

30 30
3.405

30 30
e

g Sin Cos rad

rCos rSin s

μ
ω

μ

−
= =

+
. 

In the second case (Fig. 2.9) we have 

0
e

frmg F N J+ + + = , 
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 ( )
2

2
,=e eJ m rω   

 .=frF Nμ  

 

eJ

frF  mg

N  
impv  

eW  

axis of rotation 

wall of dish 

eω  

x

y  

 
Fig. 2.9 

 
Projecting onto the axes ,x y  we get : 

 ( )2

max) sin30 cos30 0ex mg N m rμ ω+ − = , 

 ( )2
) cos30 sin30 0e

maxy mg N m rω− + − = . 

Solving with respect to angular velocity, we obtain 

 
( )

2

30 30
7.213 .

30 30

+
= =

−
e

g Sin Cos rad

rCos rSin s

μ
ω

μ
 

Answer: block remains on the dish without slipping if 1 2
e e eω ω ω≤ ≤  so 

1
3.405 7.213e

s
ω≤ ≤ . 

2.11. Problems for self solution 
 
Problem 1. In the design of a space station to operate outside the earth's 

gravitational field (Fig. 2.10), it is desired to give the structure an angular 
velocity ω  which will simulate the effect of the earth's gravity for members of 
the crew. If the centers of the crew's quarters are to be located 12 m from the 
axis of rotation, calculate the necessary angular velocity ω  of the space 
station. 

Answer: 
1

0.9037
s

ω = . 
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Fig. 2.10 

 
Problem 2. The hollow tube is pivoted about a horizontal axis through 

point O (Fig. 2.11) and is made to rotate in the vertical plane with a constant 
counterclockwise angular velocity θ  = 3 rad/sec. If a 0.2-lb particle is sliding in 
the tube toward O with a velocity of 4 ft/sec relative to the tube when the 
position θ  = 30° is passed, calculate the magnitude N of the normal force 
exerted by the wall of the tube on the particle at this instant. 

Answer: N = 0.024 lb. 
 
Problem 3. The barrel of a rifle (Fig. 2.12) is rotating in a horizontal plane 

about the vertical z-axis at the constant angular rate θ  = 0.5 rad/s when a 60-g 
bullet is fired. If the velocity of the bullet relative to the barrel is 600 m/s just 
before it reaches the muzzle A, determine the resultant horizontal side thrust P 
exerted by the barrel on the bullet just before it emerges from A. On which side 
of the barrel does P act? 

 

 
Fig. 2.12 

 
Problem 4. The slotted arm rotates about its center in a horizontal plane 

at the constant angular rate θ  = 10 rad/sec and carries a 3.22-lb spring-
mounted slider which oscillates freely in the slot (Fig. 2.13). If the slider has a 
speed of 24 in./sec relative to the slot as it crosses the center, calculate the 

Fig. 2.11 
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horizontal side thrust P exerted by the slotted arm on the slider at this instant. 
Determine which side, A or B, of the slot is in contact with the slider. 

Answer: P = 4 lb, side A. 

 
Fig. 2.13 

 
Problem 5. The slotted arm revolves in the horizontal plane about the 

fixed vertical axis through point O (Fig. 2.14). The 3-lb slider C is drawn 
toward 0 at the constant rate of 2 in./sec by pulling the cord S. At the instant for 
which r = 9 in., the arm has a counterclockwise angular velocity ω= 6 rad/sec 
and is slowing down at the rate of 2 rad/sec2. For this instant, determine the 
tension T in the cord and the magnitude N of the force exerted on the slider by 
the sides of the smooth radial slot. Indicate which side, A or B, of the slot 
contacts the slider. 

 
Fig. 2.14  

 
Problem 6. The particle P is released at time t = 0 from the position 

r = r0 inside the smooth tube with no velocity relative to the tube, which is 
driven at the constant angular velocity ω0 about a vertical axis (Fig. 2.15). 
Determine the radial velocity vr, the radial position r, and the transverse 
velocity vθas functions of time t. Explain why the radial velocity increases with 
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time in the absence of radial forces. Plot the absolute path of the particle during 
the time it is inside the tube for r0= 0.1 m, l = 1 m, and ω0 = 1 rad/s. 

 
Fig. 2.15  

Answer: 0 00 0
0 0 0sinh ;

2
 −  ⎡ ⎤= − =⎣ ⎦
t t

r

r
v e e r tω ωω ω ω  

     

0 0

0 0

0
0 0

0 0
0 0 0

cosh ;
2

cosh .
2

−   

−   

⎡ ⎤= + =⎣ ⎦

⎡ ⎤= + =⎣ ⎦

t t

t t

r
r e e r t

r
v e e r t

ω ω

ω ω
θ

ω

ω ω ω
 

 
Problem 7. A hollow tube rotates about the horizontal axis through point 

O with constant angular velocity ω0 (Fig. 2.16). A particle of mass m is 
introduced with zero relative velocity at r = 0 when θ = 0 and slides outward 
through the smooth tube. Determine r as a function of θ. 

 
Fig. 2.16  

 
Problem 8. The slotted arm rotates in a horizontal plane around the fixed 

cam with a constant counterclockwise velocity ω = 20 rad/s (Fig. 2.17). The 
spring has a stiffness of 5.4 kN/m and is uncompressed with θ = 0. The cam 
has the shape r = b - c cosθ. If b = 100 mm, c = 75 mm, and the smooth roller 
A has a mass of 0.5 kg, find the force P exerted on A by the smooth sides of 
the slot for the position in which θ = 60°. 
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Fig. 2.17 

Answer: P= 231 N. 
 
Problem 9. In a mathematical pendulum of a length l the particle 

suspended moves along the vertical with a uniform acceleration. Determine the 
period T of small oscillations of the pendulum under two conditions: 1) when 
the acceleration of the particle is directed upwards and has any value p; 2) 
when this acceleration is directed downwards and its value is p<g. 

Answer:  (1) 2 ;
l

T
p g

π=  
+

(2) 2 .
l

T
g p

π=
−

 

 
Problem 10. A particle falls freely from d height of 500 m to the earth in 

the northern hemisphere. Taking into consideration the rotation of the earth 
about its axis and neglecting the air resistance, determine the magnitude of the 
deviation of the falling particle in the east direction before it strikes the ground. 
The geographical latitude of the place is 60. 

Answer: The deviation is 12 cm. 
 
Problem 11. The car runs along a straight horizontal track. A pendulum 

which is installed in a railway car performs small harmonic oscillations. Its 
central position is deviated 6° from the vertical. 1) Determine the acceleration ω 
of the car; 2) find the difference between two oscillation periods of the 
pendulum: T, when the car is at rest, and T1, for the present case. 

Answer:  (1) ω=103 cm/sec2; T-T1=0.0028T. 
 
Problem 12. Fig. 2.18 shows a pipe AB which rotates about a vertical 

axis CD with a constant angular velocity ω. The angle between AB and CD is 
always 45°. A small heavy ball is placed in the pipe. Determine the motion of 
the ball, assuming that its initial velocity is zero and the initial distance between 
the ball and a point O equals a. Neglect friction. 
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Fig. 2.18 

Answer: ( )0.5 2 0.5 2
2 2

1 2 2
.

2
t tg g

OM a e eω ω

ω ω
+  −  ⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠  

 
Problem 13. Determine how the acceleration due to gravity changes in 

relation to the latitude of the place φ, considering that the earth rotates about its 
axis. The radius of the earth is R=6370 km.  

Answer: If we neglect the term in ω4 due to its smallness then 
2

1

cos
1 ,

289
g g

ϕ⎛ ⎞  
= −⎜ ⎟

⎝ ⎠
 where g is the acceleration of gravity at the pole, φ is the 

geographical latitude of the place. 
 
Problem 14. How many times should the angular velocity of rotation of 

the earth about its axis be increased to make a heavy particle at the surface of 
the earth at the equator completely weightless? The radius of the earth is 
R  6370 km.=  

Answer: 17 times. 
 
Problem 15. A pendulum, suspended from a long thread, is given a small 

initial velocity in the north-south plane. Assuming that the deviation ot the 
pendulum is negligible compared to the length of the thread and, taking into 
consideration the earth's rotation about its axis, determine the time elapsed 
when the plane of pendulum rotations coincides with that of west-east. The 
pendulum is located in latitude 60° north. 

Answer: T = 13.86 (0.5+K) hours, where K = 0, 1, 2, 3,…. 
 
Problem 16. A small bead of mass m is carried by a circular hoop of 

radius r which rotates about a fixed vertical axis (Fig. 2.19). Show how one 
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might determine the angular speed ωof the hoop by observing the angle 
θwhich locates the bead. Neglect friction in your analysis, but assume that a 
small amount of friction is present to damp out any motion of the bead relative 
to the hoop once a constant angular speed has been established. Note any 
restrictions on your solution. 

 
 

Fig. 2.19 

2.12. Short problems  
Problem 1. A locomotive of a mass 48 10m kg= ⋅   moves on rails along 

equator from the east to the west with a velocity 20 m/sec. Determine a 
magnitude of Coriolis force of inertia of the locomotive, if angular velocity of the 
Earth is 0.0000729 / secradω =  . The locomotive is considered as a particle. 

 

                        
 Fig. 2.20 Fig. 2.21 Fig. 2.22  
 
Problem 2. A ball M of a mass 0.2m kg=   moves with a velocity 

19.62 /secv m=   relative to a vertical tube, which is attached to a vertical shaft 1 
on a distance 0.5l m=   (Fig. 2.20). The shaft rotates with a constant angular 
velocity 5 / secradω =  . Determine a bulk force of inertia of the ball. 
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Problem 3. A load 1 of a mass 1 1m kg=   declines on an incline plane of a 
body 2 (Fig. 2.21). The body 2 moves in vertical guide down with an 
acceleration 2 2 / seca m=  . Determine a pressure force of the load 1 on the 
body 2. 

 
Problem 4. A ball 1 of a mass 1m  moves from a state of relative rest at 

appoint O along a smooth cylindrical channel of a body 2 (Fig. 2.22). The body 
2 moves along horizontal plane with a constant acceleration 2

2 3.5 /a m s=  . 
Determine a relative velocity of the ball at time 5 sec.t =   

 
Problem 5. A tube rotates about axis O according to the law 2tϕ =  (Fig. 

2.23). A ball M of a mass 0.1m kg=  moves in a tube according to the law 
30.2OM t=  . Determine a magnitude Coriolis force of inertia of the ball at time 

1sec.t =   
Problem 6. An elevator car 2 moves up with an acceleration 2 0.5a g=  

(Fig. 2.24). Determine spring tension, if suspended load 1 of a weight 100 N is 
at a state of relative rest. 

 

           
 
 

 Fig. 2.23 Fig. 2.24 Fig. 2.25  
 

Problem 7. An auto truck 1 (Fig. 2.25) moves up with a constant 
deceleration 2

1 2 /a m s=  . Determine pressure force of 
the load 2 of a mass 200 kg on a front wall of the truck 
body. 

 
Problem 8. A body 1 moves along rectilinear guide 2 

(Fig. 2.26). Inside the body there is a channel in a 
shape of an arc. A ball 3 of a mass m moves along this 

channel. Determine an acceleration 1a  of the body  
Fig. 2.26  1, if at angle 60ϕ = °  the ball is at a state of relative rest. 
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Problem 9. A support with a mathematical pendulum moves along 
inclined plane down (Fig. 2.27) with an acceleration sina g α=   . Determine an 
angle β  at a state of relative rest of the ball, if 10α = ° . 

 

 
 

Fig. 2.27 
 
 

LECTURE 3 
3. DYNAMICS OF SYSTEM OF PARTICLES 
3.1. Obstacles in analysis of particle system motion 

 
As it is clear from previous consideration analysis of a particle motion 

includes integrating of the system of three second order differential equations 
(see the first lecture 1, eq. (1.22)). In general case it is not easy. For a system 
consists of n particles () we have to integrate system 3n  equations in which 
forces are functions of positions and velocities of all particles: 

 

 

( )
( )
( )

1 1 1 1 1 1 1 1

1 2 1 1 1 1 1 1

1 3 1 1 1 1 1 1

, , , , , , ,..., , , , , , ,

, , , , , , ,..., , , , , , ,

, , , , , , ,..., , , , , , ,

................................

n n n n n n

n n n n n n

n n n n n n

mx f t x y z x y z x y z x y z

my f t x y z x y z x y z x y z

mz f t x y z x y z x y z x y z

=
=
=

( )
( )

3( 1) 1 1 1 1 1 1 1

3( 1) 2 1 1 1 1 1 1

3 1 1 1 1 1 1

....................

, , , , , , ,..., , , , , , ,

, , , , , , ,..., , , , , , ,

, , , , , , ,..., , , , , ,

n n n n n n n n

n n n n n n n n

n n n n n n n

mx f t x y z x y z x y z x y z

my f t x y z x y z x y z x y z

mz f t x y z x y z x y z x y

− +

− +

=
=

= ( ).nz

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

  

 
Solution of the system is very difficult problem. 

But very often we need to determine only some total characteristics of the 
system of particles motion. These total characteristics are called measures of 
system of particles motion: 

– total linear momentum; 
– total angular momentum; 
– total kinetic energy.  
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The general principles of dynamics describe relations between time rate 
of change of these measures and action of forces applied on the system 
(Table 3.1). 

Table 3.1 
Measure of a 
particle motion 

Equation  Measure of particle  
system motion 

Equation Effect of 
forces 

General 
principle 

Linear 
momentum 
(vector, 

m
kg

s
⎡ ⎤⋅⎢ ⎥⎣ ⎦

) 

q mv=  Total Linear 
momentum 
(vector, 

m
kg

s
⎡ ⎤⋅⎢ ⎥⎣ ⎦

) 

1

n

k
k

Q q
=

= ∑  
Total 
vector of 
external 
forces 

Force-
Linear 
momentu
m principle 

Angular 
momentum 
(vector, 

2kg m

s

⎡ ⎤⋅
⎢ ⎥
⎣ ⎦

) 

Ol r mv= × Angular 
momentum 
(vector, 

2kg m

s

⎡ ⎤⋅
⎢ ⎥
⎣ ⎦

) 

1

n

O k
k

L r q
=

= ×∑
Total 
moment 
of 
external 
forces 
about the 
center O 

Moment-
Angular 
momentum 
principle 

Kinetic energy 

(scalar, [ ]J ) 

2

2

mv
T =  

Kinetic energy 

(scalar, [ ]J ) 

2

1 2

n
k k

k

m v
T

=

= ∑
Total 
work 
done by 
external 
and 
internal 
forces 

Work-
Energy 
principle 

 
First we analyze classification and features of forces. 
 

3.2. Force classification 

3.2.1. External and internal forces 

A system of particles is a set of particles (bodies) whose motions are 
interconnected. Position and kinematical characteristics of each particle of the 
system are functions of the same parameters of other particles. In engineering 
practice material systems are more often called structures. 

There are two types of forces acting on structures: external forces and 
internal forces:  

1. External forces represent the action of other bodies on the 
structures under consideration 

2. Internal forces are the result of interaction between the parts of the 
structures under consideration. The internal forces hold together the various 
parts of the structure. 

The features of internal forces acting on particles for which third 
Newton’s low (action equals reaction) applies. 
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1. Total vector of internal forces is equal to nil 

 ( )

1

0
n

i
k

k

F
=

=∑ .  (3.1) 

Where ( )i
kF  is the resultant vector of internal forces acting on the particle with 

number k (superscript i denotes that force is internal). 
Proof: Consider system of n  particles. Force of interaction between particle k  

and particle j  is internal force ( )i
kjF  (Fig. 3.1). Force of interaction between 

particle j  and particle k  is internal 

force ( )i
jkF . The forces ( )i

kjF  and ( )i
jkF  

obey the third Newton’s law, they 
are equal in magnitude, opposite in 
direction, therefore their sum is 
zero: 

 ( ) ( ) 0i i
kj kjF F+ = . 

Internal force with indexes k j=  
does not exist because particle can 
not interact with itself.  
Carrying out the double summation 
(after all internal forces of the 
particle system) we get  

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( )

( )

( )

11 12 1 21 22 2
1 1

11

1 2

... ...

0

... ... 0

0

n n
i i i i i i i

kj n n
k j

i

i i i i
n n nn jj

i
nn

F F F F F F F

F

F F F F

F

= =

= + + + + + + + +

=

+ + + + + = = =

=

∑∑

 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )12 21 13 31 1 1

0 0 0

.. 0.i i i i i i
nn n nF F F F F F− −= + + + + + + =  (3.2) 

In equation (3.2) the sum ( )

1

n
i

kj
j

F
=

∑  is resultant vector of internal forces acting on 

the particle k  ( )i
kF . So equation (3.2) can be rewritten as 

1 

2 

 k 

 j 

 n 

( )i
kjF  

( )i
jkF

Fig. 3.1 
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 ( )

1

0
n

i
k

k

F
=

=∑ . (3.3) 

This completes the proof of the first feature. 
 

2. The total moment of internal forces about a center is equal to nil 

 
( )( ) ( )

1 1

0.
n ni i

O k k k

k k

M F r F
= =

= × =∑ ∑  (3.4) 

Proof: consider the system from the previous proofing. Moment of the force 
( )i

kjF  about fixed center O (Fig. 3.2, a) is  

 ( )( ) ( )i i
O kj j kjM F r F= × , 

moment of the force ( )i
jkF  is 

 ( )( ) ( )i i
O jk k jkM F r F= × . 

 
 
Analogy with the double summation for forces we get 

 ( )( ) ( )( ) ( )( )( )12 21
1 1

...
n n

i i i
O kj O O

k j

M F M F M F
= =

= + + +∑∑

 ( )( ) ( )( )( )1 1 0i i
O n n O n nM F M F− −+ + = . (3.5) 

The forces ( )i
kjF  and ( )i

jkF  are equal in magnitude, opposite in direction and act 

along the same line (see Fig. 3.2, b). So 

 

1 

2 

 k 

 j 

 n 

( )i
kjF  

( )i
jkF  jr  

kr  

 O 

 k 

 j 

( )i
kjF  

( )i
jkF

kr

 O 

a         b 
Fig.  3.2
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 ( )( ) ( ) ( )( ) ( )( )i i i i
O kj k jk j kj O jkM F r F r F M F= × = − × = − . 

In equation (3.5) the sum ( )( )
1

n
i

O kj
j

M F
=

∑  is resultant moment of internal forces 

acting on the particle k  about center O. So equation (3.5) can be rewritten as 

 ( )( )
1

0
n

i
O k

k

M F
=

=∑ . (3.6) 

This completes the proof of the second feature. 

3.2.2. Active (applied) forces and reactions 

If motion of a particle (body) is not restricted such body is called free. If 
not, body is constrained. Constraints (supports or connections) restrict the 
body motion in some direction. 

