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LECTURE 1
1. INTRODUCTION

Mechanics is the branch of the physical sciences that deals with the
mechanical motion of bodies, i.e. changing of relative position of bodies in
space in the course of time.

Our course is subdivided into four parts: statics, kinematics, dynamics,
and analytical mechanics.

Statics is the branch of mechanics, which treats of bodies that are at rest
or in the state of uniform motion. Statics studies the laws of composition of
forces and the conditions of equilibrium of engineering structures under the
action of forces.

Kinematics is study of the geometry of motion without regard to the
forces the cause that motion.

Dynamics deals with the action of forces in producing or modifying the
motion of bodies.

1.1. Basic conceptions: space, time, frame of reference

As you know, motion is changing with time of the particle (or body)
position with respect to the position of some other particle (or body). Therefore,
to observe the motion we use two base notions: space and time.

In Newtonian mechanics ideal model of space is used. The model can be
visualized by non-limiting rigid body. It is supposed that the space affects the other
physical phenomena, but the space itself is not affected by those phenomena.

Such space is called absolute space. The absolute space is Euclid
space, it means that Euclid’'s geometry is valid in the space.

To determine particle (body) position in space we choose at least one
frame of reference consisting of two components: a datum or origin and a
system of three linear independent directions (coordinate axes). In the
Newtonian mechanics it is postulated that there is at least one fixed frame of
reference in which all Newton’s laws are valid. Such frame of reference is
called absolute or inertial. For our purposes we can choose as the inertial
frame of reference the heliocentric reference (or geocentric reference). Frames
of reference where objects violate Newton's first law are called noninertial.

The second ideal model of Newtonian mechanics is the absolute time. It
IS supposed that time runs at the same rate for all the observers in the absolute
space.

1.2. Axioms of dynamics

The first three axioms known as Newton’s laws of motion:
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1. A particle isolated from other bodies remains at rest or
continues to move in straight line with a constant velocity if the resultant
force acting on the particle is zero.

In other words, a particle initially at rest is predicted to remain at rest if the
resultant force acted on is zero, and an particle in motion remains in motion
with the same velocity in the same direction:

if Y F=0thenV=0,0r V=const.
i—1

The converse of Newton's first law is also true: if we observe an object
moving with constant velocity along a straight line, then the total force on it
must be zero:

if V=0, or V=congt, then ¥ F =0.
i=1

2. A free particle acted on by a single force is accelerated; the
acceleration is in the direction of the force and is directly proportional to
the force and inversely proportional to the mass of the particle

mW = |E (1.1)

The property, by virtue of which a particle tends to remain at rest or in
uniform rectilinear motion, and to resist being accelerated, is called inertia.
Inertial mass is a measure of inertia of the particle which is its resistance to
rate of change of velocity when a force is applied. An object with small inertial
mass changes its motion more readily, and an object with large inertial mass
does so less readily.

In the solution of problems Eqg. (1.1) is usually expressed in scalar
component form using one of the coordinate systems developed in kinematics
(Cartesian, natural, polar, cylindrical). Eg. (1.1), or any one of its component
forms is usually referred to as the equation of free particle motion in inertial
frame of reference. The equation of motion gives the instantaneous value of
the acceleration corresponding to the instantaneous values of the forces which
are acting.



3. To every action there is always an equal and contrary reaction.
The axiom states that forces there are always in pairs.

It means that if body 1 (Fig.1.1) acts on body 2 with the force E12 and
body 2 acts on body 1 with the force F 21, these forces satisfy the equation

Ezl = —E12
and act along the same line.
It is important to remember that the forces of action and reaction (e.g. F 21

and E12) do not form a balanced system of forces because they are applied to
different bodies.

i lr|1 Fz|

Fig. 1.1

4. Principle of superposition.

The resulting acceleration caused by two or more forces is the
geometrical sum of the accelerations which would have been caused by
each force individually.

— — —

Assume that a force system (Fl'FZ""Fn) acts on a particle

(concurrent force system). Each force produces acceleration VV. ;

=
Il
3 |_Tll

Resultant force of the concurrent force system is
— n —
F=)F.
i=1
Resulting acceleration is

(1.2)

3|T|l
t%
3|T|1



4. The parallelogram law. Two forces applied at one point of a body
(Fig. 1.2) have as their resultant a force applied at the same point and
represented by the diagonal of a parallelogram constructed with the two

given forces as its sides, i.e. a force system (El, Ez) IS equivalent to its
resultant F.

Magnitude of the resultant can be determined in accordance with cos-
theorem

F = F2+F2+2FRF,cosa . (1.3)

Fig. 1.2

2. A SINGLE PARTICLE DYNAMICS

2.1. Different forms of free particle equation of motion
in inertial frame of reference

Consider the equation of free particle motion in inertial frame of reference

(1.1). There are different forms of the equation.
2 —

~ v
Remembering that W = ? =E rewrite eq. (1.1) in vector forms:
dr -
m—-=F}|, 1.4
v -
m—=F| 1.5
p (1.5)




Coordinate forms (scalar forms) are obtained by projecting of vector
ed. (1.1) onto coordinate axes:
a) ina Cartesian coordinate system:

W=Wi +W, ] +Wk =Xi + V] + X,

mx=F,,
my=F,, (1.6)
mz=F,.

b) in a natural coordinate system (useful for curvilinear path):
W=W*+W" +W",

-

se= \ NN (6-)2 A/b
W =67, W' =~—"n, W’ =0,

yo,
mo =F",
 \2
o
<m—( ) =F", (1.7)
yo,
0=F".
(6)°
Nota. Component m-—— is always positive so F" (Fig.1.3) is in

Yo,
direction of unit vector of principal normal and resultant force acting on the
particle is in direction of trajectory concavity.




c) ina polar coordinate system (for plane motion of a particle)
W=W"+W?*,
W' =(1"=rg?) 7%, W* = (rg+ 2¢r) °,

where T° is unit vector along the position vector in direction of the position
vector increasing, P° is unit vector, it makes angle 90° with 7° in direction of

the angle ¢ increasing (Fig. 1.4). So equation (1.1) in projections on 7° and
P is:
m(‘r'— rgb2)= F',

(1.8)
m(ry+2¢r)=F".

Fig. 1.4

The choice of the appropriate coordinate system is dictated by the type of
motion involved and is a vital step in the formulation of any problem.

2.2. Two problems of dynamics

We encounter two types of problems when applying Eq. (1.1). In the first
type the acceleration is either specified or can be determined directly from
known kinematic conditions. The corresponding forces which act on the particle
whose motion is specified are then determined by direct substitution into
Eq. (1.1). This problem is generally quite straightforward.
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If motion is given in coordinate form

x=f,(t),
y=f,(t), (1.9)
Z= fs(t);

-

F,.=m ,
" dt?
d”(f,(1))
X Fy =m d'[22 : (1.10)
- de( f;(t))
L z dtZ )

In the second type of problem the forces are specified and the resulting
motion is to be determined. If the forces are constant, the acceleration is
constant and is easily found from Eq. (1.1). When the forces are functions of
time, position, velocity, or acceleration, Eq. (1.1) becomes a differential
equation which must be solved to determine the velocity and displacement. The
Eqg. (1.1) have to supplement the proper quantity of initial conditions to obtain
single-valued solution (6 initial conditions for 3D case). This problem is called
inverse.

Case 1. Force is constant (force of gravity) or function of time (force of
interaction between core and magnetizing coil driven by alternating current):

f,(t),
f,(t), (1.11)
fo(t).

Case 2. Force is function of particle coordinates
Force of elasticity

N

( FX
Fy
L FZ

F, =-cr, (1.12)

12



Fy ,=-0y, (1.13)
4 , =—CZ.
Gravitational force
ﬁ=—f@r, (1.14)
r
mm,
F.=-—f r—zx,
Fy =—f mlrz‘nz Y, (1.15)
r
F,=—f mlrznz Z

r

Case 3. Force is function of particle velocity.
Aerodynamics drag force acting on particle in rectilinear motion is

=~ Y X
F.q =—f(v);, Fadx=—f(v)v. (1.16)

For a particle under the action of aerodynamics drag force directly
proportional to the speed

Fa= =1 (2= F(V) =k =k .17)

For a particle under the action of aerodynamics drag force directly
proportional to the speed squired

Fadx=—f(V)é=\f(V)=kV2\=—k>’<2. (1.18)

The example of problem about particle motion under the action of
aerodynamics drag force will be considered at the end of the lecture.

Lorentz force (Axis Ox is parallel to magnetic field H ) is

13



P

Fo=eVxH=lex e (1.19)
H O

o B =i

Summarizing. In general case force is function of time, particle position
and velocity:

F=f(trr), (1.20)
X fl(t’X' y’Z,XJ’,Z),
F, = f,(tLxY,2%Y,2), (1.21)
F,=f,(txY,2XY,2).

/-

<

Equations (1.6) can be rewriting with help of equations (1.21) in the
following form

mx = f,(t,x,y,2,XY,2),

rr'y: f2 (t1X1 y1 Zs ).(l y; Z)1 (122)
nmz = f,(t,%x,¥,2,%, Y, 2).
The system (1.22) is system of second order differential equations with

respect to unknown functions X(t),y(t),z(t) . This system is termed main

differential equations of particle motion in inertial frame of reference.
The first integral of the system (1.22) is

0,

(ch(t, X,Y,2,%Y,2C,C,,C,)
1@, (t,%,Y,2,%,Y,2,C,,C,,C,)
(@,(t,%,Y,2,%,Y,2,C,,C,,C;)

, (1.23)

0
0

The second integral of the system (1.22) is

7,(t,xy,2,C,C,,C,,C,,C,,C;)
%,(t,xy,2C,,C,,C,C,.C,Cs)
7,(t.xy.2.C,.C,,.C,,C,,C,,C)
14

0,

/\

, (1.24)

0
0



The equations (1.23) and (1.24) can be satisfied by the substituting the
six initial conditions into equations and solving for the constants C,,C,,...,C;:

X=X Y= Y0, 2= 4,

X=X, Y=Y, 2= Z,.

Final equations of the particle motion are

X(1) = £, (%0, Yos 20151 Yor 20

y(t) = £, (t.%, Yo: %, %, You 2 ). (1.25)
YO = T5 (6%, Vo1 20 %0, Yo, 2o)-

So the second problem of dynamics is Cauchy problem or initial value
problem.

whent=0 {

A

2.3. Constrained and unconstrained motion

There are two physically distinct types of motion. The first type is
unconstrained motion where the particle is free of mechanical guides and
follows a path determined by its initial motion and by the forces which are
applied to it from external sources. An airplane or rocket in flight and an
electron moving in a charged field are examples of unconstrained motion.

The second type is constrained motion where the path of the particle is
partially or totally determined by restraining guides. An ice hockey puck moves
with the partial constraint of the ice. A train moving along its track and a collar
sliding along a fixed shaft are examples of more fully constrained motion. The
forces acting on a particle during constrained motion can be broken into two
groups:

— applied from outside sources (applied forces)
— forces on the particle from the constraining guides (reactions)

All forces, both applied and reactions must be accounted for in equation
of motion:

mW - IE + N, (1.26)

—

where F is resultant of applied forces,

N is resultant of reactions.

The choice of a coordinate system is frequently indicated by the number
and geometry of the constraints. Thus, if a particle is free to move in space, as
Is the center of mass of the airplane or rocket in free flight, the particle is said to
have three degrees of freedom since three independent coordinates are
required to specify the position of the particle at any instant. All three of the

15



scalar components of the equation of motion would have to be applied and
integrated to obtain the space coordinates as a function of time. If a particle is
constrained to move along a surface, as is the hockey puck or a marble sliding
on the curved surface of a bowl, only two coordinates are needed to specify its
position, and in this case it is said to have two degrees of freedom. If a particle
is constrained to move along a fixed linear path, as is the collar sliding along a
fixed shatft, its position may be specified by the coordinate measured along the
shaft. In this case the particle would have only one degree of freedom.

2.4. Examples
2.4.1. Free particle motion

Example 1. A particle of a mass m=2 kg moves along a horizontal x-axis
under action of the force F, =5cos(t). Determine the velocity of the particle

at the moment t=4 s if at t,=0 the velocity is V,=0.
Solution

The particle moves only along x-axis that's why we write the projection of
the general equation of free particle motion on x-axis:

mwW =F ,
X X
mX = 5cos(0.5t),
. dx 5
X =

—_— = 0.5t),
& mcos( )

dx = Ecos(0.5t)dt,
m

[dx= %jcos(O.St)dt,

S5 .
X=——-:.n(0.5t)+C.. 1.27
0.5m (051)+C, (1.27)
Initial condition is: at t =0 V(0) = x(0) = 0.
Substituting t =0 into equation (1.27) we get:

16



5 .
X(0)=0=——-239n(0.5-0)+C, =C,,
© 0.5m ( )+G=C

C,=0.

5 .
So velocity is V = Fsm(O.St). At time t =4, s velocity of the particle
oM

V(4):o:

sin(0.5-4) = 4.55(%].

Answer: V (45) = 4.55 (Tj
S

Example 2. A 18-N body moves in the air and traces out the paths,
represented in fig. 10. Its initial velocity is Vo = 700 m/s. The missile launching
velocity makes an angle of 75° with the horizontal. Determine the increase in
the altitude reached (in kilometers) and increase in the range of flight, if there is
no air resistance.

kim

(3 —X

GOSN
)
/

/ \\
12345678910

km

Fig.1.5
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Solution

In Fig. 1.5 a real path of the missile is shown (air resistance is took into
account). Let us analyze the missile motion if air resistance is neglected.
Idealize missile by a particle.

General equation of free particle motion in vector form is (1.1)

mW = F. (1.28)

Only gravity force acts on the particle (fig. 1.6) so equation (1.28) is

-

mw = P. (1.29)
s

X
Fig.1.6
Projecting equation (1.29) along x and y we get:
X) M = 0, (1.30)
y) my=-P. (1.31)

To find the particle velocity components we have to integrate these
equations. For equation (1.30):

X=0, X=—=0,
dt
dx = 0dt therefore Xx=C,,

18



. dx
g ="

=—=C, 1.32
i (1.32)
x=Ct+C,. (1.33)
In the same manner integrate equation (1.31):
rny: _P’
P
m=—;
g
y=-0,
Loady
y_ dt - g’
jdyz—jgdt = y=—-0t+C,,
y=—gt+C,; (1.34)
[dy=[(-gt+C,)t,
2
y=—gt§+C3t+C4. (1.35)

Use initial conditions (particle coordinates and velocity components at time t=0
s) to find the constants of integration:

x(0) =0,
{W®=O,
X(0) =V, cos75°,
{y(O) =V, sin 75°.
Putting to the equations (1.32) — (1.35) we get:
X(0) =C, =V, cos75°,
X(0)=C, =0,
y(0) =C, =V, sin 75°,
y(0)=C, =0.
Finally equations of particle motion are:

X =V, Cos 75°; (1.36)

19



2

y=—gt§+vosin75°t. (1.37)

Next we find the maximum altitude reached by the missile and the range
of flight if there is no air resistance. The particle has maximum altitude (Y, ) at

time t, when the velocity y-component Y is zero:
y=0=-gt, +V,sin75°,
_V,sin75°
g

Substituting t; into equation (1.37) we get the maximum altitude:

L

2 ain? o ; o
ymax:y(tl):_gvo sm2 75 +vogn75°V°S'”75 _
2 9 9
2 a2 o 2 A2 o 2 A2 o
__VO sSin“ 75 +V0 sSin“ 75 :VO sSin“ 75 _ 23.3(km).
29 g 29

Maximum range of flight (Xynax) corresponds to the particle position when
t>0and y=0:

2

y=0:—gt—§+vosin75°t2,

tz(—%t2+vosin75°j - 0.
2, §in75°
g

corresponds to initial position X=0, the second root is flight duration so
substituting t, into equation (9) we get the maximum flight range:

There are two roots of the equation: t, =0. and t, = . The first

2V,sin75° 2V, cos75°sin75°
9 9

Now we should compare 2 cases: without air resistance and with it.
The maximum altitude and the flight range in the case with air resistance

we can determine using the figure 10: y, ., . =11.5km, X, .z =8.5km
20

X o = X(t,) =V, cos75° = 25(km).




The increase in altitude is

AY = Yo = Yo ar = 23-3—11.5=11.8(km).

The increase in range of flight is

AX = X o = Xax_ar = 29— 8.5=16.5(km).

Answer: Ay =11.8(km), Ax =16.5(km).

Example 3. A flexible thread, fixed at the point A, passes through a
smooth fixed ring O (Fig.1.7). A small ball of mass m (kg) is attached to a free
end of the thread. The natural length of the thread is I=AO. A force equal to
k’m (N) must be applied to elongate the thread 1 m. When the thread is
stretched along the straight line AB until its length is doubled, then the ball is
given a velocity V,, perpendicular to AB. Find the path of the ball. Neglect the
effect of gravity and assume that the tension in the thread is proportional to its

extension.

Solution

Idealize the ball by a particle. Under condition of
gravity neglecting there is only one force acting on the
particle, it is tension force that is directed along the
thread.

General equation of free particle motion in
vector formis (1.1)
mMNV=F=T. (1.38)
Choose rectangular coordinate system with
origin at O.

Projecting the equation (1.38) on the axes x and

y we get:

%x) mx=T,
(1.39)

y)my=T,.
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The force T =k®m must be applied to elongate the thread 1m. To
elongate the thread on Al =OM (m) the force T =k®mAl must be applied.
The vector T is opposite with vector OM  Then

T =—k’mOM:
T, = —k’mOM cosa =|OM cosa = X =—k*mx;
T, =—k’mOM sina =|OM sina = y| =—k’my.

System (1.39) can be rewritten as:

mX = —k*mx,
my = —k’my,

or after simplification

{X +k?x=0;
(1.40)

V+k’y=0.
The system obtained is system of the second order homogeneous linear

differential equations. They are independent and can be solved separately.
Characteristic equation for the first equation of system (1.40) is:

A2+ k?=0,
12=_k2
A, = +Ki.

Roots are complex values, that's why x-coordinate equation is
X = ¢, cos(kt) +c,sin (kt), (1.41)
where C, and C, are constants of integration.

To find x-component of velocity we have to differentiate the equation (1.41)

X

Y :%:—qksin(kt)Jrczkcos(kt). (1.42)

Solve the second equation of the system (1.40) in the same manner:
22



¥+ k’y=0,

A2+ k? =0,
A% =-k?
A, ==K,
y = ¢, cos (kt) + ¢, sin (kt), (1.43)
dy . :
a - —c,ksin (kt) + ¢,k cos (kt). (1.44)

To find constants of integration c;, Cc,, C3, C4 we have to use initial
conditions. According to the statement of the problem at initial moment of time
the particle was at point B and the velocity is perpendicular to y-axis, so

(x(0) =0,

y(0) =1,
X(O) = Vo,

L¥(0)=0.
Putting t=0 into equations (1.41), (1.42) we get:
X(0) =c, =0,

at t=0: <

X(0)=c,k=V, = c, :V—ko.

Putting t=0 into equations (1.43), (1.44) we get:

y(0)=¢ =1,
y(0)=c,k=0 = ¢, =0.

Finally equations of the particle motion in parametrical form are
V, .
X= ?"s n(kt);

y = | cos(kt).

To find the path of the ball we need to exclude the parameter t.
Rewriting (1.45)

(1.45)
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xk

sin(kt) —V—
X

(1.46)
cos(kt) =

squaring and summing equations (1.46) we obtain:

o)y o =[] 42

VO
but (sin(kt))” + (cos(kt))” =1 so

x’k* y?
V2 +|—2:l.

This is equation of ellipse. The general form of ellipse equation is

(x=%)"  (y=%)'
a’ b

=1,

where Xq, Yo are coordinates of the center and a, b are semi axes. In our case

x0=y0=0,a=v—lé’,b:|.

l X2k2 2
— Answer: — +y—2=1.
V \A I
® Example 4. Missile of mass m moves vertically. At initial
moment of time its velocity was V, . If the air drag force is given

Ll

by F,,,, = kv® where k is constant, derive the maximum height
and duration of missile lift.
r Solution
|
i Equation of free particle motion in vector form is
X VoF +G
mW=F_,+G. (1.47)
Fig. 1.8
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Choose the X direction collinear with direction of missile motion, so that

X=0 if h=0. Draw free-body diagram (Fig. 1.8): show air drag force F_,
gravity G. The two forces are directed down therefore choose axis X positive

direction down too.
Apply equation of motion in the X -direction to get

mX = gm+ kx°.

(1.48)

For determination of duration of missile lift we can rewrite the equation in the

following form

., dX
X=—
dt

1 1 —
—arctgx— (—arctgi) =
C ¢ C

C m

k V,
or v=c-tg(c—t —arctg-2).
m C

Fort=t_, (t., isduration of missile lift) v=0:

O=c-tg (chtmax —arctg EJ,
m C

25

X

(1.49)



K V,
C—t, —arctg—==0,
m C

m v,
t =—arctg—>. (1.50)
ck C

The maximum height of missile lift is obtained by integrating eq. (1.49)
with known limits (0O,t,,, ) for time and (0, X, ) for distance:

! "max

V= LS = c-tg(ckt — arctgﬁ),
dt m C

dx = c-tg(ckt — arctgﬁ)dt,
m C

e e k v
j dx=c j (tg(c—t —arctg—2))dt;
’ g m C

— | My cos(cht —arctg ﬁj LT cos(—arctg ﬁj
o k m ™ c k c)))
X o = M, cos(cktmaX —arctgﬁj LT cos(arctgﬁj =
m C k C

COS(CEtmaX —arctg ﬁj
m C

v
COS( arctg —Oj
C

m
=——In 1.51
" (1.51)

Now we put equation (1.50) into the equation (1.51)

cos(cﬁ(m arctg ﬁj —arctg ﬁj
m\ ck C C

cos(arctg V—CO)
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Y/
cos(arctg—2)
Cc

m 1 m
=——In v :——(O—In
K cos(arctg CO) k

j:

V, K
a=arctg—2, ¢ =—,
c gm

=mln cos(arctgﬁ) == 1 1 gm |=
K C cos’ o = —= ~ = .
1+tg°a 1+kV70 gm-+ kv,
agm
:mln gm > :mln gm > |-
Kk gm+ kv, 2k |\ gm+ky,
Answer: the maximum height of missile lift IS
h=|x(tmax)|= Min gm > |, and duration of missile lift is
2k | gm+ kv,
t =Dareglo.
ck C

2.4.2. Constrained particle motion

Example 5. A 3-10° kg airliner has four engines each of which produces

a nearly constant thrust of 180 kN during the takeoff roll. Determine the length
S of runway required if the takeoff speed is 220 km/h. Neglect air and rolling

resistance.
Solution

Consider airplane as a particle. The airplane moves along straight
horizontal line, so the airplane motion is constrained with one degree of
freedom.

