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INTRODUCTION

Problem solving is an important part of studying physics. It is evident

that there are better chances of a student’s understanding a topic if he

or she can apply his or her knowledge in more than one way. The

course is arranged so that a student meets a given topic in a variety of

ways: in reading assignments in the text [1–3], in demonstration lectures,

in supplementary notes issued to students, in recitation and problem

drill in problem sessions [4], in both the study and the performance of

laboratory experiments [5], in homework problem sets, and in quizzes

and examinations. These various types of presentation are synchronized

so that, it is hoped, their impact on the student will have a maximum

effectiveness.

Recitation can be an exciting part of the course, or it can be drudgery,

depending upon your attitude toward it. If you regard it merely as an

impediment to your getting through the course, probably, you will not

enjoy it and, furthermore, derive very little benefit from it. On the

other hand, if you approach the class with the thought that it is an

opportunity to learn, and with a desire to make the most out of it, then

it is almost certain you will find the time you spend on it both profitable

and interesting.

This manual is a logical continuation of the guidance manual for the

recitations “Mechanics and Thermodynamics” [4]. It offers a wide range

of problems covering the fields of electromagnetism as a part of the

course “Experimental and Theoretical Physics”. We chose to use once

proved structure, with a table containing main definitions and physical

laws at the beginning of every chapter and references to corresponding

chapters in the textbooks [1–3]. Most of the problems were taken from

the textbooks [1–3], and students can find examples of how to solve

typical problems there. Those who want to be sure that their solutions
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are correct can compare obtained results with numerical answers given

at the end of the manual.

We would like to thank our reviewers and colleagues at Physics de-

partment, especially Professor Anatoliy Taran, Iryna Skresanova, and

Mykola Aleksandrov for stimulating discussions about physics pedagogy

and friendly criticism of our work. We also want to express our gratitude

to our spouses for their love, support, and emotional sustenance during

the writing of this manual.

We welcome suggestions and comments from our readers and wish our

students great success in studying physics.
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Chapter 1

ELECTRIC FIELDS

E
q
u
at
io
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

1.1 �F = k
C

q1q2
r2

�r

r
Interaction force

between two point

charges at rest

(Coulomb’s law)

q1, q2 are charges of

particles; �r is a po-

sition vector of one

particle with respect

to another; k
C
is a

Coulomb’s constant

1.2 �E =
�F

q
Electric field �F is a force exerted

on a point charge q

1.3 �E = k
C

q

r2
�r

r
Electric field cre-

ated by a station-

ary point charge q

�r is a position vec-

tor with respect to

charge

1.4 �E =
∑�Ei Electric field due

to the system of

charges (superpo-

sition principle)

�Ei are electric fields

due to individual

charges
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1 2 3 4

1.5 �pe = q��−+ Electric dipole mo-

ment

��−+ is a position

vector of a positive

charge +q with re-

spect to the negative

−q

1.6 �E = k
C

(
3 (�pe·�r)�r

r5
−

−�pe

r3

) Electric field of a

point dipole

�r is a position vector

with respect to the

dipole; �−+ � r

1.7 �τ = �pe × �E Torque on an elec-

tric dipole

�E is a uniform exter-

nal electric field

Pre-Class Reading: [1], chap. 21; [2], chap. 22; [3], chap. 23.

Case 1.1

1.1.1. An average human weighs about 640 N. If two such humans

each carry 0.1 C of excess charge, one positive and one negative, how far

apart would they have to be for the electric attraction between them to

equal their 640-N weight?

1.1.2. An electric dipole with a dipole moment �p is in a uniform

electric field �E. (a) Find the orientations of the dipole for which the

torque on the dipole is zero. (b) Which of the orientations in part (a)

is stable, and which is unstable? (Hint: Consider a small displacement

away from the equilibrium position and see what happens.) (c) Show

that for the stable orientation in part (b), the dipole’s own electric field

tends to oppose the external field.

1.1.3. A proton is traveling horizontally to the right at 4.00×106 m/s.

(a) Find the magnitude and direction of the weakest electric field that can

bring the proton uniformly to rest over a distance of 1.67 cm. (b) How
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much time does it take the proton to stop after entering the field?

1.1.4. A −1.00-nC point charge is at the origin, and a +4.00-nC

point charge is on the y-axis at y = 2.00 m. (a) Find the electric field

(magnitude and direction) at each of the following points on the y-axis:

(i) y = 3.00 m; (ii) y = 1.00 m; (iii) y = −2.00 m. (b) Find the net

electric force that the two charges would exert on an electron placed at

each point in part (a).

1.1.5. Positive charge +q is distributed uniformly around a

Y

X0

a

q

Figure 1.1. Problem 1.1.5

semi-circle of radius a that lies in the 3rd and 4th quadrants, with the

center of curvature at the origin as shown in Fig. 1.1. Find the x- and

y-components of the net electric field at the origin.

Case 1.2

1.2.1. A positive point charge Q is placed on the −x-axis at x = −a,

and a negative point charge −Q is placed on the +x-axis at x = a. A

positive point charge q is located at some point on the +y-axis. (a) In

a free-body diagram, show the forces that act on the charge q. (b) Find

the x- and y-components of the net force that the two charges Q and

−Q exert on q. (Your answer should involve only k, q, Q, a and the

coordinate y of the third charge.) (c) What is the net force on the charge

q when it is at the origin (y = 0)? (d) Graph the x-component of the

net force on the charge q as a function of y for values of y between −4a
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and +4a.

1.2.2. Negative charge q is distributed uniformly along the y-axis
Z

Y
0

a r

Qq

Figure 1.2. Problem 1.2.2

from y = 0 to y = a. A positive point charge Q is located on the positive

y-axis at y = a+ r (Fig. 1.2). (a) Calculate the electric field (magnitude

and direction) produced by the charge distribution q at points on the

positive y-axis where y > a. (b) Calculate the force (magnitude and

direction) that the charge distribution q exerts on Q. (c) Show that if

r = y � a, the magnitude of the force in part (b) is approximately

k
C
Q|q|/r2. Explain why this result is obtained.

1.2.3. An electron is projected with an initial speed v0=1.6·105m/s

�v0

�E

4.00 cm

1.
00

cm

Figure 1.3. Problem 1.2.3

into the uniform electric field between the parallel plates in Fig. 1.3. As-

sume that the field between the plates is uniform and directed vertically
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upward, and that the field outside the plates is zero. The electron enters

the field at a point midway between the plates. (a) If the electron just

misses the upper plate as it emerges from the field, find the magnitude

of the electric field. (b) Suppose that in Fig. 1.3 the electron is replaced

by a proton with the same initial speed v0. Would the proton hit one

of the plates? If the proton would not hit one of the plates, what would

be the magnitude and direction of its vertical displacement as it exits

the region between the plates? (c) Compare the paths traveled by the

electron and the proton and explain the differences. (d) Discuss whether

it is reasonable to ignore the effects of gravity for each particle.

1.2.4. Three charges are situated at the corners of an isosceles trian-

+5.00 μC

1.
00

cm

1.00 cm

1.00 cm

+2.00 nC

−2.00 nC

Figure 1.4. Problem 1.2.4

gle as shown in Fig. 1.4. The ±2.00-nC charges form a dipole. (a) Find

the force (magnitude and direction) the +5.00-μC charge exerts on

the dipole. (b) For an axis perpendicular to the line connecting the

±2.00-nC charges at the midpoint of this line, find the torque (magni-

tude and direction) exerted on the dipole by the +5.00-μC charge.

1.2.5. Sodium chloride (NaCl, ordinary table salt) is made up of

positive sodium ions (Na+) and negative chloride ions (Cl−). (a) If a

point charge with the same charge and mass as all the Na+ ions in

0.010 mol of NaCl is 9.6 mm from a point charge with the same charge
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and mass as all the Cl− ions, what is the magnitude of the attractive force

between these two point charges? (b) If the negative point charge in part

(a) is held in place and the positive point charge is released from rest,

what is its initial acceleration? (Atomic mass of Na-atom is 23 g/mol.)

(c) Does it seem reasonable that the ions in NaCl could be separated in

this way? Why or why not? (In fact, when sodium chloride dissolves in

water, it breaks up into Na+ and Cl− ions. However, in this situation,

there are additional electric forces exerted by the water molecules on the

ions.)

Case 1.3

1.3.1. Three point charges are arranged on a line. Charge

Q = −15.00 nC and is at the origin. Charge q2 = +25.00 nC is at

z = −5.0 cm. Charge q1 is at z = −1.00 cm. What is q1 (magnitude

and sign) if the net force on Q, is zero?

1.3.2. A ring-shaped conductor with a radius a = 3.00 cm has a

Z

YO

a

y

r

Pα

Figure 1.5. Problem 1.3.2

total positive charge Q = +1.25 nC uniformly distributed around it, as

shown in Fig. 1.5. The center of the ring is at the origin of coordinates

O. (a) What is the electric field (magnitude and direction) at a point P

which is on the Y -axis at y = 4.00 cm? (b) A point charge q = −5.00 μC
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is placed at the point P described in part (a). What are the magnitude

and direction of the force exerted by the charge q on the ring?

1.3.3. A point charge is at the origin. With this point charge as the

source point, what is the unit vector �r/r in the direction of (a) the field

point at x = −12.00 cm, y = 0 cm; (b) the field point at x = 2.0 mm,

y = −2.0 mm; (c) the field point at x = 8.00 m, y = 6.00 m? Express

your results in terms of unit vectors �i and �j.

1.3.4. Point charges q1 = +5.0 nC and q2 = −5.0 nC are separated

by 4.0 cm forming an electric dipole. (a) Find the electric dipole moment

(magnitude and direction). (b) The charges are in a uniform electric

field whose direction makes an angle of 30.0◦ with the line connecting

the charges. What is the magnitude of this field if the torque exerted on

the dipole has a magnitude of 8.0 · 10−9 N·m?

1.3.5. Two identical beads each have a mass m and a charge q.

R R

d

Figure 1.6. Problem 1.3.5

When placed in a hemispherical bowl of a radius R with frictionless

nonconducting walls, the beads move. At equilibrium, they are a dis-

tance d < 2R apart (Fig. 1.6). (a) Determine the charge q on each

bead. (b) Determine the charge required for d to become equal to R if

m = 17.3 g and R = 30 cm.

Case 1.4

1.4.1. A molecule of DNA (deoxyribonucleic acid) is 2.17 μm long.

The ends of the molecule become singly ionized: negative on one end,

positive on the other. The helical molecule acts like a spring and com-
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presses 1.00% upon becoming charged. Determine the effective spring

constant of the molecule.

1.4.2. Two small spheres with a mass m = 10.0 g are hung by silk

LL

q q

θ θ

Figure 1.7. Problem 1.4.2

threads of a length L = 1.50 m from a common point (Fig. 1.7). When

the spheres are given equal negative charge, so that q1 = q2 = q, each

thread hangs at θ = 45.0◦ from the vertical. (a) Draw a diagram showing

the forces acting on each sphere. Treat the spheres as point charges.

(b) Find the magnitude of q. (c) Both threads are now shortened to

half of their original length (L1 = 0.75 m) while the charges q1 and q2
remain unchanged. What angle will each thread make with the vertical?

(Hint: This part of the problem can be solved numerically by using trial

values for θ and adjusting the values of θ until a self-consistent answer

is obtained.)

1.4.3. A uniformly charged ring of a radius 3.0 cm has a total charge

of 30.0 nC. Find the electric field on the axis of the ring at (a) 4.00 cm,

(b) 1.0 mm, and (c) 1.00 m from the center of the ring. (d) Find the

strongest electric field on the axis of the ring.

1.4.4. A water molecule has a permanent electric dipole moment
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of magnitude 6 · 10−30 C·m. Estimate the value of the electric field

it produces at the position of a neighboring water molecule which is

3 · 10−9 m away.

1.4.5. Positive electric charge is distributed along the x-axis with

a charge per unit length λ. (a) Consider the case where charge is dis-

tributed only between the points x = a and x = −a. For points on

the +y-axis, graph the y-component of the electric field as a function of

y for values of y between y = a/4 and y = 16a. (b) Consider instead

the case where the charge is distributed along the entire x-axis with the

same charge per unit length λ. Using the same graph as in part (a),

plot the y-component of the electric field as a function of y for values

of y between y = a/4 and y = 16a. Label which graph refers to which

situation.

Case 1.5

1.5.1. A charge q is split into two parts, q = q1 + q2. In order to

maximize the repulsive Coulomb force between q1 and q2, what fraction

of the original charge q should q1 and q2 have?

1.5.2. An electric dipole consists of two opposite charges of a mag-

2.
0
cm

Y

X0
�E

�E

�P

−q

+q

Figure 1.8. Problem 1.5.2

nitude 6.0 μC placed 2.0 cm apart (Fig. 1.8). The dipole is placed in a

uniform electric field of 5.0 N/C along the x-axis, with the direction of

�p at an angle of +30◦ from the x-axis in the xy-plane. Determine the

14



torque on the dipole.

1.5.3. Calculate the electric field due to an infinitely long thin uni-

formly charged rod with a charge density of 5 · 10−7 C/m at a distance

of 9 cm from the rod. Assume that the rod is aligned with the x-axis.

1.5.4. A rod of a length 2l is charged uniformly over its length with

a total positive charge q. Another positive point charge q is placed at a

distance 2l from the midpoint of the rod along a line perpendicular to

the rod. Calculate the magnitude of the total electric field at a point

halfway between the point charge and the center of the rod.