The forces exerted on the body by the constraints are known as 
reactions. 

Other forces acting on the body and which are independent of the 
constraints are called active (applied) forces. 

 
3.3. Force-Linear Momentum principle 

3.3.1. A particle linear momentum 

A particle linear momentum is a vector value       
(Fig. 3.3), which is equal to the product of the particle mass 
and its velocity vector  

 
.q mv=

 (3.7) 

Fig. 3.3  
Linear momentum direction is the same as that of the velocity (see 

Fig. 3.3). 

3.3.2. Force-momentum principle for a particle 

Now we may write the equation of motion for the particle in inertial frame 
of reference as 

 
( )

,
d mvdv dq

mW F mW m m const
dt dt dt

= = = = = = , 

 m 

q

v
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 .
dq

F
dt

=  (3.8) 

Force-momentum principle for a particle. Differential form. The resultant 
of all forces acting on a particle equals its time rate of change of linear 
momentum. 

This relationship is valid as long as mass of the particle not changing with 
time. 

In scalar form the force-momentum principle is the system of three 
equations: 

 

,

,

.

x x

y y

z z

q F

q F

q F

⎧ =
⎪ =⎨
⎪ =⎩

 (3.9) 

If we want describe the effect of the resultant force on the linear 
momentum of the particle over a finite period of time we may integrate the 
equation (3.8) with respect to time t from time 1t  to 2t . The product of force and 
elementary time is defined as elementary linear impulse of the force. The 

integral 
2

1

t

t

Fdt∫  total linear impulse of the force. Than integrating (3.8) we get 

 
2

1

2 1 .
t

t

q q Fdt− = ∫  (3.10) 

Force-momentum principle for a particle. Integral form. The total linear 
impulse of force acting on a particle equals the corresponding change in 
linear momentum of the particle. 

3.3.3. Force-momentum principle for a particle system 

Let us consider a system of n particles. 

Let denote Q  the vector sum of the linear momenta of all particles of the 

system. Q  is total linear momentum of the particle system 

 
1

.
n

k
k

Q q
=

= ∑  (3.11) 

 
From Equation (3.8) for the k-th particle we have: 
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 ( ) ( )e ik
k k

dq
F F

dt
= + , (3.12) 

where ( )e
kF  - external force system resultant acting on the particle number k ; 

( )i
kF  - internal forces resultant. 

Summing the equations over k  (k  runs from1 to n), we obtain 

 ( ) ( )

1 1 1

n n n
e ik

k k
k k k

dq
F F

dt= = =

= +∑ ∑ ∑ . (3.13) 

According with the first feature of internal forces 

  ( )

1

0
n

i
k

k

F
=

=∑ , (3.14) 

therefore using denotation ( ) ( )

1

n
e e

k
k

F F
=

= ∑  where ( )eF  is total vector of external 

forces acting on the system we get 

 
( )

.
edQ

F
dt

=  (3.15) 

Force-momentum principle for a particle system. Differential form. The 
total external force on a particle system equals the time rate of change of 
the total linear momentum of the particle system. 

This principle does not apply to the system whose mass changes with 
time. 

The scalar view of equation (3.15) is: 
 

 

1

1

1

;

;

.

n
ex

x k
k

n
y e

y k
k

n
ez

z k
k

dQ
F

dt

dQ
F

dt

dQ
F

dt

=

=

=

⎧
=⎪

⎪
⎪

=⎨
⎪
⎪

=⎪
⎩

∑

∑

∑

 (3.16) 
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3.3.4. Three Corollaries of the Force-momentum principle       
for a system of particles 

The first corollary (principle of conservation of linear momentum). 
Let us examine the equation (3.15) under condition when the total vector 

of external forces is zero 

 
1

0
n

e
k

k

F
=

=∑ . 

Then 

 0; .
dQ

Q const
dt

= =  (3.17) 

If the total external force on the system of particles during a time 
interval equals zero than the total linear momentum of the system is 
unchanged during the time interval. 

 
The second corollary. 
Let us examine the projection of the expression (3.17) on an axis 

 0,u u

d
Q V

dt
= =  

 .uQ const=  (3.18) 

If the projection on an axis of the total external force on the system 
of particles during a time interval equals zero than the projection on the 
axis of the total linear-momentum of the system is unchanged during the 
time interval. 

 
There is third corollary of the force-momentum principle: 

the internal forces cannot change the total linear momentum of a system 
of particles.  

3.3.5. Principle of system mass-center motion  

It is special form of force-momentum principle. 
We remember now the concept of center of mass.  
The point is called center of mass if its position vector is determined by 

expression 
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1

1
.

n

C kk
k

r m r
M =

= ∑  (3.19) 

where kr  is position vector of particle k , km  is mass of particle k, it is assumed 
as constant value. 

In scalar form we have 

 
1

1

1

1
,

1
,

1
.

n

C k k
k

n

C k k
k

n

C k k
k

x m x
M

y m y
M

z m z
M

=

=

=

⎧ =⎪
⎪
⎪

=⎨
⎪
⎪

=⎪
⎩

∑

∑

∑

 (3.20) 

For the homogeneous rigid body (the body that has uniform mass per unit 
volume γ ) the Equation (3.19) may be rewritten as 

 

1
,

1
,

1

C

V

C

V

C

V

x x dV
M

y y dV
M

z z dV
M

γ

γ

γ

= ⋅

= ⋅

= ⋅

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

∫

∫

∫

 (3.21) 

or 

 

( )

( )

( )

1
,

1
,

1
.

C

V

C

V

C

V

x x dxdydz
V

y y dxdydz
V

z z dxdydz
V

⎫
= ⋅ ⎪

⎪
⎪⎪= ⋅ ⎬
⎪
⎪
⎪= ⋅
⎪⎭

∫∫∫

∫∫∫

∫∫∫

 (3.22) 

By differentiating equation (3.19) for the position vector of mass center 
with respect to time we obtain 
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 Q
M

vm
Mdt

rd
v

n

k
kk

C
C

11

1
=== ∑

=
, 

 .cQ Mv=  (3.23) 

The total linear momentum of a particle system equals the linear momentum of 
a particle that has mass of the system and moves with velocity of the mass 
center. 

Than equation (3.15) may be written as 

 
( )eCdv

M F
dt

=  (3.24) 

оr 

 
( ).e

CMW F=  (3.25) 

A particle system mass-center moves as point acted on by force. 
Mass of the point is equal to mass of the system. The force is equal to the 
total vector of external forces applied to the system. 

 
If the total external force on a system of particles is zero, it is clear from 

the previous discussion that there can be no change in the linear momentum of 
the system. This is the principle of conservation of linear momentum, which 
means, furthermore, that with a zero external force on a system of particles, 
there can be no change in the velocity of the mass center. 

 

3.3.6. Examples 

Example 1. A man in a boat 1 pushes away a log 2 of a mass 

2 200 m kg= . a mass of the boat with the man is 1 160 m kg= . Determine a 
boat velocity after a push, if at initial moment of time the boat and the log were 
at rest, and after a push the log has a velocity 2 0.5 / secV m= . Neglect water 
resistance.  

Solution 
Show the system at initial moment 0t , before a push (Fig. 3.4, a) and 

final moment 1t , after a push (Fig. 3.4, b).  
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Show external forces: gravity forces 1 2,m g m g  and Arhimed’s forces 1 2,F F . 

 
а 
 

 
b 

 
Fig. 3.4 

 
 

Direct x-axis along water surface and write force-momentum principle in 
projection on x-axis: 

 
1

.
=

= ∑
n

ex
kx

k

dQ
F

dt
  

Projections of all external forces on x-axis are equal to zero, i.e.  

 
1

0 0.
=

=   ⇒  =∑
n

e x
kx

k

dQ
F

dt
  

So we have linear momentum projection on axis x conservation : xQ const= , 
i.e. 

 0 1x xQ Q= ,  (3.26) 

where 0xQ  and 1xQ  are projections of linear momentum of the system on x-axis 

at initial moment 0t  and final moment 1t  correspondingly. 



86 

The system consists of the boat 1 and the log 2. So the total linear 
momentum is: 

 1 2Q q q= + .  

At initial moment, the system was at rest. That’s why 0 0xQ = . At final moment 

 1 1 2 1 1 2 2x x xQ q q m v m v= + = − + . 

Substituting 0 1,x xQ Q  in equation (3.26): 

 1 1 2 20 ,= − +m v m v   

 2 2
1

1

200 0.5
0.625

160 sec

m v m
v

m

⋅ ⎛ ⎞= = =  ⎜ ⎟
⎝ ⎠

.  

Answer: After a push the boat will move in opposite side to the log motion with 

a velocity
 

1 0.625
sec

m
v

⎛ ⎞=  ⎜ ⎟
⎝ ⎠

. 

Example 2. A prism 2 of a mass 2m  slides 
down a smooth side of another prism 1 of a 
mass 1m  ( )1 22m m= , as shown in Fig. 3.5. 

The edge makes an angle 45α = °  with the 
horizontal. Determine a displacement of the 1st 
prism, when the 2nd prism moves down on 

2 0.4 h m= . At initial moment the system was 
at rest. Neglect friction between the prism 1 
and the horizontal plane. 

Fig. 3.5 

Solution 
 

Analyze external forces acting on the system: gravity forces 1 2,m g m g  

and normal reaction of horizontal surface N  (Fig. 3.6). In this problem the 
principle of a system mass-center motion will be used. As displacement of the 
first prism is unknown *

1x , only projection of equation (3.25) on x-axis is 
necessary: 
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e
c xM x F = , 

where M  is a system mass, cx is projection 
of a mass center acceleration on x-axis, 

e
xF is projection of all external forces on x-

axis. 

Projections of all forces on x-axis are 
zero, i.e. 0e

xF = . Then 

 0, =cM x   0,=cx   

 1,=cx c  (3.27)  

 1 2.= +cx c t c  (3.28)   Fig. 3.6 

To find unknown constants of integration the initial conditions are used. 
According to condition of the problem at initial moment of time the system was 
at rest, i.e. 0 0cx = . The coordinate 0cx  depends on chose of position of origin 
of x-axis. We can assume that it passes through the system mass center: 

0 0.cx =  Then substituting 0t =  to the equations (3.27), (3.28) and taking into 

account initial conditions we obtain constants of integration: 1 2 0c c= = . So 

0cx = . It means that the system mass center doesn’t move. 
 
Then we get: 

 ( )1 1 2 2

1
0,= + =cx m x m x

M
  

 1 1 2 2 0m x m x+ = , (3.29) 

where 1x  and 2x  are absolute coordinates of the mass centers of the 1st and 
the 2nd prisms.  

The absolute coordinate of the mass center of the 1st is equal to: 

0

*
1 1 1x x x= + . The 2nd prism has compound motion. It moves with the 1st prism 

(bulk motion) and slides down the side of the 1st prism (relative motion with 
displacement 2

rs , fig. 3.7), i. e. 
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( )
0

*
2 2 2 2 2 1 2tan .= = + = ⋅  + +a r ex x x x h c x xα  

Substituting these expressions to the equation (3.29): 

( ) ( )( )0 0

* *
1 1 1 2 2 1 2tan 0.⋅ + + ⋅ ⋅  + + =m x x m h c x xα

 

        Fig. 3.7 In accordance with (3.29) at initial moment 
0 01 1 2 2 0m x m x+ = . 

Then 

* 2
1 2

2 2

1
tan 0.4 tan 0.13 ( )

2 3

m
x h c c m

m m
α α= − ⋅  = − ⋅  ⋅ = −  

+
. 

Answer: the 1st prism moves in negative direction of x-axis on 0.13 m . 
 
Example 3. The rotor of the electric motor rotates clockwise with angular 

velocity 980 
min

rev
n =  (Fig. 3.8). The weight of the motor is 1 700 P N= , and 

the weight of the rotor is 2 300 P N= . The gravity center of the rotor is shifted 

from axis of rotation on a distance 0.05 l m= . Determine horizontal shearing 
force acting on the bolts and vertical pressure on supporting plane. 

 
 

Fig. 3.8 
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Solution 
 

Assume, that at 0t =   the gravity center of the rotor 2C  was on y-axis. 

Then at a moment t the coordinates of the rotor mass-center are: 

 
( )
( )

2

2

sin sin ,

cos cos ,

= =

= =

x l l t

y l l t

ϕ ω

ϕ ω
  

where
980

30 30 sec

n radπω π ⎛ ⎞= =  ⎜ ⎟
⎝ ⎠

 is angular velocity. 

External forces (see Fig. 3.8) are: gravity forces 1 2,P P , reaction of the 

plane N  and reaction of the bolts F . To solve this problem a principle of 
system mass-center motion is used: 

 ( )

1

.
=

= = ∑
n

e ec
k

k

dv
M F F

dt
  

Projecting on the axes x and y: 

 
1 2

) ,

) ,
c

c

x M x F

y M y N P P

  =⎧
⎨   = − −⎩

 (3.30) 

where the total mass of the system is 1 2
1 2

P P
M m m

g

+
= + = . 

Let’s determine the coordinate of the mass center: 

 1 1 2 2 1 1 2 2

1 2 1 2

; .c c

m x m x m y m y
x y

m m m m

+ +
=       =

+ +
  

Taking into account, that the mass center of the motor is fixed point, i.e. 

1 10, 0x y=  = : 

( )22 2

1 2 1 2

sin
;c

P l tm x
x

m m P P

ω
= =

+ +  

( )22 2

1 2 1 2

cos
.c

P l tm y
y

m m P P

ω
= =

+ +  

Let’s find the derivatives: 
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 ( ) ( )
2 2

2 2

1 2 1 2

sin ; cos .c c

P l P l
x t y t

P P P P

ω ωω ω= −      = −
+ +

  

Substituting these expressions to the system (3.30): 

 

( )

( )

2
1 2 2

1 2

2
1 2 2

1 2
1 2

) sin ,

) cos .

P P P l
x t F

g P P

P P P l
y t N P P

g P P

ω ω

ω ω

⎧ ⎛ ⎞+
  − =⎪ ⎜ ⎟+⎪ ⎝ ⎠

⎨
⎛ ⎞+⎪  − = − −⎜ ⎟⎪ +⎝ ⎠⎩

  

From these equations we can find unknown values: 

( )
2

2 sin ,= − 
P l

F t
g

ω ω  

 ( )
2

2
1 2 cos .= +  −

P l
N P P t

g

ω ω   

The force acting on the bolts is F F′ = − , and the pressure of the motor 

on the supporting plane is N N′ = − . 
The maximum magnitudes of the forces are: 

If ( )sin 1tω = : ( )
2 2 2

2
max 2

300 0.05 98
16.1 ;

9.8 3

⋅ ⋅ ⋅′ = = =  
⋅

P l
F kN

g

ω π
  

If ( )cos 1tω = − :  

( )
2 2 2

2
max 1 2 2

300 0.05 98
700 300 17.2 .

9.8 3

P l
N P P kN

g

ω π⋅ ⋅ ⋅′ = +  + = + + =
⋅

 

If there are no bolts, the motor can hop (jump). The condition of hopping 
impending is 0N =  (absence of interaction with support). There is such 
angular velocity *ω  of the rotor rotation, at which the motor is not hoping, but 
there is no pressure on the plane for some orientation of rotor. If angular 
velocity exceeds *ω , the motor will begin hopping. 

Answer: ( ) ( )max max16.1 , 17.2 .F kN N kN′ ′=   =  
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3.3.7. Problems for self-solution  

Problem 1. The man of mass 1m  and the woman of mass 2m  are 

standing on opposite ends of the platform of mass 0m  which moves with 

negligible friction and is initially at rest with 0s =  (Fig. 3.9). The man and 
woman begin to approach each other. Derive an expression for the 
displacement  s  of the platform when the two meet in terms of the 
displacement 1x  of the man relative to the platform. 

 
Fig. 3.9 

 
Problem 2. The small car which has a mass of 20 kg  rolls freely on the 

horizontal track and carries the 5 kg−  sphere mounted on the light rotating rod 
with  0.4 r m=  (Fig. 3.10). A geared motor drive maintains a constant angular 

speed   4 /q rad s=  of the rod. If the car has a velocity  0.6 /v m s=  when 
  0q= , calculate v  when   60q= °.Neglect the mass of the wheels and any 

friction. 

 
Fig. 3.10 
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Problem 3. The 50,000-lb flatcar supports a 15,000-lb vehicle on a 5° 
ramp built on the flatcar (Fig. 3.11). If the vehicle is released from rest with the 
flatcar also at rest, determine the velocity v  of the flatcar when the vehicle has 
rolled   40 s ft=  down the ramp just before hitting the stop at B. Neglect all 
friction and treat the vehicle and the flatcar as particles. 

 
Fig. 3.11 

 
Problem 4. A horizontal bar of mass 1m  and small diameter is suspended 

by two wires of length l  from a carriage of mass 2m , which is free to roll along 
the horizontal rails (Fig. 3.12). If the bar and carriage are released from rest 
with the wires making an angle θ  with the vertical, determine the velocity /b cv  of 

the bar relative to the carriage and the velocity cv  of the carriage at the instant 

when 0θ = .Neglect all friction and treat the carriage and the bar as particles in 
the vertical plane of motion. 

 

 
Fig. 3.12 

Problem 5. A test firing of two projectiles each weighing 20 lb  takes 
place from the vehicle which weighs 2000 lb  and is moving with an initial 
velocity 0   4 / secv ft=  in the direction opposite to the firing (Fig. 3.13). The 

muzzle velocity of each projectile (relative to the barrel) is 800 / secrv ft= . 

Calculate the velocity 'v  of the vehicle after the projectiles have been fired (a) 
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simultaneously or (b)  in sequence. Neglect the friction and mass of the 
wheels. 

 
Fig. 3.13 

 

3.3.8. Short problems  

 
Problem 1. Determine an acceleration of a body 1 

(Fig. 3.14), sliding on a smooth inclined plane, if in 
horizontal guides relative to it under action of internal 
forces of the system the body 2 moves according to the 

equation 2  х t= . Masses of the bodies are: 

1 2  1 m m kg= = . The bodies have translational motion.
           Fig. 3.14  

 
 
 
Problem 2. A body 1 with a mass 4 kg  can move 

along a horizontal guide (Fig. 3.15). On which distance 
will the body 1 move when a homogeneous rod 2 with a 
mass 2 kg  and length  0,6l m= , going down under an 
action of a gravity force, has vertical position. At initial 
moment the system was at rest. 

          Fig. 3.15  
 
Problem 3. The pulley 2 with a radius  0,2R m=  

rotating with angular acceleration 2
2 10 /rad sε = , lifts a 

homogeneous cylinder 1,a mass of which is 
 50 т kg=  (Fig. 3.16). Determine a magnitude of a 

resultant vector of external forces acting on the cylinder. 
 