General equation of constrained motion in vector form is (1.26)

mW =F + N.
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For solution choose one coordinate axis x collinear with airplane
trajectory and with origin at airplane initial position (Fig. 1.9).

Wi
b/
g L & g
' 6
Fig. 1.9

Draw free-body diagram of the airplane treated as a particle:
— applied forces are total thrust force Ty, = 4T , gravity G, lifting

—

force L ;

—

— reaction is normal force N .
Rewrite the equation for the given problem

-— -—

mW=T,+G+L+N. (1.52)

In x-direction we get
mX =Ts. (1.53)
In the equation there is one unknown only. It is coordinate x as function

of time.
Determine the first integral of Eq. (1.53):

o s
X=—= (1.54)
m
e dx dx Ty . :
rewrite X as — : — =—=, separate variables and integrate
d dt m
T
dx = —=dit,
m
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jd)’(:f%dt,

T
=-2t+C, (1.55)
m

where C, is the first constant of integration, it has dimension of velocity (m/s).
Determine the second integral of Eq. (1.55):

dx Tz
dt m

T
dx=(—zt+C1]dt,
m
T
dx= || =t+C, |dt,
fox=](Erec,)

Tz t?
Xx=—=-—+Ct+C,, (1.56)
m 2

X= —=t+C,

where C, is the second constant of integration, it has dimension of
displacement (m).

Ascertain initial conditions for determination of constants C, and C, :
when t=0s then airplane coordinate X, =0m and velocity X,=0m/s Put
the initial conditions into Eq. (1.55) and (1.56)

T
>‘<O=O=EZO+ C,, (1.57)
0= T 02+c:0+c (1.58)
=02 2’ '
then
C,=%=0m/s, (1.59)
C,=%=0m (1.60)
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Substituting constants C; and C, in equations (1.55) and (1.56) we get

>‘<:%=T—Zt, (1.61)
d m

and equation of motion is

T 2 3
wo 2t M 192, (1.62)
m 2 3-10°-2

Using Eq. (1.61) for airplane velocity determine time when velocity is
220 km/h=61.1m/s:

61.1,

t =
takeoff T Z/ 4 180 1% 10

Put the time into Eq. (1.62) and determine the length of runway

= 25.46s. (1.63)

S = X( e ) = 1.2+ 25.46° = 778.035m . (1.64)
Answer: the length of runway is 778.035m .

Example 6. A 54 kg patrticle initially at rest moves under the action of
driving force F =27 N inside smooth circular tube (r =3m) in horizontal

plane. Determine the horizontal component of normal reaction at t=6S if

force direction is always collinear with particle velocity (Fig. 1.10).
Nota. Velocity is always tangent to the particle trajectory.




Solution

Motion of the particle is constrained because the circular tube
(constraint) specifies the particle trajectory.
General equation of constrained motion in vector form is (1.26)

mW =F + N.
The trajectory is curvilinear so it is useful to analyze the particle motion
in natural coordinate system (7,i,b ) (Fig. 1.11).

Fig. 1.11

Form free-body diagram (Fig. 1.12):

—

— applied forces are driving force F and gravity é,
— the tube normal reaction N has two components in the vertical

— —

N, and horizontal N, ., direction.
./F
e ]‘V .l"f
) N Mert vy
. - |
b \, |
.I“ ,_ '.I‘\
» P
- K
3
x\"'\-.
a b

Fig. 1.12
Rewrite the equation (1.26) for the given problem
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mW =F +G+ N. (1.65)
In scalar form we have
7) MW’ =F,

n) mw"=N

horiz?

b) 0=-G+ N,

. (6)
Remembering that W* =&, W" = ~—— we get
r

r) mé =F, (1.66 a)

- horiz
r

b) 0=-G+ N (1.66 c)

In system (1.66) there are three unknowns: o, N N,y - It is clear

horiz?
from the second equation that N, is function of o so first we need to

determine function &(t) using the 7 -equation (1.66 a):

&zfn (1.67)
m
Present o as

_do

dt ’
put into (1.67)
md—a =F,
dt

separate variables
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dd:Edt,
m

Integrate
: F
[do=[—dt.
m
For constant driving force magnitude we get
F
c=—1+C, (1.68)
m

consider initial condition: when t=0 then vV, =6,=0 so

F

6.0 = ato + C,
or
O:EO+C,
m
from which C=0 and
6=t
m
Now determine N, ., using n-equation of system (1.66b) att=6S:
)2 2 2
Nhorizzm@=m Fi] =24(2%6] 162N,
r rim 3\ %4

Answer: horizontal component of normal force at t =6 S is 162N.

Example 7. A 5 kg particle moves from a state of rest along a smooth
guide with a radius R situated in a horizontal plane under the action of driving
force F =0.5t,N. Determine the velocity of the particle at time 30 s if the force

makes a constant angle 50° with the velocity vector.
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Solution

Motion of the particle is constrained because the smooth circular guide
(constraint) specifies the particle trajectory. Draw sketch illustrating the problem
statement (Fig. 1.13, a). Remember that force must point in direction of the
trajectory concavity, Fig. 1.13, b presents wrong direction of the force.

Fig. 1.13

Use natural coordinate system because motion is curvilinear. Tangent
axis is directed along the tangent to trajectory, normal one is directed to the

center of curvature.
General equation of constrained motion in vector form is (1.26)
mwW = F + N.

Form free-body diagram (Fig. 1.14, a):

TN
n

.f"' ;




— applied forces are driving force F and gravity é;
— the tube normal reaction N has two components in the vertical

N
Projection of the equation onto tangential axis is:

and horizontal N direction.

vert horiz

7) MW =F cose .

dv
Presenting W. as o we get:

md—v = 0.5t cose,
dt

dv  0.5cosa

dt m
_ 0.5cosa

m
0.5coso

m
0.5cosa ﬁ
m

t,
dv tdt,
Jav = [ta,
V= +C,.

To find constant of integration C, consider initial condition: when t =0
then v, =0 so

0.5cosa O
V(O) :O:T§+Cl :Cl'
So C,=0 and
V- 0.5cosa ﬁ |
m 2
At time t=30 s we have:
fo) 2
V(308) = 0.5c0850° 30° _ 28.9( mj.
5 2 S

Answer: V (30) = 28.9(9)
S
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Example 8. Determine a velocity of a particle M of a conical pendulum
which at cord length OM=1 m circumscribe a cone with an angle at vertex
a =45° (Fig. 1.15)

Solution

Fig. 1.15

Particle moves curvilinear so natural coordinates (z,n,b) are used. Motion

Is constrained by cord.
General equation of constrained motion in vector form is (1.26)

mW = F + N.

For this problem gravity force represents applied force and tension force
IS reactive one. So

!

mwW=G+T.

Projecting on the axes we get:

r) mW. =0, (1.69)
n) MW, =Tsing, (1.70)
b) MW, =mg —T cose. (1.71)
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Binormal acceleration is always zero: W, =0. So from equation (1.71) we get:

-9
COS~

Substituting this expression to equation (1.70) we obtain:

mW. = ™ gna= mg tana;
COosox
W, =g tana.
V2
From the other hand W, =—, where p=OM Sing is a radius of the
P

trajectory curvature. So
2

V

—=gtana;

Yo,

V2
————=gtang;
OM sna

V =./gtana-OM sna.

Substituting values we get V =+/9.8-tan45°-1-sin45° = 2.6(mj.
S

Example 9. A small rocked propelled vehicle of mass m travels down
the circular path of effective radius r under the action of its weight and
constant trust T from its rocket motor (Fig. 1.16). If the vehicle starts from rest
at A determine its speed V when it reaches B and the magnitude N of the
force exerted by the guide on the wheels just prior to reaching B. neglect any
friction and any loss of mass of the rocket.




Solution

The vehicle motion is constrained because the vehicle travels circular
surface (trajectory is given beforehand). So it is useful to specify the vehicle

motion in natural coordinate system (f,ﬁ,B ).

Draw free-body diagram of the vehicle treated as a patrticle: thrust force
T, gravity G and reactive force N that is normal reaction of the guide

(Fig. 1.17), the reaction is in the vertical plane.

i - S = o | i i (i i, = i

Fig. 1.17

Equation of constrained motion in vector form is

—

For curvilinear motion acceleration has two components: tangent and
normal (Fig. 1.18)




W =W"*+W".
So equation (1.72) in scalar form is the following system:
7) Mo =T+ G- cosp,
((5)2 (1.73)

%) _ _G.sinp+N,
r

where o is path of the vehicle along the circle of radius r, o is circular arc;
@ is angle subtending the arc o .

There are three unknowns in the system: o,¢,N , . So the system must
be supplement by equation of constraint (circular guide is constraint):

oc=r-0,6=r-0,6=1-0 , (1.74)
then

mro =T + G- Cosp,

>)? (1.75)
m@:—6-9n¢+ N.

We are asked about velocity at point B, Vy =0 =T - ¢y . Position of
T
point B can be specified by angle ¢; :E as: og =I-¢g . So to obtain the

answer we need to determine function gb(gp) from the system.
Rewrite ¢ as
.. dp dpdp do .1

djp— = pdg—— (1.76)
dt dtde dt dp Vde |

Put Eqg.(1.76) into the first equation of the system (1.75):

mr(bd(bi: T+ G- cosp,
de
mrgdg= (T + G- cosp)de,
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[mrgdg=[(T+G-cosp)dp,

—=—(Tp+G-sinp)+C, (1.77)

2
m
where C is the constant of integration, it has dimension of velocity squared (—) :
S

Ascertain initial condition for determination of constants C: when
¢, =0 then vehicle velocity 6, =r¢,=0m/s and so ¢, =0 rad/s. From
Eq. (1.77) we get

Do 1
2> =0=—(T-0+G-sin0)+C, (1.78)

2 mr
C=0, (1.79)

and
i 2 :

¢o=,—(Tp+G-sing). (1.80)

mr

Vehicle velocity

G = r¢:\/2—rrr](T(p+GoSing0). (1.81)

T
At point B @5 = 5 SO

Vg =05 =1y :\/z—r;(T%+G-sin%) :\/r(%+ 2g). (1.82)

Using the second equation from the system (1.75) determine N:

r(T”+Zgj

. \2 -

r

(%) +G-sing, =m m +G=Tz+3mg. (1.83)
r r

N=m
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. Tr
Answer: at point B vehicle velocity Vg = o5 = \/r (—+ 2g) and normal
m

forceis N =Tz + 3mg.

Example 10. High-speed land racer of mass m moves horizontal. At

initial moment of time its velocity was V. If the air drag force is F_, = kv

where K is constant, determine the time t required for it to reduce its speed
twice and the distance traveled. Neglect dry friction.

Solution

The racer (Fig. 1.19, a) moves along straight horizontal line, so the
racer motion is constrained with one degree of freedom. For solution choose
one coordinate axis x collinear with racer trajectory and with origin at racer
initial position (Fig. 1.19, b).

I, Fﬂﬂ'

X
- 8 =

Fig. 1.19

Draw free-body diagram of the racer treated as a patrticle: air drag force
F.4 . gravity G, pressing force P and normal force N (see Fig. 1.19, b).

Equation of motion in vector form is

mW=F,+G+P+N. (1.84)
In x-direction we get

mx = —F_, = —kx°. (1.85)

In the equation there is one unknown only. It is coordinate x as function
of time.

., dx
Rewrite (1.56) using equality X = a , we get
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& _ —Exz. (1.86)
dt m

Separate variables and integrate with given limits: initial velocity Vv, , final

velocity Vo 5
EOd>'< k
7=—j—dt, (1.87)
Vo X 0 m
(2 1)__k,
v, V, m’
t=im . (1.88)
v, k

So time of deceleration is function of the initial speed.
Determine the distance:
integrate Eq. (1.87)

dx K
.—2 - —I—dt ’
X m
1 K
——=——t+C,
X m
— . . 1
initial condition for C, : when t=0 then X=V, ,so C,=—— and
VO
1 k, 1
—=—t+—,
V. .m
now again separate variables
1 k, 1
=t
& m Ty,
dt
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dt

—— =0, 1.89
K1 (1.89)
—t+—
m v,
use substitution of variables in Eq. (1.89)
k 1 k m
Z=—t+—,dz=—dt, dt=—dz
m v, m Kk

and integrate

%In|z|:x+C2.

Now replacing z , we get

m |k, 1
—In|—t+—|=x+C,.
m v,
. " . m, (1
Initial condition: when t =0 then X=V, , so C, =—In|—| and
VO
m |k, 1| m |1
X=—In|—t+———In|—|,
K |m v, v,
on combining the logarithmic terms, we obtain
m |k, 1| m (1] m |k
X=—In|—t+—|—-—In|—=—In|—V t+1. (1.90)
m v, v, m

There is another way of the Eq. (1.57) solution for determination the
distance traveled:

dxdx  xdx  d(x®) K o

dt dx  dx 2dx m
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Integrating we get
. k
INX* = ——2x+C,,
m

when x =v, we take x=0 and so C, =Inv,* , and

, k
INX* = ——2x+Inv,?,

m
2
V, Kk
In—=2%-=—2x,
X m
.V
for X=— we have
m, v’ m
X=—In——==—In4. (1.91)
2k v, 2k
2
Substitute k =0,2 m=4000kg we get x=13680 m .
1m
Answer: time of deceleration is function of the initial speed t = —?.
VO
Distance traveled during the velocity decreasing is not function of the
- m,_ v,, m
initial speed value X=—In =—In4 .

[Vojz 2k
2

2.5. Problem for self solution

Problem 1. A bucket which weighs 280 kgf descends into a mine with
uniform acceleration. During the first 10 sec it drops 35 m. Find tension in the
cable holding the bucket. (1 kgf=10 N).

Problem 2. An aircraft weighing 2000 kgf flies horizontally with an
acceleration of 5 m/sec?® and an instantaneous speed of 200 m/sec. The air
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drag at this speed is proportional to the square of the speed; when the speed of
1 m/sec is attained the air drag equals 0.05 kgf. Assuming that the force of
resistance is directed opposite to the velocity, determine the tractive force of
the propeller, if the angle between the flight direction and the tractive force
is 10°.

Problem 3. In a test of resistance to motion in an oil bath a small steel
ball of mass m (Fig. 1.20) is released from rest at the surface (y = 0). If the
resistance to motion is given by R = kv where k is a constant, derive an
expression for the depth h required for the ball to reach a velocity v.

R RERE e L

B mU |

B _'l o — -
Fig. 1.20

Problem 4. Fig. 1.21 shows the velocity graph of the upward motion of a
lift weighing 480 kgf. Find the tensions T, T,, T3 in the cable holding the lift
during the three periods of time: (1) romt=0tot=2 sec; (2) fromt=2sectot
=8 sec; (3) fromt =8 sectot =10 sec.

Answer: T, =602.4 kgf; T, = 480 kgf; Tz = 357.6 kgf.

%
l |
Ly
&
E:H'\n.
Ly
f f
e ' o @
a 2 4 b 8 10 ser
Fig. 1.21

Problem 5. An aircraft dives vertically and attains a speed of 1000 km/h.
Reaching this speed the pilot pulls the aircraft out tracing an arc of radius
R =600 m in vertical plane. The weight of the pilot is 80 kgf. He is subjected to
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pressure from the seat during this flight. Find the maximum pressure exerted
on the pilot.
Answer: 1130 kgf.

Problem 6. A body of weight P is given a push and moves along a rough
horizontal plane. It travels the distance s = 24.5 m during 5 sec and then
comes to rest. Determine the coefficient of friction f.

Answer: f=0.2.

Problem 7. An aircraft flies horizontally. The air resistance is proportional
to the square of the speed. At a speed of 1 m/sec the air resistance equals 0.05
kgf. The tractive force is constant and equals 3080 kgf and it makes an angle of
10° with the direction of the movement of the aircraft. Determine the maximum
speed of the aircratft.

Answer: V=246 m/sec.

Problem 8. A body falls from a height without any initial velocity. The air
resistance is R = k’pv® where v is the velocity of the body, and p is its weight.
Determine the velocity of the body attained after time t. Also find the limiting

velocity.

1€9 - 1
Answer: V=—————V =—,
ke +e'? K

Problem 9. Determine the tension P in the cable which will give the 100-
Ib block a steady acceleration of 5 ft/sec? up the incline (Fig. 1.22).
Answer: P =43.8 Ib.




Problem 10. The system is released from rest with the cable taut (Fig.
1.23). Neglect the small mass and friction of the pulley and calculate the
acceleration of each body and the cable tension T upon release if (a) ys = 0.25,
Mk = 0.20 and (b) ys = 0.15, yx = 0.10.

g

\

RN RN

Fig. 1.23

Problem 11. The pulley arrangement of Prob. 16 is modified as shown in
the Fig. 1.24. For the friction coefficients us = 0.25 and u, = 0.20, calculate the
acceleration of each body and the tension T in the cable.

Answer: a,= 1.450 m/s* down, ag = 0.725 m/s® up, T= 105.4 N.

Hs. U

Fig. 1.24

Problem 12. In a test to determine the crushing characteristics of
styrofoam packing material, a steel cone of mass m is dropped so that it falls a
distance h and then penetrates the material (Fig. 1.25). The resistance R of
styrofoam to penetration depends upon the cross-sectional area of the
penetrating object and thus is proportional to the square of the cone
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penetration distance x, or R= — kx?. If the cone comes to rest at a distance
X = d, determine the constant kin terms of the test conditions and results.

Answer: k = Sg;g(h+ d).
v Wz

m

v
Vol

L1
v

W B
Y

e A

Fig. 1.25

Problem 13. Determine the height h and tension T in the cord for the
conical pendulum of mass m and length | which rotates about the vertical axis

at the angular rate 6 =w (Fig. 1.26)
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2.6. Short problems
Problem 1. A particle of a mass m=10 kg moves along a curvilinear
trajectory under action of a force F=20 N. Determine a velocity of the particle at
the moment when a radius of curvature of the trajectory is p=12m and an
angle between the force and the velocity vector is 35°.
Problem 2. A particle moves along a curvilinear trajectory under action of

a force F =57 +0.3n. determine a mass of the particle if at a moment t=20 sec
its acceleration is W=0.6 m/sec’.

Problem 3. A particle of a mass m=2 kg moves in a plane
Oxy under action of the force, the projections of which are
F.=2sin(0.57t), F,=5cos(7t). Determine a magnitude of the

particle acceleration at a moment t=1 sec.

Problem 4. A particle 1 of a mass m=30 kg moves in
vertical plane in the tube 2, bent by an arc of a circle of a radius
R=12 m (Fig. 1.27). Determine a tangential acceleration of a
particle in the given position.

Problem 5. A particle M of a mass m=8 kg moves
in horizontal plane along an arc of a radius R=18 m (Fig.
1.28). Determine the angle a in degrees between the
force F and the velocity v at a moment when the
velocity of the particle is v=3m/sec and tangential
acceleration is W* = 0.5m/sec’.

Fig. 1.28

Problem 6. A particle moves along a curvilinear trajectory under action of
the force, a tangential component of which is F= 0,2t* and a normal component
is F, = 8 N. Determine a mass of the particle if at a moment t=10s its
acceleration is W = 0,7m/sec?.

Problem 7. A particle with a mass m = 5 kg moves along a curvilinear
trajectory under action of a force, the projection of which on a tangent is
F,=7N, on a normal is F,=0,1t>. Determine a magnitude of the particle
acceleration ata momentt =12 s.
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Problem 8. A particle M moves along the

Ji — : . .
y v, parabola s — s in a vertical plane under action of
5 — gravitational force (Fig. 1.29). Determine the
M particle velocity at the position B if at the position

™ A its velocity is v, = 30 m/s and OA= 600 m.
mg R\ﬂ

g T ‘*} -x

Fig. 1.29

Problem 9. A particle M moves in a vertical
plane under action of gravitational force (Fig. 1.30).
Determine a maximal height of ascent h in km if at
initial moment the particle velocity is vo = 600 m/s.

Y,
Fig. 1.30

Problem 10. A particle of a mass m =15 kg moves from a state of rest
along a smooth guide with the radius R situated in a horizontal plane under
action of the force F = 0,5 t. Determine the particle velocity at the moment of
time t = 30 s if the force makes a constant angle 50° with the velocity vector.

LECTURE 2

2.7. Differential equation of particle motion
in noninertial frame of reference

It is know from particle kinematics that often in technique motion of a
particle is analyzed with respect to fixed and moving references at the same
time. It is compound motion of the particle. However, Newton's second law of
motion is valid in inertial (fixed) frame of reference only:

mw=F, (2.1)

where W is the acceleration of the particle in the fixed frame of reference
(absolute acceleration);

F is the resultant of the force system applied to the particle.
The absolute acceleration is

W=W +W +W (2.2)
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_’e - -
where W is bulk or transport acceleration;

—_—

. . . —Cor I .
W is relative acceleration;W is Coriolis acceleration.
So

mW° +W +W" )=F. (2.3)

If we are interested in relative motion of the particle we need to rewrite
equation (2.3) in the following form

E——

MW =F-mN —m\N . (2.4)

We denote terms in the right side of the equation as:

J =—mW, (2.5)

37 N (2.6)
3™ is the Coriolis force.

So for moving frame of reference differential equation of free particle
motion is

— cor

MW =FE+J +J . (2.7)

The inertial force features.

e They are not real Newtonian forces because there are not bodies that
produce these forces. So forces of inertia are fictive.

e The magnitudes of inertial forces are functions of mass of the particle
under consideration.

e Forces of inertia are determined by kinematical characteristics of the
moving frame of reference.
Differential equation of constraint particle motion in non-inertial frme is

o —€ — Ccor

MW =F+N+J +J (2.8)

where is resultant of reactions acting on the patrticle.
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2.8. Classical mechanics relativity principle

First we analyze the conditions under which the forces of inertia are zero.
To do this we have to remember the conditions under which the appropriate
accelerations are zero.