1.5.5. A uniformly charged disk has a radius of 3.00 cm and carries

a total charge of 1.0 · 10−9 C. (a) Find the electric field (magnitude and

direction) on the x-axis at x = 30.0 cm. (b) Show that for x � R,

E = k
C
Q/x2, where Q is the total charge on the disk. (c) Is the

magnitude of the electric field you calculated in part (a) larger or smaller

than the electric field 30.0 cm from a point charge that has the same total

charge as this disk?
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Chapter 2

GAUSS’S LAW

E
q
u
at
io
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

2.1 ΦE = E A cos θ Electric flux of a

uniform electric

field �E through

plain surface

A is a surface area; θ

is an angle between

the �E and a unit vec-

tor �n of normal to

the surface

2.2 dΦE = �E · d�A Infinitesimal elec-

tric flux

d�A = �n dA is a

vector of infinitesi-

mal surface area

2.3 ΦE =
∫∫
A

�E · d�A Electric flux

through the sur-

face A (general

case)

Nonuniform electric

field �E; arbitrary

surface A

2.4
∫∫
A

⊂⊃ �E · d�A =
qencnet

ε0
Gauss’s law for

electric field (to-

tal electric flux

through a closed

surface A)

qencnet is a net electric

charge enclosed by

the surface A; ε0 is

an electric constant
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1 2 3 4

2.5 λ =
dq

d�
Linear charge den-

sity

dq is an infinites-

imal charge dis-

tributed over an

infinitesimal seg-

ment of length d�

2.6 σ =
dq

dA
Surface charge

density

dq is an infinitesimal

charge distributed

over an infinitesimal

surface of area dA

2.7 ρ =
dq

dVol
Volume charge

density

dq is an infinitesimal

charge distributed

within an infinitesi-

mal spatial element

of a volume dVol

2.8 �E =
λ

2πε0R

�R

R
Electric field of an

infinite uniformly

charged wire

�R is a radial po-

sition vector in the

plane perpendicular

to the wire

2.9 �E =
σ

2ε0
�n Electric field of an

infinite uniformly

charged plane

�n is a unit vector

perpendicular to the

plane

2.10 �E =
ρ�r

3ε0
Electric field in-

side a uniformly

charged solid

sphere

�r is a position vector

with respect to the

center of the sphere

Pre-Class Reading: [1], chap. 22; [2], chap. 23; [3], chap. 24.
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Case 2.1

2.1.1. A flat sheet of paper of area 0.4 m2 is oriented so that the

sheet is at an angle of 30◦ to a uniform electric field of a magnitude

5.0 N/C. (a) Find the magnitude of the electric flux through the sheet.

(b) Does the answer to part (a) depend on the shape of the sheet? Why

or why not? (c) For what angle φ between the normal to the sheet and

the electric field is the magnitude of the flux through the sheet (i) the

largest and (ii) the smallest? Explain your answer.

2.1.2. A charged paint is spread in a very thin uniform layer over

the surface of a plastic sphere of diameter 4.0 cm giving it a charge of

+30.0 nC. Find the electric field (a) just inside the paint layer; (b) just

outside the paint layer; (c) 1.00 cm outside the surface of the paint layer.

2.1.3. How many excess electrons must be added to an isolated

spherical conductor 9.0 cm in diameter to produce an electric field of

1.6 · 103 N/C just outside the surface?

2.1.4. The electric field �E in Fig. 2.1 is everywhere parallel to the

2.
0
m

5.
0
m

X

Y

Z

�E

I

II

Figure 2.1. Problem 2.1.4

x-axis, so the components Ey and Ez are zero. The x-component of the

field Ex depends on x but not on y and z. At points in the yz-plane

(where x = 0), Ex = 200 N/C. (a) What is the electric flux through the

surface I in Fig. 2.1? (b) What is the electric flux through the surface

18



II? (c) The volume shown in the figure is a small section of a very large

insulating slab 1.0 m thick. If there is a total charge of −8.85 nC within

the volume shown, what are the magnitude and direction of �E at the face

opposite the surface I? (d) Is the electric field produced only by charges

within the slab, or is the field also due to charges outside the slab? How

can you tell?

2.1.5. Positive charge +3.00 μC is distributed uniformly over the

surface of a thin spherical insulating shell with a radius of 2.00 cm.

Calculate the force (magnitude and direction) that the shell exerts on a

positive point charge −2.00 nC located (a) a distance 3.00 cm from the

center of the shell and (b) a distance of 1.00 cm from the center of the

shell.

Case 2.2

2.2.1. You measure an electric field of 9.00 · 105 N/C at a distance

of 0.10 m from a point charge. (a) What is the electric flux through a

sphere at that distance from the charge? (b) What is the magnitude of

the charge?

2.2.2. The electric field at a distance of 6.00 cm from the surface

of a solid insulating sphere with a radius of 2.00 cm is 3.0 · 103 N/C.

(a) Assuming the sphere’s charge is uniformly distributed, what is the

charge density inside it? (b) Calculate the electric field inside the sphere

at a distance of 1.00 cm from the center.

2.2.3. A 5.0-g piece of Styrofoam carries a net charge of +17.7 μC

and is suspended in equilibrium above the center of a large horizontal

sheet of plastic that has a uniform charge density on its surface. What

is the charge per unit area on the plastic sheet?

2.2.4. A long coaxial cable consists of an inner cylindrical conductor

with a radius a and an outer coaxial cylinder with an inner radius b and

an outer radius c. The outer cylinder is mounted on insulating supports

and has no net charge. The inner cylinder has a uniform negative charge

per unit length λ. Calculate the electric field (a) at any point between

the cylinders a distance r from the axis and (b) at any point outside
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the outer cylinder. (c) Graph the magnitude of the electric field as a

function of the distance r from the axis of the cable, from r = 0 to

r = 2c. (d) Find the charge per unit length on the inner surface and on

the outer surface of the outer cylinder.

2.2.5. A nonuniform but spherically symmetric distribution of charge

has a charge density ρ(r) given as follows:{
ρ(r) = ρ0(1− r/R) for r ≤ R

ρ(r) = 0 for r ≥ R,

where ρ0 = 3Q/πR3 is a positive constant. (a) Show that the total

charge contained in the charge distribution is Q. (b) Show that the

electric field in the region r ≥ R is identical to that produced by a point

charge Q at r = 0. (c) Obtain an expression for the electric field in the

region r ≤ R. (d) Graph the electric-field magnitude E as a function

of r. (e) Find the value of r at which the electric field is maximum and

find the value of that maximum field.

Case 2.3

2.3.1. An infinitely long cylindrical conductor has a radius R and

uniform surface charge density σ. (a) In terms of σ and R, what is the

charge per unit length λ for the cylinder? (b) In terms of σ, what is

the magnitude of the electric field produced by the charged cylinder at a

distance r > R from its axis? (c) Express the result of part (b) in terms

of λ and show that the electric field outside the cylinder is the same as

if all the charge were on the axis. Compare your result to the result for

a line of charge.

2.3.2. A solid sphere of radius 30.0 cm has a total positive charge

of 12.0 μC uniformly distributed throughout its volume. Calculate the

magnitude of the electric field (a) 0 cm, (b) 3.0 cm, (c) 30.0 cm, and

(d) 60.0 cm from the center of the sphere.

2.3.3. A hemispherical surface with a radius r in a region of a uniform

electric field �E has its axis aligned parallel to the direction of the field.
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Calculate the flux through the surface.

2.3.4. A small sphere with a mass of 0.5 g and carrying a charge

θ

Figure 2.2. Problem 2.3.4

of 8.85 μC hangs from a thread near a very large charged conduct-

ing sheet, as shown in Fig. 2.2. The charge density on the sheet is

10.0 nC/m2. Find the angle of the thread.

2.3.5. (a) An insulating sphere with a radius a has a uniform charge

R

b

a

ρ

Figure 2.3. Problem 2.3.5

density ρ. The sphere is not centered at the origin but at �r = �b. Find

the electric field inside the sphere. (b) An insulating sphere of a radius R

has a spherical hole of a radius a located within its volume and centered

a distance b from the center of the sphere, where a < b < R (Fig. 2.3

shows a cross section of the sphere). The solid part of the sphere has a

uniform volume charge density ρ. Find the magnitude and direction of
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the electric field �E inside the hole, and show that �E is uniform over the

entire hole. [Hint: Use the principle of superposition and the result of

part (a).]

Case 2.4

2.4.1. A 17.7 nC point charge is at the center of a cube with sides

0.500 m long. (a) What is the electric flux through one of the six faces

of the cube? (b) How would your answer to part (a) change if the sides

were 0.250 m long? Explain.

2.4.2. An infinitely long line charge having a uniform charge per

R

d O

λ

Figure 2.4. Problem 2.4.2

unit length λ lies a distance d from a point O as shown in Fig. 2.4.

Determine the total electric flux through the surface of a sphere of radius

R centered at O resulting from this line charge. Consider both cases,

where (a) R < d and (b) R > d.

2.4.3. Consider a long cylindrical charge distribution of a radius R

with a uniform charge density ρ. Find the electric field at a distance r

from the axis, where r < R.

2.4.4. A solid conducting sphere with a radius R that carries a

positive chargeQ is concentric with a very thin insulating shell of a radius
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2R that also carries a charge Q. The charge Q is distributed uniformly

over the insulating shell. (a) Find the electric field (magnitude and

direction) in each of the regions 0 < r < R, R < r < 2R, and r > 2R.

(b) Graph the electric-field magnitude as a function of r.

2.4.5. A positive charge Q is distributed uniformly over each of two

x

y

O
R R

Q Q

Figure 2.5. Problem 2.4.5

spherical volumes with a radius R. One sphere of charge is centered at

the origin and the other at x = 2R (Fig. 2.5). Find the magnitude and

direction of the net electric field due to these two distributions of the

charge at the following points on the x-axis: (a) x = 0; (b) x = R/2;

(c) x = R; (d) x = 3R.

Case 2.5

2.5.1. An electric field of a magnitude 400.0 N/C is applied along

the x axis. Calculate the electric flux through a rectangular plane 3.0 m

wide and 2.0 m long (a) if the plane is parallel to the yz plane, (b) if the

plane is parallel to the xy plane, and (c) if the plane contains the y axis

and its normal makes an angle of 60.0◦ with the x axis.

2.5.2. In the air over a particular region at an altitude of 400 m

above the ground, the electric field is 140 N/C directed upward. At

500 m above the ground, the electric field is 120 N/C upward. What is

the average volume charge density in the layer of air between these two

elevations? Is it positive or negative?

2.5.3. A long cylindrical shell of an inner radius r1 and an outer

23



radius r2 carries a uniform volume charge density ρ. Find the electric

field due to this distribution of charge everywhere in space.

2.5.4. A small conducting spherical shell with an inner radius a

a
b

c
d

Figure 2.6. Problem 2.5.4

and an outer radius b is concentric with a larger conducting spherical

shell with an inner radius c and an outer radius d (Fig. 2.6). The inner

shell has a total charge +2q, and the outer shell has a charge +4q.

(a) Calculate the electric field (magnitude and direction) in terms of q

and the distance r from the common center of the two shells for (i) r < a;

(ii) a < r < b; (iii) b < r < c; (iv) c < r < d; (v) r > d. Show

your results in a graph of the radial component of �E as a function of r.

(b) What is the total charge on the (i) inner surface of the small shell;

(ii) outer surface of the small shell; (iii) inner surface of the large shell;

(iv) outer surface of the large shell?

2.5.5. A given region has an electric field that is a sum of two con-

tributions, a field due to a charge q = 17.7 · 10−8 C at the origin and a

uniform field of strength E0 = 1.0 · 103 N/C in the −x-direction. Cal-

culate the flux through each side of a cube with sides 1.0 m long that

are parallel to the x-, y-, and z-directions. The cube is centered at the

origin.
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Chapter 3

ELECTRIC POTENTIAL

E
q
u
at
io
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

3.1
∮
L

�E · d�� = 0 Condition for po-

tentiality of elec-

trostatic field

d�� is an infinitesimal

element of an arbi-

trary closed loop L

3.2 Vi − Vf =
Wif

q
=

=
f∫
i

�E · d��

Electric potential

difference

Wif is a work done

by electric field �E on

a charge q to move it

form the initial posi-

tion to the f inal po-

sition

3.3 V =
1

4πε0

q

r
= k

C

q

r
Electric potential

due to a point

charge q

r is a distance

from the charge

to the point under

consideration

3.4 V =
∑

Vj Electric potential

due to the system

of charges

Vj is an electric po-

tential due to an in-

dividual charge

3.5 Wif = q(Vi − Vf) Work done by an

electric field on a

charge q

Vi and Vf are poten-

tials at initial and

f inal positions
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1 2 3 4

3.6 �E = −gradV =

= − �∇V

Relation between

an electrostatic

field and a poten-

tial

grad is a vector

differential operator

(see Appendix for

details)

3.7 Vi − Vf = E dif Potential differ-

ence in a uniform

electric field E

dif is a distance

between two points

along the field line

3.8 Vi − Vf =

=
λ

2πε0
ln
r
f

r
i

=

= 2k
C
λ ln

r
f

r
i

Potential differ-

ence in the vicinity

of the uniformly

charged infinite

wire

λ is a linear charge

density; r
i
and r

f

are the distances

from the wire

Pre-Class Reading: [1], chap. 23; [2], chap. 24; [3], chap. 25.

Case 3.1

3.1.1. A point charge q1 = +2.00 nC is held stationary at the

origin. A second point charge q2 = −4.50 nC moves from the point

xi = 0.300 m, yi = 0.400 to the point xf = 0.600 m, yf = 0.800 m.

How much work is done by the electric force on q2?

3.1.2. A uniform electric field is directed due west. Point B is 2.00 m

west of point A, point C is 2.00 m east of point A, and pointD is 2.00 m

north of A. For each point, B, C, and D, is the potential at that point

larger, smaller, or the same as at point A? Give the reasoning behind

your answers.

3.1.3. A uniformly charged thin ring has a radius of 8.0 cm and a

total charge of +18.2 nC. An electron is placed on the ring’s axis 6.0 cm

from the center of the ring and is constrained to stay on the axis of the

ring. The electron is then released from rest. (a) Describe the subsequent

motion of the electron. (b) Find the speed of the electron when it reaches
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the center of the ring.

3.1.4. In a certain region of space, the electric potential is

V (x, y, z) = Az2 + By − Cyz where A, B, and C are positive con-

stants. (a) Calculate the x-, y-, and z-components of the electric field.

(b) At which points is the electric field equal to zero?

3.1.5. The electric potential immediately outside a charged conduct-

ing sphere is 270 V. 5.0 cm farther from the center of the sphere, the

potential is 220 V. Determine (a) the radius of the sphere and (b) the

charge on it. The electric potential immediately outside another charged

conducting sphere is 200 V. 18.0 cm farther from the center the magni-

tude of the electric field is being 100 V/m. Determine (c) the radius of

the sphere and (d) its charge on it. (e) Are the answers to parts (c) and

(d) unique?

Case 3.2

3.2.1. How much work is needed to assemble an atomic nucleus

containing three protons (such as Li) if we model it as an equilateral

triangle of a side 2.56 · 10−15 m with a proton at each vertex? Assume

the protons started from very far away.

3.2.2. A charge of 12.0 nC is placed in a uniform electric field that is

directed vertically upward and has a magnitude of 1.00 ·104 V/m. What

work is done by the electric force when the charge moves (a) 0.50 m to

the left; (b) 0.50 m downward; (c) 0.50 m at an angle of 30.0◦ upward

from the horizontal?

3.2.3. A very long wire carries a uniform linear charge density λ.

Using a voltmeter to measure potential difference, you find that when

one probe of the meter is placed 10.0 cm from the wire and the other

one is 17.2 cm farther from the wire, the meter reads 630 V. (a) What

is λ? (b) If you now place one probe at 27.2 cm from the wire and

the other probe 17.2 cm farther away, will the voltmeter read 630 V? If

not, will it read more or less than 630 V? Why? (c) If you place both

probes 10.0 cm from the wire but 17.2 cm from each other, what will
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the voltmeter read?