Fig. 3.16 
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Problem 4. Determine a projection on Оу-axis of a linear momentum 
vector of a homogeneous rod 2 (Fig. 3.17) of  a mass 4 т kg=  at a moment 

when the crank 1 rotates with angular velocity 10 /rad sω =  and angle is 
  60α = ° . The length is  0.2 l m= . 

 

                                
 
  Fig. 3.17      Fig. 3.18 
 
Problem 5. Determine a magnitude of a linear momentum of a 

mechanical system (Fig. 3.18), if the mass center C  of the cylinder 1 moves 
with velocity   4 /Cv m s= , and masses of the bodies 1, 2 and 3 are equal 

correspondingly to 1  40 m kg= , 2 10 m kg= , 3 1 2 т kg= . The bodies 2 and 4 
are homogeneous disks. 

 
Problem 6. The link 1 with length  1ОА m=  of parallel link mechanism 

ОАВО1 rotates with angular velocity  20 /rad sω =  (Fig. 3.19). Determine a 
magnitude of a linear momentum of the mechanism in the indicated position. 
The links1, 2 and 3 are homogeneous rods with masses 

1 2 3  4 m т т kg= = = . 

                
   Fig. 3.19      Fig. 3.20 

 
Problem 7. On the body 1 (Fig. 3.20) a constant force 10F N=  

acts. Determine an acceleration of this body at a moment   0.5 t s= , if 
relative to it under action of internal forces of the system the body 2 moves 
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according to an equation cosх tπ= . Masses of the bodies are: 

1  4 m kg= , 2  1  m kg= . The bodies have translational motion.  

Problem 8. Determine a projection of the mass center C  acceleration 
(Fig.3.21) of the mechanical system on Оу-axis at a moment, when a 
coordinate is   0,8Cy m= , if a mass of the system is  10 т kg= , and а 

resultant vector of applied external forces is   3  6R i t j= ⋅ + ⋅ .At initial moment of 
time the mass center of the system was at the point О  at rest.    

 

Problem 9. The slider А moves under action of a force F  with a 
constant velocity Av   (Fig. 3.22). Determine the reaction of a guide on the 

slider А at that moment of time, when an acceleration of the slider В  is equal 

to 24 /BW m s=  if a mass of the homogeneous rod АВ  is equal to 5 kg . The 
masses of the sliders are neglected. 

 
Problem 10. A homogeneous equilateral triangle ОАВ  with a mass 

  5 т kg=  rotates uniformly about a fixed axis (Fig. 3.23). Determine its angular 
velocity ω  if a resultant vector of external forces acting on it is equal to 300 N  
and a length is  0,4l m= . 

 

                   
 Fig. 3.21 Fig. 3.22 Fig. 3.23 
 
 

LECTURE 4 
3.4. Moment-Angular Momentum principle 

3.4.1. A particle linear momentum 

Consider a particle of mass m  moving along a curve in space. The 
particle is located by its position vector r  with respect to a convenient origin of 
inertial coordinate system Oxyz . The velocity of the particle is v  and particle 
linear momentum is q mv= . 
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The angular momentum (moment of momentum) of a particle of 

mass m about the origin of the inertial reference is given by cross-product:  

 ( ) .= = ×ool M q r mv  (3.31) 

The direction is given by the right hand ruler (Fig. 3.24). That is to say, 

1. the angular momentum is perpendicular to the plane of the velocity and 

the particle position vector, from the end of the vector of angular momentum 

rotation of the velocity about the origin is viewed counterclockwise. 

2. the angular momentum is applied at the origin O . 

3. the magnitude of the angular momentum can be determined as 

 ol mvr sin( r ,v ) mvh.= =  (3.32) 

      

Fig. 3.24 
 

The scalar components , ,x y zl l l  of the angular momentum about the origin 

may be obtained from the following expression 
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 0

i j k

l r mv x y z

mx my mz

= × = =  

 ( ) ( ) ( ),i ymz zmy j zmx xmz k xmy ymx= − + − + −  

 

( )
( )
( )

,

,

.

⎧ = −
⎪

= −⎨
⎪ = −⎩

x

y

z

l m yz zy

l m zx xz

l m xy yx

 (3.33) 

3.4.2. Angular momentum of a system of particles 
 
A system of n particles in inertial frame of reference is shown (Fig. 3.25). 

The total angular momentum about origin O  fixed in an inertial 

reference is the vector sum of the angular momenta of the particles of the 

system 

 

 
1 1 1

n n n

O Ok k k k k k
k k k

L l r q r m v
= = =

= = × = ×∑ ∑ ∑ , (3.34) 

 

1 

2 

 k 

 j 

 n 

jq

jr

kr

 O

kq

 
Fig. 3.25 
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or in scalar form 

 

1 1

1 1

1 1

( );

( );

( ).

n n

x xk k k k k k
k k

n n

y y k k k k k k
k k

n n

Oz z k k k k k k
k k

L l m y z z y

L l m z x x z

L l m x y y x

= =

= =

= =

⎧
= = −⎪

⎪
⎪

= = −⎨
⎪
⎪

= = −⎪
⎩

∑ ∑

∑ ∑

∑ ∑

 (3.35) 

3.4.3. The total angular momentum with respect to a chosen 
center O  under the condition of compound motion of the 

particles 
 
Consider the system of n  particles. The motion of the particles is 

described in inertial ( )1 1 1Ox y z  and noninertial ( )Cxyz  references (Fig. 3.26). 

The noninetial reference has translational motion relative to the inertial one and 
its origin coincides with the centerof mass of the particlesystem. The reference 
is called Koenig’s system of reference. 

The vector position of any particle (see Fig. 3.26) is   

 k С kr r ρ= + , (3.36) 

where kρ  is vector position of the particle relative moving reference Сr  is the 
center mass vector position relative inertial reference: 

 .= + = + × + = +e r e r r
k k k C k k C kv v v v v v vω ρ  (3.37) 

 
1 

2 

 k 

 n 

 C 

 x

 y

 x1 

 y1 

 O 

kρ

 Cr  

 kr  

 z1 

 z 

 
Fig.  3.26
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Putting the (3.36) and (3.37) in the (3.34) we have 

 ( ) ( )
1

n
r

O С k k С k
k

L r m v vρ
=

= + × +∑ . (3.38) 

Carry out the cross product and extract the Сr  from summation 

 
1 1

,
n n

r
O C c k k С k k k

k k

L r Mv m v m vρ ρ
= =

⎛ ⎞
= × + × + ×⎜ ⎟

⎝ ⎠
∑ ∑   

but 
1

0
n

k k C
k

m Mρ ρ
=

= =∑  by definition of the position vector of the mass center 

with respect to the noninertial (Koenig’s) reference and denoting 

1

n
r r
С k k k

i

L m vρ
=

= ×∑  we get 

 
r
СcCO LvMrL +×= . (3.39) 

The angular momentum of an aggregate of particles about a fixed 
point can be given as the angular momentum of the center of mass about 
the fixed point plus the angular momentum of the particles relative to the 

center of mass r
СL . 

 

3.4.4. Moment-Angular momentum principle for a system         
of particles in inertial frame of reference 

 
Let us consider the system of n particles (Fig. 3.27). The momentum 

equation for the 'k th particle written about the origin of the inertial reference is 

 ( ) ( )e ik
k k

dq
F F

dt
= + , (3.40) 

where ( )e
kF  is resultant of external forces acting on the particle number k ; ( )i

kF  
is internal forces resultant. 

Using cross-product we have  

 ( ) ( )e ik
k k kk k kk

dq
r r F r F

dt
× = × + ×  
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or 
 

 ( )( ) ( )( ).= +e iOk
O kk O kk

dl
M F M F

dt
  

We now sum this equation for all n  particles 

 ( )( ) ( )( )
1 1 1

n n n
e iOk O

O kk O kk
k i i

dl dL
M F M F

dt dt= = =

= = +∑ ∑ ∑ . (3.41) 

But when we sum the moments of internal forces about point O , they 
cancel one other and their moments add up to zero (it is termed as internal 
forces second feature)  

 ( ) ( )

1 1

( ) 0
n n

i i
O kk k kk

k k

M F r F
= =

= × =∑ ∑ ,  

so 

 
( ) .eO
O

dL
M

dt
=  (3.42) 

The total moment ( )e
OM  of external forces acting on a system of 

particles about a point O  fixed in an inertial reference equals the time 
rate of change of the total angular momentum relative to the point O . 

 
There are three corollaries from this principle. 

 

 

1 

2 

 k 

 n 

( )e
kF

kr

 O

( )i
kF

 
Fig.  3.27
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The first corollary. If the total moment of external forces acting on a 
system of particles about a point O  has no component in any direction, the 
total angular momentum about the point O remains constant. This is known as 
the principle of conservation of angular momentum 

 0O
O

dL
; L сonst.

dt
= =  (3.43)  

The second corollary. If the total moment uL  of external forces acting on 
a system of particles about an axis u  equals zero during finite time interval, the 
total angular momentum about the axis remains constant during this time 
interval 

 
0,

.

u

u

d
L

dt
L const

=

=
 

 
The third corollary. The internal forces do not have an influence on the 

changing of the total angular momentum. 
 
 

3.4.5. Angular momentum principle for a system of particles 
in noninertial frame of reference 

Let us remember that in inertial frame of reference 

 ( )eO
O

dL
M

dt
= . (3.44) 

Represent ( )e
OM  as (see Fig. 3.26) 

 ( ) ( ) ( )( )

1 1

n n
e ee

O k k k С k С k k
k k

M r F r r r Fρ ρ
= =

= × = = + = + × =∑ ∑  

 ( ) ( ) ( ) ( )

1 1 1

.
n n n

e e e e
С k k k С k C

k k k

r F F r F Mρ
= = =

= × + × = × +∑ ∑ ∑  (3.45) 

Rewrite OdL

dt
 using equation (3.39) and (3.24) 
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 ( ) ( ) r
rO C C С

C C С C C

dL dr d Mv dLd
r Mv L Mv r

dt dt dt dt dt
= × + = × + × + =  

 ( )

1
( )

1

; 0,

because and ,
.

( )
is eq.3.24

law of mass-center motion

C C
C C

C rn
C C e С

C k
n k

eC
k

k

dr dr
v Mv

dt dt
dr

v Mv dL
dt r F

dtd Mv
F

dt

=

=

= × =

= ↑↑
= = × +

=

∑
∑

  (3.46) 

Putting (3.45) and (3.46) in the (3.44) we get 

 ( )( ) ( )

1 1

rn n
ee eС

C k С k C
k k

dL
r F r F M

dt= =

× + = × +∑ ∑ , 

cancel the same terms at the left and right parts we obtain 

 
( ) .

r
eС

С
dL

M
dt

=  (3.47) 

The total moment ( )e
СM  of external forces acting on particle system 

about the mass-center as origin of translationally moving reference equals the 

time rate of change of the total angular momentum of the system in the relative 

motion taken about the mass-center r
СL . 

 

We thus get the similar formulation for the center of mass as for a 

fixed point in inertial space. Please note that r
СL  is the total moment about 

the center of mass of the linear momenta as seen from the center of mass 

but that the time derivative is as seen from inertial reference. 
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LECTURE 5 
3.4.6.  Angular momentum of a rigid body rotating about fixed 

axis 

Consider a single particle M  of mass m  attached to a rod rotating about 

fixed axis Oz  with angular velocity zω  (Fig. 3.28). Linear momentum of the 
particle is in the plane perpendicular to the axis 

 ,q mv=  (3.48)  

 

Fig. 3.28 

ω

zl k

 z 

 y  х 

M 

q
ν  

 r  

O

          

Fig. 3.29 

ω zdl k

z

 y  х 

M 

dq
ν  

 r

O

 

where velocity magnitude is ,zv ω ρ=   OMρ =  is perpendicular distance 
between the particle and the axis. 

Angular momentum of the particle about the axis of is  

 2( ) .= × = =z z zl r mv mv mρ ρ ω  (3.49) 

It is positive for counterclockwise direction of angular velocity. 
Value 2mρ is called particle moment of inertia about axis Oz . 
Consider a rigid body of mass m  rotating about a fixed axis Oz  

(Fig. 3.29). Rigid body can be presented as system of  particles of mass dm . 

Angular momentum of elementary mass dm  about the axis of is  

 2( ) ( )z z z zdl r dq r dmv v dm dmρ ρ ω= × = × = = . (3.50) 
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Total angular momentum of the body about the axis is sum of elementary 
momenta about the axis 

 
( ) ( )

2 2 ,z z z

m m

L dm dmρ ω ω ρ= =∫ ∫  (3.51) 

value  

 
( )

( )
( )

2 2 2 .z

m m

I dm x y dmρ= = +∫ ∫  (3.52) 

is mass moment of inertia about the axis Oz  (or second moment of 
inertia) of the rigid body. It is independent of kinematical characteristics of the 
body and characterized the distribution of the body mass relative the axis Oz  

If density γ  is constant (body is uniform) through the body we get 

 ,dm dVγ=  

 
( )

( )
( )

2 2 2 .z

m V

I dm x y dVρ γ= = +∫ ∫  (3.53) 

For uniform body moment of inertia about the axis Oz  characterizes 
purely geometry of the body. 

Finally total angular momentum of the body about the axis is 

 .z z zL I ω=  (3.54) 

3.4.7. Equation (or law) of a rigid body rotation about a fixed 
axis 

Scalar form of Moment angular momentum principle (3.42) for a body 
rotating about fixed axis Oz  is: 

 ( ) ,ez
z

dL
M

dt
=  

put Eq. (3.54) into the principle: 

 
( )

,z zz z
z z z

d IdL d
I I

dt dt dt

ω ω ε= = =  

 
( ) .e

z z zI Mε =  (3.55) 
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Eq. (3.55) is equation or law of a rigid body rotation about a fixed 
axis. 

Substituting zε  for ϕ  we get differential equation of a rigid body rotation 
about a fixed axis: 

 
( ) .e

z zI Mϕ =  (3.56) 

The equation (3.56) is second order differential equation, it needs two 
initial conditions for solution. Result of this solution is law of rigid body rotation 
about fixed axis 

 ( ).f tϕ =   

3.4.7.1. Mass moment of inertia about an axis 

From the equation (3.55) it is clear that mass moment of inertia about an 
axis is very important notion for cases of rigid body motion with angular 
acceleration. The mass moment of inertia about an axis is measure of rigid 
body inertial features in rotation. It characterizes the body resistance to change 
in angular acceleration due to radial distribution of mass around the axis of 
rotation. So all engineers have to be familiar with methods of mass moment of 
inertia about an axis calculation. 

3.4.7.2. About mass moment of inertia about an axis 
Consider two references: the first is Cxyz  with origin in the body mass 

center C  and the second is 1 1 1Ox y z  displaced under a translation (no rotation) 

from reference Cxyz  (Fig. 3.30). 
Find relation between axial mass-

moment of inertia 
1z

I  determined in 

reference 1 1 1Ox y z  and axial mass-

moment of inertia CzI  determined in 

reference Oxyz . The centroidal moment 

of inertia CzI  is presumed known 

( )2 2

( )

Cz

M

I x y dm= +∫ . 

From Fig. 3.30 we get 
 

cr r ρ= + , 
or in scalar form 

z1 

dm 

z′ 

C 

Fig. 3.30 
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1

1

,

.

x a x

y b y

= +
= +

 

We can write eq. (3.53) in the following view 

( ) ( ) ( )( )
( ) ( )

1

2 22 2
1 1

( ) ( )

2 2 2 2

( ) ( ) ( ) ( )

2 2

z

M M

M M M M

I x y dm x a y b dm

x y dm a xdm b ydm a b dm

= + = + + + =

= + + + + + =

∫ ∫

∫ ∫ ∫ ∫
 

 

( )

( )
( )

2 2 2

( )

2 2

( )

0,

0, ,

= =

= = = = + + = +

+ =

∫

∫

∫

C

M

C Cz Cz

M

Cz

M

Mx x dm

My y dm I a b M I d M

x y dm I

 

 1

2 .z CzI I d M= +  (3.57) 

Guygens-Steiner Theorem or parallel axis theorem 
The total moment of inertia of a body about any axis equals the moment 

of inertia of the body about the parallel axis that goes through the center of 
mass plus the total mass times the perpendicular distance between the axes 
squared. 

Consequence: The mass-moment of inertia about the axis that goes 
through the body’s center of mass is smaller than moment of inertia about any 
parallel axis. 

3.4.7.3. The simplest bodies second moments 
Thin uniform rod moment of inertia about the axis through the mass 

center 
The mass element dm  can be expressed in terms of a length element 

dξ  along the rod (Fig. 3.31, a), the mass of the rod unit length is
M

l
γ = : 

,
M

dm d
l

ξ=  
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22 ξρ = , 

( )3/2 3 2
2

/2

.
3 8 3 8 12C

l

z

l

lM M l Ml
I d

l l
ξ ξ

−

⎛ ⎞−
= = − =⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠

∫  

 
a 
 

 
b 

Fig. 3.31 
 

Thin uniform rod moment of inertia about the axis through end of the rod 
(Fig. 3.31, b) 

2

2 2

3 2
2

0

,

0 .
3 3

z

M

l

M
dm d

I dm l

M M l Ml
d

l l

ξ
ρ

ρ ξ

ξ ξ

=
= = =

=

⎛ ⎞
= = − =⎜ ⎟

⎝ ⎠

∫

∫

. 

Thin uniform disk moment of Inertia about the axis through the mass 
center: 

a) the axis Cz  is perpendicular to the plane of the disk (Fig. 3.32), the  

ξ dξ

l

O  

z  

l  

ξ  

ξ dξ

l

C

Cz

2l  2l−  

ξ  
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mass element dm  can be expressed in terms of an area element ds  (ds  is 
curvilinear trapezoid with height d ρ  and midline dρ ϕ ) and mass of the disk 

unit area 
2

M

R
γ

π
= , 

2 2
2 32

2
0 0

,
;

2C

R

z

M

M
dm ds M MR

I dm d dR
R

ds d d

π

ρ ρ ϕ ρπ
πρ ϕ ρ

=
= = = =

=
∫ ∫ ∫  

   
Fig. 3.32 

 
b) the axis Cx   is in the plane of the disk, distance between the aria mass 

center and axis Cx  is sinρ ϕ  (first and second order infinitesimal are 
neglected): 

2 2 2
2 2 3

2 2
0 0 0 0

1 cos2
sin .