For the bulk acceleration of a particle M, that moves in moving reference

AXyz we have

-

nNfe A7en Njer
W =W, + W, +W;,=

=W, + @° x (& x AM ) + £° x AM =

—_ —_ n - - —p - —(
W, +W, + o' x(@xAM)+&°xAM . (2.9)
acceleration of terms that characterize rotation of
moving system origin A moving reference about its origin A

The first two terms of equation (2.9) characterize acceleration of moving
system origin A. The acceleration components are zero if origin of the moving
reference has uniform rectilinear motion.

The second two terms characterize rotation of moving reference about its
origin A. The terms are zero if the moving reference has translation motion.

Conclusion: the moving space force of inertia is zero if moving reference
has translational uniform rectilinear motion.

For the Coriolis acceleration we have

W = 25° x V", (2.10)

The Coriolis acceleration is zero if :

1)  moving reference has translation motion (@° = 0);
2) the relative velocity of the particle is parallel to the axis of rotation

(instantaneous or fixed) of moving reference (@° // V').

The two cases are realized if moving reference has translational uniform
rectilinear motion.

So, if moving reference has translational uniform rectilinear motion, the
both forces of inertia are zero and therefore equation (2.8) coincides with the
equation (2.1) written for inertial (fixed) frame of reference. You can see that
the second Newton’s low holds in such moving reference and so the moving
reference is inertial one.

Principle of relativity: any frame of reference will be inertial if it is in
uniform rectilinear translational motion in relation to inertial frame of reference.
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Or from Albert Einstein: The Foundation of the General Theory of
Relativity, Part A, § 1.

Special principle of relativity: If a system of coordinates K is chosen so
that, in relation to it, physical laws hold good in their simplest form, the same
laws hold good in relation to any other system of coordinates K' moving in
uniform translation relatively to K.

Galileo Galilei first described this principle in 1632 in his “Dialogue
Concerning the Two Chief World Systems” using the example of a ship
traveling at constant speed, without rocking, on a smooth sea; any observer
doing experiments below the deck would not be able to tell whether the ship
was moving or stationary. Today one can make the same observations while
travelling in an aeroplane with constant velocity. The fact that the earth on
which we stand orbits around the sun at approximately 30 km/s offers a
somewhat more dramatic example.

2.9. Therelative resting conditions

The particle is in the rest relative to a moving frame of reference if its

relative velocity is zero during some time interval, V' =0. So, the Coriolis force
Is zero. The equation (2.8) in this case has the following view

F+J =0. (2.11)

Eq.(2.11) is the relative resting conditions.

2.10. Examples

2.10.1. Law of relative motion

Example 1. The projectile moves along a flat trajectory at latitude 60°. Its
velocity is 900 m/s. The range of flight is 18 km. Determine the projectile
deflection from the aim as a result of Earth rotation. Neglect air resistance.

Solution

Motion of the projectile is considered in two frames of references:

- fixed Oxyz with origin in the center of the Earth (Fig. 2.1), motion of the
Earth about the Sun is neglected;

- and moving reference AX Y,z with the origin at the initial position of the

projectile, reference Ax1y121 is rigidly connect with Earth, so the reference
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rotates about the Earth axis of rotation, the moving reference angular velocity

. : _ s rad
vector @° points toward North Pole, and has magnitude 7.27-10° —,
S
angular velocity of Earth rotation is
27 rad
Oy = =7.27-10°—,
24hours- 3600s S
axis Ay, coincides with direction of the projectile motion.
Equation of projectile motion relative the moving reference is
—r — —e —cor
W =F+J +J (2.12)

—e —
where Coriolis force is J = -mW .
The Coriolis acceleration of the projectile is

W™ =2@° xV".

In the problem X-component of velocity is neglected because it is
substantially smaller then velocity Y,-component. And in the problem it is
assumed that the trajectory is flat (Z -component of velocity is zero), therefore

action of gravity and bulk force of inertia je IS neglected.

So

—

W = ZwevrSin(;)?,? ) =20"v,SNn60" =
=2.7,275-10°-900-sin60=0.113 m/ s°. (2.13)

Coriolis acceleration points out from the paper perpendicular to the plane
of sketch (see Fig. 2.1, a), so Coriolis force points into the paper along the

negative direction of axis AXl(see Fig. 2.1, a). Fig. 2.1, b characterizes view in
B-direction.
The projection of equation (2.12) onto the axis A)(1 IS

m¥, = mW®". (2.14)



W Cor j Cor

A

view from B-direction

a b
Fig. 2.1
Integrating twice we have

B Wcortz

+Ct+C,. (2.15)

When t =0 we have X, =0 and X, =0 so
C,=C,=0.

The duration of motion can be determined from the equation of the
missile uniform motion along the trajectory (along axis A4Y,)

: m
Y, =V, = 900;,
integrating we get
y, =900t, m,

for t equals duration of fly

t =21 -18000/900= 20 s.
VO

Substituting in the equation (2.15) we get deflection 22,68 m.
55



Example 2. The body A

} & uniformly rotates about fixed vertical
axis z; with a constant angular
a % velocity w, =8z rad / sec(Fig. 2.2). A

ball M of a mass m=0.02kg moves in
cylindrical channel of the body A. The

A ball is attached to the end of

M horizontal spring, the coefficient of

1) AVAVAVAVAVAVAVA stiffness of which is k=20N/m. At
b Al initial moment the ball was on the
o distance OM =0.2m and had the

initial velocity V, =2m/ sec.
Find an equation of a relative

Q__)wf motion of the ball x(t) and a normal
reaction of the channel gt t=0.2sec.
Tk The length of unstretched spring is

l,=0.1m. Neglect a friction force.
Fig. 2.2

Solution

1. We are asked about law of the particle relative motion that is motion
with respect to the rotating rectilinear channel. So the moving frame of
reference Oxyz we connect with the channel. Motion of moving reference is

charectirised in fixed (inertial) reference O,X Y,z The motion is rotation about
fixed axis O,z so all points of the moving frame have acceleration and the

moving frame is non-inertial.
Conclusion: relative motion is rectilinear along Oxx in Oxyz, bulk motion

is rotation of the reference Oxyz about O,z in O, X Y,Z

2. The channel is a constraint for the ball so we use main equation of
motion in non-inertial frame of reference for constrained particle (2.8):

MV =F+N+J%+J%

Prepare FBD for the particle at time t (Fig. 2.3), assume that the spring is
elongated. Applied forces are: gravity force mg directed down, force of spring

FS|Or Is directed opposite elongation of the spring, according to Hook’s law:

F., = kAl =k(OM —1,),

Spr
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Fig. 2.3

where OM is the shortest distance between the particle and axis of rotation
and for the problem OM can be expressed in terms coordinate X as

OM =x,
SO
For = kAl =k(x-1y).

Let's analyze normal reaction. When the body A doesn't move
(Fig. 2.4, a), normal reaction N is determined by equilibrium equation

0=G+N, (2.16)

so N = —6, it is vertical an so is applied in the lowest point of that is point of
contact.
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When the body A moves with the channel (Fig. 2.4 b) we don’t know
direction of reaction and its application point. So we resolve the normal force

into two components: Ny and NZ:

— —

N=N +N_,
N

Fig. 2.4
Bulk and Coriolis forces of inertia must be applied.

In accordance with eq. (2.5) Bulk force of inertia is:

J° = —mwe,
whereW, is bulk acceleration that is for rotating moving reference:
W* =W, + W + W .
Acceleration of the origin O Vvo =0, because O is on the fixed axis of rotation.
Bulk normal acceleration is calculated according to the formula
Wi =% -OM = o®X.

Bulk tangential acceleration is W;, =&°-OM. Bulk angular

acceleration ¢°=0, because angular velocity »®=const. So the total bulk
acceleration is equal only to normal component:
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W¢® :Whjg = w* X,
e __ e2
J=m-w° X

Coriolis force of inertia is calculated according to the formula (2.6):

According to right-hand rule Coriolis acceleration is directed
perpendicular to the plane of Fig. 2.3 and points into the paper. Coriolis force of
inertia is opposite, so it points out of the paper.

The magnitude of Coriolis acceleration is
W, =20,-V, -sin(a,V, ).

cor

An angle between bulk angular velocity (along axis of rotation O,z ) and

relative velocity is 90°, so S n(a_)e,\7r ) =1 and

W, =20,-V, =20, X,
so value of Coriolis force is
Joor =2Ma, - X..

3.  Rewrite equation (2.8) for for the problem in vector form views as:

MV’ =mg + For +N_y+WZ+?+ J
Projecting this vector equation on axes of moving reference Oxyz we get:
X) X =-F_, +J°%,

J y)rr'y: Ny_JCOI”
Lz)mzz N, —mg.
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There are 5 unknown values: X, YV, Z, Ny, N, and only 3 equations. We
should add equations of constraints to be the system closed:

y=const = y=0,
z=const = Z2=0.

Rewriting equations
X) mX = —K(X—1,) + ma?X,
y)0=N, —2me,X,
z)0=N, - mg.

From the 2" equation of the system we get Ny = 2mMw X.

From the 3° equation we get N, =mg.
Considering 1% equation:

mX = —K(X—1,) + ma’X,

mX = —kx + Kl , + mo?X,

rewrite
X+(——a)ejx=&. (2.17)

This is differential equation of the second order, linear, inhomogeneous.
The general solution will be a sum of homogeneous and inhomogeneous part:

X=X"+x".
Present solution of the homogeneous equation as

X — cet ’

then first and second differentials are

X" =cae™,
K" =cA%e™.
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Substituting these expressions to homogeneous part of the equation

(2.15) we have:
X+(£—a)§jX: 0,
m

cA’e + (5 — ! ) ce™ =0.
m

Characteristic equation is:

determine A:

| Kk
A, =% a)ez—a

Let’'s find a magnitude of a constant

\/wj L \/(87;)2 -2 194
m 0.02

The result is virtual so the solution of homogeneous part will be

X" = ¢, c0s(19.2t) +c,sin(19.2t)

Present solution of inhomogeneous equation as:
Xinh — A so xinh :O

Then we substitute X™ = A into equation (2.15):



So the total solution of differential equation is:

K,

K—w’m

e

x=X"+x" =c cos(19.2t) + c,sin(19.2t) + (2.18)

To find unknown constants of integration the initial conditions are used:
When t =0:

X, =0OM,=0.2m,
X, =V, =2m/ sec.

Substituting t = 0 to equation (2.18) we have:

X(0) =6+ _kla‘;sm =%
Tk —klac;im 02 o0 (257;())30.02 -oorm
Differentiating equation (2.18) we have:
x=-19.2c,sin(19.2t) +19.2c, cos(19.2t). (2.19)

Substituting t =0 to equation (2.19):

%(0) =19.2¢, = X,

X _ 2 M

C,=-2-=——=01—.
19.2 19.2 S

So equation of relative motion is

x=-0.07c0s(19.2t) + 0.1sin(19.2t) + 0.27, m

For relative velocity we get

m

X=0,07-19.2-5in(19.2t) +0.1:19.2- cos(19.2t), -~

At t =0.2 sec:
x=-0.07c0s(19.2t) + 0.1sin(19.2t) + 0.27 = 0.24 (),
%=0.07-19.2-sin(19.2t) + 0.1-19.2- 0s(19.2t) = —2.3(m/ 5).
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So the reactions will be:

N, = 2mm,x = 2-0.02-87(-2.3) = —2.3(N),

N, =mg=0.02-9.8=0.2(N),

N = N2+ N2 = \(-2.3)° +(02)" =23(N).

Answer: x=-0.07cos(19.2t)+0.1sin(19.2t)+0.27, N=2.3(N).

2.10.2. Problems on relative resting condition

Example 3. A small object A is held
against the vertical side of the rotating
cylindrical container of radius r due to
centrifugal action (Fig. 2.5). If the
coefficient of static friction between the
object and the container is Js, determine
the expression for the minimum rotational
rate 0= w of the container which will keep
the object from slipping down the vertical
side.

RN |

PN |
-

N

S e s W e e

| L
Solution

In this problem relative rest of the Fig. 2.5
body A is considered. So an equation of
relative rest of a particle is used:

F.

F+N+Je=0.

Coordinate axes of moving reference system are connected with rotating
container (Fig. 2.6). Gravity force mg is active force and directed down.
Friction force F, is directed opposite movement of the object A. It slips down,
so friction force is up. Normal force is directed perpendicular to the wall of

container.
Bulk force of inertia is calculated according to the formula

where bulk acceleration is W, =W." +W .
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Fig. 2.6

Bulk force of inertia is calculated according to the formula

3, -,

where bulk acceleration is W, =W, + W .
Normal component of bulk acceleration is

W" = o?r.

e

Tangential component of bulk acceleration is zero (W, =¢-r, e =@ =0).

So

J. =3l =mW'=m-o&°r

Vector equation of relative rest for the problem is:

(2.18)

Projecting equation (2.18) on axes X,y of moving reference system:

X) mg - F; =0;
y)J:—Nzo.

Rewrite using relation for friction force F; = u - N :
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X)mg — - N =0; (2.19)
y) mo’r = N, (2.20)
Substituting eg. (2.20) into eq. (2.19) we get:
mg — u, - Mw’r =0,

g9

A= [—.
Hs T

So if the container rotates with this angular velocity, the body A will be in the
state of rest.

Answer: o= 9 .

Ho T

Example 4. The small object is

placed on the inner surface of the
conical dish at the radius shown (Fig.

2.7). If the coefficient of static friction

between the object and the conical

surface is 0.30, for what range of

angular velocities co about the
vertical axis will the block remain on
the dish without slipping? Assume that speed changes are made slowly so that

any angular acceleration may be neglected.

Solution
The problem is about relative resting conditions. Bulk motion for the
particle is rotation with the dish. Let us consider the two limit cases: the first is
case when particle tends to slip down, in Fig. 2.8 it is presented by direction of

impending velocity, and the second when particle tends to slip up (Fig. 2.9).
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axis of rotation

wall of dish

Fig. 2.8

Present relative resting conditions (eq. (2.11)) for the first case
my+F, +N+J =0,
where F, is friction force:
F, =uN,
N is normal reaction, J_ is bulk force of inertia that is
J¢= m(a)le)2 r.
Projecting onto the axes X,y we get :
X) mgsin30-F, —J°cos30=0,
y) —mgcos30+ N -J°sin30=0,
or
X) mgsin30— uN — m(a)f)2 rcos30=0,

y) ~mgeos30+ N —m(wf) rsin30=0.

Normal force N and angular velocity of the dish @] are unknowns in the
system. Solving with respect to angular velocity, we obtain

. \/ g(SIn30" - 4Cos30') rad

_ =3.405 —.
rCos30° + uran30’ S

In the second case (Fig. 2.9) we have
mg + FTr +N+J =0,
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J¢ = m(a):)zr ,
|:fr :/uN

axis of rotation

wall of dish

Fig. 2.9
Projecting onto the axes X,y we get:
x) mgsin30+ uN — m(a)riax)2 rcos30=0,

y) ~mgeos30+ N -m(«y,, ) rsin30=0.
Solving with respect to angular velocity, we obtain

Sn30° + xCos30°
0t = o - ):7.213 rad
rCos30" — urSn30° S
Answer: block remains on the dish without slipping if @] <®° < @; so
3.405< w° < 7.213} .
s

2.11. Problems for self solution

Problem 1. In the design of a space station to operate outside the earth's
gravitational field (Fig. 2.10), it is desired to give the structure an angular
velocity @ which will simulate the effect of the earth's gravity for members of
the crew. If the centers of the crew's quarters are to be located 12 m from the
axis of rotation, calculate the necessary angular velocity o of the space
station.

Answer: a)=0.9037%.
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Problem 2. The hollow tube is pivoted about a horizontal axis through
point O (Fig. 2.11) and is made to rotate in the vertical plane with a constant
counterclockwise angular velocity @ = 3 rad/sec. If a 0.2-lb particle is sliding in
the tube toward O with a velocity of 4 ft/sec relative to the tube when the
position @ = 30° is passed, calculate the magnitude N of the normal force
exerted by the wall of the tube on the particle at this instant.

Answer: N = 0.024 Ib.

Problem 3. The barrel of a rifle (Fig. 2.12) is rotating in a horizontal plane

about the vertical z-axis at the constant angular rate = 0.5 rad/s when a 60-g
bullet is fired. If the velocity of the bullet relative to the barrel is 600 m/s just
before it reaches the muzzle A, determine the resultant horizontal side thrust P
exerted by the barrel on the bullet just before it emerges from A. On which side
of the barrel does P act?

Fig. 2.11 Fig. 2.12

Problem 4. The slotted arm rotates about its center in a horizontal plane

at the constant angular rate & = 10 rad/sec and carries a 3.22-lb spring-
mounted slider which oscillates freely in the slot (Fig. 2.13). If the slider has a
speed of 24 in./sec relative to the slot as it crosses the center, calculate the
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horizontal side thrust P exerted by the slotted arm on the slider at this instant.
Determine which side, A or B, of the slot is in contact with the slider.
Answer: P = 4 Ib, side A.

¢ = 10700/ ser

Problem 5. The slotted arm revolves in the horizontal plane about the
fixed vertical axis through point O (Fig. 2.14). The 3-lb slider C is drawn
toward O at the constant rate of 2 in./sec by pulling the cord S. At the instant for
which r = 9in., the arm has a counterclockwise angular velocity w= 6 rad/sec
and is slowing down at the rate of 2 rad/sec®. For this instant, determine the
tension T in the cord and the magnitude N of the force exerted on the slider by
the sides of the smooth radial slot. Indicate which side, A or B, of the slot
contacts the slider.

Fig. 2.14

Problem 6. The particle P is released at time t = O from the position
r = ro inside the smooth tube with no velocity relative to the tube, which is
driven at the constant angular velocity w, about a vertical axis (Fig. 2.15).
Determine the radial velocity v,, the radial position r, and the transverse
velocity vyas functions of time t. Explain why the radial velocity increases with
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time in the absence of radial forces. Plot the absolute path of the particle during
the time it is inside the tube for ro= 0.1_ m,l=1m, and wg = 1 rad/s.

(i}
O p

;

Fig. 2.15

[0, _ .
Answer: v, =%[e“’°‘ —e “’°t] = r,w,SiNhat;

foT
r :—O[e @t 4 e””ot] =r,coshat;
2

@y -
v, =0 o|:e w0t+ewotJ:roa)ocosha)ot.
2

Problem 7. A hollow tube rotates about the horizontal axis through point
O with constant angular velocity wo (Fig. 2.16). A particle of mass m is
introduced with zero relative velocity at r = 0 when 6 = 0 and slides outward
through the smooth tube. Determine r as a function of 0.

Fig. 2.16

Problem 8. The slotted arm rotates in a horizontal plane around the fixed
cam with a constant counterclockwise velocity w = 20 rad/s (Fig. 2.17). The
spring has a stiffness of 5.4 kN/m and is uncompressed with 6 = 0. The cam
has the shaper = b - ¢ cos6. If b =100 mm, ¢ =75 mm, and the smooth roller
A has a mass of 0.5 kg, find the force P exerted on A by the smooth sides of
the slot for the position in which 6 = 60°.
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Fig. 2.17

Answer: P= 231 N.

Problem 9. In a mathematical pendulum of a length | the particle
suspended moves along the vertical with a uniform acceleration. Determine the
period T of small oscillations of the pendulum under two conditions: 1) when
the acceleration of the particle is directed upwards and has any value p; 2)
when this acceleration is directed downwards and its value is p<g.

Answer: (1) T=2x /I— (2)T:27z/ | :
pP+4g g-p

Problem 10. A patrticle falls freely from d height of 500 m to the earth in
the northern hemisphere. Taking into consideration the rotation of the earth
about its axis and neglecting the air resistance, determine the magnitude of the
deviation of the falling particle in the east direction before it strikes the ground.
The geographical latitude of the place is 60.

Answer: The deviation is 12 cm.

Problem 11. The car runs along a straight horizontal track. A pendulum
which is installed in a railway car performs small harmonic oscillations. Its
central position is deviated 6° from the vertical. 1) Determine the acceleration w
of the car; 2) find the difference between two oscillation periods of the
pendulum: T, when the car is at rest, and T, for the present case.

Answer: (1) w=103 cm/sec?; T-T;=0.0028T.

Problem 12. Fig. 2.18 shows a pipe AB which rotates about a vertical
axis CD with a constant angular velocity w. The angle between AB and CD is
always 45°. A small heavy ball is placed in the pipe. Determine the motion of
the ball, assuming that its initial velocity is zero and the initial distance between
the ball and a point O equals a. Neglect friction.
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Answer: OM :%(a— 9

Problem 13. Determine how the acceleration due to gravity changes in
relation to the latitude of the place ¢, considering that the earth rotates about its
axis. The radius of the earth is R=6370 km.

Answer: If we neglect the term in w® due to its smallness then

2
g, = g(l— C02889¢J, where g is the acceleration of gravity at the pole, @ is the

geographical latitude of the place.

Problem 14. How many times should the angular velocity of rotation of
the earth about its axis be increased to make a heavy particle at the surface of
the earth at the equator completely weightless? The radius of the earth is
R= 6370 km.

Answer: 17 times.

Problem 15. A pendulum, suspended from a long thread, is given a small
initial velocity in the north-south plane. Assuming that the deviation ot the
pendulum is negligible compared to the length of the thread and, taking into
consideration the earth's rotation about its axis, determine the time elapsed
when the plane of pendulum rotations coincides with that of west-east. The
pendulum is located in latitude 60° north.

Answer: T = 13.86 (0.5+K) hours, where K=0, 1, 2, 3,....