3.2.4. The electric potential inside a charged spherical conductor of

radius R is given by V = k
C
q/R, and the potential outside is given by

V = k
C
q/r. Using �E = − �∇V , derive the electric field (a) inside and

(b) outside this charge distribution.

3.2.5. A particle with a charge of +8.00 nC is in a uniform electric

field directed to the right. Another force, in addition to the electric force,

acts on the particle so that when it is released from rest, it moves to the

left. After it has moved 5.00 cm, the additional force has done 73.6 μJ

of work and the particle has 41.6 μJ of kinetic energy. (a) What work

was done by the electric force? (b) What is the potential of the starting

point with respect to the end point? (c) What is the magnitude of the

electric field?

Case 3.3

3.3.1. A small metal sphere, carrying a net charge of q1 = −5.0 μC

q1
q2

�v

d

Figure 3.1. Problem 3.3.1

is held in a stationary position by insulating supports. A second small

metal sphere with a net charge of q2 = −6.0 μC and mass 1.08 g is

projected toward q1. When the two spheres are 1.0 m apart, q2 is moving

toward q1 with the speed of 30.0 m/s (Fig. 3.1). Assume that the two

spheres can be treated as point charges. You can ignore the force of

gravity. (a) What is the speed of q2 when the spheres are 0.5 m apart?

(b) How close does q2 get to q1 ?

3.3.2. Consider a ring of a radius R with the total charge q spread
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uniformly over its perimeter. What is the potential difference between

the point at the center of the ring and a point on its axis a distance
3

4
R

from the center?

3.3.3. Two point charges, q1 = +3.2 nC and q2 = −4.80 nC, are

B

A

q1 q2

l1

l2

l

Figure 3.2. Problem 3.3.3

0.50 m apart. Point A is midway between them; point B is 0.40 m from

q1 and 0.30 m from q2 (Fig. 3.2). Take the electric potential to be zero

at infinity. Find (a) the potential at point A; (b) the potential at point

B; (c) the work done by the electric field on a charge of +2.5 μC that

travels from point A to point B.

3.3.4. A metal sphere with a radius a is supported on an insulat-

ing stand at the center of a hollow metal spherical shell with radius

b. There is a charge +Q on the inner sphere and a charge −Q on

the outer spherical shell. Calculate the potential V (r) for (i) r < a;

(ii) a < r < b; (iii) r > b. (Hint: The net potential is the sum of the

potentials due to the individual spheres.) Take V to be zero when r is

infinite.

3.3.5. A vacuum tube diode consists of concentric cylindrical elec-

trodes, the negative cathode and the positive anode. Because of the

accumulation of charge near the cathode, the electric potential between

the electrodes is not a linear function of the position, even with planar

geometry, but is given by V (x) = Cx4/3 where x is the distance from
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the cathode and C is a constant, characteristic of a particular diode and

operating conditions. Assume that the distance between the cathode

and anode is 8.0 mm and the potential difference between electrodes is

320 V. (a) Determine the value of C. (b) Obtain a formula for the elec-

tric field between the electrodes as a function of x. (c) Determine the

force on an electron when the electron is halfway between the electrodes.

Case 3.4

3.4.1. An insulating rod having linear charge density λ=10 μC/m

�E

Figure 3.3. Problem 3.4.1

and linear mass density μ = 30.0 g/m is released from rest in a uniform

electric field E = 500 V/m directed perpendicular to the rod (Fig. 3.3).

(a) Determine the speed of the rod after it has traveled 3.0 m. (b) How

does your answer to part (a) change if the electric field is not perpendic-

ular to the rod? Explain.

3.4.2. A point charge q1 = 4.00 nC is placed at the origin, and a sec-

ond point charge q2 = −3.00 nC is placed on the x-axis at

x = +20.0 cm. A third point charge q3 = 2.00 nC is to be placed

on the x-axis between q1 and q2. (Take the potential energy of the three

charges as zero when they are infinitely far apart.) (a) What is the

potential energy of the system of the three charges if q3 is placed at

x = +10.0 cm? (b) Where should q3 be placed to make the potential
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energy of the system equal to zero?

3.4.3. Figure 3.4 shows eight point charges arranged at the corners of

+q −q

d

+q

+q

−q

−q

+q

−q

Figure 3.4. Problem 3.4.3

a cube with sides of length d. The values of the charges are +q and −q,

as shown. This is a model of one cell of a cubic ionic crystal. In sodium

chloride (NaCl), for instance, the positive ions are Na+ and the negative

ions are Cl−. (a) Calculate the potential energy U of this arrangement.

(Take the potential energy of the eight charges as zero when they are

infinitely far apart.) (b) In part (a), you should have found that U < 0.

Explain the relationship between this result and the observation that

such ionic crystals exist in nature.

3.4.4. A very long insulating cylindrical shell of a radius 5.0 cm

carries the charge of a linear density 111 nC/m spread uniformly over its

outer surface. What would a voltmeter read if it were connected between

(a) the surface of the cylinder and a point 5.0 cm above the surface, and

(b) the surface and a point 2.0 cm from the central axis of the cylinder?

3.4.5. A very long cylinder of a radius 1.00 cm carries a uniform

charge density of 0.5 nC/m. (a) Describe the shape of the equipotential
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surfaces for this cylinder. (b) Taking the reference level for the zero of

potential to be the surface of the cylinder, find the radius of equipotential

surfaces having potentials of 9.0 V, 18.0 V, and 27.0 V. (c) Are the

equipotential surfaces equally spaced? If not, do they get closer together

or farther apart as r increases?

Case 3.5

3.5.1. How much work is required to assemble eight identical charged

particles, each of a magnitude Q, at the corners of a cube of side s?

3.5.2. A positive charge +q is located at the point x = 0, y = −a,

and another positive charge +q is located at the point x = 0,

y = +a. (a) Show the positions of the charges in a diagram. (b) Derive

an expression for the potential V at points on the x-axis as a function

of the coordinate x. Take V to be zero at an infinite distance from the

charges. (c) Graph V at points on the x-axis as a function of x over the

range from x = −4a to x = +4a. (d) What is the answer to part (b) if

the one of charges are replaced by −q?

3.5.3. Two large parallel metal plates carry opposite charges of equal

magnitude. They are separated by 45.0 mm, and the potential difference

between them is 360 V. (a) What is the magnitude of the electric field

(assumed to be uniform) in the region between the plates? (b) What is

the magnitude of the force this field exerts on a particle with the charge

of +2.40 nC? (c) Use the results of part (b) to compute the work done by

the field on the particle as it moves from the higher-potential plate to the

lower one. (d) Compare the result of part (c) to the change of potential

energy of the same charge, computed from the electric potential.

3.5.4. A metal sphere with a radius ra is supported on an insulating

stand at the center of a hollow metal spherical shell with a radius rb.

There is charge −q on the inner sphere and charge +q on the outer

spherical shell. Find the potential of the inner sphere with respect to

the outer one.

3.5.5. A long metal cylinder with a radius a is supported on an

insulating stand on the axis of a long hollow metal tube with a radius
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b. The positive charge per unit length on the inner cylinder is λ, and

there is an equal negative charge per unit length on the outer cylinder.

(a) Calculate the potential V (r) for (i) r < a; (ii) a < r < b; (iii) r > b.

(Hint: The net potential is the sum of the potentials due to the individual

conductors.) Take V = 0 at r = b. (b) Express the the magnitude

of electric field at any point between cylinders through their potential

difference.

33



Chapter 4

ELECTRIC FIELD IN A MEDIUM. CAPACITANCE

E
q
u
at
io
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

4.1 C =
q

V
Capacitance of an

isolated conductor

q and V are charge

and potential of

the conductor,

respectively

4.2 C = 4πε0R =
R

k
C

Capacitance of a

conducting sphere

R is a radius of the

sphere

4.3 C =
q

V12
Capacitance of a

capacitor

q is a charge on one

of the plates of the

capacitor; V12 is a

potential difference

across the capacitor

4.4 C =
ε0A

d
Capacitance of an

air parallel-plate

capacitor

A is an area of the

capacitor’s plates; d

is a distance be-

tween them
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1 2 3 4

4.5 C =
2πε0l

ln(Ro/Ri)
Capacitance of an

air cylindrical ca-

pacitor

Ro and Ri are radii

of the outer and in-

ner cylinders

4.6 C = 4πε0
RiRo

Ro −Ri
Capacitance of an

air spherical ca-

pacitor

Ro and Ri are radii

of the outer and in-

ner spheres

4.7 Cpar =
∑

Ci Equivalent capaci-

tance of a battery

of capacitors con-

nected in parallel

Ci is a capacitance

of an individual

capacitor in the

battery

4.8
1

Cser
=
∑ 1

Ci
Equivalent capaci-

tance of a battery

of capacitors con-

nected in series

Ci is a capacitance

of an individual

capacitor in the

battery

4.9 �P = lim
Vol→0

∑
�pei

Vol
Electric polariza-

tion vector

�pei is an electric

dipole moment of

an individual dipole

within the element

of volume Vol

4.10 σ
i
= Pn Induced surface-

charge density

Pn is a normal com-

ponent of the polar-

ization vector

4.11 �D = ε0
�E + �P Electric field dis-

placement vector

ε0 is an electric

constant
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1 2 3 4

4.12
∫∫
A

⊂⊃ �D · d�A = q
enc

free
General form of

Gauss’s law; see

also the equation

(2.4)

q
enc

free
is a net free

charge enclosed by

an arbitrary surface

A

4.13 �P = ε0κe
�E Definition of elec-

tric susceptibility

κe of a substance

Valid for nonferro-

electric substances

4.14 εr = 1 + κe Definition of rela-

tive dielectric per-

mittivity of a sub-

stance

For vacuum εr ≡ 1,

κe ≡ 0; for air

εr ≈ 1, κe ≈ 0

4.15 �D = ε0εr
�E = ε0

�E0 Displacement vec-

tor in a uniform

medium

�E0 is an electric filed

in vacuum created

by the same system

of free chargers

4.16 C = εrC0 Capacitance of a

capacitor with a

dielectric between

plates

C0 is a capacitance

of an air (vacuum)

capacitor

4.17 U
C
=

qV12

2
=

q2

2C
=

=
CV 2

12

2

Energy of a

charged capacitor

with capacitance

C

V12 is a potential

difference across the

capacitor

4.18 u
E
=
�E·�D
2

=
ε0εrE

2

2
Electric field en-

ergy density

�E is a local electric

field

Pre-Class Reading: [1], chap. 24; [2], chap. 25; [3], chap. 26.
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Case 4.1

4.1.1. A parallel-plate air capacitor of capacitance 250 pF has a

charge of magnitude 0.125 μC on each plate. The plates are 0.328 mm

apart. (a) What is the potential difference between the plates?

(b) What is the area of each plate? (c) What is the electric field magni-

tude between the plates? (d) What is the surface charge density on each

plate?

4.1.2. In Fig. 4.1, each capacitor has C = 5.0 μF and Vab = 65.0 V.

C1

C2 C3

C4

a

b

d

Figure 4.1. Problem 4.1.2

Calculate (a) the charge on each capacitor; (b) the potential difference

across each capacitor; (c) the potential difference between points a and

d.

4.1.3. A 800 pF capacitor is charged to 300 V. Then a wire is con-

nected between the plates. How many joules of thermal energy are pro-

duced as the capacitor discharges if all of the energy that was stored goes

into heating the wire?

4.1.4. The dielectric to be used in a parallel-plate capacitor has a

dielectric constant of 4.00 and a dielectric strength of 2.00 · 107 V/m.

The capacitor is to have a capacitance of 1.77 · 10−8 F and must be able

to withstand a maximum potential difference of 6.0 kV. What is the

minimum area the plates of the capacitor may have?

4.1.5. A capacitor of unknown capacitance has been charged to a

potential difference of 250 V and then disconnected from the battery.

When the charged capacitor is then connected in parallel to an uncharged
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12.0 − μF capacitor, the potential difference across the combination is

200 V. Calculate the unknown capacitance.

Case 4.2

4.2.1. A 12.0 μF parallel-plate capacitor with circular plates is con-

nected to a 10.0-V battery. (a) What is the charge on each plate?

(b) How much charge would be on the plates if their separation were dou-

bled while the capacitor remained connected to the battery?

(c) How much charge would be on the plates if the capacitor were con-

nected to the 10.0-V battery after the radius of each plate was doubled

without changing their separation?

4.2.2. In Fig. 4.2, C1 = 45.0 nF and Vab = 5.00 V. The charge on

C1

C2

C3

a

d

b

Figure 4.2. Problem 4.2.2

the capacitor C1 is 90.0 nC. Calculate the voltage across the other two

capacitors.

4.2.3. A parallel-plate vacuum capacitor with a plate area A and

a separation x has charges +q and −q on its plates. The capacitor

is disconnected from the source of charge, so the charge on each plate

remains fixed. (a) What is the total energy stored in the capacitor?

(b) The plates are pulled apart an additional distance dx. What is the

change in the stored energy? (c) If F is the force with which the plates

attract each other, then the change in the stored energy must equal the

work dW = Fdx done in pulling the plates apart. Find an expression

for F . (d) Explain why F is not equal to qE where E is the electric
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field between the plates.

4.2.4. A parallel-plate capacitor in the air has a plate separation

of 8.85 cm and a plate area of 15.0 cm2. The plates are charged to a

potential difference of 300 V and disconnected from the source. The

capacitor is then immersed into distilled water (εr = 80). Assume the

liquid is an insulator. Determine (a) the charge on the plates before

and after immersion, (b) the capacitance and potential difference after

immersion, and (c) the change in energy of the capacitor.

4.2.5. Electronic flash units for cameras contain a capacitor for stor-

ing the energy used to produce the flash. In one such unit, the flash

lasts for 1
750 s with an average light power output of 2.50 · 105 W. (a) If

the conversion of electrical energy to light is 98% efficient (the rest of

the energy goes to thermal energy), how much energy must be stored in

the capacitor for one flash? (b) The capacitor has a potential difference

between its plates of 100 V when the stored energy equals the value

calculated in part (a). What is the capacitance?

Case 4.3

4.3.1. A capacitor is made of two hollow coaxial iron cylinders, one

inside the other. The inner cylinder is negatively charged and the outer

one is positively charged; the magnitude of the charge on each is 20.0 pC.

The inner cylinder has a radius of 3.00 mm, the outer one has a radius

of 6.00 mm, and the length of each cylinder is 6.93 cm. (a) What is

the capacitance? (b) What applied potential difference is necessary to

produce these charges on the cylinders?

4.3.2. Two parallel-plate vacuum capacitors have areas A1 and A2

and equal plate spacings d. Show that when the capacitors are connected

in parallel, the equivalent capacitance is the same as for a single capacitor

with a plate area A1 + A2 and a spacing d.