2 4C

R R

x

M M MR
I d d d d

R R

π π ϕρ ϕ ρ φ ρ ρ φ ρ
π π

−⎛ ⎞= ⋅ = ⋅ =⎜ ⎟
⎝ ⎠∫ ∫ ∫ ∫  

3.4.7.4. Radius of gyration 

Using radius of gyration zi  second moment of inertia of a body of mass m  
can be determined as moment of inertia of a particle of the same mass: 

 2
z zI i m= , 

 2 z
z

I
i

m
= . 

 
 

R

C  

Cz  

Cx  

Cy
ρ  

Cx

C

R  

Cydρϕ  

dϕ  

ds  
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3.4.8. Examples 

Example 1. Disc H of a mass m1=40 kg and 
radius R=1 m rotates about vertical axis z 
with an angular velocity 0 2 / secz radω =   (Fig. 
3.33). A particle K of a mass m2=10 kg is at 
the point A. 

It is needed to analyze the two periods 
of the system motion.  

The fist. At some moment of time (t=0) 
a couple with a moment 120zM t=  begins 
acting on the system. At 1sect τ= =  this 
action is stopped. Determine angular velocity 

τω  of disc H at moment t τ= . 
The second. Disk H obtained angular 

velocity τω  and continues to rotate due to 
inertia. At some moment t1=0 (it is new time 
reference) the particle K begins relative 
motion from the point A along the channel AB 
by the law ( )1 10.5AK s t  t= =  . Determine an 

angular velocity Tω  of the body H at 1 3t T  sec= =  . 
 

Solution 
 
To solve this problem the moment angular momentum principle in 

projection on z-axis is used: 

 .= ∑ ez
z

dL
M

dt
 (3.58) 

The first period. During the time from 0t =  to t τ=  there are forces acting 
on the system (Fig. 3.34): gravity forces 1 2,m g m g , a couple with a moment Mz, 

and reactions of bearing ,D DX Y  and trust bearing , ,E E EX Y Z . As 0zω  and zM  
are positive values, they are directed counterclockwise. 

System consists of two bodies: disk H and particle K. The total angular 
momentum of the system is  

1 2z z zL l l= + . 
Angular momentum of the disk as rotating body is: 

Fig. 3.33 
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1z zl I ω= ⋅ , 

where 
2

1

2z

m R
I =   is moment of inertia. 

 
Fig. 3.34 

So  

2
1

1 2z

m R
l ω= ⋅ . 

Angular momentum of the particle is: 

 2 2 2 ,zl m v R=   

where 2v Rω=  is particle velocity. 
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So  

 2
2 2 .zl m R ω=   

So the total angular momentum is: 

 
2

2 21
2 1 2

1

2 2z

m R
L m R R m mω ω ω ⎛ ⎞= ⋅ + = +⎜ ⎟

⎝ ⎠
. (3.59) 

All forces except moment Mz don’t create moments about z-axis, so 

 120 .= =∑ e
z zM M t  (3.60) 

Substituting the expressions(3.59) and (3.60) in the equation (3.58): 

 2
1 2

1
120 .

2

d
R m m t

dt
ω⎛ ⎞⎛ ⎞+ =  ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  

Separating the variables: 

 2
1 2

1
120 ,

2
R m m d tdtω⎛ ⎞+ =  ⎜ ⎟

⎝ ⎠
  

 
0

2
1 2

0

1
120 ,

2
R m m d tdt

τω τ

ω

ω⎛ ⎞+ =  ⎜ ⎟
⎝ ⎠ ∫ ∫   

 
0

2
2

1 2 0

1
120 ,

2 2

t
R m m

τω τ

ω
ω⎛ ⎞+ =  ⎜ ⎟

⎝ ⎠
 

 ( )
2

2
1 2 0

1
120 .

2 2
R m m τ

τω ω⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

  

From the last equation angular velocity at time 1sect τ= = : 

2 2

0
2 2

1 2

1
120 120

2 2 2 4
1 1 sec1 40 10
2 2

rad

R m m
τ

τ

ω ω ⎛ ⎞= + = + =  ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠+ ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
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Fig. 3.35 
 

The second period. When the moment Mz stops its action, disk H rotates 

by inertia with an angular velocity τω . Gravity forces 1 2,m g m g  and reactions of 

bearing ,D DX Y  and trust bearing , ,E E EX Y Z  are applied to the system 
(Fig. 3.35). These forces act t1=0 to t1=T and the particle K begins its motion 
along the channel. 

In this part of the problem the angular momentum principle in projection 
on z-axis is also used: 

ez
z

dL
M

dt
= ∑ . 

But in this case all forces don’t have moments about z-axis, so  
0e

zM =∑ . 
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Then  

0z
z

dL
L const

dt
=  ⇒ = . 

It is the second corollary from moment angular momentum principle. So 
the angular momenta at the moment 1 0t =  and 1t T=  are equal, i. e. 

 0z zTL L= . (3.61) 

The total angular momentum at initial moment of time  1 0t =  is: 

1 20 0 0z z zL l l= + , 

where  

1

2
1

0 ,
2z z z

m R
l I Iτω= ⋅  = , 

so  

1

2
1

0 2z

m R
l τω= ⋅ , 

and 

2

2
0 2 2 2 .zl m V R m R τω= =  

Then 
2

2 21
0 2 1 2

1
.

2 2z

m R
L m R R m mτ τ τω ω ω ⎛ ⎞= ⋅ + = +⎜ ⎟

⎝ ⎠
 

The total angular momentum of the system at final moment of time is: 

 
1 2

.= +zT zT zTL l l  (3.62) 

Angular momentum of disk: 

 
1

2
1 .
2

= ⋅ = ⋅zT z T T

m R
l I ω ω  (3.63) 

The particle has compound motion, so angular momentum consists of two 
parts: 

 
2 2 2

e r
zT zT zTl l l= + ,  

where 
2

e
zTl  is moment of linear momentum of the particle in bulk motion about 

z -axis; 
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2

r
zTl

 
is moment of linear momentum of the particle in relative motion; 

( ) ( )
2

0r r r
zT z z

l r q r mv= × = × = , because the linear momentum crosses 

the z-axis, so it doesn’t have moment about the axis. 
Now we have 

 ( ) ( )
2 2 2 ,e e e e

zT zT z z
l l r q r mv m v KO= = × = × =  

 

where e
Tv KOω=  is bulk velocity of the particle, 

 10.5 0.5KO AO AK R AK R t R T= − = − = − = − .  

Then 

 ( )
2 2

22
2 2 0.5 .e

zT zT T Tl l m KO m R Tω ω= = = −  (3.64) 

Substituting expressions (3.62) and (3.63) in equation (3.64): 

 ( ) ( )
2 2

2 21 1
2 20.5 0.5 .

2 2

⎛ ⎞
= ⋅ + − = + −⎜ ⎟

⎝ ⎠
zT T T T

m R m R
L m R T m R Tω ω ω (3.65) 

Using equation (3.61) we have: 

( )
2

22 1
1 2 2

1
0.5 .

2 2

⎛ ⎞⎛ ⎞+ = + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

T

m R
R m m m R Tτω ω  

From here: 

( ) ( )

2 2
1 2

2 2
221

2

1 1
4 1 40 10

2 2
5.3

40 1 sec
10 1 0.5 30.5

22

T

R m m
rad

m R
m R T

τω
ω

⎛ ⎞ ⎛ ⎞+ ⋅ ⋅ +⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠= = =  ⎜ ⎟⋅ ⎝ ⎠+ − ⋅+ −
. 

So if the particle approaches to the axis of the body rotation, the angular 
velocity will increase.  

Answer:  

4 ,
sec

rad
τω ⎛ ⎞=   ⎜ ⎟

⎝ ⎠
5.3

secT

radω ⎛ ⎞=  ⎜ ⎟
⎝ ⎠

. 
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Example 2. A circular plate of mass M and 
radius R rotates about an axis z, parallel to the 
central axis of the plate (Fig. 3.36). There is a 
particle of mass m at point A on the disk. If the 
system initially at rest, determine the angular 
velocity of the disk, when particle is at point B and 
has the relative velocity u. 

 
Solution 

 
Forces   acting  on  the  system  are gravity                 Fig. 3.36 

forces and reactions of supports. The gravity 
forces are parallel to z-axis so they don’t have 
moment about this axis. Reactions of supports 
are applied on the axis so hey don’t have moment 
about this axis too. 
That’s why principle of angular momentum 
conservation is used: 

zL const= . 
So the angular momenta at the initial 

moment t=0 and final t are equal, i.e. 

0z zL L= .                       (3.66) 
The angular momentum at initial moment of 

time is zero, because the system was at rest, i. e.: 
Fig. 3.37 

0 0.zL =  

The angular momentum at final moment of time when the particle is at 
point B (Fig. 3.37) is: 

z zp zdL l l= + , 

where zpl  is angular momentum of the particle at final moment; 

zdl  is angular momentum of the disk at final moment in accordance to eq.(3.54) 

.zd zl I ω=  

To find moment of inertia of the disk parallel-axes theorem is used, 
because axis of rotation doesn’t coincide with central axis of the disk: 

2
2 ,

2C Cz z z

MR
I I MR I= +      = .  
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Then  

( )
2

2 2 23

2 2Czd z

MR
l I MR MR MRω ω ω

⎛ ⎞
= + ⋅ = + ⋅ =⎜ ⎟

⎝ ⎠
. 

The particle has a compound motion, that’s why 
e r

zp zp zpl l l= + . 

A moment of linear momentum of particle in bulk motion is 

 2.e e
zpl mv a m aω= =   

A moment of linear momentum of particle in relative motion along the line 
AB is:  

r r
zpl mv a mua= = . 

Then 

2
zpl m a muaω= + . 

So using equation (3.66) we have: 

 

2 2

2 2

3
0 ,

2

.
3
2

MR m a mua

mua

MR ma

ω ω

ω

= + +

−
=

+

  

Answer: 
2 23

2

mua

MR ma
ω −

=
+

. 

Example 3. A heavy ball is attached to the end of weightless rod of length 

l. The rod rotates about a vertical axis z in an oil bath (Fig. 3.38). Oil force of 

resistance is proportional to the angular velocity of the rod rF mα ω= . α  is a 

constant coefficient, m is the ball mass. The initial angular velocity of the rod is 

0ω .  
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Fig. 3.38 

Determine the time t required for the rod to halve its angular velocity and 
the number of revolution of the rod correspondingly. 

Solution  

In this problem angular momentum principle in projection on z-axis is used.  

.ez
z

dL
M

dt
= ∑        (3.67) 

External forces are (Fig. 

3.39): gravity force of the ball mg , 

force of resistance rF mα ω=  and 

reactions of bearing KR  and trust 

bearing LR . 

Angular momentum zL  is 
angular momentum of the ball, the 
rod is weightless and its angular 
momentum is zero: 

2.z zb BL l mV l m lω= = =  

Only force of oil resistance 
has  
 

Fig. 3.39 
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moment about z-axis, so 

( ) .e
z rM F l m lα ω= − ⋅ = −∑  

Substituting these expressions to the equation (3.67), we obtain 
differential equation: 

( )2

.
d m l

m l
dt

ω
α ω= −  

After some transformations and separating the variables: 

.
d

dt
l

ω α
ω

= −  

Integrate right and left parts using as limits of integration conditions given in the 
problem: 

0

0

2

0

,
d

dt
l

ω
τ

ω

ω α
ω

= −∫ ∫
    

0

0

2

0
ln .= − t

l

ω
τ

ω

αω  

Finally we get  

ln 2
lτ
α

= . 

Answer: ln 2
lτ
α

= . 

3.4.9. Short problems 

Problem 1. Along the rod АВ (Fig. 3.40) a sliding 
bar C moves according to the law АС = 0.2 + 1.2 t. 
The sliding bar is considered as a material point with 
the mass т = 1 kg. The moment of inertia of the shaft 
ОА with the rod is Iz = 2,5kg•m2. Determine an 
angular velocity of the shaft at the moment t = 1 s if 
the initial angular velocity is ω0 = 10 rad/s. 

 
Fig. 3.40 

 



119 

Problem 2. Under the action of internal forces 
the 20 kg flywheel 2 (Fig. 3.41) untwists to the 
relative angular velocity 40 /r rad sω = . The 

flywheel central moment of inertia is 2
1 1zI   kg m= ⋅ . 

Determine angular velocity ω  of the holder 1 if 
moment of inertia is 2  4 zI kg m= ⋅ , the length is 

1 l  m=  . 
              Fig. 3.41 
 
Problem 3. A body rotates about vertical axis Oz under action of a 

couple with moment М = 16 t , Nm (Fig. 3.42). Determine a moment of inertia 
about axis Oz if it is known that at the moment t = 3 s an angular velocity is  
ω = 2 rad/s. At t= 0 the body is at rest. 

                      
 
 Fig. 3.42   Fig. 3.43   Fig. 3.44 
 
Problem 4. A body rotates about vertical axis Oz under action of two 

couples with moments 1M  = 3 i + 4 j +5k  and 2M = 4 i  + 6 j  + 4k . The moment 
of inertia about axis Oz is equal 3 kg•m2. Determine angular velocity of the 
body at the moment of time t = 2 s if at initial moment the body did not rotate. 

 
Problem 5. The homogeneous disk (Fig. 3.43) with the radius r = 0.1  

m and the mass 5 kg is connected with four rods. Every one of them has 
length l=0.5 m and mass 1 kg. The system begins rotating under action of 
external forces with angular velocity ω = 3t. Determine a moment of external 
forces about axis Oz. 

Problem 6. A homogeneous rod (Fig. 3.44) with the mass т=3 kg and the 
length l = 1 m rotates about a vertical axis Oz with angular velocity 
ω0 = 24 rad/s. A constant moment of braking forces is applied to the shaft ОА. 
Determine a magnitude of this moment if the rod stops in 4 s after braking 
beginning. 
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Problem 7. A tube (Fig. 3.45) rotates about 
vertical axis Oz, its moment of inertia is Iz = 0,075 
kg • m2. Along the tube under action of internal 
forces of the system the ball М with a mass 
т = 0,1 kg moves. When the ball is on axis Oz, 
angle velocity isω0 = 4 rad/s. At what distance l is 
angle velocity equal to 3 rad/s? 

 
     Fig. 3.45 

 

LECTURE 6 
3.5. Plane Motion Dynamics 

3.5.1. Differential Equations of a Rigid Body Plane Motion 

Let us analyze what are conditions for realization of rigid body plane 
motion. 

Remember that plane motion is motion in which each point of the moving 
body remains at a constant distance from a fixed plane. Each point of the body 
moves in a plane that is called the plane of the motion. 

Rigid body is in plane motion if 
• the rigid body mass is be distributed symmetric with respect to the plane 

that is parallel to the plane of motion (such bodies we shall call slablike 
bodies); this plane will be denoted as xOy; 

• all forces acting on the body are in the xOy plane. 
As we know from kinematics plane motion can be represented as 

combination of the two simplest motions: translation with the body mass-center 
and rotation about the axis Cz passes through the mass center perpendicular to 
the plane of motion. The translation is characterized by the principle of body 
mass center motion in vector form (3.24): 

( )ecdv
M F

dt
= , 

or in scalar form 

 

( )

( )

,

.

e
C x

e
C y

Mx F

My F

⎧ =⎪
⎨

=⎪⎩
 (3.68) 
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The rotation is characterized by angular momentum principle for a system 
of particles with respect to the noninertial reference because rotation is about 
moving axis Cz through the body mass center  

 ( )
1

r
n

eС
С k

k

dL
M F

dt =
= ∑ , (3.69) 

projecting onto the axis of rotation Cz we get 

 r

Cz Cz z
L I ω= , (3.70) 

where 
Cz

I const= , and 

 
( ) ( )

1

n
Cz z e

Cz z Cz k
k

d I
I M F

dt

ω
ε

=
= = ∑ . (3.71) 

So equations (3.68) and equation (3.71) together form the system of 
differential equations of a rigid body plane motion: 

 

( )

( )

( )
1

,

,

.

e
C x

e
C y

n
e

Cz z Cz k
k

Mx F

My F

I M Fε
=

⎧
⎪ =
⎪⎪ =⎨
⎪
⎪ =
⎪⎩

∑

 (3.72) 

Let us analyze the rolling of slablike bodies such as cylinders, spheres, or 
plane gears along straight line on the fixed plane. 

The first case is rolling of a body without slipping. 
A roller has the weight G and radius R . It is pulled along a rough 

horizontal floor by a force T applied to the end of a string wound round the 
drum, as shown in Fig. 3.46 a. The force T is applied at an angle α  to the 
horizontal. The radius of the drum is a  and the radius of gyration of the roller is 
ρ . Find the equation of motion of the axis C of the roller. 

In the Fig.3.46 b the free body diagram of the cylinder is represented. 

Force of gravity G  and tension T  are applied forces, normal force N  and 

force of friction 
fr

F  are reactions. 

We apply the equations of plane motion (3.72): 
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T

a  

R  

α  

C

y  y  y  

x

  

 

T

α  G

N  
fr

F

C

y

x

 
                                a                                                       b 

 Fig. 3.46  

 
1

n
e

c ix fr
k

Mx F T cos Fα
=

= = −∑ , (3.73) 

 
1

n
e

c iy
k

My F T sin G Nα
=

= = − +∑ , (3.74) 

 ( )
1

n
e

Cz z Cz k fr
k

I M F Ta F Rε
=

= = −∑ . (3.75) 

We note that for body that rolls without slipping the friction force between 
the wheel and supporting surface is generally less then it maximum value 
determined by Coulomb’s low maxfr stF f N= . Therefore the value of friction 

force must be determined form the solution of the system of equations. 
There are five unknowns in this system: cx , cy , z zε φ= , frF , N . 

Therefore to be solvable the system of equation must be added by two 
additional equations (equations of constraints). 

If a rigid body (cylinder) rolls without slipping on a fixed surface, the point 
that is in contact with the surface has zero velocity. So the relation between the 
velocity of the body mass center and angular velocity may be written as the 
following 

 C Cx z zv v CP Rω ω= = = , (3.76) 

or in coordinate form 

 Cx CP Rφ φ= − = − . (3.77) 
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The equation (3.77) means that if the cylinder angular velocity is negative 
(in clockwise direction) then the projection onto the axis Ox of the mass center 
velocity is positive. And by differentiation we get  

 Cx CP Rφ φ= − = − . (3.78) 

The equation (3.78) gives us the relation between unknown linear 
acceleration of the mass center and unknown angular acceleration. 

The motion of the cylinder mass center in direction normal to the fixed 
surface is constrained and it is possible to describe this restriction as the 
following 

 0= =C Cy сonst , y . (3.79) 

As result we have the system of equations 

 
0

c fr

Cz z fr

c z

Mx T cos F ,

T sin G N ,

I Ta F R,

x R.

