MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

National aerospace university «Kharkov aviation institute»

Yu. Koveza, I. Lykhosherst, S. Svitlychniy

DESIGN OF MACHINE ELEMENTS. COURSE PROJECT

Tutorial

Kharkov "KhAI" 2014

UDK 621.81.001.66(075.8) ББК 34.44я73 К79

Посібник містить методики розрахунку основних видів механічних передач, їхніх складових елементів, а також взаємозв'язані з ними методики і рекомендації щодо розроблення конструкції. Методики розрахунку і конструювання проілюстровано покроковими інструкціями, прикладами розрахунку та конструювання. Подано зразки складальних і робочих креслень. Наведено також необхідні для розрахунку і конструювання стандарти, інформацію щодо машинобудівних матеріалів, їх термооброблення, допусків і посадок, шорсткості поверхонь, допусків форми і розташування поверхонь.

Для студентів машинобудівних вузів при виконанні курсових і дипломної робіт.

Reviewers: Candidate of science A.V. Ustynenko, Candidate of science E.V. Pavlyuk

Koveza, Yu.

 K79 Design of machine elements. Course project [Text] : tutorial / Yu. Koveza, I. Lykhosherst, S. Svitlychniy. – Kh. : National aerospace university «Kharkov aviation institute», 2014. – 180 p.

ISBN 978-966-662-344-0

The tutorial contains a methodology for calculating the main types of mechanical transfers, their components and related with them techniques and recommendations for the development of construction. Analysis and designing are illustrated step-by-step instructions, examples of calculation and design. Samples of assembly and working drawings are presented. Information on standards, engineering materials and their heat treatment, tolerances and fits, surface roughness are also given for the analysis and design.

For students of technical higher education establishments for course projects and Bachelor works.

Fig. 73. Tab. 86. References: 10 titles

UDK 621.81.001.66(075.8) ББК 34.44я73

© Koveza Yu., Lykhosherst I., Svitlychniy S.,2014

© National aerospace university

«Kharkov aviation institute», 2014

ISBN 978-966-662-344-0

The purpose of the «Design of Machine Elements» course project is the first acquisition of engineering skills in calculation and designing of standard parts and machine parts based on theoretical knowledge.

Designing a product means defining its shape, size and arrangement of product individual components, as well their functional interaction.

Designing is creating of a product **image** (not the product itself). This image of the material object is commonly presented in the form of clear and readable drawings, descriptions, notes, symbols and technical specifications.

Designing may be:

- qualitative, i.e. defining components and assemblies shape, the arrangement and interaction;

- quantitative, i.e. determining elements' size and number. Means of quantitative design:

- o calculation;
- o reference tables;
- o experiment;
- professional experience and intuition.

We will understand **machine** as a technical system that produces useful work and is mainly characterized by flow of energy and conversion of energy. Machines are usually a source of mechanical energy, which is obtained from any other: electrical, chemical, potential, etc.

Assembly (an assembly unit) is a set of interacting components, connected together for a common functional purpose (gearbox, coupling, bearing, Fig. I.1, a).

Element (a part, a component) is a product, which is manufactured without using assembly operations (for example, a shaft, a bolt, a nut, Fig. I.1, b).

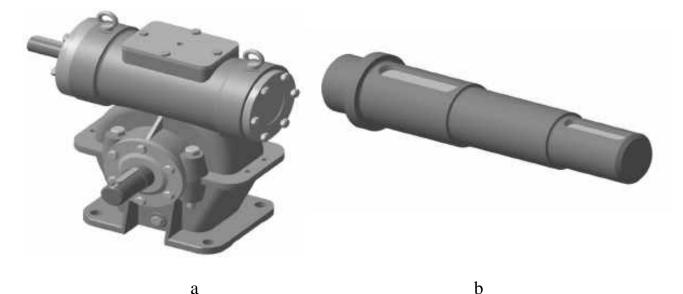


Fig. I.1

General (common) parts perform almost the same functions in any machine (gears, bolts, bearings, etc.) **Specific** ones are used in specialized types of machines. Usually there are fewer specific parts in a machine than the common parts (Fig. I.2).

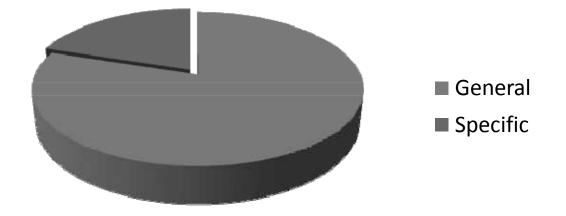


Fig. I.2

A student must be able to:

- transit mentally from a diagram/drawing to the structure and vise versa;
- size machine components and assemblies;
- select materials and standard elements using reference books;

- generate calculations and design documentation in accordance with applicable regulations;

- design parts and assemblies using the basic principles of efficient design.

During the course studying a number of difficulties occur. They are:

- 1. A lot of empirical equations and correction factors.
- 2. Multi-variant solutions.
- 3. The need to use standard parts and solutions.
- 4. The need to find a solution that satisfies conflicting requirements.

To acquire these skills and to overcome the difficulties of the course the first student's independent design work – course project – is intended.

The object of the course project is the designing of mechanical drive, consisting of the engine, gearbox and couplings.

Calculating portion includes designing and verification of gears, shafts and bearings. The results of calculations and standard elements selection are expounded in the explanatory note (25 - 30 pages).

The graphical part of the project consists of a gearbox drawing in natural scale with part list (1-2 pages A1), a drive drawing with part list (1 sheet A1) and working drawings of 2-3 elements (1 sheet A1).

1. KINEMATIC CALCULATION OF A DRIVE

The objectives of kinematical calculation is definition of the power acting to all units of a kinematic chain, and also preliminary distribution of rotational speed and the torques on all units. If necessary, other speeds and forces could be calculated.

As a source of mechanical energy in a drive is the engine, first it is necessary to select the most suitable to the task. The engine type is coordinated with the teacher, and its required characteristics – power (or the torque) and rotational speed – are calculated and selected in kinematical calculation.

1.1. Output and Input Power

Calculation of the engine power begins from the end of a kinematic chain, i.e. definition of a prime drive power is required.

Initial data for kinematical calculation are stipulated in a technical project. They are:

- at lineal prime drive – force F and speed V. Then $P_{out} = F V$;

- at rotary – torque T and angular speed ω : $P_{out} = T \omega$. In the mechanical engineering rotational speed n (RPM) is frequently used instead of angular speed. Then if to substitute T in Nm and n in RPM, power in kW equals

$$P_{out} = \frac{T_{out} n_{out}}{9550}.$$
 (1)

Required input power of a drive engine

$$P_{in} = P_{out} / \eta_{o}$$

Then preliminary losses are estimated by means of each kinematic chain element efficiency known from the previous experience (Tab. 1.1). The total efficiency of a drive is a product of all elements efficiencies

$\eta_o =$	$\eta_I \eta_I$	$\eta_C \eta_C$	RB ••••
------------	-----------------	-----------------	---------

Table 1.1

Kiner	natic chain element	Efficiency η
	Spur gear	0,960,98
	Bevel gear	0,940,97
	$z_1 = 1$	0,680,72
Worm gear	$z_1 = 2$	0,730,78
	$z_1 = 4$	0,780,84
Planetary gear		0,960,98
Harmonic drive		0,800,94
A pair of roller bearings – η_{RB}		0,9900,995
Coupling – η_C		0,980,99

If the standard engine is required, it is selected from corresponding catalogues with engine power P_{en} more than P_{in} . Parameters of the most widespread and simple asynchronous engines are provided in Appendix A.

1.2. Engine Shaft Rotational Speed

Shaft rotational speed is also important engine characteristic, and the drive configuration, its sizes and cost in many respects depend on it.

Prime drives' rotational speed is usually known. To choose an engine rotational speed (if it is not set in a technical project) it is necessary to calculate the transfer ratio of a drive:

$$i_d = n_{en} / n_{out} \tag{2}$$

for various n_{en} and whenever possible to choose, first, realized in the set scheme of a drive, and secondly, optimum from the point of view of weight, dimensions, costs, etc. The industry manufactures standard electric asynchronous engines with some levels of power with synchronous rotational speeds *3000*, *1500*, *1000*, *750*, *600 rpm* (Fig. 1.1).

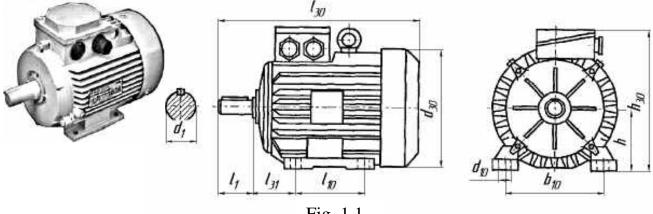


Fig. 1.1

To select proper one it is convenient to tabulate (Tab. 1.2) parameters of one level power engines with various n.

			Table 1.2
Pen, kW	n _{en async} , rpm	Dimensions, mm	$i_d = n_{en} / n_{out}$

To obtain dimensions (see Tab. A2, Appendix A) each engine code should be found according to standard power and rotational speed (see Tab. A1, appendix A).

The engine is selected after comparison calculated i_d with the limit transfer ratio i_{lim} for the given gearbox scheme: $i_{lim} = u_{limI} u_{limII} u_{limII} \dots$, where $u_{lim i}$ – limit transfer number of i step (recommended values are shown in Tab. 1.3).

If some engines satisfy to a condition $i_d < i_{lim}$ one with smaller dimensions (it means that its weight is less) is usually selected.

Let us notice, that the asynchronous engine shaft rotates with nominal asynchronous RPM smaller than synchronous one. Therefore for the further calculations it is necessary to accept $n_{en} = n_{en async}$ and recalculate transfer ratio (see formula (2)).

		Table 1.3	
Stage type	и		
Spur		36	
Bevel		13,5	
Planetary AI		716	
Planetary $A\overline{I}$		39	
	$z_1=1$	2850	
Worm	z ₁ =2	1440	
	z ₁ =4	830	
Harmonic		80320	

1.3. Gearbox Input/Output Parameters

According to selected engine power and RPM torques (Tab. 1.4) and rotational speeds (Tab. 1.5), acting at input/output shafts, may be obtained.

	1 1 1	1	1	
· · ·	'ab]	P		Δ
1	uU		T	•

Parameter	Formula
Output torque T_{out} , N m	Is given or $T_{out} = 9550 \frac{P_{out}}{n_{out}}$
Input torque T_{in} , N m	$T_{in} = \frac{T_{out}}{i_d \eta_o}$

Table 1.5

Shaft	Formula
Input	$n_{in} = n_{en}$
Output	$n_{out} = n_{en} / i_d$ or is given

1.4. Examples

Example 1

Task: calculate gearbox kinematical parameters with given asynchronous engine 4A132S6.

Initial data

Initial data				
Parameter	Value			
Engine power P, kW	5,5			
Engine synchronous rotational speed n_{en} , rpm	1 000			
Engine asynchronous rotational speed $n_{en async}$, rpm	965			
Gearbox transfer ratio i_d	3,8			
Service life, h	20 000			
Gearbox type	one-stage gearbox with spur straight teeth			

Engine unitensions (see 11g. 1.1)				
Dimensions		Signification	Value, mm	
	Height	h ₃₀	350	
Overall	Width	<i>d</i> ₃₀	302	
	Length	<i>l</i> ₃₀	480	
	Axis height	h	132	
Conjunctive to gear box	Shaft diameter	d_I	38	
	Shaft end length	l_1	80	
	Distance to first hole	<i>l</i> ₃₁	89	
Conjunctive to base plate	Hole diameter	<i>d</i> ₁₀	12	
	Distances between belos	b ₁₀	216	
	Distances between holes	<i>l</i> ₁₀	140	

Engine dimensions (see Fig. 1.1)

Input and output torques

Par	ameter	Formula and value
Input torque T_{in} , N m		$T_{in} = 9550 \frac{P_{en}}{n_{en}} = 9550 \frac{5,5}{965} = 54,4$
	spur stage	0,97
Efficiency	coupling	0,99
	bearings	0,98
	general	$\eta_o = \eta_I \eta_C \eta_{RB} = 0,94$
Output torque T_{out} , N m		$T_{out} = T_{in} i_d \eta_o = 54, 4 \cdot 3, 8 \cdot 0, 94 = 194, 4$

Shaft Formula Value		
Input <i>n_{in}</i> , rpm	$n_{in} = n_{en}$	965
Output <i>n</i> _{out} , rpm	$n_{out} = n_{en} / i_d = 965 / 3,8$	254

Example 2

Task: select asynchronous engine for a gearbox with data as follows:

Initial data			
Parameter	Value		
Output torque T_{out} , Nm	220		
Output <i>n_{out}</i> , rpm	300		
Gearbox type	one-stage gearbox with bevel gears		

Initial data

Output and input power

Р	arameter	Formula and value
Output power, kW		$P_{out} = \frac{T_{out} n_{out}}{9550} = \frac{220 \cdot 300}{9550} = 6,91$
	Bevel gearing	0,96
	Input coupling	0,99
Efficiency	Output coupling	0,99
	Total	$\eta_o = \eta_B \eta_{CI} \eta_{CO} = 0,94$
Input power, kW		$P_{in} = P_{out} / \eta_o = 6,91 / 0,94 = 7,35$

Nearest bigger standard value of an engine power is 7,5 kW.

Engine shaft rotational speed

To compare some engines with the same standard power more than calculated let us use appendix A.

According to standard engine power (7,5 kW) in Tab. A1 we find engine code and asynchronous RPM. Then, according to the code, we take overall dimensions d_{30} , l_{30} and h_{30} from Tab. A2 and put down these parameters into Tab. 1.6.

D							Sy	nchro	onoi	us	rota	tional	speed	l, rp	m		
Power	3000				1500				1000			750					
kW		Code			n	n _{nom} Code			n	n _{nom} Code			n _{no}	m	Code	n _{nom}	
0,75		4A7	1A	12	28	40	4A71B4			1.	390	4A80A6		91:	5 44	480B8	700
1,1		4A7	1B	B 2	28	10	4	480A	4	14	420	4A80)B6	920) 44	A90L8	700
1,5		4A8	0A	\ 2	28	50	4/	480B4	4	14	415	4A90)L6	93	5 44	A100S8	700
2,2		4A8	0B	B 2	28	50	4/	490L4	1	14	425	4A1()0S6	950) 44	A100L8	700
3		4A9	0L	.2	28	40	4	A1008	54	14	435	4A1()0L6	95	5 44	A112M8	700
4		4A1	00	S2	28	80	4	A100I	_4	14	430	4A11	12M6	950) 44	A132S8	720
5,5		4A1			28			A112N			445	4A13		96		A132M8	720
7,5		4A1	12	M2	29	00	4/	A132S4 14		14	455	4A132M6		870	14A	A160S8	730
									Ta				ble A2				
	Type h		d_{30}	$l_1 l_{30}$			d_1	l_{10} l_{31}		d_{10}	b ₁₀	h_{30}					
		1001	Ľ		100	235	5 60 392		2	28	28 140 63		12	160	263		
		112	Μ		112	260	0 80 452			2	32	140 70		12	12 190 310		
		1328	S		132	302	2 80 480			Q	38 140 89			12	12 216 350		
_													Table 1	6			
	P, kW Code			n _{en acync} , rpm			Di	Dimensions, mm			$i_d = n_{en} / n_{out}$						
	7	,5 🔇	4	AM	M112M		2900				260x452x310				9,67		
	7	,5	4	AN	4132	S	1455				302x480x350				4,85		
	7	,5	4	AM	I132N	Ν		870			302x530x350				2,9		
	7	,5	4	AN	4160	S		730			358	8x624	x430		2,43		

Bevel gearbox transfer ratio should be from 1 to 3,5 (see Tab. 1.3). Two engines satisfy this condition: with $n_{en\ async} = 870$ and 730 rpm. First of them has smaller dimensions, that is why it is preferred. So, transfer ratio is i = 2,9 and input

torque
$$T_{in} = \frac{T_{out}}{i_d \eta_o} = \frac{220}{2,9 \cdot 0,94} = 80,7$$
 Nm

Other engine dimensions are shown in Tab. 1.7.

Table 1.7

										10010 107
Туре	h	<i>d</i> ₃₀	l_1	<i>l</i> ₃₀	d_1	<i>l</i> ₁₀	<i>l</i> ₃₁	<i>d</i> ₁₀	b ₁₀	h ₃₀
4AM132M	132	302	80	530	38	178	89	12	216	350

2. CALCULATION OF TOOTH GEARINGS

Tooth gearings are widespread in mechanical engineering thanking to small power losses, high bearing ability, reliability and durability.

Teeth's load character is difficult enough. Useful forces and additional external and internal ones load teeth. Warps and deformations of elements of transfers, discrepancy of manufacturing lead to concentration of loadings on separate pointes of contact lines.

In existing design procedures of tooth gearings, in particular, in GOST 21354 «Transfers gear cylindrical involute external toothing. Calculation on durability», the various additional factors acting on working power of tooth gearings, are considered by means of using of corresponding empirical factors.

The executed calculation corresponds to the above-stated standard with some simplifications, which are not influencing essentially on results.

2.1. The Basic Terms and Definitions

Designations of the basic geometrical parameters of cylindrical wheels of external and internal gearings are shown in Fig. 2.1. Symbols of these parameters and the formulae for their calculation see also in Tab. 2.1.

		Table 2.1
Parameter	Symbol	Formula
Profile angle of basic rack	α	$\alpha = \alpha_n = 20^{\circ}; 25^{\circ}; 28^{\circ}$
Profile angle of basic rack in transverse cross-section	α_t	$tg \ \alpha_t = tg \ \alpha / \cos \beta$
Pressure angle in transverse cross- section	α_{tw}	$inw \alpha_{tw} = \frac{2 X_{\Sigma} tg \alpha_{t}}{z_{1} + z_{2}} + inv \alpha_{t}$
Pressure angle in normal cross- section	$lpha_{nw}$	$tg \ \alpha_{nw} = tg \ \alpha_{tw} \ cos \ \beta$
Pitch helix angle	β	$\beta \approx 920^{\circ}$ (for herringbone gears $\beta \leq 45^{\circ}$)
Module in normal cross-section	$m_n(m)$	Standardized
Transverse module (circular module in the plane of rotation of the gear)	m_t	$m_t = m / \cos \beta$
Pitch center distance	а	$a = 0,5m_t(z_2 \pm z_1)$
Center distance	a_w	$a_w = a \cos \alpha_t / \cos \alpha_{tw}$
Shift factor	x_{Σ}	$x_{\Sigma} = x_1 + x_2.$ If $x_{\Sigma} = 0$ $\alpha_{tw} = \alpha_t$, $a_w = a$, $d_w = d$
Pitch diameter	d	$d = m_t z$
Operating pitch diameter	d_w	$d_w = d \cos \alpha_t / \cos \alpha_{tw}$

The end of Tab. 2.1

Parameter	Symbol	Formula
Base diameter	d _e	$d_{e} = d \cos \alpha_{t}$
Equivalent teeth number	z_V	$z_V = z / \cos^3 \beta$
Transverse contact ratio	εα	$\varepsilon_{\alpha} = \left[1,88-3,2\left(\frac{1}{z_{1}}+\frac{1}{z_{2}}\right)\right]\cos\beta$
Axial contact ratio	εβ	$\varepsilon_{\beta} = \frac{b_{w} \sin \beta}{\pi m_{n}}$

The basic geometrical parameters of bevel gearings are shown on Fig. 2.2, their symbols and formulae in case of straight teeth (the axial form of teeth I (Fig. 2.3, a)) are resulted in Tab. 2.2, parameters for axial forms II (Fig. 2.3, b) and III (Fig. 2.3, c) – look in work [2].

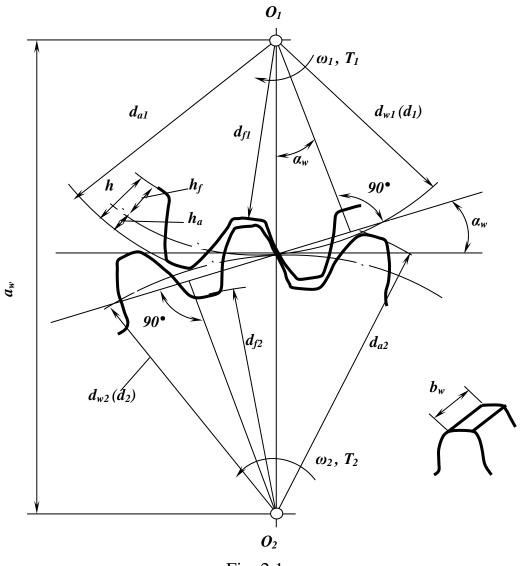


Fig. 2.1

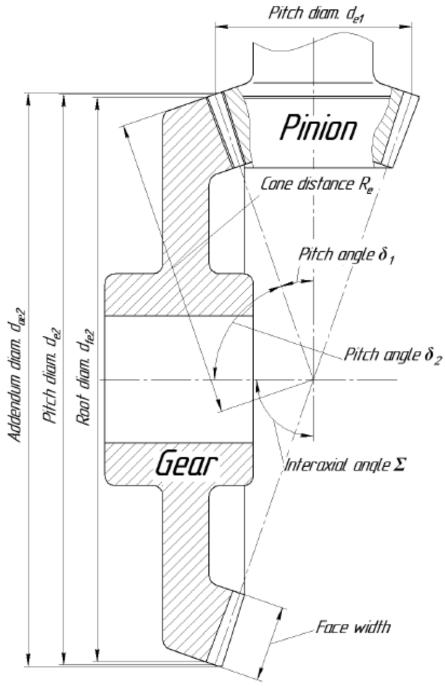
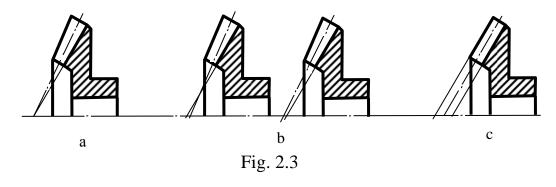



Fig. 2.2

	-	1 doic 2.2
Parameter	Symbol	Formula
Interaxal angle	Σ	Due to design reasons
Outer pitch module	m _e	Standardized
Outer pitch diameter	d_e	$d_e = m_e z$
Number of teeth of a plane gear	Z_c	$z_c = \sqrt{z_I^2 + z_2^2}$

End of Tab. 2.2

Parameter	Symbol	Formula
Cone distance	R _e	$R_{e} = \frac{d_{e_{1}}\sqrt{u^{2} + 1 + 2u\cos\Sigma}}{2\sin\Sigma}$ when $\Sigma = 90^{\circ}$ $R_{e} = 0.5 m_{e} z_{c}$
Mean cone distance	R_m	$R_m = R_e - 0,5b$
Mean pitch module	$m = m_m$	$m_m = m_e R_m/R_e$
External transverse pitch module	m _{te}	$m_{te} = \frac{2R_e}{z_c}$
Mean normal module	m_n	$m_n = \frac{2R_m \cos\beta_n}{z_c}$
Half angle of the pitch cone	δ_1,δ_2	$tg \ \delta_{l} = sin \ \Sigma'(u + cos \ \Sigma);$ when $\Sigma = 90^{\circ}$ $tg \ \delta_{l} = z_{1}/z_{2}, \ \delta_{2} = \Sigma - \delta_{l}$
Mean pitch diameter	d	$d = m_m z$
Number of teeth of equivalent plane gear	Z_E	$z_E = z / \cos \delta$

2.2. Introduction

The calculation **objectives** are to obtain the pinion and gear dimensions to be able operate during required service life at the given load without fatigue damages.

Generally, calculation on durability includes:

- the describing of initial data;

- calculation of allowable stresses;

- calculation of the gearing basic geometrical parameters: the module, pitch diameters of gears, center distance, face width (at check calculation these parameters are known) and rated of the standardized parameters to standard values;

- check calculation on contact and bending endurance, on durability under the maximum (peak) loadings, on jamming (if necessary).

After calculations, one makes out the working documentation according to requirements of the state standards.

2.3. Initial Data

The parameters required for check calculation are presented in Tab. 2.3 (the asterisk notes sizes, which at design of new transfers define from design calculation).

Table 2.3

		Table 2.3					
Param	eter	Way to determine					
Gearing type		According to given drive scheme					
Power P , kW or toro Nm	que on pinion T_1 ,	According to given data					
Service life L_h , h		According to given data					
Pinion speed n_1 , rpm	l	Due to kinematic calculation					
Transfer number u		For gearing under design from kinematic calculation, for real gearing $u = z_2 / z_1$. It should be: $u \le 6$ for straight spur gear; $u \le 10$ for helix spur gear; $u \le 3,5$ for bevel gear					
Number of teath	pinion z_1	See subsection 2.3.1					
Number of teeth	gear z_2	If u is given $-z_2 = z_1 u$					
Module $m^{*^{}}$, mm		See subsection 2.3.7					
Face width, mm	$\frac{\text{pinion } \boldsymbol{b}_1^{*)}}{\text{gear } \boldsymbol{b}_2^{*)}}$	From strength calculation					
Shift factor	pinion x_1 gear x_2	[1, 2]					
Helix angle β		See subsection 2.3.6					
Degree of accuracy ((GOST 1643–81)	See subsection 2.3.2					
Grade of surface rou		See subsection 2.3.4					
Steel	pinion gear						
Heat treatment	pinion gear	See subsection 2.3.3					
Surface hardness	pinion gear						

2.3.1. Number of Teeth

Gear wheel number of teeth considerably effects on transfer parameters. The error in gearing, dynamic load, vibration and speed of sliding in final points of gearing decrease with increasing in number of teeth at same diameters of the meshed gears, the transfer ratio and degree of accuracy. As a result, loading ability of gearing raises and friction losses and the weight of the metal translated in a shaving at cutting of teeth decrease.

However, teeth bend durability decreases with module reduction.

In the general mechanical engineering, gear wheels with number of teeth from 10 to 70 are usually used. For pinions of spur and bevel gears at active surface hardness more than 350 HB it is characteristic $z_I = 15...30$. In the majority high-speed heavy-load external gears $z_I = 25...45$, internal $-z_I = 81...127$.

For machine under design, it should accept $z_I > 17$. For the approached calculation it is possible to use dependence $z_I = (17 + 0.003n_I)$.

2.3.2. Accuracy of Tooth Gearings

Manufacturing errors of a circular pitch and the form of a profile of the teeth break accuracy, kinematics and smoothness of transfer work. Errors in a direction of teeth together with a shaft deflection lead to non-uneven load distribution on tooth length.

For spur, bevel and hypoid tooth gearings 12 degrees of accuracy from the first to the twelfth as its decrease are established.

Degrees of accuracy of tooth gearings of various machines see in Tab. 2.4.

Tabl	le 2.4
Iuu	

	1 doie 2.4
Gear transfer branch	Degree of accuracy
Aviation gearboxes, turbo engines and generators	47
Cars	69
Gearboxes for general purpose and transport machines	710

Accuracy degrees as a first approximation define depending on peripheral speed (Tab. 2.5).

Table 2.5

Peripheral speed, m/s		Degree of accuracy									
		4	5	6	7	8	9	10	11		
Spur gears with straight teeth	35	25	15	15	10	6	3	1	0,5		
Spur gears with helix teeth	70	45	30	25	15	10	5	2	1		

For bevel transfers at the specified peripheral speeds accuracy has to be accepted one degree higher.

2.3.3. Selection of Materials and Type of Chemical and Heat Treatment

The material for the manufacture of a designed toothed wheel should be so selected as to make it possible to cut and finish the teeth with the required accuracy and to ensure sufficient beam strength under the action of varying and impact load, adequate strength of the tooth surfaces and high resistance to abrasion.

Toothed wheels are ordinarily made from steel and cast iron, which can be used to produce wheels of any proportions. These materials are easily cast, especially cast iron, while steel has a good forge ability.

The tendency towards a reduction in size, the transmission of large loads in one assembly and at higher speed has stimulated the wide use of steel wheels. A great variety of grades of steel and the possibility of obtaining various properties by means of heat treatment allow the most favorable combination of required properties.

Carbon steel with 0.35 to 0.50 % carbon content has proved highly efficient for medium loads. It possesses sufficient strength and hardness and good machinability (steel grades 35, 40, 45, 50: Ukrainian standard designation is Steel 35...Steel 50; US analogue designation 1035...1050).

As a rule, these steels are used in a normalized or tempered state. The size of the wheel cross-section materially affects the mechanical properties obtained after heat treatment. This is explained by the fact that, as the size of the cross-section increases, the cooling rate diminishes, and, if it drops below some critical point, there will be full hardening.

The size of cross-section is much less decisive in wheels made from alloy steel, which makes it possible to obtain better mechanical properties for large wheels. Of all alloy steels used for the manufacture of toothed wheels preference is given to grades Steel 40X (US analogue designation 5140) and Steel 40XH (US analogue designations 3135, 3140H).

Finish cutting of such toothed wheels is done after final heat treatment; the hardness of the gear face surfaces is therefore HB < 350 and more frequently HB < 320.

In order to increase the load–carrying power of toothed wheels and reduce the overall dimensions of the gear, use is made of toothed wheels whose surface hardness is above HB = 350 achieved by through or surface hardening, casehardening, cyaniding and nitriding.

In a through hardening of carbon and alloy steels with 0.35...0.5 % carbon content the hardness obtained depends on the carbon content of the steel and can reach HRC = 50...65.

For important gears, when overloads and hammering effect are anticipated, steel grades 40XH and 40XHMA (US analogue designations 4340, 9840) are used, and, more frequently, 40X. The maximum core hardness for carbon steel should never exceed HRC = 45, and for alloy nickel and molybdenum steel – HRC = 50, since otherwise impact strength drops sharply.

The disadvantage of through hardening consists in the considerable warping of the wheels and a reduction in the toughness the tooth core which reduces tooth resistance to bending under impact load. This shortcoming can be avoided by surface hardening which ensures adequate strength of the surface and retains the toughness of unhardened metal. This method of heat treatment can be used to advantage in large wheels and is especially effective in wheels with large cross-sections, since with a conventional method of hardening it allows the use of carbon steel instead of alloy steel. The surface hardness obtained amounts to HRC = 51...57.

Casehardening is another means of increasing the surface hardness of the teeth while retaining proper core toughness. For casehardening use is made of steel with 0.1 to 0.2 % carbon content, 0.15 % being the most suitable. Casehardened alloy steels possess high abrasion resistance. The hardness of the casehardening surface reaches values HRC about 56...63.

Carbon steel of grades 15 and 20 subjected to casehardening is comparatively rarely used for making toothed wheels: the metal under the hard case resists poorly both surface and beam bending stresses, uneven hardening causes unequal surface hardness while at higher loads the hard case separates.

Alloy chromium steel, of grades 15X (US analogue designations 5015, 5115) and 20X (US analogue designations 5117, 5120, 5120H), ensures better quality of the wheels, reduced warping and greater core strength.

When overloads or impact loads are anticipated (gear wheels of automotive vehicles, aircraft reduction gears, etc.), and when the impact resilience and plastic properties of the core are of special importance, use is made of grade 12XH3A (US analogue designations 3415) chrome–nickeI steel, grade 15X Φ chrome–vanadium steel, grade 18X Γ T chrome–manganese–titanium steel and other alloy steels.

Nitrided and cyanided wheels are extremely effective as they warp little, making subsequent grinding unnecessary. Wheels with internal toothing are very often nitrided. For such wheels steel grade 38XMIOA (US analogue designations J24056) is employed.

The hard nitrided case is rather thin (0.1...0.3 mm); therefore wheels with nitrided teeth are employed for steady loads in well–lubricated reduction gears to preclude or reduce abrasive wear.

Sometimes toothed wheels are made from fabric laminated and veneer laminated phenolic plastics, artificial leather and fibre.

Phenolic laminated toothed wheels cannot stand up to considerable loads because of their comparatively low resistance to wear and to contact effects. Phenolic laminated plastics are usually used to make one wheel of a pair, the other being manufactured from cast iron or steel with the hardness HB > 250. Since the transmitted load is determined by the plastic wheel this combination proves effective only in individual cases, for example, when a gear operating at high peripheral velocity must be made noiseless without increasing the accuracy of its manufacture.

A phenolic laminated pinion should have a smaller width than its metal counterpart. Otherwise, the edges of the metal wheel teeth will damage the surface of the phenolic laminated teeth.

Mechanical characteristics of some most widespread steels are shown in Tab. 2.6.

Table 2.6

Table 2.7

	Type of	Limit	stresses,	Hardness		
Steel	Type of treatment	MPa		of surface,	of core IID	
	treatment	$\sigma_{\scriptscriptstyle B}$	$\sigma_{\rm T}$	HRC	of core, HB	
	Tempering	850	600	230	300	
40XH	Surface	1600	1400	4854	260300	
	hardening	1000	1400	40	200500	
40X	Tempering	850	550	230260		
40A	Surface	1000	850	4555	260280	
30ΧΓCΑ	hardening	1080	830	4555	280320	
12XH3A		1000	850	5863	260400	
12X2H4A	Casehardening	1200	1000	6065	280400	
20X2H4A]	1400	1200	6065	300400	
38ХМЮА	Nitriding	1000	850	60	350	

2.3.4. Roughness of Gears

The roughness of teeth working surfaces depends on degree of accuracy of a gear (Tab. 2.7).

		Roughness of					
Degree of	h	hole wor		surfaces	topland		
accuracy	7	8	spur	bevel	top land		
6	R _a 0,63	_	R _a 0,63	R _a 0,63	R _a 0,63		
7	R _a 1,25	_	R _a 1,25	R _a 0,63	R _a 1,25		
8	R _a 2,5	_	R _a 2,5	R _a 1,25	R _a 2,5		
9	—	$R_z 20$	$R_a 5$	R _a 2,5	$R_z 20$		

Roughness of face surfaces of a gear rim and hub $- R_a 2,5$, the surfaces of the gear which has been not interfaced to other details, $- R_z 40...120$.

2.3.5. Design Load

Teeth are loaded not only useful, but also additional forces. For the account of these forces design load factor K is used

$$\boldsymbol{K} = \boldsymbol{K}_{\boldsymbol{A}} \ \boldsymbol{K}_{\boldsymbol{\nu}} \ \boldsymbol{K}_{\boldsymbol{\beta}} \ \boldsymbol{K}_{\boldsymbol{\alpha}}. \tag{2.1}$$

Then tangential force on pitch diameter

$$F_t K = \frac{2T_1 K}{d_1},$$

where T_I is the torque on a pinion.

In expression (2.1) \mathbf{K}_A is an external dynamic factor (Tab. 2.8).

Engine's	Driven machine's condition of operation						
condition of operation	Uniform	With low ununiformity	With medium ununiformity	With high ununiformity			
Uniform	1,00	1,25	1,50	1,75			
With low ununiformity	1,10	1,35	1,60	1,85			
With medium ununiformity	1,25	1,50	1,75	2,00 and higher			
With high ununiformity	1,50	1,75	2,00	2,25 and higher			

More perfect way of the account of external dynamic load is usage of operating cyclogram. Then factor K_A is not necessary, and

$$\boldsymbol{K} = \boldsymbol{K}_{\boldsymbol{v}} \, \boldsymbol{K}_{\boldsymbol{\beta}} \, \boldsymbol{K}_{\boldsymbol{\alpha}}, \tag{2.2}$$

where K_{ν} is the factor considering internal dynamic loading; K_{β} is the factor considering non-uniformity of load distribution on length of contact lines; K_{α} is the factor considering distribution of loading between teeth, being in gearing (in design calculations it is possible to accept equal 1).

In a before resonance zone when the condition $vz_1 < 1000$ for spur gear and $vz_1 < 1400$ for helix transfers is satisfied (here v – peripheral speed, m/s), K_v is found under formula

$$K_{\nu} = I + \frac{w_{\nu}b_{\nu}}{F_t K_A}.$$
(2.3)

The internal dynamic forces characterised by specific dynamic load w_v , appear owing to errors in the basic both pitch and a profile of an active surface of teeth, deformation of gears and the elements connected to them.

Specific dynamic load

$$w_{v} = \delta g_{0} v_{\sqrt{\frac{a_{w}}{u}}}, \qquad (2.4)$$

where v is a peripherial speed, m/s; a_w is a center distance, mm; u is a transfer number; δ_H , δ_F are the factors which consider influence of a profile tip relief and a kind of teeth (Tab. 2.9); g_0 is the factor considering influence of a pitch difference of a pinion and a gear (Tab. 2.10).

Table 2.9

			1 abic 2.7	
Hardness		Tooth type		
	studio la t	without tip relief	0,06	
Less 350 HV	straight	with tip relief	0,04	
	helix	0,02		
	atuai alat	without tip relief	0,14	
More than 350 HV	straight	with tip relief	0,10	
	helix	0,04		

Table 2.10

			Degree of	accuracy		
Module	4	5	6	7	8	9
<i>m</i> , mm			g	0		
			W _{v max} ,	N / mm		
logg 2 55	1,7	2,8	3,8	4,7	5,6	7,3
less 3,55	32	85	160	240	380	700
2 55 10	2,2	3,1	4,2	5,3	6,1	8,2
3,5510	53	105	194	310	410	880
more 10	2,7	3,7	4,8	6,4	7,3	10,0
more 10	98	150	250	450	590	1050

If calculated value w_{Hv} exceeds limit w_{vmax} (see Tab. 2.10), it should be accepted equal to limit value.

The factor K_{β} is the relation of the greatest specific load to its average. It considers non-uniformity of load distribution on length of the contact line, arising owing to elastic deformations of shaft, a warp and deterioration of bearings. Load concentration is directly proportional to corners of a shaft warp under the interfaced gears and teeth face width.

In designing and approximate calculations, it is possible to accept value $K_{H\beta}$ approximately, by means of graphs (Fig. 2.4).

For bevel transfers with an interaxal angle 90° approximate values $K_{H\beta}$ depending on parameter $k_{be} u / (2 - k_{be})$ can be defined under the graphs shown in Fig. 2.5.

In Fig. 2.5 curves with an index " μ " correspond to shaft on ball bearings, with an index "p" – on roller, continuous lines – to transfers with straight teeth, dotted – to transfers with spyral or helix teeth.

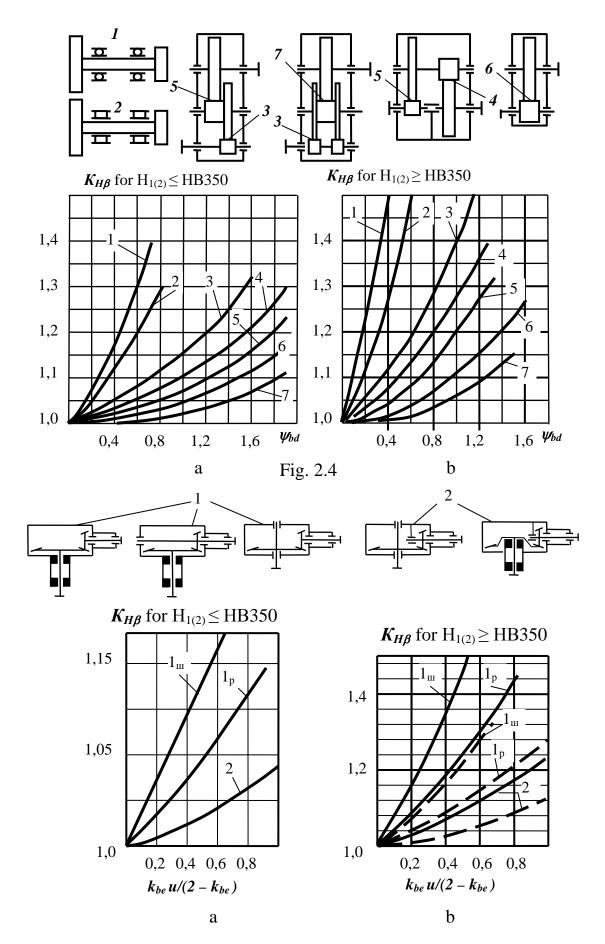


Fig. 2.5

At calculations with computer, it is possible to use the approximations shown in Tab. 2.11.

			Table 2.11
Figure	Line	Parameters	Formula
	2		y = 1,81x + 0,207/x
	3	$x = \psi_{bd}$ $y = K_{H\beta}$	$y = 0,969 + 0,318x + 0,09x^2$
2.4, b	4		$y = e^{(0,261x - 0,022/x)}$
	5		$y = e^{(0,1713/x + 0,4165 \ln x)}$
	6		$y = 0,868 + 0,132e^x - 0,107x$
2.5, b	1ш		y = 0,8964 + 0,0071/x + 1,08x
(continuous	1p	$x = k_{be} u / (2 - k_{be})$ $y = K_{H\beta}$	$y = e^{(0,4098x + 0,000257/x)}$
curves)	curves) 2 $y = R_{H\beta}$		y = 1/(1 - 0, 1666x)

Design load factors at the specified calculation on contact K_H and bending K_F endurance differ from each other and look like

 $K_H = K_{H\nu} K_{H\beta} \qquad K_F = K_{F\nu} K_{F\beta}.$ With engineering accuracy it is possible to consider $K_H = K_F = K$.

2.3.6. Helix Angle

Approximately 97 % of spur gears in aviation gearboxes and drives have straight teeth.

In the general mechanical engineering approximately 30 % transfers are helical because they have more loading ability and work smoothness, less overall dimensions and weight. The main disadvantage of such transfers is the axial forces, which increase with growth of a helix angle β . Therefore, frequently herringbone gearing is preferable because axial forces are counterbalanced in them.

Usually helix angle is $\beta = 8...18^{\circ}$, in herringbone gears $\beta = 28...45^{\circ}$. Moreover, the condition should be satisfied

$$\varepsilon_{\beta} = \frac{b_{w} \sin \beta}{\pi m_{n}} \ge 1, 1,$$

where ε_{β} – factor of axial overlapping, m_n – the normal module.

For power bevel transfers with a spyral teeth the corner $\beta \approx 35^{\circ}$ is the most widely spread.

2.3.7. Module

The module is one of the main parameters of transfer. In straight spur gears, the module m means the size proportional to a step on a pitch circle in a plane, which is

perpendicular to the longitudinal axis of a gear. In helical transfers it is considered circumferential m_t and normal m_n modules, in straight bevel meshing – external m_e , in bevel gears with a spyral teeth – external m_{te} or mean m_m module.

At a module selection it is considered the following:

- with module increase at identical diameters of wheels bend durability of teeth grows;

- module reduction complicates technological process of heat treatment as it is difficult to create a hard surface and a viscous core (it is impossible to execute superficial training, the tooth is calcinated for all thickness);

- with module reduction metal losses decrease.

Values of modules are standardised in a range from 0,05 to 100 mm. The interval 1...10 mm, consisting of two rows is most common:

1^{st} row	I	1,25	1,5	2	2,5	3	4	5	6	8	10
2^{nd} row	1,12	25 1,3	75 1,7	5 2	,25 2,	75 3	,5 4,	5 5,	5 7		9

It would be better to prefer the first row to the second.

Modules from 2 to 8 mm are applied for heavy-load aviation tooth gearings, and about 40 % of gears have the module 3...5 mm.

As a rule the normal module is standardised in helical transfers, circumferential at an external end face – in bevel with teeth of the form I (see Fig. 2.3, a), normal on the middle of face width of a gear – in wheels with teeth of forms II (see Fig. 2.3, b) and III (see Fig. 2.3, c).

Value of the module should be co-ordinated with face width of a gear, thus it is necessary to provide following proportions: $b/m \le 15$ for a spur transfer and $b/m_{te} \le 10$ – for the bevel one.