4.3.3. A storm cloud and the ground represent the plates of a ca-

pacitor. During a storm, the capacitor has a potential difference of

1.00 · 108 V between its plates and a charge of 50.0 C. A lightning strike

delivers 0.50% of the energy of the capacitor to a tree on the ground.
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How much sap in the tree can be boiled away? Model the sap as water

initially at 20.0◦C. Water has a specific heat of 4186 J/kg·K, a boiling

point of 100◦C, and a latent heat of vaporization of 2.26 · 106 J/kg.
4.3.4. A capacitor has parallel plates of area 12 cm2 separated by

5.0 mm. The space between the plates is filled with polystyrene with

the dielectric strength 2 · 107 V/m. (a) Find the maximum permissible

voltage across the capacitor to avoid dielectric breakdown. (b) When the

voltage equals the value found in part (a), find the surface charge density

on each plate and the induced surface-charge density on the surface of

the dielectric.

4.3.5. For the capacitor network shown in Fig. 4.3, the potential

C5

C4C3

C2C1

a b

Figure 4.3. Problem 4.3.5

difference across ab is 8.0 V. Taking C1 = 3.0 pF, C2 = 2.0 pF,

C3 = 6.0 pF, C4 = 12.0 pF, and C5 = 2.0 pF find (a) the total en-

ergy stored in this network and (b) the energy stored in the capacitor

C2.

Case 4.4

4.4.1. A spherical capacitor contains a charge of 2.50 nC when con-

nected to a potential difference of 125 V. If its plates are separated by

vacuum and the inner radius of the outer shell is 9.00 cm, calculate:

(a) the capacitance; (b) the radius of the inner sphere; (c) the electric

field just outside the surface of the inner sphere.

4.4.2. Consider three capacitors C1, C2, and C3 and a battery. If

only C1 is connected to the battery, the charge on C1 is 30.0 μC. Now

C1 is disconnected, discharged, and connected in series with C2. When
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the series combination of C2 and C1 is connected across the battery, the

charge on C1 is 15.0 μC. The circuit is disconnected, and both capacitors

are discharged. Next, C3, C1, and the battery are connected in series,

resulting in a charge on C1 of 10.0 μC. If, after being disconnected and

discharged, C1, C2, and C3 are connected in series with one another and

with the battery, what is the charge on C1?

4.4.3. For the capacitor network shown in Fig. 4.4, the potential

C1

C2
a b

Figure 4.4. Problem 4.4.3

difference across ab is 100 V. Taking C1 = 2.5 μF and C2 = 7.5 μF find

(a) the total charge stored in this network; (b) the charge on each ca-

pacitor; (c) the total energy stored in the network; (d) the energy stored

in each capacitor; (e) the potential difference across each capacitor.

4.4.4. When a 20-nF air capacitor (1 nF = 10−9 F) is connected to

a power supply, the energy stored in the capacitor is 9.00 · 10−6 J. While

the capacitor is kept connected to the power supply, a slab of dielectric is

inserted that completely fills the space between the plates. This increases

the stored energy by 6.00 · 10−6 J. (a) What is the potential difference

between the capacitor plates? (b) What is the dielectric constant of the

slab?

4.4.5. Three capacitors having capacitances of 8.0, 8.0, and 4.0 μF

are connected in series across a 30 V potential difference. (a) What

is the charge on the 4.0-μF capacitor? (b) What is the total energy

stored in all three capacitors? (c) The capacitors are disconnected from

the potential difference without allowing them to discharge. Then they

are reconnected in parallel with each other, with the positively charged

plates connected together. What is the voltage across each capacitor in
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the parallel combination? (d) What is the total energy now stored in

the capacitors?

Case 4.5

4.5.1. A 90.0 m length of a coaxial cable has an inner conductor

that has a diameter of 1.00 mm and carries a charge of 4.0 μC. The

surrounding conductor has an inner diameter of 2.72 mm and a charge

of 10.0 μC. Assume the region between the conductors is air. (a) What

is the capacitance of this cable? (b) What is the potential difference

between the two conductors?

4.5.2. Let it be C2 = 1 μF, C3 = 12 μF, C4 = 6 μF, and C5 = 15 μF

a b

C1

C2

C3 C4

C5

Figure 4.5. Problem 4.5.2

in a circuit of Fig. 4.5. What would be the capacitance C1 to have an

equivalent capacitance between points a and b equal to 5 μF?

4.5.3. A cylindrical air capacitor 16.0 m long stores 4.00 · 10−9 J

of energy when the potential difference between the two conductors is

3.00 V. (a) Calculate the magnitude of the charge on each conductor.

(b) Calculate the ratio of the radii of the outer and inner conductors.

4.5.4. A 9.0-μF capacitor is connected to a power supply that keeps

a constant potential difference of 20.0 V across the plates. A piece of

material having a dielectric constant of 5.00 is placed between the plates,

completely filling the space between them. (a) How much energy is stored

in the capacitor before and after the dielectric is inserted? (b) By how

much did the energy change during the insertion? Did it increase or

42



decrease?

4.5.5. A parallel-plate capacitor has the space between the plates

d/2
d

ε1

ε2

Figure 4.6. Problem 4.5.5

filled with two slabs of dielectric, one with relative dielectric permittiv-

ity constant ε1 and one with constant ε2 (Fig. 4.6). Each slab has a

thickness d/2, where d is the plate separation. Find the capacitance of

the capacitor.
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Chapter 5

CURRENT AND RESISTANCE. DC CIRCUITS

E
q
u
at
io
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

5.1 �j = q0n�vd
Electric current

density

�v
d
is a drift veloc-

ity of charge carri-

ers with a charge

q0 and their number

per unit volume n

5.2 �j = σ�E =
�E

ρ
Ohm’s law in a dif-

ferential form

σ and ρ are electro-

conductivity and re-

sistivity of the sub-

stance, respectively

5.3 ρ(T )=ρ0(1+αΔT ) Temperature

dependence of

resistivity

ρ0 is a resistivity

at a reference tem-

perature T0; α is

a temperature coef-

ficient of resistivity;

ΔT = T − T0
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1 2 3 4

5.4 I =
dq

dt
=
∫∫
A

�j · d�A Electric current dq is an infinites-

imal charge passed

trough the cross-

section A of the con-

ductor during time

dt

5.5 R12 =
V12

I
Resistance of a

conductor

V12 is potential dif-

ference across the

conductor

5.6 R = ρ
�

A⊥
Resistance of a

uniform “cylindri-

cal” conductor of

length �

A⊥ is a cross-

sectional area of

the conductor; ρ is

resistivity

5.7 ±V = ±E − Ir Terminal voltage

of a battery with

emf E

r is an internal resis-

tance of the battery;

use “−” for recharg-

ing the battery

5.8 Rser =
∑

Ri Equivalent resis-

tance of resistors

connected in

series

Ri is a resistance

of an individual

resistor

5.9
1

Rpar
=
∑ 1

Ri
Equivalent resis-

tance of resistors

connected in

parallel

Ri is a resistance

of an individual

resistor
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1 2 3 4

5.10
∑
junct

Iini =
∑
junct

Ioutj Kirchhoff’s junc-

tion rule

Iini and Ioutj are in-

dividual inward and

outward currents

in the junction,

respectively

5.11
∑
loop

IiRj =
∑
loop

Ek Kirchhoff’s loop

rule

IiRj are potential

differences across re-

sistors around the

loop; Ek are emf

withing the loop

5.12 P12 = V12I = I2R12 Power delivered by

current I to a

conductor (Joule’s

law)

R12 is a resistance

of the conductor; V12

is a potential differ-

ence across it

5.13 τ = RC Relaxation time

(time constant) of

an RC-circuit

R and C are

resistance and

capacitance

5.14 q(t) = q0e
−t/τ Time dependence

for charge decay in

an RC-circuit

q0 is an initial

charge stored on the

capacitor

5.15 q(t)=EC(
1−e−t/τ

)
Time dependence

for charge growth

in an RC-circuit

with emf E

C is the capacitance

of the circuit

Pre-Class Reading: [1], chap. 25 & 26; [2], chap. 26 & 27; [3], chap. 27

& 28.
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Case 5.1

5.1.1. A 4.80-A current runs through a copper wire (diameter

2.0 mm) and through a light bulb. Copper has 8.5 · 1028 free electrons
per cubic meter. (a) How many electrons pass through the light bulb

each second? (b) What is the current density in the wire? (c) At what

speed does a typical electron pass by any given point in the wire? (d) If

you were to use wire of twice the diameter, which of the above answers

would change? Would they increase or decrease?

5.1.2. A cylindrical tungsten filament 10.0 cm long with a diameter of

2.00 mm is to be used in a machine for which the temperature will range

from the room temperature (20◦C) up to 120◦C. It will carry a current of
9.00 A at all temperatures. Temperature coefficient of resistivity of silver

is 3.8 · 10−3 K−1. (a) What will be the maximum electric field in this

filament, and (b) what will be its resistance with that field? (c) What

will be the maximum potential drop over the full length of the filament?

5.1.3. The ammeter shown in Fig. 5.1 reads 3.0 A. Find (a) I1, (b) I3,

R1

R2

R3

E1

E2

+

+

−

−

I1

I3

A

Figure 5.1. Problem 5.1.3

and (c) E2. Use following values: R1 = 2.0 Ω, R2 = 6.0 Ω, R3 = 4.0 Ω

and E1 = 20.0 V.

5.1.4. In Europe the standard voltage in homes is 240 V instead

of the 120 V used in the United States. Therefore a “200-W” Euro-

pean bulb would be intended for use with a 240-V potential difference.
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(a) If you bring a “200-W” European bulb home to the United States,

what should be its U.S. power rating? (b) How much current will the

“200-W” European bulb draw in normal use in the United States?

5.1.5. A car owner forgets to turn off the headlights of his car while

it is parked in his garage. If the 12.0-V battery in his car is rated at

60.0 A·h and each headlight requires 20.0 W of power, how long will it

take the battery to discharge completely ?

Case 5.2

5.2.1. A rectangular solid of pure silicon measures

9 cm × 9 cm× 18 cm. Assuming that each of its faces is an equipo-

tential surface, what is the resistance between opposite faces that are

(a) farthest apart and (b) closest together?

5.2.2. When switch S in Fig. 5.2 is open, the voltmeter V of the

r

R

E
+ −

S

A

V

Figure 5.2. Problem 5.2.2

battery reads 9.00 V. When the switch is closed, the voltmeter reading

drops to 6.00 V, and the ammeter A reads 3.00 A. Find the emf, the

internal resistance of the battery r, and the circuit resistance R. Assume

that the two meters are ideal, so they don’t affect the circuit.

5.2.3. The heating element of an electric coffee maker operates at

220 V and carries a current of 3.0 A. Assuming the water absorbs all the

energy delivered to the resistor, calculate the time interval during which

the temperature of 1.1 kg of water rises from the room temperature
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(20◦C) to the boiling point. The specific heat is 4.2 J/(g·K).
5.2.4. A battery with E = 12.0 V and no internal resistance supplies

+
−
S

ba

ER1

R2

R2

R3

Figure 5.3. Problem 5.2.4

current to the circuit shown in Fig. 5.3. When the double-throw switch

S is open as shown in the figure, the current in the battery is 1.00 A.

When the switch is closed in position a, the current in the battery is

1.2 A. When the switch is closed in position b, the current in the battery

is 2.0 A. Find the resistances (a) R1, (b) R2, and (c) R3.

5.2.5. Taking E1 = 26.0 V, R2 = 9.0 Ω, R3 = 4.0 Ω, I2 = 2.0 A, and

E1

E2I2

I3

R1

R2

x
•

R3

−

−

+

+

Figure 5.4. Problem 5.2.5

I3 = 5.0 A, in the circuit shown in Fig. 5.4, find (a) the current in the

resistor R1; (b) the resistance R1; (c) the unknown emf E2. (d) If the

circuit is broken at point x, what is the current in the resistor R1?

Case 5.3

5.3.1. A certain waffle iron is rated at 3.00 kW when connected to a
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220-V source. (a) What current does the waffle iron carry? (b) What is

its resistance?

5.3.2. In the circuit of Fig. 5.5, each resistor represents a light bulb.

+

−

R1 R2 R3 R4

E

Figure 5.5. Problem 5.3.2

Let R1 = R2 = R3 = R4 = 3.00 Ω and E = 7.00 V. (a) Find the current

in each bulb. (b) Find the power dissipated in each bulb. Which bulb or

bulbs glow the brightest? (c) Bulb R4 is now removed from the circuit,

leaving a break in the wire at its position. Now what is the current in

each of the remaining bulbs R1, R2, and R3? (d) With the bulb R4

removed, what is the power dissipated in each of the remaining bulbs?

(e) Which light bulb(s) glow brighter as a result of removing R4? Which

bulb(s) glow less brightly? Discuss why there are different effects on

different bulbs.

5.3.3. Taking R1 = 5 Ω, R2 = 20 Ω, E1 = 3 V, and E2 = 6 V, in the

R1

R3

R2

E1

E2

I3

+

+

−

−
Figure 5.6. Problem 5.3.3

circuit shown in Fig. 5.6, (a) find the value of R3 that will give a current
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I3 of 0.1 A with the indicated direction. (b) Is there a value of R3 that

will give a current I3 with the same magnitude but opposite direction?

If so, what is it?

5.3.4. The current in a wire varies with time according to the rela-

tionship I = 17 A−(0.10 A/s2)t2. (a) How many coulombs of charge

pass a cross section of the wire in the time interval between t = 0 and

t = 10.0 s? (b) What constant current would transport the same charge

in the same time interval?

5.3.5. A material of resistivity ρ is formed into a solid truncated cone

r1

r2

h

Figure 5.7. Problem 5.3.5

of height h and radii r1, and r2 at either end (Fig. 5.7). (a) Calculate the

resistance of the cone between the two flat end faces. (Hint: Imagine

slicing the cone into very many thin disks, and calculate the resistance

of one such disk.) (b) Show that your result agrees with Eq. (5.6) when

r1 = r2.

Case 5.4

5.4.1. The capacity of a storage battery such as those used in au-
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tomobile electrical systems is rated in ampere-hours (A·h). A 50-A·h
battery can supply a current of 50 A for 1.0 h, or 25 A for 2.0 h, and

so on. (a) What total energy can be supplied by a 12-V, 90-A·h battery

if its internal resistance is negligible? (b) If a generator with an average

electrical power output of 1.00 kW is connected to the battery, how much

time will be required for it to charge the battery fully?

5.4.2. In the circuit shown in Fig. 5.8, the E1 battery is removed

r2

r1

E1

E2
+

+ −

−

R3 R4

a b

c

Figure 5.8. Problem 5.4.2

and reinserted with the opposite polarity, so that its negative terminal

is now next to point a. Taking E1 = 30.0 V, r1 = 10.0 Ω, E2 = 15.0 V,

r2 = 3.0 Ω, R3 = 2.0 Ω, and R4 = 18.0 Ω find (a) the current in the

circuit (magnitude and direction); (b) the terminal voltage Vab of the E1
battery; (c) the potential difference Vac of point a with respect to point

c. (d) Graph the potential rises and drops in this circuit.