α

α

φ

φ

= −⎧
⎪ = − +⎪
⎨ = −⎪
⎪ = −⎩

 (3.80) 

From which taking into consideration that 2

Cz
I Mρ=  we get 

 
( )
( )2 2C

R Rcos aT
x ,

M R

α
ρ

−
=

+
 (3.81) 

 
( )
2

2 2fr

cos Ra
F T .

R

ρ α
ρ

+
=

+
 (3.82) 

It is evident from the equation (3.81) that if Rcos aα >  the cylinder mass 
center acceleration is directed to the right and the cylinder will move to the 
right, if Rcos aα <  the cylinder will move t the left. 

 
The second case is rolling of a body with slipping. 
A homogeneous cylinder, with horizontal axis (Fig. 3.47), rolls sliding 

down an inclined plane by virtue of its weight. The coefficient of sliding friction 
is f . Determine the angle of inclination between the plane and the horizontal 
and the acceleration of the axis of the cylinder. 
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α

G
N fr

F

C

y  

x  

I 
Fig. 3.47  

In this case we may use for solution the system of equations (3.72) with 
equation of constrain (3.79): 

 

sin ,

0 cos ,

.

c fr

Cz z fr

Mx G F

G N

I F R

α

α

ϕ

⎧ = −
⎪

= − +⎨
⎪ =⎩

 (3.83) 

At the same time the relation between unknown linear acceleration of the 
mass center and unknown angular acceleration (3.78) is not valid in this case, 
because the point of contact of cylinder with the fixed surface has nonzero 
velocity. In order to close the system of equations instead of equation (3.78) we 
have to use the Coulomb’s law for the determination of friction force that acts 
on the cylinder during the rolling with slipping (we neglect the difference 
between the static stf  and kinetic kf  coefficients of friction, so we suppose that 

st k
f f f= = ) 

 .=frF fN  (3.84) 

Solving the system (3.83) with the equation (3.84) we get 

 N G cos ,α=  (3.85) 

 ( )cx g sin f cos .α α= −  (3.86) 

To determine the angle of plate inclination we have to consider the case 
when motion is without slipping yet slipping impends (motion is on the verge of 
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slipping). It means that the relation between unknown mass center linear 
acceleration and unknown angular acceleration (3.78) is valid and force of 
friction amount to the limiting value 

fr max
F fN= . We get the system 

 

sin ,

0 cos ,

,

.

c verge fr

verge

Cz z fr

c z

Mx G F

G N

I F R

x R

α

α

ϕ

ϕ

= −⎧
⎪ = − +⎪
⎨

=⎪
⎪ =⎩

 (3.87) 

From which we determine the required angle α : 

 ( )3
verge

a tan fα = . (3.88) 

So if ( )3
verge

a tan fα ≤  rolling is without slipping, if ( )3
verge

a tan fα >  

rolling is with slipping. 
In general it is possible that we don’t know beforehand is the motion 

without slipping or not, but at the same time the values of the static stf  and 

kinetic kf  coefficients of friction are given. The algorithm of such problem 
analyze is the following: 

Step 1. Draw the free body diagram. 
Step 2. Form the system of plan motion differential equations (3.72) and 

additional equations of constraints (3.78) and (3.79) with the initial assumption 
that the body rolls without slipping determine force of friction and compare with 
its limiting value maxfr stF f N= . If condition maxfr fr stF F f N≤ =  holds it means 

our assumption is true, in opposite case we conclude that our assumption of 
rolling without slipping was wrong. Therefore the body slips as it rolls and the 
constraint equations do not hold. 

Step 3. Resolve problem for fr kinF f N=  and Cx CPϕ≠ ± . 

3.5.2. Examples 

Example 1. A homogeneous rod of a mass m=3 kg is allowed to fall from 
rest, sliding on rough horizontal plane (Fig. 3.48). At angle 60ϕ = °  determine 
the projection of the acceleration of the mass center C on x-axis, if a normal 
reaction is N=18.17 N and coefficient of friction is f=0.1. 

Solution 
FBD is presented in Fig. 3.49. The rod has plane motion, so we can write 

3 differential equations of motion, but to solve this problem we need only one 
equation because we are asked about x component of acceleration only: 
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Fig. 3.48                        Fig. 3.49 

 
1

n
e

C x k fr
k

m x F F 
=

⋅ = =∑ . (3.89) 

As the rod slides we can find friction force according to Column law: 

 frF f N= ⋅ . (3.90) 

Substituting the equation (3.90) into (3.89): 

 Cm x f N⋅ = ⋅ .  

From here: 

 
2

0.1 18.17
0.606

3 secC

f N m
x

M

⋅ ⋅ ⎛ ⎞= = =  ⎜ ⎟
⎝ ⎠

. 

Answer: 
2

0.606
secC

m
x

⎛ ⎞=  ⎜ ⎟
⎝ ⎠

. 

Example 2. A rod of mass m=3kg is placed in a vertical plane at angle 
60ϕ = °  in such a way that one end A leans against a smooth vertical wall while 

the other end B rests to a smooth horizontal floor (Fig. 3.50). The rod starts to 

fall with the acceleration of the mass center 5.5CW i j= − . Determine normal 
reaction at point A. 
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Fig. 3.50                                               Fig. 3.51 

Solution 
FBD is presented in Fig. 3.51. The rod has plane motion, so we can write 

3 differential equations of motion, but to solve this problem we need only one 
eq. (3.73): 

 
1

n
e

C x k A
k

m x F N 
=

⋅ = =∑ .  

According to the statement of the problem a projection of the acceleration 
of point C on x-axis is: 

1.Cx =  
So 

 ( )3 1 3 .= ⋅ = ⋅ =  A CN m x N   

Answer: ( )3AN N=  . 

Example 3. A rod AB of a mass 2 kg, sliding along rough horizontal 
plane, begins to fall in vertical plane (Fig. 3.52). At angle 45ϕ = °  determine a 
normal reaction N, if projection of mass center acceleration on y-axis is 

2
5.64

secC

m
y

⎛ ⎞= −  ⎜ ⎟
⎝ ⎠

. 

Solution 
FBD is presented in Fig. 3.53. The rod has plane motion, so we can write 

3 differential equations of motion, but to solve this problem we need only one 
equation because we are asked about y component of acceleration only 



128 

            
Fig. 3.52                               Fig. 3.53 

 
1

n
e

C y k
k

m y F N mg 
=

⋅ = = −∑ .  

From this equation the normal reaction: 

 ( ) ( )2 5.64 2 9.8 8.32CN m y mg N= ⋅ + = ⋅ − + ⋅ =  .  

Answer: ( )8.32N N=  . 

Example 4. A metal hoop with a radius r = 0.6  m is released from rest on 
the 20° incline (Fig. 3.54). If the coefficients of static and kinetic friction are 

 0.15 =stf  and  0.12 =kinf , determine the angular acceleration W  of the 
hoop and the time t for the hoop to move a distance of 10 m down the incline.  

α

C

r  

I

 

α

G
N

fr
F  

C

y

x

P

W

ε

 
Fig. 3.54                                            Fig. 3.55 

 
Solution. The FBD (Fig. 3.55) shows the unspecified weight mg, the 

normal force N, and the friction force 
fr

F  acting on the hoop at the contact point 
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P with the incline. The acceleration W  through C in the positive direction axis x 
and the angular acceleration ε  are shown in Fig. 3.55 too. The 
counterclockwise angular acceleration requires a counterclockwise moment 
about C, so 

fr
F  must be up the incline. Assume that the hoop rolls without 

slipping, so that  

 Cx CPϕ= , (3.91) 

 0=Cy . (3.92) 

Application of equations (3.72) gives 

 sin 20 ,= ⋅ −c frmx mg F  (3.93) 

 cos20 ,= − ⋅ +cmy mg N  (3.94) 

 2, .= =Cz z fr CzI F r I mrϕ  (3.95) 

Elimination of frF  between the first and third equations and substitution of 

the constraint equation  (3.91) give 

 sin 20
2c

g
x = ⋅ . (3.96) 

Note that cx   is independent of both m  and r. 

To check our assumption of no slipping, we calculate frF  and N and 

compare frF  with its limiting value. From the above equations  

 sin 20 0.1710fr cF mg mx mg= ⋅ − = , (3.97) 

 cos 20 0.9397N mg mg= ⋅ = . (3.98) 

But the maximum possible friction force is 

 _ max stf (0.9397mg) = 0.1410mgfrF = . (3.99) 

Because our calculated value of 0.1710mg  exceeds the limiting value of 
0.1410mg , we conclude that our assumption of pure rolling was wrong. 
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Therefore the hoop slips as it rolls and the constraint equation does not hold. 
The friction force then becomes the kinetic value 

 _ max (0.9397 ) = 0.1128 .=fr kinF f mg mg  (3.100) 

The motion equations now give 

 sin 20 0.1128cmx mg mg= ⋅ − , (3.101) 

 sin 20 0.1128cx g g= ⋅ − , (3.102) 

 Cz z frI F rϕ = , (3.103) 

 2 0.11128zmr mg rϕ = ⋅ , (3.104) 

 
0.11128

z

g

r
ϕ = . (3.105) 

The time required for the center C of the hoop to move 10 m from rest 
with constant acceleration is 

 
2

c

x
t

x
=  (3.106) 

Example 5. The wheel and its hub (Fig. 3.56) have a mass of 30 kg with 
a radius of gyration  about the center 450z mi m= . A cord, wrapped securely 
around its hub, is attached to the fixed support, and the wheel is released from 
rest on the incline. If the static and kinetic coefficients of friction between the 
wheel and the incline are 0.4 and 0.3, respectively, calculate the acceleration of 
the center of the wheel. First prove that the wheel slips. 

Solution 
Let’s prove that the wheel slips. At point P (Fig. 3.57) we have 

instantaneous center of zero velocity (ICZV), because the cord is fixed. 
Assume, that we don’t have slipping at point A. So we have ICZV at point A 
too. In such case the wheel will not move. So our assumption is wrong. So we 
have slipping of the wheel. 

Analyze forces acting on the body: gravity force 1m g , normal reaction 

N of the incline, tension force T  and friction force frF . We have ICZV at point 
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P and the body moves down. So the velocity of the point A is also downwards. 

Thus frF  has opposite direction. 

The wheel has plane motion. So we can write differential equations of 
motion for the wheel (3.72). For the problem equations (3.72) have view: 

 

             
 

Fig. 3.56                                            Fig. 3.57 
 

 

sin 60 ;

cos 60 ;

.
z

C fr

C

C z fr

Mx T F mg

My N mg

I T r F Rϕ

= − − +  °⎧
⎪

= − +  °⎨
⎪ = − ⋅ + ⋅⎩

 (3.107) 

There are six unknowns in this system: cx , cy , zϕ ,T , N , frF . Therefore 

to be the system of equations solvable we must add three additional equations 
(equations of constraints). 

The motion of the wheel mass center in direction normal to the fixed 
surface is constrained and it is possible to describe this restriction as following 

0C Cy const y=  ⇒ = . 



132 

If a rigid body (wheel) rolls with slipping on a fixed surface, we can find 
friction force using kinetic coefficient of friction: 

 fr kF k N= ⋅ .  

As there is ICZV at point P, we can add one more equation: 

 C C xV V CP rω ω = = ⋅ = ⋅   

or in coordinate form 

 .= − ⋅ = − ⋅C z zx CP rϕ ϕ   

This equation means that if the wheel angular velocity is negative (in 
clockwise direction) then the projection on the axis Ox of the mass center 
velocity is positive. And by differentiation we get  

 C z zx CP rϕ ϕ= − ⋅ = − ⋅ .  

As a result we have the system of equations 

 sin 60 ;C frMx T F mg= − − +  °  (3.108) 

 cos 60 ;CMy N mg= − +  °  (3.109) 

 ;
zC z frI T r F Rϕ = − ⋅ +  (3.110) 

 0;Cy =  (3.111) 

 ;fr kF k N= ⋅  (3.112) 

 .C zx rϕ= − ⋅  (3.113) 

Substituting  equation (3.111) to (3.109): 

 cos 60N mg=  ° .  

Then friction force will be: 

 cos 60fr kF k mg=  ° .  

Taking into account that moment of inertia is 
2

zC zI m i= ⋅   

and considering equations (3.108), (3.110) and (3.113) we get: 
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 2

cos 60 sin 60 ;

cos 60 .

C k

C
g k

Mx T k mg mg

x
m R T r Rk mg

r

= − −  ° +  °⎧
⎪
⎨ ⎛ ⎞⋅ ⋅ − = − ⋅ +  °⎜ ⎟⎪ ⎝ ⎠⎩

  

From here the acceleration of the wheel mass center is: 

 2 2

2

cos 60
sin 60 cos 60

1.255
sec

1

k
k

C
g

k g R
g k g mrx

R

r

°
 ° −  ° − ⎛ ⎞= =  ⎜ ⎟

⎝ ⎠+
.  

Answer: 
2

1.255
secC

m
x

⎛ ⎞=  ⎜ ⎟
⎝ ⎠

. 

3.5.3. Problems for self-solution 

Problem 1. A heavy circular cylinder of mass m is suspended by a cord, 
one end of which is wound round the middle part of the cylinder while the other 
end is fixed at B (Fig. 3.58). the cylinder is allowed to fall from rest so that the 
cord unwinds. Determine the velocity of the cylinder axis after it has fallen a 
distance h. Also find the tension T in the cord. 

 

       
Fig. 3.58    Fig. 3.59 
 

Problem 2. Roller of mass m  and central moment of inertia 2rρ =  rolls 

without slipping along the horizontal rail under the action of constant forces 1F  

and  2F (Fig. 3.59). For known R   and r , determine cW and friction force.  

C

2F  

1F

R 
r 
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3.5.4. Short problems 

Problem 1. The homogeneous rod АВ of length1 m and mass m=2 kg 
from a state of rest at angle φ = 45° to a vertical begins sliding on a smooth 
wall and a smooth floor (Fig. 3.60). Determine angular acceleration of the rod if 
at the points А and В normal reactions are NA = 7,3 N and NB= 12,2 N.  

                
Fig. 3.60     Fig. 3.61 

 
Problem 2. At motion of the rod АВ (Fig. 3.61) of the length 0,5 m in the 

plane Ах1y1 at the given moment of time the angle is φ = 30°, normal reaction 
is N=12 N, friction force is Ffr= 1,2 N. Determine a magnitude of angular 
acceleration if the moment of inertia is ICz = 0.08 kg•m2. 

 
Problem 3. A homogeneous cylinder of a mass m=6kg and a radius 

R = 0.08 m falls in vertical plane unwinding a cord (Fig. 3.62), tension of which 
is Т = 19,6N. Determine an angle velocity ω of the cylinder at the moment of 
time t = 0.4 s, if at t0 = 0 an angle velocity is equal to zero. 

 

                     
Fig. 3.62      Fig. 3.63 

 
 
Problem 4. A rod АВ of a length 1 m and a mass 2 kg, leaning on a 

vertical smooth wall at an angle φ=30°, begins sliding (Fig. 3.63). Determine a 
normal reaction NB at the point В, if a projection of mass center acceleration С 
on Оу-axis has the value ÿC = -1,84 m/s2. 
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LECTURE 7 
3.6. Work-energy principle 

3.6.1. Work 

3.6.1.1. Elementary work (work done by a force during 
an infinitesimal displacement) 

Elementary work or work done by a 
force F  during an infinitesimal 
displacement dr  of its point of 
application M (Fig. 3.63) is the dot (scalar) 
product of the force and a radius vector 
differential: 

 .d A Fdr F dr Cosα′ = =  (3.114) 

Dot product result is scalar value so 
elementary work is a scalar quantity. 

Work units of measuring expressed in 
J  (joule), [ ]J Nm= . 

It is possible to express the infinitesimal displacement dr  in term of 
infinitesimal path 

dr dsτ= , 
dr ds= , 

so 

 cos .d A F ds Fdsτ α′ = =  (3.115) 

If the force forms an acute angle (see Fig. 3.63) with the direction of the 
displacement, the work done by the force is positive;  if the force forms an 
obtuse angle (Fig. 3.64) with the direction of the displacement, the work done 
by the force is negative; if the force forms right angle (Fig. 3.65) with the 
direction of the displacement, the work done by the force is zero : 

0 0 / 2,

0 / 2,

0 / 2 .

if

d A if

if

α π
α π

π α π

> ≤ <⎧
⎪′ = =⎨
⎪< < ≤⎩

 

M

F

dr  

α  

Fig. 3.63 
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Another form of elementary work: 
a) if we denote product of αcosF  as τF , we obtain next 

 d A F dsτ′ = , (3.116) 

where τF  is the projection of the force on the axis which is tangential to the 

trajectory of the particle; 
b) if we determine radius vector differential as 

 

dtvdt
dt

rd
rd == , 

then 

dtvFAd =′ ,            (3.117) 

where v  is the velocity of the particle. 
From (3.117) follows that if force is 
applied at the instantaneous center of 
zero velocity of the body in plane motion 
(Fig. 3.66) its elementary work is equal 
nil. For example from Fig 3.66 we have 

dr
M 

F  

α  

Fig. 3.64 

M

F

 

dr  

90

Fig. 3.65 

 

fr
F

C

P  
Fig. 3.66 
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                 ( ) 0;′ = =fr fr Pd A F F v dt   

c) if we determine radius vector differential by its projection on the 
coordinate axes 

          kdzjdyidxrd ++= , 
we can get cordinate form of the equation (3.114): 

 ( ) .x y zd A F dxi dyj dzk F dx F dy F dz′ = + + = + +  (3.118) 

3.6.1.2. Total work (work done by a force during an finite 
displacement) 

The work done by the force during some 

finite displacement in finM M   (Fig. 3.67) is 

integral of the elementary work over the 
trajectory of point of application of the force 

.
in fin in finM M M M

A Fdr FdrCosα= =∫ ∫  (3.119) 

For the general case work depends on 
the form of trajectory. 

 
 

3.6.1.3. Theorems about work 

Theorem 1. If a number of forces act at the same particle, the work done 
by the resultant force is the algebraic sum of work done by a separate force 

 
n n n

i i i
i 1 i 1 i 1

d A Rdr F dr F dr d A .
= = =

⎛ ⎞′ ′= = = =⎜ ⎟
⎝ ⎠
∑ ∑ ∑  

Theorem 2. The elementary work done by a force during compound 
infinitesimal displacement is equal to the algebraic sum of the elementary 
works during the components of displacement 

 ( ) 212121 rdFrdFrdrdFrdrdrdrdFAd +=+=+===′
. 