Problem 16. A small bead of mass m is carried by a circular hoop of
radius r which rotates about a fixed vertical axis (Fig. 2.19). Show how one
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might determine the angular speed wof the hoop by observing the angle
Owhich locates the bead. Neglect friction in your analysis, but assume that a
small amount of friction is present to damp out any motion of the bead relative
to the hoop once a constant angular speed has been established. Note any
restrictions on your solution.

Fig. 2.19

2.12. Short problems

Problem 1. A locomotive of a mass m=8-10" kg moves on rails along

equator from the east to the west with a velocity 20 m/sec. Determine a
maghnitude of Coriolis force of inertia of the locomotive, if angular velocity of the
Earth is @ =0.0000729rad /sec. The locomotive is considered as a patrticle.
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Fig. 2.20 Fig. 2.21 Fig. 2.22

Problem 2. A ball M of a mass m=0.2kg moves with a velocity
v=19.62 m/sec relative to a vertical tube, which is attached to a vertical shaft 1

on a distance | =0.5M (Fig. 2.20). The shaft rotates with a constant angular
velocity w =5rad/sec. Determine a bulk force of inertia of the ball.
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Problem 3. A load 1 of a mass m =1kg declines on an incline plane of a

body 2 (Fig. 2.21). The body 2 moves in vertical guide down with an
acceleration a,=2m/sec. Determine a pressure force of the load 1 on the

body 2.

Problem 4. A ball 1 of a mass m moves from a state of relative rest at

appoint O along a smooth cylindrical channel of a body 2 (Fig. 2.22). The body
2 moves along horizontal plane with a constant acceleration a,=3.5m/s’.

Determine a relative velocity of the ball at time t =5sec.

Problem 5. A tube rotates about axis O according to the law ¢ = t* (Fig.
2.23). A ball M of a mass m=0.1kg moves in a tube according to the law
OM =0.2t*. Determine a magnitude Coriolis force of inertia of the ball at time
t =1sec.

Problem 6. An elevator car 2 moves up with an acceleration a, = 0.59

(Fig. 2.24). Determine spring tension, if suspended load 1 of a weight 100 N is
at a state of relative rest.

(=1]

Fig. 2.23 Fig. 2.24 Fig. 2.25

Problem 7. An auto truck 1 (Fig. 2.25) moves up with a constant
deceleration a =2m/s’. Determine pressure force of

the load 2 of a mass 200 kg on a front wall of the truck
body.

Problem 8. A body 1 moves along rectilinear guide 2
(Fig. 2.26). Inside the body there is a channel in a
shape of an arc. A ball 3 of a mass m moves along this
TTTTTTT T T TT 7. channel. Determine an acceleration a, of the body

Fig. 2.26 1, if at angle ¢ =60° the ball is at a state of relative rest.
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Problem 9. A support with a mathematical pendulum moves along
inclined plane down (Fig. 2.27) with an acceleration a=gsin« . Determine an

angle g at a state of relative rest of the ball, if & =10°.

Fig. 2.27

LECTURE 3

3. DYNAMICS OF SYSTEM OF PARTICLES
3.1. Obstacles in analysis of particle system motion

As it is clear from previous consideration analysis of a particle motion
includes integrating of the system of three second order differential equations
(see the first lecture 1, eq. (1.22)). In general case it is not easy. For a system
consists of n particles () we have to integrate system 3n equations in which
forces are functions of positions and velocities of all particles:

-
X}

R, = £ (1% Vo250 Yo Zares X Yo o s i ).
M, = 1 (6% Yo 225, T B X Yo o i ).
M2, = £,(6 X0 Y2 250 S50 2 X Y 25 i ).

M, = Foo gy (650 Yo 2250 s 2 Xy, Yo Za 600 90 2,),
rnYn = f3(n—1)+2(t’xl7y1'zl’).(l'yl’ji’""xn’yn’zn’).(n’S/n’Zn)’
0, = o0 (6% Vs 250 Sh Zaree X Yo Zon %00 9 2.

~

Solution of the system is very difficult problem.

But very often we need to determine only some total characteristics of the
system of particles motion. These total characteristics are called measures of
system of particles motion:

— total linear momentum:;
— total angular momentum;
— total kinetic energy.
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The general principles of dynamics describe relations between time rate
of change of these measures and action of forces applied on the system
(Table 3.1).

Table 3.1
Measure of a | Equation Measure of particle | Equation Effect of | General
particle motion system motion forces principle
Linear d=nv Total Linear - & Total Force-
momentum momentum Q= Z O« vector of | Linear
(vector, (vector, k=1 external | momentu
m m forces m principle
o) o)
S S
Angular I _z = Angular . n Total Moment-
momentum lO =rxnmv momentum Lo =>TIx dk moment | Angular
(vector, (vector, k=1 of momentum
[ kg - Y :| [ kg - Y :| external | principle
) ) forces
S S about the
center O
Kinetic energy mv?2 Kinetic energy n V2 Total Work-
(scalar, [J]) T=— | (scalar, [J]) T= M work Energy
2 = 2 |done by |principle
external
and
internal
forces

First we analyze classification and features of forces.

3.2. Force classification
3.2.1. External and internal forces

A system of particles is a set of particles (bodies) whose motions are
interconnected. Position and kinematical characteristics of each particle of the
system are functions of the same parameters of other particles. In engineering
practice material systems are more often called structures.

There are two types of forces acting on structures: external forces and
internal forces:

1. External forces represent the action of other bodies on the
structures under consideration

2. Internal forces are the result of interaction between the parts of the
structures under consideration. The internal forces hold together the various
parts of the structure.

The features of internal forces acting on particles for which third

Newton’s low (action equals reaction) applies.
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1. Total vector of internal forces is equal to nil

n

> FEY=0. (3.1)

k=1

Where Ifk(i) Is the resultant vector of internal forces acting on the particle with

number K (superscript i denotes that force is internal).
Proof: Consider system of n particles. Force of interaction between particle k

and particle | is internal force Iféi) (Fig. 3.1). Force of interaction between
particle | and particle K is internal
force Ifj(ki). The forces Ifkgi) and Ifj(ki)
obey the third Newton’s law, they

are equal in magnitude, opposite in

direction, therefore their sum is
Zero:

FV+FY =0.
Internal force with indexes k:j

does not exist because particle can
not interact with itself.

Carrying out the double summation Fig. 3.1
(after all internal forces of the

particle system) we get

SR = (B + B 4t B ) (B + BY 4t B )+

kel j1
al(ll) =0
+ +(Fn(1i) +EY 4+ Ifn(r'])) F'=0=
00
= (Ifl(zi) + |fz<;>)+(|flg‘> + Ifgfli))+ ..+( S #n(zn) =0. (3.2)
L T T

n .
In equation (3.2) the sum Z Fkg') Is resultant vector of internal forces acting on
o =1
the particle k Fk('). So equation (3.2) can be rewritten as
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FY=0. (3.3)

This completes the proof of the first feature.

2. The total moment of internal forces about a center is equal to nil
Lo (=) S =()
ZMO F« ZZI’kXFk =0. (3.4)

Proof: consider the system from the previous proofing. Moment of the force
|Ek§') about fixed center O (Fig. 3.2, a) is

moment of the force Ifj(ki) 5

N

O

Fig. 3.2
Analogy with the double summation for forces we get
ggmo(ﬁg>):(mo(ﬁlg>)+ N (FY)) +..+
+(l\ﬁo(lfrf2n)+ Mo(ﬁrf‘g_l))=o. (3.5)

The forces Ifkgi) and Ifj(ki) are equal in magnitude, opposite in direction and act
along the same line (see Fig. 3.2, b). So
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Mo (F) = x Fi = (1 x R = -Mo (F ).
In equation (3.5) the sum Zl\ﬁo(lfkgi)) IS resultant moment of internal forces
j=1

acting on the particle k about center O. So equation (3.5) can be rewritten as
iﬁo(ﬁk(i))ZO. (3.6)
This completes the proof of thk:second feature.
3.2.2. Active (applied) forces and reactions

If motion of a particle (body) is not restricted such body is called free. If
not, body is constrained. Constraints (supports or connections) restrict the
body motion in some direction.

The forces exerted on the body by the constraints are known as
reactions.

Other forces acting on the body and which are independent of the
constraints are called active (applied) forces.

3.3. Force-Linear Momentum principle
3.3.1. A particle linear momentum

A particle linear momentum is a vector value g
(Fig. 3.3), which is equal to the product of the particle mass
and its velocity vector

qd=nmv.

(3.7)

Fig. 3.3
Linear momentum direction is the same as that of the velocity (see
Fig. 3.3).

3.3.2. Force-momentum principle for a particle

Now we may write the equation of motion for the particle in inertial frame
of reference as
d(mv) _ dg

dt dt

_  — —_—

mw =F, m\N:mgz\m:const\:
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(3.8)

Force-momentum principle for a particle. Differential form. The resultant
of all forces acting on a particle equals its time rate of change of linear
momentum.

This relationship is valid as long as mass of the particle not changing with
time.

In scalar form the force-momentum principle is the system of three
equations:

qX = FX’
g,=F,, (3.9)
qZ = FZ'

If we want describe the effect of the resultant force on the linear
momentum of the particle over a finite period of time we may integrate the
equation (3.8) with respect to time t from time t, to t,. The product of force and

elementary time is defined as elementary linear impulse of the force. The

t2
integral det total linear impulse of the force. Than integrating (3.8) we get
b

a4, — G =Ith- (3.10)

Force-momentum principle for a particle. Integral form. The total linear
impulse of force acting on a particle equals the corresponding change in
linear momentum of the particle.

3.3.3. Force-momentum principle for a particle system

Let us consider a system of n particles.
Let denote Q the vector sum of the linear momenta of all particles of the

system. 6 is total linear momentum of the particle system

Q=Y q,. (3.11)
k=1

From Equation (3.8) for the k-th particle we have:
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% g, g0, (3.12)

where Ifff) - external force system resultant acting on the particle number K;

—(i
Fi) - internal forces resultant.
Summing the equations over kK (k runs from1 to n), we obtain

i%=iﬁk@ +i|fk“). (3.13)
k=1 dt k=1 k=1

According with the first feature of internal forces

> FEY =0, (3.14)
k=1
— n — —

therefore using denotation F® => F® where F' is total vector of external
k=1

forces acting on the system we get
dQ =
—=F . 1
" (3.15)

Force-momentum principle for a particle system. Differential form. The
total external force on a particle system equals the time rate of change of
the total linear momentum of the particle system.

This principle does not apply to the system whose mass changes with
time.
The scalar view of equation (3.15) is:

(dQ Z”: e
X _ Fe -
dt el x k?
d n
; Qy:ZF;k; (3.16)
dt o
dQ, <
2= FS,.
K dt ; zk
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3.3.4. Three Corollaries of the Force-momentum principle
for a system of particles

The first corollary (principle of conservation of linear momentum).
Let us examine the equation (3.15) under condition when the total vector
of external forces is zero

ZE—ék =0.
k=1
Then
(jj—? = 0;Q = const. (3.17)

If the total external force on the system of particles during a time
interval equals zero than the total linear momentum of the system is
unchanged during the time interval.

The second corollary.
Let us examine the projection of the expression (3.17) on an axis

d
—Q =V =0
dtQu !

Q, = const. (3.18)

If the projection on an axis of the total external force on the system
of particles during a time interval equals zero than the projection on the
axis of the total linear-momentum of the system is unchanged during the
time interval.

There is third corollary of the force-momentum principle:

the internal forces cannot change the total linear momentum of a system
of particles.

3.3.5. Principle of system mass-center motion

It is special form of force-momentum principle.

We remember now the concept of center of mass.

The point is called center of mass if its position vector is determined by
expression
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(3.19)

where Fk is position vector of particle k, m_is mass of particle k, it is assumed

as constant value.
In scalar form we have

1 n
Xc = Z m, X,
M=

1 n
Ye :szlkak’

1n
= — m Z .
Ze Mkzl (Z

(3.20)

For the homogeneous rigid body (the body that has uniform mass per unit

volume y) the Equation (3.19) may be rewritten as

-

X :ﬁJx-de,
1 Ye =ﬁ£y-7dV,
ch :ﬁ!z-ydv

or

Xc :lﬂjx dxdydz,
Vo

Yo = Vig)j y - dxdydz,

Z. = i”'[z dxdydz.
Voo

(3.21)

(3.22)

By differentiating equation (3.19) for the position vector of mass center

with respect to time we obtain
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Cod. 1 1.
Vr=—TFT = — Vi, = — ,
C= 4t Mglrn(k I\/IQ

|(§ = MV (3.23)

The total linear momentum of a particle system equals the linear momentum of
a particle that has mass of the system and moves with velocity of the mass
center.

Than equation (3.15) may be written as

dv. =
M —C = F(e)‘
‘ & (3.24)
or
MW, = If(e).l (3.25)

A particle system mass-center moves as point acted on by force.
Mass of the point is equal to mass of the system. The force is equal to the
total vector of external forces applied to the system.

If the total external force on a system of particles is zero, it is clear from
the previous discussion that there can be no change in the linear momentum of
the system. This is the principle of conservation of linear momentum, which
means, furthermore, that with a zero external force on a system of particles,
there can be no change in the velocity of the mass center.

3.3.6. Examples

Example 1. A man in a boat 1 pushes away a log 2 of a mass
m, =200 kg. a mass of the boat with the man is m =160 kg. Determine a
boat velocity after a push, if at initial moment of time the boat and the log were
at rest, and after a push the log has a velocity V, = 0.5 m/sec. Neglect water

resistance.
Solution

Show the system at initial moment t, , before a push (Fig. 3.4, a) and
final moment t, , after a push (Fig. 3.4, b).




Show external forces: gravity forces mj, mz§ and Arhimed’s forces E,Ez

Fig. 3.4

Direct x-axis along water surface and write force-momentum principle in
projection on x-axis:

dQ, e
x = SUFe,
dt kZ:;,kx

Projections of all external forces on x-axis are equal to zero, i.e.

D Fe=0= R _o
o= dt

So we have linear momentum projection on axis x conservation :Q, = const,

l.e.
Qo = Qs (3.26)

where Q,, and Q,, are projections of linear momentum of the system on x-axis

at initial moment t; and final moment t;, correspondingly.
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The system consists of the boat 1 and the log 2. So the total linear
momentum is:

Q= 4 +0Q,.
At initial moment, the system was at rest. That's why Q,, = 0. At final moment
Qi = Oy + Uy = —MV, + MV,
Substituting Q,,, Q,, in equation (3.26):
0=-my, + my,,

my, 200-0.5

v, = - 0.625 (ﬂj |
m 160 sec

Answer: After a push the boat will move in opposite side to the log motion with

a velocity v, =0.625 (ﬂj :
Sec

| y Example 2. A prism 2 of a mass m, slides
down a smooth side of another prism 1 of a
mass m, (m =2m,), as shown in Fig. 3.5.
The edge makes an angle a =45° with the

horizontal. Determine a displacement of the 1%
prism, when the 2" prism moves down on

h, = 0.4 m. At initial moment the system was

: at rest. Neglect friction between the prism 1
X ' and the horizontal plane.

Fig. 3.5

Solution

Analyze external forces acting on the system: gravity forces mlé, mzé

and normal reaction of horizontal surface N (Fig. 3.6). In this problem the
principle of a system mass-center motion will be used. As displacement of the
first prism is unknown )(1 only projection of equation (3.25) on x-axis is

necessary:
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M X =FF, Ly
where M is a system mass, X_is projection U
of a mass center acceleration on x-axis, 7
F is projection of all external forces on x- |/
axis. /

Projections of all forces on x-axis are ./
zero, i.e. . =0. Then
M X =0, X =0, z
X, =C, (3.27) g mg
X, =Ct+C,. (3.28) Fig. 3.6

To find unknown constants of integration the initial conditions are used.
According to condition of the problem at initial moment of time the system was

at rest, i.e. X, =0. The coordinate X, depends on chose of position of origin

of x-axis. We can assume that it passes through the system mass center:
X, = 0. Then substituting t =0 to the equations (3.27), (3.28) and taking into

account initial conditions we obtain constants of integration: ¢, =¢, =0. So
X, = 0. It means that the system mass center doesn’t move.

Then we get:
1
X =1 (MX +m%,) =0,

mX, +m,x, =0, (3.29)

where X and X, are absolute coordinates of the mass centers of the 1% and
the 2" prisms.

The absolute coordinate of the mass center of the 1% is equal to:
X, =X + X, - The 2" prism has compound motion. It moves with the 1% prism

(bulk motion) and slides down the side of the 1% prism (relative motion with
displacement S, , fig. 3.7), i. e.
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X, = X5 :x;+x§:hz-ctana+(xl* +x20).
h,? Substituting these expressions to the equation (3.29):
Ty rq-(xl+x10)+rnz-(hz-ctana+(xl+x20))=0.

Fig. 3.7 In accordance with (3.29) at initial moment M, +M,X, = 0.
Then

X, =—h,-ctan aszZ—Zmz = —O.4-ctana-%= -0.13(m).

Answer: the 1% prism moves in negative direction of x-axis on 0.13 m.

Example 3. The rotor of the electric motor rotates clockwise with angular

velocity n=980 ﬂ (Fig. 3.8). The weight of the motor is B, =700 N, and
min

the weight of the rotor is P, =300 N. The gravity center of the rotor is shifted

from axis of rotation on a distance | =0.05 m. Determine horizontal shearing
force acting on the bolts and vertical pressure on supporting plane.
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Solution

Assume, that at t =0 the gravity center of the rotor C, was on y-axis.
Then at a moment t the coordinates of the rotor mass-center are:

x, =lsing =lsin(mt),
y, =l cosg =1 cos(wt),

zn 980 (rad ) . .
wherew = =7 is angular velocity.
Sec

30 30

External forces (see Fig. 3.8) are: gravity forces 51,32 reaction of the

plane N and reaction of the bolts F. To solve this problem a principle of
system mass-center motion is used:

dv

I3

Projecting on the axes X and Y:

XYM X =F,
) X° (3.30)
y)M yc:N_F;._PZ’
. R+P
where the total mass of the systemis M =m +m, = :
9

Let’'s determine the coordinate of the mass center:

) MY, MY MY,
m+m, Com+m,

Taking into account, that the mass center of the motor is fixed point, i.e.
)(1 = O, yl =

_ mx, _PRlsn(et).  my, Plcos(at)
*Tmam BB mem B4R,

Let’s find the derivatives:
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2 2
X =22 dn(at); 5, =i

cos(wt).
R+P R+P,

Substituting these expressions to the system (3.30):

( 2
x)|31+|32 _Blo sin(et) |=F,
g R+F
2
y) 1+P _Hlo cos(awt) |=N-PB,—P,
R+P

From these equations we can find unknown values:

Pl
g

F=— sin(ot),

2
N=P+Pp 2%
g

cos(at).

The force acting on the bolts is F'=—F, and the pressure of the motor

on the supporting plane is N'=-N.
The maximum magnitudes of the forces are:

Plew® 300-0.05-98°- 7*

it |sin(@t)| =1: Fry = . 087 =16.1(kN);
If cos(wt) =—1:
2 2 2
Niw =R +F + PZ';’ =700+300+300'0é085'328 T —17.2(kN).

If there are no bolts, the motor can hop (jump). The condition of hopping
impending is N =0 (absence of interaction with support). There is such
angular velocity @w* of the rotor rotation, at which the motor is not hoping, but
there is no pressure on the plane for some orientation of rotor. If angular
velocity exceeds ™, the motor wiII begin hopping.

Answer: F;_ =16.1(kN), N/, =17.2(kN).
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3.3.7. Problems for self-solution

Problem 1. The man of mass M and the woman of mass M, are

standing on opposite ends of the platform of mass M, which moves with
negligible friction and is initially at rest with S =0 (Fig. 3.9). The man and

woman begin to approach each other. Derive an expression for the
displacement S of the platform when the two meet in terms of the

displacement X of the man relative to the platform.

b
‘."\ \

N
N

Problem 2. The small car which has a mass of 20 kg rolls freely on the
horizontal track and carries the 5— kg sphere mounted on the light rotating rod
with r =0.4 m (Fig. 3.10). A geared motor drive maintains a constant angular
speed g=4rad/s of the rod. If the car has a velocity v =0.6 m/ s when
g= O, calculate Vv when = 60° Neglect the mass of the wheels and any
friction.




Problem 3. The 50,000-lb flatcar supports a 15,000-lIb vehicle on a 5°
ramp built on the flatcar (Fig. 3.11). If the vehicle is released from rest with the
flatcar also at rest, determine the velocity V of the flatcar when the vehicle has

rolled S=40 ft down the ramp just before hitting the stop at B. Neglect all
friction and treat the vehicle and the flatcar as particles.

.5.____ - _5_ - _...l_"£T
|
| 1
-:-—'-—_1T___ ]r‘-"""--._ _ﬁj
Fig. 3.11

Problem 4. A horizontal bar of mass m and small diameter is suspended

by two wires of length | from a carriage of mass m,, which is free to roll along
the horizontal rails (Fig. 3.12). If the bar and carriage are released from rest
with the wires making an angle @ with the vertical, determine the velocity V,,. of
the bar relative to the carriage and the velocity V, of the carriage at the instant

when @ =0.Neglect all friction and treat the carriage and the bar as particles in
the vertical plane of motion.

Fig. 3.12
Problem 5. A test firing of two projectiles each weighing 20 Ib takes
place from the vehicle which weighs 2000 Ib and is moving with an initial
velocity V,= A4ft/sec in the direction opposite to the firing (Fig. 3.13). The

muzzle velocity of each projectile (relative to the barrel) is v, =800 ft / sec.

Calculate the velocity V' of the vehicle after the projectiles have been fired (a)
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simultaneously or (b) in sequence. Neglect the friction and mass of the

wheels.

Fig. 3.13

3.3.8. Short problems

Problem 1. Determine an acceleration of a body 1
(Fig. 3.14), sliding on a smooth inclined plane, if in
horizontal guides relative to it under action of internal
forces of the system the body 2 moves according to the
equation x = t°. Masses of the bodies are:

m=m,= 1kg. The bodies have translational motion.