5.4.3. A capacitor is charged to a potential of 9.0 V and is then

connected to a voltmeter having an internal resistance of 2.50 MΩ. After

a time of 3.00 s, the voltmeter reads 3.0 V. What are (a) the capacitance

and (b) the time constant of the circuit?

5.4.4. The potential difference across the terminals of a battery is

5.0 V when there is a current of 0.5 A in the battery from the negative to

the positive terminal. When the current is 1.7 A in the reverse direction,

the potential difference becomes 6.5 V. (a) What is the internal resistance
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of the battery? (b) What is the emf of the battery?

5.4.5. Two batteries with emf E1 = 6.0 V and E2 = 9.0 V are

R1

R3

R2

E1

E2

+

+

−

−
Figure 5.9. Problem 5.4.5

connected to resistors R1 = 300 Ω, R2 = 400 Ω, and R3 = 50 Ω in a

circuit as shown in a Fig. 5.9. (a) Calculate the power dissipated in the

resistor R3. (b) Assume that the terminals on E1 battery a reversed, and
repeat your calculation.

Case 5.5

5.5.1. The electron beam emerging from a certain high energy elec-

tron accelerator has a circular cross section of a radius 2.00 mm. (a) The

beam current is 15.00 μA. Find the current density in the beam assum-

ing that it is uniform throughout. (b) The speed of the electrons is so

close to the speed of light that their speed can be taken as 1.00 · 106 m/s

with a negligible error. Find the electron density in the beam. (c) Over

what time interval does Avogadro’s number of electrons emerge from the

accelerator?

5.5.2. A “300-W” electric heater is designed to operate from 220-

V lines. (a) What is its resistance? (b) What current does it draw?

(c) If the line voltage drops to 200 V, what power does the heater take?

(Assume that the resistance is constant. Actually, it will change because

of the change in temperature.) (d) The heater coils are metallic, so that

the resistance of the heater decreases with decreasing temperature. If
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the change of resistance with temperature is taken into account, will the

electrical power consumed by the heater be larger or smaller than what

you calculated in part (c)? Explain.

5.5.3. In a circuit shown in Fig. 5.10, find (a) the current in each

R3

E1

E2

+

+

−

−

R1

R2

I1

I2

I3

Figure 5.10. Problem 5.5.3

resistor and (b) the power delivered to each resistor. Take E1 = 10.0 V,

E2 = 6.0 V, R1 = 25.0 Ω, R2 = 10.0 Ω, and R3 = 15.0 Ω.

5.5.4. An emf source with E = 60 V, a resistor with R = 100.0 Ω,

and a capacitor with C = 12.0 μF are connected in series. As the

capacitor charges, when the current in the resistor is 0.2 A, what is the

magnitude of the charge on each plate of the capacitor?

5.5.5. Unlike the idealized ammeter, any real ammeter has a nonzero

resistance. (a) An ammeter with a resistance RA is connected in series

with a resistor R and a battery of an emf E and internal resistance r.

The current measured by the ammeter is IA. Find the current through

the circuit if the ammeter is removed so that the battery and the resistor

form a complete circuit. Express your answer in terms of IA r, RA, and

R. The more “ideal” the ammeter, the smaller the difference between

this current and the current IA. (b) If R = 5.00 Ω, E = 7.50 V, and

r = 0.3 Ω, find the maximum value of the ammeter resistance RA so

that IA is within 1.0% of the current in the circuit when the ammeter is

absent. (c) Explain why your answer in part (b) represents a maximum

value.
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Chapter 6

EFFECTS OF MAGNETIC FIELDS

E
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Equation Equation title Comments

1 2 3 4

6.1 �F = q �v× �B Magnetic force on

a moving charge q

�B is a magnetic field;

�v is velocity of the

charged particle

6.2 R =
mv

|q|B Radius of a circu-

lar path of the par-

ticle

m is a mass of the

particle

6.3 �ω = − q

m
�B Cyclotron angular

velocity

q/m is a spe-

cific charge of the

particle

6.4 d�F = I d��× �B Magnetic force on

a wire with current

I

d�� is an infinitesi-

mal element of the

wire length along

the current

6.5 �pm = �nIAenc Magnetic dipole

moment of a

current loop

Aenc is an area en-

closed by the loop;

�n is a unit vector of

normal to the plain

of the loop

6.6 �τ = �pm × �B Torque on a cur-

rent loop

�B is a uniform mag-

netic field
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6.7 Φm =
∫∫
A

�B · d�A Magnetic flux; see

also the equations

(2.1) and (2.3)

A is an arbitrary

surface

6.8 δW = I dΦm Work done by a

magnetic field on a

loop with current

I

dΦm is an infinitesi-

mal change of mag-

netic flux through

the surface attached

to the loop

Pre-Class Reading: [1], chap. 27; [2], chap. 28; [3], chap. 29.

Case 6.1

6.1.1. A particle with a charge of −1.2 · 10−8 C is moving with the

instantaneous velocity �v = (4.2 · 104 m/s)�i+ (−4.0 · 104 m/s)�j. What is

the force exerted on this particle by a magnetic field (a) �B = (1.50 T)�i

and (b) �B = (1.50 T)�k?

6.1.2. A particle with a charge 6.4 ·10−19 C travels in a circular orbit

with a radius 4.0 mm due to the force exerted on it by a magnetic field

with magnitude of 1.6 T and perpendicular to the orbit. (a) What is the

magnitude of the linear momentum �p of the particle? (b) What is the

magnitude of the angular momentum �L of the particle?

6.1.3. A particle with the initial velocity �v0 = (6.0·103 m/s)�j enters a

region of uniform electric and magnetic fields. The magnetic field in the

region is �B = −(1.2 T)�k. Calculate the magnitude and direction of the

electric field in the region if the particle is to pass through undeflected,

for a particle of charge (a) +0.640 nC and (b)−0.320 nC. You can ignore

the weight of the particle.

6.1.4. A proton moves with a velocity of �v = (�i − 2�j + �k) m/s in a

region in which the magnetic field is �B = (�i + 2�j − �k) T. What is the
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magnitude of the magnetic force this particle experiences?

6.1.5. A current of 15.7 mA is maintained in a single circular loop of

2.00 m circumference. A magnetic field of 0.800 T is directed parallel to

the plane of the loop. (a) Calculate the magnetic moment of the loop.

(b) What is the magnitude of the torque exerted by the magnetic field

on the loop?

Case 6.2

6.2.1. A particle of mass 0.195 g carries a charge of −2.50 · 10−8 C.

The particle is given an initial horizontal velocity that is due north and

has magnitude of 4.00 · 104 m/s. What are the magnitude and direction

of the minimum magnetic field that will keep the particle moving in the

Earth’s gravitational field in the same horizontal northward direction?

6.2.2. A 150−g ball containing 4.00 · 108 excess electrons is dropped
into a 125−m vertical shaft. At the bottom of the shaft, the ball suddenly

enters a uniform horizontal magnetic field that has magnitude of 0.250 T

and is directed from east to west. If the air resistance is negligibly small,

find the magnitude and direction of the force that this magnetic field

exerts on the ball just as it enters the field.

6.2.3. A straight vertical wire carries a current of 1.20 A down-

ward in a region between the poles of a large superconducting electro-

magnet, where the magnetic field is horizontal and has a magnitude of

B = 0.6 T. What are the magnitude and direction of the magnetic force

on a 1.00−cm section of the wire that is in this uniform magnetic field,

if the magnetic field direction is (a) east; (b) south; (c) 30.0◦ south of

west?

6.2.4. An electron moves in a circular path perpendicular to a uni-

form magnetic field with a magnitude of 1.80 mT. If the speed of the

electron is 1.60 · 107 m/s, determine (a) the radius of the circular path

and (b) the time interval required to complete one revolution.

6.2.5. A wire is formed into a circle having a diameter of 10.0 cm

and is placed in a uniform magnetic field of 2.00 mT. The wire carries a

current of 4.00 A. Find the maximum torque on the wire.
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Case 6.3

6.3.1. In a 1.25−T magnetic field directed vertically upward, a par-

ticle having a charge of a magnitude 8.0 μC and initially moving north-

ward at 5.0 km/s is deflected toward the east. (a) What is the sign of

the charge of this particle? Make a sketch to illustrate how you found

your answer. (b) Find the magnetic force on the particle.

6.3.2. A deuteron (the nucleus of an isotope of hydrogen) has a mass

of 3.34 · 10−27 kg and a charge of +e. The deuteron travels in a circular

path with a radius of 6.68 mm in a magnetic field with a magnitude of

2.50 T. (a) Find the speed of the deuteron. (b) Find the time required

for it to make half a revolution. (c) Through what potential difference

would the deuteron have to be accelerated to acquire this speed?

6.3.3. A horizontal rod 0.200 m long is mounted on a balance and

carries a current. At the location of the rod, a uniform horizontal mag-

netic field has the magnitude of 0.065 T and the direction perpendicular

to the rod. The magnetic force on the rod is measured by the balance

and is found to be 0.13 N. What is the current?

6.3.4. A cyclotron designed to accelerate protons has a magnetic field

of a magnitude 0.50 T over a region of radius 1.0 m. What are (a) the

cyclotron angular frequency and (b) the maximum speed acquired by

the protons?

6.3.5. A wire having a mass per unit length of 0.500 g/cm carries

a 2.00−A current horizontally to the south. What are (a) the direction

and (b) the magnitude of the minimum magnetic field needed to lift this

wire vertically upward?

Case 6.4

6.4.1. At a given instant, a particle with a mass of 1.8 · 10−3 kg and

a charge of 1.2 · 10−8 C has a velocity �v = (3.00 · 104 m/s)�j. What are

the magnitude and direction of the particle’s acceleration produced by a

uniform magnetic field �B = (1.65 T)�i + (0.980 T)�j ?

6.4.2. A singly charged ion of 7Li (an isotope of lithium) has a
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mass of 1.16 · 10−26 kg. It is accelerated through a potential difference

of 320 V and then enters a magnetic field with a magnitude of 0.5 T

perpendicular to the path of the ion. What is the radius of the ion’s

path in the magnetic field?

6.4.3. The plane of a 5.0 cm× 8.0 cm rectangular loop of wire is

parallel to a 0.2-T magnetic field. The loop carries a current of 6.4 A.

(a) What torque acts on the loop? (b) What is the magnetic moment of

the loop? (c) What is the maximum torque that can be obtained with

the same total length of wire carrying the same current in this magnetic

field?

6.4.4. A particle with a charge q and kinetic energy E
K
travels in

a uniform magnetic field of a magnitude B. If the particle moves in a

circular path of a radius R, find expressions for (a) its speed and (b) its

mass.

6.4.5. A singly charged ion of mass m is accelerated from rest by

a potential difference ΔV . It is then deflected by a uniform magnetic

field (perpendicular to the ion’s velocity) into a semicircle of a radius

R. Now a doubly charged ion of mass m′ is accelerated through the

same potential difference and deflected by the same magnetic field into

a semicircle of a radius R′ = 2R. What is the ratio of the masses of the

ions?

Case 6.5

6.5.1. An electron experiences a magnetic force of a magnitude

4.8 · 10−16 N when moving at an angle of 30◦ with respect to a mag-

netic field of a magnitude 4.0 · 10−3 T. Find the speed of the electron.

6.5.2. (a) What is the speed of a beam of electrons when the simul-

taneous influence of an electric field of 1.6 · 104 V/m and a magnetic

field of 5.0 · 10−3 T (with both fields normal to the beam and to each

other) produces no deflection of the electrons? (b) In a diagram, show

the relative orientation of the vectors �v, �E, and �B. (c) When the electric

field is removed, what is the radius of the electron orbit? What is the
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period of the orbit?

6.5.3. In the Bohr model of the hydrogen atom (see Section 38.5 [1])

in the lowest energy state, the electron orbits the proton at a speed of

2.188 · 106 m/s in a circular orbit of a radius 5.292 · 10−11 m. (a) What

is the orbital period of the electron? (b) If the orbiting electron is con-

sidered to be a current loop, what is the current I? (c) What is the

magnetic moment of the atom due to the motion of the electron?

6.5.4. The picture tube in an old black-and-white TV-set uses mag-

netic deflection coils rather than electric deflection plates. Suppose an

electron beam is accelerated through a 50.0-kV potential difference and

then through a region of uniform magnetic field 1.00 cm wide. The

screen is located 10.0 cm from the center of the coils and is 50.0 cm

wide. When the field is turned off, the electron beam hits the center

of the screen. Ignoring relativistic corrections, what field magnitude is

necessary to deflect the beam to the side of the screen?

6.5.5. A 100-turn circular coil of a radius 5.00 cm can be oriented in

any direction in a uniform magnetic field having a magnitude of 0.20 T. If

the coil carries a current of 40.0 mA, find the magnitude of the maximum

possible torque exerted on the coil.
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Chapter 7

SOURCES OF MAGNETIC FIELDS

E
q
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Equation Equation title Comments

1 2 3 4

7.1 �B =
μ0

4π

q�v× �r

r3
Magnetic field of

a charge q moving

with a velocity �v;

compare with the

equation (1.3)

μ0 is a magnetic

constant; �r is an

instantaneous posi-

tion vector with re-

spect to charge

7.2 d�B =
μ0

4π

I d��× �r

r3
Magnetic field of a

conductor element

with current I

(Biot–Savart law)

d�� is an infinitesi-

mal element of the

conductor length in

the direction of the

current

7.3 B =
μ0

2π

I

a
Magnetic field due

to a straight thin

infinite wire with

current I

a is a distance from

the wire

7.4
FB

�
=

μ0

2π

I1I2
d

Magnetic inter-

action force per

unit length be-

tween two parallel

infinite wires

I1 and I2 are cur-

rents through the

wires; d is a sepa-

ration distance be-

tween them
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1 2 3 4

7.5 B=
μ0

4π

I

a
(cos θi−cos θf) Magnetic field at

a point due to a

straight thin wire

of a finite length

with current I at

a distance a from

the wire

θi,f are angles be-

tween the direction

of the current and

the position vectors

of a point with re-

spect to the initial

and f inal points of

the conductor

7.6 �B =
μ0

2π

�pm

r3
Magnetic field on

the axis of a cur-

rent circular loop

with a magnetic

dipole moment �pm

at a distance x

from the plane of

the loop

pm = πIR2 where I

is a current through

the loop and R is a

radius of the loop;

r = (R2 + x2)1/2 is

a distance from the

loop to the point

7.7
∮
L

�B · d�� = μ0I
enc Ampere’s circu-

lation law for

magnetic field;

compare with the

equation (3.1)

Ienc is a net current

passing through a

surface enclosed by

the loop L

7.8 B =
μ0IN

2πr
Magnetic filed

inside a toroidal

solenoid

N is a number of

turns; r is a distance

from the center

7.9 B =
μ0IN

�
= μ0nI Magnetic filed in-

side a solenoid of

infinite length

n = N/� is a num-

ber of turns per unit

length
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1 2 3 4

7.10
∫∫
A

⊂⊃ �B · d�A = 0 Gauss’s law for

magnetic field;

compare with the

equation (2.4)

A is an arbitrary

closed surface

Pre-Class Reading: [1], chap. 28; [2], chap. 29; [3], chap. 30.