2.4. Allowable Stresses

2.4.1. Contact Stresses

The allowable contact stresses, which are not causing dangerous contact weariness, are calculated **for a pinion and a gear separately**:

$$[\sigma]_{H} = \frac{\sigma_{H \, lim} Z_{N}}{S_{H}} Z_{R} Z_{\nu} Z_{L} Z_{X}, \qquad (2.5)$$

where σ_{Hlim} is the limit of contact endurance of the teeth surfaces, corresponding to base number of cycles; S_H is the minimum safety factor; Z_N is the durability factor; Z_R is the factor considering influence of an initial roughness of interfaced surfaces; Z_v is the factor considering influence of peripheral speed; Z_L is the factor considering influence of lubricant viscosity; Z_X is the factor considering the size of a gear. In designing calculation it is accepted

$$Z_R Z_v Z_L Z_X = 0,9.$$

Limit of contact endurance of teeth surfaces σ_{Hlim} is calculated according to formulae shown in Tab. 2.12.

Table 2.12

Table 2.13

Type of termal treatment	Mean surface hardness	Steel	$\sigma_{\mu lim}, \mathrm{MPa}$	
Annealing, normalizing, tempering	≤ 350 HB		2 HB + 70	
Volume hardening	3850 HRC	Carbon and alloy	17 HRC + 200	
Surface hardening	4056 HRC		17 HKC + 200	
Casehardening, nitriding	5665 HRC	Alloy	23 HRC	
Cyaniding	550750 HV	7 Miloy	1050	

It is clearly, that the larger the hardness, the larger allowable stresses and load capacity. However, in some cases achievement of limiting hardness is very expensive for manufacture of such gears. Besides, extremely high hardness is useful in combination with a viscous core, in other case teeth become fragile and the main reason of their damage is the break. Highly rigid teeth are much worse break-in.

So hardness of working surfaces should be appointed with the account of economic and operational expediency, each time correlating possibilities of the concrete enterprise and the tasks.

The minimum safety factor is: for gears with homogeneous structure of a material (after such kinds of heat treatment, as improvement, volume training) $S_{Hmin} = 1,1$; for gears with surface hardening of teeth (casehardening, nitriding) $S_{Hmin} = 1,2$.

For the transfers which failure is caused with heavy consequences, values of the minimum factors of safety factor need to be increased to 1,25 and 1,35.

The method of the durability factor definition Z_N (formula (2.5)) see in Tab. 2.13.

Parameter	The method of definition
1. Durability factor \mathbf{Z}_N	$Z_{N} = \sqrt[m]{\frac{N_{H lim}}{N_{K}}}$
	$0.75 < \mathbf{Z}_N < 1.8$ in case of surface hardening of teeth;
	$0,75 < \mathbf{Z}_N < 2,6$ for homogeneous structure of a
	material
2. The base number of	$N_{Hlim} = 30 \ (HB)^{2,4} \le 120 \cdot 10^6$
cycles of stress $N_{H lim}$	Correlation of hardness numbers $HRC_{\mathfrak{H}}$, HB and HV is
	shown on Fig. 2.6. For computer calculation next
	approximation could be used: $H_{HB} = H_{HRC} / 0,102$
3. Number of cycles of	At constant load
stress during service life N_K	$N_K = 60 cn L_h$

Parameter	The method of definition		
4. Number of meshing at one revolution <i>c</i>	According to gearing scheme (see Fig. 2.7)		
5. Rotational speed <i>n</i> , rpm	According to initial data		
6. Service life L_h , h	According to initial data		
7. Root index <i>m</i>	If $N_K > N_{H \ lim} \ m = 20$ If $N_K < N_{H \ lim} \ m = 6$		

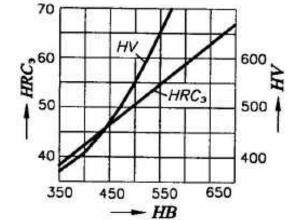
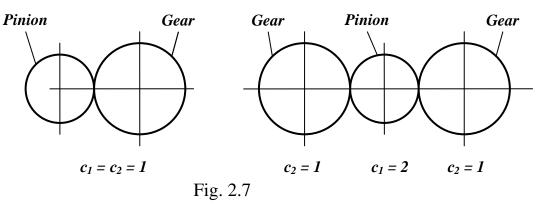


Fig. 2.6

For subsequent calculations next allowable contact stress should be accepted:

for straight spur transfers – smaller
from values for a pinion and a gear;


– for **helical** and **herringbone** transfers

$$[\sigma]_{H} = \theta, 45([\sigma]_{H_{I}} + [\sigma]_{H_{2}})$$
(2.6)

at condition

$$[\sigma]_{H_{min}} < [\sigma]_{H_{min}} < 1,25 [\sigma]_{H_{min}}$$

where $[\sigma]_{Hmin}$ – smaller from calculated above stresses $[\sigma]_{H1}$ and $[\sigma]_{H2}$.

2.4.2. Allowable bending stresses

Allowable bending stresses

$$\left[\boldsymbol{\sigma}\right]_{F} = \frac{\boldsymbol{\sigma}_{F \, lim}}{\boldsymbol{S}_{F}} \boldsymbol{Y}_{N} \boldsymbol{Y}_{R} \boldsymbol{Y}_{z} \,. \tag{2.7}$$

The expression (2.7) parameters are described in Tab. 2.14.

	I able 2.14
Parameter	The method of definition
The bend endurance limit corresponding to base number of stress cycles σ_{Flim} , MPa	It is obtained depending on a material and method of thermal treatment (Tab. 2.15)
Safety factor S_F	
Durability factor Y_N	$Y_{N} = q_{F} \sqrt{\frac{N_{F \ lim}}{N_{K}}} \ge 1,$ (if $N_{K} \ge N_{F \ lim}$ $Y_{N} = 1$)
The base number of cycles of stress $N_{F lim}$	(if $N_K > N_{Flim}$ $Y_N = 1$) $N_{Flim} = 4.10^6$
Root index q_F	$q_F = 6$ for gears with homogeneous structure of a material $q_F = 9$ for nitrited and case-hardened gears with an ungrinding interjacent surface
The factor considering a method of billet production Y_z	For forging and forming $Y_Z = 1$, for rolled metal $Y_Z = 0,9$, for casting $Y_Z = 0,8$
Factor considering a roughness of interjacent surface Y_R	For a surface roughness no more $R_z = 40$ microns $Y_R = 1$. For polishing depending on a method of thermal hardening it is accepted: $Y_R = 1,05$ at cementation, nitrocementation, nitriding; at RF induction hardening when the tempered layer repeats hollow outlines between teeth $Y_R = 1,2$ at normalisation and improvement; at chardening when the tempered layer is distributed on all section of a tooth

Table 2.15

			T	able 2.15	
Heat treatment	Steel	Surface hardness	σ _{Flim} , MPa	$\mathbf{S}_{\mathbf{F}}$	
Casa hardaning	20ХН, 12ХН2, 15ХГНТА	5763 HRC	950	1,55	
Case-hardening	18ХГТ, 30ХГТ, 20Х	5705 HKC	820	1,55	
	25ХГМ		1000	1,55	
Nitro-hardening	25XFT, 35XFT, 35X	5763 HRC	750	1,55	
Normalization, tempering	40, 45, 40X, 40XH	180350 HB	1,75 HB	1,7	
Volume hardening	40Х, 40ХН, 40ХФА	4555 HRC	580	1,7	
Surface hardening	40X, 35XM		680	1 5	
(hardened layer repeats depth contour)	40XH, 40XH2MA		580	1,7	
Surface hardening (all	40X, 35XM	4858 HRC	480	17	
tooth section is hardened)	40XH, 40XH2MA		580	1,7	
Nitriding	38Х2Ю, 40Х2НМА	700950 HV	12HRC _{core} + +290	1,7	

Allowable bending stresses compare with corresponding acting stresses.

2.4.3. Allowable Stress for Calculation on Strength under the Maximum (Peak) Loading

Allowable contact stress at the maximum loading depends on a method of heat treatment and character of change of hardness on depth of a tooth.

For gears:

- after normalisation, improvement or through hardening with low tempering $[\sigma]_{Hmax} = 2,8\sigma_T$;

- case-hardened or tempered on a contour $[\sigma]_{Hmax} = 44 \ HRC$;

- nitrated $[\sigma]_{HMAX} = 3 HV$.

Allowable bending stress for the treatment conditions shown in Tab. 2.16, defines as

$$[\sigma]_{F \max} = \frac{\sigma_{FSt}}{S_{FSt}}.$$
(2.8)

In expression (2.8) σ_{FSt} is the limit bending stress at the maximum load, MPa, it is defined on Tab. 2.16; S_{FSt} is the safety factor, for steels and the heat treatment specified in Tab. 2.16, $S_{FSt} = 1,75$.

					Table 2.16
Heat treatment		Steel	Hardness of		σ_{FSt} ,
			surface	core	MPa
Normalization, tempering		Carbon and alloy	200350 HB		6,5 HB
Volumo ho	doning	With nikel content >1 %	4852 HRC		2500
Volume ha	dennig	Another alloy			2250
Surface hardening	contour	With nikel content >1 %	4854	2430	2200
		Another alloy	HRC	HRC	1800
	transparent	Another alloy	4852 HRC		2500
		With nikel content >1 %			2250
Nitriting		Alloy without aluminium	550850 HV	2430 HRC	1800
Nitrocasehardening		Alloy with molybdenum	5660	3245 HRC	2500
		Another alloy	HRC	2745 HRC	2200
Casehardening		With nikel content >1 %	5662 HRC	2743 HRC	2800
		Another alloy	5460 HRC	3043 HRC	2000

2.5. Design Calculation

The **objectives** of design calculation are a preliminary definition of the gears' dimensions and than check calculation should be done because many essential factors are not considered at the first stage.

At design calculation basical geometrical parameters should be obtained. In particular, approximate value of a pinion pitch diameter and than all the others could be found.

2.5.1. Spur Transfers

Approximate value of a pinion pitch diameter, mm,

$$d_{w1} = K_d \sqrt[3]{\frac{T_1 K_{H\beta}}{\psi_{bd}} [\sigma]_H^2} \frac{u_{12} + 1}{u_{12}},$$
(2.9)

where K_d is the auxiliary factor (for straight transfers $K_d = 770$, for helical and herringbone $K_d = 675$), T_I is the torque on a pinion, Nm.

At constant load

$$T_1 = 9550 \frac{P_1}{n_1},$$

where P_1 is the rated power on a pinion, kW; n_1 is the pinion rotational speed, rpm; u_{12} is the tooth gearing transfer number, $u_{12} = z_2/z_1$; ψ_{bd} is the relative face width of a tooth, $\psi_{bd} = b/d_{wI}$ (Tab. 2.17).

Table 2.17

	Relative face width according to surface hardnes			
Gear location relatively of bearings	less 350 HV at least for one gear	more 350 HV for both gears		
Symmetrically	0,81,4	0,40,9		
Asymmetrically	0,61,2	0,30,6		
Cantileverly	0,30,4	0,20,3		

The note: bigger values are accepted for constant loads.

A center distance a_w , mm, can be defined also from a condition of contact durability

$$a_{w} = K_{a}(u+1) \sqrt[3]{\frac{T_{I} K_{H\beta}}{\psi_{ba} u_{I2} [\sigma]_{H}^{2}}}, \qquad (2.10)$$

where K_a is the auxiliary factor (for straight transfers $K_a = 495$, for helical and herringbone $K_a = 430$); ψ_{ba} is the relative width of a tooth, $\psi_{ba} = b/a_w$.

Factors ψ_{bd} and ψ_{ba} are correlated among themselves by the next dependence $\psi_{bd} = 0.5 (u_{12} + 1) \psi_{ba}$. It is recommended to accept following values ψ_{ba} : 0,1; 0,125; 0,16; 0,2; 0,25; 0,315; 0,4; 0,5; 0,63; 0,8; 1,0; 1,25.

Than other geometrical parameters of transfer are obtained by such way:

for straight transfers:

- define the module

$$m_{p} = \frac{d_{w_{1}}}{z_{1}}$$

and round it to the nearest standard value m_{st} (see subsection 2.3.7);

- calculate number of teeth of a wheel $z_2 = z_1 u_{12}$. If z_2 - is not integer it rounded to the nearest integer and specify transfer number of a stage $u_{12} = z_2 / z_1$;

- calculate pitch diameters of wheels as $d_{w1} = m_{st}z_1$ and $d_{w2} = m_{st}z_2$;

– define face width $b_w = \psi_{bd} d_{w1}$ and round it till the normal size;

for helical transfers:

- define transverse module $m_t = d_{w_1} / z_1$;

- assume helix angle β (see subsection 2.3.6) and calculate the normal module $m_n = m_t \cos \beta$, then round it to the nearest standard value (see subsection 2.3.7);

- recalculate transverse module $m_t = m_n / \cos\beta$ and external pitch diameter $d_w = m_t z$;

- obtain face width $b_w = \psi_{bd} d_{wI}$;

- check condition $\varepsilon_{\beta} = \frac{b_{w} \sin \beta}{\pi m_{n}} \ge 1.1$. If it don't satisfy change angle β , face

width b_w or normal module m_n .

2.5.2. Bevel Transfers

Pitch diameter at an external face (see Fig. 2.2)

$$d_{e_{I}} = K_{d} \sqrt[3]{\frac{T_{I} K_{H} \sin \Sigma}{\mathcal{9}_{H} (1 - k_{be}) k_{be} [\sigma]_{H}^{2} u}},$$
(2.11)

Table 2.18

where K_d is the auxiliary factor $K_d = 1013$; θ_H is the factor considering the form of a tooth. For straight wheels $\theta_H = 1$, for spiral teeth transfers $\theta_H = 1,5$; k_{be} is the relative face width $k_{be} = b/R_e = 0,2...0,3$ (*b* is the face width, R_e is the external cone distance (see Fig. 2.2)); K_H is the load factor (see subsection 2.3.5).

At design calculation factor $K_{H\beta}$ depending on $k_{be}u / (2 - k_{be})$ could be assumed by means of Fig. 2.5, and $K_{H\nu}$ – depending on degree of accuracy, hardness of surfaces – from Tab. 2.18 (the top values – for straight teeth, bottom – for helical one).

					1 a01	e 2.18
Dograa of		K_{Hv}				
Degree of accuracy	Surface hardness	Peripherial speed v, m/s				
		1	5	10	15	20
	H_1 and $H_2 > 350$ HB	1,02	1,10	1,20	1,30	1,40
6		1,01	1,06	1,08	1,12	1,16
6	$H_1 \text{ or } H_2 \leq 350 \text{ HB}$	1,03	1,16	1,32	1,48	1,64
		1,01	1,06	1,13	1,19	1,26
7	H_1 and $H_2 > 350$ HB	1,02	1,12	1,25	1,37	1,5
		1,01	1,05	1,10	1,15	1,20
7	$H_1 \text{ or } H_2 \leq 350 \text{ HB}$	1,04	1,20	1,40	1,60	1,80
		1,02	1,08	1,16	1,24	1,32
8	H_1 and $H_2 > 350$ HB	1,03	1,15	1,30	1,45	1,60
		1,01	1,06	1,12	1,18	1,24
	$H_1 \text{ or } H_2 \leq 350 \text{ HB}$	1,05	1,24	1,48	1,72	1,96
		1,02	1,10	1,19	1,29	1,38

Than module at the back face $m_{te} = d_{e1} / z_1$ (for straight teeth $- m_e$) should be obtained.

The value of the module should be assumed as the nearest standard value and further:

- define number of teeth of a gear $z_2 = z_1 u_{12}$. If z_2 is not integer it is rounded to the nearest integer and transfer number of a step is recalculated $u_{12} = z_2 / z_1$;

– recalculate pitch diameters

$$d_{e1} = m_{te} z_1; d_{e2} = m_{te} z_2;$$

- find number of teeth of flat gear

$$z_c = \sqrt{z_1^2 + z_2^2}$$

(calculate value to within three signs after a comma);

- calculate external cone distance

$$R_{e} = 0,5 m_{te} z_{c};$$

– define face width $b = k_{be} R_e$ and round one to the integer;

– recalculate $k_{be} = b/R_e$ and check conditions

$$k_{be} \leq 0, 3, b/m_{te} \leq 10.$$

If necessary change face width b, the module m_{te} or numbers of teeth of a pinion z_1 and a wheel z_2 , keeping the set transfer number u_{12} .

2.6. Check Calculation

The **objective of the check calculation is** to answer the question: could the gears with such dimensions operate at given load during required service life? It should satisfy all of next conditions (Tab. 2.19).

		Table 2.19	
Criterion	Load conditions		
Criterion	teeth surface	bending	
Stress	$\sigma_H \leq [\sigma]_H$	$\sigma_F \leq [\sigma]_F$	
50055	$\sigma_{Hmax} \leq [\sigma]_{Hmax}$	$\sigma_{Fmax} \leq [\sigma]_{Fmax}$	

2.6.1. Calculation on Contact Durability

2.6.1.1. Calculation of Spur Transfers on Contact Endurance

Contact stress in a gearing pole is

$$\sigma_{H} = Z_{E} Z_{H} Z_{\varepsilon} \sqrt{\frac{F_{t} K_{H}}{b_{w} d_{w}}} \frac{u+1}{u} \leq [\sigma]_{H}.$$
(2.12)

Load factor K_H is defined according to the recommendations stated in part 2.3.5, other parameters are described in Tab. 2.20.

Parameter	The method of definition
The factor considering mechanical properties of materials of interfaced gears Z_E , MPa ^{-0,5}	$Z_{E} = \sqrt{\frac{1}{\pi \left(\frac{1 - v_{1}^{2}}{E_{1}} + \frac{1 - v_{2}^{2}}{E_{2}}\right)}}$ For steels $E = 2, 1 \cdot 10^{5}$ MPa, $Z_{E} = 190$
The factor considering the form of teeth interfaced surfaces in a pole of gearing Z_H	$Z_{H} = \frac{1}{\cos \alpha_{t}} \sqrt{\frac{2 \cos \beta}{tg \alpha_{tw}}}$ without shift $Z_{H} = 2,5$
The factor considering total length of contact lines Z_{ε}	If $\varepsilon_{\beta} \ge 1$, $Z_{\varepsilon} = \sqrt{\frac{1}{\varepsilon_{\alpha}}}$, For straight teeth $Z_{\varepsilon} = \sqrt{\frac{(4 - \varepsilon_{\alpha})}{3}}$
Tangentional force on pitch cylinder F_t , H	$F_{t} = \frac{2000 T_{I}}{d_{I}}$ without shift $d = d_{w}$

It would be better, if a relative deviation of contact stress

$$\varepsilon = \frac{\sigma_{H} - [\sigma]_{H}}{[\sigma]_{H}} \cdot 100 \%$$

is in limits $-5 \le \varepsilon \le 3$, i.e. underloading should not be more 5 %, and overload -3 % ([σ]_H it is defined under the recommendations stated in subsection 2.4.1).

If the value ε lays out of the specified range in limits ± 20 % it is necessary to change face width b_w , maintaining recommended value ψ_{bd} (see Tab. 2.17) (at positive ε increase b_w to the nearest normal value, at negative ε – reduce) and to recalculate $K_{H\beta}$, $K_{H\nu}$, K_H and σ_H . At a bigger deviation it is necessary to change the module m (at positive ε increase it to next standard value, at negative ε – reduce), and then to count pitch diameters d_{w1} and d_{w2} , center distance a_w , factors $K_{H\beta}$, $K_{H\nu}$, K_H and actual stress σ_H . Calculation is finished, when ε will get to the recommended region.

2.6.1.2. Calculation of Bevel Transfers on Contact Endurance

Let us assume, that tangential force is applied to the tooth middle, i.e. at mean pitch diameter d_m (see Fig. 2.2), which for a gear is equal

$$d_{m1} = d_{e1}(1-0,5k_{be}).$$

Therefore

$$F_t = \frac{2000T_1}{d_{m1}}$$

Contact stress in a pole of gearing is

$$\sigma_{H} = 32240 \quad \sqrt{\frac{T_{I} K_{H\beta} K_{H\nu} K_{H\alpha} \sin \Sigma}{d_{e_{I}}^{3} (1 - k_{be}) k_{be} u \vartheta_{H}}}$$

where $K_{H\beta}$, $K_{H\nu}$ are obtained as it is described in subsection 2.3.5. It should be noted that in the formula (2.4) instead of a_w it is necessary to substitute value $d_{m1}(u+1)$.

It is allowable, that a relative deviation of contact stress

$$\varepsilon = \frac{\sigma_H - [\sigma]_H}{[\sigma]_H} 100 \%$$

should be like in case of spur gears in limits $-5 \le \varepsilon \le 3$ ($[\sigma]_H$ it is defined according to the recommendations stated in subsection 2.4.1).

If the value ε is outside of the specified region, it is necessary to change face width **b**, maintaining recommended value k_{be} (see subsection 2.5.2) and then to recalculate $K_{H\beta}$, $K_{H\nu}$, K_H and σ_H . Calculation is finished, when ε will get to the required interval.

2.6.1.3. Calculation on Contact Strength at Action of the Maximum Load

At action of maximum torque T_{max} for the given service life contact stress σ_{Hmax} should not exceed the lowest allowable stress $[\sigma]_{Hmax}$ (see subsection 2.4.3).

Acting stress

$$\sigma_{H_{max}} = \sigma_H \sqrt{\frac{T_{max}}{T_{nominal}}}.$$

2.6.2. Calculation at Bend Durability

2.6.2.1. Calculation of Spur Transfers

The bend endurance is necessary for prevention of a fatigue break of teeth and is defined **for each of gears** by comparison of local bend stress operating in dangerous section on a transitive surface and allowable stress (see subsection 2.5.1):

$$\sigma_{F(1,2)} \leq [\sigma]_{F(1,2)}.$$

Local stress

$$\sigma_F = \frac{F_t}{b_w m} K_F Y_{FS} Y_{\beta} Y_{\varepsilon}, \qquad (2.13)$$

where b_w is the face width, mm, is defined either from designing calculation, or from dimensions of existing transfer; F_t is the tangential force (see Tab. 2.20); K_F is the load factor (see subsection 2.3.5); other parameters are described in Tab. 2.21.

Parameter	The method of definition
Factor, considering the tooth form and stress concentration Y_{FS}	$Y_{FS} = 3,47 + \frac{13,2}{z_v} - 29,7 \frac{x}{z_v} + 0,092 x^2,$
	where x – summary shift factor; z_{ν} – equivalent number of teeth.
	For spur gears $z_v = \frac{z}{\cos^3 \beta}$
	For bevel: straight teeth $z_v = \frac{z}{\cos \delta}$,
	others $z_v = \frac{z}{\cos \delta \cos^3 \beta}$
The factor considering a tooth helix angle Y_{β}	$Y_{\beta} = 1 - \varepsilon_{\beta} \frac{\beta}{120} \ge 0,7$
Factor considering teeth overlapping Y_{ε}	For straight teeth $Y_{\varepsilon} = 1$
	For helix teeth at $\varepsilon_{\beta} < 1$
	$Y_{\varepsilon} = 0, 2 + \frac{0, 8}{\varepsilon_{\alpha}},$
	if $\varepsilon_{\beta} \ge 1 Y_{\varepsilon} = \frac{1}{\varepsilon_{\alpha}}$

2.6.2.2. Calculation of Bevel Transfers

Local stress for straight bevel gears equals

$$\sigma_{F_{I}} = \frac{2280T_{I}K_{F\beta}K_{F\nu}Y_{FS_{I}}}{bd_{e_{I}}m_{e}(1-k_{be})}.$$

For wheels with spiral teeth

$$\sigma_{F_{I}} = \frac{1500T_{I}K_{F\alpha}K_{F\beta}K_{F\nu}Y_{FS_{I}}}{bd_{e_{I}}m_{e}(1-k_{be})\cos\beta_{n}}.$$

Factor Y_{FS} should be increased by 20 % in comparison with obtained in Tab. 2.21.

2.6.2.3. Calculation of Teeth Strength at Maximum Bend Load

Local stress at the simplified calculations is

$$\sigma_{F_{max}} = \sigma_F \, \frac{T_{max}}{T_{nom}}.$$

2.7. Gear Design

Key parameters of gears – width, diameter, the module, number of teeth – are found at calculation on durability. The dimensions of other elements of a wheel are obtained during their designing.

The form of gears defines depending on a way of manufacturing of billet (forging, punching, moulding, cutting from a round bar). Under condition of series and mass manufactures of wheels, billets are produced by means of stamping in bilateral stamps. Thus, it is necessary to provide radiuses of a rounding off not less than 5 mm and stamping biases $5 \dots 7^{\circ}$.

2.7.1. Gear Dimensions

Elements of a gears' design and their designation are shown on Fig. 2.8. Relations between the sizes of elements of spur and bevel wheels are resulted in Tab. 2.22, 2.23 (parameters of a bevel wheel profile with the form of a tooth I see in Tab. 2.2). Smaller values of length are selected for pressed-on to a shaft gears. In case of mass gear production the length of a hub should be assumed equal to face width. For weight reduction of gears (especially in flying machines), a thickness of walls of a disk, a rim and a hub is reduced on 20...30 %.

When the difference in the diameters of a pinion and a shaft is small $(d_a < 2d)$, teeth are directly cut on a shaft (shaft-gear wheel).

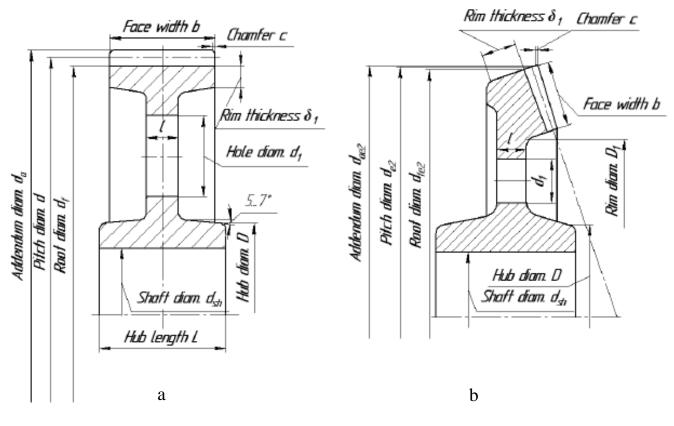


Fig. 2.8

Parameter, mm	Symbol	The method of definition
Outside diameter	$d_{a_{(1,2)}}$	$d_{a_{1,2}} = d_{w_{1,2}} + 2m$
Root diameter	$d_{f_{1,2}}$	$d_{f_{1,2}} = d_{w_{1,2}} - 2,5m$
A gear face width [*]	b ₂	$\boldsymbol{b}_2 = \boldsymbol{b}_w$ from check calculation (part 2.6)
A pinion face width *	b ₁	$b_1 = b_w + (12)m$
A shaft hole diameter [*]	d _{sh}	$d_{sh} = \sqrt[3]{\frac{1000 T_2}{0,2[\tau]}},$ [\tau] = 3050 MPa, T_2 in Nm
A hub diameter*	D	(1,51,7) d
A rim diameter *	D_1	For spur gears $D_I = d_f - 2\delta_I$, For bevel – geometrically
A hub length [*]	L	$(0,71,8) d_{sh}$
A rim thickness*	δ_l	(2,54) m (more than 10 mm)
A disk thickness *	l	(0,20,3) b
The holes' diameter [*] $(4 - 6 \text{ holes})$	<i>d</i> ₁	$\approx \frac{D_1 - D}{3}$
Chamfer [*]	С	0,5 m

*Calculated values should be rounded to nearest standard value.

Table 2.23

Parameter	Symbol	The method of definition
Addendum factor	\boldsymbol{h}_a^*	$h_a^* = \cos\beta_n$
Clearance factor	с*	c*= 0,2
External addendum height, mm	h_{ae}	$h_{ae} = m_e (h_a^* + x \cos \beta_n)$
External dedendum height, mm	\pmb{h}_{fe}	$h_{fe} = m_e (h_a^* + c^* - x \cos \beta_n)$
External height of teeth, mm	h_e	$h_e = h_{ae} + h_{fe}$
External outside diameter of teeth, mm	d _{ae}	$d_{ae} = d_e + 2 h_{ae} \cos \delta$
Addendum angle	$ heta_{\!f}$	$tg \theta_f = h_{fe} / R_e$
Angle of root cone	δ_{f}	$\delta_f = \delta - \theta_f$

2.8. Examples

2.8.1. Example 1

Initial data for calculation of spur straight transfer are represented in Tab. 2.24.

Γ				Table 2.24
Parameter		Symbol	Value	
Gears' function		_	One-stage gearbox	
Operation mode				Continual
Service life, h			L_h	20 000
Power on a pinion, l	κW		Р	5,5
Type and code of engine		_	Electrical asynchronous 4A132S6, $\frac{T_{max}}{T_{non}} = 2,2$	
A pinion rotational s	speed, rp	m	<i>n</i> ₁	965
Transfer number			u	3,8
A pinion number of	teeth		<i>Z</i> 1	22
Shift footor	pinion		x_{I}	0
Shift factor	or gear		x_2	0
Helix angle		β	0	
Degree of accuracy		-	7–B	
Teeth surface roughness, mkm		Ra	1,25	
Steel		pinion	-	40.811
Steel		gear	-	40XH
Billet		pinion	-	Ferring
		gear	-	Forging
Teat treatment		pinion		Saufa a la la ini
		gear		Surface hardening
A mean surface hardness		pinion	H ₀₁	50 HRC
		gear	<i>H</i> ₀₂	45 HRC

Let us define a gear teeth number:

$$z_2 = z_1 u = 22.3, 8 = 83, 6.$$

Rounding it to the nearest integer value (84), we will recalculate transfer number and we will calculate rotational speed of a gear:

$$u_{12} = \frac{z_2}{z_1} = \frac{84}{22} = 3,82, \quad n_2 = \frac{n_1}{u_{12}} = \frac{965}{3,82} = 254$$
 rpm.

Allowable stresses

Calculation of the allowable contact stresses is shown in Tab. 2.25 (see subsection 2.4.1).

, 	Table 2.25
Parameter	Definition and value
The base number of cycles of stress $N_{H \ lim}$	$N_{Hlim1} = 30(HB_1)^{2,4} = 30(50/0,102)^{2,4} = 85,9 \cdot 10^6$ $N_{Hlim2} = 30(HB_2)^{2,4} = 30(45/0,102)^{2,4} = 66,7 \cdot 10^6$ (aproximation $H_{HB} = H_{HRC} / 0,102$ is used)
Number of meshing at one revolution <i>c</i>	According to gearing scheme $c_1 = c_2 = 1$
Stress cycle number during service life N_K	$N_{\kappa 1} = 60n_1c_1L_h = 60 \cdot 965 \cdot 20\ 000 = 1\ 158 \cdot 10^6$ $N_{\kappa 2} = 60n_2c_2L_h = 60 \cdot 253, 9 \cdot 20\ 000 = 304, 7 \cdot 10^6$
Root index <i>m</i>	$N_{K1} > N_{H \ lim1}$ and $N_{K2} > N_{H \ lim2}$ that's why $m = 20$
Durability factor \mathbf{Z}_N	$Z_{N1} = \sqrt[m]{\frac{N_{H \ lim \ 1}}{N_{K1}}} = \sqrt[20]{\frac{85,9}{1158}} = 0,878$ $Z_{N2} = \sqrt[m]{\frac{N_{H \ lim \ 2}}{N_{K2}}} = \sqrt[20]{\frac{66,7}{304,7}} = 0,927$
	$Z_{N2} = \frac{1}{\sqrt{N_{K2}}} = \frac{1}{\sqrt{304}} \frac{1}{7} = 0.527$
Contact endurance limit σ_{Hlim} , MPa	$\sigma_{Hlim1} = 17HRC_{\mathcal{H}} + 200 = 17 \cdot 50 + 200 = 1050$ $\sigma_{Hlim2} = 17HRC_{\mathcal{H}} + 200 = 17 \cdot 45 + 200 = 965$
Safety factor S_H	$S_{H} = 1,2$
Allowable contact stresses $[\sigma]_H$, MPa (see formula (2.1))	$[\sigma]_{H_{1}} = \frac{1050 \cdot 0,878}{1,2} 0,9 = 692$ $[\sigma]_{H_{2}} = \frac{965 \cdot 0,927}{1,2} 0,9 = 671$ Let us assume the smallest value 671 MPa

Calculation of allowable bend stresses is represented in Tab. 2.26 (see subsection 2.4.2) for pinion and gear material steel 40X.

Table 2.26

Parameter	Definition and value
Limit of bend endurance σ_{Flim} , MPa	$\sigma_{Flim1} = \sigma_{Flim2} = 580$ (see Tab. 2.15)
Safety factor S_F	$S_{FI} = S_{F2} = 1,7$ (see Tab. 2.15)
The base number of cycles of stress $N_{F lim}$	$N_{F lim} = 4 \cdot 10^6$
Durability factor Y_N	$N_{K1} > N_{K2} > N_{F \ lim}$ so $Y_N = 1$
The factor considering a method of billet production Y_z	For forging $Y_Z = 1$
Factor considering a roughness of interjacent surface Y_R	For $R_z = 1,25 \ \mu m \ Y_R = 1$
Allowable bend stresses $[\sigma]_F$, MPa	$[\sigma]_F = \frac{\sigma_{F lim}}{S_F} = \frac{580}{1.7} = 354$

Allowable **contact** stress at check of strength under the maximum load for the tempered on a contour gears

$[\sigma]_{Hmax2} = 44 \ HRC_{32} = 44.45 = 1980 \ MPa.$

Allowable stress for check **bending** strength under the maximum load we will define under the formula (2.4) and Tab. 2.16 for the given conditions (surface hardening on a contour, the alloyed steel with the nickel content less than 1 %):

$$[\sigma]_{F max} = \frac{\sigma_{FSt}}{S_{FSt}} = \frac{1800}{1,75} = 1068$$
 MPa.

Design calculation

Design calculation is shown in Tab. 2.27.

Table 2.27

Parameter	Definition and value
Torque on a pinion T_I , Nm	$T_1 = 9550 \frac{5.5}{965} = 54.4$
Relative face width ψ_{bd}	$\psi_{bd} = 0, 6$ (see Tab. 2.17)
Factor considering non-uniformity of load distribution on contact line $K_{H\beta}$	According to gearbox scheme and ψ_{bd} value $K_{H\beta} = 1,04$ (see Fig. 2.4)
Auxiliary factor K_d , MPa ^{1/3}	For straight spur gear $K_d = 770$
A pinion pitch diameter d_{w1} , mm	$d_{w1} = K_{d} \sqrt[3]{\frac{T_{I} K_{H\beta}}{\psi_{bd} [\sigma]_{H}^{2}}} \frac{u+1}{u} =$ =770 $\sqrt[3]{\frac{54,4 \cdot 1,04}{0,6 \cdot 671^{2}}} \frac{4,82}{3,82} = 49,5$

Parameter	Definition and value
Calculated module <i>m</i> , mm	$m = \frac{d_{w1}}{z_1} = \frac{49,5}{22} = 2,25$
Standard module, mm	<i>m</i> = 2,5 (see subsection 2.3.7)
Pitch diameters d_w , mm	$d_{w1} = m z_1 = 2,5 \cdot 22 = 55$ $d_{w2} = m z_2 = 2,5 \cdot 84 = 210$
Center distance a_w , mm	$a_w = \frac{m(z_1 + z_2)}{2} = \frac{2,5(22 + 84)}{2} = 132,50$

Check calculation

Check calculation on **contact endurance** is resulted in Tab. 2.28 (methods of parameters' definition are described in subsection 2.6.1).

Table 2.28

Parameter	Definition and value
Overlapping factor ε_{α}	$\varepsilon_{\alpha} = 1,88 - 3,2 \left(\frac{1}{z_1} + \frac{1}{z_2}\right) = 1,88 - 3,2 \left(\frac{1}{24} + \frac{1}{91}\right) = 1,71$
The factor considering total length of contact lines \mathbf{Z}_{ε}	For straight teeth $(\beta = 0^{\circ})$ $Z_{\varepsilon} = \sqrt{(4 - \varepsilon_{\alpha})/3} = \sqrt{(4 - 1,711)/3} = 0,87$
The factor considering mechanical properties of materials of interfaced wheels Z_E , MPa ^{-0,5}	For steel gears $Z_E = 190$
The factor considering the form of teeth interfaced surfaces in a pole of gearing Z_H	When $\alpha_t = \alpha_{tw} = 20^{\circ}$ and without shift $Z_H = \frac{1}{\cos\alpha_t} \sqrt{\frac{2}{tg\alpha_{tw}}} = \frac{1}{\cos 20^{\circ}} \sqrt{\frac{2}{tg20^{\circ}}} = 2,49$
Tangentional force on pitch cylinder F_t , N	$F_{t} = \frac{2000 \ T_{1}}{d_{w1}} = \frac{2000 \ \cdot 54, 4}{55} = 1 \ 979$
Peripheral speed \boldsymbol{v} , m/s	$v = \frac{\pi d_{w1} n_1}{60\ 000} = \frac{3,14 \cdot 55 \cdot 965}{60000} = 2,79$
Face width \boldsymbol{b}_{w} , mm	$b_w = \psi_{bd} d_{w1} = 0,6 \cdot 55 = 33$

End of Tab. 2		
Parameter	Definition and value	
External dynamic factor K_{HA}	For uniform operating condition $K_{HA} = 1$ (see subsection 2.3.5)	
Check on closeness to resonance	$vz_1 = 2,79.22 \approx 61 < 1000 -$ - before resonance zone	
Factor considering influence of a profile tip relief and a kind of teeth δ_H (see Tab. 2.11)	For straight teeth with surface hardness more than 350 HV and without a profile tip relief $\delta_H = 0.14$	
Factor considering influence of a pitch difference of teeth of a pinion and a wheel g_0 (see Tab. 2.12)	For 7 degree of accuracy and $m = 2,5$ $g_0 = 4,7$	
Specific dynamic load w_{Hv} , N/mm (see Tab. 2.12)	$w_{Hv} = \delta_H g_0 v_V \sqrt{\frac{a_w}{u}} = 0,14 \cdot 4,7 \cdot 2,79 \sqrt{\frac{132,5}{3,82}} = 10,82$ 10,82 < w ymax = 240	
Internal dynamic factor K_{Hv}	$K_{Hv} = 1 + \frac{w_{Hv}b_{w}}{F_{t}K_{HA}} = 1 + \frac{10,82 \cdot 33}{1979 \cdot 1} = 1,18$	
Load factor K_H	$K_H = K_{H\nu} K_{H\beta} = 1,18 \cdot 1,04 = 1,23$	
Contact stress σ_H , MPa	$\sigma_{H} = 190 \cdot 2.49 \cdot 0.87 \sqrt{\frac{1979 \cdot 1.23}{33 \cdot 55} \frac{4.82}{3.82}} = 542$	
Relative stress <i>ɛ</i>	$\varepsilon = \frac{\sigma_H - [\sigma]_H}{[\sigma]_H} = \frac{542 - 671}{671} \cdot 100 \% = -19,2 \%,$ i. e. underloading	

Let us reduce face width to 22 mm ($\psi_{bd} = 0,4$, that is admissible, see Tab. 2.17) and recalculate

$$K_{Hv} = 1 + \frac{w_{Hv}b_{w}}{F_{t}K_{HA}} = 1 + \frac{10,82 \cdot 22}{1\,979 \cdot 1} = 1,12$$

and load factor

$$K_H = K_{HV} K_{H\beta} = 1,12 \cdot 1,04 = 1,17.$$

Then contact stress in a gearing pole

$$\sigma_{_{H}} = 190 \cdot 2.49 \cdot 0.87 \sqrt{\frac{1979 \cdot 1.17}{22 \cdot 55} \frac{4.82}{3.82}} = 647 \text{ MPa}$$

and a relative deviation of stress

$$\varepsilon = \frac{\sigma_H - [\sigma]_H}{[\sigma]_H} = \frac{647 - 671}{671} \cdot 100\% = -3,6\%$$
, that is admissible.

Calculation of teeth on **bending endurance** is shown in Tab. 2.29.

Table 2.29

Parameter	Definition and value
Factor, considering the tooth	In case of absence of shift for straight gears
form and stress concentration	$z_{vl,2}=z_{l,2}$
Y _{FS}	$Y_{FS1} = 3,47 + 13,2 / z_1 = 3,47 + 13,2 / 22 = 4,07$
	$Y_{FS2} = 3,47 + 13,2 / z_2 = 3,47 + 13,2 / 84 = 3,63$
The factor considering a tooth	For straight teeth ($\beta = 0^{\circ}$) $Y_{\beta} = 1 - \varepsilon_{\beta} \frac{\beta}{120} = 1$
helix angle Y_{β}	$101 \text{ straight teem} (p=0) 1_{\beta} = 1 - v_{\beta} 120$
Factor considering teeth	For straight teeth $Y_{\epsilon} = 1$
overlapping Y_{ε}	1 of straight teen $1_{\mathcal{E}} = 1$
Load factor K_F	$K_F = K_H = 1,16$
	$\boldsymbol{\sigma}_{F1} = \frac{F_t}{b_w m} K_F Y_{FS1} = \frac{1979}{22 \cdot 2.5} 1.17 \cdot 4.07 = 170 \le [\boldsymbol{\sigma}]_{F2} = 354$
Local bending stress σ_F , MPa	$\boldsymbol{\sigma}_{F2} = \frac{Ft}{b_{w}m} K_{F} Y_{FS2} = \frac{1979}{22 \cdot 2,5} 1,17 \cdot 3,63 = 152 \le [\boldsymbol{\sigma}]_{F2} = 354$

Let us check up gearing on strength at action of the maximum loading:

– define actual contact stress (see subsection 2.6.1.3) and compare it with the allowable one:

$$\sigma_{H max} = \sigma_H \sqrt{T_{max} / T_{HOM}} = 647 \sqrt{2.2} = 959 < [\sigma]_{H max} = 1980 \text{ MPa};$$

- calculate actual bending stress separately for a pinion and a gear and compare them with corresponding allowable stress (see subsection 2.6.2.3):

$$\sigma_{F \max 1} = \sigma_{F1}(T_{\max} / T_{HOM}) = 170 \cdot 2, 2 = 375 < [\sigma]_{F \max} = 1068 \text{ MPa},$$

$$\sigma_{F \max 2} = \sigma_{F2}(T_{\max} / T_{HOM}) = 152 \cdot 2, 2 = 334 < [\sigma]_{F \max 2} = 1068 \text{ MPa}.$$

A pinion and a gear dimensions

Calculation of a pinion and a gear dimensions see in Tab. 2.30.