Problem 2. A body 1 with a mass 4 kg can move

along a horizontal guide (Fig. 3.15). On which distance
will the body 1 move when a homogeneous rod 2 with a

mass 2 kg and length | = 0,6m, going down under an

action of a gravity force, has vertical position. At initial
moment the system was at rest.

Problem 3. The pulley 2 with a radius R=0,2m

rotating with angular acceleration &, =10rad / §°, lifts a ,

homogeneous cylinder 1, a mass of which is
m =50kg (Fig. 3.16). Determine a magnitude of a
resultant vector of external forces acting on the cylinder.
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Problem 4. Determine a projection on Oy-axis of a linear momentum
vector of a homogeneous rod 2 (Fig. 3.17) of a mass m =4 kg at a moment

when the crank 1 rotates with angular velocity @w= 10rad/s and angle is
a=60°. The length is | = 0.2 m.

Fig. 3.17 Fig. 3.18

Problem 5. Determine a magnitude of a linear momentum of a
mechanical system (Fig. 3.18), if the mass center C of the cylinder 1 moves

with velocity V.=4m/s, and masses of the bodies 1, 2 and 3 are equal
correspondingly to m = 40kg, m, = 10 kg, m, =12kg. The bodies 2 and 4
are homogeneous disks.

Problem 6. The link 1 with length O4 = 1m of parallel link mechanism
OABO, rotates with angular velocity @ = 20rad /s (Fig. 3.19). Determine a
magnitude of a linear momentum of the mechanism in the indicated position.
The linksl, 2 and 3 are homogeneous rods with masses

m=m,=my,= 4Kkg.

A /2
7 s 7
X‘_“—X.-:I / & J
: &
— E L m N | 1 .
e 7
Fig. 3.19 Fig. 3.20

Problem 7. On the body 1 (Fig. 3.20) a constant force F = 10N
acts. Determine an acceleration of this body at a moment t=0.5s, if
relative to it under action of internal forces of the system the body 2 moves
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according to an equation x=coSzt. Masses of the bodies are:
m = 4 kg, m,=1kg. The bodies have translational motion.

Problem 8. Determine a projection of the mass center C acceleration
(Fig.3.21) of the mechanical system on Oy-axis at a moment, when a

coordinate is Y.=0,8m, if a mass of the system is m= 10kg, and a

resultant vector of applied external forces is R=31 +6t- T.At initial moment of
time the mass center of the system was at the point O at rest.

Problem 9. The slider 4 moves under action of a force F with a
constant velocity V, (Fig. 3.22). Determine the reaction of a guide on the

slider 4 at that moment of time, when an acceleration of the slider B is equal
to W, =4 m/s° if a mass of the homogeneous rod AB is equal to 5kg. The
masses of the sliders are neglected.

Problem 10. A homogeneous equilateral triangle OAB with a mass
m=5 kg rotates uniformly about a fixed axis (Fig. 3.23). Determine its angular

velocity @ if a resultant vector of external forces acting on it is equal to 300 N
and a lengthis | = 0,4m.

}; f ] ﬁl.

™

Fig. 3.21 Fig. 3.22

LECTURE 4

3.4. Moment-Angular Momentum principle
3.4.1. A particle linear momentum

Consider a particle of mass m moving along a curve in space. The
particle is located by its position vector I with respect to a convenient origin of
inertial coordinate system OXxyz. The velocity of the particle is V and particle

linear momentum is 4 = NMV.
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The angular momentum (moment of momentum) of a particle of

mass m about the origin of the inertial reference is given by cross-product:

— —_

|, =Mo(q) =T x mv. (3.31)

(0]

The direction is given by the right hand ruler (Fig. 3.24). That is to say,
1.the angular momentum is perpendicular to the plane of the velocity and
the particle position vector, from the end of the vector of angular momentum
rotation of the velocity about the origin is viewed counterclockwise.
2.the angular momentum is applied at the origin O.

3. the magnitude of the angular momentum can be determined as

|, =mvr sin(r,v)=mvh. (3.32)

Fig. 3.24

The scalar components | ,1 |, of the angular momentum about the origin

X1 y!

may be obtained from the following expression
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3.4.2. Angular momentum of a system of particles

A system of Nnparticles in inertial frame of reference is shown (Fig. 3.25).

g,

<.

N\ o
Fig. 3.25

The total angular momentum about origin O fixed in an inertial

reference is the vector sum of the angular momenta of the particles of the

system

=) I xQ, = A (3.34)
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or in scalar form

Y1

4

Fig. 3.26
I—x = lek = Zrn((ykzk o Zkyk)’
k=1 k=1

1Ly =2 L= 2 Mz X — X&), (3.35)
k=1 k=1

I—Oz = ilzk = irn((xkyk o ykxk)

k=1 k=1

3.4.3. The total angular momentum with respect to a chosen
center O under the condition of compound motion of the
particles

Consider the system of n particles. The motion of the particles is
described in inertial (Ox,Yy,z) and noninertial (Cxyz) references (Fig. 3.26).

The noninetial reference has translational motion relative to the inertial one and
its origin coincides with the centerof mass of the particlesystem. The reference
is called Koenig’'s system of reference.

The vector position of any particle (see Fig. 3.26) is

o =T.+ P, (3.36)

where p, is vector position of the particle relative moving reference I7C Is the
center mass vector position relative inertial reference:

U =Ve+V =V, + @ x B +V =V, +V. (3.37)
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Putting the (3.36) and (3.37) in the (3.34) we have
Lo =D (T + 8 )xm (Ve +9; ). (3.38)
Carry out the cross product and extract the TC from summation

L, =T x MV, +£Z'ﬂ</_jijvc +kzi;ﬁk x My,

n

but Zmﬁk =M p. =0 by definition of the position vector of the mass center
k=1

with respect to the noninertial (Koenig’'s) reference and denoting

n
=" P xmyV we get

i=1

Lo =T x MV, + L. (3.39)

The angular momentum of an aggregate of particles about a fixed
point can be given as the angular momentum of the center of mass about
the fixed point plus the angular momentum of the particles relative to the

—

r
center of mass L.

3.4.4. Moment-Angular momentum principle for a system
of particles in inertial frame of reference

Let us consider the system of n particles (Fig. 3.27). The momentum
equation for the K'th particle written about the origin of the inertial reference is

—k —FlL (3.40)

where Iff(e) is resultant of external forces acting on the particle number K; If(ki)

IS internal forces resultant.
Using cross-product we have

F ko

dtﬁ(lff(Flf




Fig. 3.27

or

Jos i (F)+ v 1)

We now sum this equation for all n particles

z% :%zimo(ﬁfm > Mo FL). @.41)

But when we sum the moments of internal forces about point O, they
cancel one other and their moments add up to zero (it is termed as internal
forces second feature)

S Mo(E =3 1 xFi=0,
k=1 k=1
SO
di, -
~—O_M (e
dt 0 (3.42)

The total moment Mée) of external forces acting on a system of

particles about a point O fixed in an inertial reference equals the time
rate of change of the total angular momentum relative to the point O.

There are three corollaries from this principle.
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The first corollary. If the total moment of external forces acting on a
system of particles about a point O has no component in any direction, the
total angular momentum about the point O remains constant. This is known as
the principle of conservation of angular momentum

dd% =0; L, = const. (3.43)

The second corollary. If the total moment L, of external forces acting on

a system of particles about an axis U equals zero during finite time interval, the
total angular momentum about the axis remains constant during this time
interval

d
dt
L, = const.

The third corollary. The internal forces do not have an influence on the
changing of the total angular momentum.

3.4.5. Angular momentum principle for a system of particles
in noninertial frame of reference

Let us remember that in inertial frame of reference

di, -
—O_M® 3.44
” 0 (3.44)

Represent M as (see Fig. 3.26)

MS = h xR =[f =T + 5| =D (Fe + B ) x R =
k=1 k=1
n . n . n - .
= T.x Fk(e) + ) P X k(e) =T, X Ff(e)—k M & (3.45)
k= k= k=1

Rewrite —=2 using equation (3.39) and (3.24)
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o _ 9 oo 1) = Ty, o SN
E—a(rCXMVC‘f‘LC) EXMV + d't =
. _  dr; .
—==V.; —x MV, =0,
dt S g e

—

dr
because —S =v. and TT Mv.., n K
- a “l=rx Y F@ 4 dd%' (3.46)

n k=1
d(l\c/llt c) ZF ©iseq.3.24

law of mass-center motion

Putting (3.45) and (3.46) in the (3.44) we get

XZF<6>+dL =T, x V E L N9,

k=1

cancel the same terms at the left and right parts we obtain

de _yi @

dt = Wl¢ (3.47)

The total moment M C(e) of external forces acting on particle system

about the mass-center as origin of translationally moving reference equals the

time rate of change of the total angular momentum of the system in the relative

motion taken about the mass-center ch.

We thus get the similar formulation for the center of mass as for a

fixed point in inertial space. Please note that I:'E7 is the total moment about

the center of mass of the linear momenta as seen from the center of mass

but that the time derivative is as seen from inertial reference.
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LECTURE 5

3.4.6. Angular momentum of a rigid body rotating about fixed
axis

Consider a single particle M of mass m attached to a rod rotating about

fixed axis Oz with angular velocity @, (Fig. 3.28). Linear momentum of the
particle is in the plane perpendicular to the axis

G =nv, (3.48)

Fig. 3.28 Fig. 3.29

where velocity magnitude is V=w,p, p=0M is perpendicular distance

between the particle and the axis.
Angular momentum of the particle about the axis of is

| =(F xnW), =mvp =mp°w,. (3.49)

It is positive for counterclockwise direction of angular velocity.

Value mp? is called particle moment of inertia about axis Oz .

Consider a rigid body of mass m rotating about a fixed axis Oz
(Fig. 3.29). Rigid body can be presented as system of particles of mass dm.
Angular momentum of elementary mass dm about the axis of is

d, = (F xdg), = (F xdnW), = vpdm= p°w,dm . (3.50)
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Total angular momentum of the body about the axis is sum of elementary
momenta about the axis

L, = j pro,dm=w, j podm, (3.51)

value

|, = j p’dm= I (x2 + yz)dm. (3.52)
(m) (m)

is mass moment of inertia about the axis Oz (or second moment of

inertia) of the rigid body. It is independent of kinematical characteristics of the
body and characterized the distribution of the body mass relative the axis Oz

If density y is constant (body is uniform) through the body we get
dm=ydV,

| = Ipzdm:yj(x2+y2)dv. (3.53)
(m) (V)

For uniform body moment of inertia about the axis Oz characterizes

purely geometry of the body.
Finally total angular momentum of the body about the axis is

L, =1,0,. (3.54)

3.4.7. Equation (or law) of arigid body rotation about a fixed
axis

Scalar form of Moment angular momentum principle (3.42) for a body
rotating about fixed axis Oz is:
dL, _
dt ©
put Eg. (3.54) into the principle:
d, d(l,»,) = do

= | 2=1 ¢,

dt dt ° dt £

||z€z =M. (3.55)
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Eqg. (3.55) is equation or law of a rigid body rotation about a fixed
axis.

Substituting ¢, for ¢ we get differential equation of a rigid body rotation
about a fixed axis:

| ¢ = Mie)-l (3.56)

The equation (3.56) is second order differential equation, it needs two
initial conditions for solution. Result of this solution is law of rigid body rotation
about fixed axis

o= f(b).

3.4.7.1. Mass moment of inertia about an axis

From the equation (3.55) it is clear that mass moment of inertia about an
axis is very important notion for cases of rigid body motion with angular
acceleration. The mass moment of inertia about an axis is measure of rigid
body inertial features in rotation. It characterizes the body resistance to change
in angular acceleration due to radial distribution of mass around the axis of
rotation. So all engineers have to be familiar with methods of mass moment of
inertia about an axis calculation.

3.4.7.2. About mass moment of inertia about an axis
Consider two references: the first is Cxyz with origin in the body mass
center C and the second is OX Y,z displaced under a translation (no rotation)
from reference Cxyz (Fig. 3.30).
Find relation between axial mass-

moment of inertia IZl determined in 21 77
reference  OX Y,z and axial mass- \ °
moment of inertia 1., determined in dm
reference OXyz. The centroidal moment ® ®
of inertia |, is presumed known
o= [ (¢ +y*)dm.

(M)

From Fig. 3.30 we get C

r=r.+p,
e TP Fig. 3.30

or in scalar form
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X, =a+ X

y,=b+y.
We can write eq. (3.53) in the following view

l, = (“.E)(xf + yf)dm=(£)((x+ a)’ +(y+ b)z)dmz

= I(x2+y2)dm+2aj xdm+2bj ydm-+(a* +b?) j dm=

(M) (M) (M) (M)

Mx. = _[ X dm=0,
(M)

=|Mys = [ ydm=0,|=1g,+(a’+b*)M =1, +d°M,

(M)

[ (¢ +y?*)dm=1g,
(M)

[1. =1 +d°M.] (3.57)

Guygens-Steiner Theorem or parallel axis theorem

The total moment of inertia of a body about any axis equals the moment
of inertia of the body about the parallel axis that goes through the center of
mass plus the total mass times the perpendicular distance between the axes
squared.

Consequence: The mass-moment of inertia about the axis that goes
through the body’s center of mass is smaller than moment of inertia about any
parallel axis.

3.4.7.3. The simplest bodies second moments

Thin uniform rod moment of inertia about the axis through the mass
center

The mass element dm can be expressed in terms of a length element

M
d& along the rod (Fig. 3.31, a), the mass of the rod unit length isy = I_ :
M
dm: |_d§,
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Fig. 3.31

Thin uniform rod moment of inertia about the axis through end of the rod
(Fig. 3.31, b)

M
dm=—d¢&,
Izszzdm: | : =
M p2:§2 .
M, M (I® M2
" [t 0]

Thin uniform disk moment of Inertia about the axis through the mass
center:

a) the axis Z. is perpendicular to the plane of the disk (Fig. 3.32), the
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mass element dm can be expressed in terms of an area element ds (ds is
curvilinear trapezoid with height dp and midline pdg) and mass of the disk

unit area y = R’
dm=—""_ds| M %" I\/IRZ
ds= pdedp 00
Zc ds
do
/C- Ye C (pp dp Y
i
X R
X
Fig. 3.32
b) the axis X,

is in the plane of the disk, distance between the aria mass
center and axis X. is pSing (first and second order infinitesimal are
neglected):
. M ¢ 5(1-cos2 |\/|R2
Lo =—z || PP’y = zjjp( ¢jcwmlp—
7R 4% TR %% 4

3.4.7.4.

27 R

Radius of gyration

Using radius of gyration i, second moment of inertia of a body of mass m
can be determined as moment of inertia of a particle of the same mass

I|m
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3.4.8. Examples | Z

Example 1. Disc H of a mass m;=40 kg and
radius R=1 m rotates about vertical axis z :1 L
with an angular velocity w,,=2rad /sec (Fig. DAV

3.33). A particle K of a mass m,=10 kg is at
the point A. H
It is needed to analyze the two periods
of the system motion.
The fist. At some moment of time (t=0)

a couple with a moment M, =120t begins

acting on the system. At t=r=1sec this
action is stopped. Determine angular velocity

o, of disc H at moment t=r. 137 E—
The second. Disk H obtained angular f J

velocity @, and continues to rotate due to Va

inertia. At some moment t;=0 (it is new time X

reference) the particle K begins relative Fig. 3.33

motion from the point A along the channel AB
by the law AK = s(t,) =0.5t, . Determine an

angular velocity o, of thebody Hatt, =T =3 sec .

Solution

To solve this problem the moment angular momentum principle in
projection on z-axis is used:

dL
2= M:, 3.58

The first period. During the time from_t:O_to t =7 there are forces acting
on the system (Fig. 3.34): gravity forces mg,m,g, a couple with a moment My,

and reactions of bearing X,,Y, and trust bearing X_,Y.,Z.. As o, and M,

are positive values, they are directed counterclockwise.
System consists of two bodies: disk H and particle K. The total angular
momentum of the system is
L,=1,+1,.
Angular momentum of the disk as rotating body is:
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2

R
where |, = mlz is moment of inertia.
So
R2
|, = Mt .
2
Angular momentum of the particle is:
l,, = mV,R,

where V, = wR is particle velocity.
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So
|, =mRw.

So the total angular momentum is:

2
L, = leR 0+ mZRZa):RZa)(%ml+mzj. (3.59)

All forces except moment M, don’t create moments about z-axis, SO
D> M:=M,=120t. (3.60)

Substituting the expressions(3.59) and (3.60) in the equation (3.58):

d 1
| RPw| = =120t.
dt[ a’(zn“mzjj °

Separating the variables:

R? (%ml + mzjda) =120tdt,

RZ(%ml + mzﬁ do :120J1'tdt,
@ 0

w, t 2
=120—
Q) 2 0

T

R2£%m+ mzja)
2

1
R? (Eml + mzj(a)r — ) =120%.

From the last equation angular velocity at time t =7 =1sec:

2 2
120 1201 ad
®, = 1 2 + Wy = 1 +2:4(—j.
Rz(zmﬁmzj 12(2-40+1o) e
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N |

Fig. 3.35

The second period. When the moment M, stops its action, disk H rotates
by inertia with an angular velocity o, . Gravity forces m g, m,g and reactions of

bearing X_D,Y_D and trust bearing X_,Yz,Z. are applied to the system

(Fig. 3.35). These forces act t;=0 to t;=T and the particle K begins its motion
along the channel.
In this part of the problem the angular momentum principle in projection

on z-axis is also used:
dL
zZ _ e
E MZ.

at
But in this case all forces don’t have moments about z-axis, so
D> M:=0.
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Then
dL,

=0=L, =const.

It is the second corollary from moment angular momentum principle. So
the angular momenta at the moment t, =0 and t, =T are equal, i. e.

Lo=La, (3.61)
The total angular momentum at initial moment of time t, =0 is:
I‘zO = IzOl + IZOZ’
where
R2
=1 -w, | =2
z0; z T z 2
o)
mR’
L, =—— o,
z0; 2 T
and
o, =MV,R=mR°o,.
Then
R? 1
L, =mlT-a)T + msza)T = a)TR2£§nll+ mzj
The total angular momentum of the system at final moment of time is:
Ly =1z +14. (3.62)
Angular momentum of disk:
R2
IZlelz-a)Lr:mlT-a)r. (3.63)

The particle has compound motion, so angular momentum consists of two
parts:

_1e r
IzT2 - IzT2 +|zT2’

where |7 is moment of linear momentum of the particle in bulk motion about
Z-axis;
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I;Tz is moment of linear momentum of the particle in relative motion;

I;T2 = (Fx qf) = (Fx m\7r) =0, because the linear momentum crosses
zZ z

the z-axis, so it doesn’t have moment about the axis.
Now we have

115 = (), = (), =k,
where V° = @, KO is bulk velocity of the particle,

KO=A0O-AK=R-AK =R-0.5t, =R-0.5T.

Then
|, =15 =M@ KO® =m,e (R-0.5T)". (3.64)
Substituting expressions (3.62) and (3.63) in equation (3.64):
2 2
L, = leR - + Mo, (R-05T) = w; (leR + mZ(R—OEI')Z].(B.GS)

Using equation (3.61) we have:

2

wfRz(%m+mzj:mr(ml; +mz(R—O.5I')2j.

From here:

2( 1 2L
o.R (Zmﬁmzj ) 41(2 40+1oj =53(@j
)2

Wr = 2 - 2
leR +m(R-05T) T 1101-05.3 =

So if the particle approaches to the axis of the body rotation, the angular

velocity will increase.
Answer:
rad rad
o =4 — |, =53 —|.
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Example 2. A circular plate of mass M and

radius R rotates about an axis z, parallel to the
central axis of the plate (Fig. 3.36). There is a
particle of mass m at point A on the disk. If the
system initially at rest, determine the angular
velocity of the disk, when particle is at point B and
has the relative velocity u.

Solution

Forces acting on the system are gravity
forces and reactions of supports. The gravity
forces are parallel to z-axis so they don’t have
moment about this axis. Reactions of supports
are applied on the axis so hey don’'t have moment
about this axis too.

That's why principle of angular momentum
conservation is used:
L, = const.

So the angular momenta at the initial
moment t=0 and final t are equal, i.e.

L,,=L,. (3.66)

The angular momentum at initial moment of

time is zero, because the system was at rest, i. e.:

Fig. 3.37

L, =0.

The angular momentum at final moment of time when the particle is at
point B (Fig. 3.37) is:

L, =1, +14,

4

where Izp Is angular momentum of the particle at final moment;

|, is angular momentum of the disk at final moment in accordance to eq.(3.54)

|, =1,0.

To find moment of inertia of the disk parallel-axes theorem is used,

because axis of rotation doesn’t coincide with central axis of the disk:
MR?
_ 2 _
IZ—IZC+MR, IZC——2 X
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Then

2
| =(| +MR2)-a): MR MR | 0= MR,
Az 2 2

The particle has a compound motion, that's why

_1¢€ r
=18 +10.

A moment of linear momentum of particle in bulk motion is
I3 = mvea=mwa’.
A moment of linear momentum of particle in relative motion along the line
AB is:
|, =mvia=mua.
Then

|, = Mwa® + mua.

So using equation (3.66) we have:

OngRza)-l- mwa® + mua,
—mua

0)23 .
2|\/|R2+ma2

—Mua
Answer: o =

“MR? +ma’
2

Example 3. A heavy ball is attached to the end of weightless rod of length
|. The rod rotates about a vertical axis z in an oil bath (Fig. 3.38). Qil force of

resistance is proportional to the angular velocity of the rod F =amw. o is a

constant coefficient, mis the ball mass. The initial angular velocity of the rod is

a)o_
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b — — — — [ B— — — — — —

Fig. 3.38

Determine the time t required for the rod to halve its angular velocity and
the number of revolution of the rod correspondingly.

Solution

In this problem angular momentum principle in projection on z-axis is used.

d, .
m:ZMf (3.67) | 2

External forces are (Fig.
3.39): gravity force of the ball m§,
force of resistance F =amw and

reactions of bearing § and trust
bearingﬁ.
Angular momentum L, s

angular momentum of the ball, the
rod is weightless and its angular
momentum is zero:

L =1, =mVgl =mol®.