Case 7.1

7.1.1. Figure 7.1 shows, in cross section, several conductors that

a
b

c
d

�I1 ⊗I2

�I3

Figure 7.1. Problem 7.1.1

carry currents through the plane of the figure. The currents have the

magnitudes I1 = 4.0 A, I2 = 6.0 A, and I3 = 2.0 A, and the directions

shown. Four paths, labeled a through d, are given. What is the line

integral
∮
�B · d�� for each path? Each integral involves going around the

path in the counterclockwise direction. Explain your answers.

7.1.2. A +4.00-μC point charge is moving at a constant speed of

8.00 · 106 m/s in the +y-direction, relative to a reference frame. At the

instant when the point charge is at the origin of this reference frame,

what is the magnetic-field vector �B it produces at the following points:

(a) x = 0.50 m, y = 0, z = 0; (b) x = 0, y = −0.50 m, z = 0; (c) x = 0,
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y = 0, z = +0.50 m; (d) x = 0, y = −0.50 m, z = +0.50 m?

7.1.3. A very long, straight horizontal wire carries a current such

that 3.50 · 1018 electrons per second pass any given point going from

west to east. What are the magnitude and direction of the magnetic

field this wire produces at a point 4.00 cm directly above it?

7.1.4. Two long parallel wires carry currents of I1 = 4.0 A and

d

d

I1 I2

P

Figure 7.2. Problem 7.1.4

I2 = 6.0 A in the directions indicated in Fig. 7.2. (a) Find the magnitude

and direction of the magnetic field at a point midway between the wires.

(b) Find the magnitude and direction of the magnetic field at point P ,

located d = 20.0 cm above the wire carrying the 6.0-A current.

7.1.5. As a new electrical technician, you are designing a large

solenoid to produce a uniform 0.4 T magnetic field near the center of the

solenoid. You have enough wire for 5000 circular turns. This solenoid

must be 1.571 m long and 5.0 cm in diameter. What current will you

need to produce the necessary field?

Case 7.2

7.2.1. A −5.0-μC charge is moving at a constant speed of

4.0 · 105 m/s in the +x-direction relative to a reference frame. At the

instant when the point charge is at the origin, what is the magnetic-field

vector it produces at the following points: (a) x = 0.500 m, y = 0,

z = 0; (b) x = 0, y = 0.500 m, z = 0; (c) x = 0.500 m, y = 0.500 m,
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z = 0; (d) x = 0, y = 0, z = 0.500 m?

7.2.2. Two long, parallel transmission lines, 4.0 cm apart, carry

1.0-A and 3.0-A currents. Find all locations where the net magnetic field

of the two wires is zero if these currents are in (a) the same direction

and (b) the opposite direction.

7.2.3. A solid conductor with a radius a is supported by insulating

I

I

a

b

c

Figure 7.3. Problem 7.2.3 & 7.3.3

disks on the axis of a conducting tube with an inner radius b and an

outer radius c (Fig. 7.3). The central conductor and tube carry equal

currents I in opposite directions. The currents are distributed uniformly

over the cross sections of each conductor. Derive an expression for the

magnitude of the magnetic field (a) at points outside the central solid

conductor but inside the tube (a < r < b) and (b) at points outside the

tube (r > c).

7.2.4. Two long, parallel conductors, separated by 2.0 cm, carry cur-

rents in the same direction. The first wire carries a current

I1 = 1.00 A, and the second carries I2 = 5.00 A. (a) What is the

magnitude of the magnetic field created by I1 at the location of I2?

(b) What is the force per unit length exerted by I1 on I2? (c) What is

the magnitude of the magnetic field created by I2 at the location of I1?
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(d) What is the force per length exerted by I2 on I1?

7.2.5. Calculate the magnitude and direction of the magnetic field

P

R

I

Figure 7.4. Problem 7.2.5

at point P due to the current in the semicircular section of wire shown

in Fig. 7.4. (Hint: Does the current in the long straight section of the

wire produce any field at P ?)

Case 7.3

7.3.1.Calculate the magnitude of the magnetic field at a point 4.0 cm

from a long, thin conductor carrying a current of 5.0 A.

7.3.2. Four long parallel power lines carry 600 A currents each. A

(a) (b) (c)

�
�

�
⊗

�
� �

⊗ �
⊗⊗

�

Figure 7.5. Problem 7.3.2

cross-sectional diagram of these lines is a square, 12.0 cm on each side.

For each of the three cases shown in Fig. 7.5, calculate the magnetic field

at the center of the square.

7.3.3. A solid conductor with a radius a is supported by insulating

disks on the axis of a conducting tube with an inner radius b and an

outer radius c (Fig. 7.3). The central conductor and tube carry equal

currents I in the same directions. The currents are distributed uniformly

over the cross sections of each conductor. Derive an expression for the

magnitude of the magnetic field (a) at points outside the central solid

conductor but inside the tube (a < r < b) and (b) at points outside the
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tube (r > c).

7.3.4. The magnetic coils of a tokamak fusion reactor are in the

shape of a toroid having an inner radius of 0.900 m and an outer radius

of 1.60 m. The toroid has 800 turns of large-diameter wire, each of which

carries a current of 18.0 kA. Find the magnitude of the magnetic field

inside the toroid along (a) the inner radius and (b) the outer radius.

7.3.5. Two parallel wires separated by 2.00 cm attract to each other

with a force per unit length of 3.00 · 10−4 N/m. The current in one wire

is 4.00 A. (a) Find the current in the other wire. (b) Are the currents in

the same direction or in opposite directions? (c) What would happen if

the direction of one current were reversed and doubled?

Case 7.4

7.4.1. (a) A conducting loop in the shape of a square of an edge length

� I

Figure 7.6. Problem 7.4.1

� = 0.20 m carries a current I = 5.0 A as shown in Fig. 7.6. Calculate

the magnitude and direction of the magnetic field at the center of the

square. (b) If this conductor is reshaped to form a circular loop and

carries the same current, what is the value of the magnetic field at the

center?

7.4.2. Two long parallel wires are separated by a distance of 15 cm.

The force per unit length that each wire exerts on the other is

2.0 · 10−5 N/m, and the wires attract to each other. The current in

one wire is 3.0 A. (a) What is the current in the second wire? (b) Are
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the two currents in the same direction or in opposite directions?

7.4.3. A long straight cylindrical wire of a radius R = 10.0 cm carries

a current uniformly distributed over its cross section. At what location

is the magnetic field produced by this current equal to half of its largest

value? Consider points inside and outside the wire.

7.4.4. A plastic circular loop of a radius R and a positive charge

q is distributed uniformly around the circumference of the loop. The

loop is then rotated around its central axis, perpendicular to the plane

of the loop with angular speed ω. If the loop is in a region where there

is a uniform magnetic field �B directed parallel to the plane of the loop,

calculate the magnitude of the magnetic torque on the loop.

7.4.5. A long straight wire carries a current I . A right-angle bend

I
P

r

Figure 7.7. Problem 7.4.5

is made in the middle of the wire. The bend forms an arc of a circle of

radius r as shown in Fig. 7.7. Determine the magnetic field at point P ,

the center of the arc.

Case 7.5

7.5.1. A wooden ring whose mean diameter is 18.0 cm is wound with

a closely spaced toroidal winding of 900 turns. Compute the magnitude

of the magnetic field at the center of the cross section of the windings

when the current in the windings is 0.50 A.

7.5.2. A solenoid is designed to produce a magnetic field of 0.0314 T

at its center. It has a radius of 1.0 cm and a length of 50.0 cm, and

the wire can carry a maximum current of 25.0 A. (a) What minimum
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number of turns per unit length must the solenoid have? (b) What total

length of wire is required?

7.5.3. An infinitely long wire carrying a current I is bent at a right

I
P

x

Figure 7.8. Problem 7.5.3

angle as shown in Fig. 7.8. Determine the magnetic field at point P

located a distance x from the corner of the wire.

7.5.4. A current path shaped as shown in Fig. 7.9 produces a mag-

P θ

R

I

Figure 7.9. Problem 7.5.4

netic field at P , the center of the arc. If the arc subtends an angle of

θ = 1.0 rad and the radius of the arc is 0.5 m, what are the magnitude

and direction of the field produced at P if the current is 2.0 A?

7.5.5. Two long parallel wires are attracted to each other by a force

per unit length of 120 μN/m. One wire carries a current of 30.0 A to

the right and is located along the line y = 1.0 m. The second wire lies

along the x axis. Determine the value of y for the line in the plane of

the two wires along which the total magnetic field is zero.
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Chapter 8

FARADAY’S LAW

E
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Equation Equation title Comments

1 2 3 4

8.1 Ei = −dΦm

dt
EMF induced in a

closed conducting

loop (Faraday’s

law)

Φm is a magnetic

flux through the sur-

face attached to the

loop; see the equa-

tion (6.7)

8.2 Ei = BANω sin(ωt) EMF induced in

the coil with N

turns rotating in a

uniform magnetic

field B

A is an area en-

closed by the coil; ω

is an angular speed

of rotation

8.3 |E| =
∣∣∣(�v×�B

)
·��

∣∣∣ Motional emf

induced in a con-

ducting rod of

length � moving

with velocity

�v in a uniform

magnetic field �B

�� is a vector along

the rod with the

magnitude equal to

the rod’s length
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1 2 3 4

8.4
∮
L

�E · d�� =

= − d

dt

(∫∫
AL

�B·d�A
) General form of

Faraday’s law;

compare with the

equation (3.1)

�E is a nonconserva-

tive electric field; d��

is an element along

the closed loop L;

AL is a surface at-

tached to the loop

Pre-Class Reading: [1], chap. 29; [2], chap. 30; [3], chap. 31.

Case 8.1

8.1.1. A flat rectangular coil consisting of 100 turns measures 25 cm

by 20 cm. It is placed in a 0.5 T uniform magnetic field, with the plane of

the coil parallel to the field. In 0.25 s, it is rotated so that the plane of the

coil is perpendicular to the field. (a) What is the change in the magnetic

flux through the coil due to this rotation? (b) Find the magnitude of

the average emf induced in the coil during this rotation.

8.1.2. The current in Fig. 8.1 obeys the equation I(t) =
I0τ

2

t2 + τ 2
,

I

Figure 8.1. Problem 8.1.2

where τ in seconds. Find the direction (clockwise or counterclockwise)

of the current induced in the round coil for t > 0.

8.1.3. A 0.5-m length of wire is held in an east–to-west direction

and moves horizontally to the north with a speed of 2.0 m/s. In this
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region, the Earth’s magnetic field is of magnitude 60.0 μT and is directed

northward and 53.1◦ below the horizontal. (a) Calculate the magnitude

of the induced emf between the ends of the wire and (b) determine which

end is positive.

8.1.4. An electric generator in Fig. 8.2 was designed to produce a

NS

Figure 8.2. Problem 8.1.4

peak voltage of 157 V AC by rotating a 25-turn loop at 3000 rpm in a

constant magnetic field of 0.4 T. What is the area of the loop?

8.1.5. A solenoid of a radius R wound with n turns per unit length

carries a current given by I = I0e
−βt, where t is the time and β > 0.

What are the magnitude and direction of the induced electric field just

outside the solenoid?

Case 8.2

8.2.1. A closely wound search coil has an area of 2.50 cm2, 200 turns,

and a resistance of 60.0 Ω. It is connected to a charge-measuring instru-

ment whose resistance is 40.0 Ω. When the coil is rotated quickly from a

position parallel to a uniform magnetic field to a position perpendicular

to the field, the instrument indicates a charge of 5.0 · 10−5 C. What is

the magnitude of the field?

8.2.2. A generator produces 18.0 V when turning at 600 rpm. What

emf does it produce when turning at 800 rpm?

8.2.3. How fast (in m/s and km/h) would a 5.00-cm copper bar

have to move at right angles to a 0.750-T magnetic field to generate

1.50 V (the same as a AA battery) across its ends? Does this seem like
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a practical way to generate electricity?

8.2.4. The conducting rod ab shown in Fig. 8.3 makes a contact with

a c

b d

�Bl
�v

Figure 8.3. Problem 8.2.4

metal rails ac and bd separated by a distance l of 1.00 m. The apparatus

is in a uniform magnetic field of 0.750 T, perpendicular to the plane of

the figure. (a) Find the magnitude of the emf induced in the rod when

it is moving toward the left with a speed 8.00 m/s. (b) In what direction

does the current flow in the rod? (c) If the resistance of the circuit

abdc is 3.00 Ω (assumed to be constant), find the force (magnitude and

direction) required to keep the rod moving to the left with a constant

speed of 8.00 m/s. You can ignore friction. (d) Compare the rate at

which mechanical work is done by the force (Fv) with the rate at which

thermal energy is developed in the circuit (I2R).

8.2.5. A long thin solenoid has 1000 turns per meter and a radius

of 2.50 cm. The current in the solenoid is increasing at a uniform rate

of 50.0 A/s. What is the magnitude of the induced electric field at a

point near the center of the solenoid and (a) 1.00 cm from the axis of

the solenoid; (b) 3.14 cm from the axis of the solenoid?

Case 8.3

8.3.1. A 100-turn circular coil of wire has a diameter of 20.0 cm.

It is placed with its plain perpendicular to the direction of the Earth’s

magnetic field of 50.0 μT and then in 0.200 s is flipped 180◦. An average
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emf of what magnitude is generated in the coil?

8.3.2. The current in the long, straight wire AB shown in Fig. 8.4

i

drrA

a

bB

L

Figure 8.4. Problem 8.3.2

is downward and increases steadily at a rate di/dt. (a) At an instant

when the current is i, what are the magnitude and direction of the field
�B at a distance r to the right of the wire? (b) What is the magnetic

flux dΦm through the narrow shaded strip? (c) What is the total flux

through the loop? (d) What is the induced emf in the loop? (e) Evaluate

the numerical value of the induced emf if a = 14.5 cm, b = 39.5 cm,

L = 25.0 cm, and di/dt = 10.0 A/s.

8.3.3. The circuit shown in Fig. 8.5 has a resistance of 12.0 Ω and

�B

Figure 8.5. Problem 8.3.3

74



consumes 3.0 W of power; the rod has a width of 0.25 m between the

tracks and moves to the right at 4.0 m/s. What is the strength of the

magnetic field?