Table 2.30

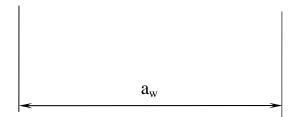
Parameter	Definition and value, mm
Outside diameter d_a	$d_{a_1} = d_{w_1} + 2m = 55 + 2 \cdot 2, 5 = 60$
	$d_{a_2} = d_{w_2} + 2m = 210 + 2 \cdot 2,5 = 215$
Root diameter d_f	$d_{f_1} = d_{w_1} - 2,5 m = 55 - 2,5 \cdot 2,5 = 48,750$
	$d_{f_2} = d_{w_2} - 2,5m = 210 - 2,5 \cdot 2,5 = 203,750$
A gear face width \boldsymbol{b}_{w_2}	$b_{w_2} = b_w = 22$

End of Table 2.30

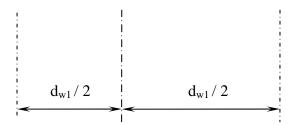
Parameter	Definition and value, mm
Pinion face width \boldsymbol{b}_{w_1}	$b_{w_1} = b_w + (12)m = 22 + 2 \cdot 2,5 = 27$
Torque on a gear T_2 , Nm	$T_{out} = T_1 i \ \eta_o = 54, 4 \cdot 3, 8 \cdot 0, 94 = 194, 4$
Shaft hole diameter	$d = \sqrt[3]{\frac{1000T_2}{0,2[\tau]}} = \sqrt[3]{\frac{1000 \cdot 194,4}{0,2 \cdot 50}} = 26,88 \approx 28$
Hub diameter	(1,51,7) d = 1,5.28 = 42
Hub length	$L = (0,71,8) d = 1,2.28 = 33,6 \approx 34$
Rim thickness	(2,54) <i>m</i> = 4·2 = 8, increased to 10
Disk thickness	$(0,20,3) \ b = 0,3.28 \approx 10$
Rim diameter	$D_1 = d_{f2} - 2\delta_1 = 177 - 2 \cdot 10 = 157$
The holes' diameter	$d_1 = (0,250,3)(D_1 - D) = 0,25 (157 - 42) \approx 30$
Chamfer	$0,5 m = 0,5 \cdot 2,5 = 1,25$

Order of spur gearing design

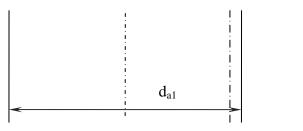
To design spur gearing, it is necessary to know:

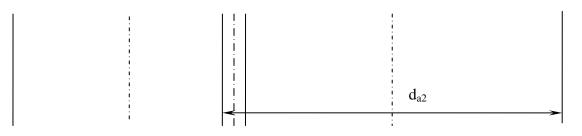

b – face width of a gear;

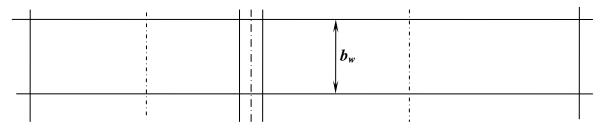
 a_w – stage center distance;

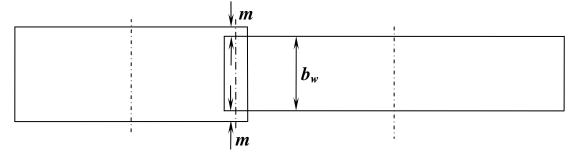

 d_{wl} , d_{w2} – pinion and gear pitch diameters (according to the strength calculation); d_{al} , d_{a2} – pinion and gear addendum diameters (for straight teeth transfer without shift $d_a = d_w + 2 m$);

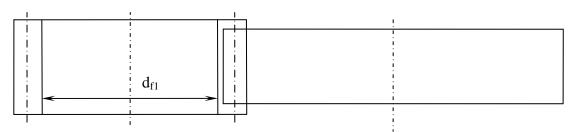
 d_{fl} , d_{f2} – pinion and gear root diameters (for straight teeth transfer without shift $d_f = d_w - 2,5 m$).

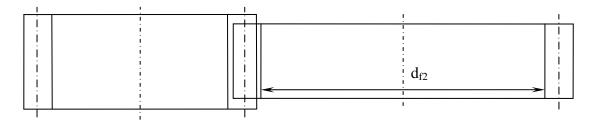

1. Draw two parallel straight lines at the center distance a_w (blue line is a pinion axis, green line is a gear one):


2. Draw a parallel line between axis lines at the distance $d_{w1}/2$ from the pinion axis or $d_{w2}/2$ from the gear one:


3. Draw two parallel lines at the distance d_{a1} simmetrically about the pinion axis:


4. Draw two parallel lines at the distance d_{a2} simmetrically about the gear axis:


5. Draw two parallel straight lines perpendicularly to the existing lines at the distance b_w :


6. Generate both gear and pinion contoures (it is recommended to increase pinion width relatively gear with one module value on each side):

7. Draw two parallel lines at the distance d_{fI} simmetrically about the pinion axis:

8. Draw two parallel lines at the distance d_{f^2} simmetrically about the gear axis:

9. Design the wheels like in Fig. 2.9 (see parameters in Tab. 2.30):

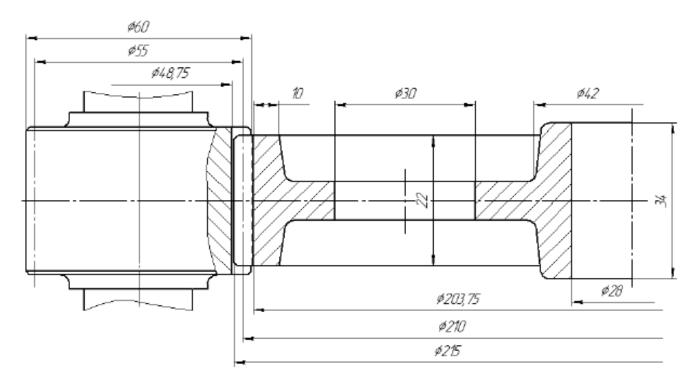


Fig. 2.9

Example 2

Calculation of bevel gearing by means of a program is described below.

1. Fulfill the first form with initial data (see subsection 1.4, Example 1) after authorization:

Transfer Type 🔵 Spur 🛛 🛞 Bevel	Planetary	Tooth Tip Relief ⑦ Yes
Transfer Setting		
Input Torque, Nm	80.7	
Service life, thousand hours	20	
^p inion rotational speed, rpm	870	
Transfer ratio	2.9	
Degree of accuracy	6	
Stage diagram	11	Change Diagram
Helix angle, deg	0,	
] Turn on calculation on overload		

2. Fill allowable contact stresses form:

Contact Allowable Stresses v14.2		×
	Pinion	Gear
Surface Hardness, HRC	50	45
Surface Hardness, HB	490	441
Contact endurance limit, MPa	1050	965
The base number of cycles of stress, min.	85.9	66.7
Number of meshing at one revolution	1	1
Stress cycle number during service life, mln	1044	360
Mode of operation	Constant	-
Equivalent number of load cycles, min	1044	360
Root Index	20	20
Durability factor	0.88	0.92
Safety factor	1.2	2
Allowable contact stress, MPa	695	665
Accepted stress, MPa	665	
		×

3. Fill design calculation form:

	Values
Auxiliary factor	1013
Relative face width	.2
Factor considering non-uniformity of load distribution on contact line length	1.1
Calculated pinion diameter = 76.6 mm	
Pinion number of teeth (minimum 17)	20
Calculated module 3.83 mm	
Accepted standard module	4
Расчётная ширина венца 24.5 мм	
Accepted face width	25

4. Fill allowable bending stresses form:

In fatigue endurance	Values	
	Pinion	Gear
Safety factor	1.7	1.7
Bending endurance limit, MPa	580	580
The base number of cycles of stress , min		4
Stress cycle number during service life, mln	1044	360
Equivalent number of load cycles, mln	1044	360
leat treatment	Surface 🗸	Suface 🔹
Root index	9	9
Durability factor	1	1
The factor considering the load reversibility		1
Nowable stresses, MPa	354.8	348.3

Ť	Values		Strength Calculation Results			
u =	2.9	Deviation 0 %		On contact	On b	ending
HRC1 =	50			endurance	Pinion	Gear
HRC2 =	45	1	Actual stresses, MPa	741.8	224.3	194.1
z1 =	20	z2 = 58	Allowable stresses, MPa	665.2	354.8	348.3
m =	4		Deviation ɛ, %	11.5	-37	-44
b =	24	Relative face width 0.2				
Pitch dia Pinior de1 =		Gear de2 = 232				Change Steel

5. Check results of the verify calculation:

As the first result shows, there is overload on contact endurance (red colour cell, 11,5 %). To avoid overload some parameters were changed: pinion hardness increase from 50 to 55 HRC; gear hardness increase from 45 to 50 HRC; number of teeth increases from 20 to 26; face width increases from 25 to 30 mm (relative face width less 0,3); the module decrease from 4 to 3.

Finally, deviation on contact endurance is about zero and less than zero on bending endurance.

10	Values	- Th	Strength Calculation Results			
u =	2.9	Deviation 0 %		On contact endurance	On b	ending
HRC1 =	55			endurance	Pinion	Gear
HRC2 =	50	î	Actual stresses, MPa	736.7	277.2	247.6
z1 =	26	z2 = 75	Allowable stresses, MPa	733.1	354.9	348.6
m =	3	Ĩ	Deviation ɛ, %	0.5	-22	-29
b =	30	Relative face width 0.25				
Pitch di	ameters, mm					DONE
Pinio	n j	Gear			[

Pinion pitch diameter, mm	75,7	Internal dynamic load fact	or <u>Kny</u>	1,21	
Pinion number of teeth zi	20	Load distribution non-unif factor KH2	ormity	1,36	
Module m, mm	3,78	Load factor KH		1,67	
Calculated face width by, mm	25,3	Actual contact stress OH, N	Actual contact stress <u>GH</u> , MPa		
		Relative contact stress &		0,5	
		Actual peak contact stress			
		OHmax, MPa			
		Final Parameters			
Bevel			pinion	gear	
Transfer number u	2,90	Number of teeth z	26	75	
Standard module m, mm	3,00	Rotational speed n, rpm	870	300	
Cone distance Re, mm	119,068	Addendum diam., mm	83,669	226,965	
Face width b, mm	30,0	Pitch diam., mm	78,00	225,00	
Relative face width 0,25		Root diam., mm	71,197	222,642	
b/m	10,00	Mean pitch diam., mm	68,174	196,655	
0		Pitch cone angle, deg	19,12	70,88	

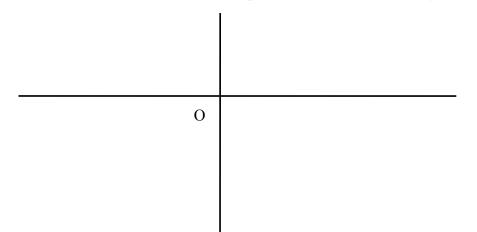
Results are shown in the table below:

NF	0,	88	
Load distribution non- uniformity factor KFB	1,35		
Load factor Kp	1,65		
Actual bending stress <u> </u>	277	248	
Relative bending stress &	-21,9	-29,0	
Actual peak bending stress openas, MPa			

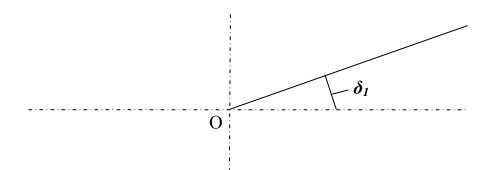
Order of bevel gearing design

To design bevel gearing, it is necessary to know (see in table above):

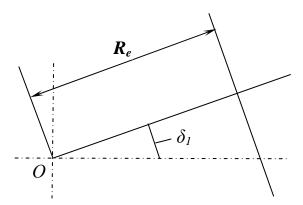
 R_e – cone distance;

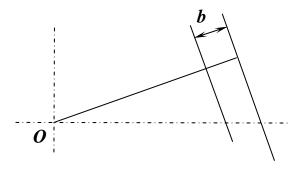

b – face width of a gear;

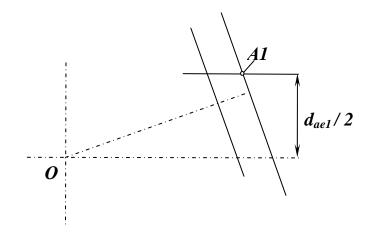
 δ_1 , δ_2 – pinion and gear pitch cone angles;

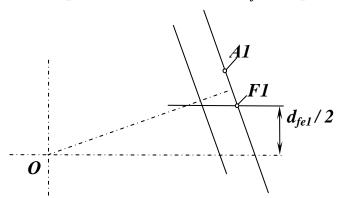

 d_{ae1} , d_{ae2} – pinion and gear addendum diameters at an external face (for straight teeth orthogonal transfer without shift $d_{ae} = d_e + 2 m \cos \delta$);

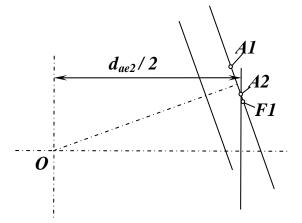
 d_{fel} , d_{fe2} – pinion and gear root diameters at an external face (for straight teeth orthogonal transfer without shift $d_{fe} = d_e - 2, 4 m \cos \delta$).

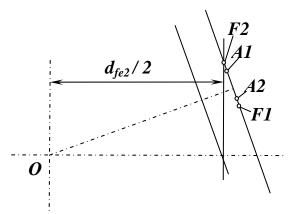

1. Draw two straight lines under an interaxal angle of transfer (for orthogonal transfer -90°). Let the horizontal line will be a pinion axis, vertical – a gear axis:

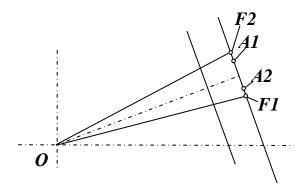

2. Draw a semi-line from a point O under an angle δ_1 to a pinion axis:

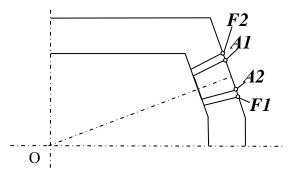

3. Draw a straight line perpendicularly to the semi-line on distance R_e from the center:

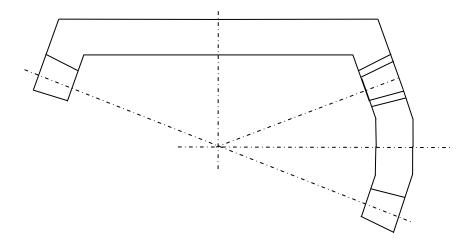

4. Draw a parallel straight line on distance *b* closer to centre *O*:

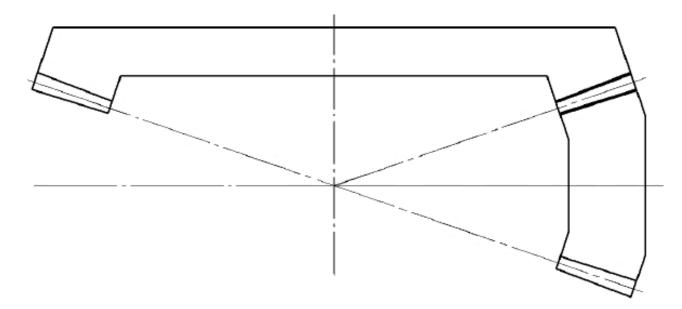

5. Draw a parallel to a pinion axis on distance $d_{ae1}/2$ (point A1):


6. Draw a parallel to a pinion axis on distance $d_{fel}/2$ (point F1):


7. Draw a parallel to a gear axis on distance $d_{ae2}/2$ (point A2):


8. Draw a parallel to a gear axis on distance $d_{fe2}/2$ (point F2):


9. Connect the points *F1* and *F2* to the centre *O*:


10. Draw lines parallel to **OF1** and **OF2** from points **A2** and **A1** correspondingly:

11. The generated profiles of wheels mirror to display concerning their axes:

Draw a sketch of gearing calculated above according to the order:

Than, we can design the gears' disks and hubs. Additional parameters are shown in Tab. 2.31, a sketch according to these sizes – in Fig. 2.10.

Table 2.31

_		Value	, mm
Parameter	Formula	pinion	gear
Torque, Nm	See subsection 1.4, Example 2	80,7	220
Allowable stress [7], MPa	See Tab. 2.22	50)
A shaft diameter	$d = \sqrt[3]{\frac{1000T}{0,2[\tau]}}$	20,1	28
A hub diameter	$(1,51,7) d = 1,5 \cdot 28$	X	42
A hub length	$(0,71,8) d = 1,2 \cdot 28$	X	34
A rim thickness	$(2,54) m = 3 \cdot 3 \approx$	X	10
A disk thickness	$(0,20,3) \ b = 0,3 \cdot 30 \approx$	X	10
A rim diameter	geometrically	X	215
The holes' diameter	from design reasons	X	32
Chamfer	0,5 m	1,	5

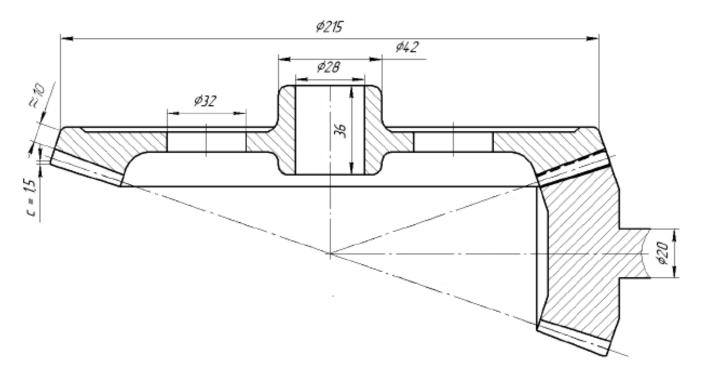


Fig. 2.10

3. SHAFTS CALCULATION AND DESIGN

Shaft is an element intended for transfer of the rotating moment along the axis and for maintenance of rotating elements. It is also subjected to action of cross-section forces and the bending moments.

Calculation on durability of shaft is realized in two stages: design and check. During design calculation, a shaft material is chosen taking into account loads and rotational speed and than shaft dimensions are defined. After that a shaft (or an axle) design is developed. Demanded verify calculation is carried out for the chosen design.

Depending on load character and operational requirements a shaft is checked on durability under the influence of short-term overloads, on fatigue endurance, on rigidity, on twisting oscillations, etc.

3.1. Design Calculation and Shaft Designing Rules

Before design calculation power torque T, Nm, and rotational speed n, rpm, are usually known.

To define a preliminary shaft diameter d, mm, only torsion calculation (without accounting bending stresses) with lowered allowable stress is used:

$$d = \sqrt[3]{\frac{1000T}{0,2(1-\alpha^4)[\tau_t]}},$$
 (3.1)

where $[\tau_t]$ is conditional allowable torsion stress, MPa, which is usually accepted 20...50 MPa for shafts of the general mechanical engineering gearboxes and 70...90 MPa – for shafts of aviation ones.

After preliminary definition of a shaft diameter it should be rounded to standard value.

Then shaft should be designed: surfaces under hub, necks for bearings, thrust fillets, key ways, turnings for an exit of the tool, etc. should be formed.

Thus it is necessary to keep of the following **design rules**:

1. The shaft form should be approached to the form of a body of equal resistance to a bending. It means that the greatest diameter should be in those places where the maximum bending and twisting moments operate. As a rule, it is somewhere in the middle of a shaft. In other words, diameter of a shaft should decrease stepwise from the middle to the ends (see Fig. 3.1) that allows satisfying the second rule also.

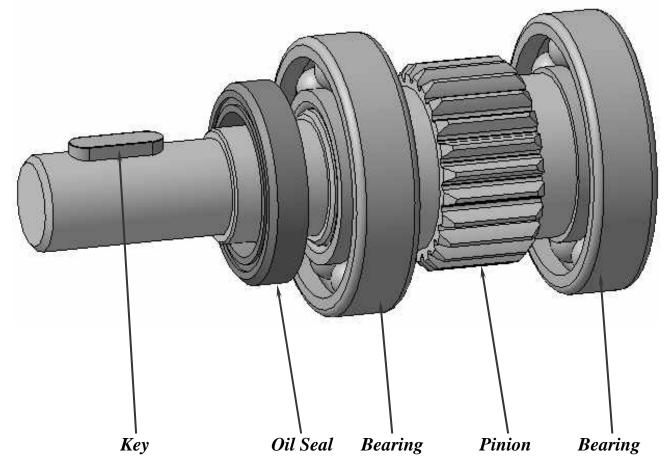
2. Each element should pass to its seat without tightness. For this purpose it is necessary to provide a separate diameter for each element (gear, bearings etc.).

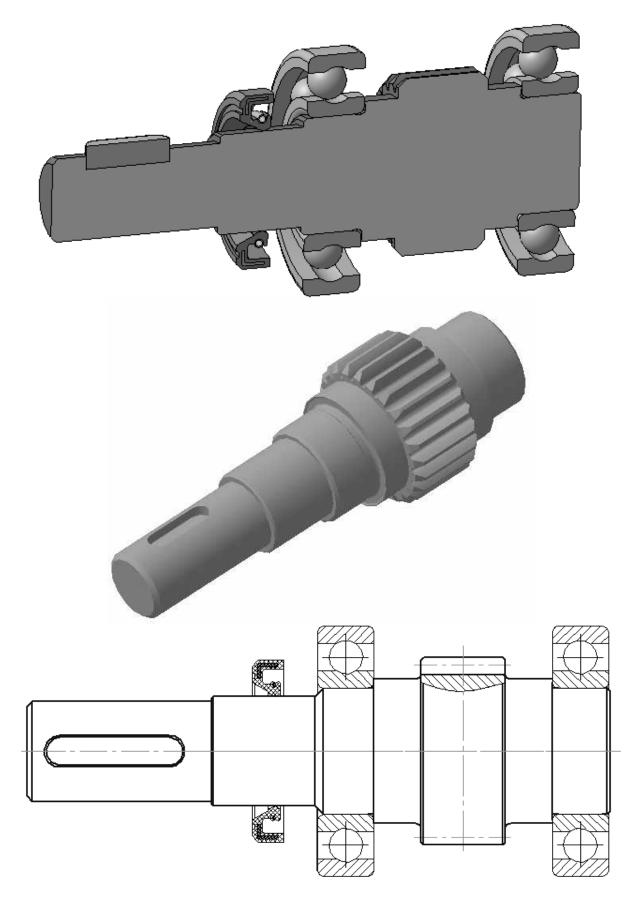
If a key is provided on the shaft end, it is desirable that the elements mounted more deeply on a shaft pass over a key without its dismantling.

3. The shaft should be fixed in radial and axial directions. For this purpose, **two** points of a support in a radial direction and in each of axial directions should be provided on the shaft (one point does not provide fixing, and at three and more systems become statically indefinable; of course, long multi-support shafts exist, but are not

considered here). It means that two radial bearings, taking both radial and axial forces and a combination radial with thrust or radial-thrust beating should be mounted.

Radial forces are transferred by a shaft neck to a bearing holder. To transfer the axial forces it is necessary to provide fillets or grooves under a circlip on a shaft.

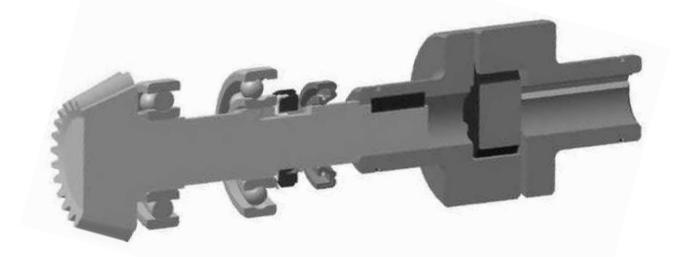

4. The length of a neck of a shaft should be corresponded to the length of a contact surface of an element. Moreover, its length can be decreased on chamfer or rounding length.

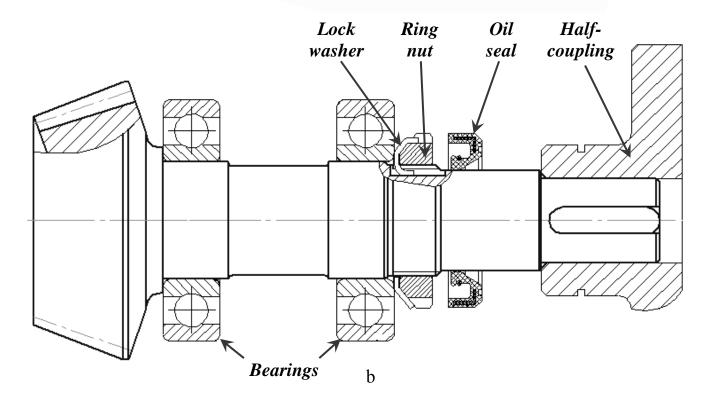

5. *Make chamfers* on all connected surfaces (under bearings, wheels, couplings, etc.), because an element assembling is rather complicated without chamfer. The recommended chamfer sizes are:

Shaft diameter d, mm	1620	2030	3050	50100
Chamfer, mm	1	1,5	2	3

6. Diameters of the input/output shaft end should be corresponded with diameters of attached units (for example, with standard coupling diameter). If these sizes strongly differ, it is necessary either to change shaft diameter, or to use transitive bushes.

According to these rules a spur gearbox input shaft, for example, should look like in Fig. 3.1, a, for bevel gearbox – like in Fig. 3.1, b, an output shaft for both spur or bevel gearbox – like in Fig. 3.2. Therefore, elements connected to each shaft (a coupling, an oil seal, a bearing) should be selected to design the shaft surfaces.





a

Fig. 3.1

End of Fig. 3.1

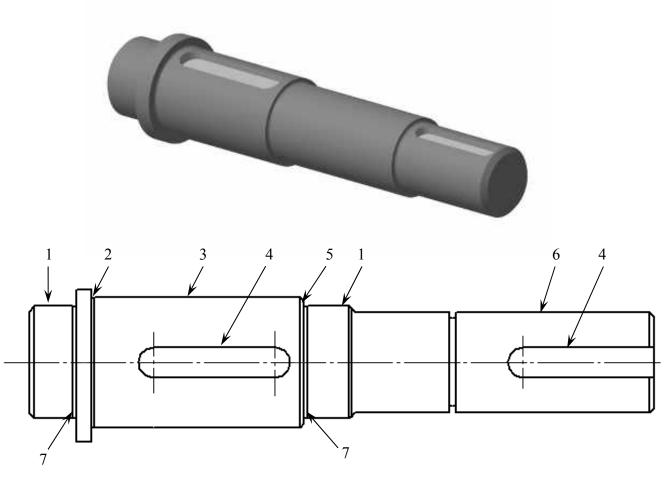
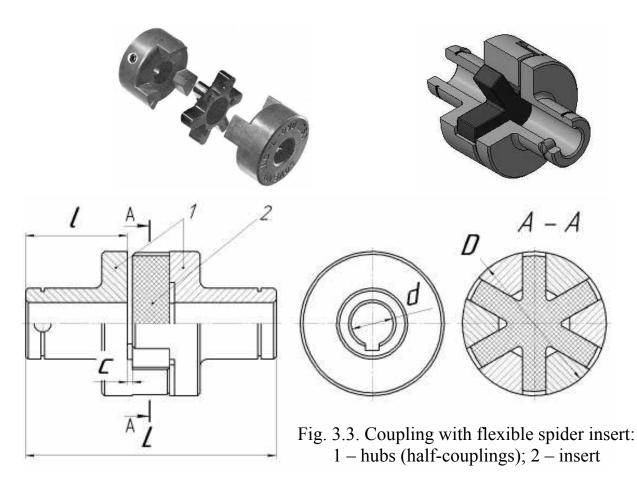


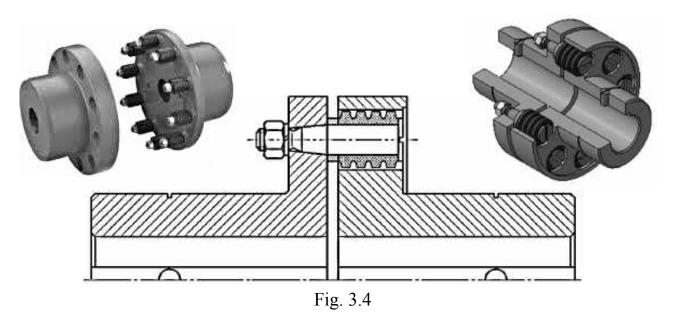
Fig. 3.2. An output shaft design: 1 – neck for bearings; 2 – thrust filet for a gear; 3 – neck for a gear; 4 – keyseats; 5 – thrust filet for a bearing; 6 – neck for half-coupling; 7 – grooves

3.2. Input Coupling Selection

Clutches and couplings are the mechanisms used for transferring torque between shafts and to compensate their misalignment.


Standard couplings are selected on the base of a torque and the connecting shafts diameters. In addition, rotational speed should not exceed allowable one.

The main coupling characteristic is a nominal torque $T_p = k_p T$, where $k_p = 2...2,5$ is an overload factor considering an operating mode.


To connect an electric motor shaft and a gearbox one jaw compression coupling with flexible spider insert (GOST 14084-76*, Fig. 3.3) is recommended to use. Advantages of this type relatively to other elastic ones are smaller overall dimensions and possibility to connect shafts with different diameters.

The coupling consists of two half-couplings and an elastic element – a flexible spider insert with four or six beams.

The main coupling parameters and dimensions are shown in Appendix B.

As variant, so called flexible coupling with rubber-bushed studs (Fig. 3.4) may be used. It is usually used for general purpose to decrease dynamic loads in connection of coaxial shafts in case of torque transmission from 6,3 to 16 000 Nm and for shafts with diameter from 9 to 160 mm.

Couplings are produced of two types: one with cylindrical bore and another with conical bore. Half-couplings of each type are made of two types: one for long shaft ends and another for short shaft ends.

The main coupling dimensions are shown in Appendix B.

Example 1

Let us consider spur straight teeth gearbox calculated above. The input nominal torque T = 54,4 Nm (see subsection 1.4, Example 1) and engine overload factor equals 2,2. Thus

$$T_{p} = k_{p}T = 2,2 \cdot 54,4 = 119,7$$
 Nm.

Let us select flexible coupling with rubber-bushed studs. According to calculated T_p we should select coupling with nominal torque 125 Nm (see Table B1, Appendix B). But the engine shaft diameter is 38 mm (see initial data) and this coupling series the biggest diameter is 28 mm. In such case, we have to take coupling with nominal torque 250 Nm with one end hole diameter 36 mm and another the smallest one 32 mm (see fragment of Table B1 below).

lue T,			1	Ľ	i	ļ		r of		Max s misaliş	shafts' gnment
Nominal torque Nm	d	D	Long end	Short end	Long end	Short end	D ₁	The number of studs	RPM _{max}	radial ∆ _r , mm	angular Δ_a , deg
125	25 28	125		89	60	42	90	4	4 600		
125	25 28	120	165		80	60			1 000	0.2	1
250	32 36	140		125	110	85	105		2 800	0,3	1
	40 45	140	225	175	110	63	105	6	3 800		

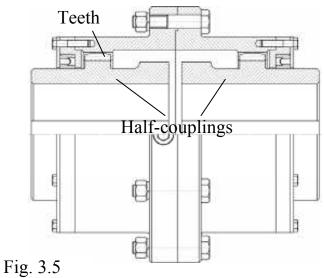
Selected coupling dimensions

Parameter	Parameter				
	Engine shaft d_I	38			
Diameters, mm	Gearbox input shaft	32			
Conjunctive length <i>l</i> , mm, for	engine	85			
half-coupling connected to	gear box	85			
Overall dimensions men	Diameter D	105			
Overall dimensions, mm	Total length <i>L</i>	125			

Example 2

Let us select coupling for the drive with bevel gearbox calculated above (see subsection 1.4, Example 2, Fig. 2.10). The input nominal torque T = 80,7 Nm and engine overload factor equals 2,2. Thus

 $T_p = k_p T = 2,2 \cdot 80,7 = 177,5$ Nm.


According to calculated T_p we should select coupling with nominal torque 250 Nm. The engine shaft diameter is 38 mm (see Tab. 1.7). In such case, we can take one end hole diameter 38 mm and another the smallest one 32 mm (see fragment of Table B2 below).

Nominal torque T, Nm	d	D	Ι			l	c,	Maximum rotational	shaff axes		
				Ту	pe		mm	speed,	radial	angle	
			Ι	II	Ι	II		rpm	Δ_{r} , mm	Δ_{α} , deg	
(32		191	147	80	58					
	36		251	195							
250,0	(38) 40 (42) 45)135	256	200	110	82	3,0	1500	0,4	1	

3.3. Output Coupling Selection

To connect the output shaft and a driven machine many coupling types can be used. In a case of great load and necessity to compensate every kind of operating misalignment, as well as unavoidable misalignments when installing coupled machines curved-tooth gear coupling (GOST 5006-94) is recommended (Fig. 3.5).

This type of coupling transmits a torque through internal and external teeth. The operating principle of the gear couplings relies on engagement of the external teeth of the hub with the internal toothing of the sleeve, or bell, which allows the transmission of torque between the flanges. The relative misalignment is compensated by axial sliding of the internal gear teeth on the external gear teeth.

The coupling is made of hardened and tempered steel, fully machined and fastened by high strength bolts, to provide higher transmission capacity in relation to its size/weight.

The main coupling parameters and dimensions are shown in Appendix C.

Under the high shock loads, a slipping clutch or coupling or both should be used (Fig. 3.6). Therefore, slipping clutches protect machines against overload.

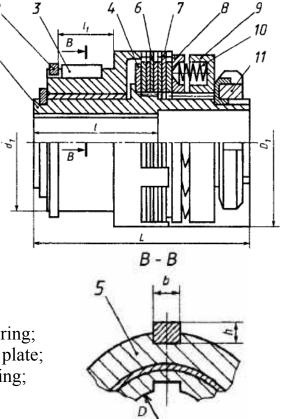


Fig. 3.6. A slipping clutch: 1 – driving hub; 2 – split ring; 3 – key; 4 – ring; 5 – driven hub; 6 – driving plate; 7 – driven plate; 8 – press plate; 9 – spring frame; 10 – spring; 11 – nut and stopper

The most common design uses a clutch plate that is clamped between the driving and driven plates by spring pressure that can be adjusted. When excessive load causes the driven member to slow, the clutch plate surfaces slip, allowing reduction of the transmitted torque. When the overload is removed, the drive is taken up automatically. Switches can be provided to cut off current supply to the driving motor when the driven shaft slows to a preset limit or to signal a warning or both.

Safety multiple-disc slipping coupling (GOST 15622-96) is used to connect a gearbox with a driven device because its advantages are: small dimensions, simple design and possibility to connect shafts with different diameters.

The slip or overload torque is calculated with taking 150 per cent of the normal running torque.

The main coupling parameters and dimensions are shown in Appendix C.

Example 1

Let us select curved-tooth gear coupling for spur straight teeth gearbox output shaft. The output nominal torque T = 194,4 Nm (see subsection 1.4, Example 1). Thus $T_p = k_p T = 2,2 \cdot 194,4 = 427,7$ Nm.

Torque T_p , Nm	Driving shaft diam.	Outer diam.	Driven shaft diam. <i>d</i> 1,	Overall length L,Driving end l,		Driven end <i>l</i> ₁ ,	cross-s	en key section, m
r ·	<i>d</i> , mm	D_1 , mm	mm	mm	mm	mm	h	b
1 000	40	145	90	180	80 110	48	9	14

Look at Table C1 in Appendix C:

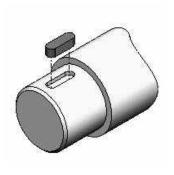
Calculated output shaft diameter is 28 mm (see Tab. 2.30), but according to the table above, the smallest one should be 40 mm, therefore we assume this value for the output shaft coupling end.

Example 2

Let us select safety multiple-disc slipping coupling for bevel gearbox output shaft. The output nominal torque T = 220 Nm (the given data). Thus

$$T_p = k_p T = 1,5 \cdot 220 = 330$$
 Nm.

	rque Nm	Driving shaft diam. <i>D</i> , mm	Outer diam.	Driven shaft diam. <i>d</i> 1,	Overall length <i>L</i> ,	Driving end <i>l</i> ,	Driven end <i>l</i> 1,	cross-s	en key section, im
r ·		,	$D_1, \text{ mm}$		mm	mm	mm	h	b
1	00	38	145	90	180	80	48	0	14
4	00	40, 42, 45, 48	143	90	100	110	40	9	14


Look at Appendix C, Table C2:

Calculated output shaft diameter is 28 mm (see Tab. 2.31), but according to the table above, the smallest one should be 38 mm, therefore we assume this value for the output shaft end.

3.4. Key selection

Keys are used to attach parts to shafts in order to transmit rotational power to gears. From many key types we will consider the most widespread and simple Pratt & Whitney key with rectangular cross-section (GOST 23360-78, Appendix D).

The standard key size $b \ge h$ is selected depending on a shaft diameter d (Fig. 3.7). The size of section $b \ge h$ provides the full-strength on bearing stress and a shear one that is why key working length is usually obtained from a calculation on bearing.

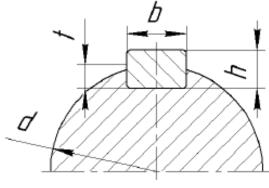


Fig. 3.7

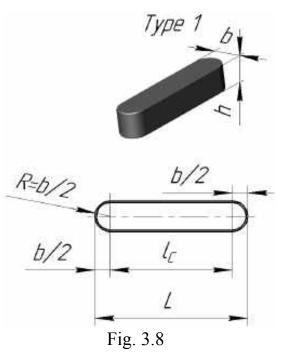
The strength condition on bearing at uniform load distribution along a key operating length

$$\sigma_b = \frac{2000T_p}{dl(h-t)} \leq [\sigma_b],$$

Whence the key length equals

$$l = \frac{2000 T_p}{0,4d h[\sigma_b]},$$

where $[\sigma_b]$ is the allowable bearing stress for the weakest material of a shaft, a hub and a key. GOST demands, that key materials should ensure UTS $\sigma_{e} \ge 590$ MPa (for example, steel 45, steel 40 Γ , steel 40X, etc.).


As keys work in rather heavy conditions, it is recommend to accept the allowable bearing stress a little below that are shown in corresponding tables. For motionless connections with transitive fits the allowable bearing stress should be $[\sigma_b] = 80 \dots 120$ MPa and less.

There are three types of the keys (see Appendix D). At connection on transitive

fits or with a tightness (which more often is used in drives), it is desirable to use Pratt & Whitney keys with one or two round ends, i.e. types 1 or 3. In this case key width b should be added to the calculated key length and rounded to standard value (Fig. 3.8).

The chosen standard length should be co-ordinated with recommended one, a shaft diameter and a gear face width. Relation L/dis recommended 0,8...1,5, because the bigger a key length the bigger non-uniformity of load. If the key length exceeds recommended L/d it is possible to increase a shaft diameter or select bigger key section size and recalculate length.

If total standard length less than minimum one, it has to be taken as minimum standard value.

Example 1

Let us calculate and select a key for connection of the spur gearbox input shaft and the input half-coupling. The cross-section dimensions $b \ge h$ according to the shaft diameter d = 32 mm see in Appendix D:

Shaft d	haft diameter		h h		length	Keyway depth		
from	to	D	Π	from	to	shaft	hub	
22	30	8	7	18	90	4	3,3	
30	38	10	8	22	110	5	3,3	
38	44	12	8	28	140	5	3,3	

Let us use steel 45 and $[\sigma_b] = 80$ MPa. Thus

$$l = \frac{2000T}{0.4d h[\sigma_h]} = \frac{2000 \cdot 54.4}{0.4 \cdot 32 \cdot 8 \cdot 80} = 13.3 \text{ mm.}$$

We use type 1 key, its total length equals L = l + b = 13,3 + 10 = 23,3 mm. This value is not standard (see Appendix D), therefore we must coordinate it with standard length and select the next bigger value 25 mm.

To connect the output shaft and the half-coupling, a key with cross-section dimensions according to the shaft diameter d = 40 mm b x h = 12 x 8 mm may be provided.

If we use steel 45 and $[\sigma_b] = 80$ MPa

 $l = \frac{2000T}{0,4d h[\sigma_b]} = \frac{2000 \cdot 194,4}{0,4 \cdot 40 \cdot 8 \cdot 80} = 37,97 \text{ mm.}$

If we use type 1, the total length equals L = l + b = 38 + 12 = 50 mm. This value is standard.

Example 2

Let us calculate and select a key for connection of the input shaft and the input half-coupling. The cross-section dimensions $b \ge h$ according to the shaft diameter d = 32 mm see in Appendix D:

Shaft d	Shaft diameter		h h		length	Keyway depth		
from	to	D	11	from	to	shaft	hub	
22	30	8	7	18	90	4	3,3	
30	38	10	8	22	110	5	3,3	
38	44	12	8	28	140	5	3,3	

We can use recommended by standard steel 45 (conditional bearing allowable stress is $[\sigma_b] = 80$ MPa). Thus,

$$l = \frac{2000T}{0,4d h[\sigma_b]} = \frac{2000 \cdot 80,7}{0,4 \cdot 32 \cdot 8 \cdot 80} = 19,7 \text{ mm}.$$

We use type 1 key, its total length equals L = l + b = 19,7 + 10 = 29,7 mm. This value is not standard (see Appendix D), therefore we must coordinate it with standard length and select the next bigger value 32 mm.

Let us calculate a key for connection of the output shaft and the coupling selected above. The cross-section dimensions $b \ge h$ are found in Appendix D according to the shaft diameter d = 38 mm: $b \ge h = 10 \ge 8$ mm.

Let us use the same steel 45 ([σ_b] = 80 MPa). Thus

$$l = \frac{2000T}{0,4d h[\sigma_b]} = \frac{2000 \cdot 220}{0,4 \cdot 38 \cdot 8 \cdot 80} = 45 \text{ mm.}$$

If we use type 1, the total length equals L = l + b = 45 + 10 = 55 mm. This value is not standard (see Appendix D), therefore we must coordinate it with standard length and select the closest bigger value 56 mm.

3.5. Preliminary Bearings' Selection

At this design stage, we cannot define load on bearings, therefore we have to choose them from geometrical reasons: on a shaft diameter in a place of their installation, the previous experience and easy assemblage.

According to rule 3 it is necessary to mount two bearings on a shaft, capable to take both radial, and axial load. As axial force in spur gearing is absent and in bevel gearing is insignificant, it is possible to use the most simple ball deep-groove bearings of a light or middle series.

According to rule 2 bearing should be mounted on the diameter and freely pass to the its place. A key is usually located on a bearing way, therefore the diameter has to be standard (usually multiple 5) and bigger that a shaft together with the key (Fig. 3.9).

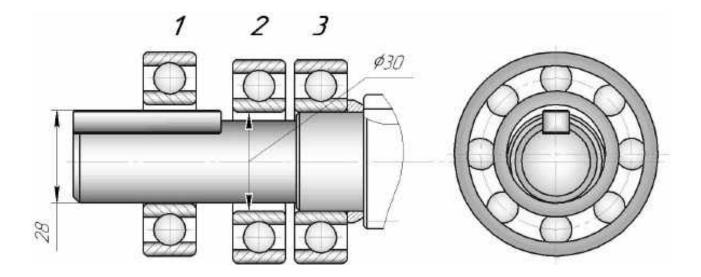


Fig. 3.9

Example 1

Let us select bearings for the spur gearbox input shaft. The smallest bearing bore diameter equals $d_{sm} = d + (h - t) = 32 + (8 - 5) = 35$ mm (see Fig. 3.7, 3.9). Thus, we may select light series bearing 208 with the next nearest standard diameter 40 mm (see Appendix E).

In the same way for output shaft $d_{sm} = d + (h - t) = 40 + (8 - 5) = 43$ r	nm,
therefore bearings light series 209 with standard bore diameter 45 mm may be used.	

4	Cada	D	р		Load capa	acity, N	Minimum d	Marimum D
d	Code	D	B	r	dynamic C	static C ₀	Minimum d _a	Maximum D _a
	1000908	62	12		12 200	6 920	44	58
	108	68	15	/1	16 800	9 300	45	63
40	7000108	68	9	1	13 300	7 800	42	66
40	208	80	18	3	32 000	17 800	46	73
	308	90	23	1	41 000	22 400	48	81
	408	110	27	2	63 700	36 500	49	97
	1000909	68		1	14 300	8 1 3 0	49	64
	109	75	16	1	21 200	12 200	50	70
45	7000109	75	10	1	15 600	9 300	49	71
43	209	85	19	1	33 200	18 600	52	78
	309	100	25	1	52 700	30 000	53	91
	409	120	29	1	76 100	45 500	54	107

Example 2

Let us select for the input shaft light series bearings N_{208} with bore diameter 40 mm (shaft diameter under the key is 32 mm, key height over shaft is 3 mm). Light series bearings N_{209} with bore diameter 45 mm (shaft diameter under the key is 38 mm, key height over shaft is 4 mm) may be selected for the output shaft.

Parameter	Symbol	Value, mm,	, for shaft
Farameter	Symbol	input	output
Code	_	208	209
Series	_	light	light
Inner diameter	d	40	45
Outer diameter	D	80	85
Width	В	18	19
Fillet minimum diameter	d _{amin}	46	52
Static load capacity, N	C_{θ}	32 000	33 200
Dynamic load capacity, N	С	17 800	18 600

So we assume bearings as follows

3.6. Selection of a Cover

To close support unit hole a cover (a bearing cap, an end plug) is used. The cover is housing for the oil seal, that is why it is also standardized and coordinated with both oil seal and bearing dimensions.

The bearing covers are recognized on the outer bearing diameter D (Fig. 3.10). According to this diameter and a shaft diameter d_{sh} all other dimensions are selected (Appendix F).