Min 
F

dr  

α  

Fig. 3.67 

Mfin 
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3.6.1.4.  Sum of elementary works of the forces applied  

to the rigid body 

Let us assume that some forces are applied to the rigid body. The body 

can move free in space. For purposes of dynamic it is convenient to select 

auxiliary frame of reference 1 1 1 1O x y z  such as has origin in any point of the body 

and moves transnationally (Fig. 3.68). Now any displacement of force kF  

application point kM   can be regarded as a combined translation of auxiliary 

frame of reference and rotation about its origin with angular velocity ω : 

 
 

 kF  

 

 O1

 Mk 

 x

 y 

 x1 

 y1 

O 

kρ

 
1Or  

 kr  

 z 

 z1

ω

 
Fig. 3.68 

1

1

,

,

k O k

k O k

r r

dr dr d

ρ

ρ

= +

= +
 

from kinematics of rigid body general motion we have 

( ) ( )1 1

,

.

k
k

k O k O k

d

dt

dr dr dt dr dt

ρ ω ρ

ω ρ ω ρ

= ×

= + × = + ×
 

Sum of elementary works of forces is 
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( )
1

1 1

1 1

.

= =

= =

′ = =

= + ⋅ ×

∑ ∑

∑ ∑

n n

k k
k k

n n

k kO k
k k

d A F dr

F dr F dtω ρ
 

In the second term we have mixed product, it can be rewritten as 

( ) ( ) .⋅ × = × ⋅k kk kF dt F dtω ρ ρ ω  

Now the elementary work is 

( )1
1 1 1

.
= = =

′ = + ×∑ ∑ ∑
n n n

k kO k
k k k

d A F dr F dtρ ω  

In the second sum in brackets we have moment of force kF  about origin of 
auxiliary reference 1O : 

( )1 ,O k kkM F Fρ= ×  

and determine dtω  as vector of elementary angular displacement θ  
 dtω θ= , 
so 

( )11
1 1 1

.
n n n

k O kO
k k k

d A F dr M F θ
= = =

′ = +∑ ∑ ∑  

Factors 
1Odr  and θ  are independent of indexes of summation so can be 

factored out from the sums: 

( )11
1 1 1

.
n n n

k O kO
k k k

d A F dr M F θ
= = =

⎛ ⎞ ⎛ ⎞′ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑  

Sums in brackets are total force F ∗  and total moment 1

*
OM  of the force system 

about origin 1O : 

( )1 1

1

*

1

,

.

n

k

k

n

O O k

k

F F

M M F

∗

=

=

=

=

∑

∑
 

Finally we get 

11

* *

1

.
n

OO
k

d A F dr M θ
=

′ = +∑                                (3.120) 
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The algebraic sum of the elementary works done by forces applied to the 

body is equal to work done by the total vector of the force system during the 

elementary displacement of origin and work done by the total moment about 

this origin during the elementary angular displacement. 

3.6.1.5. Some case of work determination 

1. Work of couple of forces M  applied to a rigid body rotating about fixed 

axis 1O z  axis 

 ( )1

11

1

* *

*

0,O

OO z
z

O

dr
d A F dr M M M d M d

M M
θ θ ϕ ϕ

=
′ = + = = = =

=
, 

 ( ) ,zd A M M dϕ′ =  (3.121) 

where dϕ  is elementary angular displacement about axis of rotation, it is 

positive for counterclockwise rotation. 
From eq. (3.121) clear that elementary work of couple may be positive for 

the same directions of couple and body rotation (Fig.3.69, a) or negative for 
opposite directions (Fig.3.69, b): 
 

   
 a b 

Fig. 3.69 

Z 

ω  

zM  

Z 

ω  

zM
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For case of constant couple total work done by couple  during finite turning on 
angle  fin inΔϕ ϕ ϕ−=   is 

 ( ) ( ).z fin inA M M ϕ ϕ−=  (3.122) 

2. Work done by gravity. 
Let us analyze work done by 

gravity of particle G  during its 
displacement dz  (Fig. 3.70) assuming 
that positive direction of axis Oz  is 
vertically up, it means  opposite with 
direction of the gravity. Using coordinate 
form of elementary work (3.118) we get 

      ( ) .x y zd A G G dx G dy G dz′ = + +  

But 0xG =  and 0yG =  so 

 

 .d A mgdz′ = −  (3.123) 

Using the last equation we can obtain total work done by gravity: 

 
1 1

0 0

1 0( ) ( ).
z z

z z

A G gmdz gm dz gm z z= − = − = − −∫ ∫  (3.124) 

Denoting 0 1h z z= −  we get another form 

 ( ) .A G gmh= ±  (3.125) 

where sign “+” corresponds motion of the 
particle downwards, sign “-” corresponds 
motion of the particle upwards. 

3. Work done by elastic force. 
Consider a spring constrained to move 

along axis Ox, coincide the origin O of the axis 
with the end of undeformed spring, l0 is natural 

 y 

 x 

 z 

 O

 M0  (x0,y0,z0) 

 M1  (x1,y1,z1) 

( )0,0,G mg−

Fig. 3.70 

 y 

 x1 O 

sprF

Fig. 3.71 

 l0 
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length of the spring, c , [ ] N
c

m
= , is spring constant or stiffness coefficient. 

Particle is attached to the spring free end. Using equation (3.114) for 
elementary work done by the spring force during positive infinitesimal 
displacement of the particle we have 

 ( ) .
0

= −
′ = = = −

= =
x

spr spr

y z

F cx
d A F F dr cxdx

F F
 (3.126) 

Total work done by spring force during finite displacement 1x  is 

 
1

2
1

0

1
( )

2

x

sprA F cxdx cx= − = −∫ . (3.127) 

In three dimensional case for linear spring we have 

 2 21
( ) ( ).

2

fn

st

r

spr fn st

r

A F crdr c r r= − = − −∫  (3.128) 

The same can be repeated for a  spiral spring with stiffness coefficient c , 

[ ]c Nm= , position 0ϕ =  corresponds untwisted spring: 

 _( ) ,spr spr zd A M M dz c dϕ ϕ′ = = −  (3.129) 

 
1

2
1

0

1
( )

2
sprA M c d c

ϕ

ϕ ϕ ϕ= − = −∫ . (3.130) 

4. The work ( )iA  done by internal force of a rigid body. 

The total work ( )iA  done by internal force of a rigid body during any 
displacement is equal to nil. 

3.6.1.6. Power 

Power is the rate at which work is performed. Power can be obtained as 
differential of work with respect to time: 

for power of force 

( )
( ) ,

d A F Fdr
N F Fv

dt dt

′
= = =  
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( ) .N F Fv=                                            (3.131) 
for power of couple of forces using equation (3.121) we get 

( )
( ) ,z

z z

M dd A M
N M M

dt dt

ϕ ω
′

= = =  

( ) .z zN M M ω=                                         (3.132) 
Power is scalar value, it is measured in Watt. 
 

LECTURE 8 

3.6.2. Kinetic energy 

The kinetic energy of a particle is equal to half of the product of the 
mass of particle and the square of its velocity: 

 

2

.
2

mv
T =  (3.133) 

Kinetic energy is a scalar. The units are the same as for work (i.e. Joules, J) 
The kinetic energy of particle system is equal to the sum of kinetic 

energies of all particles: 
2

1

.
2

n
k k

i

m v
T

=

= ∑                                       (3.134) 

From (3.134) it is clear that the kinetic energy is always positive. The 
kinetic energy of particle system is equal to nil only if all particles of the system 
are at rest. 

3.6.2.1. Koenig’s theorem 

Assume that 
2

1 2

n
k k

i

m v
T

=

= ∑  is kinetic energy of a system determined in 

inertial frame of reference Oxyz ; denote as 
( )2

1 2

rn
k k

i

m v
T

=

′ = ∑  kinetic energy of 

a system of particles determined in noninertial frame of reference 1 1 1Cx y z  , 

where C is the center of mass of the system, 1 1 1Cx y z  moves translationally with 
respect to fixed reference Oxyz  (Fig. 3.72). 
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 kv  

 

 C 

 Mk 

 x

 y 

 x1 

 y1 

O 

kρ

 Cr  

 kr  

 z 

 z1

 
Fig. 3.72 

Absolute velocity a
kv  of k-th particle is 

 a e r
k k kv v v= + , (3.135) 

where e
kv  is bulk velocity, r

kv is relative velocity. 

For translational motion of moving reference 1 1 1Cx y z  we have 

 e
k Cv v= . (3.136) 

Put equations (3.135) and (3.136) in to equation (3.134) 

( )2
2 2 2

1 1 1 1 1

2 .
2 2 2 2 2

ra r rn n n n n
k C kk k k C k C k k k

k k k k k

m v vm v m v m v v m v
T

= = = = =

+ ⋅
= = = + +∑ ∑ ∑ ∑ ∑  (3.137) 

In the first sum Cv  is independent of index k  so the sum can be factorized: 

2 2
2

1 12 2 2

n n
k C k C

C
k k

m v m Mv
v

= =

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑ ∑ , 

where 
1

n

k
k

M m
=

= ∑  is total mass of the particle system. 

The second sum can be transformed as 

1 1 1 1

2 .
2= = = =

⋅ ⎛ ⎞
= ⋅ = = = ⋅ = ⋅ ⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑

rn n n n
r rk C k k k

C k k k C k C k k
k k k k

m v v d d d
v m v v v m v m

dt dt dt

ρ ρ ρ  
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Comparing the last brackets with the equation for mass center position (3.19), 
and remembering that C is origin of moving reference ( 0Cρ = ) we obtain 

1

0
n

k k C
k

m Mρ ρ
=

= =∑ , 

so 

1 1

2 0
2

rn n
k C k

C k k
k k

m v v d
v m

dt
ρ

= =

⋅ ⎛ ⎞
= ⋅ =⎜ ⎟

⎝ ⎠
∑ ∑ . 

The third sum in equation (3.135) is kinetic energy of a system of particles 

determined in noninertial frame of reference 1 1 1Cx y z :
2

1

.
2=

′=∑
rn

k k

i

m v
T  

Now equation (3.135) has view 

 

2

.
2

CMv
T T ′= +   (3.138) 

König’s theorem: 
The kinetic energy of an aggregate of particles relative to any reference is 

the sum of two parts: 
– fisrt is the kinetic energy of a hypothetical particle which has the mass equal 
to the total mass of the system and moves with velocity of particle system 

mass-center 
( )
2

2
CvM

; 

– and second is the kinetic energy of a particle system with respect to the 
auxiliary frame of reference which has motion of translation and origin in the 
particle system mass-center (König’s reference system). 

3.6.2.2. Kinetic energy of a rigid body 

Rigid body can be presented as an unchangeable system of particles, then 
kinetic energy of the rigid body is   

 
2

2

1

1

2 2
i i

i M

m v
T v dm.

∞

=

= =∑ ∫  (3.139) 

Consider a translating rigid body of a mass M . All of its points have a 
common velocity v , so the body kinetic energy is 
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2 2
2

1

1

2 2 2
i i

i M

m v Mv
T v dm ,

∞

=

= = =∑ ∫  

 

2

2

Mv
T .=   (3.140) 

The equation shows that kinetic energy of translating rigid body has the 
same view as kinetic energy of a particle. 

Consider a rigid body rotating about a fixed axis z  through O with 
angular velocity ω  . Its kinetic energy is 

( )
2

221 1

2 2 2
Oz

M M

I
T v dm v dm ,

ω
ωρ ωρ= = = = =∫ ∫  

 

2

2
OzI

T ,
ω

=  (3.141) 

where ρ  is the shortest distance between the axis of rotation and arbitrary 

point of the rigid body, 2
Oz

M

I dmρ= ∫  is the body moment of inertia about the 

fixed axis Oz , OzI const=  for the rigid body. 
Consider a rigid boy in plane motion. Present plane motion as 

translation with mass center C  and rotation with angular velocity ω   about 
axis Cz . In accordance with Konig’s theorem (see Fig. 3.72) we get 

 

( ) ( )

( ) ( ) ( )

22

2 22 2

2 2

2 2 2 2
C

r
iC r

i i
M

zC C

M

v dmM v
T v

IM v M vdm
,

ω ρ

ωωρ

= + = = × =

= + = +

∫

∫
 

 
( )2 2

2 2
CzC

IM v
T ,

ω
= +  (3.142) 

where 2
Cz

M

I dmρ= ∫  is the body moment of inertia about the axis through the 

body mass center, CzI const=  for the rigid body. 
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Another  form of kinetic energy equation for a rigid body in the plane 
motion is obtained for ICZV as pole of translation: 

( ) ( )2 2

2
2

2 2

2 2

i i
M M

Pz

M

v dm dm
T v

I t
dm

( )
,

ωρ
ω ρ

ωω
ρ

= = = × = =

= =

∫ ∫

∫
 

 

2

2
PzI t

T
( )

,
ω

=   (3.143) 

where 2
Pz

M

I t dm( ) ρ= ∫  is the body moment of inertia about the axis through 

the ICZV, PzI t( ) is function of time because the ICZV position changes with 
time.  

3.6.3. Work-energy principle for a particle 

Remember and write the Newton’s second low for constrained particle 
(1.26): 

 ,= +mW F N  (3.144) 

Multiplying the equation (3.144) by  elementary displacement rd  of a 
particle we obtain 

 ( ) ,mWdr F N dr= +  (3.145) 

rewrite the left side 

 
2

2

dv dr mv
mWdr m dr m dv mvdv d dT

dt dt

⎛ ⎞
= = = = =⎜ ⎟

⎝ ⎠
, 

rewrite the right side 

 ( ) .′+ =F N dr d A  

So equation (3.145) has view 
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 .dT d A′=  (3.146) 

Principle of work and kinetic energy for a particle in differential 
form 1: increment of the kinetic energy of a particle during its infinitesimal 
displacement is equal to elementary work done by all active forces and 
reactions during the same displacement. 

Dividing the equation (3.146) by  the elementary interval of time dt  we 
obtain another form of (3.146) : 

( )

2

*

,
2

( ),

d mv dT

dt dt

F N drd A
N F

dt dt

⎛ ⎞
=⎜ ⎟

⎝ ⎠

+′
= =

 

 
*( ).

dT
N F

dt
=  (3.147) 

Principle of work and kinetic energy for a particle in differential 
form 2: the derivative of the kinetic energy of particle with respect to the time is 
equal to the power of the resultant force. 

Let the particle move from position inM  to position finM  (finite 

displacement). Integrating the equation (3.146) between limits inM  and finM  

we obtain the following: 

*( )
fin fin

in in

M M

M M

dT d A F′=∫ ∫ , 

 ( ) ( ).fin inT T A F A N− = +  (3.148) 

Principle of work and kinetic energy for a particle in integral form: 
change in kinetic energy of a particle during the finite movement equals the 
work done on the particle by active and reactive forces during the movement. 

3.6.4. Work-energy  principle for a particle system 

For mechanical system consisting of n particles the forces acting on each 
particle may be divided into two classes: those exerted by fields or bodies 
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outside the system 
)(e

kF  (external forces) and those exerted by other particle of 

the system 
)(i

kF  (internal forces). 
For k-th we can say 

 ( ) ( )( ) ( ),′ ′= +e i
k k kdT d A F d A F  (3.149) 

where ( )e
kF  - resultant vector of external forces acting on k-th particle ; 

i
kF  - resultant vector of internal forces acting on k-th particle. 
Summing over k, k=1,…,n, we have 

 
( )

1 1

( ) ( ).
= =

′ ′= +∑ ∑
n n

e i
k k

k k

dT d A F d A F  (3.150) 

Principle of work and kinetic energy for a system of particles in 
differential form 1: increment of the kinetic energy of system of particles is 
equal to sum of elementary works done by all external and internal forces 
during the infinitesimal displacements of its points of application. 

Sometimes it is useful to use another form of work-energy principle: 

 
( )

1 1

( ) ( ).
= =

= +∑ ∑
n n

e i
k k

k k

dT
N F N F

dt
 (3.151) 

Principle of work and kinetic energy for a system of particles in 
differential form 2: Differential with respect to time of system of particles 
kinetic energy of is equal to sum of powers all external and internal forces. 

Integrating the equation (3.150) between initial and final configurations  of 
the system, we obtain follow 

 
( )

1 1

( ) ( ).
= =

− = +∑ ∑
n n

e i
fn st k k

k k

T T A F A F  (3.152) 

Principle of work and kinetic energy for a particle system in integral 
form: Change of the kinetic energy of particle system during the finite 
displacements of particles is equal to total work done by all external and 
internal forces during the same displacements. 

Differential form of work-energy principle is used for determination of 
accelerations, integral form for determination of velocities. 
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LECTURE 9 

3.6.5. Force field  

A part of space in which any particle is acted on by force is force field. In 
general the force may be function of coordinates of the particle, its velocity and 
time 

 F(x, y,z,x, y,z, t).  (3.153) 

If the force function explicitly depends on time the force field is called 
nonstationary or nonstedy. Otherwise it is called stationary. 

 

3.6.5.1. Conservative force fields 

A force field is called conservative if the following two conditions hold: 
1. Field force depend on position of a particle only 

 ( , , )F x y z . (3.154) 

2. The work done by the field force does not depend on the path, but 
depends only on the position of the end points of the path. 
 

This statement is the first definition of a conservative force field. 
These two conditions eliminate from the considerations all resistance 

forces (such as air and water resistance), forces of friction. 
 
Earth’s gravitational field is example of conservative force field. Let us 

consider a body acted on only by gravity G as an active force (i.e. as force that 
can do work) and moving along frictionless path from position 1 to position 2. 
The elementary work done by gravity is then 

 ( ) .′ = −d A G mgdz  (3.155) 

The total work is 

 ( )
2

2 1 1 2

1

A(G) mgdz mg z z mgz mgz .= − = − − = −∫  (3.156) 

So the work done by force of gravity does not depend on the path, but 
depends only on the initial and final position of the particle. 

 
The necessary and sufficient conditions of force field work independence 

of the path and dependence on the position of the end points of the path only is 
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existing of single valued function of coordinates such as its partial derivatives 
with respect to coordinates x,y,z are equal to the negative of the force 
rectangular components 

 ; ; ,= − = − = −x y z

dP dP dP
F F F

dx dy dz
 (3.157) 

where ( , , )P x y z  is the function of coordinates called the potential energy 
function. 

In other words 

 ( )x y k

P P P
F F i F j F k i j k grad P P

x y z

∂ ∂ ∂
= + + = − + + = − = −∇

∂ ∂ ∂
. (3.158) 

The operator grad  or ∇  that we have introduced is called gradient 
operator. Conservative force field must be a function of position and 
expressible as the gradient of a scalar function. The inverse to this statement is 
also valid. That is, if a force of a field is a function of position and the 
gradient of a scalar function, the force must then be a conservative force 
field. This statement is the second definition of a conservative force field. 

 
The work done by the field force is  

( )
2 2

1 1

2

1

12

.