8.3.4. A long solenoid has n = 500 turns per meter and carries a

R

N

In

Figure 8.6. Problem 8.3.4

current given by I = I0 e
−t/τ , where I0 = 27.2 A and τ = 2.0 s. Inside

the solenoid and coaxial with it is a coil that has a radius of R = 5.00 cm

and consists of a total of N = 400 turns of fine wire (Fig. 8.6). What

emf is induced in the coil at t = 2.0 s?

8.3.5. A long thin solenoid has 500 turns per meter and a radius of

1.0 cm. The current in the solenoid is increasing at a uniform rate di/dt.

The induced electric field at a point near the center of the solenoid and

3.14 cm from its axis is 5.00 · 10−6 V/m. Calculate di/dt.

Case 8.4

8.4.1. A circular loop of a flexible iron wire has an initial circumfer-

ence of 199.0 cm, but its circumference decreases at a constant rate of

6.0 cm/s due to a tangential pull on the wire. The loop is in a constant

uniform magnetic field oriented perpendicular to the plane of the loop

and with the magnitude of 0.500 T. (a) Find the emf induced in the

loop at the instant when 7.0 s have passed. (b) Find the direction of the

induced current in the loop as viewed looking along the direction of the
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magnetic field.

8.4.2. An electromagnet produces a uniform magnetic field of

20.0 mT over a cross-sectional area of 0.1 m2. A coil having 400 turns

and a total resistance of 40.0 Ω is placed around the electromagnet. The

current in the electromagnet is then smoothly reduced until it reaches

zero in 10.0 ms. What is the current induced in the coil?

8.4.3. The coil in an electric generator rotated at 50 Hz has 50 turns

with an area of 2 · 10−2 m2. The magnetic field is 1.0 T. (a) What is the

maximum voltage? (b) What is voltage at t = 0.03 seconds?

8.4.4. A coil formed by wrapping 80 turns of wire in the shape of a

square is positioned in a magnetic field so that the normal to the plane of

the coil makes an angle of 60.0◦ with the direction of the field. When the

magnetic field is increased uniformly from 100 mT to 500 mT in 0.20 s,

the emf of magnitude 50.0 mV is induced in the coil. What is the total

length of the wire in the coil?

8.4.5. A long solenoid (Fig. 8.7) of a radius R = 5.0 cm and 200

I

R
R/2

2R

path 1

path 2

Figure 8.7. Problem 8.4.5

turns per meter carries an alternating current I = I0 sin(2πf t), where

I0 = 10.0 A and f = 50.0 Hz. What are the electric fields induced

at initial instant (t = 0) (a) within the solenoid at a distance R/2 and

(b) outside the solenoid at a distance 2R? [Hint: Apply Faraday’s law

to the two paths shown, and use symmetry.]
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Case 8.5

8.5.1. A circular loop of wire is in a region of a spatially uniform

�B

R

Figure 8.8. Problem 8.5.1

magnetic field, as shown in Fig. 8.8. The magnetic field is directed out

of the plane of the figure. Determine the direction (clockwise or counter-

clockwise) of the induced current in the loop when (a) �B is increasing;

(b) �B is decreasing; (c) �B is constant with a value B0. Explain your

reasoning.

8.5.2. A 25-turn circular coil of radius 2.0 cm and resistance 0.5 Ω

is placed in a magnetic field directed perpendicular to the plane of the

coil. The magnitude of the magnetic field varies in time according to the

expression B = 0.1 t + 0.04 t2, where B is in teslas and t is in seconds.

Calculate the current induced in the coil at t = 5.0 s.

8.5.3. The rotating loop in an AC generator is a square 1.0 cm on

each side. It is rotated at 50.0 Hz in a uniform field of 1.0 T. Calculate

(a) the flux through the loop as a function of time, (b) the emf induced

in the loop, (c) the current induced in the loop for a loop resistance of

2.00 Ω, (d) the power delivered to the loop, and (e) the torque that must

be exerted to rotate the loop.

8.5.4. The armature of a small generator consists of a flat square coil
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with 100 turns and sides with a length of 2.00 cm. The coil rotates in

a magnetic field of 0.025 T. What is the angular speed of the coil if the

maximum emf produced is 50.0 mV?

8.5.5. The uniform magnetic field of the electromagnet, with circular

R

path

�B

Figure 8.9. Problem 8.5.5

pole faces of a radius R0 = 4.0 cm, increases linearly from 0.9 T to

1.7 T in 6.0 ms. What is the emf induced around the path drawn in

Fig. 8.9 (looking down at north pole) that consists of quarter arcs at

radial distances R0/4 and R0/2, connected by radial lines? The path is

clockwise.
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Chapter 9

MAGNETIC FIELD IN A MEDIUM. INDUCTANCE

E
q
u
at
io
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

9.1 �M = lim
Vol→0

∑
�pmi

Vol
Magnetization

vector

�pmi is a magnetic

dipole moment of

an individual atom

(molecule) within

the spatial element

Vol

9.2 �H =
�B

μ0

− �M Magnetic intensity μ0 is a magnetic

constant

9.3
∮
L

�H · d�� = I
enc

cond
Ampere’s law for

magnetic inten-

sity; see also the

equation (7.7)

I
enc

cond
is a net con-

duction current en-

closed by the loop L

9.4 �M = κm
�H Definition of mag-

netic susceptibility

κm of a substance

Valid for non-

ferromagnetic

substances

9.5 μr = 1 + κm Definition of rela-

tive magnetic per-

meability of a sub-

stance

For vacuum μr ≡ 1,

κm ≡ 0; for air μr ≈
1, κm ≈ 0
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1 2 3 4

9.6 �B=μrμ0
�H=μr

�B0 Magnetic filed in a

uniform medium;

compare with the

equation (4.15)

�B0 is a magnetic

filed in vacuum cre-

ated by the same

system of conductiv-

ity currents

9.7 Esi = −L
dI

dt
Self-induced emf

in a closed circuit

L is an inductance

of the circuit

9.8 L =
NΦm

I
Inductance of a

coil with N turns

Φm is a magnetic

flux through the sin-

gle turn

9.9 L = μrμ0

N 2A

l
Inductance of a

long solenoid with

N turns

l and A are length

end cross-section

area, respectively

9.10 U
M
=

1

2
LI2 Magnetic field en-

ergy stored in an

inductor

I is a current

through the induc-

tor with inductance

L

9.11 u
M

=
�B · �H
2

=

=
μrμ0H

2

2
=

B2

2μrμ0

Magnetic filed

energy density;

compare with the

equation (4.18)

�B and �H are local

values of magnetic

field and mag-

netic intensity,

respectively

9.12 τ =
L

R
Relaxation time

(time constant) of

an RL-circuit

L and R are in-

ductance and resis-

tance of the circuit,

respectively
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1 2 3 4

9.13 I(t) = I0e
−t/τ Time dependence

for current decay

in an RL-circuit

I0 is an initial

current

9.14 I(t)=
E
R

(
1−e−t/τ

)
Time dependence

for current growth

in an RL-circuit

with emf E

R is the total resis-

tance of the circuit

Pre-Class Reading: [1], chap. 28.8 & 30; [2], chap. 31 & 32;

[3], chap. 30.6 & 32.

Case 9.1

9.1.1. A toroidal solenoid with 200 turns of wire and a mean radius

of 3.0 cm carries a current of 0.3 A. The relative permeability of the core

is 100. (a) What is the magnetic field in the core? (b) What part of the

magnetic field is due to atomic currents?

9.1.2. A permalloy magnet is 1.0 cm in diameter, 30 cm long, and

has the magnetization M = 1.5 · 104 A/m at its pole. How many turns

must an empty solenoid of the same dimensions have to give rise to the

same magnetic field if it carries a current of 7.5 A?

9.1.3. When the current in a toroidal solenoid changes at a rate of

0.025 A/s, the magnitude of the induced emf is 12.0 mV. When the

current equals 1.50 A, the average flux through each turn of the solenoid

is 0.003 Wb. How many turns does the solenoid have?

9.1.4. The magnetic field inside a superconducting solenoid is 4.0 T.

The solenoid has an inner radius of 3.2 cm and a length of 25.0 cm.

Determine (a) the magnetic energy density in the field and (b) the energy

stored in the magnetic field within the solenoid.

9.1.5. A 500-turn solenoid has a radius of 8.00 mm and an overall

length of 16.0 cm. (a) What is its inductance? (b) If the solenoid is
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connected in series with a 2.0-Ω resistor and a battery, what is the time

constant of the circuit?

Case 9.2

9.2.1. The current in the windings of a toroidal solenoid is 2.5 A.

There are 500 turns, and the mean radius is 25.00 cm. The toroidal

solenoid is filled with a magnetic material. The magnetic field inside the

windings is found to be 2.0 T. Calculate (a) the relative permeability

and (b) the magnetic susceptibility of the material that fills the toroid.

9.2.2. The Earth’s magnetic moment is about 1023 A·m2. If the

core, which is responsible for the magnetic moment, is about 20% of the

Earth’s volume, what would be the core’s magnetization? Assume the

Earth is a sphere with the radius of 6.4 · 103 km.

9.2.3. An air-filled toroidal solenoid has a mean radius of 15.0 cm

and a cross-sectional area of 4.00 cm2. When the current is 30 A, the

energy stored is 6.0 J. How many turns does the winding have?

9.2.4. A 24.0-V battery with a negligible internal resistance, a

45.0-Ω resistor, and a 0.9-mH inductor with negligible resistance are

all connected in series with an open switch. The switch is suddenly

closed. (a) How long after closing the switch will the current through

the inductor reach one-half of its maximum value? (b) How long after

closing the switch will the energy stored in the inductor reach one-half

of its maximum value?

9.2.5. In an RL-circuit connected to a 12-V battery, the current is

measured to be 0.25 A after 1.386 · 10−4 s, and 0.5 A after 20 s. What

are the values of R and L?

Case 9.3

9.3.1. A cylindrical rod of a radius 0.5 cm and 10.0 cm long, of

palladium (magnetic susceptibility κm = 8 · 10−4), is placed in and

aligned with a uniform magnetic field of 2.0 T. What is the magnetic

dipole moment of the rod?

9.3.2. An ideal cylindrical solenoid carrying a current of 0.1 A has
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a winding density of 10 turns/cm. If the core is filled with iron (κm =

= 4999) what is the energy density contained within the magnetic field?

9.3.3. At the instant when the current in an inductor increases at

a rate of 0.06 A/s, the magnitude of the self-induced emf is 0.015 V.

(a) What is the inductance of the inductor? (b) If the inductor is a

solenoid with 300 turns, what is the average magnetic flux through each

turn when the current is 0.48 A?

9.3.4. A solenoid 12.56 cm long and with a cross-sectional area of

0.5 cm2 contains 300 turns of wire and carries a current of 20.0 A. Calcu-

late: (a) the magnetic field in the solenoid; (b) the energy density in the

magnetic field if the solenoid is filled with air; (c) the total energy con-

tained in the coil’s magnetic field (assume the field is uniform); (d) the

inductance of the solenoid.

9.3.5. A series RL circuit with L = 2.0 mH and a series RC circuit

with C = 8.0 nF have equal time constants. If the two circuits contain

the same resistance R, (a) what is the value of R? (b) What is the time

constant?

Case 9.4

9.4.1. A thin toroidal coil of a total length 60.0 cm is wound with 1500

turns of wire. A current of 0.5 A flows through the wire. (a) What is the

magnitude of �B inside the torus if the core consists of a ferromagnetic

material of magnetic susceptibility κm = 2.0 · 103? (b) What is the

magnitude of �H?

9.4.2. A straight wire carries a current I = 10.0 A. (a) Find the

energy density in the surrounding magnetic field as a function of the

distance r from the wire. (b) At what distance from the wire does the

energy density equal that of a parallel-plate capacitor with a charge of

2.0 μC and a capacitance of 4.0 nF if the separation between the plates

is 2.0 mm?

9.4.3. On a clear day at a certain location, a 100-V/m vertical electric

field exists near the Earth’s surface. At the same place, the Earth’s

magnetic field has a magnitude of 60.0 μT. Compute the energy densities
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of (a) the electric field and (b) the magnetic field.

9.4.4. It is proposed to store 1.0 kW·h = 3.6 · 106 J of electrical

energy in a uniform magnetic field with a magnitude of 1.0 T. (a) What

volume (in vacuum) must the magnetic field occupy to store this amount

of energy? (b) If instead this amount of energy is to be stored in a volume

(in vacuum) equivalent to a cube 1.0 m on a side, what magnetic field is

required?

9.4.5. A toroidal solenoid of a rectangular cross section with width

w, height h, and inner radius R is wound with N uniformly spaced

turns of wire. The toroid is wound on a nonmagnetic core. (a) Find

a magnetic flux through each turn of the toroid if there is a current I

in the coil. Do not assume the field is uniform over the cross section.

(b) Find the inductance of the toroid. (c) Show that your result for

part (b) agrees with Eq. (9.9) for inductance of a long solenoid under

assumption R � w. Use the approximation ln(1 + z) ≈ z, that is valid

for z � 1. (d) Compute the inductance of a 1000-turn toroid for which

R = 8.0 cm, w = 4.0 cm, and h = 4.0 cm.

Case 9.5

9.5.1. The coil of a solenoid wound with a turn density of

30 turns/cm is tilled with a material of unknown magnetic susceptibility

κm. When the wire carries 0.5 A, the magnetic field within is 1.885 T.

What is κm?

9.5.2. (a) What is the magnetic field energy density inside a straight

wire of a radius a that carries current I uniformly over its area?

(b) What is the total magnetic field energy per unit length inside the

wire? Calculate value in part (b) for 2.0-A current.

9.5.3. A 20.0-Ω resistor and a coil are connected in series with a 12.0-

V battery with negligible internal resistance and a closed switch. (a) At

1.00 ms after the switch is opened, the current has decayed to 0.3 A.

Calculate the inductance of the coil. (b) Calculate the time constant of

the circuit. (c) How long after the switch is closed will the current reach
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5.0% of its original value?

9.5.4. Calculate the energy associated with the magnetic field of a

200-turn solenoid in which a current of 1.6 A produces a magnetic flux

of 3.2 · 10−4 Wb in each turn.