Fig. 3.10

For example, the bearing 208 has outer diameter 80 mm, therefore we have to consider corresponding size into the first column (see table from Appendix F below).

D	D_S	D_1	D_2	D_3	D_4	D_5	D_6	d	d_1	d_2	H	h	l	n	b ₁	С	r
	25					26	42										
	30					31	52										
80	35					36	58										
00	40	100	120	72	80	41	60	9	15	20	18	6	3	6	11.0	1.0	0.6
	45	100	120	72	80	46	65	9	13	20	10	0	3	6	11,0	1,0	0,6
	50					51	70										
85	35					36	58										
85	45					46	65										

It is seen that may be a number of shaft diameter variants (see column D_S): 25, 30...50 mm. What variant should we select?

First, we have to ensure passing of the cover over the previously selected key (the maximum size is 35,49 mm, see Fig. 3.9, 3.11). To satisfy this requirement, the hole diameter for the shaft (column D_5) should be bigger or equal 36 mm. Moreover, shaft diameters 25 and 30 are not suitable as they less than coupling end shaft diameter.

At the same time, we cannot realize diameters bigger than 40 because previously selected bearings'

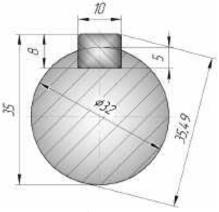


Fig. 3.11

diameter is 40 mm and it is impossible to mount bearing on its seat if shaft size around a bearing bigger than bearing bore diameter.

Parameter	Symbol	Value, mm	, for shaft		
I al ametel	Symbol	input	output		
Bearing outer diameter	D	80	85		
Bearing inner diameter	d_b	40	45		
Coupling end diameter	d_c	32	Spur 40; bevel 38		
Shaft diameter	D_S	35	45		
Hole	D_5	36	46		
Cover outer	D_2	120	120		
Oil seal outer	D_6	58	65		
Total height	H	18	18		
Rim height	h	6	6		
Diameter of a hole for bolt	d	9	9		
Counterbore diameter	d_2	20	20		

Thus, the only variant is 35 mm (it is marked in the table above). So, we select covers as follows:

3.7. Selection of an Oil Seal

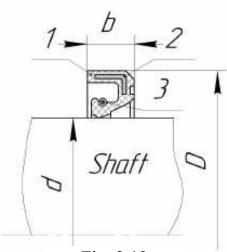


Fig. 3.12

The bearings and the mating surfaces in gearboxes with gears peripheral velocity less than 15 m/s are usually lubricated with liquid oil by immersing the teeth in an oil bath and so-called "an oil fog". To avoid the oil leakage and protect a gearbox against dust and dirt special sealing devices are used.

The sealing simplest types are a stuffing box seal and oil seal, but the first of them is limited to a peripheral velocity in contact point of 3...5 m/s, that is why the oil seal is more preferable.

A typical oil seal (Fig. 3.12) consists of rubber body 1 with metallic core 2 and spring ring 3 to press operating edge to a shaft surface.

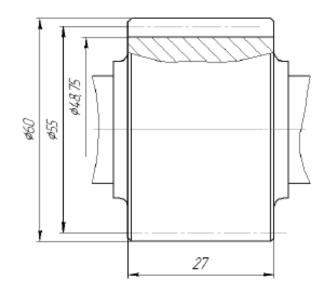
The oil seals are stantardized and selected from a table according to a shaft diameter. The main parameters are: shaft diameter d, the oil seal outer diameter D and width b.

Preferably to select the shaft diameter d under oil seal different from surrounding ones. As standard cover is selected this size (see column D_S in Appendix F) and oil seal outer diameter D (see column D_6 in Appendix F) are also determinated.

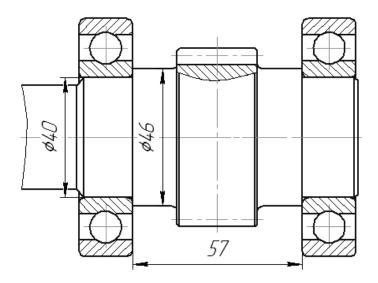
Any way, it should be selected bigger than coupling end shaft diameter and less than a standard bearing bore diameter.

In our examples the input shaft diameter (end connected to coupling) equals 32 mm, a standard bearing bore diameter equals 40 mm, a standard cover shaft diameter is 35 mm, therefore let us take from Appendix G an oil seal with d = 35 mm, D = 58 mm, b = 10 mm.

The covers for output shafts have standard bearing bore diameter 45 mm therefore let us take from Appendix G an oil seal with d = 45 mm, D = 65 mm and b = 10 mm.


d	D	b
26	45	7
28	50	10
30	52	10
32	52	10
35	58	10
36	58	10
38	58	10
40	60;62	10
42	62	10
45	65	10

3.8. Designing of the Input Shaft


Now, when all elements are selected, we may form the shaft.

3.8.1. Straight Teeth Spur Gearbox

According to Fig. 2.9 pinion is made as the same element with an input shaft. It means that we can continue shaft designing using the obtained shape (it is turned on right angle outer clockwise relatively to Fig. 2.9).

1. Add selected bearings. To form the thrust fillets for bearings we use standard fillet minimum diameter d_{amin} 46 mm (see subsection 3.5).

To obtain bearing places in the axial direction the following recommendations should be taken into account: the rotating parts must not contact the frame. Therefore, gaps between respective surface of a rotating part and casing surface must be provided.

Gap value has to be equal 5...7, let us assume 6 mm.

Gear hub has the biggest inner axial dimension -40 mm. Additionally, thrust fillet for the bearing and the gear has to be ensured (axial size 3...5 mm, let us take 5).

Thus, total distances between inner frame surfaces and between bearing faces equal $40 + 5 + 2 \cdot 6 = 57$ mm.

2. Define external outline of the frame flange. The total frame of gearbox is detachable, consists of two parts (frame and frame cover), bolted together. To find external outline of the casing the flange width must be determined (Fig. 3.13). Here δ is a frame wall thickness which can be calculated as follows:

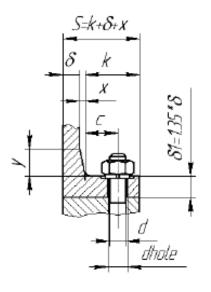


Fig. 3.13

$$\delta = 1,12 \sqrt[4]{T_{out}}$$
,

but at least 6 mm because the frames of generalpurpose gearboxes are made of casting from cast iron.

Bolt diameter to attach frame to cover should be equal

$$d_{fc} = \sqrt[3]{2T_{out}} \ge 10$$
 mm.

Bolts diameter attaching frame to cover near the bearing arrangement may be assigned next available standard value (i.e. if $d_{fc} = 8$ mm, then diameter should be 10 mm).

Flange width to attach frame to cover can be determined using the formula:

$$S = k + \delta + x.$$

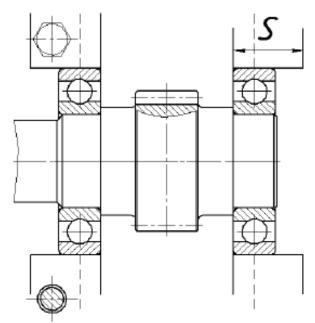
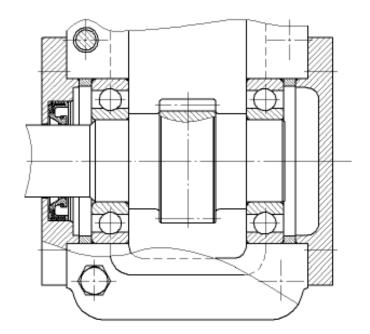

Dimensions k and x see in Tab. 3.1 and 3.2.

Table 3.1

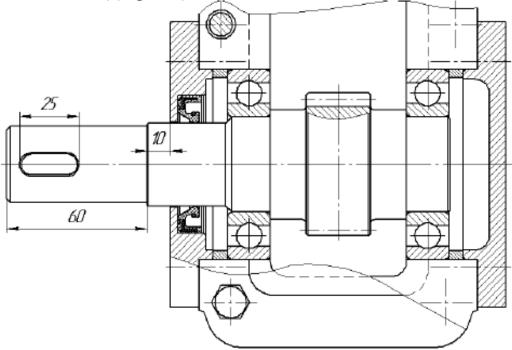
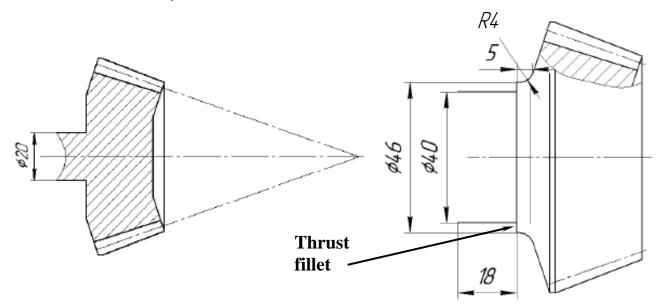

Γ	d	M6	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
	k	20	24	28	32	36	40	44	48	52	56	62	68
	с	12	14	16	18	20	22	24	26	28	30	34	37

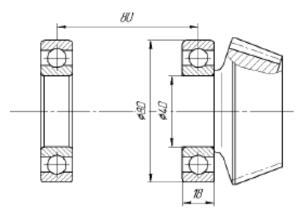
Га	ble	3	.2

δ	X	У	r
610	23		3
1015	35	5x	4
1520	45		5

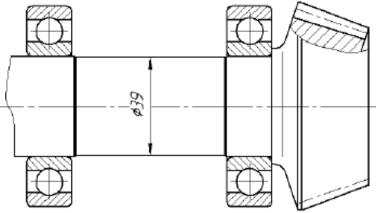
3. Locate the bearing caps (covers) at their places. If a bearing does not touch with cover, specific spacer ring can be provided.

4. To obtain final view, shape the shaft coupling end according to selected data (see subsection 3.2, 3.3)(Fig.3.14).

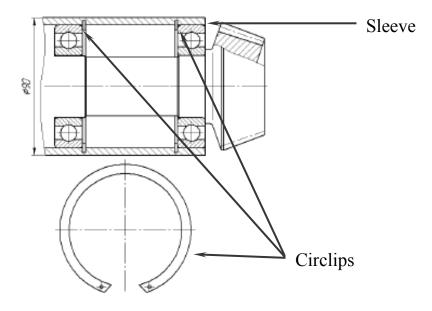




Fig. 3.14

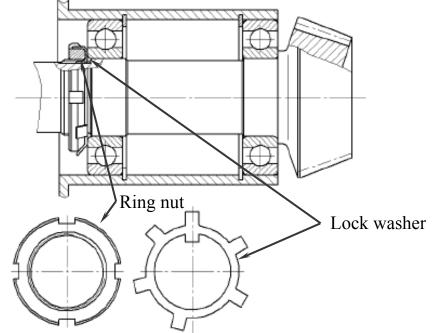
3.8.2. Straight Teeth Bevel Gearbox


1. Redraw the pinion (see Fig. 2.10) according to selected bearings: increase shaft diameter from 20 to 40 mm, generate thrust fillet to retain right bearing in axial direction (minimum diameter d_{amin} 46 mm see subsection 3.5) and round transition from outer cone to a cylinder surface.

2. Place left bearing. Distance between bearings' axes is recommended about 2d, where d is a bore diameter.

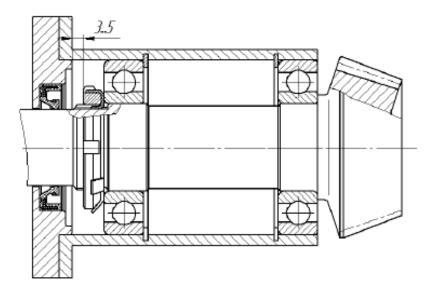


3. A shaft diameter between bearings should be some less for right bearing easy mounting.



4. To obtain correct gears' contact the input shaft with the bearing units should shift along its axis in the required direction. A very effective method to solve this problem is to assemble the shaft with pinion into a sleeve, which is then installed into the gearbox housing.

Each of the supports retains the shaft in one axial direction. Two fix points on the sleeve inner diameter are the circlips and third point is the thrust fillet on the shaft. The circlips' base dimension is bearing outer diameter (see Appendix I).



5. A ring (or lock) nut and a locking washer are used to retain the shaft in righthand axial direction. It is a simple method of ensuring that lock nuts remain securely fastened. The central tab locates in a key-way in the shaft and the nut is fitted and tightened to the correct torque, the washer will now have one of its tabs aligned with one of the slots around the lock nut, this tab is folded over into the slot.

The nut and the washer are standardized and nut thread major diameter is coordinated with a bearing bore diameter (see Appendix H). Clearance into the bearings is also adjusted by means of a ring nut with a tab washer.

6. Close sleeve hole by a cover.

7. Finally, draw a cylinder end for a coupling. To fix the bevel gears correctly and to align the apexes of the pitch cones all covers of the bearing units and the sleeve rest on mounting shims. Their thickness is very small (less 1 mm), so shims are shown conditionally in assembly drawings.

Finally, the input shaft unit looks as in Fig. 3.15.

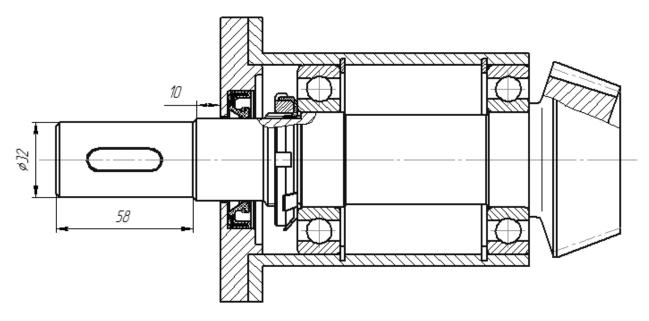


Fig. 3.15

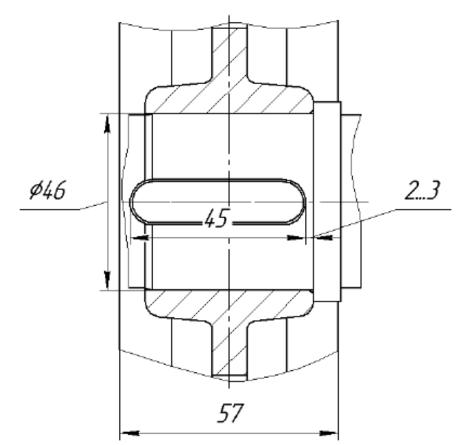
3.9. Design of the Output Shaft

An output shaft differs the input one and should approximately look like in Fig. 3.1. All elements connected to the shaft (a coupling, an oil seal and the bearings) were selected, therefore we may form the shaft surfaces.

3.9.1. Straight Teeth Spur Gearbox

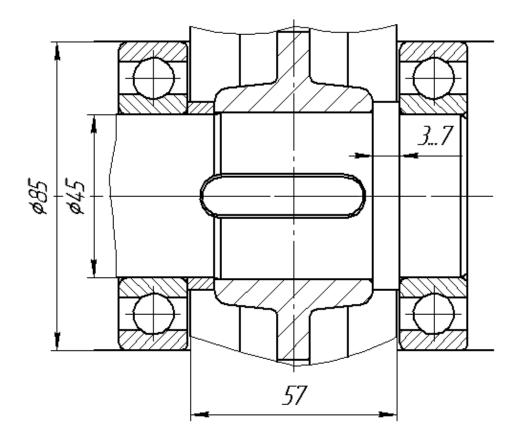
1. Let us begin from a hub.

When we know bearing dimensions we can calculate and select a key to connect the output shaft and the gear hub. First, the hub diameter 28 mm was selected (see Fig. 2.9), but according to rule 2 it cannot be less 45 mm (the bearings bore diameter). Therefore, inner hub diameter ought to be increased up to 46 mm.

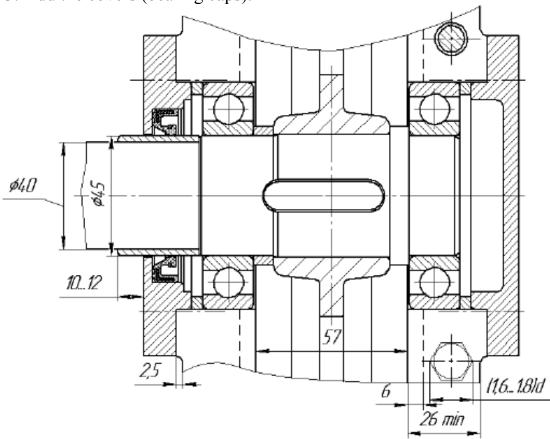

Due to standard a key cross-section dimensions $b \ge h$ should be 14 $\ge 9 \mod$ (see Appendix D). But if two keyseats are placed in the one shaft it is recommended to use the same cross-section dimensions $b \ge h = 12 \ge 8 \mod$ according to the smallest diameter (as for the output shaft end). In such case both keyseats are machined during one manufacturing operation and high level of accuracy can be achieved.

Thus,

$$l = \frac{2000T}{0,4d h[\sigma_b]} = \frac{2000 \cdot 194,4}{0,4 \cdot 46 \cdot 8 \cdot 80} = 33 \text{ mm.}$$


If we use type 1, the total length equals L = l + b = 33 + 12 = 45 mm. This value is standard, but in such case hub length is too big (gear face width equals 28 mm, L/d = 45/28 = 1,6 > 1,5). The simplest way is to select key type 3, thus L = l + b/2 = 33+ 6 = 39 mm, standard value 40 mm.

Thus, we change previous drawn hub dimensions (turned sketch):



To avoid superposition of stress concentrations in the shaft clearance 2...3 mm between the key seat and the shoulder is provided.

2. Place the bearings. We know their dimensions (see subsection 3.5) and can locate their into support seats to ensure flat inner vertical wall.

3. Add the covers (bearing caps).

4. Draw the output end. Finally, the output shaft unit looks like on Fig. 3.16.

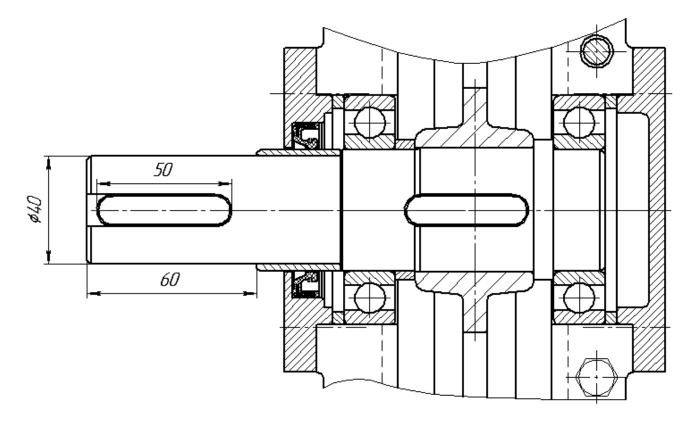
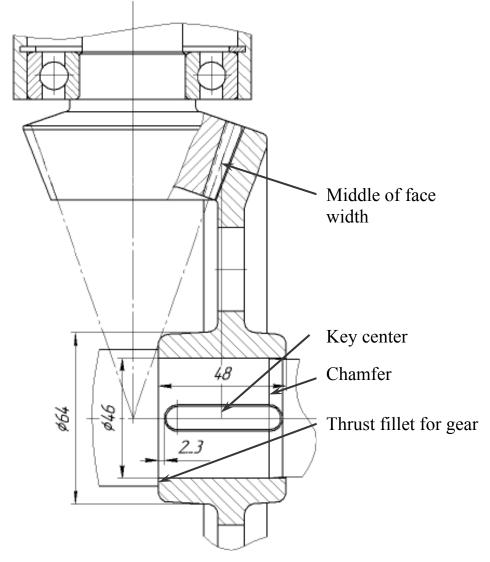


Fig. 3.16

3.9.2. Straight Teeth Bevel Gearbox


1. Let us begin from a gear hub. We selected bearings 209, and a gear should be between the bearings and at the separate diameter bigger than bearing bore one: $d_g = d_b + (1...2) \text{ mm} = 45 + 1 = 46 \text{ mm}$ (if d_b is even, preferable value is 2 mm).

To obtain a hub length it is necessary to calculate length of a gear-shaft key. It is recommended to use two keys on one shaft with the same smaller cross-section, therefore width and height should be like size of the key between the output shaft and coupling $b \ge h = 10 \ge 8$ mm. Thus (allowable stress is accepted the same):

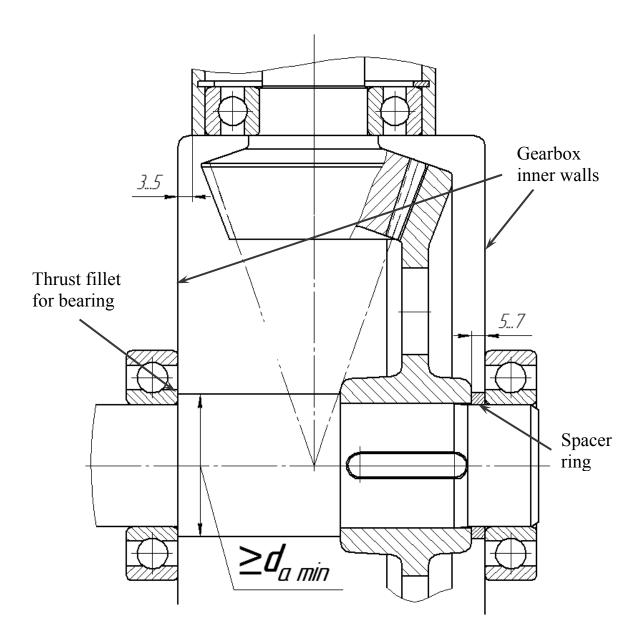
$$l = \frac{2000T}{0,4d h[\sigma_b]} = \frac{2000 \cdot 220}{0,4 \cdot 46 \cdot 8 \cdot 80} = 37 \text{ mm}.$$

The total length equals L = l + b = 37 + 10 = 47 mm. This value is not standard (see Appendix D), therefore we must coordinate it with standard length and accept the closest value 48 mm.

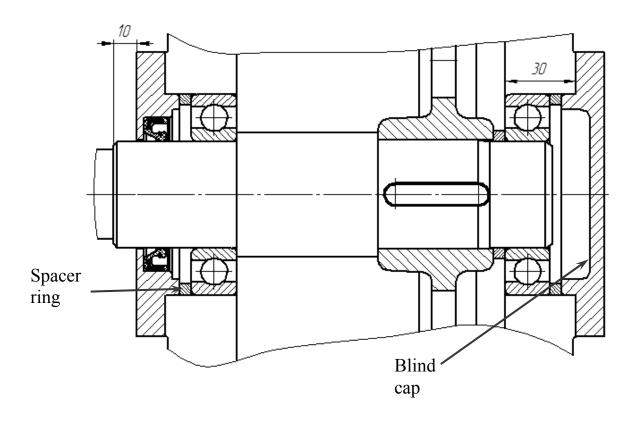
We changed a gear dimension comparison with calculated above (see Fig. 2.10): increased a hub length (new value 48 mm, previous -36 mm), a hole diameter (46 instead of 28 mm) and a hub diameter (64 mm).

Pay attention that:

- the key centre lies on the same line with the middle of the gear face width. Thus, we minimize additional bending moment into the page plane;


– clearance (2...3 mm) between the key seat and the shoulder decreases stress concentrations;

- a chamfer (or a conical ramp section) on the shaft makes assembly easier.


2. Place selected bearings. The distance between bearings is obtained geometrically to be enough to locate a pinion plus 3...7 mm at each side to avoid contact between rotating elements and immovable ones.

The shaft diameter between the gear hub and the left bearing has to be equal or bigger than minimum thrust fillet diameter d_{amin} (standard value, see subsection 3.5).

To retain the gear at its place a spacer ring is used.

3. Place the bearing caps: one of them (left) with recess for oil seal (d = 45 mm, D = 65 mm and b = 10 mm) and another – without a hole (so called blind cap):

As the first approximation horizontal flange width is provided 30 mm.

4. We know output coupling shaft diameter d = 38 mm and conjunctive length l = 80 mm; key length L = 56 mm.

Finally, the output shaft unit looks like in Fig. 3.17.

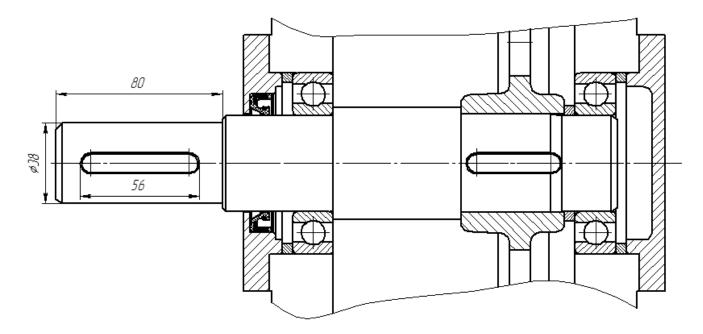


Fig. 3.17

4. CALCULATION OF BEARINGS ON DYNAMIC LOAD CAPACITY

4.1. General Statements

The type of bearings' capacity calculation depends on a ring rotational speed. Bearings are selected on static load capacity if external load is motionless or rotates slow ($n \le 1$ rpm). At ring rotational speed n > 10 rpm, bearings are calculated on dynamic load capacity. The bearings working at ring rotational speed n > 10 rpm and under sharply variable load, also it is necessary to check on static load capacity.

Bearings type and the positioning scheme are selected preliminary for a both shaft supports. Bearings of one type and one size according to the load capacity of the most loaded support are usually used for general-purpose gearboxes. If it is impossible to decide, what support is more loaded, both supports are calculated in parallel up to the values of equivalent load and then more loaded support is selected.

Calculation is based on the known equation of fatigue curve

$$\boldsymbol{P}^{p}\boldsymbol{L} = \boldsymbol{C}^{p}, \qquad (4.1)$$

where **P** is the equivalent load, N; **L** is the service life in millions revolutions; **C** is the required dynamic load capacity, N; **p** is the exponent: for ball bearings p = 3, for roller bearings p = 10/3.

It is possible to define dynamic load capacity from equation (4.1) if P and L are known:

$$C = \left(\frac{L}{a_1 a_{23}}\right)^{\frac{1}{p}} P , \qquad (4.2)$$

and then select a bearing which satisfies condition

$$\boldsymbol{C} \leq \boldsymbol{C_c}, \tag{4.3}$$

where C_c is the bearing dynamic load capacity taken from the catalogue or calculated on empirical dependences.

Also on the base of known P and C_c a preliminary selected bearing service life can be calculated as

$$L = a_1 a_{23} \left(\frac{C_{\kappa}}{P}\right)^p, \qquad (4.4)$$

and then calculated value should be compared with required one: $L_c \ge L_{req}$.

Service life in millions revolutions L and in hours L_h are connected by equation

$$L = \frac{60nL_h}{10^6},\tag{4.5}$$

where *n* is the rotating ring rotational speed, rpm.

In formulae (4.2) and (4.4) a_1 is the factor considering of reliability (Tab. 4.1).

Table 4.1

Table 4.2

Reliability	0,90	0,95	0,96	0,97	0,98	0,99
<i>a</i> ₁	1	0,62	0,53	0,44	0,33	0,21

The factor a_{23} considers bearings' material, lubricant and operation conditions: 1) usual conditions;

2) without bearing axes shift and with an lubricant film in contacts;

3) the same, as in 2), but at manufacturing of rings and rolling elements from electroslag or vacuum steel.

Values of factor a_{23} are shown in Tab. 4.2.

Decrime terms	Conditions				
Bearing type	1	2	3		
Ball bearings (except spherical)	0,70,8	1,0	1,21,4		
Cylindrical roller bearings and spherical ball one	0,50,6	0,8	1,01,2		
Tapered roller bearings	0,60,7	0,9	1,11,3		
Spherical roller bearings	0,30,4	0,6	0,81,0		

Equivalent load P for various types of bearings can be defined under the following formulae:

- for the radial

$$\boldsymbol{P} = \boldsymbol{V} \boldsymbol{F}_r \boldsymbol{K}_B \boldsymbol{K}_T; \tag{4.6}$$

– for the thrust

$$\boldsymbol{P} = \boldsymbol{F}_{\boldsymbol{a}} \boldsymbol{K}_{\boldsymbol{B}} \boldsymbol{K}_{\boldsymbol{T}} ; \qquad (4.7)$$

– for radial-thrust

$$\boldsymbol{P} = (\boldsymbol{X}\boldsymbol{V}\boldsymbol{F}_r + \boldsymbol{Y}\boldsymbol{F}_a) \, \boldsymbol{K}_B \, \boldsymbol{K}_T, \tag{4.8}$$

where F_r and F_a are the radial and axial loads on a bearing, N; V is the rotation factor (at rotation of an internal ring about a load vector V = 1, external V = 1,2); K_B is the safety factor considering load non-uniformity (in case of light load $K_B = 1$, with medium non-uniformity $K_B = 1,3...1,8$, with heavy load $K_B = 2...3$); K_T is the temperature factor ($K_T = 1$ at t < 125 °C and $K_T = 1,05$; 1,1; 1,25; 1,4 accordingly at t = 125, 150, 200 and 250 °C); X, Y are the factors of radial and axial load (Tab. 4.3).

If condition (4.3) is not satisfied or the service life is too small, it is necessary:

- select bearings of heavier series or other bearing type;

- or increase a shaft diameter;

- or use two identical radial bearings in one support. In such case it may be considered as one two-row bearing and support dynamic radial load capacity for ball bearings should be assumed as $C_{\Sigma} = 1,625C$, for roller $C_{\Sigma} = 1,714C$; equivalent load and factors' X and Y values are defined as for two-rows bearings.

Contact	Relative load	е*	$\frac{F}{VI}$			$\frac{F_a}{F_r} > e$
ngle α, [°]	F_a/C_o	C	X	$Y = \frac{1 - X}{e}$	X	$Y = \frac{1 - X}{2}$
		B	all radial de	-		e
	0,014	0,19		10		2,30
	0,028	0,22				1,99
	0,056	0,26				1,71
	0,084	0,28				1,55
0	0,110	0,30	1	0	0,56	1,45
	0,170	0,34				1,31
	0,280	0,38				1,15
	0,420	0,42				1,04
	0,560	0,44				1,00
			Ball radia	l-thrust		
	0,014	0,30				1,81
	0,029	0,34		0	0,46	1,62
	0,057	0,37	1			1,46
	0,086	0,41				1,34
12	0,110	0,45				1,22
	0,170	0,48				1,13
	0,290	0,52				1,04
	0,430	0,54				1,01
	0,570	0,54				1,00
	0,015	0,38				1,47
	0,029	0,40		0	0,44	1,40
	0,058	0,43				1,30
	0,087	0,46	1			1,23
15	0,120	0,47				1,19
	0,170	0,50				1,12
	0,290	0,55				1,02
	0,440	0,56				1,00
	0,580	0,56				1,00
20		0,57			0,43	1,00
25		0,68			0,41	0,87
30	-	0,8	1	0	0,39	0,76
35		0,95			0,37	0,66
40		1,14			0,35	0,57
			Tapered	roller		
-	-	1,5tan a	1	0	0,4	0,4ctana

The sequence of the radial and axial load factor calculation is shown in Fig. 4.1.

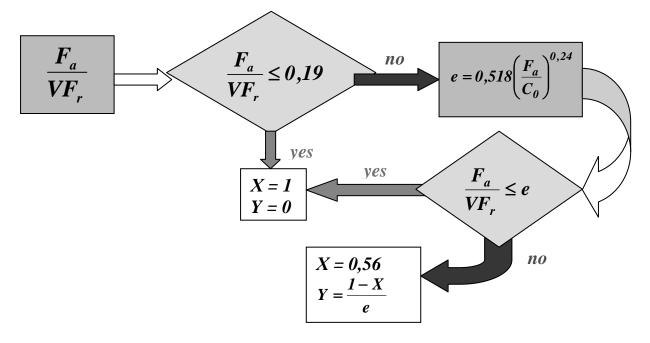


Fig. 4.1

4.2. Calculation of Loading on Bearings

To define an equivalent load P the radial and axial loads F_r and F_a should be obtained. Each of them is a total reaction in a support: F_r is a reaction in a plane perpendicular to the longitudinal shaft axis, F_a – along this axis.

The forces acting on shaft and causing reactions F_r and F_a , are rather various by the nature. It can be the forces arising in a tooth gearing, inertia forces, the gyroscopic moments, the forces from a compressor or a turbine, the weight etc. It is accepted that the values, the directions and the points of applying of all external forces are known. If any force direction is not known (for example, from coupling) the most dangerous variant for bearings operating is considered. Thus, the possible error leads to increasing of reliability.

For designing of tooth gearings' support, a normal force F_n and force of friction F_f should be known. A friction force in gearing is usually neglected, because the friction factor is rather small. Normal force F_n is resolved on three components: a radial F_r ; a peripheral F_t ; an axial F_a .

Normal force components can be calculated by following formulae:

- for spur straight teeth gears:

$$F_{t} = \frac{2T_{1}}{d_{w1}}; \quad F_{r} = F_{t} \tan \alpha_{w}; \quad F_{a} = 0;$$
 (4.9)

– for spur helical gears:

$$F_{t} = \frac{2T_{1}}{d_{w1}}; \quad F_{r} = \frac{F_{t} \tan \alpha_{w}}{\cos \beta}; \quad F_{a} = F_{t} \tan \beta ; \quad (4.10)$$

- for straight teeth bevel gears:

$$F_t = \frac{2T_1}{d_{m1}}; \quad F_r = F_t \tan \alpha_w \cos \delta; \quad F_a = F_t \tan \alpha_w \sin \delta ; \quad (4.11)$$

where T_I is the torque on the driving shaft; d_{wI} is the pinion pitch diameter; α_n is the pressure angle (the most common value without shift $\alpha_w = 20^{\circ}$); β is the teeth helix angle ($\beta = 7...20^{\circ}$; for strength teeth $\beta = 0$); δ_I is the pinion pitch cone angle ($\delta_I = atan (z_1/z_2)$; d_{mI} is the bevel pinion mean pitch diameter.

It is assumed, that components of normal force are applied in the middle of a gear face width (for bevel gears – at the mean pitch diameter d_m).

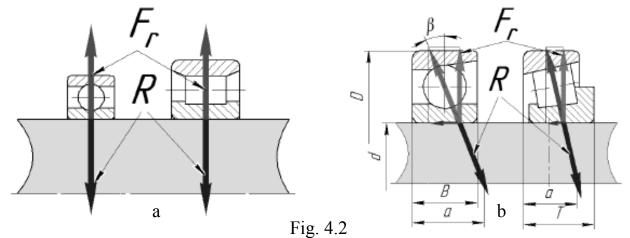

Value of a coupling force F_c depends on accuracy of manufacturing and assembling of the shafts and a coupling. Usually $F_c = (0, 1...0, 2) F'_c$, where F'_c is the transferring peripheral force. It depends on a coupling type (Tab. 4.4).

	Table 4.4		
Coupling type	Force F'_{C} (<i>T</i> is a transferring torque, Nm)		
Flexible coupling with	2000T/D ₁ (D_1 is a diameter where studs are		
rubber-bushed studs	located, mm)		
Curved-tooth gear coupling	2000T/mz (m and z are the coupling module (mm)		
Curved-tooth gear coupling	and number of teeth)		
Jaw compression coupling with	$50\sqrt{T}$		
flexible spider insert	<i>30√1</i>		
Safety multiple-disc slipping	2000T/d (d is a driving shaft diam., mm)		
couplings	20001/a (<i>a</i> is a driving shart diam, min)		

The direction of this force is unknown, therefore it is usually assumed that a coupling force F_C direction is the same with a peripheral force F_t . In this case, bearings are maximum loaded.

4.3. Definition of Reactions

For calculation of radial and axial reactions in supports, a shaft is represented as a beam on one movable pivoting support and one motionless pivoting support. It is assumed, that **radial reactions** are applied in points where a shaft axis crosses the line perpendicular to the middle of the outer ring raceway (Fig. 4.2).

87

For radial bearings, this point is in the middle of their width (Fig. 4.2, a), and for radial-thrust ball and roller the distance a between this point and a bearing's outer ring face (Fig. 4.2, b) can be defined graphically or analytically:

for the angular contact single row ball bearings

$$a = 0,5 [B + 0,5 (d + D) tg a];$$

for tapered roller bearings

$$a = 0,5 [T + e (d + D)/3].$$

Ring width **B**, assembly height **T**, axial load factor **e**, contact angle α , diameters **d** and **D** are shown in the catalogues.

Shift of a radial reaction applying point changes a distance between supports L' (Fig. 4.3) for the same distance between their middles L.

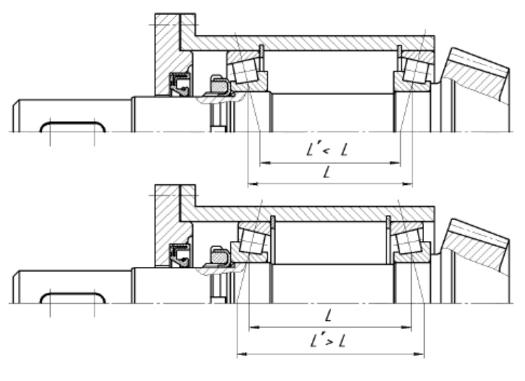


Fig. 4.3

Radial reactions define from the equilibrium equation: the sum of the external force moments and the reaction moments is equal to zero.

Values and directions of **the axial reactions** depend not only on values and directions of external loads, but also on the support scheme, types of bearings and on a preliminary tightness. At shaft on two radial ball bearings, the axial reaction R_a is equal to the actual external axial force F_a . The force is taken by that bearing which fixes a shaft axial shift at one or two directions.

Let us consider a number of typical cases of gearing shaft loading (shaft of other mechanisms, for example worm gear, it is possible to reduce to similar schemes). *Attention! For correct usage formulae below it is necessary to reduce a considered shaft to the same order of supports and gears arrangement.*

1. A cantilever bevel pinion is placed on a shaft (Fig. 4.4) (to define the components F_r , F_t and F_a see formulae (4.11)).

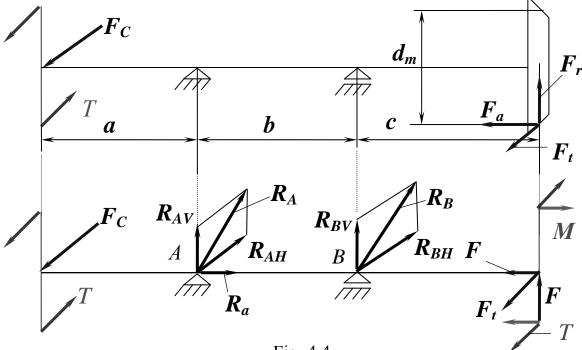


Fig. 4.4

Let us write equilibrium condition for two perpendicular planes (it is conventionally assumed that plane where forces F_r and F_a act on is named «vertical»; analogically «horizontal» is a plane where force F_t acts on):

- the sum of the moments about point A in vertical plane

$$\sum_{i=1}^{N} M_{iA} = R_{BV} b - M + F_r (b + c) = 0 ;$$

in horizontal plane

$$\sum_{i=1}^{N} M_{iA} = R_{BH} b - F_t (b + c) + F_C a = 0;$$

- the sum of the moments about point B in vertical plane

$$\sum_{i=1}^{N} M_{iB} = -R_{AV} b - M + F_{r} c = 0;$$

in horizontal plane

$$\sum_{i=1}^{N} M_{iB} = -R_{AH} b - F_{t} c + F_{C} (a + b) = 0;$$

where the moment caused by the axial force F_a equals $M = F_a \frac{d_m}{2}$.

Thus the radial reactions

$$R_{AV} = \frac{F_{r}c - M}{b}; R_{AH} = \frac{F_{C}(a + b) - F_{t}c}{b}; R_{A} = \sqrt{R_{AV}^{2} + R_{AH}^{2}};$$

$$R_{BV} = \frac{M - F_{r}(b + c)}{b}; R_{BH} = \frac{F_{t}(b + c) - F_{C}a}{b}; R_{B} = \sqrt{R_{BV}^{2} + R_{BH}^{2}};$$

evial reaction $R_{e} = F_{e}$

and the axial reaction $R_a = F_a$.

2. A helical spur gear and coupling are placed on a shaft (in case of bevel straight teeth gear all formulae below are the same) (Fig. 4.5).

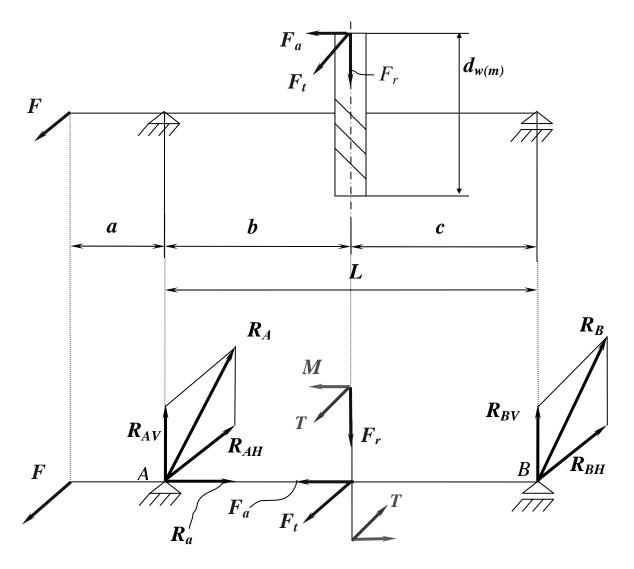


Fig. 4.5

A moment cased by the axial force F_a equals $M = F_a \frac{d_{w(m)}}{2}$. The radial reactions are

$$R_{AV} = \frac{F_r c + M}{L}; \quad R_{AH} = \frac{F_t c + F_C (L + a)}{L}; \quad R_A = \sqrt{R_{AV}^2 + R_{AH}^2};$$
$$R_{BV} = \frac{F_r b - M}{L}; \quad R_{BH} = \frac{F_t b - F_C a}{L}; \quad R_B = \sqrt{R_{BV}^2 + R_{BH}^2}.$$

The axial reaction is $R_a = F_a$. In case of **spur straight teeth** gear $F_a = 0$ and M = 0. 3. Two helical spur gears are placed on a shaft (one or both of gears may be bevel straight teeth gear) (Fig. 4.6).

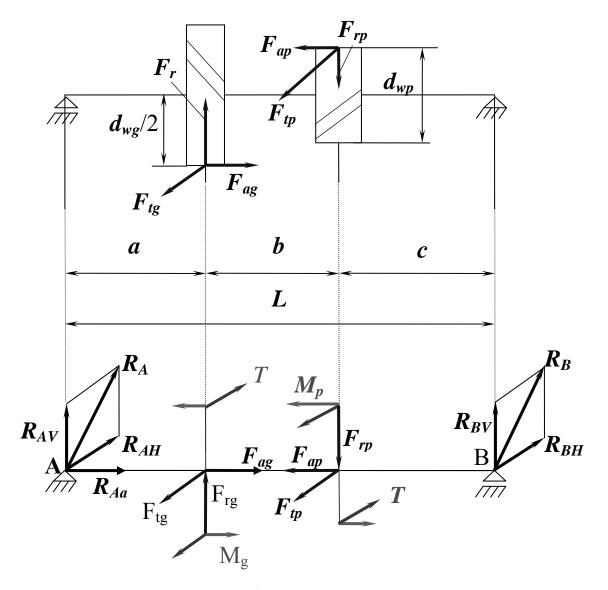


Fig. 4.6

In such case

$$M_{g} = F_{ag} \frac{d_{wg}}{2}; M_{p} = F_{ap} \frac{d_{wp}}{2} R_{a} = F_{ap} - F_{ag};$$

$$R_{AV} = \frac{F_{rp}c - F_{rg}(b+c) + M_p + M_g}{L}; \quad R_{BV} = \frac{F_{rp}(a+b) - F_{rg}a - M_p - M_g}{L}; \quad R_A = \sqrt{R_{AV}^2 + R_{AH}^2};$$
$$R_{AH} = \frac{F_{tg}(b+c) + F_{tp}c}{L}; \quad R_{BH} = \frac{F_{tg}a + F_{tp}(a+b)}{L}; \quad R_B = \sqrt{R_{BV}^2 + R_{BH}^2}.$$

In any gear is **spur straight teeth** gear, its axial force $F_{ag(p)} = 0$ and $M_{g(p)} = 0$.