Only force of oil resistance

has
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moment about z-axis, so
MY =-F .| =—amal.

Substituting these expressions to the equation (3.67), we obtain
differential equation:

d(me?)
it

After some transformations and separating the variables:

do__a 4

10 I

=—amol.

Integrate right and left parts using as limits of integration conditions given in the
problem:

a)%d

—=-Zfdt, Ino| =-"t
@ |+

| fo

“%

2 o |7
2}

20}

Finally we get

r=—In2.

I
Answer: 7 =—In2.
a

3.4.9. Short problems

Problem 1. Along the rod AB (Fig. 3.40) a sliding

8 bar C moves according to the law AC=0.2 + 1.2 t.

The sliding bar is considered as a material point with

1l the mass m = 1 kg. The moment of inertia of the shaft

OA with the rod is I, = 2,5kgsm®. Determine an

Uy angular velocity of the shaft at the moment t=1 s if
oAl the initial angular velocity is wq= 10 rad/s.
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Problem 2. Under the action of internal forces
the 20 kg flywheel 2 (Fig. 3.41) untwists to the

relative angular velocity @, =40rad/s. The
flywheel central moment of inertia is |, = 1Kkg-m’.
Determine angular velocity @ of the holder 1 if
moment of inertia is |,=4kg-m’, the length is
| = 1m.

Fig. 3.41

Problem 3. A body rotates about vertical axis Oz under action of a
couple with moment M = 16 t , Nm (Fig. 3.42). Determine a moment of inertia
about axis Oz if it is known that at the moment t = 3 s an angular velocity is
w = 2 rad/s. At t= 0 the body is at rest.

Tk |
Al & 11| A
o
[} k Ilr
— C“) i
Al oAl
Fig. 3.42 Fig. 3.43 Fig. 3.44

Problem 4. A body rotates about vertical axis Oz under action of two
couples with moments M1 = 3i+ 4 j+5k and M.=4i + 6] + 4k. The moment
of inertia about axis Oz is equal 3 kgem®. Determine angular velocity of the
body at the moment of time t = 2 s if at initial moment the body did not rotate.

Problem 5. The homogeneous disk (Fig. 3.43) with the radius r = 0.1
m and the mass 5 kg is connected with four rods. Every one of them has
length 1=0.5m and mass 1 kg. The system begins rotating under action of
external forces with angular velocity w = 3t. Determine a moment of external
forces about axis Oz.

Problem 6. A homogeneous rod (Fig. 3.44) with the mass m=3 kg and the
length | =1 m rotates about a vertical axis Oz with angular velocity
wp = 24 rad/s. A constant moment of braking forces is applied to the shaft OA.
Determine a magnitude of this moment if the rod stops in 4 s after braking
beginning.
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“a Problem 7. A tube (Fig. 3.45) rotates about

Al vertical axis Oz, its moment of inertia is |, = 0,075
<> kg * m? Along the tube under action of internal
Lo M forces of the system the ball M with a mass
[ — , m=0,1kg moves. When the ball is on axis Oz,
Y/ ‘ angle velocity iswy = 4 rad/s. At what distance | is

Al 5 angle velocity equal to 3 rad/s?

Fig. 3.45
LECTURE 6

3.5. Plane Motion Dynamics
3.5.1. Differential Equations of a Rigid Body Plane Motion

Let us analyze what are conditions for realization of rigid body plane
motion.

Remember that plane motion is motion in which each point of the moving
body remains at a constant distance from a fixed plane. Each point of the body
moves in a plane that is called the plane of the motion.

Rigid body is in plane motion if

e the rigid body mass is be distributed symmetric with respect to the plane
that is parallel to the plane of motion (such bodies we shall call slablike
bodies); this plane will be denoted as xOy;,

e all forces acting on the body are in the xOy plane.

As we know from kinematics plane motion can be represented as
combination of the two simplest motions: translation with the body mass-center
and rotation about the axis Cz passes through the mass center perpendicular to
the plane of motion. The translation is characterized by the principle of body
mass center motion in vector form (3.24):

M d\_iC _ If(e),
dt
or in scalar form
M.. _ F(e)’
TC X(e) (3.68)
MyC = y
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The rotation is characterized by angular momentum principle for a system
of particles with respect to the noninertial reference because rotation is about
moving axis Cz through the body mass center

di. o - /=
<=M (F°), 3.69
dt ; C( k ) ( )
projecting onto the axis of rotation Cz we get
L, =1_0o,, (3.70)
where |, =const , and
d(l . o n
A0, Sw (k) 671

So equations (3.68) and equation (3.71) together form the system of
differential equations of a rigid body plane motion:

My, =F°, (3.72)

k=

[HEY

Let us analyze the rolling of slablike bodies such as cylinders, spheres, or
plane gears along straight line on the fixed plane.

The first case is rolling of a body without slipping.

A roller has the weight G and radius R. It is pulled along a rough
horizontal floor by a force T applied to the end of a string wound round the
drum, as shown in Fig. 3.46 a. The force T is applied at an angle « to the
horizontal. The radius of the drum is a and the radius of gyration of the roller is
£ . Find the equation of motion of the axis C of the roller.

In the Fig.3.46 b the free body diagram of the cylinder is represented.

—

Force of gravity G and tension T are applied forces, normal force N and

—

force of friction F_ are reactions.

We apply the equations of plane motion (3.72):
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?C > X=
a4
\ :
N N\
a b
Fig. 3.46
MX =Y F*=Tcosa—F, (3.73)
My, =Y F =Tsina-G+N, (3.74)
.6, =YM_(F)=Ta-F,R. (3.75)

We note that for body that rolls without slipping the friction force between
the wheel and supporting surface is generally less then it maximum value

determined by Coulomb’s low F, . = f N. Therefore the value of friction

fr max

force must be determined form the solution of the system of equations.
There are five unknowns in this system: X., V., ¢,=¢,, F,, N.

Therefore to be solvable the system of equation must be added by two
additional equations (equations of constraints).

If a rigid body (cylinder) rolls without slipping on a fixed surface, the point
that is in contact with the surface has zero velocity. So the relation between the
velocity of the body mass center and angular velocity may be written as the
following

Ve| = Ve | =|@,|CP =|,| R, (3.76)
or in coordinate form
% =—pCP=—¢R. (3.77)
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The equation (3.77) means that if the cylinder angular velocity is negative
(in clockwise direction) then the projection onto the axis Ox of the mass center
velocity is positive. And by differentiation we get

% =—¢CP=—¢R. (3.78)

The equation (3.78) gives us the relation between unknown linear
acceleration of the mass center and unknown angular acceleration.

The motion of the cylinder mass center in direction normal to the fixed
surface is constrained and it is possible to describe this restriction as the
following

Y. =const, y. =0. (3.79)
As result we have the system of equations

(M%_=Tcosa—F,,
O=Tsha-G+N,

I (3.80)
ICz¢z =Ta- Ffr R,
% =-4,R
From which taking into consideration that | _, = p°M we get
. T R(Rcosa -a)
= , (3.81)
ARy (p°+R?)
2
F, =TZ2 22 +2Ra (3.82)
(/" +F)

It is evident from the equation (3.81) that if RCOS«a > a the cylinder mass

center acceleration is directed to the right and the cylinder will move to the
right, if RCOSa < a the cylinder will move t the left.

The second case is rolling of a body with slipping.

A homogeneous cylinder, with horizontal axis (Fig. 3.47), rolls sliding
down an inclined plane by virtue of its weight. The coefficient of sliding friction
is f . Determine the angle of inclination between the plane and the horizontal

and the acceleration of the axis of the cylinder.
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Fig. 3.47
In this case we may use for solution the system of equations (3.72) with
equation of constrain (3.79):

MX =Gsina-F,,
O0=-Gcosa + N, (3.83)
le.#, = Fy R

At the same time the relation between unknown linear acceleration of the
mass center and unknown angular acceleration (3.78) is not valid in this case,
because the point of contact of cylinder with the fixed surface has nonzero
velocity. In order to close the system of equations instead of equation (3.78) we
have to use the Coulomb’s law for the determination of friction force that acts
on the cylinder during the rolling with slipping (we neglect the difference

between the static f, and kinetic f, coefficients of friction, so we suppose that
f=f="1)

F. = fN. (3.84)

r
Solving the system (3.83) with the equation (3.84) we get
N =Gcosea, (3.85)
% =g(sina - f cosa). (3.86)

To determine the angle of plate inclination we have to consider the case
when motion is without slipping yet slipping impends (motion is on the verge of
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slipping). It means that the relation between unknown mass center linear
acceleration and unknown angular acceleration (3.78) is valid and force of

friction amount to the limiting value F___ = fN . We get the system

MX, = GSinozVerge -F,,
0=-GCosa gy + N,

3 (3.87)
le.¢, =F« R,

% =4.R

From which we determine the required angle « :

a,, =atan(3f). (3.88)

verge

So if a,, <atan(3f) rolling is without slipping, if &
rolling is with slipping.
In general it is possible that we don’t know beforehand is the motion

without slipping or not, but at the same time the values of the static f, and

> atan(3f)

verge

kinetic f, coefficients of friction are given. The algorithm of such problem

analyze is the following:

Step 1. Draw the free body diagram.

Step 2. Form the system of plan motion differential equations (3.72) and
additional equations of constraints (3.78) and (3.79) with the initial assumption
that the body rolls without slipping determine force of friction and compare with

its limiting value F, . = f N. If condition F, <F = f,N holds it means

our assumption is true, in opposite case we conclude that our assumption of
rolling without slipping was wrong. Therefore the body slips as it rolls and the
constraint equations do not hold.

Step 3. Resolve problem for F, = f, N and X. # +¢CP.

fr max fr max

3.5.2. Examples

Example 1. A homogeneous rod of a mass m=3 kg is allowed to fall from
rest, sliding on rough horizontal plane (Fig. 3.48). At angle ¢ =60° determine
the projection of the acceleration of the mass center C on x-axis, if a nhormal
reaction is N=18.17 N and coefficient of friction is f=0.1.

Solution

FBD is presented in Fig. 3.49. The rod has plane motion, so we can write
3 differential equations of motion, but to solve this problem we need only one
equation because we are asked about x component of acceleration only:
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y 4l |
/5]
'S
R
N =
x A T g
Fig. 3.48 Fig. 3.49
m-% =Y F& =F,. (3.89)
k=1

As the rod slides we can find friction force according to Column law:
F.="f-N. (3.90)
Substituting the equation (3.90) into (3.89):
m-X.=f-N.

From here:

M 2

% = f-N =0'1'18'17:0.606( m j
3 Sec

Answer: X. = 0.606(82:2 j

Example 2. A rod of mass m=3kg is placed in a vertical plane at angle
@ =060° in such a way that one end A leans against a smooth vertical wall while

the other end B rests to a smooth horizontal floor (Fig. 3.50). The rod starts to
fall with the acceleration of the mass center W, =i —5.5] . Determine normal
reaction at point A.
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'

> |

B

Fig. 3.50 Fig. 3.51
Solution
FBD is presented in Fig. 3.51. The rod has plane motion, so we can write
3 differential equations of motion, but to solve this problem we need only one
eq. (3.73):

m- % :Z;erk =N,.

According to the statement of the problem a projection of the acceleration
of point C on x-axis is:

X. =1.
So

N, =m- % =3-1=3(N).
Answer: N, =3(N).

Example 3. A rod AB of a mass 2 kg, sliding along rough horizontal
plane, begins to fall in vertical plane (Fig. 3.52). At angle ¢ =45° determine a

normal reaction N, if projection of mass center acceleration on y-axis is
.. m
Y. =-5.64 5 |-
sec
Solution

FBD is presented in Fig. 3.53. The rod has plane motion, so we can write
3 differential equations of motion, but to solve this problem we need only one
equation because we are asked about y component of acceleration only
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X Fﬂ..
Fig. 3.52 Fig. 3.53

m-y. => Fy, =N-mg.
k=1
From this equation the normal reaction:
N=m-y.+mg= 2-(—5.64)+ 2-9.8=8.32(N).
Answer: N =8.32(N).

Example 4. A metal hoop with a radius r = 0.6 m is released from rest on
the 20° incline (Fig. 3.54). If the coefficients of static and kinetic friction are

f,= 015 and f, = 0.12, determine the angular acceleration W of the
hoop and the time t for the hoop to move a distance of 10 m down the incline.

Fig. 3.54 Fig. 3.55

Solution. The FBD (Fig. 3.55) shows the unspecified weight mg, the
normal force N, and the friction force F,_ acting on the hoop at the contact point
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P with the incline. The acceleration W through C in the positive direction axis x
and the angular acceleration ¢ are shown in Fig. 3.55 too. The
counterclockwise angular acceleration requires a counterclockwise moment

about C, so Iffr must be up the incline. Assume that the hoop rolls without

slipping, so that
X. =¢pCP, (3.91)

Yo =0. (3.92)

Application of equations (3.72) gives

m¥, =mg-sin20° - F,, (3.93)
my. = -mg-cos20’ + N, (3.94)
|, @, =F.r, I, =mr?, (3.95)

Elimination of F, between the first and third equations and substitution of
the constraint equation (3.91) give

% :%-sinZO". (3.96)

Note that X, is independent of both m andr.
To check our assumption of no slipping, we calculate F, and N and

compare F with its limiting value. From the above equations
F, =mg-sin20° - mX, =0.1710mg, (3.97)

N =mg-cos20’ =0.9397/mg . (3.98)
But the maximum possible friction force is

Fi me =4(0.9397mg) = 0.1410mg. (3.99)

Because our calculated value of 0.1710mg exceeds the limiting value of
0.1410mg, we conclude that our assumption of pure rolling was wrong.
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Therefore the hoop slips as it rolls and the constraint equation does not hold.
The friction force then becomes the kinetic value

Fr mec = Tin(0.9397mg) = 0.1128mg. (3.100)

fr _max

The motion equations now give

mx, =mg-sin20° - 0.1128mg, (3.101)
X. =g-sn20"-0.1128q, (3.102)
|9, = Fqr, (3.103)

mr’¢p, =0.11128mg - r (3.104)

.Z = % . (3.105)

r

The time required for the center C of the hoop to move 10 m from rest

with constant acceleration is
2X
t= |— (3.106)
\/ X

Example 5. The wheel and its hub (Fig. 3.56) have a mass of 30 kg with
a radius of gyration about the center i, =450 mm. A cord, wrapped securely

around its hub, is attached to the fixed support, and the wheel is released from
rest on the incline. If the static and kinetic coefficients of friction between the
wheel and the incline are 0.4 and 0.3, respectively, calculate the acceleration of
the center of the wheel. First prove that the wheel slips.
Solution

Let's prove that the wheel slips. At point P (Fig. 3.57) we have
instantaneous center of zero velocity (ICZV), because the cord is fixed.
Assume, that we don’t have slipping at point A. So we have ICZV at point A
too. In such case the wheel will not move. So our assumption is wrong. So we
have slipping of the wheel.

Analyze forces acting on the body: gravity force ml§, normal reaction

N of the incline, tension force T and friction force F_fr We have ICZV at point
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P and the body moves down. So the velocity of the point A is also downwards.
Thus F, has opposite direction.

The wheel has plane motion. So we can write differential equations of
motion for the wheel (3.72). For the problem equations (3.72) have view:

i

Fig. 3.56 Fig. 3.57

MX. =-T —F, + mgsin 60°
My. =—N + mg cos60°; (3.107)
lcop,=-T-r+F,-R

z

There are six unknowns in this system: X_, Y., ¢,,T, N, F,. Therefore

to be the system of equations solvable we must add three additional equations
(equations of constraints).

The motion of the wheel mass center in direction normal to the fixed
surface is constrained and it is possible to describe this restriction as following

Y. =const = Y. =0.
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If a rigid body (wheel) rolls with slipping on a fixed surface, we can find
friction force using kinetic coefficient of friction:

F. =k -N.
As there is ICZV at point P, we can add one more equation:
Ve|=Ney|=0-CP=w-r
or in coordinate form
X =—¢,-CP=—g, 1.
This equation means that if the wheel angular velocity is negative (in

clockwise direction) then the projection on the axis Ox of the mass center
velocity is positive. And by differentiation we get

XC:_qbz'CI:):_(bz'r'

As a result we have the system of equations

[ MX. =-T — F, +mgsin 60°; (3.108)
My, =—N +mgcos60°; (3.109)
< lcg,=-T-T+F,R (3.110)
Ve =0; (3.111)
F. =k -N; (3.112)
\ Xo=—@,-T. (3.113)

Substituting equation (3.111) to (3.109):

N = mg cos60°.
Then friction force will be:
F, =k mgcos60°.

Taking into account that moment of inertia is
lg, =m-i;
and considering equations (3.108), (3.110) and (3.113) we get:
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MX. = —T —k mg cos 60° + mgsin 60°;
2 XC _ o
m- R -(—Tj_—T -I + Rk, mg cos 60°.
From here the acceleration of the wheel mass center is:

gsin 60° -k, gcos60° — kg CoS6OR
% = r :1255( mj
X RS : o |
1+r2

Answer: X. =1.255(Ser22).

3.5.3. Problems for self-solution

Problem 1. A heavy circular cylinder of mass m is suspended by a cord,
one end of which is wound round the middle part of the cylinder while the other
end is fixed at B (Fig. 3.58). the cylinder is allowed to fall from rest so that the
cord unwinds. Determine the velocity of the cylinder axis after it has fallen a
distance h. Also find the tension T in the cord.

Fig. 3.58

Problem 2. Roller of mass m and central moment of inertia p=r~2 rolls
without slipping along the horizontal rail under the action of constant forces F

and F, (Fig. 3.59). For known R and r, determine W. and friction force.
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3.5.4. Short problems

Problem 1. The homogeneous rod AB of lengthl m and mass m=2 kg
from a state of rest at angle ¢ = 45° to a vertical begins sliding on a smooth
wall and a smooth floor (Fig. 3.60). Determine angular acceleration of the rod if
at the points A and B normal reactions are Ny = 7,3 N and Ng= 12,2 N.

Ia .
SRR

e i
. A x
2

Fig. 3.60 Fig. 3.61

r:\%mx R
b

Problem 2. At motion of the rod AB (Fig. 3.61) of the length 0,5 m in the
plane Axyy, at the given moment of time the angle is ¢ = 30°, normal reaction
is N=12 N, friction force is Fy= 1,2 N. Determine a magnitude of angular
acceleration if the moment of inertia is Ic, = 0.08 kg-mz.

Problem 3. A homogeneous cylinder of a mass m=6kg and a radius
R = 0.08 m falls in vertical plane unwinding a cord (Fig. 3.62), tension of which
is T = 19,6N. Determine an angle velocity w of the cylinder at the moment of
timet=0.4s,if atty = 0 an angle velocity is equal to zero.

A,

B

S s

L=

X

Fig. 3.62 Fig. 3.63

Problem 4. A rod AB of a length 1 m and a mass 2 kg, leaning on a
vertical smooth wall at an angle ¢=30°, begins sliding (Fig. 3.63). Determine a
normal reaction Ng at the point B, if a projection of mass center acceleration C
on Oy-axis has the value yc = -1,84 m/s?.
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LECTURE 7

3.6. Work-energy principle
3.6.1. Work

3.6.1.1. Elementary work (work done by a force during
an infinitesimal displacement)

Elementary work or work done by a

force F during an infinitesimal dr
displacement dr of its point of M
application M (Fig. 3.63) is the dot (scalar) 04
product of the force and a radius vector

differential:

d’A=Fdr =Fdr COSa.I (3.114) F

Dot product result is scalar value so
elementary work is a scalar quantity.
Work units of measuring expressed in

J (joule), [J]= Nm.

It is possible to express the infinitesimal displacement dif in term of
infinitesimal path

Fig. 3.63

dr =dsr
dr =ds,
SO
d’A= F ds7 = Fdscosa. (3.115)

If the force forms an acute angle (see Fig. 3.63) with the direction of the
displacement, the work done by the force is positive; if the force forms an
obtuse angle (Fig. 3.64) with the direction of the displacement, the work done
by the force is negative; if the force forms right angle (Fig. 3.65) with the
direction of the displacement, the work done by the force is zero :

>0if 0<a<rxl?2,
dAs =0if a=x/2,
<0if r/2<a<r.
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Another form of elementary work:
a) if we denote product of F cOSa as F,, we obtain next

d’A=F.ds, (3.116)

where F_ is the projection of the force on the axis which is tangential to the

trajectory of the particle;
b) if we determine radius vector differential as

dr = ar dt = vdt,
dt
then
d'A= lf\7dt’ (3.117)

where V is the velocity of the particle.
From (3.117) follows that if force is
applied at the instantaneous center of

zero velocity of the body in plane motion
& ' \\“& (Fig. 3.66) its elementary work is equal
Fig. 3.66 nil. For example from Fig 3.66 we have
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d'A(F,)=F, v.dt =0

c) if we determine radius vector differential by its projection on the
coordinate axes

dr = dxi + dyj + dzk ,
we can get cordinate form of the equation (3.114):

d’A=F(dxi +dyj +dzk) = F,dx+ F,dy + F,dz. (3.118)

3.6.1.2. Total work (work done by a force during an finite
displacement)

The work done by the force during some dr Msin
finite displacement M. M (Fig. 3.67) is

in fin
integral of the elementary work over the
trajectory of point of application of the force

A= f Fdr = j FdrCosa.

MinM i M;inM i

(3.119)

For the general case work depends on
the form of trajectory.