M M

x y z

M M

M

M

A d A F dx F dy F dz

dP dP dP
dx dy dz

dx dy dz

′= = + + =

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠

∫ ∫

∫
 

The expression in the integral is exact differential, so 

2 2 2 2

1 1 1 1

( , , )

12 1 1 1 2 2 2 1 2

( , , )

( , , ) ( , , )= − = − = − = −Δ∫
M x y z

M x y z

A dP P x y z P x y z P P P .   (3.159) 

Note that the potential energy, ( , , )P x y z , depends on the reference Oxyz  
used or the datum used. However, the change in potential energy is 
independent of the datum used. Changing the position of O  but keeping the 
same direction of xyz  axes (changing the datum) does not affect the value of 
difference of potential energy. Since for work calculation we shall be using the 
change in potential energy, the datum is arbitrary and is chosen for 
convenience.  

From equation (3.159) we can say that the change in potential energy of a 
conservative force field is the negative of the work done by this conservative 
force field on a particle in going from position 1 to position 2 along any path. 
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3.6.5.2. Physical meaning of the potential energy function 
at the given point of the space  

Let us suppose that at the initial position of a particle the potential energy 
function equals zero 0 0P = . The work done by force of the field along any path 
between position 1 and 0 is 

 10 1.=A P   
So it is evident that the potential energy function at the given point of the 

space is equal to the work that field force would do to move the particle from 
the given position to the position where potential energy function equals zero. 

From equation (3.159) we can say also that if a particle travels in a closed 
loop, the net work done by a conservative force is zero. 

 Fdr 0.=∫  (3.160) 

This is the third way to define a conservative force field. 

3.6.5.3. Mathematical criterion of force field conservatism  

To provide path independence of the work the function in the integral must 
be exact differential. It is possible if 

 0

x y z

i j k

rotF F
x y z

F F F

∂ ∂ ∂
= ∇× = =

∂ ∂ ∂
, 

 
y yx z x z

F FF F F F
; ; .

x y x z z y

∂ ∂∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂
 (3.161) 

The first equivalence can be rewritten in such way 

 .
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

P P

x y y x
 (3.162) 

We know that mixed partial derivatives are independent of the order of 
differentiation, so we can say that  

2 2P P

x y y x

∂ ∂
=

∂ ∂ ∂ ∂
. 
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3.6.5.4. Conservative field equipotential surfaces 

It is convenient to visualize a Conservative field with help of equipotential 
surfaces that are similar to level surfaces at the map. 

A locus of points that have equal level of potential energy is called 
equipotential surface. Equation of a equipotential surface is 

 ( , , )P x y z const= . (3.163) 

Features of the equipotential surfaces: 
1. There is an equipotential surface at any point of space. Different 

equipotential surfaces do not have common points. A total work done by 
the field force during finite movement of a particle along the equipotential 
surface equals zero. 

2. The field force is directed along the equipotential surfaces normal 
towards the potential energy decreasing. 

3. A total work done by the field force during finite movement of a particle 
from one equipotential surface to another is equal to the difference of 
potential energy at the initial and at the finite equipotential surfaces. 

 

3.6.5.5. Constant Force field 

If the force field is constant in all position, it can always be expressed as 
gradient of a scalar function of the form  

 ( , , )P x y z ax by cz C= + + + . 
Where a,b,c are constants. The constant force field, then, 

 .F ai bj ck= + +  
In limited changes of position near the earth’s surface, we can consider the 

gravitational force  on a particle of mass m as a constant force field given by 

G mgk= − . Thus, the constant for the general force field given about are 

a=b=0 and c=-mg. Cleary potential energy of Gravity field 

 .P mgz C= +  (3.164) 

3.6.5.6. Force proportional to linear displacement 

Consider a body limited by constrains to move along a straight line. A force 
directly proportional to the displacement of the body from some position 0 at 
x=0 along line is developed. This force is always directed toward point O; it is 
termed a restoring force (восстанавливающая сила). We can give this force 
as 



154 

, 0,

.

x y zF cx F F

F cxi

= − = =

= −
 

where x is the displacement from point 0. 
An example of this force is that of linear spring of stiffness c with units 

of 
N

m
. The potential energy of this force field is given as follows wherein x is 

measured from the undeformed geometry of the spring 

 
2

2

cx
P = . (3.165) 

If the deformation of a spring increases from 1x  to 2x  during the motion 
interval then the change in the potential energy of the spring is its final value 
minus its initial value 

 ( )
2 2

2 22 1
2 12 2 2

cx cx c
P x xΔ = − = − . (3.166) 

We can repeat the same reasoning for spiral spring. Torsion springs obey 
an angular form of Hooke's law: 

 ,= −el zM cφ  (3.167) 

where elM  is the moment of elasticity or torque exerted by the spring in N m⋅ , 
and ϕ  is the angle of twist from its equilibrium position in radians. c is a 

constant with units of 
N m

rad

⋅
, variously called the spring's torsion coefficient, 

torsion elastic modulus or spring constant, equal to the torque required to 
twist the spring through an angle of 1 radian. It is analogous to the linear spring 
stiffness. 

The potential energy of this force field is given as  

 
2

,
2

c
P

φ
=  (3.168) 

 ( )2 2
2 1 .

2
Δ = −

c
P φ φ  (3.169) 

3.6.6. Law of mechanical energy conservation  

Let us consider a motion of a particle system which is acted on 
conservative forces only. The change of kinetic energy of system is equal to 
work of the conservative forces and therefore is equal to the change in potential 
energy of the system 
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 fin in in finT T P P− = − , (3.170) 
or 

fin fin in inT P P T+ = + , 
or 
 .Е P Т сonst= + =  (3.171) 

The sum of kinetic energy and potential energy for a system remains 
constant at all time during the motion of the system in conservative force field. 

3.6.7. Examples  

Example 1. A mechanical system (Fig. 3.73) initially at rest comes into 
operation by gravity. The initial position of the system is represented in the 
figure. Take into consideration dry friction and rolling resistance for the body 3 
motion. Neglect other resistance forces. The body 3 rolls without slipping, cords 
are ideally flexible inextensible weightless. 

Determine the velocity of the body 1 when the distance traveled is 
1 2.4s m=  , if 1 2 3 3, 1 / 4 , 1 / 8 ; 35 0.35 ;m m m m m m R cm m=  =   =  =  =   

30 , 30 , 0.2, 0.2f cmα β δ= °  = °  = =  . 
 

 
 

Fig. 3.73 
 

Solution 
 

This mechanical system consists of the block 1 that has translation 
motion, the pulley 2 that rotates about fixed axis and the cylinder 3 that has 
plane motion.  

To solve this problem we apply work-energy principle: 

( )( ) ( )( )
1 1

,
= =

− = +∑ ∑
n n

e i
f i k k

k k

T T A F A F  
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Fig. 3.74 
 

where fT  is total final kinetic energy of the system; 

iT is total initial kinetic energy of the system; 

( )( )
1

n
e

k
k

A F
=

∑ is total work done by external forces during the finite 

movement of the system; 

( )( )
1

n
i

k
k

A F
=

∑ is total work done by 

internal forces during the finite 
movement of the system. 
For our system of rigid bodies joined 

by ideal flexible inextensible cords no 
work is done by internal forces. If we 
break the cord we obtain to tension 
forces (Fig. 3.75) that are equal by

 Fig. 3.75  a magnitude and have opposite 

direction: 1 2T T= − . Separately these forces have work, but as they have 
different directions, the total work is zero. 

So 

( )( )
1

0
n

i
k

k

A F
=

=∑ . 

The system is at rest at initial moment of time, that’s why kinetic energy at 
initial moment is zero:  

0iT = . 
Finally work-energy principle for this problem is: 
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 ( )( )
1

n
e

f k
k

T A F
=

= ∑ . (3.172) 

The total kinetic energy is the sum of kinetic energies of the three bodies: 

 1 2 3fT T T T= + + . (3.173) 

For the 1st body kinetic energy is: 

 2
1 1 1

1

2
T mV= . (3.174) 

Taking into consideration that the 2nd body has rotational motion, so: 

 2
2 2 2

1

2
T I ω= . (3.175) 

The 3rd body has plane motion. Then kinetic energy is: 

 
3

2 2
3 3 3 3

1 1

2 2CT m V I ω= + . (3.176) 

We have to express all velocities of the points and angular velocities in 
terms of the velocity of the 1st body. Bodies are connected by ideal cord, so: 

 3 1, = = =C B AV V V V   

 1
2 2 2

2 2

,=   ⇒  = =A
A

V V
V R

R R
ω ω  

 3 1
3 3 3 3

3 3

. 
 =   ⇒  = =C

C

V V
V R

R R
ω ω  

Moments of inertia of the 2nd and the 3rd bodies: 

 2 2
2 2 2 3 3 3

1 1
, .

2 2
=   =I m R I m R  

Substituting expressions in equations (3.175) and (3.176) we can rewrite 
them: 
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2

2 2 21
2 2 2 2 2 2 1

2

1 1 1 1
,

2 2 2 4

⎛ ⎞
= = ⋅ =⎜ ⎟

⎝ ⎠

V
T I m R m V

R
ω  (3.177) 

 

2

2 2 21
3 3 1 3 3 3 1

3

1 1 1 3

2 2 2 4

V
T m V m R m V

R

⎛ ⎞
= + ⋅ =⎜ ⎟

⎝ ⎠
. (3.178) 

Substituting equations (3.174), (3.177) and (3.178) in (3.173) we obtain 
the total kinetic energy system: 

 2 2 2 2
1 1 2 1 3 1 1

1 1 3 21

2 4 4 32fT mV m V m V mV= + + = . (3.179) 

Now we shall analyze forces (Fig. 3.76), acting on the system. The work 
done by external forces is: 
 

 
 

Fig.3.76 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2
1

3 1 2 .

=

= + +  +  + + +

+ + + +

∑
n

e
k

k

fr fr r

A F A N A R A X A Y A m g A m g

A m g A F A F A M

 

The works done by the reactive forces ,X Y , gravity force of the 2nd body 

2m g are zero, because they are applied in fixed point, and work done by the 

reactive force R  and the friction force 2frF are zero too because they are 

applied at ICZV. 
The work done by the gravity (equation(3.125)) force of the first body is 

positive, because the body moves down (Fig. 3.77): 
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Fig. 3.77 Fig. 3.78
 

 

( )1 1 1 1 1 sin .= =A m g m gh m gs β  

The height h1 is found according to the figure:  

1 1 sinh s β= . 

The work done by the gravity force of the 3rd body is negative, because 
the body moves up: 

( )
33 3 CA m g m gh= − .

 

The height 
3Ch   is found according to the Fig. 3.78:  

3 3
sinC Ch s α= . 

So  

( ) 3 33 3 3 sinC CA m g m gh m gs α= − = − , 

where 3Cs   is the displacement of the mass center the 3rd body. 

We know the relation between velocity of the first body and velocity of the 
mass center of the third body: 

3 1CV V= . 

A velocity is a derivative of the displacement by the time, so we can rewrite this 
equation: 

3 1Cds ds

dt dt
= , 
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3

3 1

0 0

,
Cs s

Cds ds=∫ ∫  

3 1.Cs s=  

So  

( )3 3 1 sinA m g m gs α= − . 

The work done by the reactive force N  (Fig. 3.79) is zero because an 
angle between the force vector and displacement of a point of application is 
90°: 

( ) 1 cos90 0.A N Ns= ° =  

The work done by the friction force between the first body and the incline: 

( )1 1 1 1 1cos180fr fr frA F F s F s   = ⋅ ⋅ ° = − ⋅ . 

Friction force can be found according to Column law:  

1frF fN = , 

where f  is friction coefficient, N is reaction. 

  
 

Fig. 3.79 

To find the reaction N  we consider the first body separately and write 
equation of motion for this body: 

1 1 cos .Cm y N m g β= −  

As equation of constraint we use the fact that the coordinate 
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Cy const= ,  

so  

0Cy = . 

Then 

1 10 cos cos ,N m g N m gβ β= −   ⇒  =  

1 1 cos .frF fm g β =  

Therefore  

( )1 1 cosfrA F fm g sβ = − ⋅ . 

The work done by the moment of rolling resistance is negative because 
the moment and the angle have different directions: 

( ) 3r rA M M ϕ= − . 

To find the unknown angle 3ϕ  we use the relation  

1
3

3

V

R
ω = , 

3 1
3 ,

d ds
R

dtdt

ϕ
=  

3 1

3 1
30 0

1
,

s

d ds
R

ϕ

ϕ =∫ ∫  

1
3

3

.
s

R
ϕ =  

The moment of rolling resistance (Fig. 3.80) is a product of coefficient of 
rolling resistance and reactive force: 

rM Rδ= ⋅ . 
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Fig. 3.80 

To find the reactive force we consider the 3rd body separately and write 
one equation of motion for this body: 

3 3 cosCm y R m g α= − . 

Taking into account that the coordinate of the mass center of the third body  

Cy const=  

and that’s why 

0,Cy =  

we can rewrite the previous equation: 

3

3

0 cos ,

cos .

R m g

R m g

α
α

= −

=
 

Therefore the moment of rolling resistance is: 

3 cosrM m gδ α= ⋅ , 

( ) 1
3

3

cos .r

s
A M m g

R
δ α= − ⋅  

So the sum of external forces is: 

( ) 1
1 1 3 1 1 3

1 3

sin sin cos cos
n

e
k

k

s
A F m gs m gs fm g s m g

R
β α β δ α

=

= − − ⋅ − ⋅∑ . 

Making some transformations we have: 
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 ( ) 1
1

2.87
n

e
k

k

A F s m
=

=∑ . (3.180) 

Substituting equations (3.180) and (3.179) into (3.172): 

2
1 1

21
2.87 .

32
mV s m=  

From here the desired velocity of the 1st body is: 

1 14.37 4.37 2.4 3.24
sec

m
V s

⎛ ⎞= = ⋅ =  ⎜ ⎟
⎝ ⎠

. 

Answer: 1 3.24
sec

m
V

⎛ ⎞=  ⎜ ⎟
⎝ ⎠

. 

 
Example 2. A gear mechanism is represented in Fig. 3.81. The carrier 

OC4 is rigidly connected with the wheel 2. Determine the velocity of the body 1 
when the distance traveled is 1 0.05s mπ=  , if 1 2, 1 /10 ,m m m m=  =   

3 1 / 20 ,=  m m  4 2 3 4 3 4 31 / 10 , 0.1 , , 6 , 2 .=  =   = 0.12  =  =m m R m R m OC R R R  
Solution 

 
The system consists of 4 bodies. 
The 1st body is the load that moves translationally with the velocity V1. 

The 2nd wheel rotates about fixed axis passing through its mass center. The 3rd 
wheel and the 4th have plane motion. Also the planetary carrier belongs to the 
system, but we neglect its mass, so it doesn’t have kinetic energy. 

To solve this problem we apply work-energy principle: 

 ( ) ( )
1 1

,
n n

e i
f i k k

k k

T T A F A F
= =

− = +∑ ∑   

where fT  is total final kinetic energy of the system; iT  is total initial kinetic 

energy of the system; ( )
1

n
e

k
k

A F
=

∑ is total work done by external forces during the 

finite movement of the system; ( )
1

n
i

k
k

A F
=

∑ is total work done by internal forces 

during the finite movement of the system. 
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Fig. 3.81 

Work done by internal forces is zero, because pins are frictionless, 
motions of wheels are without slipping and rolling resistance is neglected. 

The system is at rest at initial moment of time, that’s why kinetic energy at 
initial moment is zero: 0iT = . 

Finally work-energy principle for this problem is: 

 ( )
1

n
e

f k
k

T A F
=

= ∑ . (3.181) 

The total kinetic energy is the sum of kinetic energies of the four bodies: 

 1 2 3 4.= + + +fT T T T T  (3.182) 

The kinetic energy of the body 1 is: 

 2
1 1 1

1

2
T mV= . (3.183) 

Taking into consideration that the body 2 has rotational motion, so: 

 2
2 2 2

1

2
T I ω= . (3.184) 

The 3rd body has plane motion. Then kinetic energy is: 
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3

2 2
3 3 3 3

1 1

2 2CT m V I ω= + . (3.185) 

For the body 4: 

 
4

2 2
4 4 4 4

1 1
.

2 2
= +CT m V I ω  (3.186) 

We have to express all velocities of the points and angular velocities in 
terms of the velocity of the 1st body. All points on the cord have the same 
velocities, so velocity of the point A is equal to velocity of the first body: 

1.=AV V  

On the other hand: 

1
2 2 2

2 2

.=   ⇒  = =A
A

V V
V R

R R
ω ω  

As the carrier is rigidly attached to the 2nd wheel, angular velocities of 
these two bodies are equal: 

1
2

2

.= =C

V

R
ω ω  

Velocities of the points C3 and C4  (Fig. 3.82) as points on the carrier are: 

3 4

1 1
3 3 4 3

2 2

3 , 6 .= = ⋅   = = ⋅C C C C

V V
V OC R V OC R

R R
ω ω  

The 3rd wheel has a contact with the fixed wheel at the point P, so there is 
ICZV at this point and we can write the formula for velocity of the point C3: 

3

3

11
3 3 3 3 3

23 2

3
3 .C

C

V VV
V R R R

RR R
ω ω=   ⇒  = = ⋅ =  

Velocity of the point E as a point on the 3rd wheel is: 

31
3 3 3 1

2 2

63
2 2E

RV
V R R V

R R
ω= ⋅ = ⋅ = ⋅ . 
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Fig. 3.82 

It is easy to see that velocities of the points E and C4 are equal. So we 
can make a conclusion that the 4th wheel has instantaneous translational 
motion. That’s why angular velocity of this wheel is zero: 4 0ω = . 

Moments of inertia of the 2nd and the 3rd bodies: 

 2 2
2 2 2 3 3 3

1 1
, .

2 2
I m R I m R=   =  

Substituting all these expressions in equations (4), (5) and (6) we can 
rewrite them: 

 

2

2 2 21
2 2 2 2 2 2 1

2

1 1 1 1
;

2 2 2 4

⎛ ⎞
= = ⋅ =⎜ ⎟

⎝ ⎠

V
T I m R m V

R
ω  (3.187) 

3

2 2 2
2 2 2 23 3 31

3 3 3 3 3 1 3 3 12
2 2 2

3 2731 1 1 1 1
;

2 2 2 2 2 4

⎛ ⎞ ⎛ ⎞
= + = ⋅ + ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
C

R m RV
T m V I m V m R V

R R R
ω (3.188) 

 
4

2

2 2 3
4 4 4 4 4 1

2

61 1 1
.