4. A helical spur or bevel gear and two couplings are placed on one shaft (Fig. 4.7):

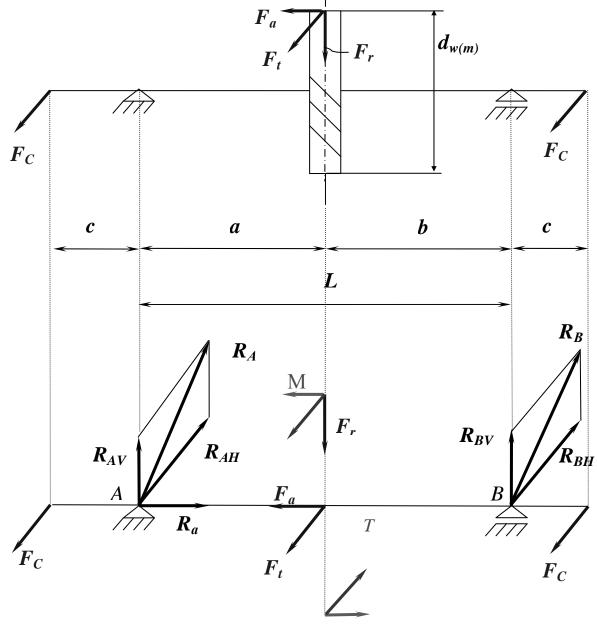
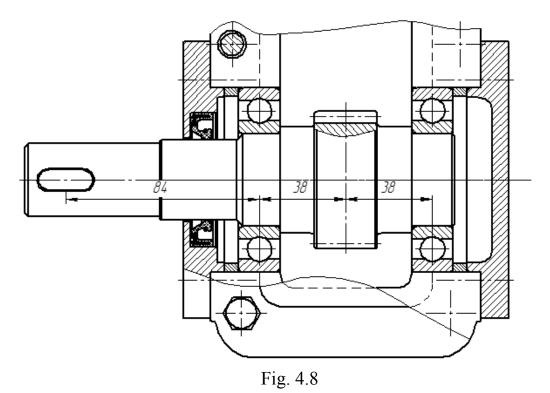


Fig. 4.7

A moment cased by the axial force F_a , equals $M = F_a \frac{d_{w(m)}}{2}$; The radial reaction components and reactions are

 $R_{AV} = \frac{F_{r}b + M}{L}; \quad R_{AH} = F_{C} + F_{t}\frac{b}{L}; \quad R_{A} = \sqrt{R_{AV}^{2} + R_{AH}^{2}};$ $R_{BV} = \frac{F_{r}a - M}{L}; \quad R_{BH} = F_{C} + F_{t}\frac{a}{L}; \quad R_{B} = \sqrt{R_{BV}^{2} + R_{BH}^{2}}.$ The axial reaction is $R_{a} = F_{a}$.

In case of **spur straight teeth** gear $F_a = 0$ and M = 0.


4.4. Examples

Example 1

Check the bearings selected for the in	put shaft of spur gearbox described above.
Initial data see in Tab. 4.5.	
	T-1-1- 1 5

		- <u>-</u>	Table 4.5
	Parameter	Symbol	Value
The torque, N	m	Τ	54,4
Rotational spe	ed, rpm	n	965
	coupling and support A	a	84
The distances between	support A and pinion	b	38
between	pinion and support B	С	38
Pressure angle		α_{w}	20
Preliminary be	earing code		208
Bearing dynan	aring dynamic load capacity, N		32 000
Bearing static	load capacity, N	C ₀	17 800

Distances between acting forces and reactions applying points a, b, c are measured in the drawing (Fig. 4.8).

Calculating scheme looks like in Fig. 4.5, but axial force $F_a = 0$ and M = 0. Calculation results are shown in Tab. 4.6 (distance L = b + c = 38 + 38 = 76 mm).

Table 4.6

			Table 4.6
Paramet	er	Formula	Value
The peripheral forc	e F _t , N	From gearing calculation (see Tab. 2.28)	1 979
The radial force F_r ,	Ν	$F_r = F_t \tan \alpha_w = 1.979 \cdot \tan 20^\circ$	720
The clutch force F_{c}	r, N	see Tab. 4.4: $F_c = 0.1 \cdot \frac{2000T}{D_1} = 0.1 \cdot \frac{2000 \cdot 54.4}{105}$	103,6
Support A radial	Vertical	$R_{AV} = F_r c/L = \frac{720 \cdot 38}{76}$	360
reaction components, N	Horizontal	$R_{AH} = \frac{F_t c + F_c (L + a)}{L} = \frac{1979 \cdot 38 + 103,6(76 + 84)}{76}$	1 206
Support P radial	Vertical	$R_{BV} = F_r b/L = \frac{720 \cdot 38}{76}$	360
Support B radial reaction components, N	Horizontal	$R_{BH} = \frac{F_t b - F_c a}{L} = \frac{1979 \cdot 38 - 103, 6 \cdot 84}{76}$	876
Support A radial re-	action, N	$R_A = \sqrt{R_{AV}^2 + R_{AH}^2} = \sqrt{360^2 + 1206^2}$	1 259
Support B radial rea	action, N	$R_B = \sqrt{R_{BV}^2 + R_{BH}^2} = \sqrt{360^2 + 876^2}$	947

Thus, support A radial load higher than support B one. According to design and technological reasons, we use in both supports the same bearings, therefore bearing in support A should be calculated on dynamic load capacity. In such case, bearing radial load F_r in equation (4.8) is the support A radial load: $F_r = R_A = 1259 N$.

Let us assume:

- a reliability factor a_1 for normal reliability 0,9 $a_1 = 1$ (see Tab. 4.1);

– for usual operating conditions and ball bearings factor a_{23} equals 0,8 (see Tab. 4.2);

- the safety factor considering load non-uniformity for medium non-uniformity $K_B = 1,3$;

- the temperature factor $K_T = 1$ because operating temperature should be less 100 °C (we will use an oil lubricant and transferring power relatively small).

Service life in million revolutions according to formula (4.5)

$$L = \frac{60nL_h}{10^6} = \frac{60 \cdot 965 \cdot 20\,000}{10^6} = 1\,158\,,$$

where L_h is the given service life in hours (given data).

Thus, equivalent load

 $P = VF_r K_B K_T = 1 \cdot 1 \ 259 \cdot 1, 3 \cdot 1 = 1 \ 634 \ N.$

For ball bearings an exponent p = 3, so finally the dynamic load capacity

$$C = \left(\frac{L}{a_1 a_{23}}\right)^{\frac{1}{p}} P = \left(\frac{1158}{1 \cdot 0.8}\right)^{1/3} 1634 = 18513 \text{ N}.$$

Strength condition (4.3) is satisfied: 18513 < 32000 N, therefore we can use previously selected bearings.

Coordinate final decision about bearing code with teacher.

Example 2

Check the bearing selected for the input shaft of bevel gearbox described above. Initial data see in Tab. 4.7.

			Table 4.7
	Parameter	Symbol	Value
The torque, N	m	Т	80,7
Rotational spe	ed, rpm	п	870
Pinion pitch an	ngle, deg	δ_1	19,03
	coupling and support A	a	86
The distances between	support A and support B	b	80
	support B and pinion	С	33
Pressure angle		$lpha_{_w}$	20
Preliminary be	earing code		208
Bearing dynam	nic load capacity, N	С	32 000
Bearing static	load capacity, N	C_{θ}	17 800

Distances between acting forces and reactions applying points a, b, c are measured in the drawing (Fig. 4.9).

Calculating scheme looks like in Fig. 4.4. Calculation results are shown in Tab. 4.8.

Parameter		Formula	Table 4.8Value
The peripheral force F_t , N		From gearing calculation (Fig. 4.10)	2 367
The radial force F_r , N		$F_r = F_t \tan \alpha_w \cos \delta_1 =$ = 2366 \cdot \tan 20^\circ \cdot \cos 19,03	818
The axial force F_a , N		$F_a = F_t \tan \alpha_w \sin \delta_1 =$ = 2366 tan 20° sin 19,03	269
The bending mo	oment <i>M</i> , Nmm	$M = F_a \frac{d_{m1}}{2} = 269 \frac{68,22}{2}$	9 176
The clutch force F_C , N		see Tab. 4.4: $F_C = 0, 1 \cdot 50 \sqrt{T} = 0, 1 \cdot 50 \sqrt{80,7}$	45
Support A radial reaction components, N	Horizontal	$R_{AH} = \frac{F_{C}(a+b) - F_{t}c}{b} =$ $= \frac{45(86+80) - 2366 \cdot 33}{80}$ $R_{AV} = \frac{F_{r}c - M}{b} =$	- 883
	Vertical	$=\frac{818 \cdot 33 - 9176}{80}$	223
Support B radial reaction components, N	Horizontal	$R_{BH} = \frac{F_t(b+c) - F_C a}{b} = \frac{2366(80+33) - 45 \cdot 86}{80}$	3 294
	Vertical	$R_{BV} = \frac{M - F_r(b + c)}{b} =$ $= \frac{9176 - 818(80 + 33)}{80}$	-1 041
Support A radial reaction, N		$R_{A} = \sqrt{R_{AV}^{2} + R_{AH}^{2}} = \sqrt{223^{2} + 883^{2}}$	938
Support B radial reaction, N		$R_{B} = \sqrt{R_{BV}^{2} + R_{BH}^{2}} = \sqrt{1041^{2} + 3294^{2}}$	3455

Negative values of R_{AH} and R_{BV} mean that these components act in opposite direction.

Load distribution non- uniformity factor KH8			Tangential force Ft, N		2367
Pinion pitch diameter, 75,7			Internal dynamic load factor Kaz		1,21
Pinion number of teeth z ₁	20		Load distribution non-uniformity factor KHS		1.36
Modul e m, mm	3,78		Load factor Kn		1,67
Calculated face width 25,3			Actual contact stress <u>GH</u> , MPa		737
			Relative contact stress &		0,5
		Actual peak contact stress originar, MPa			
	1	Fin	al Parameters		
Bevel pinion gear					gear
Transfer number u 2.90		1	Number of teeth z	26	75
Standard module m, mm	3,00	1	Rotational speed n, rpm	870	300
Cone distance Re, mm 119,068]	Addendum diam., mm	83,669	226,965
Face width b, mm 30,0		1	Pitch diam., mm	78,00	225,00
Relative face width 0,25			Root diam., mm	71,197	222,642
b/m 10.00		1	Mean pitch diam., mm	68,174	196,655
0]	Pitch cone angle, deg	19,12	70,88

h		
NF 0,88		88
Load distribution non- uniformity factor Kgg	1.35	
Load factor KF	1,66	
Actual bending stress G _F , MPa	277	248
Relative bending stress &	-21,9	-29,0
Actual peak bending stress grass, MPa		

Fig. 4.10

Thus, support B radial load higher than support A one. According to design and technological reasons, we use in both supports the same bearings, therefore bearing in support B should be calculated on dynamic load capacity. In such case, bearing radial load F_r in equation (4.8) is the support B radial load: $F_r = R_B = 3\ 455\ N$.

Let us assume:

- a reliability factor a_1 for normal reliability 0,9 $a_1 = 1$ (see Tab. 4.1);

– for usual operating conditions and ball bearings factor a_{23} equals 0,8 (see Tab. 4.2);

- the safety factor considering load non-uniformity for medium non-uniformity $K_B = 1,3$;

- the temperature factor $K_T = 1$ because operating temperature should be less 100 °C (we will use an oil lubricant and transferring power relatively small).

Service life in million revolutions according to formula (4.5)

$$L = \frac{60nL_h}{10^6} = \frac{60 \cdot 870 \cdot 20000}{10^6} = 1044$$

where L_h is the given service life in hours (given data).

Let us determine radial and axial load factors X and Y. First, calculate

$$\left(\frac{F_a}{C_0}\right) = \frac{269}{17\ 800} = 0,015 > 0,014$$
.

According to Fig. 4.1 define (inner ring rotates about a load vector, therefore rotation factor V = 1)

$$e = 0.518 \left(\frac{F_a}{C_0}\right)^{0.24} = 0.518 \cdot 0.015^{0.24} = 0.189 \text{ and } \frac{F_a}{VF_r} = \frac{269}{1 \cdot 3455} = 0.07 < e$$
.

Pay attention, that here F_r is support B radial load, not radial force in the gearing!

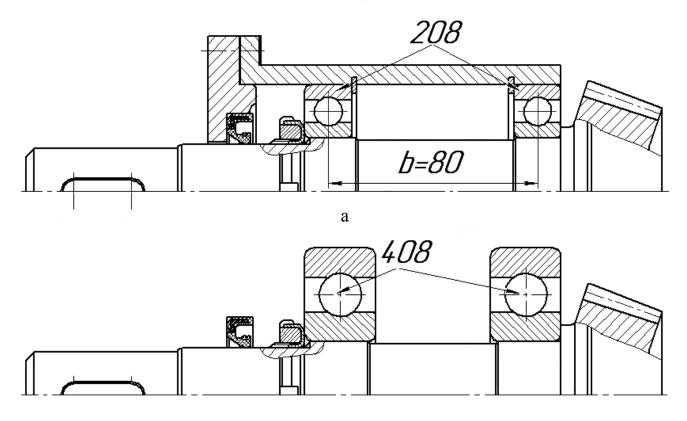
Thus, X = 1 and Y = 0.

Thus, equivalent load

$$P = (XVF_r + YF_a) K_B K_T = (1.1.3455 + 0.269) \cdot 1.3 \cdot 1 = 4492 N.$$

For ball bearings exponent p = 3, so finally the dynamic load capacity

$$C = \left(\frac{L}{a_1 a_{23}}\right)^{\frac{1}{p}} P = \left(\frac{1044}{1 \cdot 0.8}\right)^{1/3} 4492 = 49\,080\,\mathrm{N}.$$


Strength condition (4.3) is not satisfied: $49\ 080 > 32\ 000$ N, therefore we must change something. There are some ways:

- change previous selected bearing (Fig. 4.11, a). Look in Appendix E: we can take bearing #408 with C = 63700 N and outer diameter D = 110 mm (Fig. 4.11, b);

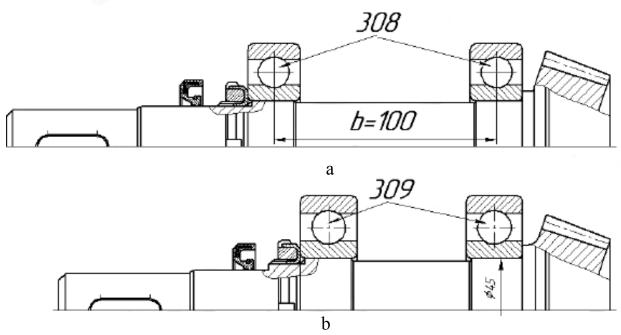
- increase distance between supports, for example, up to 100 mm (Fig. 4.12, a). Thus, recalculated reaction components $R_{BH} = 2\ 631$ N, $R_{BV} = 833$ N, support B reaction $R_B = 2\ 760$ N, equivalent load $P = 3\ 588$ N and dynamic load capacity $C = 39\ 200$ N. In such case we may use bearing #308 ($C = 41\ 000$ N; D = 90 mm);

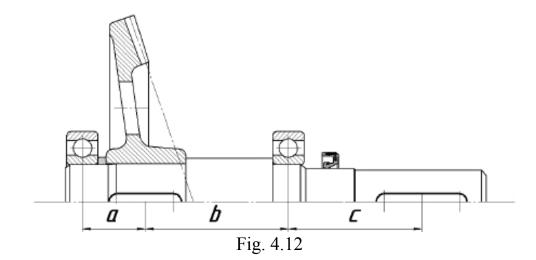
- increase shaft diameter up to 45 mm (Fig. 4.12, b) and use bearing #309 ($C = 52\ 700\ \text{N}; D = 100\ \text{mm}$).

Coordinate final decision about bearing code with teacher.

b

Fig. 4.11




Fig. 4.12

Example 3

Check the bearing selected for the bevel gearbox output shaft described above (see initial data in Tab. 4.9).

Distances between acting forces and reactions applying points a, b, c are measured in the drawing (Fig. 4.12). Pay attention that drawing was turned around vertical axis according to the calculation scheme.

			Table 4.9
	Parameter	Symbol	Value
The torque	, N mm	T	220
Rotational	speed, rpm	n	300
Pinion pite	h angle, deg	δ_2	70,97
The	support A and gear	a	34
distances	gear and support B	b	92
between	support B and coupling	с	82
Pressure angle		α_{w}	20
Preliminary bearing code			209
Bearing dynamic load capacity, N		С	33 200
Bearing static load capacity, N		C ₀	18 600

Calculating scheme looks like mirrored to the Fig. 4.5, therefore equations for reaction components **are changed**. Calculation results are shown in Tab. 4.10.

			Table 4.10
Parameter		Formula	Value
The peripheral f	force F_t , N	From gearing calculation (the same with the input shaft)	2 366
The radial force F_r , N		$F_r = F_t \tan \alpha_w \cos \delta_2 =$ = 2367 \cdot \tan 20^\circ \cos 70,88	269
The axial force F_a , N		$F_a = F_t \tan \alpha_w \sin \delta_2 =$ = 2367 tan 20° sin 70,88	818
The bending moment M , Nmm		$M = F_a \frac{d_{m2}}{2} = 818 \frac{196,7}{2}$	80 490
The clutch force F_C , N		see Tab. 4.4: $F_c = 0.1 \cdot 2000T / d = 0.1 \cdot 2000 \cdot 220 / 38$	1 158
Support A radial reaction components, N	Vertical	$R_{AV} = \frac{F_r b + M}{L} = \frac{269 \cdot 92 + 80490}{34 + 92}$	973
	Horizontal	$R_{AH} = \frac{F_{t}b - F_{C}c}{L} = \frac{2366 \cdot 92 - 1158 \cdot 82}{34 + 92}$	835
Support B radial reaction components, N	Vertical	$R_{BV} = \frac{F_r a - M}{L} = \frac{269 \cdot 34 - 80490}{126}$	2 550
	Horizontal	$R_{BH} = \frac{F_t a + F_c (L+c)}{L} =$ $= \frac{2366 \cdot 34 + 1158 \cdot (126 + 82)}{126}$	-566
Support A radial reaction, N		$R_A = \sqrt{R_{AV}^2 + R_{AH}^2} = \sqrt{223^2 + 883^2}$	1 282
Support B radial reaction, N		$R_B = \sqrt{R_{BV}^2 + R_{BH}^2} = \sqrt{1041^2 + 3294^2}$	2 612

Negative value of R_{BV} means that this component has opposite direction.

Thus, support B radial load higher than support A one. According to design and technological reasons, we use in both supports the same bearings, therefore bearing in support B should be calculated on dynamic load capacity. In such case, bearing radial load F_r in equation (4.8) is the support B radial load: $F_r = R_B = 2.612$ N.

Let us assume:

- a reliability factor a_1 for normal reliability 0,9 $a_1 = 1$ (see Tab. 4.1);

- for usual operating conditions and ball bearings factor a_{23} equals 0,8 (see Tab. 4.2);

- the safety factor considering load non-uniformity for medium non-uniformity $K_B = 1,3$;

- the temperature factor $K_T = 1$ because operating temperature should be less 100 °C (we will use an oil lubricant and transferring power relatively small).

Service life in million revolutions according to formula (4.5)

$$L = \frac{60nL_h}{10^6} = \frac{60 \cdot 300 \cdot 20000}{10^6} = 360$$

Radial load factor X = I and axial one Y = 0 because the axial force F_a loads support A only.

Rotation factor V = 1 because vector of the radial load ($F_r = R_B$) is permanently directed relatively to the rotating bearing inner ring.

Thus, equivalent load

$$P = VF_r K_B K_T = 1.2612.1, 3.1 = 3396 N.$$

For ball bearings an exponent p = 3, so finally the dynamic load capacity

$$C = \left(\frac{L}{a_1 a_{23}}\right)^{\frac{1}{p}} P = \left(\frac{360}{1 \cdot 0.8}\right)^{1/3} 3396 = 26024 \text{ N}.$$

Strength condition (4.3) is satisfied: $26\ 024 < 33\ 200$ N, therefore we may use previous selected bearings.

5. SHAFT CHECK CALCULATIONS

5.1. Calculation of Shaft Static Strength

To prevent the plastic deformations at the big short-term overloads a shaft static strength calculation is carried out. Strength condition has a form

$$S = \frac{\sigma_y}{\sigma_E} \ge [S] = 1,5...2,5,$$
 (5.1)

where $\sigma_E = \sqrt{\sigma^2 + 4\tau^2}$ is the equivalent stress, σ and τ are the acting normal and shear stresses in a dangerous section; σ_y is the yield stress of a shaft material (Tab. 5.1); [S] is the allowable safety factor.

Table 5.1

Steel	Handress HD	$\sigma_{B}(\sigma_{UTS})$	σ_Y	σ_{-1}	$ au_{-1}$		
Steel Hardness, HB		MPa				ψ_{σ}	$\psi_{ au}$
45	200	610	280	250	150	0	0
40X	200	630	330	310	180	0,10	0,05
12XH3A	260	950	700	420	210	0,10	0,05
12X2H4A	300	1100	850	500	250	0,05	0, 10
18ХГТ	330	1150	950	520	280	0,15	0,10
30ХГТ	320	1150	950	520	310	0,15	0,10
40XH	240	820	650	360	210	0,10	0,05

Actual stresses are:

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_b + \boldsymbol{\sigma}_t = \frac{M_c}{W_0} + \frac{F_a}{A}, \quad \boldsymbol{\tau} = \frac{T_c}{W_\rho}, \quad (5.2)$$

where $M_c = M_{\Sigma} k$ is the bending moment in dangerous section; $T_c = Tk$ is the torque in the same section; k = 2...3 is the overload factor; W_0 is the section modulus, $W_0 = 0.1d^3(1 - \alpha^4)$; W_0 is the polar section modulus, $W_\rho = 0.2d^3(1 - \alpha^4)$; F_a is the axial force; A is the cross-section area.

Diameters of various sections of a shaft were defined during a shaft designing. To find dangerous sections and calculate the moments acting in these sections, the design diagram would be drown.

The most typical cases of shaft loading are described below. The forces represented in these drawings are transfered in static zero to an axis of a shaft rotation separately for vertical and horizontal planes. It should be noted, that names of planes («vertical» and «horizontal») in which gearing forces operate, are conditional, as the real plane depends on a relative gears location in space. However, these planes always remain mutually perpendicular, and the total bending moment in any section of a shaft

$$M_{\Sigma} = \sqrt{M_V^2 + M_H^2} = \sqrt{M_y^2 + M_z^2} .$$
 (5.3)

Let us draw bending and twisting moment diagrams (the compression caused by axial force F_a , is not shown).

Distances between support and points of the applying of external forces should be measured on the drawing.

1. A spur helical (or straight teeth bevel) gear and coupling are mounted on a shaft (gear locates between supports, coupling is cantilever) (Fig. 5.1) (calculation of forces and reactions see part 4).

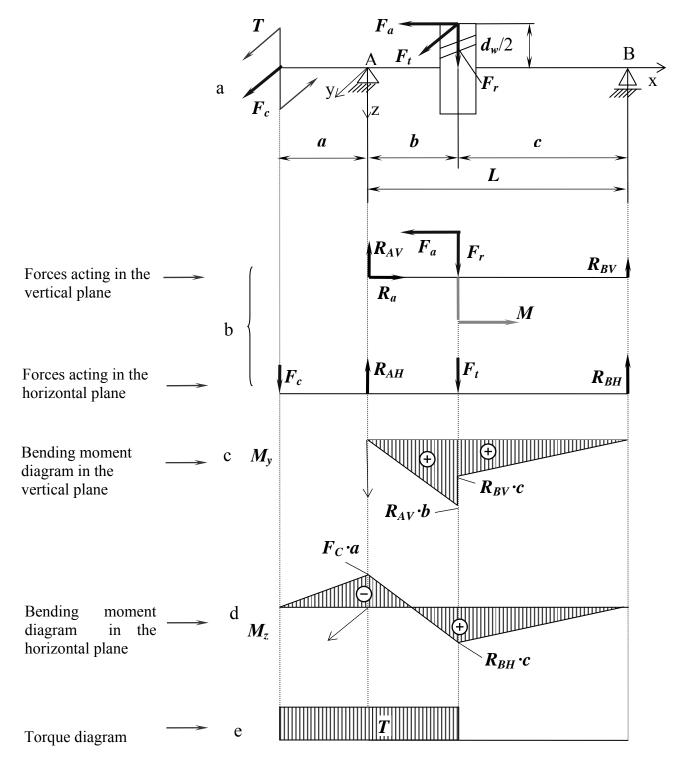


Fig. 5.1

In cases of straight teeth spur gear $M = F_a \frac{d_w}{2} = 0$ and step will not be on bending moment diagram M_y (Fig. 5.1, c).

2. A bevel gear and half of coupling are mounted on a shaft cantilever (Fig. 5.2).

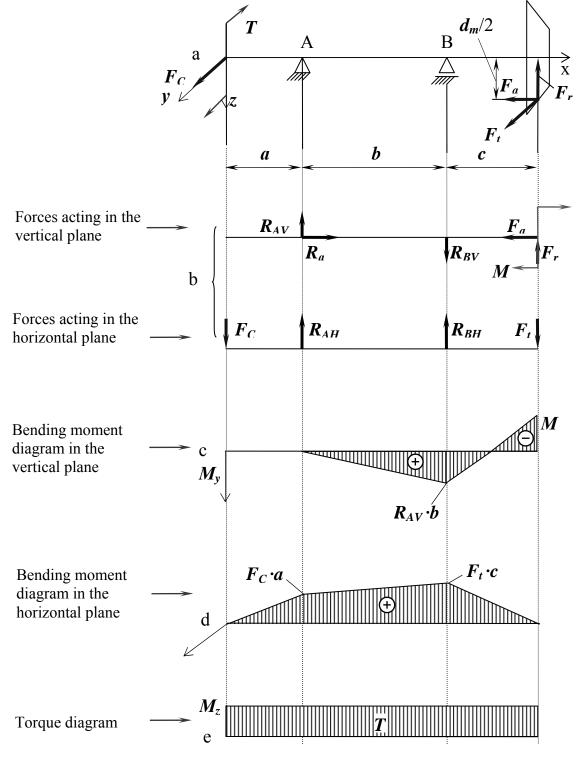


Fig. 5.2

In cases of straight spur gear, these bending and twisting moment diagrams and formulae could be also used, $M = F_a \frac{d_w}{2} = 0$ and step there will not be on bending moment diagram M_y (Fig. 5.2, c).

3. Two cylindrical helix gears are mounted on a shaft between supports (Fig. 5.3).

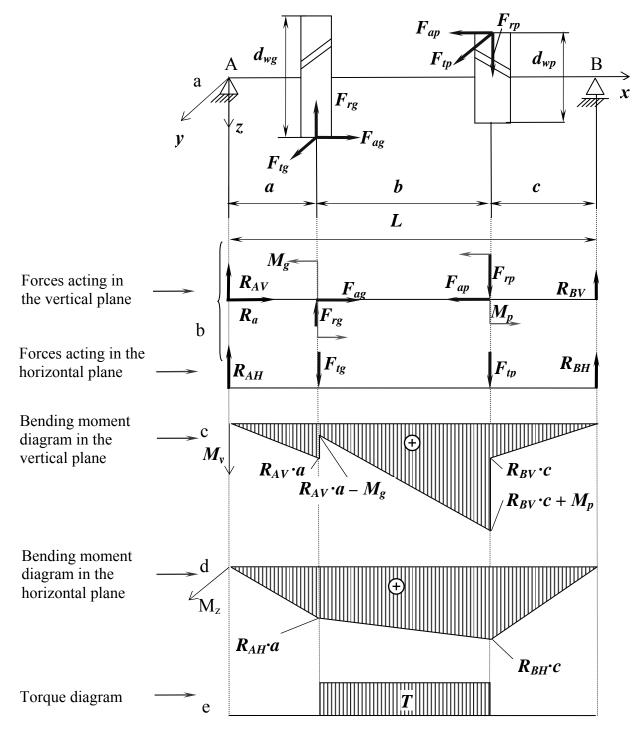


Fig. 5.3

In cases of straight gear, these bending and twisting moment diagrams and formulae could be also used, $M = F_a \frac{d_w}{2} = 0$ and sudden changes there will be no on bending moment diagram M_y (Fig. 5.3, c).

4. A spur helical (or straight teeth bevel) gear and two couplings are mounted on a shaft (gear locates between supports, couplings are cantilever) (Fig. 5.4).

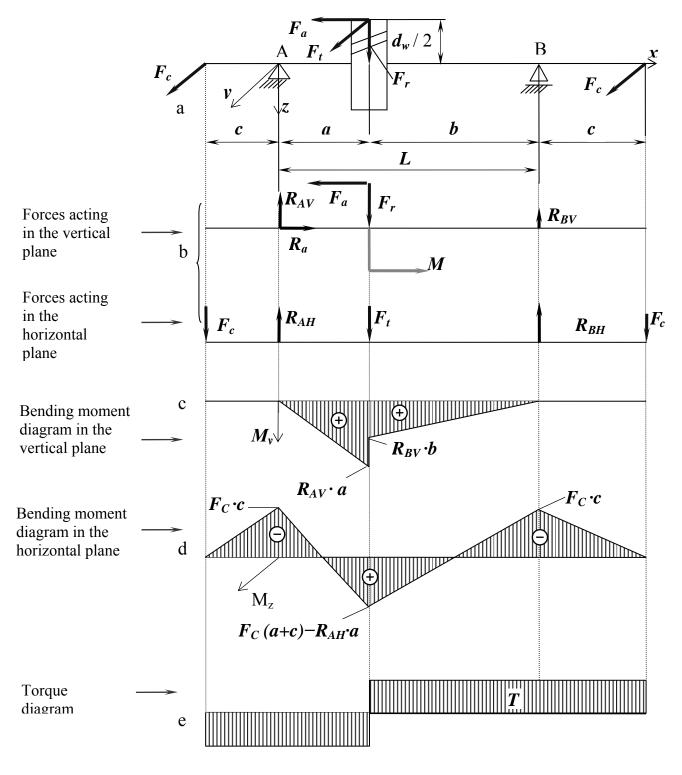


Fig. 5.4

In cases of straight teeth spur gear $M = F_a \frac{d_w}{2} = 0$ and step will not be on bending moment diagram M_y (Fig. 5.4, c).

5.1.1. Examples

Example 1

Check the described above spur gearbox input shaft.

As for the calculating scheme and design diagrams on Fig.5.1, there are two potential dangerous sections: at support A (marked 1) and under the gear (marked 2). Let us find an actual safety factor in these sections, taking into account dimensions according to Table 4.5 and the actual forces and the reactions according to Table 4.6.

As input shaft is pinion-shaft and steel 40X was selected for pinion, so shaft material is also steel 40X with yield stress 330 MPa (see Table 5.1). Calculated values are shown in Tab. 5.2.

		-	Table 5.2	
		Value		
Parameter	Formula	for cross-section		
		1	2	
Horizontal maximum bending	$M_{HI} = F_{C}a = 103, 6 \cdot 84$	8 702		
moment M_H , Nmm	$M_{H2} = R_{BH}c = 876 \cdot 38$		33 280	
Vertical maximum bending	$M_{VI} = 0$	0		
moment M_V , Nmm	$M_{V2} = max\{R_{AV}b;R_{BV}c\}$ (In our case $b = c, R_{AV} = R_{BV}$)		13 680	
Total bending moment M_{Σ} , Nmm	$M_{\Sigma i} = \sqrt{M_{Vi}^2 + M_{Hi}^2}$	8 702	35 980	
Shaft diameter, mm	d	40	46	
Overload factor	k	2,2		
Overloading bending moment M_{P} , Nmm	$M_{ci} = M_{\Sigma i}k$	19 145	79 150	
Overloading torsion moment T_P , Nmm	$T_c = T k = 54400 \cdot 2,2$	119	680	
Bending stress σ , MPa	$\sigma_i = rac{M_{ci}}{W_{oi}}$	3,0	8,1	
Shear stress $ au$, MPa	$\tau_i = \frac{T_c}{W_{\rho}} = \frac{T_c}{0.2d_i^3}$	9,4	6,1	
Equivalent stress σ_E , MPa	$\sigma_{Ei} = \sqrt{\sigma_i^2 + 4\tau_i^2}$	18,9	14,7	
Actual safety factor <i>S</i>	$S_i = \frac{\sigma_y}{\sigma_{Ei}}$	17,4	22,4	

Example 2

Check the described above bevel gearbox input shaft.

As for the calculating scheme and design diagrams on Fig.5.2, there is one potential dangerous section: at support B. Let us find an actual safety factor in this section, taking into account dimensions according to Tab. 4.7 and the actual forces and the reactions according to Tab. 4.8.

Let us assume steel 40X with yield stress 330 MPa as the shaft material (see Tab. 5.1). Calculated values are shown in Tab. 5.3.

		Table 5.3
Parameter	Formula	Value
A horizontal maximum bending moment M_H , Nmm	$M_H = F_t c = 2366 \cdot 33$	78 078
A vertical maximum bending moment M_V , Nmm	$M_V = M - F_r c = 9176 - 818 \cdot 33$	-17 818
Total bending moment M_{Σ} , Nmm	$M_{\Sigma} = \sqrt{M_V^2 + M_H^2} = \sqrt{78078^2 + 17818^2}$	80 085
Shaft diameter, mm	d	40
Overload factor	k	2,2
Overloading bending moment M_{P} , Nmm	$M_c = M_{\Sigma}k = 80085 \cdot 2,2$	176 190
Overloading torsion moment T_P , Nmm	$T_c = T k = 80700 \cdot 2,2$	177 540
Bending stress σ , MPa	$\sigma = \frac{M_c}{W_0} + \frac{F_a}{A} = \frac{176190}{0.1 \cdot 40^3} + \frac{269}{0.78 \cdot 40^2} = 27,53 + 0.21$	27,74
Shear stress $ au$, MPa	$\tau = \frac{T_c}{W_{\rho}} = \frac{177540}{0.2 \cdot 40^3}$	13,87
Equivalent stress σ_E , MPa	$\sigma_E = \sqrt{\sigma^2 + 4\tau^2} = \sqrt{27,74^2 + 4 \cdot 13,87^2}$	39,2
Actual safety factor S	$S = \frac{\sigma_y}{\sigma_E} = \frac{280}{39,2}$	7,1

Thus, actual safety factor is too greater than allowable.

5.2. Calculation on Fatigue Endurance

Calculation on endurance (the basic calculation) takes place in the form of checking of safety factor at summary action of bending and torsion

$$S = \frac{S_{\sigma} S_{\tau}}{\sqrt{S_{\sigma}^2 + S_{\tau}^2}} \ge [S] = 1,5...2,5,$$
(5.4)

where S_{σ} is the actual safety factor on normal stress (without the torsion account):


$$S_{\sigma} = \frac{\sigma_{-1}}{K_{\sigma D} \sigma_a + \psi_{\sigma} \sigma_m};$$

 S_{τ} is the actual safety factor on shear stress (without the bend account):

$$S_{\tau} = \frac{\tau_{-1}}{K_{\tau D}\tau_a + \psi_{\tau}\tau_m};$$

 σ_{-1} and τ_{-1} are the limits of endurance of a shaft material accordingly at bending and torsion with a reversed stress cycle (see Tab. 5.1); $\psi_{\sigma} = \frac{2\sigma_{-1} - \sigma_0}{\sigma_0}$ and $\psi_{\tau} = \frac{2\tau_{-1} - \tau_0}{\tau_0}$ are the factors characterizing material sensitivity for alternating stresses (see Tab. 5.1); σ_a and τ_a are the actual amplitude stress: $\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2}$ (τ_a define similarly); σ_m and τ_m are the actual mean stress: $\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$ (τ_m define similarly).

Shear stress changes proportionally to load change. In most cases it is difficult to clarify the valid load cycle under actual operating conditions, therefore calculation carries out conditionally on a rated load, and a cycle of stress is assumed as reversed (symmetric) for the bending stress and repeated for the torsion stress (Fig. 5.5).

According to the assumed cycles, amplitude and mean stresses are:

$$\sigma_a = M_{\Sigma} / W_0; \ \tau_a = \tau_m = 0,5 \ \tau = \frac{1}{2} \frac{T}{W_{\rho}}$$

If there is an axial force,

$$\sigma_m=\frac{4F_a}{\pi d^2(1-\alpha^2)}.$$

Theoretical stress-concentration factors $K_{\sigma D}$ and $K_{\tau D}$ considering influence of all factors on resistance of bending fatigue and torsion are calculated by means of formulae:

$$K_{\sigma D} = (K_{\sigma} / \varepsilon + K_F - 1) / K_{v}; \kappa_{\tau D} = (\kappa_{\tau} / \varepsilon + \kappa_F - 1) / \kappa_{v},$$

where ε is the absolute size factor of the of cross-section (Tab. 5.4); K_F is a surface roughness factor (Tab. 5.5); K_V is a factor of influence of the hardening, entered for shaft with superficial hardening (Tab. 5.6); K_{σ} and K_{τ} are a fatigue normal and shear stress-concentration factors.

Reference data for various types of concentrators (Fig. 5.6) are shown in Tab. 5.7-5.10.

lab	le	5.	4

Strength state	Material	Absolu	ite size f	actor <i>ɛ</i>	depen	ding on	shaft o	liamete	er, mm
	wrateriar	15	20	30	40	50	70	100	200
Bend	Carbon steel	0,95	0,92	0,86	0,85	0,81	0,76	0,70	0,61
Bend and torsion	Alloy steel	0,87	0,83	0,77	0,73	0,70	0,65	0,59	0,52

Table 5.5

Surface finishing	A surface	A surface roughness factor K_F at σ_{UTS} , MPa					
Surface minishing	roughness <i>R_a</i> , μm	400	600	1200			
Polishing	0,320,08	1	1	1			
Turning	2,50,32	1,05	1,1	1,25			
Rough machining	205	1,2	1,25	1,5			

Table 5.6

	Hardening factor K_V for specin				
Type of hardening	without stress concentrator	with stress concentrator **			
Surface hardening for carbon and alloy steels	1,21,5	1,52,5			
Nitriding at layer depth 0,10,4 mm	1,11,15	1,32,0			
Case-hardening at layer depth 0,20,6 mm	1,11,5	1,22,0			
Rolling by rollers for carbon and alloy steels	1,11,25	1,31,8			
Blowing by grit for carbon and alloy steels	1,11,2	1,11.5			

*Based on experience with d = 30...40 mm specimen

**The larger stress-concentration the larger value

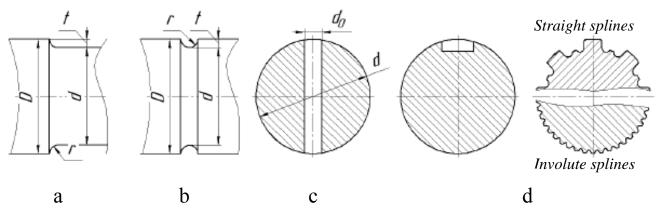


Fig. 5.6

Table 5.7 (see Fig. 5.6, a)

<i>t/ r</i>	r/ D		K_{σ} at σ_{l}	UTS, MPa			K_{τ} at σ_{UTS}	s, MPa	
<i>u</i> / 1	ΠD	500	700	900	1200	500	700	900	1200
	0,01	1,35	1,40	1,45	1,50	1,30	1,30	1,30	1,30
	0,02	1,45	1,50	1,55	1,60	1,35	1,40	1,40	1,40
1	0,03	1,65	1,70	1,80	1,90	1,40	1,45	1,45	1,50
	0,05	1,60	1,70	1,80	1,95	1,45	1,45	1,50	1,55
	0,10	1,45	1,55	1,65	1,85	1,40	1,40	1,45	1,50
	0,01	1,55	1,60	1,65	1,70	1,40	1,40	1,45	1,45
2	0,02	1,80	1,90	2,00	2,15	1,55	1,60	1,65	1,70
2	0,03	1,80	1,95	2,05	2,25	1,55	1,60	1,65	1,70
	0,05	1,75	1,90	2,00	2,20	1,55	1,66	1,65	1,75
	0,01	1,90	2,00	2,10	2,20	1,55	1,60	1,65	1,75
3	0,02	1,95	2,10	2,20	2,40	1,60	1,70	1,75	1,85
	0,03	1,95	2,10	2,25	2,45	1,65	1,70	1,75	1,90
5	0,01	2,10	2,25	2,35	2,50	2,22	2,30	2,40	2,60
5	0,02	2,15	2,30	2,45	2,65	2,10	2,15	2,25	2,40

Table 5.8 (see Fig. 5.6, d)

		K_{σ}	$K_{ au}$				
σ _{UTS} , MPa	For	For	For	For s	splines		
ivii u	splines	keyway	thread	straight	involute	For keyway	
500	1,45	1,60	1,80	2,25	1,43	1,40	
600	1,55	1,75	1,95	2,35	1,46	1,50	
700	1,60	1,90	2,20	2,45	1,49	1,70	
800	1,65	2,05	2,30	2,55	1,52	1,90	
900	1,70	2,20	2,45	2,65	1,55	2,00	
1000	1,72	2,30	2,60	2,70	1,58	2,20	

Strength	σ_{UTS} ,	Theor	etical n		-	-	stress-o relation			actors for
state	MPa	0	0,02	0,03	0,05	0,10	0,01	0,02	0,03	0,05
			t	/r = 0,	5			<i>t</i> /	r = 1	
	500	2,00	1,85	1,75	1,65	1,50	2,15	2,05	1,95	1,85
	700	1,10	1,95	1,85	1,75	1,55	2,25	2,15	2,10	1,95
	900	2,20	2,05	1,95	1,90	1,60	2,40	2,30	2,20	2,10
Bend (K_{σ})	1200	2,30	2,20	2,10	2,05	1,75	2,60	2,50	2,35	2,25
		t/r = 2					t/r = 5			
	500	2,40	2,25	2,15	_	_	2,45	2,35	_	_
	700	2,50	2,40	2,30	_	_	2,65	2,50	_	_
	900	2,70	2,50	2,40	_	_	2,80	2,65	_	_
	1200	2,90	2,70	2,60	_	_	3,05	2,85	_	_
	500	1,70	1,60	1,50	1,40	1,20	_	_	_	_
Torsion	700	1,90	1,75	1,65	1,50	1,25	_	_	_	_
(K _t)	900	2,10	1,95	1,80	1,65	1,30			_	_
	1200	2,40	2,20	2,05	1,80	1,40	_		_	_

Table 5.10 (see Fig. 5.6, c)

	$\sigma_{UTS},$	Theoretical normal K_{σ} and shear K_{τ} stress- concentration factors for shaft with hole						
M	Pa	K_{σ} at	d_0 / d	$K_{ au}$ at				
		0,050,15	0,150,25	$d_0 / d = 0,050,25$				
≤ 7	700	2,00	1,80	1,75				
9	00	2,15	1,90	1,90				
≥1	000	2,30	2,10	2,00				

5.2.1. Examples

Example 1

Let us consider bevel gearbox input shaft as the most loaded.

To calculate a shaft on fatigue endurance we must define actual safety factors on both normal bend stress (Tab. 5.11) and shear stresses (Tab. 5.12) in the dangerous cross-section located at the support B (see Fig. 5.2). From previous calculation (see Tab. 5.3), we know total bending moment $M_{\Sigma} = 80\,085$ Nmm, torsion moment $T = 80\,700$ Nmm and shaft diameter d = 40 mm.