Fig. 3.67

3.6.1.3. Theorems about work

Theorem 1. If a number of forces act at the same particle, the work done
by the resultant force is the algebraic sum of work done by a separate force

d'A = R = (iﬁjd? =S Fdr =Y dA..
i=1 i=1 i=1

Theorem 2. The elementary work done by a force during compound
infinitesimal displacement is equal to the algebraic sum of the elementary
works during the components of displacement

d’A= Fdr = |dF = dry + dry| = F(dF + dr, ) = Fdr; + Fdr,
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3.6.1.4. Sum of elementary works of the forces applied
to the rigid body

Let us assume that some forces are applied to the rigid body. The body

can move free in space. For purposes of dynamic it is convenient to select

auxiliary frame of reference O,x Y,z such as has origin in any point of the body

and moves transnationally (Fig. 3.68). Now any displacement of force Fu«

application point M, can be regarded as a combined translation of auxiliary

frame of reference and rotation about its origin with angular velocity @:

X1

Fig. 3.68

e =To, +Pc:
dr, = dr,, +dp,,

from kinematics of rigid body general motion we have

d£k :E)Xﬁk'
o, = dry, +(@x B )dt = i, +(edltx 3, ).

Sum of elementary works of forces is
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Now the elementary work is

Zd’A Zder +Z(  x Fic) ot

In the second sum in brackets we have moment of force F« about origin of
auxiliary reference O;:

Mo, (Fic)=5,x F,
and determine wdt as vector of elementary angular displacement 7]
wdt =6

S dA=Y Fudiy + Y Mo (Fi ).
_ k=1 k=1 k=1

Factors dFOl and @ are independent of indexes of summation so can be
factored out from the sums:

id'Az [iﬁkjdfq +(iﬁq (Ek)]é
k=1 k=1 k=1

Sums in brackets are total force F* and total moment MQ of the force system
about origin O;:

SO

— n —_—
_SF
k=1

Mo =Y Mo (Fi)
k=1
Finally we get

> dA=F di, +Mol§.‘ (3.120)
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The algebraic sum of the elementary works done by forces applied to the
body is equal to work done by the total vector of the force system during the
elementary displacement of origin and work done by the total moment about

this origin during the elementary angular displacement.

3.6.1.5. Some case of work determination

1. Work of couple of forces M applied to a rigid body rotating about fixed
axis O,z axis

B . =0
dA=F dri, +Mof=| . :I\/IH:(I\/I) do=M.do,
Mo, =M :
|d'A(K/T)= M. do, (3.121)

where dg is elementary angular displacement about axis of rotation, it is

positive for counterclockwise rotation.

From eq. (3.121) clear that elementary work of couple may be positive for
the same directions of couple and body rotation (Fig.3.69, a) or negative for
opposite directions (Fig.3.69, b):

Fig. 3.69
140




For case of constant couple total work done by couple during finite turning on
angle Ap=¢@, @, is

A(M ) - I\/IZ((oﬁn_(Din).l (3.122)

2. Work done by gravity.
Let us analyze work done by Z

gravity of particle G during its Mo (%0.Yo20)
displacement dz (Fig. 3.70) assuming \
that positive direction of axis Oz is \
vertically up, it means opposite with \

direction of the gravity. Using coordinate .
form of elementary work (3.118) we get Y
d'AG) = G,dx+ G,dy + G.d et N
=G X+ y +G,dz < _
y 0 G(Os 01 mg) y
But G, =0and G, =0 so
X Fig. 3.70
d'A=-mgdz. (3.123)

Using the last equation we can obtain total work done by gravity:
AG) = .[—gmdz:—gmf dz=-gm(z - z,). (3.124)
% Z

Denoting h= |ZO - 21| we get another form

A(G) = igmh-l (3.125)

where sign “+” corresponds motion of the
particle downwards, sign “” corresponds
motion of the particle upwards.

3. Work done by elastic force.

Consider a spring constrained to move
along axis Ox, coincide the origin O of the axis
with the end of undeformed spring, lqis natural
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N
length of the spring, C, [C]:—, IS spring constant or stiffness coefficient.
m

Particle is attached to the spring free end. Using equation (3.114) for
elementary work done by the spring force during positive infinitesimal
displacement of the particle we have

d'’A(F gr) = F el = = —cxdXx. (3.126)

Total work done by spring force during finite displacement X, is
_ " 1
A(Fsr) = j—cxdx: —Ecxlz. (3.127)
0
In three dimensional case for linear spring we have
I'n

A(F s ) = f—chF = —%C(rfn2 -r%). (3.128)

The same can be repeated for a spiral spring with stiffness coefficient C,
[C] = Nm, position ¢ =0 corresponds untwisted spring:

dAM s ) =M, ,dz=—cpdp, (3.129)
. “ 1,
AM spr):j—qodgo:—zqol . (3.130)
0

4. The work A" done by internal force of a rigid body.

The total work A" done by internal force of a rigid body during any
displacement is equal to nil.

3.6.1.6. Power

Power is the rate at which work is performed. Power can be obtained as
differential of work with respect to time:
for power of force
—. dAF) Fdr —_
N(F)= (F) = =FV,
dt dt
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IN(F) = FV. (3.131)
for power of couple of forces using equation (3.121) we get
N(M): d’A(M) _ M., do _M
dt dt
IN(M) =M, ,. (3.132)
Power is scalar value, it is measured in Watt.

Za)Z’

LECTURE 8
3.6.2. Kinetic energy

The kinetic energy of a particle is equal to half of the product of the
mass of particle and the square of its velocity:

T=—o-.
5 (3.133)

Kinetic energy is a scalar. The units are the same as for work (i.e. Joules, J)
The kinetic energy of particle system is equal to the sum of kinetic
energies of all particles:

n 2
T= Z_:m‘% (3.134)

From (3.134) it is clear that the kinetic energy is always positive. The
kinetic energy of particle system is equal to nil only if all particles of the system
are at rest.

3.6.2.1. Koenig’'s theorem

“my” .
Assume that T = Zm‘—k Is kinetic energy of a system determined in
i=1
2
0, m (V'
inertial frame of reference Oxyz; denote as T' = Zﬁ
i=1
a system of particles determined in noninertial frame of reference Cx Y,z ,
where C is the center of mass of the system, CX Y,z moves translationally with

respect to fixed reference Oxyz (Fig. 3.72).

kinetic energy of
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X1

Fig. 3.72

Absolute velocity V' of k-th particle is

—a —e —r

VA=V + V!, (3.135)

where V, is bulk velocity, V is relative velocity.
For translational motion of moving reference Cx Y,z we have

Ve =V, (3.136)

Put equations (3.135) and (3.136) in to equation (3.134)

n 2 n n VARV n r2
T=y Mk :zm‘<v %) z”W sy et S IL (5.37)
k=1 k=1 k=1 k=1

In the first sum V. is independent of index K so the sum can be factorized:

LmVeS (&m ). My
2. > _[Z7JVC T
k=1 k=1

n
where M = Zm( is total mass of the particle system.

k=1
The second sum can be transformed as
VARV odp] . & dp d(Q
2 rrl( r — el S k
= Zm‘ dat | ¢ kzi‘ dt dt ;pr “
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Comparing the last brackets with the equation for mass center position (3.19),
and remembering that C is origin of moving reference (p. = 0) we obtain

mef?k =Mp; =0,
k=1

SO
MV, - d{& o
ZZM:%'_[ZW/&):O-
k=1 2 dt k=1

The third sum in equation (3.135) is kinetic energy of a system of particles

n V r2
determined in noninertial frame of reference Cxlylzi:Zm(T" =T".
i=1
Now equation (3.135) has view
Mv.? _,
T=—F—-+T ‘ (3.138)

Kbnig’s theorem:
The kinetic energy of an aggregate of particles relative to any reference is
the sum of two parts:
— fisrt is the kinetic energy of a hypothetical particle which has the mass equal
to the total mass of the system and moves with velocity of particle system

M (ve)*

mass-center ———;

— and second is the kinetic en_erg% of a particle system with respect to the
auxiliary frame of reference which has motion of translation and origin in the
particle system mass-center (Konig's reference system).

3.6.2.2. Kinetic energy of arigid body

Rigid body can be presented as an unchangeable system of particles, then
kinetic energy of the rigid body is

2
2. mv 1
T=) 1 ==|vdm. 3.139
X553 i (3.139)

Consider a translating rigid body of a mass M . All of its points have a
common velocity V, so the body kinetic energy is
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MV L g MV
T=) 5 _Zivdm_ o

T=—-. (3.140)

‘ Mv?
2

The equation shows that kinetic energy of translating rigid body has the
same view as kinetic energy of a particle.
Consider a rigid body rotating about a fixed axis z through O with

angular velocity @ . Its kinetic energy is
2

1 1 2 | 6,0
T=§£V2dm=|v=a)p|=§|\_[l(a)p) dm: 02 )
I 2
T- 0220) | (3.141)

where p is the shortest distance between the axis of rotation and arbitrary

point of the rigid body, |, = Ipzdm is the body moment of inertia about the
M

fixed axis Oz, | ,, = const for the rigid body.

Consider a rigid boy in plane motion. Present plane motion as
translation with mass center C and rotation with angular velocity @ about
axis Cz. In accordance with Konig's theorem (see Fig. 3.72) we get

T M (VC)Z'FI(Vir)de

M%) +I(a)p)2dm M (%) 1@’
2 o2 2 2
_M (\70)2 0
T= > + > (3.142)

where |, = Ipzdm is the body moment of inertia about the axis through the
M
body mass center, | ., =const for the rigid body.
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Another form of kinetic energy equation for a rigid body in the plane

motion is obtained for ICZV as pole of translation:
2 2
v)dm . wp) dm
M M

I 2
wIPde: Pz(;)a)

M

I Pz (t)a)z
2

T= : (3.143)

where |, (t)= jpzdm is the body moment of inertia about the axis through
M

the ICZV, |,,(t)is function of time because the ICZV position changes with
time.

3.6.3. Work-energy principle for a particle

Remember and write the Newton’s second low for constrained particle
(1.26):

mW=F + N, (3.144)

Multiplying the equation (3.144) by elementary displacement dr of a
particle we obtain

mWdF =(|f + N)dr, (3.145)

rewrite the left side

= = 2
W = mYdF = mI-gv = mvdv = d| ™ |— g1
at at 2

rewrite the right side

—

(F+N)dr =dA

So equation (3.145) has view
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dT =d'Al (3.146)

Principle of work and kinetic energy for a particle in differential
form 1: increment of the kinetic energy of a particle during its infinitesimal
displacement is equal to elementary work done by all active forces and
reactions during the same displacement.

Dividing the equation (3.146) by the elementary interval of time dt we
obtain another form of (3.146) :

d(nw?) dT
dtl 2 dt ’

/ F+N)dr .
dA_(F+N)dr NGE)
dt dt
dT — *x
—=N(F ).
o ( )‘ (3.147)

Principle of work and kinetic energy for a particle in differential
form 2: the derivative of the kinetic energy of particle with respect to the time is
equal to the power of the resultant force.

Let the particle move from positon M, to positon M. (finite

fin
displacement). Integrating the equation (3.146) between limits M, and M,
we obtain the following:

Mfin Mfin
de: j d'A(F),
Min IVlin
Tin =T = A(F) + ANN) | (3.148)

Principle of work and kinetic energy for a particle in integral form:
change in kinetic energy of a particle during the finite movement equals the
work done on the particle by active and reactive forces during the movement.

3.6.4. Work-energy principle for a particle system

For mechanical system consisting of n particles the forces acting on each
particle may be divided into two classes: those exerted by fields or bodies
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outside the system E(ke) (external forces) and those exerted by other particle of

the system F (internal forces).
For k-th we can say

dT, = d’A(F?) + d'A(F"), (3.149)
where Ifk(e) - resultant vector of external forces acting on k-th particle ;

Ifk' - resultant vector of internal forces acting on k-th particle.
Summing over k, k=1,...,n, we have

dT = > dAF) + > dAR). (3.150)
k=1 k=1

Principle of work and kinetic energy for a system of particles in
differential form 1: increment of the kinetic energy of system of particles is
equal to sum of elementary works done by all external and internal forces
during the infinitesimal displacements of its points of application.

Sometimes it is useful to use another form of work-energy principle:

ar_
dt

S N(E)+ Y N(R). (3.151)
k=1

k=1

Principle of work and kinetic energy for a system of particles in
differential form 2: Differential with respect to time of system of particles
kinetic energy of is equal to sum of powers all external and internal forces.

Integrating the equation (3.150) between initial and final configurations of
the system, we obtain follow

‘Tfn ~T, =Y AR+ D AR). (3.152)
k=1 k=1

Principle of work and kinetic energy for a particle system in integral
form: Change of the kinetic energy of particle system during the finite
displacements of particles is equal to total work done by all external and
internal forces during the same displacements.

Differential form of work-energy principle is used for determination of
accelerations, integral form for determination of velocities.
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LECTURE 9
3.6.5. Force field

A part of space in which any particle is acted on by force is force field. In
general the force may be function of coordinates of the particle, its velocity and
time

F(X,Y,2,X,Y,2,t). (3.153)

If the force function explicitly depends on time the force field is called
nonstationary or nonstedy. Otherwise it is called stationary.

3.6.5.1. Conservative force fields

A force field is called conservative if the following two conditions hold:
1. Field force depend on position of a particle only

F(xY.2). (3.154)

2. The work done by the field force does not depend on the path, but
depends only on the position of the end points of the path.

This statement is the first definition of a conservative force field.
These two conditions eliminate from the considerations all resistance
forces (such as air and water resistance), forces of friction.

Earth’s gravitational field is example of conservative force field. Let us
consider a body acted on only by gravity G as an active force (i.e. as force that
can do work) and moving along frictionless path from position 1 to position 2.
The elementary work done by gravity is then

d'A(G) = —-mgdz. (3.155)

The total work is
2
A(G) = j—mgdz =-mg(z, - z,) = mgz, — mgz,. (3.156)
1

So the work done by force of gravity does not depend on the path, but
depends only on the initial and final position of the particle.

The necessary and sufficient conditions of force field work independence
of the path and dependence on the position of the end points of the path only is
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existing of single valued function of coordinates such as its partial derivatives

with respect to coordinates X)y,Z are equal to the negative of the force
rectangular components

F=_"p-_".p__T (3.157)

where P(X,Y,2) is the function of coordinates called the potential energy

function.
In other words

F= FI+F]+Fk——(—I ZI; @k)_—gradp— VP. (3.158)

The operator grad or V that we have introduced is called gradient

operator. Conservative force field must be a function of position and
expressible as the gradient of a scalar function. The inverse to this statement is
also valid. That is, if a force of a field is a function of position and the
gradient of a scalar function, the force must then be a conservative force
field. This statement is the second definition of a conservative force field.

The work done by the field force IS

jd'A j Fdx+ F,dy+ F,dz) =

— J.(_d_Pd __dy_ﬁd ]
dz

The expression in the integral is exact differential, so

M5 (%,Y2,2)

A,=— | dP=P(x,¥,,2)-P(X,¥,2)=R-P=-AP. (3.159)

M (%, %1,2)

Note that the potential energy, P(X,Y,Z), depends on the reference Oxyz

used or the datum used. However, the change in potential energy is
independent of the datum used. Changing the position of O but keeping the
same direction of Xyz axes (changing the datum) does not affect the value of

difference of potential energy. Since for work calculation we shall be using the
change in potential energy, the datum is arbitrary and is chosen for
convenience.

From equation (3.159) we can say that the change in potential energy of a
conservative force field is the negative of the work done by this conservative
force field on a particle in going from position 1 to position 2 along any path.
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3.6.5.2. Physical meaning of the potential energy function
at the given point of the space

Let us suppose that at the initial position of a particle the potential energy
function equals zero P, =0. The work done by force of the field along any path

between position 1 and 0 is

A, =F.

So it is evident that the potential energy function at the given point of the
space is equal to the work that field force would do to move the particle from
the given position to the position where potential energy function equals zero.

From equation (3.159) we can say also that if a particle travels in a closed
loop, the net work done by a conservative force is zero.

gﬁﬁd? =0. (3.160)

This is the third way to define a conservative force field.
3.6.5.3. Mathematical criterion of force field conservatism

To provide path independence of the work the function in the integral must
be exact differential. It is possible if

—

rotF =VxF =

L E,J|Q) !

j
o 0
ax oy
F, F,

z

oF, oF . oF oF  oF, oF
oX oy ox o0z oz oy

(3.161)

The first equivalence can be rewritten in such way

o[ oP o ( oP
— — :—(—j (3.162)
ox\ oy ) oy\ ox
We know that mixed partial derivatives are independent of the order of
differentiation, so we can say that

o°’P _ O°P
OXoy  Oyox
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3.6.5.4. Conservative field equipotential surfaces

It is convenient to visualize a Conservative field with help of equipotential
surfaces that are similar to level surfaces at the map.

A locus of points that have equal level of potential energy is called
equipotential surface. Equation of a equipotential surface is

P(X,Y,Zz) =const. (3.163)

Features of the equipotential surfaces:

1. There is an equipotential surface at any point of space. Different
equipotential surfaces do not have common points. A total work done by
the field force during finite movement of a particle along the equipotential
surface equals zero.

2. The field force is directed along the equipotential surfaces normal
towards the potential energy decreasing.

3. A total work done by the field force during finite movement of a particle
from one equipotential surface to another is equal to the difference of
potential energy at the initial and at the finite equipotential surfaces.

3.6.5.5. Constant Force field

If the force field is constant in all position, it can always be expressed as

gradient of a scalar function of the form
P(X,y,z)=ax+by+cz+C .
Where a,b,c are constants. The constant force field, then,
F=a +bj +ck.

In limited changes of position near the earth’s surface, we can consider the
graV|tat|onaI force on a particle of mass m as a constant force field given by
G= mgk Thus, the constant for the general force field given about are

a=b=0 and c=-mg. Cleary potential energy of Gravity field
P=mgz+C. (3.164)

3.6.5.6. Force proportional to linear displacement

Consider a body limited by constrains to move along a straight line. A force
directly proportional to the displacement of the body from some position O at
x=0 along line is developed. This force is always directed toward point O; it is
termed a restoring force (BocctaHasnueatowas cuna). We can give this force
as
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F =-cx F,=F,=0,
F=—cxi.

where x is the displacement from point O.
An example of this force is that of linear spring of stiffness ¢ with units

N
of —. The potential energy of this force field is given as follows wherein x is
m

measured from the undeformed geometry of the spring

X’
P=— 3.165
> (3.165)

If the deformation of a spring increases from X; to X, during the motion

interval then the change in the potential energy of the spring is its final value
minus its initial value

2
CX, CX1
AP =—= 3.166
s (Xz -x7). (3.166)
We can repeat the same reasoning for spiral spring. Torsion springs obey

an angular form of Hooke's law:

M,,=-Cg, (3.167)
where M, is the moment of elasticity or torque exerted by the springin N-m,
and ¢ is the angle of twist from its equilibrium position in radians. c is a

constant with units of

g variously called the spring's torsion coefficient,
ra

torsion elastic modulus or spring constant, equal to the torque required to
twist the spring through an angle of 1 radian. It is analogous to the linear spring
stiffness.

The potential energy of this force field is given as

cg”
P=—o, :
> (3.168)
AP = —; (¢22 — ¢12). (3.169)

3.6.6. Law of mechanical energy conservation

Let us consider a motion of a particle system which is acted on
conservative forces only. The change of kinetic energy of system is equal to
work of the conservative forces and therefore is equal to the change in potential
energy of the system
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Tfin _Tin = Pin - I:)fin d (3.170)
or
Tfin + I:)fin = F?n +Tin !
or
E= P+T:const.| (3.171)
The sum of kinetic energy and potential energy for a system remains
constant at all time during the motion of the system in conservative force field.

3.6.7. Examples

Example 1. A mechanical system (Fig. 3.73) initially at rest comes into
operation by gravity. The initial position of the system is represented in the
figure. Take into consideration dry friction and rolling resistance for the body 3
motion. Neglect other resistance forces. The body 3 rolls without slipping, cords
are ideally flexible inextensible weightless.

Determine the velocity of the body 1 when the distance traveled is

§=24m, if m=mm,=1/4m,m,=1/8m;R, =35cm=0.35m;
a=30° 4=30°f =0.20=0.2cm.

Fig. 3.73

Solution

This mechanical system consists of the block 1 that has translation
motion, the pulley 2 that rotates about fixed axis and the cylinder 3 that has
plane motion.

To solve this problem we apply work-energy principle:

T, -T = ZA( Fk(e))+ ZA(@),
k=1 k=1
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Fig. 3.74

whereT; is total final kinetic energy of the system;
T.is total initial kinetic energy of the system:;

N
ZA(Fk(e))is total work done by external forces during the finite
k=1

movement of the system;
n 0

72 > A( FY ) is total work done by
k=1

17:9 f internal forces during the finite
]} / movement of the system.
For our system of rigid bodies joined

N by ideal flexible inextensible cords no
e work is done by internal forces. If we
break the cord we obtain to tension

"~ forces (Fig. 3.75) that are equal by
_ Fi& 3.75 a magnitude and have opposite

direction: T, =—T,. Separately these forces have work, but as they have
different directions, the total work is zero.

So

A(@) _0.

k=1

The system is at rest at initial moment of time, that’'s why kinetic energy at
initial moment is zero:

T =0.

Finally work-energy principle for this problem is:
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n
T, = A( Fﬁ). (3.172)
k=1
The total kinetic energy is the sum of kinetic energies of the three bodies:
T, =T +T,+T1,. (3.173)

For the 1% body kinetic energy is:
1 2
T, = Elel : (3.174)
Taking into consideration that the 2™ body has rotational motion, so:
1
T, = 5 |’ . (3.175)
The 3™ body has plane motion. Then kinetic energy is:
1 1
T, = Emchzs S | w?. (3.176)

We have to express all velocities of the points and angular velocities in

terms of the velocity of the 1* body. Bodies are connected by ideal cord, so:

them:

Vcs :VB :VA :V1'

V V.
V,=o,R, > 0,=-2=-"2,
R R
V V.
Ves=aoRy = o, =—=2=_1
R R
Moments of inertia of the 2" and the 3" bodies:

1 1
l, :Emszz’ 5 :En‘ERsZ

Substituting expressions in equations (3.175) and (3.176) we can rewrite
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2

1 11 V., 1

T==lLo?==-"mR?| -~ | ==mV?, 3.177
2= 2% 225%(@] 420 (3.177)

2
1 11 V, 3
E”EV12+§'§”‘3R§£€1] =ZmSV12. (3.178)

Substituting equations (3.174), (3.177) and (3.178) in (3.173) we obtain
the total kinetic energy system:

1 1 3 21
=—mVi+=mV +-mV =

Now we shall analyze forces (Fig. 3.76), acting on the system. The work
done by external forces is:

mv;”. (3.179)

Fig.3.76

n A(F_ke):A(N)+A(§)+A(X)+A( )+ A(mg)+ A(m,g)+
+A(m,g )+ A(Fy, )+ A(Fy, )+ AM, ).