2 2 2

⎛ ⎞
= + = ⋅⎜ ⎟

⎝ ⎠
C

R
T m V I m V

R
ω  (3.189) 



167 

Substituting equations (3.183), (3.187), (3.188) and (3.189) in (3.182) we 
obtain the total kinetic energy system: 

22
2 2 2 23 3 3

1 1 2 1 1 4 1 12
2 2

27 61 1 1
3.603

2 4 4 2f

m R R
T mV m V V m V mV

R R

⎛ ⎞
= + + + ⋅ =⎜ ⎟

⎝ ⎠
. (3.190) 

Final position of the system depends on 
the position of the carrier. We know that at final 
moment of time the displacement of the body 1 
is ( )1 0.05s mπ=  . Angular velocity of the carrier 

is: 

1

2

.C

V

R
ω =  

Rewriting this equation: 

1
2 ,Cd ds

R
dtdt

ϕ
=  

1

1
20 0

1

2

1
,

.

C s

C

C

d ds
R

s

R

ϕ

ϕ

ϕ

=

=

∫ ∫
 

At final moment angle of rotation of carrier 
is: 

0.05

0.05

0.1 2C
s π

π πϕ
=

= = . 

Fig. 3.83 

So the carrier rotates on 90° . Final position of the system is shown in 
Fig. 3.83. 

Let’s calculate the work of all external forces acting on the system: gravity 

forces 1 2 3 4, , ,m g m g m g m g   , normal reaction N , reactive forces 
2 2
,C CX Y  and 

friction force frF . So 

( ) ( ) ( ) ( ) ( ) ( )2 2 1 2
1

n
e

k C C
k

A F A N A X A Y A m g A m g
=

= +  +  + + +∑
 

 ( ) ( ) ( )3 4 1 .+ + + frA m g A m g A F  (3.191) 
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As gravity force of the wheel 2 and reactive forces are applied at fixed 

point C2 the works done by these forces are zero: 

( ) ( ) ( )
2 2 2 0.C CA X A Y A m g =  = =  

The friction force and normal reaction are applied in ICZV, so the works 

done by these forces are zero too: 

( ) ( )1 0.frA N A F= =  

Works done by gravity forces are: 

( )
( )
( )

1 1 1 1 1

3 3 3 3 3

4 4 4 4 3

,

3 ,

6 .

A m g m gh m gs

A m g m gh m g R

A m g m gh m g R

= =

= − = − ⋅

= − = − ⋅

 

So we can rewrite equation (3.191): 

 ( ) 1 1 3 3 4 3
1

3 6 0.067
n

e
k

k

A F m gs m g R m g R mg
=

= − ⋅ − ⋅ =∑ . (3.192) 

Substituting equations (3.190) and (3.192) in (3.181): 

2
13.603 0.067mV mg= . 

From here velocity of the 1st body is: 

1

0.067
0.43

3.603 sec

g m
V

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. 

Example 3. Make the differential equation of the system (Fig. 3.84) 

motion, if masses are given: 1 2,m m m m=  = ; the length of unstretched spring is 
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0l ,coefficient of stiffness is k . The block 2 is a 

homogeneous disk. Neglect masses of the cord and 

the spring. 

 
Solution 

 
We assume that the 1st body moves up, so V1 

is directed up and we introduce displacement s. to 
solve this problem we use work-energy principle in 
differential form: 

 

 ( ) ( )
1 1

.
n n

e i
k k

k k

dT
N F N F

dt = =

= +∑ ∑ . (3.193) 

Determine kinetic energy of the system:                          Fig. 3.84 

1 2T T T= + .                                          (3.194) 

The 1st body moves translationally with the velocity V1, so its kinetic 
energy is: 

2
1 1 1

1
.

2
T mV=

 
The 2nd body has rotational motion: 

2
2 2 2

1
.

2
T I ω=  

Velocity of the point A is equal to velocity of the  
1st body (Fig. 3.85): 

1.AV V=  
On the other hand: 

1
2 2 2

2 2

.A
A

V V
V R

R R
ω ω=   ⇒  = =  

Moment of inertia of the 2nd body: 

2
2 2 2

1
.

2
I m R=  

So kinetic energy of the 2nd body is: 
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 Fig. 3.85 Fig. 3.86  

2

2 2 21
2 2 2 2 2 2 1

2

1 1 1 1

2 2 2 4

V
T I m R m V

R
ω

⎛ ⎞
= = ⋅ =⎜ ⎟

⎝ ⎠
. 

Therefore the total kinetic energy of the system: 

2 2 2
1 1 2 1 1

1 1 3

2 4 4
T mV m V mV= + = . 

Let’s find the derivative of this expression: 

 ( )2 1
1 1 1 1

3 3 3

4 4 2 s

dVdT d
m V mV mV W

dt dt dt
= = = ⋅ , (3.195) 

where 1sW  is a projection of the load 1 acceleration on axis s. 

The sum of powers of internal forces acting on the system is zero 

 ( )
1

0.
=

=∑
n

i
k

k

N F  (3.196) 
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Let’s find the sum of powers of external forces acting on the system    

(see Fig. 3.86). As reactive forces 
2 2
,C CX Y and gravity force of the body 2 2m g  

are applied at fixed point, their powers are zero: 

 ( ) ( ) ( )
2 2 2 0C CN X N Y N m g =  = = .  

Power of the gravity force of the 1st body is: 

 ( )1 1 1 1cos180 .= ° = −N m g m gV mgV   

Power of the force of spring is: 

 ( ) ( )1 1 0 1cos180spr spr sprN F F V F V k s l V= ° = − = − − .  

Therefore the total power of all external forces is: 

 ( ) ( )1 0 1
1

.
n

e
k

k

N F mgV k s l V
=

= − − −∑  (3.197) 

Substituting equations (3.195), (3.196) and (3.197) in (3.193): 

( )1 1 1 0 1

3
.

2
⋅ = − − −smV W mgV k s l V  

Dividing on 1 0mV ≠  we obtain: 

( )1 0

3
.

2
⋅ = − − −s

k
W g s l

m
 

Taking into account that at rectilinear motion of the load 

1 ,=sW s  

 
( )0

2

3

k
s g s l

m
⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

. (3.198) 

Equation (3.198)  is differential equation of the system motion. 
 
Example 4. The load A of mass M1 moving downwards with the use of a 

cord, that is threw over the pulley D, lifts up the load B of a mass M2, that is 
attached to the axis of the movable pulley C (Fig. 3.87). The pulleys D and C 
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are homogeneous disks. A mass of every disk is M3. Determine the velocity of 
the load A at a moment, when it moves down on a height h. Neglect a mass of 
the cord, slipping on the pulleys and forces of resistance. At initial moment the 
system was at rest. 

 
 

 Fig. 3.87 Fig. 3.88 
Solution 

 

We consider forces, acting on the system (Fig.3.88). Reactions ,X Y and 

tension force T are nonworking, because reactions are applied at fixed point 

and T  is applied in ICZV (point P). Gravity force is conservative force. So we 
can say that this system is under action of conservative forces and we can 
apply the law of conservation of mechanical energy: 

 
,i i f fT P T P+ = +  (3.199) 

where iT  is kinetic energy at initial moment of time; fT is kinetic energy at final 

moment of time; iP is potential energy at initial moment of time;
 fP is potential 

energy at final moment of time.  

The system is at rest, so kinetic energy is zero:  
0iT = . 
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At defining a potential energy of gravity force we assume, that at initial 
moment of time it is equal to zero:  

0iP = . 
Determine kinetic energy of the system: 

 1 2 3 4T T T T T= + + + . (3.200) 

The body 1 has translational motion, so 

 2
1 1 1

1

2
T M v= . (3.201) 

For the body 2 kinetic energy is: 

 2
2 2 2

1
.

2
=T I ω  (3.202) 

The body 3 has plane motion: 

 
3

2 2
3 3 3 3

1 1

2 2CT M v I ω= + . (3.203) 

Taking into account translational motion of the body 4: 

 2
4 2 4

1

2
T M v= . (3.204) 

The cord is inextensible so every point on it has the same velocity, so  

1Ev v= . 

Angular velocity of the 2nd wheel is: 

 1
2

2 2

Ev v

R R
ω = = .  

Velocity of the point K on the body 3 is the same as velocities of the 
points F and E:  

1K F Ev v v v= = = . 
 

On the other hand the velocity of the point K is: 
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1
3 3 3

3

2
2K

v
v R

R
ω ω= ⋅   ⇒  = . 

Velocity of the center of the disk 3 is: 

3

1
3 3 3 1

3

1

2 2C

v
v R R v

R
ω= = = . 

Velocity of the body4 is equal to the velocity of the center of the disk 3: 

34 1

1

2Cv v v= = . 

Moments of inertia of the disks 2 and 3 are: 

2
2 3 2

2
3 3 3

1
,

2
1

.
2

=

=

I M R

I M R

 

Substituting received expressions to equations (3.202), (3.203), (3.204): 

2

2 21
2 3 2 3 1

2

1 1 1
;

2 2 4

⎛ ⎞
= ⋅ =⎜ ⎟

⎝ ⎠

v
T M R M v

R
 

22
2 21

3 3 1 3 3 3 1
3

1 1 1 1 3
;

2 2 2 2 2 16

⎛ ⎞⎛ ⎞= + ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

v
T M v M R M v

R
 

2
2

4 2 1 2 1

1 1 1
.

2 2 8
⎛ ⎞= =⎜ ⎟
⎝ ⎠

T M v M v  

Therefore the total kinetic energy is: 

2 2 2 2 2
1 1 3 1 3 1 2 1 1 2 3 1

1 1 3 1 1 1 7

2 4 16 8 2 8 16
T M v M v M v M v M M M v

⎛ ⎞= + + + = + +⎜ ⎟
⎝ ⎠

. (3.205) 

The potential energy of the system is: 
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( ) ( ) ( ) ( )A D C BP P G P G P G P G= + + + . 

The potential energy of the force DG  is zero, because this force is applied 
at fixed point:  

( ) 0DP G = . 

The potential energy is a work done by the force during displacement 
from current position to initial, where energy is equal to zero. So 

( ) 1 1 ,= − = −A AP G G h M gh  

( ) 3 3

1
,

2
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

C C CP G G h M g h  

( ) 4 2

1
.

2
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

B BP G G h M g h  

So the total potential energy is: 

1 3 2 1 2 3

1 1 1 1

2 2 2 2
P M gh M g h M g h gh M M M

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + = − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.  (3.206) 

Substituting expressions (3.205) and (3.206) to equation (3.199): 

2
1 2 3 1 1 2 3

1 1 7 1 1

2 8 16 2 2
M M M v gh M M M

⎛ ⎞ ⎛ ⎞+ + = − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

From here the velocity of the load A is: 

( )
( )

1 2 32
1

1 2 3

16 2

2 8 2 7

gh M M M
v

M M M

− −
=

+ +
. 

Answer: 
( )

( )
1 2 32

1
1 2 3

16 2

2 8 2 7

gh M M M
v

M M M

− −
=

+ +
. 

Example 5. Fig. 3.89 represents an eccentric mechanism lying in a 
horizontal plane. The eccentric A sets the roller B and the rod D in a 
reciprocating motion. A spring E, that is connected with the rod, provides a 
constant contact between the roller and the eccentric. The weight of the 
eccentric is p and the eccentricity e equals half of its radius. The coefficient of 
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stiffness of the spring is c. At the extreme left position of the rod the spring is 
not-compressed. What angular velocity is required for the eccentric to move the 
rod D from the extreme left to the extreme right position? Neglect the masses 
of the roller, the rod and the spring. The eccentric is assumed to be a 
homogeneous disk. 

 
Fig. 3.89 

 
Solution 

 

 
a 

 
b 
 

Fig. 3.90 
 

The system is under action of conservative forces. So we can apply the 
law of conservation of mechanical energy: 

 i i f fT P T P+ = + . (3.207) 

The spring is not compressed (Fig. 3.90, a) at initial moment of time, so 
0iP = . 

The kinetic energy of the body at initial moment is 
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21

2i OT I ω= , (3.208) 

where OI  is moment of inertia about axis of rotation.  

We can find it using parallel-axis theorem: 

 
1

2
2 2 2

1

1 1 3

2 2 4O OI I m OO mR m R mR
⎛ ⎞= + ⋅ = + ⋅ =⎜ ⎟
⎝ ⎠

. (3.209) 

Substituting (3.209) into (3.208): 

 2 2 2 21 3 3

2 4 8i

p
T mR R

g
ω ω= ⋅ = . (3.210) 

At final moment the kinetic energy is zero  
0fT = , 

because the spring brakes the eccentric at final moment. 
Potential energy at final moment (Fig. 3.90, b) is equal to potential energy 

of the force of spring: 

 
2 2

2 2f

c l cR
P

Δ
= = . (3.211) 

Substituting expressions (3.210) and (3.211) into (3.207): 

2
2 23

8 2

p cR
R

g
ω = . 

From here angular velocity is: 

2

2

8 4

2 3 3

cR g cg

R p p
ω = =

⋅
. 

Answer: 
4

3

cg

p
ω = . 

 
Example 6. The Fig. 3.91 shows the cross-section of a uniform 91-kg 

ventilator door hinged about its upper horizontal edge at O. The door is 
controlled by the spring-loaded cable which passes over the small pulley at A. 
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The spring has a stiffness of 219 N/m of stretch and it undeformed, when 
0θ = . If the door is released from rest in the horizontal position, determine the 

maximum angular velocity ω  reached by the door and the corresponding angle 
θ . 

 
Fig. 3.91 

 
Solution 

 

 
Fig. 3.92 

 
Force of spring and gravity force (Fig. 3.92) are conservative forces, so 

we can say, that this system is under action of conservative forces and we 
apply the law of conservation of mechanical energy: 
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 i i f fT P T P+ = + , (3.212) 

The spring is not stretched at initial moment of time, so 
0iP =  

and the body doesn’t move, so 
0iT = . 

At final moment kinetic energy of door is computed as for rotational body: 

 21
.

2
=fT Iω  (3.213) 

Moment of inertia is: 

21

3
I ml= . 

Therefore 

 

2 2 2 21 1 1

2 3 6fT ml mlω ω= ⋅ = . (3.214) 

Potential energy at final moment of time is equal to a sum of potential 
energies of the gravity force and force of spring (Fig. 3.93): 

 

( ) ( ),f sprP P mg P F= +  

( ) sin ,
2

l
P mg mgh mg θ= − = −  

( )
22

2 22 sin 2 sin .
2 2 2 2spr

c l c
P F l cl

θ θΔ ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

Fig. 3.93 
So the total potential energy is: 

 2 2sin 2 sin
2 2f

l
P mg cl

θθ= − + . (3.215) 
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Substituting expressions (3.214) and (3.215) into (3.212): 

 2 2 2 21
sin 2 sin 0.

6 2 2
− + =

l
ml mg cl

θω θ  (3.216) 

Angular velocity is a derivative of an angle by the time:  
ω θ= . 

Differentiating equation (3.216) by the time: 

2 21
2 cos 2 2sin cos 0

6 2 2 2 2

l
ml mg cl

θ θ θθ θ θ θ⋅ − ⋅ + ⋅ ⋅ = . 

Making some transformations: 

2 21
cos sin 0

3 2

l
ml mg clθ θ θ⋅ − + = . 

Using condition of function extremeness max ,θ ω ω= =  when 

0θ ω ε= = = : 

2

2

2

cos sin 0,
2

tan 0,
2

91 9.8
tan 1.34.

2 2 2 219 1.52
53

l
mg cl

l
cl mg

lmg mg

cl cl

θ θ

θ

θ

θ

− + =

⋅ − =

⋅
= = = =

⋅ ⋅
= °

 

Substituting the value of the angle θ  into the equation (3.216) we can find 

desired angular velocity: 

2 2

2

sin 2 sin
2 2 4.6

1 sec
6

l
mg cl rad

ml

θθ
ω

+ ⎛ ⎞= =  ⎜ ⎟
⎝ ⎠

. 

Answer: 4.6
sec

radω ⎛ ⎞=  ⎜ ⎟
⎝ ⎠

. 
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3.6.8. Short problems  

Problem 1. The homogeneous cylindrical rolls 1 and 2 of the mass 20 kg 
every are actuated from a state of rest by the constant moment of the 
couple 2 N m= ⋅М  (Fig. 3.94). Determine velocity of the roll axes at their 
displacement on the distance 3 m if radiuses are R1= R2. = 0,2m. 

    

Fig. 3.94                              Fig. 3.95 

Problem 2. Motion of the pulley 2 of the belt transmission (Fig. 3.95) begins 
from a state of rest under action of the constant motion М = 0,5N • m. After three 
revolutions the identical by a mass and dimensions the pulleys 1 and 2 have 
angular velocity 2 rad/s. Determine moment of inertia of the one of the pulleys 
about axis of rotation. 

Problem 3. The moment of inertia of the gear wheel 1 about axis of 
rotation is equal to 0,1kg • m2 (Fig. 3.96). The total mass of the rack 2 and the 
load 3 is equal to 100 kg. Determine the rack velocity at its displacement on the 
distance s = 0,2m if at the beginning the system was at rest. The radius of the 
wheel is r= 0,1m. 

    

 Fig. 3.96 Fig. 3.97 Fig. 3.98   
 

Problem 4. The identical blocks 1 and 2 (Fig. 3.97) of the masses m1 = 
= т2 and the radiuses R1= R2 representing the homogeneous disks begin motion 
from a state of rest under action of gravitational force. Determine center velocity 
С of the block 1 after a moment when it will sink down on the distance s = 1 m. 
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Problem 5. Determine the load 2 (Fig. 3.98) velocity at the moment of time 

when it sink down on the distance s = 4 m if masses of the loads are  

т1 = 2 kg, т2= 4 kg. The system of bodies was at rest at initial time. 

Problem 6. The belt transmission (Fig. 3.99) begins motion from a state 

of rest under action of the moment of the couple М = 2,5N • m. The moments of 

inertia of the pulleys about their axes of rotation I2 = 2I1 = 1 kg • m2. Determine 

angular velocity of the pulley 1 after three revolutions if the radiuses of the 

pulleys are R2 = 2R1. 

Problem 7. The identical gear wheels 1 and 2 (Fig. 3.100) of the mass 

2 kg every are actuated from a state of rest by the constant moment of the couple 

М = 1 N•m. Determine an angular velocity of the wheels after two revolutions if 

the radius of inertia of every wheel about axis of rotation is equal to 0.2 m. 

Problem 8. The loads 1 and 2  (Fig. 3.101) with the masses т1=2 kg and 

m2=1 kg are hung to the ends of flexible cord threw over the block. Determine 

the velocity of the load 1 at the moment when it sinks on the distance h = 3 m. 

Loads motion begins from a state of rest. 

 

 

   

 

 Fig. 3.99 Fig. 3.100 Fig. 3.101  
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