		Table 5.11
Parameter	Formula	Value
Endurance limit at a bend σ_{-1} , MPa	For steel 40X	310
Factor characterizing material sensitivity for alternating stresses ψ_{σ}	(see Tab. 5.1)	0,1
Absolute size factor of the of cross- section $\boldsymbol{\varepsilon}$	At diameter 40 mm (see Tab. 5.4)	0,73
Surface roughness factor K_F	For turning surface (see Tab. 5.5)	1,15
Factor of influence of the hardening K_V	For blowing by grit for alloy steel (see Tab. 5.6)	1,2
Fatigue normal stress-concentration factor K_{σ}	For shoulder near the bearing (see Tab. 5.7, t/r = 3, $r/D = 0,022$)	≈ 2,0
Theoretical normal stress-concentration factor $K_{\sigma D}$	$K_{\sigma D} = \frac{\frac{K_{\sigma}}{\varepsilon} + K_F - 1}{K_V}$	2,41
Actual amplitude normal stress σ_a , MPa	$\sigma_a = \frac{M_{\Sigma}}{0.1d^3}$	12,5
Axial force F_a , N	F _a	269
Mean normal stress σ_m , MPa	$\sigma_m = \frac{4F_a}{\pi d^2}$	0,2
Actual safety factor on normal stress S_{σ}	$S_{\sigma} = \frac{\sigma_{-I}}{K_{\sigma D}\sigma_{a} + \psi_{\sigma}\sigma_{m}}$	10,3

Table 5.12

Parameter	Formula	Value
Endurance limit at a bend τ_{-1} , MPa	For steel 40X	180
Factorcharacterizingmaterialsensitivityfor alternating stresses $\boldsymbol{\psi}_{\tau}$	(see Tab. 5.1)	0,05
Absolute size factor of the of cross-section $\boldsymbol{\varepsilon}$	At diameter 40 mm (see Tab. 5.4)	0,73
Surface roughness factor K_F	For turning surface (see Tab. 5.5)	1,15
Factor of influence of the hardening K_V	For blowing by grit for alloy steel (see Tab. 5.6)	1,2
Fatigue shear stress-concentration factor K_{τ}	For shoulder near the bearing (see Tab. 5.7, t/r = 3, $r/D = 0,022$)	1,70
Theoretical shear stress-concentration factor $K_{\tau D}$	$K_{\tau D} = \frac{\frac{K_{\tau}}{\varepsilon} + K_{F} - 1}{K_{V}}$	2,07
Actual amplitude shear stress τ_a , MPa	$\tau_a = \frac{T}{2 \cdot 0, 2d^3}$	3,2
Mean shear stress $ au_m$, MPa	$\tau_m = \tau_a$	3,2
Actual safety factor on shear stress $S_{ au}$	$S_{\tau} = \frac{\tau_{-1}}{K_{\tau D}\tau_a + \psi_{\tau}\tau_m}$	26,4

The integral safety factor of fatigue endurance at joint action of bending and torsion is calculated under the formula

$$S = \frac{S_{\sigma} S_{\tau}}{\sqrt{S_{\sigma}^{2} + S_{\tau}^{2}}} = \frac{10,28 \cdot 26,4}{\sqrt{10,28^{2} + 26,4^{2}}} = 9,58$$

This one is more than allowable value [S] = 1,5...2,5.

Example 2

Let us calculate the actual safety factor for intermediate shaft of two stages helical spur gearbox (Tab. 5.13, Fig. 5.7).

Table 5.13

					1 able 5.15					
]	Parame	ter		Symbol	Value					
The torque or	e torque on shaft, N mm		torque on shaft, N mm		e torque on shaft, N mm		he torque on shaft, N mm		Т	250 000
Rotational sp	eed, rpn	1		n	800					
The	suppor	t A an	d gear	a	40					
distances	gear an	nd pini	on	b	40					
between	pinion	and su	ipport B	С	50					
Total length	•			L = a + b + c	130					
		unde	r gear		40					
Shaft diamete	er, mm	unde	r pinion	d	46					
Dital diamata			pinion	d_{wp}	70					
Pitch diamete	ers of		gear	d_{wg}	140					
Helix angle				β	11°					
Pressure angl	e			$\alpha_{_w}$	20°					
Material					Steel 40X					



Fig. 5.7

,	0	(10010 (100.0.11)).		Table 5.14
Para	meter	Formula		Value
The peripheral f	Forma E N	$F_t = \frac{2T}{d_w}$	pinion	7143
The peripheral f	Since \mathbf{r}_t , in	$t d_w$	gear	3571
The radial force	E N	$F_r = \frac{F_t \tan \alpha_w}{\cos \beta}$	pinion	2647
The radial force	<i>r</i> , <i>n</i>	$F_r = \frac{1}{\cos \beta}$	gear	1323
The avial force	E N	$F_{a} = F_{t} \tan \beta$	pinion	1388
The axial force	r _a , 1N	$a^{-1}t^{aaap}$	gear	694
The actual bend	ling moment M ,	$M - E d_w$	pinion	48,58
Nm		$M_p = F_a \frac{d_w}{2}$	gear	48,58
Support A	Horizontal	$R_{AH} = \frac{F_{tp}c + F_{tg}(b)}{L}$	5220	
reactions, N	Vertical	$R_{AV} = \frac{F_{rp}c - F_{rg}(b+c) + L}{L}$	850	
Support B reactions, N	Horizontal	$R_{BH} = \frac{F_{tg}a + F_{tp}(a)}{L}$	(+ <i>b</i>)	5494
	Vertical	$R_{BV} = \frac{F_{rp}(a+b) - F_{rg}a - L}{L}$	474	

First, the acting forces should be found (Tab. 5.14).

Calculated above forces are represented in the diagram and transferred in static zero to an axis of shaft rotation separately for vertical and horizontal planes. The shaft should be considered as a beam on two supports (as shown in Fig. 5.3). Bending and twisting moment diagrams are the same with Fig. 5.3.

At a choice of dangerous sections of a shaft, we consider values of the bending moments and torques, the each parts' diameters and presence of concentrators (keyway, groove, holes, the turnings etc.). The bending and twisting moment diagrams analysis shows that both sections (located in the middle of a gear hub and in the middle of a pinion) should be checked up because the first of them has lower diameter and the second is effected by larger total moment. Calculations on stresses are shown in Tab. 5.15.

Tab	le 5	.15

		Value		
Parameter	Formula	under	under pinion	
Maximum bending moment acting on a	$M_H = R_{AH} a$	gear 208800	pinon	
horizontal plane M_{H} , Nmm	$M_H = R_{BH} c$		274700	
Maximum bending moment acting on a	$M_V = R_{AV}a$	34000		
vertical plane M_V , Nmm	$M_V = R_{BV}c + M_p$		72300	
Total bending moment M_{Σ} , Nmm	$M_{\Sigma} = \sqrt{M_V^2 + M_H^2}$	211550	284100	

End of Tab. 5.15

		Liiu	101 100. 5.15	
		Value		
Parameter	Formula	under	under	
		gear	pinion	
Shaft diameter, mm	d	40	46	
Overload factor	$k = T_{max}/T_{nom}$	2	2,2	
Overloading bending moment M_P , Nmm	$M_P = kM_{\Sigma}$	465 410	625 020	
Overloading torsion moment T_P , Nmm	$T_P = kT$	550	000	
Bending stress σ , MPa	$\sigma_u = \frac{M_P}{W_o} = \frac{M_P}{0.1d^3}$	72,7	64,2	
Shear stress τ , MPa	$\tau = \frac{T_P}{W_\rho} = \frac{T_P}{\theta, 2d^3} \qquad 43.0$		28,3	
Equivalent stress σ_E , MPa	$\sigma_{E} = \sqrt{\sigma_{u}^{2} + 4\tau^{2}}$	112,6	85,6	
Actual safety factor S	$S = \sigma_T / \sigma_E$	4,4 > 1,5	5,8 > 1,5	

To calculate a shaft on fatigue endurance we must define actual safety factors on both normal bend stress (Tab. 5.16) and shear stress (Tab. 5.17) in the dangerous cross-section located in the middle of a gear hub.

	Т	able 5.16
Parameter	Formula	Value
Endurance limit at a bend σ_{-1} , MPa	For steel 40X	320
Factor characterizing material sensitivity for alternating stresses ψ_{σ}	(see Tab. 5.1)	0,1
Absolute size factor of the of cross- section $\boldsymbol{\varepsilon}$	At diameter 40 mm (see Tab. 5.4)	0,73
Surface roughness factor K_F	For turning surface (see Tab. 5.5)	1,13
Factor of influence of the hardening K_V	For blowing by grit for alloy steel (see Tab. 5.6)	1,2
Fatigue normal stress-concentration factor K_{σ}	For splines (see Tab. 5.8)	1,95
Theoretical normal stress-concentration factor $K_{\sigma D}$	$K_{\sigma D} = \frac{\frac{K_{\sigma}}{\varepsilon} + K_F - 1}{K_V}$	2,3
Actual amplitude normal stress σ_a , MPa	$\sigma_a = \frac{M_{\Sigma}}{0.1d^3}$	33,0
Axial force F_a , N	$F_a = F_{ap} - F_{ag}$	694
Mean normal stress σ_m , MPa	$\sigma_m = \frac{4F_a}{\pi d^2}$	0,55
Actual safety factor on normal stress S_{σ}	$S_{\sigma} = \frac{\sigma_{-1}}{K_{\sigma D} \sigma_{a} + \psi_{\sigma} \sigma_{m}}$	4,2

		Table 5.17
Parameter	Formula	Value
Endurance limit at a bend τ_{-1} , MPa	For steel 40X	200
Factorcharacterizingmaterialsensitivityfor alternating stresses $\boldsymbol{\psi}_{\tau}$	(see Tab. 5.1)	0,05
Absolute size factor of the of cross-section $\boldsymbol{\varepsilon}$	At diameter 40 mm (see Tab. 5.4)	0,73
Surface roughness factor K_F	For turning surface (see Tab. 5.5)	1,13
Factor of influence of the hardening K_V	For blowing by grit for alloy steel (see Tab. 5.6)	1,2
Fatigue shear stress-concentration factor K_r	For splines (see Tab. 5.8)	1,74
Theoretical shear stress-concentration factor $K_{\tau D}$	$K_{\tau D} = \frac{\frac{K_{\tau}}{\varepsilon} + K_F - 1}{K_V}$	2,0
Actual amplitude shear stress τ_a , MPa	$\tau_a = \frac{T}{2 \cdot 0.2d^3}$	9,76
Mean shear stress τ_m , MPa	$\tau_m = \tau_a$	9,76
Actual safety factor on shear stress S_{τ}	$S_{\tau} = \frac{\tau_{-1}}{K_{\tau D}\tau_a + \psi_{\tau}\tau_m}$	9,57

The integral safety factor of fatigue endurance at joint action of bending and torsion is calculated under the formula

$$S = \frac{S_{\sigma} S_{\tau}}{\sqrt{S_{\sigma}^{2} + S_{\tau}^{2}}} = \frac{4, 2 \cdot 9, 57}{\sqrt{4, 2^{2} + 9, 57^{2}}} = 3,81$$

This one is more than allowable value [S] = 1,5...2,5.

6. GENERATING OF THE GEARBOX ASSEMBLY DRAWING

6.1. Frame Designing

After shafts' designing and calculation, we can create a frame. An example of the spur gearbox assembly is shown in Fig. 6.1, a, the bevel gearbox see in Fig. 6.1, b.

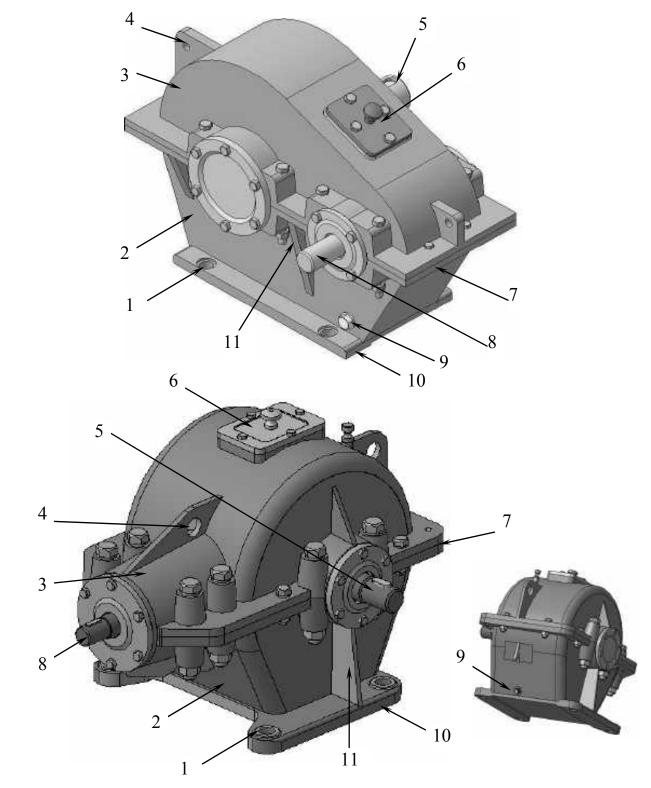


Fig. 6.1. Gearbox frame design:

1 – mounting bolt hole; 2 – case; 3 – cover; 4 – lifting eye; 5 – output shaft; 6 – inspection window; 7 – flange; 8 – input shaft; 9 – oil drain; 10 – foot; 11 – rib

The gearboxes of split type with radial assembly are usually used. Gears and bearings are mounted on the shafts separately outside, assembled radially in the gearbox and top cover 3 (see Fig. 6.1) is bolted in its position over the case 2.

The gearbox case executes the following functions:

- ensure input 8 and output 5 shaft relative positions and orientation;

- support shafts 8 and 5 and translating acting forces to the foot 10;

- ensure stiffness of casing due to enough wall thickness and ribs 11;

- save gearbox inner space from outer dirt penetration and lubricant leakage by means of covers (as 3) and seals;

- ensure containing of the sufficient amount of lubricant and sometimes taking part in lubrication process. The holes for filling with oil and oil draining 9 and oil level measuring devices should be provided;

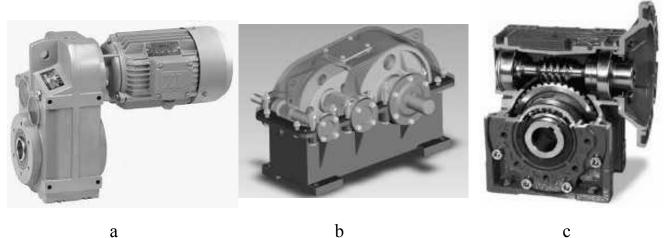
- dissipate heat generated by gear friction;

- provide a safety and noise barrier;

- provide convenient access to internals for inspection and maintenance;

– Aesthetic benefits:

- fix gearbox on a baseplate by bolts through holes 1 in foot 10.


The normal method of fixing an enclosed gearbox is to mount it on a rigid horizontal baseplate designed to absorb vibration. There are a number of variations as listed below:

- foot mounted on vertical surfaces (Fig. 6.2, a);

- foot mounted below horizontal surface (Fig. 6.2, b);

- flange mounted onto the prime mover (Fig. 6.2, c).

When using a gearbox in a non-standard mounting position the lubrication system should be checked for suitability.

a

Fig. 6.2

The large gearbox casings are generally castings from cast iron or steel. Cast iron is a rigid material with excellent vibration damping properties.

To decrease weight, gearboxes used for the transmissions in vehicles are often made from cast aluminum or magnesium alloys. The tiny gearbox units are made from a variety of materials including cast zinc alloys.

To shape spur gearbox, let us combine designed above the input (see Fig. 3.14) and the output shafts (see Fig. 3.16) according to Fig. 2.9. See result in Fig. 6.3. Here shafts are placed on both sides of the gearbox, but their arrangement may be different according to project task.

Pay attention that two cylindrical pins were added. Their function is to guarantee coinciding of the bearings' axes and their seats' axes during seats' machining and the gearbox assembling. Accurate fixation is achieved with two pins located on the diagonal of the flange. Pin diameter 20-30 % less than the diameter of the clamping bolts.

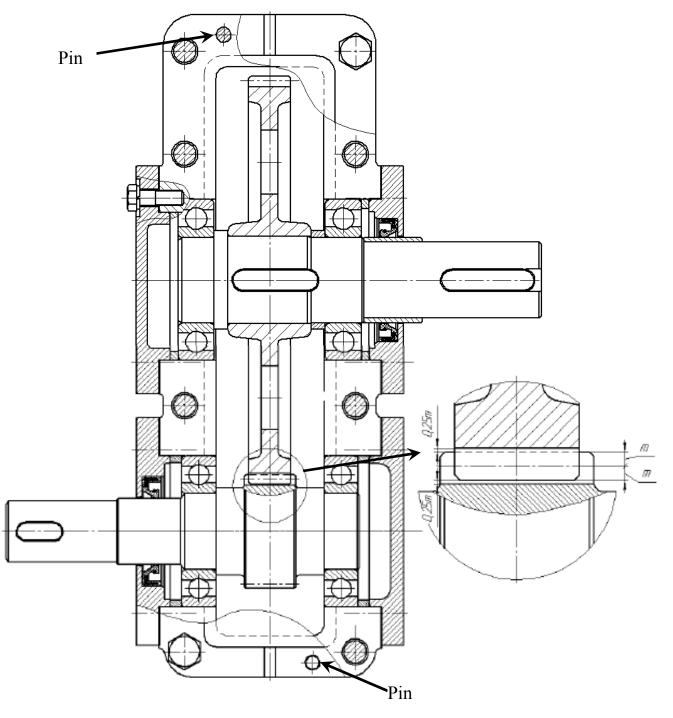
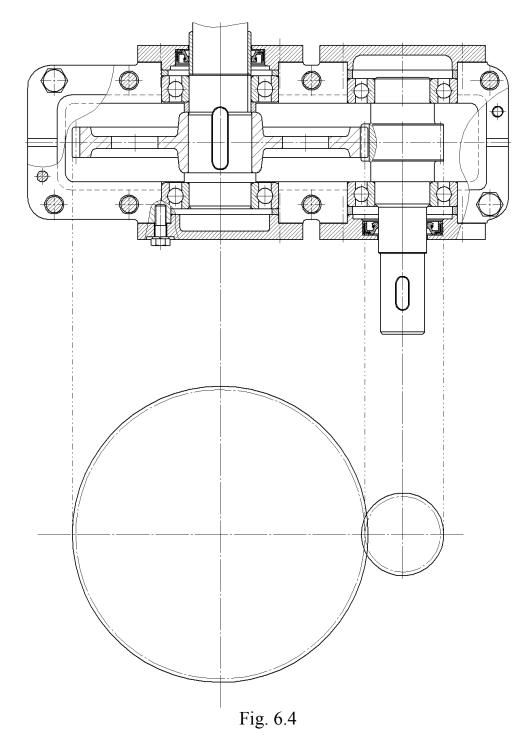



Fig. 6.3

Let us obtain the gearbox second view.

1. Project wheels pitch and addendum diameters (Fig. 6.4, the drawing was turned counterclockwise). As a result, the pitch diameters have to touch each other in a point on the centerline.

2. Draw the frame around the wheels (Fig. 6.5). Wall thickness is recommended more than 6 mm for casting, a gap 5...7 mm between rotating wheels and the closest frame element should also be ensured.

The minimum depth of dipping to an oil bath H_G has to be equal tooth total height (2,25*m*, where *m* is a module), the maximum is 1/3 of a gear radius.

The bath depth H_B should be enough to hold sufficient lubricant volume. The volume equals $V = H_B W_B L_B$, where W_B is the oil bath width, L_B is the bath length (see Fig. 6.5). At the same time, the volume is recommended 0,3...0,5 liter per 1 kW of transferred power. In our case $V = 0.4 \cdot 5.5 = 2.2 l$. It is known, that 1 liter includes 10^6 mm^3 . Thus

$$H_B = \frac{V}{W_B L_B} = \frac{2,2 \cdot 10^6}{70 \cdot 300} \approx 100 \text{ mm.}$$

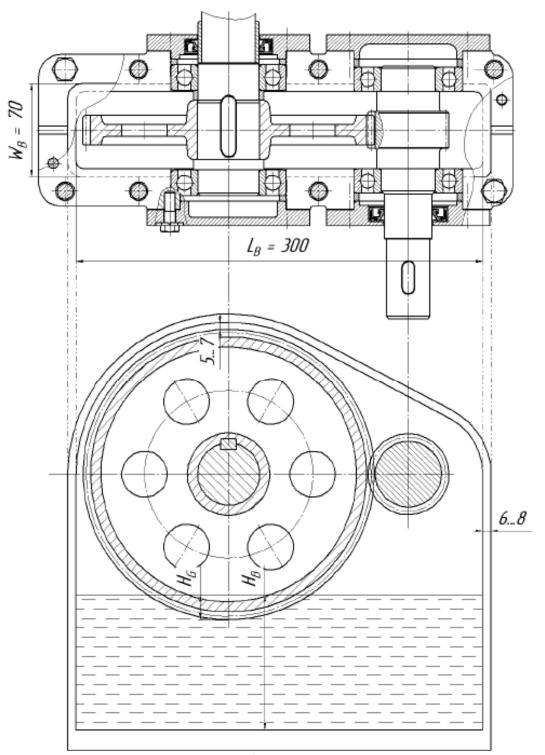


Fig. 6.5

3. Shape the flanges (Fig. 6.6). Flange thickness H_F is recommended $(1...1,5)d_b$, where d_b is the diameter of the bolts, clamping case and cover.

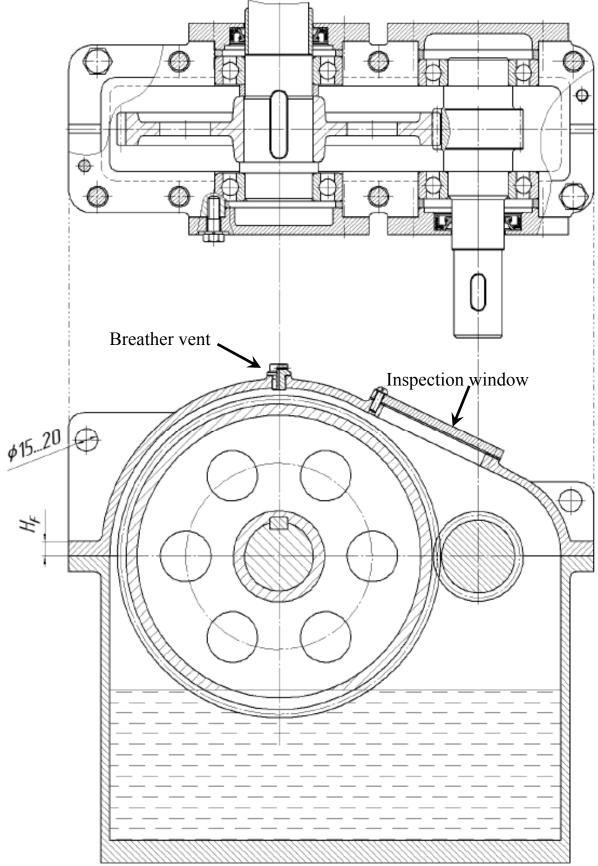


Fig. 6.6

4. Place bearing caps and bolts around the flanges (Fig. 6.7).

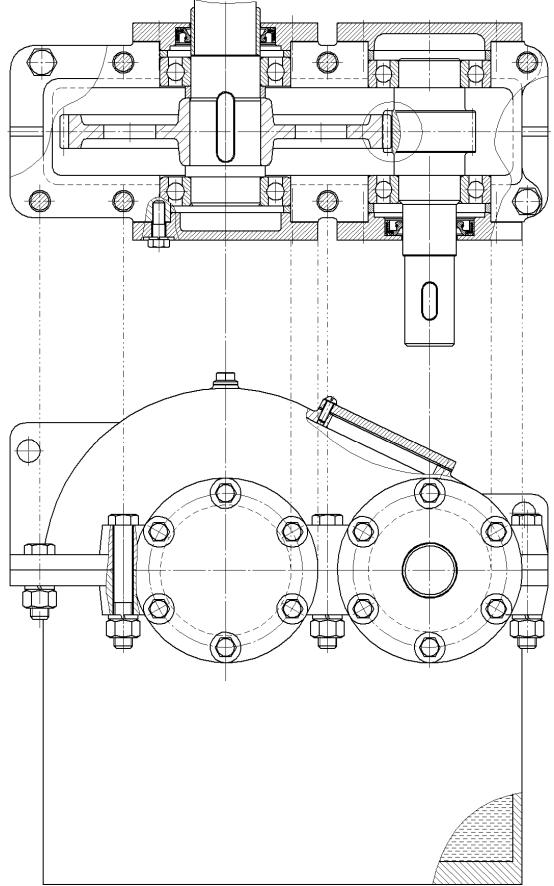


Fig. 6.7

5. Add oil bleed plug to close oil drain hole, oil dipstick to measure lubricant level, ribs to increase frame stiffness and holes for bolts to retain gearbox on baseplate (Fig. 6.8).

The rib thickness is usually made the same like a frame wall thickness, i.e. for cast iron 6...8 mm.

Bolt diameter may be calculated as

 $d_F = \sqrt[3]{4T_{out}} = \sqrt[3]{4 \cdot 194, 4} = 9, 2 \approx 10$,

but should not be smaller 12 mm. Diameter of a hole for fixing bolt is standard, it has to be 1 mm bigger than standard bolt diameter.

Oil bleed plug thread major diameter is recommended 16...20 mm.

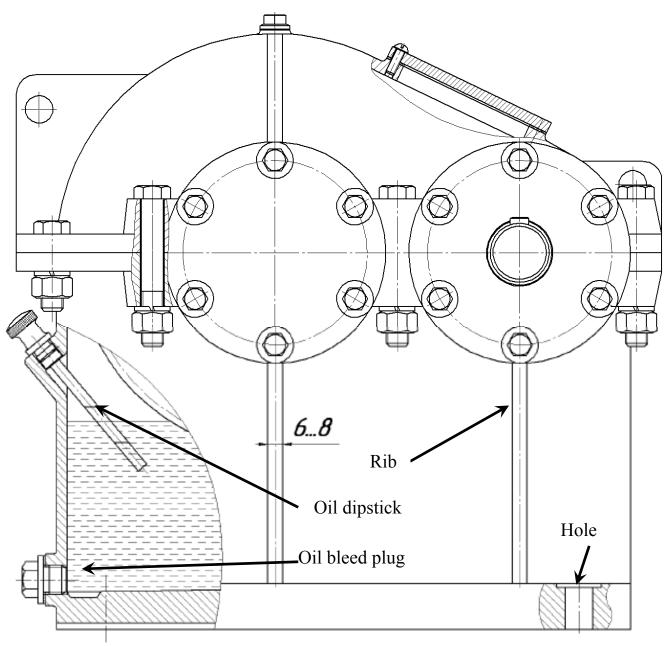
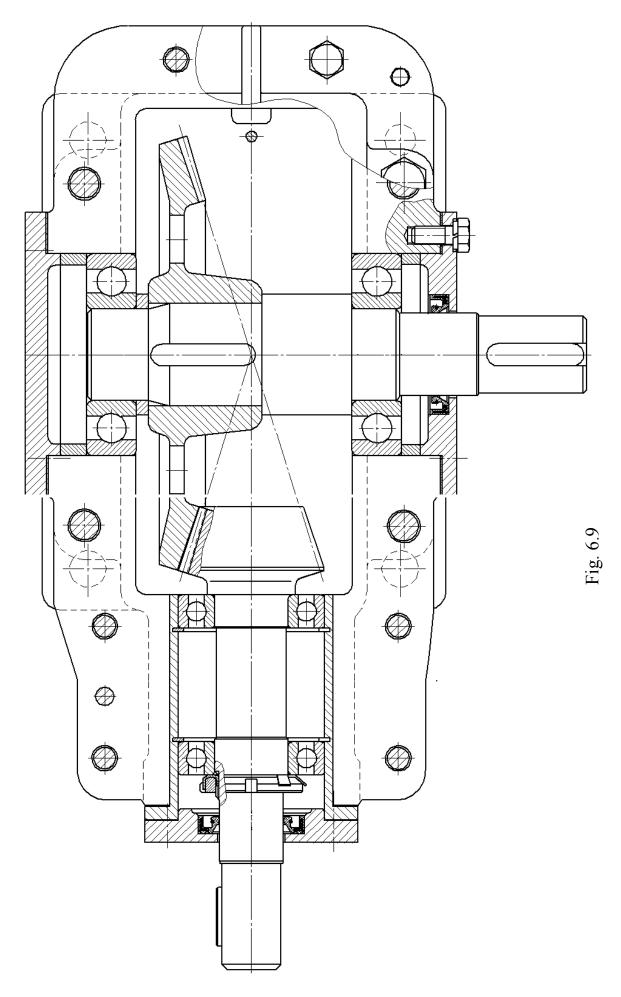
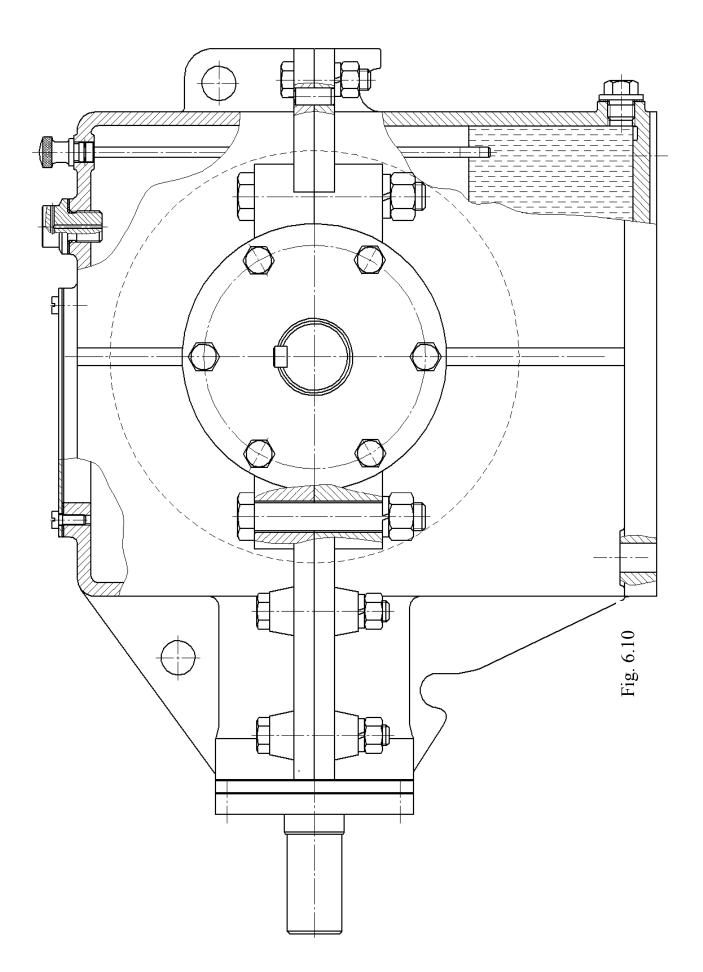




Fig. 6.8

In the same way, we can obtain the bevel gearbox frame (Fig. 6.9 and 6.10).

6.2. Dimensions in Assembly Drawing

Three types of dimension are usually designated in assembly drawings:

– overall: total height, width and length of unit as a whole;

- fits: nominal size and tolerances' combination for surfaces mating according to the drawing;

- conjunctive: those that are used to joint a unit to the other parts (driven machine, coupling, baseplate, foundation, etc.) or to describe unit elements orientation and position in space (center distance, height of an axis over a foot, etc.).

6.2.1. Selection of Fit in General

When designing the fit itself, it is recommended to follow several principles:

- design a fit in a hole basis system (preferably) or in a shaft basis system;

– use hole tolerances greater or equal to the shaft tolerance;

- tolerances of the hole and shaft should not differ by more than two grades.

Depending on the mutual position of tolerance zones of the coupled parts, three **types** of fit can be distinguished:

- **clearance fit** (Fig. 6.11, a) is a fit that always enables a clearance between the hole and shaft in the coupling. The lower limit size of the hole is greater or at least equal to the upper limit size of the shaft, i.e. the shaft is always smaller than the hole;

- **transition fit** (Fig. 6.11, b) is a fit where (depending on the actual sizes of the hole and shaft) both clearance and interference may occur in the coupling. Tolerance zones of the hole and shaft partly or completely interfere, the maximum clearance is positive and the minimum clearance is negative. Transition fits are used only for locating a shaft relative to a hole, where accuracy is important but either a clearance or an interference is permitted;

- interference fit (Fig. 6.11, c) is a fit always ensuring some interference between the hole and shaft in the coupling. The upper limit size of the hole is smaller or at least equal to the lower limit size of the shaft, i.e. the shaft is always larger in diameter than the hole – parts must be assembled by pressure or heat expansion.

A sufficient fit can be selected in Tab. 6.1 (preferred fits are in bold). The list of recommended fits given here is for information only and cannot be taken as a fixed listing. The enumeration of actually used fits may differ depending on the type and field of production, local standards and national usage and last but not least, depending on the plant practices.

Properties and field of use of some selected fits are described in Tab. 6.1. When selecting a fit it is often necessary to take into account not only constructional and technological views, but also economic aspects. Selection of a suitable fit is important particularly in view of those measuring instruments, gauges and tools, which are implemented in the production. Therefore, follow proven plant practices when selecting a fit.

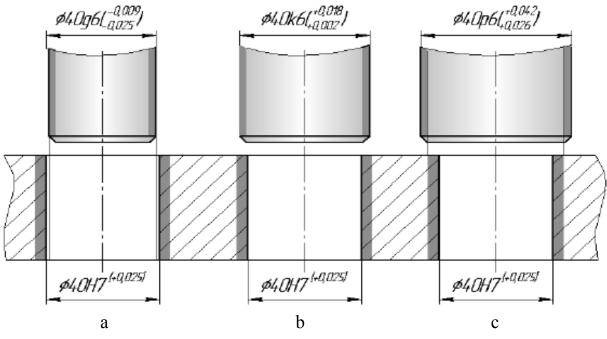


Fig. 6.11

		Table 6.1
Fits	Features	Field of application
	Clearance fits	
H11/a11,	Fits with great clearances with	Pivots, latches, fits of parts
H11/c11 , H11/c9,	parts having great tolerances	exposed to corrosive effects,
H11/d11,		contamination with dust and
A11/h11,		thermal or mechanical
C11/h11,		deformations
D11/h11		
H9/C9, H9/d10,	8 8	Multiple fits of shafts of
H9/d9 , H8/d9,	clearances without any special	production and piston
H8/d8, D10/h9 ,	requirements for accuracy of	machines, parts rotating very
D9/h9, D9/h8	guiding shafts	rarely or only swinging
H9/e9, H8/e8,	Running fits with greater	Fits of long shafts, e.g. in
H7/e7, E9/h9 ,	clearances without any special	agricultural machines,
E8/h8, E8/h7	requirements for fit accuracy	bearings of pumps, fans and
		piston machines
H9/f8, H8/f8,	Running fits with smaller	Main fits of machine tools.
H8/f7 , H7/f7 ,	clearances with general	General fits of shafts,
F8/h7, F8/h6	requirements for fit accuracy	regulator bearings, machine
		tool spindles, sliding rods
H8/g7, H7/g6 ,	Running fits with very small	Parts of machine tools, sliding
G7/h6	clearances for accurate guiding	gears and clutch disks,
	of shafts. Without any	crankshaft journals, pistons of
	noticeable clearance after	hydraulic machines, rods
	assembly	sliding in bearings, grinding
		machine spindles

End of Tab. 6.1 **Field of application** Fits **Features** H11/h11, H11/h9 Slipping fits of parts with great Easily demountable parts, tolerances. The parts can easily distance rings, parts of be slid one into the other and machines fixed to shafts using turn pins, bolts, rivets or welds Sliding fits with very small Precise guiding of machines H8/h9, H8/h8, H8/h7, H7/h6 clearances for precise guiding and preparations, centering exchangeable wheels, roller and of parts. Mounting by sliding on without guides use of any great force, after lubrication the parts can be turned and slid by hand Transition fits Tight fits with small clearances H8/j7, H7/js6, Easily dismountable fits of H7/j6, J7/h6 or negligible interference. The hubs of gears, pulleys and parts can be assembled or retaining bushings, rings, disassembled manually frequently removed bearing bushings Demountable fits of hubs of H8/k7, H7/k6. Similar fits with small K8/h7, K7/h6 clearances small gears and pulleys, manual or wheels, clutches, brake disks interferences. The parts can be disassembled assembled or without great force using a rubber mallet negligible Fixed plugs, driven bushings, Fixed with H8/p7, H8/m7, fits H8/n7, armatures of electric motors H7/m6. clearances small or interferences. Mounting of fits H7/n6, M8/h6, on shafts, gear rims, flushed N8/h7, N7/h6 using pressing and light force bolts Interference fits Pressed fits with guaranteed H7/p6, Permanent coupling of gears H8/r7, interference. Assembly of the with shafts, hubs of clutch H7/r6. **P7/h6**, parts can be carried out using disks, bearing bushings R7/h6 cold pressing Pressed Permanent coupling of gears fits with medium H8/s7, H8/t7, interference. Assembly of parts with shafts, bearing bushings H7/s6, H7/t6, using hot pressing. Assembly S7/h6, T7/h6 using cold pressing only with use of large forces H8/u8, H8/u7, Pressed fits with big Permanent couplings of gears interferences. Assembly using H8/x8. H7/u6. shafts without with kevs. U8/h7, U7/h6 pressing and great forces under flanges different temperatures of the parts

6.2.2. Fit Selection for Bearings

Fit selection for bearings has a number of specific features. The main requirements are:

1. Adjust shaft and frame dimensions to standard bearing.

2. Ensure fixed conjunction for a rotating bearing race, or a small gap or very slight tightness for a fixed one.

3. The stronger load the tighter fit. The installations should be less tight for high-speed mechanisms.

4. Roller bearings should be tightened greater than ball bearings. Radial-thrust bearings are tighter than radial. Large bearings are tighter than medium and small ones.

Bearing diameter tolerances are marked with letter L for the inner race and l for the outer one in combination with the degree of accuracy: L0, L6, l0, l6. Tolerances zones of the races are lower the nominal size (Fig. 6.12). This state should be taken into account when the fit is selected (Tab. 6.2).

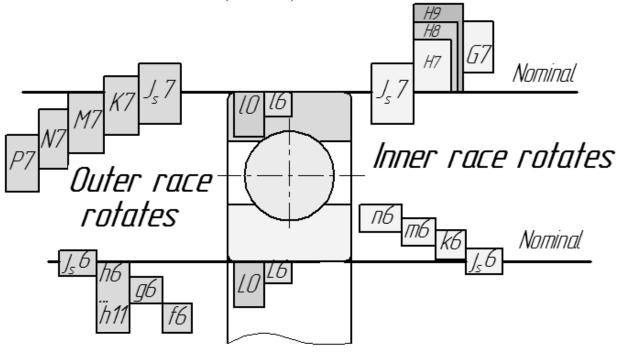


Fig. 6.12

Table 6.2

Rotating race	Fits for shaft	Fits for frame
Inner	L0/k6; L0/m6; L0/n6 L6/k6; L6/m6; L6/n6	H7/l0 H7/l6
Outer	L0/h6; L0/g6; L0/js6 L6/h6; L6/g6; L6/js6	M7/10; N7/10 M7/16; N7/16

See an example of the gearbox assembly drawing with dimensions in Fig. 6.13 and 6.14.

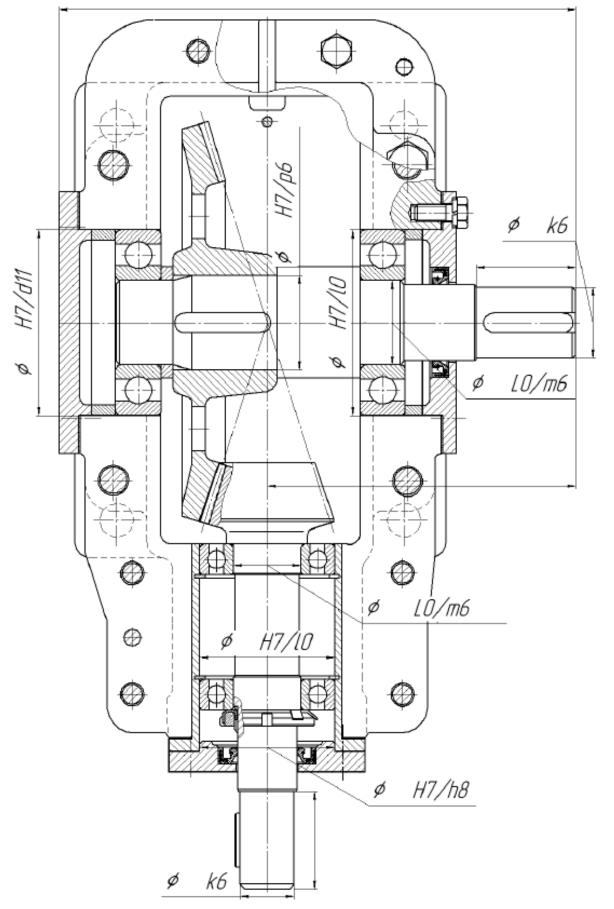
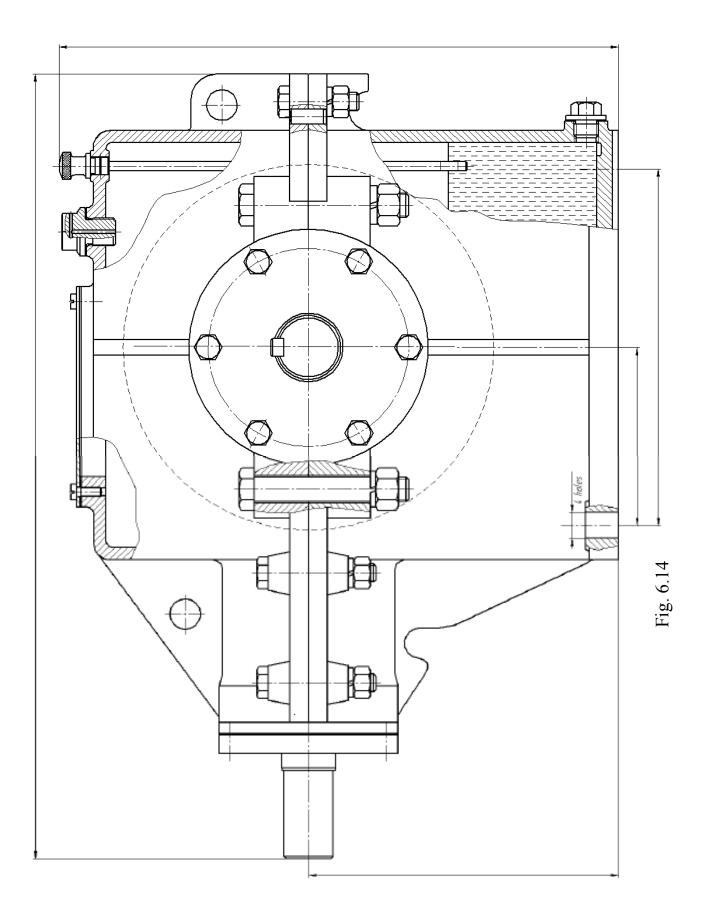



Fig. 6.13

7. GENERATING OF ELEMENT WORKING DRAWING

7.1. General States

Drawings of the individual parts are called piece part drawings, part drawings, or detail drawings. Detail drawings contain all of the necessary information to manufacture any specific part being created for a product or design. The information provided on detail drawings includes:

- all necessary drawing views and information to fully define the part shape. The number of an element projections, sections and species should be sufficient to make the element clear as a whole. On the main view, part should be placed in a position where most of its surfaces will be processed on, or a its axis is parallel to the drawing stamp;

- dimensions that can be specified in a drawing;

- tolerances specified in a drawing could be clearly understood;

- the material for the manufactured part;

- any general or specific notes including heat treatment, painting, coatings, hardness, pattern number, estimated weight, and surface finishes, such as maximum roughness.