The works done by the reactive forces X,Y, gravity force of the 2" body
m,gare zero, because they are applied in fixed point, and work done by the

k=1

reactive force R and the friction force F,,are zero too because they are
applied at ICZV.

The work done by the gravity (equation(3.125)) force of the first body is
positive, because the body moves down (Fig. 3.77):
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Fig. 3.77

A(mg)=mgh = mgs sing.
The height h1 is found according to the figure:
h=ssing.

The work done by the gravity force of the 3™ body is negative, because
the body moves up:

A(mg)=-mygh .
The height hCq is found according to the Fig. 3.78:
h, =5 sina.
So
A(mg)=-mgh, =-mgs. sina,
where s, is the displacement of the mass center the 3™ body.

We know the relation between velocity of the first body and velocity of the
mass center of the third body:

Ve =V,

A velocity is a derivative of the displacement by the time, so we can rewrite this
equation:

ds, _ds
dt dt
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S s
J dse, =] s,
X, =3

So
A(m,g)=-mgssin.

The work done by the reactive force N (Fig. 3.79) is zero because an
angle between the force vector and displacement of a point of application is
90°:

A(N) = Ns, c0s90° = 0.

The work done by the friction force between the first body and the incline:

A(Ffr1> = I:frl's.L +€0s180° = _Ffrl'sl'

Friction force can be found according to Column law:
F.,.=fN,

where f is friction coefficient, N is reaction.

Fig. 3.79

To find the reaction N we consider the first body separately and write
equation of motion for this body:

.o

mYc =N-mgcosp.

As equation of constraint we use the fact that the coordinate
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Y. = const,

SO
ye =0.
Then
O0=N-mgcosff = N =mgcosp,
F., = fmgcosg.
Therefore

A(Ffrl):—fmlgcosﬂ-s.

The work done by the moment of rolling resistance is negative because
the moment and the angle have different directions:

A(Mr):_Mr(DS'

To find the unknown angle ¢, we use the relation

=

3 &’
%_d%/
dt  dt R

(g, =2 [a
Rk

(03:%'

The moment of rolling resistance (Fig. 3.80) is a product of coefficient of
rolling resistance and reactive force:
M =6 -R.

r
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Fig. 3.80
To find the reactive force we consider the 3" body separately and write
one equation of motion for this body:

m,y. = R—m,gcosa .
Taking into account that the coordinate of the mass center of the third body

Y. = const

and that's why

we can rewrite the previous equation:
0= R-m,gcose,
R=m,gcosa.
Therefore the moment of rolling resistance is:

M, =0 -mygcosa,

A(Mr):—é-rrggcow%.

So the sum of external forces is:

ZH:A(F_ke) =mgs sinf-mgssina - fmgcosfB-s—o- mgcosa%.
k=1

Making some transformations we have:
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n A(F_ke) = 2.87sm. (3.180)

k=1
Substituting equations (3.180) and (3.179) into (3.172):

21 V,? =2.87sm

From here the desired velocity of the 1% bodly is:

V, = [4.37s =/4.37-2.4=3.24 (%j

Answer: V, =3.24 [ﬂj :
Sec

Example 2. A gear mechanism is represented in Fig. 3.81. The carrier
OC, is rigidly connected with the wheel 2. Determine the velocity of the body 1

when the distance traveled is s =0.05zm, if m=mm,=1/10m,
m,=1/20m, m,=1/10m,R, =0.1m, R, =0.12m,OC, =6R;, R, = 2R,.
Solution

The system consists of 4 bodies.

The 1% body is the load that moves translationally with the velocity V;.
The 2™ wheel rotates about fixed axis passing through its mass center. The 3"
wheel and the 4™ have plane motion. Also the planetary carrier belongs to the
system, but we neglect its mass, so it doesn’t have kinetic energy.

To solve this problem we apply work-energy principle:

1= SAF) AR

whereT, is total final kinetic energy of the system; T. is total initial kinetic

n -
energy of the system; Z A( er) is total work done by external forces during the
k=1

n R

finite movement of the system; ZA( Fk')is total work done by internal forces
k=1

during the finite movement of the system.
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AN

Fig. 3.81

Work done by internal forces is zero, because pins are frictionless,
motions of wheels are without slipping and rolling resistance is neglected.
The system is at rest at initial moment of time, that’'s why kinetic energy at

initial moment is zero: T. =0.
Finally work-energy principle for this problem is:

T =Y A(F_ke). (3.181)
k=1
The total kinetic energy is the sum of kinetic energies of the four bodies:
T =T, +T,+T,+T,. (3.182)
The kinetic energy of the body 1 is:
1 1,2
T = > mV,”. (3.183)

Taking into consideration that the body 2 has rotational motion, so:

1
T, = 5 |’ . (3.184)

The 3" body has plane motion. Then kinetic energy is:
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1 2. 1 -
T3 = E I’T‘gVCS + E |3(()3 . (3185)
For the body 4:
1 1
T4 = 5 m4VCZ4 + E |46()j (3186)

We have to express all velocities of the points and angular velocities in
terms of the velocity of the 1% body. All points on the cord have the same
velocities, so velocity of the point A is equal to velocity of the first body:

V, =V,

On the other hand:

Vy,=0,R, = o, =

VA Vl
R R

As the carrier is rigidly attached to the 2" wheel, angular velocities of
these two bodies are equal:

WO =@, = Vi
c YT 5
R,
Velocities of the points C; and C, (Fig. 3.82) as points on the carrier are:

V. V.
V. = 0,0C, :é-s&, V,, = @0C, :é- 6R,.

The 3" wheel has a contact with the fixed wheel at the point P, so there is
ICZV at this point and we can write the formula for velocity of the point Ca:

Vc3:a)3R3 - wgz%z\éﬁ&/%:%.

Velocity of the point E as a point on the 3" wheel is:

V. :a)3-2R3:%~2R3:%~V1.
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Fig. 3.82

It is easy to see that velocities of the points E and C, are equal. So we
can make a conclusion that the 4™ wheel has instantaneous translational
motion. That's why angular velocity of this wheel is zero: w, =0.

Moments of inertia of the 2" and the 3™ bodies:

1

1
Izzamszz’ |3:§”ER3,'

Substituting all these expressions in equations (4), (5) and (6) we can
rewrite them:

2
1 11 V 1
T2=§|2a)22=§‘§mz|:\)22[€1j :Zrnzvlz; (3.187)
2
1 1 1 (3R 11 3V, 2ImR
T _= V2 +_| 2_ — _ 3., +—— 1 = V2, 3.188
PHLURPE S ZWE(RZ lj 2 Z%Ri(%] e O
2
1 1 1 (6
To=mV +§|4mj=§m4(%-%j - (3.189)



Substituting equations (3.183), (3.187), (3.188) and (3.189) in (3.182) we
obtain the total kinetic energy system:

2
= %W!Mz +%mzvf ZTéRS VARS > (% -Vlj =3.603mV,>.  (3.190)

Final position of the system depends on
the position of the carrier. We know that at final
moment of time the displacement of the body 1

is 5, =0.057 (m). Angular velocity of the carrier l
IS:
V,
0. = —.
R,
Rewriting this equation
ngC — /RZ
dt r
dp. =—|ds,
Jon-2]
S
P =——-
R,
At final moment angle of rotation of carrier
IS:
0057 3
P so05r 0.1 2 i

Fig. 3.83

So the carrier rotates on 90°. Final position of the system is shown in
Fig. 3.83.
Let's « calculate the Work of all external forces acting on the system: graV|ty

forces mlg ng m3g m g normal reaction N reactive forces XC ,Y and

friction force F,_ . So

5 A(FF) = A(R) + A(Xe) AT )+ Ama) + A(ma)-

+A(myg)+ A(m,g)+ A(F,,) (3.191)
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As gravity force of the wheel 2 and reactive forces are applied at fixed

point C, the works done by these forces are zero:

A(Xc,)=A(Y,)=A(mg)=0.

The friction force and normal reaction are applied in ICZV, so the works

done by these forces are zero too:

A(N)=A(F)=0.
Works done by gravity forces are:
A(mg)=mgh =mgs,
A(m,g) =-m,gh, =-mg-3R,
A( m4§) = —m,gh, =-m,g-6R,.
So we can rewrite equation (3.191):
Z A( er) =mgs —mg-3R,—m,g-6R, =0.067mg. (3.192)
k=1
Substituting equations (3.190) and (3.192) in (3.181):
3.603mV12 =0.067mg.
From here velocity of the 1% body is:
v, = 20579 o.43(ﬂJ .
3.603 sec

Example 3. Make the differential equation of the system (Fig. 3.84)

motion, if masses are given: m =m, m, =m; the length of unstretched spring is
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|,,coefficient of stiffness is k. The block 2 is a

homogeneous disk. Neglect masses of the cord and

the spring.
Solution
We assume that the 1* body moves up, so V,
is directed up and we introduce displacement s. to 7
solve this problem we use work-energy principle in ./’/
differential form:
dT & (2o (= r “ “
—=ZN(er)+ZN(Fk').. (3.193) <
dt o P} I 77
Determine kinetic energy of the system: Fig. 3.84
T=T+T,. (3.194)

The 1% body moves translationally with the velocity V,, so its kinetic
energy is:

1 2

T, = E mv,".
The 2" body has rotational motion:
1

T2 = E | 2(022.

Velocity of the point A is equal to velocity of the
1% body (Fig. 3.85):

V, = V..
On the other hand:
V V.
V,=o,R, > 0, =-"2=—"2.
R R
Moment of inertia of the 2™ body:
1
l, ==mR2.
,=>mR

So kinetic energy of the 2" body is:
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2

1 11 V. 1

T,==Lo’==-"mR =X | =—mV/.
2 2777 292 RZ(RZ] 4

Therefore the total kinetic energy of the system:
1 1 3
T :Ernivlz "'Zmzvl2 :valz'
Let’s find the derivative of this expression:
dT 3 _d,,,, 3 .,dV, 3
e 8 RStV bl VRS CEED

4 d 2
whereW, is a projection of the load 1 acceleration on axis s.

The sum of powers of internal forces acting on the system is zero

kZ; N (F_k) _0. (3.196)
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Let's find the sum of powers of external forces acting on the system

(see Fig. 3.86). As reactive forces X—CZ,YC2 and gravity force of the body 2 m,g

are applied at fixed point, their powers are zero:

N(Xe,)=N(Y;)=N(mg)=0.
Power of the gravity force of the 1% bodly is:
N (mj) = mgV, cos180° = —mgV,.

Power of the force of spring is:

N(F,, )= FyVicos180° = —F_V, = —k (51, )V;.
Therefore the total power of all external forces is:
SN (E) = —mgV, —k(s—1, )V, (3.197)
k=1
Substituting equations (3.195), (3.196) and (3.197) in (3.193):
gm\/1 W, =-mgV, —k(s—1,)V,.

Dividing on mV, # O we obtain:

3 k
W, =g (s-ly).
Taking into account that at rectilinear motion of the load
W, =8,
2 k
§=——| g+—(s-1,)|. 3.198
3(9 m( o)j ( )

Equation (3.198) is differential equation of the system maotion.

Example 4. The load A of mass M; moving downwards with the use of a

cord, that is threw over the pulley D, lifts up the load B of a mass M,, that is
attached to the axis of the movable pulley C (Fig. 3.87). The pulleys D and C
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are homogeneous disks. A mass of every disk is M;. Determine the velocity of
the load A at a moment, when it moves down on a height h. Neglect a mass of
the cord, slipping on the pulleys and forces of resistance. At initial moment the
system was at rest.

e
2

NG
&

™ ?<-:::,
7

7
\
ﬁ

i

-
|
o

Fig. 3.87 Fig. 3.88
Solution

We consider forces, acting on the system (Fig.3.88). Reactions Y,Vand

tension force T are nonworking, because reactions are applied at fixed point

and T is applied in ICZV (point P). Gravity force is conservative force. So we
can say that this system is under action of conservative forces and we can
apply the law of conservation of mechanical energy:

T+P=T +P, (3.199)

whereT. is kinetic energy at initial moment of time; T, is kinetic energy at final

moment of time; Pis potential energy at initial moment of time; P, is potential
energy at final moment of time.

The system is at rest, so kinetic energy is zero:
T =0.
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At defining a potential energy of gravity force we assume, that at initial
moment of time it is equal to zero:
P=0.

Determine kinetic energy of the system:
T=T+T,+T,+T,. (3.200)

The body 1 has translational motion, so

1
T, = > M,V (3.201)
For the body 2 kinetic energy is:
1
T, ==1,02. (3.202)
2
The body 3 has plane motion:
1 1
T,==MV2 +=1,07. 3.203
3 2 3Ve, 2 33 ( )

Taking into account translational motion of the body 4:
T,==M,V.. (3.204)

The cord is inextensible so every point on it has the same velocity, so
Ve =V,.
Angular velocity of the 2" wheel is:

VE_ Vs

0, =—=—.
R R

Velocity of the point K on the body 3 is the same as velocities of the
points F and E:
Ve =V =V =V,

On the other hand the velocity of the point K is:
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Vi

2R,

Ve =0, 2R, = o, =

Velocity of the center of the disk 3 is:

" 1
=—V,.
2R3R3 2"

Velocity of the body4 is equal to the velocity of the center of the disk 3:

Ve, =w,R, =

1
Vy = Ve, =D

Moments of inertia of the disks 2 and 3 are:

1
|2:§M3R22’

1
|3:§M3R§.

Substituting received expressions to equations (3.202), (3.203), (3.204):

2
11 V, 1
TZIEEMSRZZ[é) :ZMSV]_Z,
1. (1 V¥ 11 v ) 3
T,==M,| =V, | += - =M,R?| =2 | =—=M_V;
3 2 3(2 1] 2 2 3R3(2R3j 16 371
1 (1} 1.,
T4_EM2 Evl =—-M,v;
Therefore the total kinetic energy is:
T:%Mlvf+%M3vf+%M3vf+%szf:(%Ml+%M2+%M3jvf.(3.zo5)

The potential energy of the system is:
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o= P(G.) P[50+ P(G) 4 P(G).

The potential energy of the forceG_D Is zero, because this force is applied
at fixed point:

P(Gy)=0.

The potential energy is a work done by the force during displacement
from current position to initial, where energy is equal to zero. So

P(G_A) =-G,h =-Mgh,
P(Ge)=Gch, = Msg(%hj,

P(Gs)=Gsh, = Mzg(%hj.

So the total potential energy is:

P=-M,gh+ Mgg(%h}r Mzg(%hj: gh(—Ml+%M2+%M3j. (3.206)

Substituting expressions (3.205) and (3.206) to equation (3.199):

1

1 1 7 1 1
(EM +§M2+EM3JV12 = gh(—Ml+§M2+§M3j.

From here the velocity of the load A is:

. 16gh(2M, - M, - M)
b2(8M,+2M,+7M,)

16gh(2M, — M, —M,)
2(8M, +2M, +7M,)

Example 5. Fig. 3.89 represents an eccentric mechanism lying in a
horizontal plane. The eccentric A sets the roller B and the rod D in a
reciprocating motion. A spring E, that is connected with the rod, provides a
constant contact between the roller and the eccentric. The weight of the
eccentric is p and the eccentricity e equals half of its radius. The coefficient of
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stiffness of the spring is c. At the extreme left position of the rod the spring is
not-compressed. What angular velocity is required for the eccentric to move the
rod D from the extreme left to the extreme right position? Neglect the masses
of the roller, the rod and the spring. The eccentric is assumed to be a
homogeneous disk.

s

Fig. 3.89
Solution
Al |
j\/vvwf left
a
=,
I
|
b
Fig. 3.90

The system is under action of conservative forces. So we can apply the
law of conservation of mechanical energy:

T+P=T, +P. (3.207)

The spring is not compressed (Fig. 3.90, a) at initial moment of time, so
P=0.
The kinetic energy of the body at initial moment is
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-I-i :%IOC()Z’ (3208)

where |, is moment of inertia about axis of rotation.

We can find it using parallel-axis theorem:

1 1) 3
lo =15 +m-007 ==mR*+m:| =R | ==mR". (3.209)
2 2 4
Substituting (3.209) into (3.208):
T = 13 MR*w’ = 3P Rw’. (3.210)
2 4 89

At final moment the kinetic energy is zero
T, =0,
because the spring brakes the eccentric at final moment.

Potential energy at final moment (Fig. 3.90, b) is equal to potential energy
of the force of spring:

cAl>  cR?
P, = = :
2 2
Substituting expressions (3.210) and (3.211) into (3.207):

(3.211)

From here angular velocity is:
e 8cR’g  |4cg
2.3R°p \3p
4cg
Answer: @ = |—.
3p

Example 6. The Fig. 3.91 shows the cross-section of a uniform 91-kg
ventilator door hinged about its upper horizontal edge at O. The door is
controlled by the spring-loaded cable which passes over the small pulley at A.
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The spring has a stiffness of 219 N/m of stretch and it undeformed, when
0 = 0. If the door is released from rest in the horizontal position, determine the
maximum angular velocity @ reached by the door and the corresponding angle
0.

Fig. 3.91

Solution

oo

Fig. 3.92

Force of spring and gravity force (Fig. 3.92) are conservative forces, so

we can say, that this system is under action of conservative forces and we
apply the law of conservation of mechanical energy:
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T+P=T +P, (3.212)

The spring is not stretched at initial moment of time, so

R=0
and the body doesn’t move, so
T =0.
At final moment kinetic energy of door is computed as for rotational body:
1
T, ==’ (3.213)
2
Moment of inertia is:
1
| ==ml?
3
Therefore
11 1
T, ==-=ml*w’ ==m’e* (3.214)
2 3 6

Potential energy at final moment of time is equal to a sum of potential
energies of the gravity force and force of spring (Fig. 3.93):

P, =P(mg)+P(F,, ). 2,
z
(mg) =-mgh =—mg
=
P(Fspr)=CA' =E(2Isingj = od?sin? .
2 2 2 2
Fig. 3.93
So the total potential energy is:
P :-mglasin0+2dzsin2§. (3.215)
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Substituting expressions (3.214) and (3.215) into (3.212):

1 | . . .0
“ml?w?> -—mg—sind + 2cl?>sin>= = 0.
6 ng 2

Angular velocity is a derivative of an angle by the time:

w=20.
Differentiating equation (3.216) by the time:

EmI22¢9'-¢§—mgI—cosé?-é+20I223in§-cos 9
6 2 2 2

N |

Making some transformations:

%mlz-é—mglzcosmrclzsin@:o.

Using condition of function extremeness 6O=w=00. .,

O=m=c=0:
—mglacoséhrclzsiné?:o,
clz-tané?—lzmgzo,
tan 0 — Img mg  91.98

T 20?2 20 2219152
0 =53°

=0.

(3.216)

when

Substituting the value of the angle & into the equation (3.216) we can find

desired angular velocity:

| . 0

mg—-sind + 2cl“sin” =~

0= |—2 2 =4.6(—radj.

1.4 Sec
6

Answer: @ = 4.6(@j .
Sec
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3.6.8.Short problems

Problem 1. The homogeneous cylindrical rolls 1 and 2 of the mass 20 kg
every are actuated from a state of rest by the constant moment of the
coupleM =2 N-m (Fig. 3.94). Determine velocity of the roll axes at their
displacement on the distance 3 m if radiuses are R;= R,. = 0,2m.

/ 2

E:fﬂ;glm / x\M
D @ ®

Fig. 3.94 Fig. 3.95

Problem 2. Motion of the pulley 2 of the belt transmission (Fig. 3.95) begins
from a state of rest under action of the constant motion M = 0,5N « m. After three
revolutions the identical by a mass and dimensions the pulleys 1 and 2 have
angular velocity 2 rad/s. Determine moment of inertia of the one of the pulleys
about axis of rotation.

Problem 3. The moment of inertia of the gear wheel 1 about axis of
rotation is equal to 0,1kg » m? (Fig. 3.96). The total mass of the rack 2 and the
load 3 is equal to 100 kg. Determine the rack velocity at its displacement on the
distance s = 0,2m if at the beginning the system was at rest. The radius of the

wheel is r=0,1m.
Z
'g LG, Z
2
NN f
i 5
E__ Rt si ?

Fig. 3.96 Fig. 3.97 Fig. 3.98

e

Problem 4. The identical blocks 1 and 2 (Fig. 3.97) of the masses m; =
= m, and the radiuses R;= R; representing the homogeneous disks begin motion
from a state of rest under action of gravitational force. Determine center velocity
C of the block 1 after a moment when it will sink down on the distance s =1 m.
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Problem 5. Determine the load 2 (Fig. 3.98) velocity at the moment of time
when it sink down on the distance s = 4 m if masses of the loads are

my = 2 kg, m,= 4 kg. The system of bodies was at rest at initial time.

Fig. 3.99 Fig. 3.100 Fig. 3.101

Problem 6. The belt transmission (Fig. 3.99) begins motion from a state
of rest under action of the moment of the couple M = 2,5N « m. The moments of
inertia of the pulleys about their axes of rotation = 2l; = 1 kg * m®. Determine
angular velocity of the pulley 1 after three revolutions if the radiuses of the
pulleys are R, = 2R;.

Problem 7. The identical gear wheels 1 and 2 (Fig. 3.100) of the mass
2 kg every are actuated from a state of rest by the constant moment of the couple
M =1 Nem. Determine an angular velocity of the wheels after two revolutions if
the radius of inertia of every wheel about axis of rotation is equal to 0.2 m.

Problem 8. The loads 1 and 2 (Fig. 3.101) with the masses m;=2 kg and
m,=1 kg are hung to the ends of flexible cord threw over the block. Determine
the velocity of the load 1 at the moment when it sinks on the distance h =3 m.

Loads motion begins from a state of rest.
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