The number of dimensions, tolerances, tolerances of form and arrangement of surfaces and their roughness should be **minimal** and **sufficient** for the manufacturing and part inspection.

Working drawings may be on more than one sheet and may contain written instructions called specifications.

Working drawing quality influences on cost and quality of designed machine as a whole.

7.2. Dimensions and Tolerances

Parts of a machine are designed in order to make a function. The working parts have a definite relationship with each other: free rotation, free longitudinal movement, clamping action, permanent fixed position. Precision is the degree of accuracy necessary to ensure the functioning of a part as intended.

There are two types of surfaces (Fig. 7.1):

1) non-mating parts – left either in their original rough-cast form or after draft machining;

2) mating parts – are machined to proper smoothness and must be accurate and at correct position relatively to each other.

It is principally impossible to produce machine parts with absolute dimensional accuracy. In fact, it is not necessary or useful. It is quite sufficient that the actual dimension of the part is found between two limit dimensions and a permissible deviation is kept with production to ensure correct functioning of engineering products.

The required level of accuracy of production of the given part is then given by the dimensional tolerance which is prescribed in the drawing. The production accuracy is prescribed with regards to the functionality of the product and to the economy of production as well.

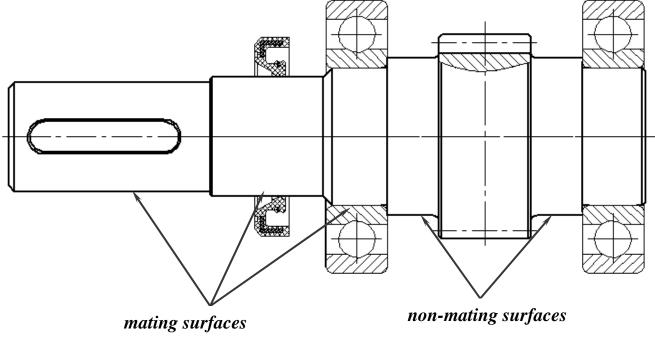


Fig. 7.1

In an assembly process the degree of «clearance» or «tightness» desired between mating parts is important. So greater manufacturing precision is required for these surfaces. However because of impossibility to make a distance to an absolute size some variation must be allowed.

Tolerance is the allowable variation for any given size in order to achieve a proper function.

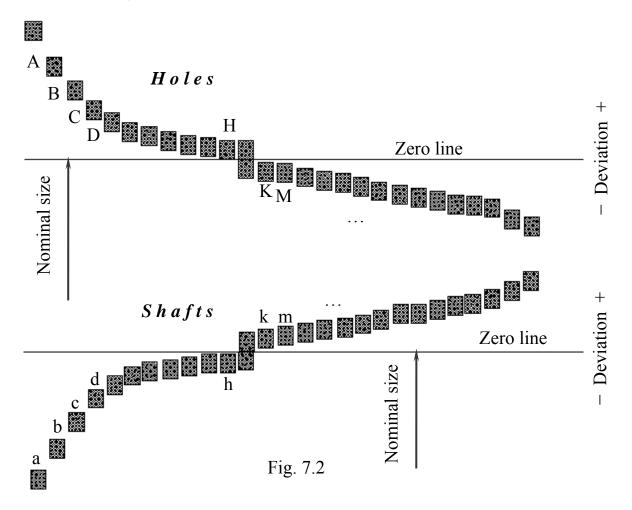
The system of tolerances and fits ISO can be applied in tolerances and deviations of smooth parts and for fits created by their coupling. It is used particularly for cylindrical parts with round sections. Tolerances and deviations in this standard can also be applied in smooth parts of other sections. Similarly, the system can be used for coupling (fits) of cylindrical parts and for fits with parts having two parallel surfaces (e.g. fits of keys in grooves).

The term "**shaft**", used in this standard has a wide meaning and serves for specification of all outer elements of the part, including those elements which do not have cylindrical shapes. Also, the term "**hole**" can be used for specification of all inner elements regardless of their shape.

Basic size is the size whose limit dimensions are specified using the upper and lower deviations. In case of a fit, the basic size of both connected elements must be the same.

The tolerance of a size is defined as the difference between the upper and lower limit dimensions of the part. In order to meet the requirements of various production branches for accuracy of the product, the system ISO implements 20 grades

of accuracy. Each of the tolerances of this system is marked "IT" with attached grade of accuracy (IT01, IT0, IT1...IT18).


Field of use of individual tolefances of the system ISO.					
IT01 to IT6	For production of gauges and measuring instruments				
IT5 to IT12	IT12 For fits in precision and general engineering				
IT11 to IT16	For production of semi-products				
IT16 to IT18	For structures				
IT11 to IT18	For specification of limit deviations of non-tolerated dimensions				

Field of use of individual tolerances of the system ISO.

limit deviations of non-tolerated d

Note: When choosing a suitable dimension it is necessary to also take into account the used method of machining of the part in the production process.

The tolerance zone is defined as a zone limited by the upper and lower limit dimensions of the part. The tolerance zone is therefore determined by the amount of the tolerance and its position related to the basic size. The position of the tolerance zone, related to the basic size (zero line), is determined in the ISO system by a so-called basic deviation. The system ISO defines 28 classes of basic deviations for holes and shafts. These classes are marked by capital letters for holes (A, B, C, ... ZC) and by lower case letters for shafts (a, b, c, ... zc) (Fig. 7.2). The tolerance zone for the specified dimensions is prescribed in the drawing by a tolerance mark, which consists of a letter marking of the basic deviation and a numerical marking of the tolerance grade (e.g. H7, H8, D5, h7, h6, g5, etc.).

Though the general sets of basic deviations (marked by letter) and tolerance grades (IT1 ... IT18) can be used for prescriptions of tolerance zones by their mutual combinations, in practice only a limited range of tolerance zones is used. An overview of tolerance zones for general use can be found in the following tables (Tab. 7.1 for shafts, Tab. 7.2 for holes; preferred zones are in bold). The tolerance zones not included in these tables are considered as special zones and their use is recommended only in technically well-grounded cases.

									Та	ble 7.1
Basic	Tolerance grades									
deviations	5	6	7	8	9	10	11	12	13	14
а					a9	a10	a11	a12	a13	
b					b9	b10	b11	b12	b13	
с				c8	c9	c10	c11	c12		
d	d5	d6	d7	d8	d9	d10	d11	d12	d13	
e	e5	e6	e7	e8	e9	e10				
f	f5	f6	f7	f8	f9	f10				
g	g5	g6	g7	g8	g9	g10				
h	h5	h6	h7	h8	h9	h10	h11	h12	h13	h14
js	js5	js6	js7	js8	js9	js10	js11	js12	js13	js14
k	k5	k6	k7	k8	k9	k10	k11	k12	k13	
m	m5	m6	m7	m8	m9					
n	n5	n6	n7	n8	n9					
р	p5	р6	p7	p8	p9	p10				
r	r5	r6	r7	r8	r9	r10				
S	s5	s6	s7	s8	s9	s10				
t	t5	t6	t7	t8						
u	u5	u6	u7	u8	u9					

138

Table 7.2

Basic		Tolerance grades								
deviations	5	6	7	8	9	10	11	12	13	14
А					A9	A10	A11	A12	A13	
В				B8	B9	B10	B11	B12	B13	
С				C8	C9	C10	C11	C12	C13	
D		D6	D7	D8	D9	D10	D11	D12	D13	
Е	E5	E6	E7	E8	E9	E10				
F	F5	F6	F7	F8	F9	F10				
G	G5	G6	G7	G8	G9	G10				
Н	H5	H6	H7	H8	H9	H10	H11	H12	H13	H14
JS	JS5	JS6	JS7	JS8	JS9	JS10	JS11	JS12	JS13	JS14
K	K5	K6	K7	K8						
М	M5	M6	M7	M8	M9	M10				
N	N5	N6	N7	N8	N9	N10	N11			
Р	P5	P6	P7	P8	P9	P10				
R	R5	R6	R7	R8	R9	R10				
S	S5	S6	S7	S8	S9	S10				
Т	T5	T6	T7	T8						
U	U5	U6	U7	U8	U9	U10				

There are some standard fundamental rules that need to be applied:

1. All dimensions must have a tolerance. Every feature on every manufactured part is a subject to variation, therefore, the limits of allowable variation must be specified. Plus and minus tolerances may be applied directly to dimensions or applied from a general tolerance block or general note.

Tolerances are specified in a drawing using toleranced dimensions. For those dimensions that are not specifically toleranced, a general tolerance note is used. The only exceptions are for dimensions marked as minimum, maximum, stock or reference (reference dimension is usually used for information purposes only, it does not govern production or inspection operations).

2. Dimensioning and tolerancing shall completely define the **nominal** geometry and **allowable** variation. Measurement and scaling of the drawing is not allowed except in certain cases.

3. Engineering drawings define the requirements of finished (complete) parts. Every dimension and tolerance required to define the finished part shall be shown on the drawing. If additional dimensions would be helpful, but are not required, they may be marked as reference.

Dimensions should be applied to features and arranged in such a way as to represent the function of the features. Additionally, dimensions should not be subject to more than one interpretation.

Descriptions of manufacturing methods should be avoided. The geometry should be described without explicitly defining the method of manufacture.

If certain sizes are required during manufacturing but are not required in the final geometry (due to shrinkage or other causes) they should be marked as non-mandatory.

All dimensioning and tolerancing should be arranged for maximum readability and should be applied to visible lines in true profiles.

7.3. Roughness

In accordance with standard values in these ranges is provided from the series: 12.5; 10; 8; 6.3; 5; 4; 3,2; 2.5; 2; 1,6; 1.25; 1,0; 0.8; 0.63.

Working surface roughness of the gear wheels is shown in Tab. 2.7.

For the hub inner hole the following values of the roughness parameter R_a are appointed: for shaft diameter less than 80 mm – 2,5...3,2; 80 mm and more – 3,2...6,3.

For top land surface and base side face surfaces, R_a is selected depending on the accuracy of the product and may be equal 1,6...6,3.

For gear wheel free surfaces $-R_a 6,3...12,5$.

Working surface roughness of a **shaft** and housing at the **bearing seats** is shown in Tab. 7.3.

		1	Table 7.3		
Fitting surfaces	Bearing degree	Parameter R_a , µm			
Fitting surfaces	of accuracy	Bore diam. < 80 mm	Bore diam. > 80 mm		
Shoft	0 and 6	1,25	2,5		
Shaft	5 and 4	0,63	1,25		
Hala in a frame	0 and 6	1,61,25	3,22,5		
Hole in a frame	5, 4, 2	1,250,63	2,51,25		
Thrust fillet on a shaft or in a frame	0 and 6	2,5	2,5		
	5, 4, 2	1,25	2,5		

Shaft surface roughness under a **rubber oil seal** depends on the shaft peripheral velocity: up to 3 m/s $\mathbf{R}_a = 0.8...1,25$; in case of 3...5 m/s $\mathbf{R}_a = 0.32...0,63$; more than 5 m/s $-\mathbf{R}_a = 0.1...0,25$. To obtain such roughness the shaft surface has to be polished.

Roughness of the other surfaces see in Tab. 7.4.

Table 7.4

Typical surface	Roughness parameter, μm
Hole for a fastener	
Grooves	$R_z 80$
Gearbox footing	
Machined free surfaces of the shaft end faces	B 40
Machined surfaces for a fastener/washer head	$ \mathbf{R}_z 40$
Shaft and bush abutting surfaces (not centering)	B 20
Metric thread working surfaces	$ R_z 20$
Keyseat and keyway parallel faces	R _a 3,2
Keyseat bottom	R _a 6,3
Keyway bottom	R _a 2,5
Shaft thrust fillet for gear	
– for hub diam. < 80 mm	R _a 1,6
- for hub diam. > 80 mm	R _a 3,2
Oil seal seats in the bearing caps	
– flat	R _a 12,5
– cylinder	R _a 3,2
Bearing cap fit cylinder and thrust face	R _a 2,5

7.4. Geometrical Tolerances

A design model is an idealized representation of a part design. However, the design model by itself does not fully define the design. Due to imperfections in manufacturing and inspection processes, physical parts never match the design model exactly. An important aspect of a design is to specify the amount the part features may deviate from their theoretically exact geometry (as defined in the design model).

Geometric dimensioning and tolerancing, often referred to as GD&T, is a symbolic language used on engineering drawings and models to define the allowable deviation of feature geometry. The language of GD&T consists of dimensions, tolerances, symbols, definitions, rules, and conventions that can be used to precisely communicate the functional requirements for the location, orientation, size, and form of each feature of the design model. Thus, GD&T is an exact language that enables designers to "say what they mean" with regard to their design models. Production can then use the language to understand the design intent and inspection looks to the language to determine set up requirements.

In order for any language to be effective, it must be based on a common standard. ASME and ISO both have standards related to the application and use of GD&T. The ASME standards are generally used by U.S. companies while the ISO standards are commonly used by European companies. Within each of those organizations there are several standards that are applicable to the topic of GD&T. Furthermore, each standard is periodically revised, with each version of the standard identified by the year of its acceptance. The main types of tolerance, their symbols and short descriptions are represented in Tab. 7.5.

Table 7.5

Type of tolerance	Geometric characteristics	Symbol	Description
Form	Circularity (roundness)	0	Describes the condition on a surface of revolution (cylinder, cone, sphere) where all points of the surface intersected by any plane
Form	Cylindricity	Ø	Describes a condition of a surface of revolution in which all points of a surface are equidistant from a common axis
Form	Planarity (flatness)		Is the condition of a surface having all elements in one plane
Form	Straightness		A condition where an element of a surface or an axis is a straight line
Location	Concentricity	0	Describes a condition in which two or more features, in any combination, have a common axis
Location	Positional Tolerance	¢	Defines a zone within which the axis or center plane of a feature is permitted to vary from true (theoretically exact) position
Location	Symmetry	=	Is a condition in which a feature (or features) is symmetrically disposed about the center plane of a datum feature
Orientation	Angularity	\checkmark	Is the condition of a surface, axis, or centerplane, which is at a specified angle from a datum plane or axis
Orientation	Parallelism	_//	Is the condition of a surface, line, or axis, which is equidistant at all points from a datum plane or axis
Orientation	Perpendicularity		Is the condition of a surface, axis, or line, which is 90 deg. From a datum plane or a datum axis
Run-out	Circular run-out		Is the composite deviation from the desired form of a part surface of revolution through on full rotation (360 deg) of the part on a datum axis.
Run-out	Total run-out	21	Is the simultaneous composite control of all elements of a surface at all circular and profile measuring positions as the part is rotated through 360

GD&T information in a drawing is placed into Feature Control Frame. It is a rectangular box containing the geometric characteristics symbol, and the form, runout or location tolerance. If necessary, datum references and modifiers applicable to the

feature or the datums are also contained in the box. **• Ø0.5 • A BC**

Datum feature is the actual component feature used to establish a datum. A datum is a virtual ideal plane, line, point, or axis. A datum feature is a physical feature of a part identified by a datum feature symbol and corresponding datum feature triangle, e.g., . These are then referred to by one or more datum references which indicate measurements that should be made with respect to the corresponding datum feature.

See below recommended values of:

– the spur gear outer (addendum) diameter d_a allowable radial runout (Tab. 7.6);

- the spur gear face width **b** allowable face runout (Tab. 7.7);

- the spur gear hub allowable face runout (Tab. 7.8);

- the bevel gear allowable addendum cone runout (Tab. 7.9);

- the allowable runout of a shaft thrust fillet fixing a gear wheel (Tab. 7.10);

- the allowable runout of a shaft thrust fillet fixing a bearing (Tab. 7.11).

Degree of accuracy	Module <i>m</i> , mm	Pitch diameter d, mm				
		< 125	125400	400800	8001600	
		Allowable radial runout, µm				
5	1,03,5	16	22	28	32	
	3,56,3	16	25	32	36	
	6,310	20	28	36	40	
6	1,03,5	25	36	45	50	
	3,56,3	28	40	50	56	
	6,310	32	45	55	63	
7	1,03,5	36	50	63	71	
	3,56,3	40	56	71	80	
	6,310	45	63	80	90	
8	1,03,5	45	63	80	90	
	3,56,3	50	71	90	100	
	6,310	56	80	100	112	

Table 7.6

Table 7.7

Tasth south of desures	Per 100 mm of the pitch diameter for the face width, mm				
Teeth contact degree	< 30	3055	55110	110160	
of accuracy	Allowable face runout, µm				
6	24	13	7	6	
7	32	15	9	9	
8	58	25	15	10	
9	86	42	24	12	

Table 7.8

	Hub bore diameter, mm			
Kinematic degree of accuracy	< 50	5080	> 80	
of accuracy	Allowable face runout, µm			
6 and 7	20	30	40	
8 and 9	30	40	50	

Table 7.9

Degree	Maan mannal	Mean pitch diameter d_m , mm			
of	Mean normal module <i>m_n</i> , mm	< 125	125400	400800	
accuracy		The allowable runout for addendum cone, µm			
	1,03,5	16	22	28	
5	3,56,3	18	25	32	
	6,310	20	28	36	
6	1,03,5	25	36	45	
	3,56,3	28	40	50	
	6,310	32	45	56	
7	1,03,5	36	50	63	
	3,56,3	4	56	71	
	6,310	45	63	80	
8	1,03,5	45	63	80	
	3,56,3	50	71	90	
	6,310	56	80	100	

Table 7.10

	Degree of accuracy				
Shaft diameter, mm	6	7	8	9	
	The allowable runout, μm				
1625	6	10	16	25	
2540	8	12	20	30	
4063	10	16	25	40	
63100	12	20	30	50	

Shaft diameter, mm	The allowable runout, μm							
		Radial	Axial					
	Bearing degree of accuracy							
	0	6	5	0	6	5		
< 50	0,5 IT (IT – shaft diameter tolerance)		0.25 IT	20	10	7		
50100			0,25 IT	25	12	8		

7.5. Table of Parameters

20

7 min

Table of parameters (TOP) is placed in the upper right corner of the drawing (Fig. 7.3). The form and content of the table are standard.

TOP for all gear types consists of three sections separated by the main lines. The number of rows in each section is different according to the type of gears.

7.5.1. TOP for Spur Gears

The first section of the TOP includes the basic data for teeth cutting:

a) the module m (for helical gears normal module m_n);

b) the number of teeth z;

c) the angle of tooth inclination β (for helical gears only);

d) direction of the teeth line (tooth helix direction is indicated by the words «Right» or «Left»; for spur gears rows c) and d) are excluded from the TOP);

e) the normal basic rack standard (GOST 13755-81);

f) shift factor x (if it is absent the digit «0» is marked);

Module т The number of teeth z Helix angle ß Direction of the teeth _ line Normal basic rack GOST standard 13755-81 Shift factor x Degree of accuracy _ Base tangent length W Pitch diameter d Mating Drawing _ wheel number Number of *Z*. teeth 10 35 110^{-1}

Fig. 7.3

g) the degree of accuracy, type of coupling and standard backlash standard (e.g., GOST 1643-81).

In the second portion of the TOP data to inspect profile accuracy are provided. There may be:

- the constant tooth chord \overline{S}_c and its height \overline{h}_c ;

- the base tangent length W. Gear teeth thickness is determined by measuring length across a certain number of teeth;

- chordal tooth thickness \overline{S}_{y} and its height \overline{h}_{ay} ;

- dimension over pins (DOP) or balls M and their diameter D.

Calculation of these parameters is considered below.

In the third portion next parameters are shown:

a) pitch diameter *d*;

b) other reference data.

7.5.2. Calculation of the Constant Chord and its Height for Spur Wheels

The constant chord is independent of the number of teeth and this is a useful measure where a large number of gears have the same modular pitch and pressure angle. The tooth thickness \overline{S}_c is measured at the points of contact at a dimension \overline{h}_c from the tip of the tooth.

The tooth thickness theoretical values at the constant chord (Fig. 7.4)

$$\overline{S}_c^* = (\frac{\pi}{2}\cos^2\alpha + x\sin 2\alpha)m,$$

where *m* is the module (for helical gears m_n); *x* is the shift coefficient; α is the angle of

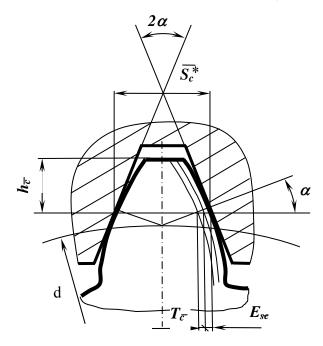


Fig. 7.4

the tooth profile of the basic rack in the normal section. When $\alpha = 20^{\circ}$

$$\overline{S}_{c}^{*} = (1,387 + 0,643x)m$$

for wheels without shift

$$\overline{S}_{c}^{*} = 1,387 m$$
.

The actual thickness of the tooth at a constant chord, mm, marked on the drawings, is

$$\overline{S}_{c} = (\overline{S}_{c}^{*} - E_{s\bar{c}}) - T_{\bar{c}},$$

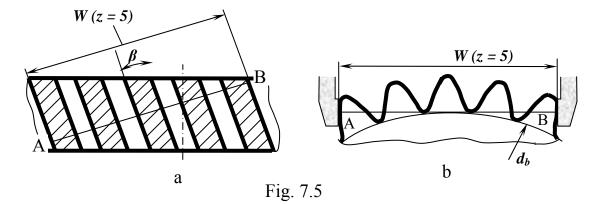
where $E_{s\bar{c}}$ is the smallest deviation tooth thickness at constant chord (Tab. 7.12); $T_{\bar{c}}$ is the thickness tolerance along the constant chord (Tab. 7.13).

Table 7.12

	Degree	Pitch diameter, mm								
Type of coupling	of	< 80	80	125	180	250	315	400		
	accuracy	< 80	125	180	250	315	400	500		
	accuracy	The tooth thickness smallest deviation at constant chord, μm								
	3–6	55	60	70	80	90	100	110		
С	7	60	70	80	90	100	120	140		
C	8	70	80	90	100	120	140	140		
	9	70	90	100	120	140	140	140		
	3–6	90	100	120	140	160	160	180		
В	7	100	120	140	140	180	180	200		
Б	8	100	120	140	160	180	200	220		
	9	120	140	160	180	200	220	250		
	3–6	140	160	180	200	250	250	300		
	7	150	180	200	220	250	300	350		
A	8	160	200	220	250	300	350	350		
	9	180	200	250	300	300	350	350		

Table 7.13

		Addendum diameter allowable radial runout, µm								
Type of coupling	Type of tolerance	16 20		25 32		40 50	50 60	60 80	80 100	
		Thickness tolerance along the constant chord, µm								
H, E	h	30	35	40	45	50	70	70	90	
D	d	40	45	50	60	70	70	100	120	
С	с	50	60	70	70	90	100	140	160	
В	b	60	70	70	90	100	140	140	180	
A	а	70	80	100	120	140	140	180	220	


Tooth addendum to constant chord with $\alpha = 20^{\circ}$

$$\overline{h}_{c} = 0,5(d_{a} - d - 0,364\overline{S}_{c}^{*}),$$

where d_a is the tooth addendum diameter, d is the pitch diameter. For gears without shift height of constant chord equals $\overline{h_c} = 0.748m$.

7.5.3. Calculation of the Base Tangent Length

The base tangent length W is a distance between two heteronymic side surfaces of the teeth AB (Fig. 7.5) along the tangent to the base circle. Measurement of the base tangent length has the advantage over constant chord: it is not required more precise manufacturing of the gears on the outer diameter.

For spur gears (Fig. 7.5, b) without shift it equals W = mW', with the shift -W = m(W' + 0,684x), where W' is the base tangent length in case of module 1 mm.

The values W' and the terminal number of teeth z_n depending on the number of gear teeth z is given in Tab. 7.14.

								Table 7.14
z	Z_n	<i>W</i> ′	z	Z_n	<i>W</i> ′	z	Z_n	W '
18		7,6324	79	9	26,1995	140		47,7180
19		7,6464	80		29,1657	141		47,7320
20		7,6604	81		29,1797	142	16	47,7460
21	3	7,6744	82		29,1937	143		47,7600
22	3	7,6884	83	29,2077	144		47,7740	
23		7,7024	84	10	29,2217	145		50,7410
24		7,7165	85		29,2357	146		50,7550
25		7,7305	86		29,2497	147		50,7690
26		10,6966	87		29,2637	148		50,7830
27		10,7106	88		29,2777	149	17	50,7970
28		10,7246	89	<u>89</u> 90	32,2438	150		50,8110
29		10,7386	90		32,2558	151		50,8250
30	4	10,7526	91		32,2678	152		50,8390
31		10,7666	92		32,2798	153		50,8530
32		10,7806	93	11	32,2918	154		53,8192
33		10,7946	94		32,3038	155		53,8332
34		10,8086	95		32,3158	156		53,8470
35		13,7748	96		32,3278	157		53,8610
36		13,7888	97		32,3398	158	18	53,8750
37		13,8028	98		35,3320	159		53,8890
38	5	13,8168	99		35,3360	160		53,9030
39	3	13,8308	100	10	35,3501	161		53,9170
40		13,8448	101	12	35,3641	162		53,9310
41		13,8588	102		35,3781	163	19	56,8973
42		13,8728	103		35,3921	164	19	56,9113

148

End of Tab. 7.14

					End of Tab. 7.14				
z	Z_n	<i>W</i> ′	z	Z_n	W '	z	Z_n	<i>W</i> '	
43	5	13,8868	104		35,4060	165		56,9250	
44		16,8530	105		35,4200	166		56,9390	
45		16,8670	106	12	35,4340	167	-	56,9530	
46		16,8810	107		35,4480	168	19	56,9670	
47		16,8950	108		35,4620	169		56,9810	
48	6	16,9090	109		38,4283	170		56,9950	
49		16,9230	110	38,4423	171		57,0090		
50		16,9370	111		38,4563	172		56,8973	
51		16,9510	112		38,4703	173		56,9113	
52		16,9650	113	13	38,4840	174		56,9250	
53		19,9311	114		38,4980	175		56,9390	
54		19,9452	115		38,5120	176	20	56,9530	
55		19,9592	116		38,5260	177		56,9670	
56		19,9732	117		38,5400	178		56,9810	
57	7	19,9872	118		41,5064	179		56,9950	
58		20,0012	119		41,5204	180		57,0090	
59		20,0152	120 121	41,5344	181		63,0537		
60		20,0292		41,5485	182		63,0677		
61		20,0432	122	14	41,5620	183		63,0810	
62		23,0093	123		41,5766	184		63,0950	
63		23,0233	124		41,5900	185	21	63,1090	
64		23,0373	125		41,6040	186		63,1230	
65		23,0513	126		41,6180	187		63,1370	
66	8	23,0653	127		44,5846	188		63,1510	
67		23,0794	128		44,5985	189		63,1650	
68		23,0934	129		44,6126	190		66,1319	
69		23,1074	130		44,6260	191		66,1450	
70		23,1214	131	15	44,6400	192		66,1590	
71		26,0875	132		44,6540	193		66,1730	
72		26,1015	133		44,6680	194	22	66,1870	
73		26,1155	134		44,6820	195		66,2010	
74	0	26,1295	135		44,6950	196		66,2150	
75	9	26,1435	136		47,6628	197		66,2290	
76		26,1575	137	16	47,6768	198		66,2430	
77		26,1715	138	16	47,6908	199	22	69,2100	
78		26,1855	139	1	47,7010	200	23	69,2240	

For helical gears (see Fig. 7.4, a) W' is used according to the same table as for spur gears, but the W' is calculated by the conditional number of teeth $z_y = z \cdot k$ (k values are presented in Tab. 7.15).

T - 1	1.		1 5
Tab)le		15
Iuc		· ·	10

β	k	β	k	β	k	β	k
8°	1,0288	11°40′	1,0613	15°20′	1,1088	19°	1,1730
8°20′	1,0309	12°	1,0652	15°40′	1,1139	19°20′	1,1797
8°40′	1,0333	12°20′	1,0688	16°	1,1192	19°40′	1,1866
9°	1,0359	12°40′	1,0728	16°20′	1,1244	20°	1,1936
9°20′	1,0388	13°	1,0768	16°40′	1,1300	20°20′	1,2010
9°40′	1,0415	13°20′	1,0810	17°	1,1358	20°40′	1,2084
10°	1,0446	13°40′	1,0853	17°20′	1,1415	21°	1,2160
10°20′	1,0477	14°	1,0896	17°40′	1,1475	21°20′	1,2239
10°40′	1,0508	14°20′	1,0943	18°	1,1536	21°40′	1,2319
11°	1,0543	14°40′	1,0991	18°20′	1,1598	22°	1,2401
11°20′	1,0577	15°	1,1039	18°40′	1,1665	22°20′	1,2485

As a rule, the conditional number of teeth z_y is not an integer. Therefore, a correction W_u is introduced. It depends on the fractional part $(z_y - z_y')$:

$$W_u = 0,0149 (z_y - z_y'),$$

where z_y ' is the integer part of the conditional number of teeth. Then the base tangent length at $\alpha = 20^{\circ}$ is $W = m (W' + W_u + 0.684 x)$.

7.5.4. TOP for Bevel Gears

In the drawings of all types of bevel gears TOP is disposed similar to the spur wheels. The number of rows in each section depends on the type of teeth (Tab. 7.16). Dimensions of rows and columns are the same as in spur wheel TOP (see Fig. 7.3).

			Table 7.16
Middle normal module	_	_	m_n
Outer normal module	_	m _{ne}	—
Outer transverse module	<i>m</i> _e	—	—
The number of teeth	Z	z	Z
Tooth type	Straight	Tangential	Spiral
Tooth axial type	—		
Helix angle	_	$oldsymbol{eta}_{ne}$	β_n
Tooth direction	_	Right (Left)	Right (Left)
Middle basic rack	GOST 13754-81	GOST 13754-81	GOST 16202-81
Shift factor	x_e	<i>x_{ne}</i>	X_n
Tooth thickness factor	$X_{ au}$	$X_{ au}$	$x_{ au}$

End of Tab. 7.16

		121	<u>id 01 1 a.</u> 7.10
Pitch angle	δ	δ	δ
Degree of accuracy			
Chordal thickness	\overline{S}_{ce}	\overline{S}_{ce}	\overline{S}_{c}
Chordal addendum	\overline{h}_{c}	$\overline{m{h}}_{c}$	\overline{h}_{c}
Interaxial angle	Σ	Σ	Σ
Middle transverse module	m _m	—	_
Middle normal module	_	m_n	_
Outer transverse module	_	—	m _{te}
Cone distance	R_e	R_e	R_e
Middle cone distance	R_m	\boldsymbol{R}_m	R_m
Mean pitch diameter	d_m	d_m	d_m

Notes:

1. Do not include to the TOP items marked as «-».

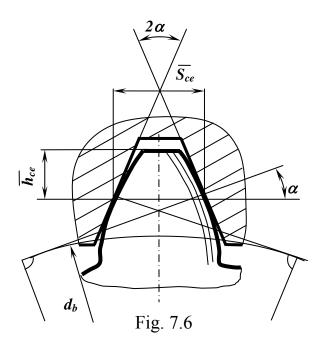
2. Indicate shift factors (for straight teeth gears it is the external circular x_e , for wheels with tangential teeth it is the outside normal x_{ne} , with spiral – the middle normal x_n) and the tooth thickness factor with the appropriate sign. In the case of absence it has to be equal «0».

7.5.5. A Bevel Gear Chordal Thickness and Chordal Addendum Calculation

To check a bevel straight tooth profile accuracy a chordal thickness \overline{S}_{ce} and chordal addendum \overline{h}_{ce} are usually obtained (Fig. 7.6). When $\alpha = 20^{\circ}$ and a shift coefficient x < 0,4 the chordal thickness equals $\overline{S}_{ce} = 0,883 S_{e(1,2)}$, the height

$$\overline{h}_{ce(1,2)} = h_{ae(1,2)} - 0,1607 S_{e(1,2)},$$

where $S_{e(1,2)}$ is the circular thickness: for a pinion


$$S_{e1} = (0,5\pi + 2x_1 \tan \alpha)m_e = (1,571 + 0,728x_1)m_e$$

for a gear $S_{e2} = \pi m_e - S_{e1}$; h_{ae1} and h_{ae2} are a pinion and a gear addendum:

$$h_{ae1} = m_e (h_a^* + x_1), \ h_{ae2} = m_e (h_a^* - x_1);$$

 $h_a^* = 1,0$ is the tooth addendum factor. When u < 2,5, $x_{\tau 1}$ equals zero; for transmission with u > 2,5 values are given in handbooks.

For the bevel gears with spiral teeth the constant chord and addendum height are obtained in the middle cross-section of the gear face width.

The constant chord

$$\overline{S}_{c_{(1,2)}} = 0,883S_{n_{(1,2)}},$$

where the normal tooth thickness in the middle section

$$S_{n1} = (0,5\pi + 2x_{n1} \tan \alpha_n + x_{\tau 1})m_n,$$

$$S_{n_2} = \pi n_n - S_{n_2}.$$

Height to a constant chord

$$\overline{h}_{c_{(1,2)}} = h_{a_{(1,2)}} - 0,1607 S_{n_{(1,2)}}.$$

Addendum height in the middle section may be found as follows: for pinion – $h_{am_1} = m_n (h_a^* + x_{n_1})$, for gear – $h_{am_1} = 2h_a^*m_n - h_{am_1}$.

7.6. Technical Requirements

Technical requirements are placed above the main stamp in the form of a column as wide as the main stamp. The text has to be written from the top down. Points should be numbered consecutively. Each point begins with a red line. Do not write the title "Technical Requirements".

Technical requirements are combined into homogeneous characteristics and placed in the following sequence:

1. Requirements for material, heat treatment, etc. Example: "Hardness HB 220...240", "Teeth cementation depth h 1,0...1,3, case-hardening to HRC 56...60."

2. Dimensions, tolerances in size, shape, arrangement of surfaces and other information are not shown in the drawing. Example: «Unspecified tolerated dimensions are: holes – H14, shafts – h14, others – \pm IT14 / 2».

3. Surface quality requirements, coating and treatment.

4. Other requirements: about quietness; balancing, etc.

Information about reference dimension should be placed above technical requirements as follows: «*Reference dimensions».

7.7. Examples

Spur gears

In accordance with GOST 2.403-75 dimensions as follows must be specified in the spur gear detail drawing (Fig. 7.7):

– the outer (addendum) diameter d_a (diameter tolerances see in Tab. 7.17, the allowable radial runout see in Tab. 7.6);

- the face width of the gear b (tolerances are according to h10...h12; the allowable face runout see in Tab. 7.7);

- the hub bore diameter D_b (tolerance is according to H7, cylindricity tolerance equals 0,3 diameter tolerance);

- the length of the hub L_H (if it is different from the face width b, the hub length is the free size; allowable runout is shown in Tab. 7.8);

- the keyway dimensions:

- the depth equals $D_b + t_1 (t_1 \text{ size see in Appendix D});$

- the width tolerance is JS9 (size 16JS9 in Fig. 7.7);

- the allowable misalignment of the keyway faces relative to the its axis, it equals 0,5 IT9 (IT9 for the size of 16 mm is 43 microns, so 0,5 IT9 = 0,5 • 43 \approx 22 µm);

- the allowable asymmetry, it equals 2 IT9 (in case been shown $2IT9 = 2 \cdot 43 = 86$ microns).

In the drawing of the pinion-shaft, the allowable radial and face runout for bearings seats should be indicated (see Tab. 7.11).

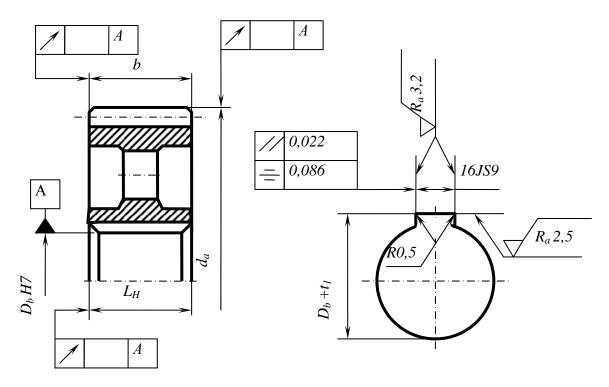
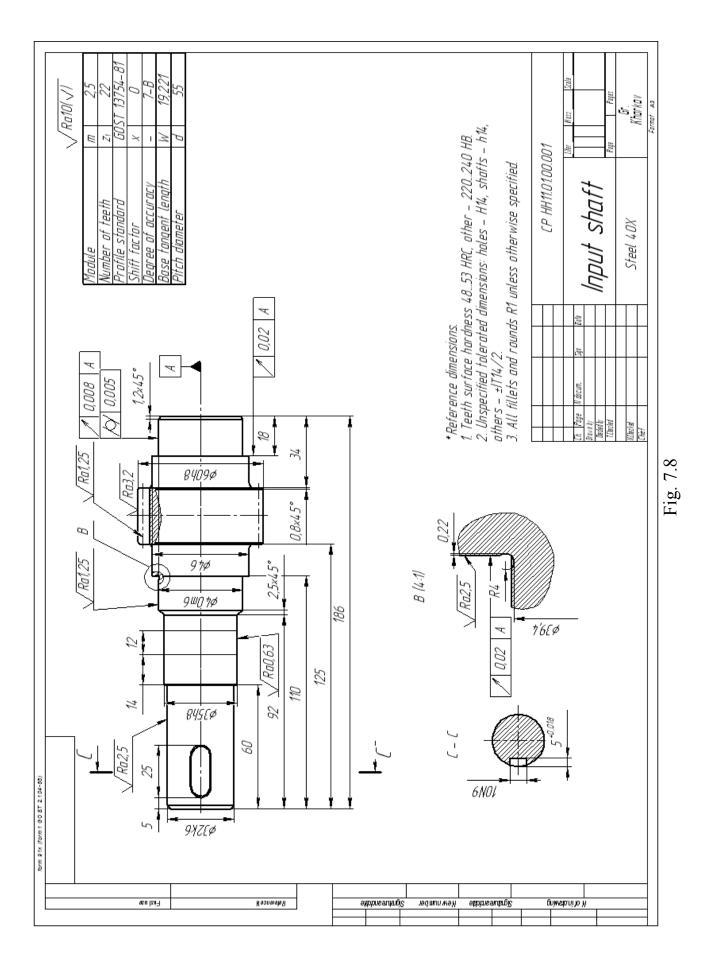



Fig. 7.7

			Ta	able 7.17		
Type of coupling	Degree of accuracy					
	6	7	8	9		
С	h6	h7	h8	h9		
B, A	h7	h8	h9	h12		

Examples of spur gear working drawings see in Fig. 7.8.

Bevel gears

Most of the dimensions and tolerances of bevel gears is determined by tables provided for spur gears. Standard dimensions shown in Fig. 7.9, a are:

1. Addendum diameter at the main outer cone d_{ae} and d_{ae} '. In case of spur bevel wheels the outer diameter of the teeth is used as the meter base. For 7th degree of accuracy and B type of coupling d_{ae} tolerance is h6.

Diameter d_{ae} is free size, it is obtained by blunting the sharp edge (chamfer size is 0,5*m*). The diameter d_{ae} is machined after the teeth cutting and checking.

In case of wheels with spiral and tangential teeth they are measured in the measuring mean cross-section normal to the face width direction (see Fig. 7.9, b). The accuracy of the outer diameter can be reduced in this case, it is prescribed by h12.

2. Axial dimensions are measured from the basic face. Dimensions C and L are reference, size A is free.

3. Additional external cone angle (90 - δ °), this angle tolerance is $\pm 15' \dots \pm 30'$.

4. Pitch cone angle tolerance is $\pm 5'... \pm 10'$, allowable runout for addendum cone, μ m, – according to Tab. 7.9.

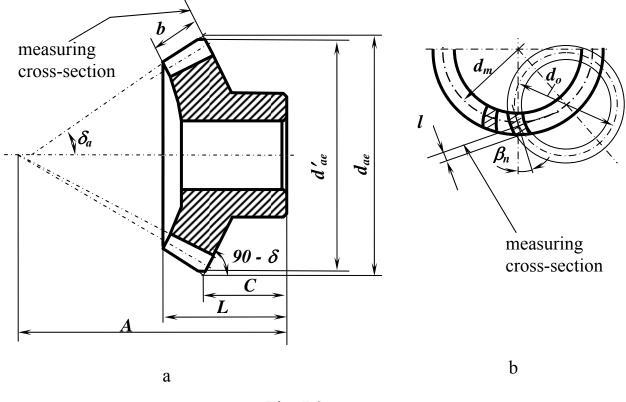
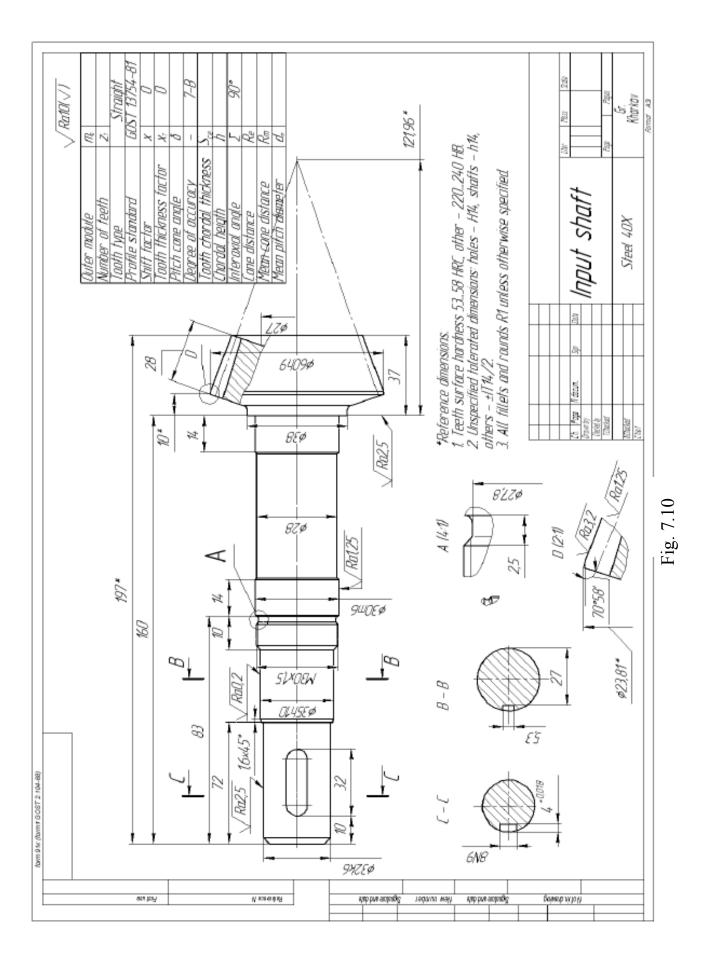



Fig. 7.9

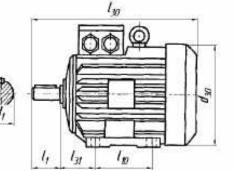
Measuring cross-section to control the accuracy of the teeth in the spur bevel wheels is placed tangentially to the outer additional cone (see Fig. 7.9, a).

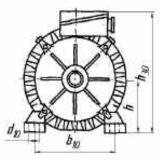
In wheels with circular and tangential teeth, metering section passes through the middle of the face width: l = b / 2.

Examples of straight teeth bevel pinion shaft working drawings see in Fig. 7.10.

Appendix A

ASYNCHRONOUS ENGINES


Table A.1


Engine code and nominal rotational speed n_{nom} , rpm, according to its synchronous rotational speed

Dowon	Synchronous rotational speed, rpm									
kW	Power, 3000		1500		1000		750			
KVV	Code	n _{nom}	Code	n _{nom}	Code	n _{nom}	Code	n _{nom}		
0,75	4A71A2	2840	4A71B4	1390	4A80A6	915	4A80B8	700		
1,1	4A71B2	2810	4A80A4	1420	4A80B6	920	4A90L8	700		
1,5	4A80A2	2850	4A80B4	1415	4A90L6	935	4A100S8	700		
2,2	4A80B2	2850	4A90L4	1425	4A100S6	950	4A100L8	700		
3	4A90L2	2840	4A100S4	1435	4A100L6	955	4A112M8	700		
4	4A100S2	2880	4A100L4	1430	4A112M6	950	4A132S8	720		
5,5	4A100L2	2880	4A112M4	1445	4A132S6	965	4A132M8	720		
7,5	4A112M2	2900	4A132S4	1455	4A132M6	870	4A160S8	730		

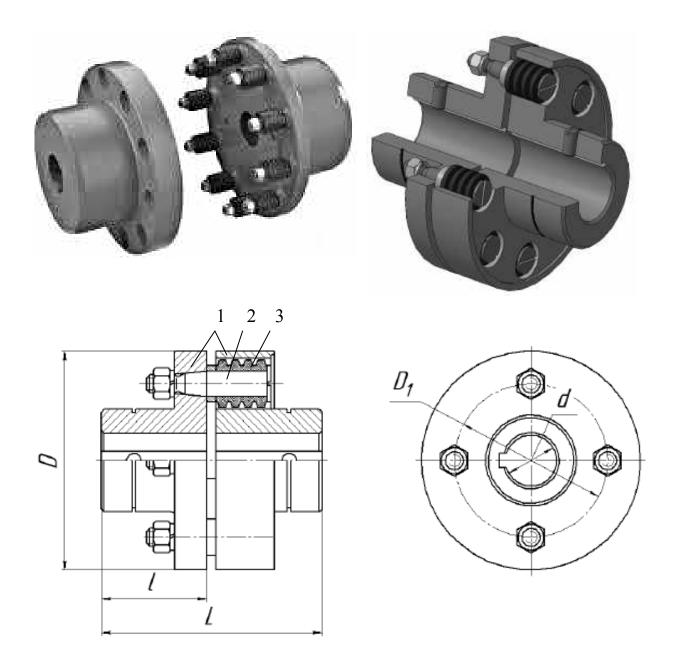
The main dimensions, mm

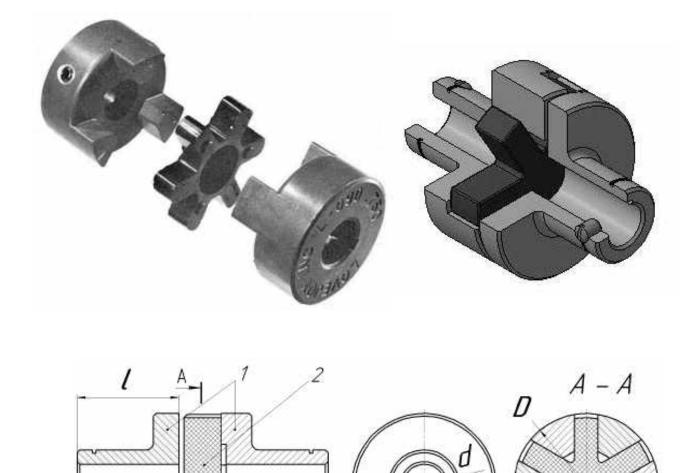
Та	ble	A.2	

Туре	h	<i>d</i> ₃₀	l_1	<i>l</i> ₃₀	d_1	<i>l</i> ₁₀	<i>l</i> ₃₁	<i>d</i> ₁₀	b ₁₀	h ₃₀
71A,B	71	170	40	285	19	90	45	7	112	201
80A	80	186	50	300	22	100	50	10	125	218
80B	80	186	50	320	22	100	50	10	125	218
90L	90	208	50	350	24	125	56	10	140	243
100S	100	235	60	362	28	112	63	12	160	263
100L	100	235	60	392	28	140	63	12	160	263
112M	112	260	80	452	32	140	70	12	190	310
132S	132	302	80	480	38	140	89	12	216	350
132M	132	302	80	530	38	178	89	12	216	350
160S	160	358	110	624	42	178	108	15	216	370

Appendix B

FLEXIBLE COUPLINGS




Fig. B.1. Flexible coupling with rubber-bushed studs (GOST 21424-75*): 1 - hubs (half-coupling); 2 - pin; 3 - rubber bush

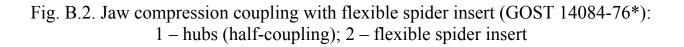

Code: name of coupling – nominal torque – first diameter – second diameter – GOST Example: Flexible coupling 125 - 25 - 30 GOST 21424-75*

Table B.1

Parameters of the Flexible Coupling with Rubber-Bushed Studs

T.	1 41	amet					apiin	<u> </u>	Kubber-Bi		shafts'		
lue				L		l		r of			gnment		
Nominal torque T, Nm	d	D	Long end	Short end	Long end	Short end	D ₁	The number of studs	RPM _{max}	radial ∆ _r , mm	angular Δ_{lpha} , deg		
	12	75	63	53	30	25	50	4	7 600				
16	14	75	63	53	30	25	50	4	7 600				
	16	75	83	59	40	28	50	4	7 600				
	16	90	84	60	40	28	63	4	6 350				
31,5	18	90	84	60	40	28	63	4	6 350	0,2	1,5		
	19	90	84	60	40	28	63	4	6 350				
	20	100	104	76	50	36	71	4	5 700	-			
63	22	100	104	76	50	36	71	4	5 700				
	24	100	125	88	50	36	71	4	5 700				
	25	120	125	89	60	42	90	4	4 600				
125	28	120	125	89	60	42	90	4	4 600				
	30	120	165	121	80	58	90	4	4 600				
	32	140	165	121	80	58	105	6	3 800				
	35	140	165	121	80	58	105	6	3 800				
	36	140	165	121	80	58	105	6	3 800				
250	38	140	165	121	80	58	105	6	3 800	0,3			
	40	140	225	169	110	82	105	6	3 800				
	42	140	225	169	110	82	105	6	3 800				
	45	140	225	169	110	82	105	6	3 800		1		
	40	170	225	169	110	82	130	8	3 600		1		
500	42	170	225	169	110	82	130	8	3 600				
	45	170	225	169	110	82	130	8	3 600				
	50	220	226	170	110	82	160	10	2 860				
	55	220	226	170	110	82	160	10	2 860				
	56	220	226	170	110	82	160	10	2 860				
1000	60	220	286	216	140	105	160	10	2 860	0,4			
	63	220	286	216	140	105	160	10	2 860				
	65	220	286	216	140	105	160	10	2 860				
	70	220	286	216	140	105	160	10	2 860				

Code:

name of coupling – nominal torque – type – first diameter – second diameter – GOST Example: Jaw compression coupling 125 - I - 25 - 36 GOST 14084-76*

Table B.2

Parameters of the Jaw	Compression Cou	plings with Flexible	e Spider Insert
	I		

			Jaw C	omhi	192101		pungs	with Flexible		
Nominal			1			l	c,	Maximum	Maximu ax	es
torque T,	d	D					· · ·	rotational	misalig	nment
Nm				Ty	pe		mm	speed, rpm	radial	angular
			Ι	II	Ι	II			Δ_{r} , mm	Δ_{α} , deg
	14		81	71	30	25				
	16		101	77	40	28				
25,0	18	63					_	3 500		
	(19)		121	93	50	36				
	20								0.2	15
	16		101	77	40	28			0,2	1,5
	18									
31,5	(19)	71	101	93	50	36		3 000		
	20		121	93	30	30				
	22									
	22		128	100	50	36				
63,0	25	85	120	100	50	50		2 250		
	28		1.40	110	(0)	40	3,0			
	25		148	112	60	42	5,0			
	28								0,3	
125.0	30	105						2 000		
125,0	32	105	188	144				2 000		
	35				80	58				1
	36									1
	32		191	147						
	35									
	36		251	195						
250,0	(38)	135						1 500	0,4	
	40		256	200	110 8					
	(42)		230	200	0 0 02					
	45									

Appendix C

COMPENSATING AND SAFETY COUPLINGS

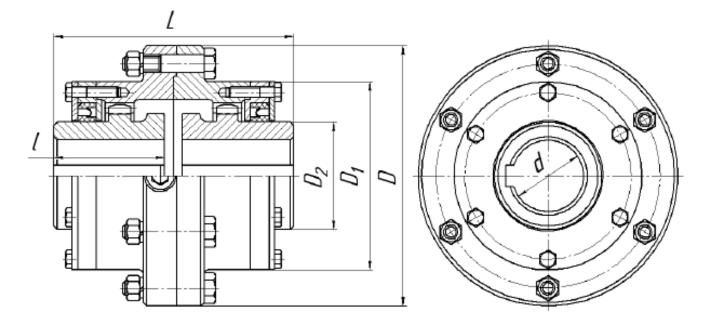


Fig. C.1. Compensating curved-tooth gear coupling (GOST 5006-94)

Table C.1

Nominal torque <i>T</i> , Nm	d	D	D ₁	D ₂	1	L _{max}	RPM _{max}	Module, mm	The number of teeth
1 000	40	145	105	60	82	174	5 400	2.5	30
1 600	55	170	125	80	02	1/4	4 800	2,5	38
2 500	60	185	135	85	105	220	4 500		36
4 000	65	200	150	95	103	220	3 720	2.0	40
6 300	80	230	175	115	130	270	3 300	3,0	48
10 000	100	270	200	145	165	340	2 820		56
16 000	120	300	230	175	105	345	2 400	4.0	48
25 000	140	330	260	200	200	115	2 100	4,0	56
40 000	160	410	330	230	200	415	1 740	6.0	46
63 000	200	470	390	290	240	500	1 200	6,0	56

Parameters of the Compensating Curved-Tooth Gear Couplings

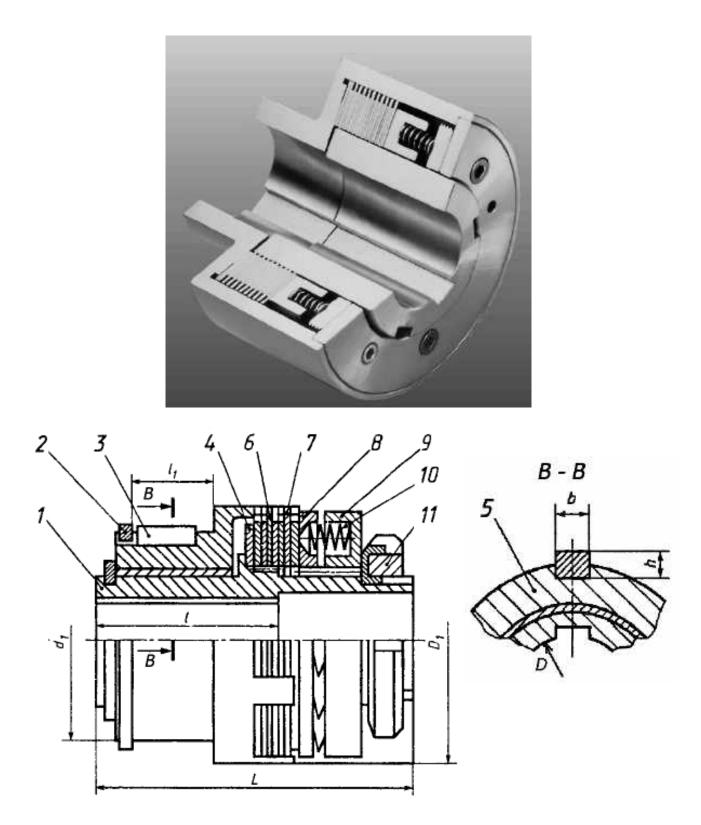
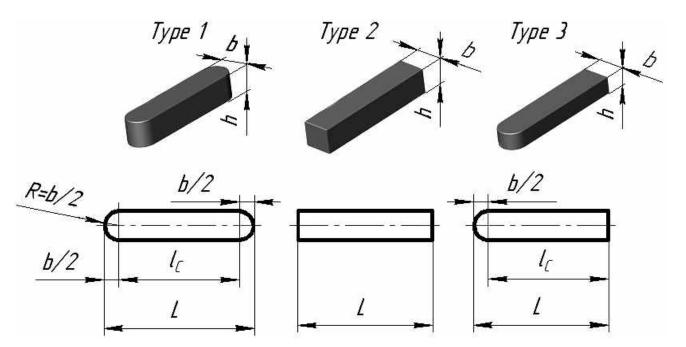


Fig. C.2. Safety multiple-disc slipping clutch (GOST 15622-96): 1 – driving hub; 2 – ring; 3 – press plate; 4 – spring frame; 5 – driven hub; 6 – driving plate; 7 – driven plate; 8 – spring; 9, 10 – nut and stopper; 11 – split ring; 12 – key


Table C.2

Parameters	s of the Saf	ety Multip	le-Disc	Slipping C	lutch	

Torque <i>T_p</i> , Nm	Driving shaft diam. D	Outer diam. D ₁	Driven shaft diam. d ₁	Overall length <i>L</i>	Driving end <i>l</i>	Drive n end <i>l</i> 1	
	18				40		
40	20	70	45	95	50	24	
	22				50		
63	20, 22, 24	85	55	120	50	28	
03	25	85	55	120	60	20	
	24				50		
100	25, 28	95	65	125	60	32	
	30				80		
160	28	100		150	60	36	
100	30, 32	100	70	130	80	50	
250	36, 38	120	70	160	80	42	
230	40	120		100	110	42	
	38				80		
400	40, 42, 45, 48	145	90	180	110	48	
630	45, 48, 50, 53, 55	155	95	240	110	56	
1000	50, 53, 55, 56	170	120	270	110	67	
	60, 63				140		

Appendix D

KEYS (GOST 23360-78)

Dimensions, mm

Shaft di	iameter			Key	length	Keywa	y depth
from	to	b	h	from	to	shaft	hub
6	8	2	2	6	20	1,2	1
8	10	3	3	6	36	1,8	1,4
10	12	4	4	8	45	2,5	1,8
12	17	5	5	10	56	3	2,3
17	22	6	6	14	70	3,5	2,8
22	30	8	7	18	90	4	3,3
30	38	10	8	22	110	5	3,3
38	44	12	8	28	140	5	3,3
44	50	14	9	36	160	5,5	3,8
50	58	16	10	45	180	6	4,3
58	65	18	11	50	200	7	4,4
65	75	20	12	56	220	7,5	4,9
75	85	22	14	63	250	9	5,4
85	95	25	14	70	280	9	5,4
95	110	28	16	80	320	10	6,4
110	130	32	18	90	360	11	7,4

Standard length: 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 70, 80, 90, 100, 110, 125, 140, 160, etc.

Appendix E

BEARINGS

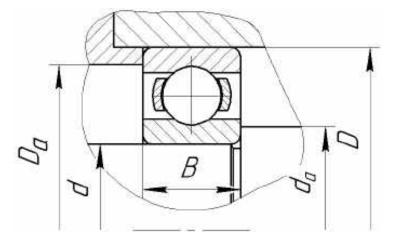


Fig. E.1. A single row deep groove ball bearing (GOST 8338-75)

Table E.1

d			В		Load cap			D may
a	Code	D	D	r	dynamic C	static C ₀	d _a , min	D _a , max
	1000900	22	6	0,5	3 340	1 350	12	20
10	100	26	8	0,5	4 620	1 960	12	24
10	200	30	9	1	5 900	2 650	14	26
	300	35	11	1	8 060	3 750	14	31
	1000801	21	5	0,5	1 430	700	14	19
	1000901	24	6	0,5	3 390	1 350	14	22
12	101	28	8	0,5	5 070	2 240	14	26
12	7000101	28	7	0,5	5 070	2 240	14	26
	201	32	10	1	6 890	3 100	16	28
	301	37	12	1,5	9 750	4 650	17	31
	1000802	24	5	0,5	1 560	830	17	22
	1000902	28	7	0,5	3 480	1 480	17	26
15	7000102	32	8	0,5	5 590	2 500	17	30
	202	35	11	1	7 800	3 550	19	31
	302	42	13	1,5	11 400	5 400	20	36
	1000903	30	7	0,5	3 640	1 650	19	28
	7000103	35	8	0,5	6 050	2 800	19	33
17	203	40	12	1	9 560	4 500	21	36
	303	47	14	1,5	13 500	6 6 5 0	22	41
	403	62	17	2	22 900	11 800	24	53

Parameters of the Single Row Deep Groove Ball Bearings

Table E.1 (continued)

					Icadas	acity N		l (continued)
d	Code	D	B	r	Load cap		Minimum	Maximum
					dynamic C	static C ₀	d _a	Da
	1000904	37	9	0,5	6 550	3 040	22	35
	104	42	12	1	9 360	4 500	24	39
20	204	47	14	1,5	12 700	6 200	25	42
	304	52	15	2	15 900	7 800	26	45
	404	72	19	2	30 700	16 600	28	48
	1000805	37	7	1	3 120	1 980	27	35
	1000905	42	9	0,5	7 320	3 680	27	40
25	7000105	47	8	0,5	7 610	4 000	29	43
23	105	47	12	1	11 200	5 600	29	44
	205	52	15	1,5	14 000	6 950	30	47
	305	62	17	2	22 500	11 400	31	55
	405	80	21	2,5	36 400	20 400	33	70
	1000906	47	9	0,5	7 590	4 000	32	45
	7000106	55	9	0,5	11 200	5 850	32	53
20	106	55	13	1,5	13 300	6 800	35	50
30	206	62	16	1,5	19 500 10 000		35	57
	306	72	19	2	28 100 14 600		36	65
	406	90	23	2,5	47 000	26 700	38	80
	1000807	47	7	1	4 0 3 0	3 000	37	45
	1000907	55	10	1	10 400	5 650	39	51
	7000107	62	9	0,5	12 400	6 950	37	60
35	107	62	14	1,5	15 900	8 500	40	57
	207	72	17	2	25 500	13 700	42	65
	307	80	21	2,5	33 200	18 000	43	71
	407	100	25	2,5	55 300	31 000	43	90
	1000908	62	12	1	12 200	6 920	44	58
	7000108	68	9	0,5	13 300	7 800	42	66
40	108	68	15	1,5	16 800	9 300	45	63
40	208	80	18	2	32 000	17 800	46	73
	308	90	23	2,5	41 000	22 400	48	81
	408	110	27	3	63 700	36 500	49	97
	1000909	68	12	1	14 300	8 1 3 0	49	64
	7000109	75	10	1	15 600	9 300	49	71
15	109	75	16	1,5	21 200	12 200	50	70
45	209	85	19	2	33 200	18 600	52	78
	309	100	25	2,5	52 700	30 000	53	91
	409	120	29	3	76 100	45 500	54	107

End of Tab. E.1

				d of Tab. E.I				
d	Code	D	В	r	Load cap	oacity, N	Minimum	Maximum
					dynamic C	static C ₀	d _a	D _a
	7000110	80	10	1	16 300	10 000	54	76
	110	80	16	1,5	21 600	13 200	55	75
50	210	90	20	2	35 100	19 800	57	83
	310	110	27	3	61 800	36 000	60	99
	410	130	31	3,5	87 100	52 000	63	116
	1000911	80	13	1,5	16 000	10 000	60	75
	7000111	90	11	1	17 000	11 700	59	86
55 -	111	90	18	2	28 100	17 000	62	84
55	211	100	21	2,5	43 600	25 000	64	91
	311	120	29	3	71 500	41 500	64	111
	411	140	33	3,5	100 000	63 000	68	126
	1000912	85	13	1,5	16 400	10 600	65	80
	7000112	95	11	1	18 600	12 400	64	91
60	112	95	18	2	29 600	18 300	68	88
60	212	110	22	2,5	52 000	31 000	68	101
	312	130	31	3,5	81 900	48 000	71	118
	412	150	35	3,5	108 000	70 000	73	146
	1000913	90	13	2	17 400	11 900	70	85
	7000113	100	11	1	19 000 13 100		69	96
65	113	100	18	2	30 700	19 600	72	93
65	213	120	23	2,5	56 000	34 000	73	111
	313	140	33	3,5	92 300	56 000	76	128
	413	160	37	3,5	119 000	78 000	78	164
	7000114	110	13	1	22 200	15 300	74	106
	114	110	20	2	37 700	24 500	77	103
70	214	125	24	2,5	61 800	37 500	78	116
	314	150	35	3,5	104 000	63 000	81	138
	414	180	42	4	143 000	105 000	93	157
	1000915	105	16	1,5	24 300	16 800	80	100
	115	115	20	2	39 700	26 000	82	108
75	215	130	25	2,5	66 300	41 000	83	121
	315	160	37	3,5	112 000	72 500	86	148
	415	190	45	4	153 000	114 000	98	166
	116	125	22	2	47 700	31 500	87	118
	216	140	26	3	70 200	45 000	90	129
80	316	170	39	3,5	124 000	80 000	91	158
	416	200	48	4	163 000	125 000	105	176

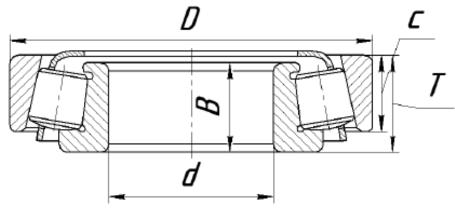


Fig. E.2. A tapered roller bearing (GOST 27365-87)

Table E.2

Parameters of the Tapered Roller Bearings

I af ameters of the Tapered Koher Dearnings													
d	Code	D	В	Т	c	Load ca kN		r	e	Y	Y ₀	n _{max}	, rpm
						С	C ₀						
17	7203	40	12	13,3	11	14,0	9,0	2	0,3	2	1,1	9 000	13 000
17	7203A	40	12	13,3	11	17,9	12,0	2	0,4	1,7	0,9	9 000	13 000
	7204	47	14	15,3	12	21,0	13,0	2	0,4	1,7	0,9	8 000	11 000
20	7204A	47	14	15,3	12	26,0	16,6	2	0,4	1,7	0,9	8 000	11 000
20	7304	52	16	16,3	13	26,0	17,0	2	0,3	2	1,1	8 000	11 000
	7304A	52	15	16,3	13	31,9	20,0	2	0,3	2	1,1	8 000	11 000
	7205	52	15	16,3	13	24,0	17,5	2	0,4	1,7	0,9	7 500	10 000
25	7205A	62	15	16,3	13	29,2	21,0	2	0,4	1,6	0,9	7 500	10 000
25	7305	62	17	18,3	15	33,0	23,2	2	0,4	1,7	0,9	6 700	9 000
	7305A	62	17	18,3	15	41,8	28,0	2	0,3	2	1,1	6 000	9 000
	7206	62	16	17,3	14	31,6	22,0	2	0,4	1,6	0,9	6 300	8 500
	7206A	62	16	17,3	14	38,0	25,5	2	0,4	1,6	0,9	6 300	8 500
20	7506	62	21	21,3	17	36,0	27,0	2	0,4	1,6	0,9	6 300	8 500
30	7506A	62	20	21,3	17	47,3	37,0	2	0,4	1,6	0,9	6 300	8 500
	7306	72	19	20,8	17	43,0	29,5	2	0,3	1,8	1	5 600	7 500
	7306A	72	19	20,8	16	52,8	39,0	2	0,3	1,9	1,1	5 600	7 500
	7207	72	17	18,3	15	38,5	26,0	2	0,4	1,6	0,9	5 300	7 000
	7207A	72	17	18,3	15	48,4	32,5	2	0,4	1,6	0,9	5 300	7 000
35	7507	72	23	24,2	20	53,0	40,0	2	0,4	1,7	1	8 300	7 000
	7307	80	21	22,8	18	54,0	38,0	3	0,3	1,4	1	5 000	6 700
	7307A	80	21	22,8	18	68,2	50,0	3	0,3	1,9	1,1	5 000	6 700

Table E.2 (continued)

d	Code	D	B	Т	c	Load ca kľ		r	e	Y	Y ₀	n _{max} ,	
						С	C ₀						
	7208	80	20	19,8	16	46,5	32,5	2	0,4	1,6	0,9	4 800	6 300
40	7208A	80	18	19,8	16	58,3	40,0	2	0,4	1,6	0,9	4 800	6 300
40	7508	80	24	24,8	20	56,0	44,0	2	0,4	1,6	0,9	4 800	6 300
	7308	90	23	25,3	20	66,0	47,5	3	0,3	2,2	1,2	4 500	6 000
	7209	85	19	20,8	16	50,0	33,0	2	0,4	1,5	0,8	4 500	6 000
	7209A	85	19	20,8	16	62,7	50,0	2	0,4	1,5	0,8	4 500	6 000
45	7509	85	24	24,8	20	60,0	46,0	2	0,4	1,4	0,8	4 500	6 000
	7509A	85	23	24,8	19	74,8	60,0	2	0,4	1,5	0,8	4 500	6 000
	7309	100	26	27,3	22	83,0	60,0	3	0,3	2,2	1,2	4 000	5 300
	7210	90	21	21,8	17	56,0	40,0	2	0,4	1,6	0,9	4 300	6 600
	7210A	90	20	21,8	17	70,4	65,0	2	0,4	1,4	0,8	4 300	5 600
50	7510	90	24	24,8	20	62,0	54,0	2	0,4	1,4	0,8	4 300	5 600
50	7510A	90	23	24,8	19	76,5	64,0	2	0,4	1,4	0,8	4 300	5 600
	7310	110	29	29,3	23	100,0	75,5	3	0,3	1,9	1,1	3 600	4 800
	7310A	110	27	29,3	23	117,0	90,0	3	0,4	1,7	0,9	3 600	4 800
	7211	100	21	22,8	18	65,0	46,0	3	0,4	1,5	0,8	3 800	5 000
	7511	100	25	26,8	21	80,0	61,0	3	0,4	1,7	0,9	3 800	5 000
55	7511A	100	25	26,8	21	99,0	80,0	3	0,4	1,5	0,8	3 800	5 000
	7311	120	29	31,5	25	107,0	81,5	3	0,3	1,8	1	3 200	4 300
	7212	110	23	23,8	19	78,0	58,0	3	0,4	1,7	0,9	3 400	4 500
	7212A	110	22	23,8	19	91,3	70,0	3	0,4	1,5	0,8	3 400	4 500
	7512	110	28	29,8	24	94,0	75,0	3	0,4	1,5	0,8	3 400	4 500
60	7512A	110	28	29,8	24	120,0	100,0	3	0,4	1,5	0,8	3 400	4 500
	7312	130	31	33,5	27	128,0	96,5	4	0,3	2	1,1	3 000	4 000
	7312A	130	31	33,5	26	161,0	120,0	4	0,4	1,7	0,9	3 000	4 000
	7513	120	31	32,8	27	119,0	98,0	3	0,4	1,6	0,9	3 000	4 000
	7513A	120	31	32,8	27	142,0	120,0	3	0,4	1,5	0,8	3 000	4 000
65	7311A	120	29	31,5	25	134,0	110,0	3	0,4	1,7	0,9	3 200	4 300
	7313	140	33	36	28	146,0	112,0	4	0,3	2	1,1	2 600	3 600
	7313A	140	33	36	28	183,0	150,0	4	0,4	1,7	0,9	2 600	3 600

End of Tab. E.2

	I					Load Capacity,							uo. 11.2
		D	D	т						T 7	T 7		
d	Code	D	B	Т	c		N C	r	e	Y	Y ₀	n _{max} ,	rpm
	7214	125	26	26.2	01	\mathbf{C}	C_0	2	0.4	1.0	0.0	2 000	4 000
	7214	125	26	26,3	21	96,0	82,0	3	0,4	1,6	0,9	3 000	4 000
	7214A	125	24	26,3	21	119,0	89,0	3	0,4	1,4	0,8	3 000	4 000
70	7514	125	31	33,3	27	125,0	101,0	3	0,4	1,6	0,9	2 800	3 800
	7314	150	37	38	30	170,0	137,0	4	0,3	1,9	1,1	2 400	3 400
	7314A	150	35	38	30	209,0	170,0	4	0,4	1,7	0,9	2 400	3 400
	7215	130	26	27,3	22	107,0	84,0	3	0,4	1,6	0,9	2 800	3 800
	7215A	130	25	27,3	22	130,0	100,0	3	0,4	1,4	0,8	2 800	3 800
7.5	7515	130	31	33,3	27	130,0	108,0	3	0,4	1,5	0,8	2 600	3 600
75	7515A	130	31	33,3	27	157,0	130,0	3	0,4	1,4	0,8	2 600	3 600
	7315	160	37	40	31	180,0	148,0	4	0,3	1,8	1	2 200	3 200
	7315A	160	37	40	31	229,0	185,0	4	0,4	1,7	0,9	2 200	3 200
	7216	140	26	28,3	22	112,0	95,2	3	0,4	1,4	0,8	2 400	3 400
0.0	7216A	140	26	28,3	22	140,0	114,0	3	0,4	1,4	0,8	2 400	3 400
80	7516	140	33	35,3	28	143,0	126,0	3	0,4	1,5	0,8	2 400	3 400
	7516A	140	33	35,3	28	176,0	155,0	3	0,4	1,4	0,8	2 400	3 400
	7217	150	28	30,6	24	130,0	109,0	3	0,4	1,4	0,8	2 200	3 200
	7217A	150	28	30,5	24	165,0	134,0	3	0,4	1,4	0,8	2 200	3 200
85	7517	150	36	38,5	30	162,0	141,0	3	0,4	1,6	0,9	2 200	3 200
	7517A	150	36	38,5	30	201,0	180,0	3	0,4	1,4	0,8	2 200	3 200
	7317	180	41	44,5	35	230,0	195,0	4	0,3	1,9	1,1	1 900	2 800
	7218	160	31	32,5	26	158,0	125,0	3	0,4	1,6	0,9	2 000	3 000
	7218A	160	30	32,5	26	183,0	150,0	3	0,4	1,4	0.8	2 000	3 000
90	7518	160	40	42,5	34	190,0	171,0	3	0,4	1,6	0,9	2 000	3 000
	7318	190	43	46,5	36	250,0	201,0	4	0,3	1,9	1	1 800	2 600

Appendix F

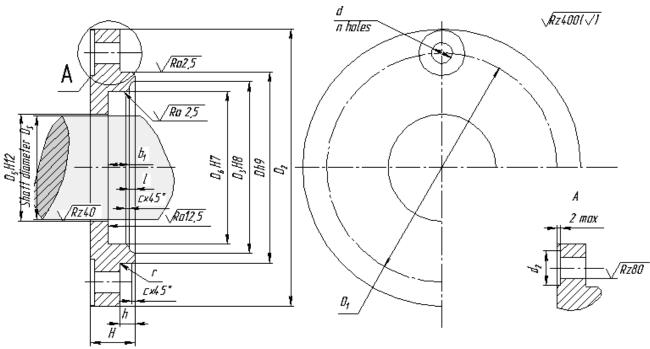
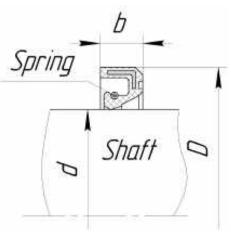


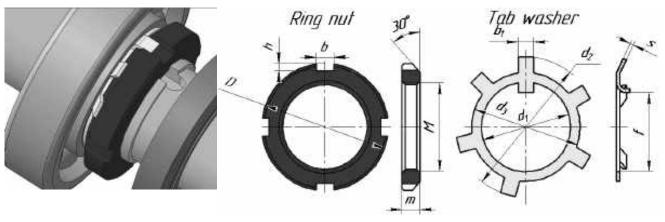
Fig. F.1. Dimensions of a bearing cap (GOST 18512-73)


Table F.1

	Dimensions of the Bearing Caps, mm																			
D	D_S	D_1	D_2	D_3	D_4	D_5	D_6	d	d_2	H	h	l	n	b ₁	С	r				
40	15					16	20													
40	17	54	70	21	40	18	32								0.6					
42	12	34	70	31	40	13	28			15				8,0	0,6					
42	15					16	30													
47	17	60	70	20	47	18	32													
47	20	60	78	38	4/	21	40													
50	20	65	01	4.4	50	21	40													
52	25	03	82	44	50	26	42	7	14		5									
55	25	75	95	48	50	26	42					2	1			0.6				
60	25					26	42					2	4			0,6				
60	30					31	52								1.0					
	20	70	95	50	60	21	40			17				11,0	1,0					
62	25	78	95	52	60	26	42													
62	30					31	52													
	32					33	52													
	30		105							31	52					-				
68	35	84		58	68	36	58	58 9	20		6									
	40					41	60													

End of Tab. F.1

Δ	D	D	D	Δ	Δ	D	D	L	J	77	1.	1		End				
D	D_S	D_1	D_2	D_3	D_4	D_5	D_6	d	d_2	H	h	l	n	b_1	С	r		
	20					21	40							8,0				
72	25					26	42											
72	30			62		31	52					2						
	35	90	110		72	36	58			17			4					
	38		_			39	58											
	45					46	65						-					
75	35			64		36	58											
	45			0.		46	65				-			-				
	25					26	42											
	30					31	52							11,0				
80	35					36	58							11,0				
00	40	100	120	72	80	41	60	9	20		6				1,0			
	45	100	120	12	00	46	65											
	50					51	70			18								
85	35					36	58											
05	45							46	65									
	30					31	52											
00	40						41	60										
90	50			80		51	70											
	55	110	130		92	56	80			21				13,6		0,6		
	40					41	60			18								
95	50					51	70							11,0				
	60					62	85			21		3		13,6				
	35					36	58						6					
100	45					46	65							11,0				
100	55	120	145	90	100	56	80											
	65					67	90							13,6				
	45					46	65							11,0				
105	55					56	80											
100	70					72	95							13,6				
	40					41	60											
	50	130	155	95	110	51	70	11	24	23	8			11,0	1,6			
110	60					562	85											
110	70					72	95							12.6				
	75					77	100							13,6				
														11.0				
	50					51	70							11,0				
115	65	140	40 165	5 105	120	67	90	_						12.0				
	75					77	100							13,6				
	80					82	105											


Dimensions, mm

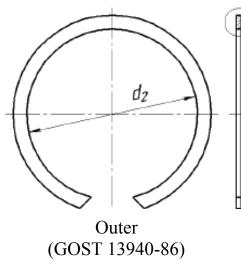
		Dime
d	D	b
10	26	7
11	26	7
12	26 28	7 7 7 7 7 7 7 7 7 7 7 7
13	28 28	7
14	28	7
15	30;32	7
16	30;35	7
17	32	7
18	35	7
19	35	7
20	30;32 30;35 32 35 35 35	7
20	40	10
21	40	10
22	40	10
24	40	7
25	42	7
26	45	10 7 7 7 7
28	50	10 10
30	52	10
$ \begin{array}{r} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 20\\ 21\\ 22\\ 24\\ 25\\ 26\\ 28\\ 30\\ 32\\ \end{array} $	$ \begin{array}{r} 40 \\ 40 \\ 40 \\ 40 \\ 42 \\ 45 \\ 50 \\ 52 \\ 52 \\ 52 \\ 58 \\ \end{array} $	10
35	58	10
36	58	10
38	58	10
40	60;62	10

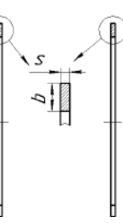
d	D	b
42	62	10
45	65	10
48	70	10
50	70	10
52	75	10
55	80	10
56	80	10
58	80	10
60	85	10
63	90	10
65	90	10
70	95	10
71	95	10
75	100	10
80	105	10
85	110	12
90	120	12
92	120	12
100	125	12

Appendix H

RING NUTS & LOCKING WASHERS

GOST 11871-88


GOST 11872-89


D ¹	•	
Dim	ensions,	mm
viiii	chorono,	111111

Shaft diam.	Thread			N	ut		Washer							
d	Μ	\mathbf{f}_1	$\mathbf{b_1}$	D	m	b	h	Z	b ₁	f	S	d ₁	\mathbf{d}_2	d ₃
20	18x1,5	15	5,3	32	8	6	2,0	4	4,8	15	1,0	18,5	34	24
	20x1,5	17	5,3	32	6	6	2,0	4	4,8	17	1,0	20,5	37	27
25	24x1,5	21	5,3	42	10	6	2,5	4	4,8	21	1,0	24,5	44	33
30	27x1,5	24	5,3	45	10	6	2,5	4	4,8	24	1,0	27,5	47	36
	30x1,5	27	5,3	45	7	6	2,5	4	4,8	27	1,0	30,5	50	39
35	33x1,5	30	6,3	52	10	8	3,0	4	5,8	30	1,6	33,5	54	42
40	39x1,5	36	6,3	60	10	8	3,0	4	5,8	36	1,6	39,5	62	48
45	42x1,5	39	6,3	65	10	8	3,0	4	5,8	39	1,6	42,5	67	52
	45x1,5	42	6,3	63	8	8	3,0	6	5,8	42	1,6	45,5	72	56
50	48x1,5	45	8,3	75	12	8	3,5	6	7,8	45	1,6	48,5	77	60
55	52x1,5	49	8,3	80	12	10	3,5	6	7,8	49	1,6	52,5	82	65
60	60x2	57	8,3	80	8	10	4,0	6	7,8	57	1,6	61,0	92	75
65	64x2	61	8,3	95	12	10	4,0	6	7,8	61	1,6	65,0	97	80
70	68x2	65	10,0	100	15	10	4,0	6	9,5	65	1,6	69,0	102	85

Appendix I

CIRCLIPS

Inner (GOST 13941-86)

Dimensions, mm

Shaft diam.	Outer			Inner			Shaft diam.	0	uter		Inner							
d	d ₂	S	b	\mathbf{d}_2			d	\mathbf{d}_2	S	b	\mathbf{d}_2	S	b					
20	18,2			21,8	1,0	2.0	50	45,8			54,2		4,0					
22	20,2			23,8	1,0	2,0	52	47,8			56,2							
23	20,2 21,1		3,2	24,9				54	49,8			56,2 58,2						
24	22,1			25,9			55	50,8	2,0	6,0	59,2							
25	23,1			26,9				56	51,8	2,0	0,0	60,2						
26	24,0	1,2		28,0			58	53,8			62,2							
28	25,8			30,2		2,5	60	55,8			64,2	1,7	5,0					
29	26,8				4,0	31,2 32,2			62	57,8			66,2		5,0			
30	27,8		4,0	32,2	1,2				65	60,8			69,2					
32	29,5							34,5			68	63,6			72,5 74,5			
34	31,4			36,5		3,2		70	65,6		7,0	74,5						
35	32,2			37,8			72	67,6			76,5							
36	33,0			38,8			3,2	3,2	75	70,6	2,5		79,5					
37	34,0			39,8					5,2	5,2	5,2	5,2	5,2	5,2	78	73,5		
38	35,0			40,8			80	75,0		8,0	85,5							
40	36,5	1,7	5,0	43,5			82	77,0		8,0	87,5	2,0	6,0					
42	38,5			45,5			85	79,5			87,5 90,5	2,0	0,0					
45	41,5			48,5	1,7	4,0	88	82,5	3,0	8,5	93,5							
46	42,5			49,5		1,0	90	84,5	3,0	0,5	95,5							
48	44,5			51,6														

REFERENCES

1. Spotts, M. F. Design of Machine Elements / by Merhyle Franklin Spotts Terry E. Shoup, Lee Emrey Hornberger. Pearson Prentice Hall, 2004. – 928 p.

2. Gupta, J. K. A Textbook of Machine Elements/ by R. S. Khurmi, J. K. Gupta. Eurasia publishing house. – 2005. – 1230 p.

3. Dobrovolsky, V. Machine elements. M.: Peace Publishers, 1977. – 606 p.

4. Lingaiah, K. Machine Design Databook. Second Edition / by K. Lingaiah. McGraw-Hill. – 2004. – 1296 p.

5. Mechanical Engineer's Handbook. Edited by Dan B. Marghitu. – Academic Press. – 2001. – 865 p.

6. Основы расчета и конструирования деталей и механизмов ЛА [Текст]: учеб. пособ. для втузов / Н. А. Алексеева, Л. А. Бонч-Осмоловский, В. В. Волгин и др.; под ред. В. Н. Кестельмана. Г. И. Рощина. – М.: Машиностроение, 1989. – 456 с.

7. Анурьев, В. И. Справочник конструктора-машиностроителя: в 3 т. [Текст] – 9-е изд. перераб. и доп.; под ред. И. Н. Жестковой. М.: Машиностроение, 2006.

8. Доценко, В. Н. Проектирование зубчатых передач [Текст]: учеб. пособ. / В. Н. Доценко, Ю. В. Ковеза. – Х.: Нац. аэрокосм. ун-т им. Н. Е. Жуковского «ХАИ», 2009. – 99 с.

9. Кузьминов, Ф. Ф. Подбор муфт. Конструкция, основы расчета. [Текст]: учеб. пособ. по курс. и диплом. проект. /Ф. Ф. Кузьминов, С. И. Пшеничных. – Х.: Нац. аэрокосм. ун-т им. Н. Е. Жуковского «ХАИ», 2006. – 103 с.

10. Киркач, Н. Ф. Расчет и проектирование деталей машин [Текст]: учеб. пособ. / Н. Ф. Киркач, Р. А. Баласанян. – Х.: Основа, 1991. – 276 с.

TABLE OF CONTENT

INTRODUCTION	3
1. KINEMATIC CALCULATION OF A DRIVE	5
1.1. Output and Input Power	5
1.2. Engine Shaft Rotational Speed	6
1.3. Gearbox Input/Output Parameters	7
1.4. Examples.	7
2. CALCULATION OF TOOTH GEARINGS	11
2.1. The Basic Terms and Definitions	11
2.2. Introduction	14
2.3. Initial Data	15
2.3.1. Number of Teeth	16
2.3.2. Accuracy of Tooth Gearings	16
2.3.3. Selection of Materials and Type of Chemical and Heat Treatment	17
2.3.4. Roughness of Gears	19
2.3.5. Design Load	19
2.3.6. Helix Angle	23
2.3.7. Module	23
2.4. Allowable Stresses	24
2.4.1. Contact Stresses	24
2.4.2. Allowable bending stresses	26
2.4.3. Allowable Stress for Calculation on Strength under the Maximum	
(Peak) Loading	28
2.5. Design Calculation	29
2.5.1. Spur Transfers	29
2.5.2. Bevel transfers	31
2.6. Check calculation	32
2.6.1. Calculation on contact durability	32
2.6.1.1. Calculation of Spur Transfers on Contact Endurance	32
2.6.1.2. Calculation of Bevel Transfers on Contact Endurance	33
2.6.1.3. Calculation on Contact Strength at Action of the Maximum Load	34
2.6.2. Calculation at Bend Durability	34
2.6.2.1. Calculation of Spur Transfers	34
2.6.2.2. Calculation of Bevel Transfers	35
2.6.2.3. Calculation of Teeth Strength at Maximum Bend Load	35
2.7. Gear Design	36
2.7.1. Gear Dimensions	36
2.8. Examples	38
3. SHAFTS CALCULATION AND DESIGN	55
3.1. Design Calculation and Shaft Designing Rules	55
3.2. Input Coupling Selection	59
3.2.1. Examples	61

Навчальне видання

Ковеза Юрій Володимирович Лихошерст Іван Григорович Світличний Сергій Петрович

КОНСТРУЮВАННЯ ДЕТАЛЕЙ МАШИН. КУРСОВЕ ПРОЕКТУВАННЯ

(Англійською мовою)

Редактор С. П. Опаріна Технічний редактор Л. О. Кузьменко

Зв. план, 2014 Підписано до друку 14.07.2014 Формат 60х84 1/16. Папір офс. № 2. Офс. друк Ум. друк. арк. 10. Обл.-вид. арк. 11,25. Наклад 200 пр. Замовлення 249. Ціна вільна

Видавець і виготовлювач Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут» 61070, Харків-70, вул. Чкалова, 17 http://www.khai.edu Видавничий центр «ХАІ» 61070, Харків-70, вул. Чкалова, 17 izdat@khai.edu Свідоцтво про внесення суб'єкта видавничої справи до Державного реєстру видавців, виготовлювачів і розповсюджувачів видавничої продукції сер. ДК № 391 від 30.03.2001