9.5.5. A solenoid of a radius 4.0 cm has 250 turns and is 0.4 m long.

Find (a) its inductance and (b) the rate at which current must change

through it to produce an emf of 50.0 mV.
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Chapter 10

ELECTRICAL OSCILLATIONS AND AC CIRCUITS

E
q
u
at
io
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

10.1 −L
dI

dt
=

q

C
Differential equa-

tion for free

undamped os-

cillations in an

LC-circuit

L and C are in-

ductance and capac-

itance of the circuit,

respectively

10.2 ω0 =
1√
LC

Angular frequency

of undamped oscil-

lations in an LC-

circuit

T = 2π
√
LC is a

period of undamped

oscillations in an

LC-circuit

10.3 q(t)=qmcos(ω0t+ϕ0) Time dependence

of charge for sim-

ple harmonic oscil-

lations

qm is a maximum

(amplitude) value

of charge; ϕ0 is

an initial phase of

oscillations

10.4 L
dI

dt
+RI +

q

C
= 0 Differential equa-

tion of free oscilla-

tions in an RLC-

circuit

R is a resistance of a

circuit
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1 2 3 4

10.5 q(t) = qmaxe
−βt×

× cos(ω
d
t + ϕ0)

Time dependence

of charge for un-

derdamped oscilla-

tions

β =
R

2L
is a

damping coefficient;

ω
d

=
√
ω2

0
− β2

is an angular fre-

quency of damped

oscillations

10.6 R = 2

√
L

C
Condition for crit-

ical damping

√
L

C
is a wave

resistance

10.7 L
dI

dt
+ RI +

q

C
=

= Emax sin(ωt)

Differential equa-

tion of driven os-

cillations

Emax is an amplitude

of a driving emf; ω is

a driven frequency

10.8 X
L
= ωL Inductive reac-

tance

L is an inductance

of the circuit

10.9 X
C
=

1

ωC
Capacitive reac-

tance

C is a capacitance of

the circuit

10.10 Z=
√

R2+(X
L
−X

C
)2 Impedance of an

RLC-circuit

R is a resistance of a

circuit

10.11 φ=arctan

(
X

L
−X

C

R

)
Phase shift be-

tween current and

voltage

cosφ =
R

Z
,

sinφ =
X

L
−X

C

Z

10.12 I(t)=
Emax

Z
sin(ωt−φ) AC current in an

RLC-circuit

“Ohm’s law” for

AC-current
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1 2 3 4

10.13 Vrms = Emax/
√
2

Irms = Vrms/Z

Effective voltage

and current in AC

circuit

Root mean-square

values

10.14 Pav=IrmsVrms cosφ Average power in

AC circuit

φ is a current-

voltage phase shift;

cosφ is a power

factor

10.15 ω0 =
1√
LC

Resonant fre-

quency of an

RLC-circuit

L and C are in-

ductance and capac-

itance of the circuit,

respectively

10.16 Q =
ω0

Δω
=

√
L/C

R
Q-factor of an

RLC-circuit

Δω is the band-

width (a width of

the peak at half-

power)

10.17
V2

V1
=

I1
I2

=
N2

N1
Transformer equa-

tion. V1 (I1)

and V2 (I2) are

the voltages across

(currents through)

the primary and

secondary coil, re-

spectively

N1 and N2 are the

numbers of turns

in the primary

and secondary coil,

respectively

Pre-Class Reading: [1], chap. 31; [2], chap. 33; [3], chap. 33.
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Case 10.1

10.1.1. A 7.50-nF capacitor is charged up to 12.0 V, then discon-

nected from the power supply and connected in series through a coil. The

period of oscillation of the circuit is then measured to be 6.28 · 10−5 s.

Calculate: (a) the inductance of the coil; (b) the maximum charge on the

capacitor; (c) the total energy of the circuit; (d) the maximum current

in the circuit.

10.1.2. An RLC-circuit is composed of a resistor R = 1.00 Ω, an

inductor L = 2.00 mH, and a capacitor C = 8.00 nF, all arranged

in series. What is the angular frequency of current oscillations in this

circuit?

10.1.3. A series AC circuit contains a resistor, an inductor of 150 mH,

a capacitor of 5.00 μF, and a source with the amplitude voltage of

240 V operating at 50.0 Hz. The maximum current in the circuit is

100 mA. Calculate (a) the inductive reactance, (b) the capacitive reac-

tance, (c) the impedance, (d) the resistance in the circuit, and (e) the

phase angle between the current and the source voltage.

10.1.4. The power of a certain CD player operating at 240 V rms

is 40.0 W. Assuming that the CD player behaves like a pure resistance,

find (a) the maximum instantaneous power; (b) the rms current; (c) the

resistance of this player.

10.1.5. A 16-μF capacitor is connected in series with a coil which

resistance is 30 Ω and which inductance can be varied. The circuit is

connected across a 12-V, 50-Hz generator. What is the potential differ-

ence across the inductor-resistor combination when the frequency is the

resonant frequency?

Case 10.2

10.2.1. A 1.00-μF capacitor is charged by a 40.0-V power supply.

The fully charged capacitor is then discharged through a 10.0-mH in-

ductor. Find the maximum current in the resulting oscillations.

10.2.2. An RLC-circuit has L = 0.8 H, C = 20 μF, and resis-
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tance R. (a) What is the angular frequency of the circuit when R = 0?

(b) What value must R have to give a 50.0% decrease in angular fre-

quency compared to the value calculated in part (a)?

10.2.3. A serious RLC-circuit of frequency 50 Hz has maximum

current of 94.2 mA. (a) What is the maximum charge on the capacitor?

(b) If the impedance is 50 Ω, what is the emf?

10.2.4. The primary coil of a transformer has N1 = 340 turns, and

the secondary coil has N2 = 1414 turns. If the input voltage across the

primary coil is E = 170 cosωt, where E is in volts and t is in seconds,

what rms voltage is developed across the secondary coil?

10.2.5. In an RLC-series circuit, R = 500 Ω, L = 0.5 mH, and

C = 20.0 nF. When the AC source operates at the resonance frequency

of the circuit, the current amplitude is 0.3 A. (a) What is the voltage

amplitude of the source? (b) What is the amplitude of the voltage across

the resistor, across the inductor, and across the capacitor? (c) What is

the average power supplied by the source?

Case 10.3

10.3.1. Design an LC circuit (give values for L and C) that has an

angular frequency of 2.5 · 104 rad/s and a stored energy of 0.1 mJ. The

maximum voltage drop across the capacitor must be 10.0 V.

10.3.2. Consider an LC circuit in whichL = 0.25 H andC = 160 nF.

(a) What is the resonance angular frequency ω0? (b) If a resistance of

500 Ω is introduced into this circuit, what is the frequency of damped

oscillations? (c) By what percentage does the frequency of the damped

oscillations differ from the resonance frequency?

10.3.3. You have a 80-Ω resistor, a 0.04-H inductor, a 25.0-μF capac-

itor, and a variable-frequency AC source with an amplitude of 12.0 V.

You connect all four elements together to form a series circuit. (a) At

what angular frequency will the current in the circuit be the greatest?

What will be the current amplitude at this frequency? (b) What will

be the current amplitude at an angular frequency of 500 rad/s? At this
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frequency, will the source voltage lead or lag the current?

10.3.4. When a coil draws 200 W from a Vrms = 110-V, 60-Hz line,

the power factor is 0.600. (a) If the same coil with a capacitor added

in series is to draw the same power from a Vrms = 220-V, 60-Hz line,

what must the capacitance be? (b) If the aim were to maintain the same

power factor rather than the same rms power, how would your answer

change?

10.3.5. A 10.0-Ω resistor, 10.0-mH inductor, and 100-μF capacitor

are connected in series to a 50.0-V (rms) source having variable frequency.

If the operating frequency is twice the resonance frequency, find the

energy delivered to the circuit during one period.

Case 10.4

10.4.1. An LC circuit containing an 125.00-mH inductor and a

0.80-nF capacitor oscillates with a maximum current of 2.00 A. Cal-

culate: (a) the maximum charge on the capacitor and (b) the angular

frequency of the circuit. (c) Assuming the capacitor had its maximum

charge at time t = 0, calculate the energy stored in the inductor after

15.71 μs of oscillation.

10.4.2. Consider an RLC-circuit at critical damping, with

L = 60 mH. What is the value of R if the current decays by 2 per-

cent in 15.0 ms?

10.4.3. In an RLC series circuit that includes a source of alternating

current operating at fixed frequency and voltage, the resistanceR is equal

to the inductive reactance. If the plate separation of the parallel-plate

capacitor is reduced to one-half its original value, the current in the

circuit doubles. Find the initial capacitive reactance in terms of R.

10.4.4. You plan to take your hair blower to the United States where

the electrical outlets put out 120 V instead of the 240 V seen in Europe.

The blower puts out 1600 W at 240 V. (a) What could you do to operate

your blower via the 120-V line in US? (b) What current will your blower

draw from a US outlet? (c) What resistance will your blower appear to
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have when operated at 120 V?

10.4.5. A radar transmitter contains an LC circuit oscillating at

1.00 ·1010 Hz. (a) For a one-turn loop having an inductance of 250 pH to

resonate at this frequency, what capacitance is required in series with the

loop? (b) The capacitor has square parallel plates separated by 1.00 mm

of air. What should the edge length of the plates be? (c) What is the

common reactance of the loop and capacitor at resonance?

Case 10.5

10.5.1. An LC-circuit oscillates with an angular frequency of

5.0 · 104 rad/s. When a second capacitor is inserted in series with the

original one, the angular frequency becomes 6.0 ·104 rad/s. If the capac-
itors are replaced by a resistor of 0.01 Ω, the current drops to 1/2 of its

initial value in 6.93 ms. What are the values of the two capacitors and

of the inductance L?

10.5.2. Consider an RLC series circuit with a 0.40-H inductor, a

2.50-μF capacitor, and a 200-Ω resistor. The source has terminal rms

voltage Vrms = 100.0 V and variable angular frequency ω. (a) What

is the resonance angular frequency ω0 of the circuit? (b) What is the

rms current through the circuit at resonance, Irms−0? (c) For what two

values of the angular frequency, ω1 and ω2, is the rms current half the

resonance value? (d) The quantity |ω1−ω2| defines the resonance width.
Calculate Irms−0 and the resonance width for (i) R = 20.0 Ω, (ii) 2.0 Ω,

and (ii) 0.2 Ω.

10.5.3. (a) At what angular frequency does the voltage amplitude

across the resistor in an RLC series circuit reach its maximum value?

(b) At what angular frequency does the voltage amplitude across the

capacitor reach its maximum value? (c) At what angular frequency does

the voltage amplitude across the inductor reach its maximum value?

10.5.4. House current, which has an rms voltage of 220 V and fre-

quency of 50 Hz, drives a resistor of variable resistance set at R = 100 Ω,

a capacitor of fixed capacitance C = 10 μF, and an inductor of variable

inductance, connected in series. (a) What is the power absorbed by the
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circuit if L = 10 mH? (b) What power would be drawn if the resistance

were halved without changing the setting of the inductance? (c) What

is the maximum power drawn in part (a)?

10.5.5. A voltage E = 50 sinωt, where E is in volts and t is in

seconds, is applied across a series combination of a 0.10-H inductor, a

10.0-μF capacitor, and a 10.0-Ω resistor. (a) Determine the angular fre-

quency ω0 at which the power delivered to the resistor is a maximum.

(b) Calculate the average power delivered at that frequency. (c) Deter-

mine two angular frequencies ω1 and ω2 at which the power is one-half

the maximum value. (d) Determine theQ-factor of the circuit. Note: the

Q-factor of the circuit is
ω0

|ω2 − ω1|.
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Chapter 11

MAXWELL’S EQUATIONS.

ELECTROMAGNETIC WAVES

E
q
u
at
io
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

11.1
∮
L

�H · d�� = I
enc

cond
+

+
d

dt

(∫∫
AL

�D · d�A
) Ampere’s law

with Maxwell’s

displacement cur-

rent; see also the

equations (7.7)

and (9.3)

�H is a magnetic in-

tensity; I
enc

cond
is a

net conduction cur-

rent passing through

a surface AL en-

closed by the loop L

11.2 �j
D
=

∂�D

∂t
Displacement cur-

rent density

�D is an electric filed

displacement vector

11.3 div �D = ρ
free

div �B = 0

rot�E = −∂�B

∂t

rot �H =�j
cond

+
∂�D

∂t

Maxwell’s equa-

tions in differential

form; for integral

form, check

the equations

(4.12), (7.10),

(8.4), and (11.1)

�E and �B are electric

and magnetic fields,

respectively; ρ
free

is

a volume density of

free charge; �j
cond

is a

conduction current

density; see details

for div and rot in

Appendix

94



1 2 3 4

11.4 �D = εrε0
�E

�B = μrμ0
�H

�j
cond

= σ �E

Constitutive rela-

tions; see also the

equations (4.11),

(9.2), and (5.2)

εr and μr are rel-

ative permittivity

and permeability

of the substance,

respectively; σ is a

conductivity

11.5 �F=q
(
�E + �v×�B

)
Force exerted by

an electromag-

netic field on a

point charge q

(Lorentz force)

�v is velocity of the

charged particle; see

also the equations

(1.2) and (6.1)

11.6
∂2�E

∂t2
=

1

εrε0μrμ0

Δ�E

∂2�H

∂t2
=

1

εrε0μrμ0

Δ�H

Wave equations

for �E and �H fields

in 3D case

Δ = ∇2 = �∇ · �∇
is a Laplace oper-

ator (seeAppendix

for details)

11.7
∂2�E

∂t2
= v2

∂2�E

∂x2
Wave equation of a

plane wave propa-

gating along x axis

v =
1√

εrε0μrμ0

is

a propagation speed

of the electromag-

netic wave

11.8 c =
1√
μ0ε0

Speed of electro-

magnetic (EM)

wave in vacuum

Speed of light in

vacuum

11.9 n =
c

v
=
√
μrεr Refractive index of

the substance

v is a speed of elec-

tromagnetic wave in

the substance
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1 2 3 4

11.10 �E = �B× �v
�H = �v× �D

Instantaneous

electric and mag-

netic fields in an

EM wave

�v is a propagation

velocity of the elec-

tromagnetic wave

11.11 u
EMW

=�E· �D=�B· �H Energy density in

a propagating elec-

tromagnetic wave

Energy stored by

the electromagnetic

wave in a unit vol-

ume; see also the

equations (4.18) and

(9.11)

11.12 �S=u
EMW

�v = �E× �H Energy flux den-

sity of an elec-

tromagnetic wave

(Poynting vector)

Power delivered by

the wave per unit

area perpendicular

to the direction of

propagation

11.13 E = E0 cos(kx−ωt)

B = B0 cos(kx−ωt)

Electric and mag-

netic fields in a

plane harmonic

wave propagating

in +x direction

k and ω are wave

number and an-

gular frequency,

respectively

11.14 v =
c

n
=

ω

k
= λf Propagation speed

of a harmonic

wave

λ = 2π
k is a wave-

length; f = ω
2π is

a frequency of the

wave

11.15 I = 〈|�S|〉 Intensity of an

electromagnetic

wave

Average power de-

livered by the wave

per unit area

Pre-Class Reading: [1], chap.29.7&32; [2], chap.29.5&34; [3], chap.34.
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Case 11.1

11.1.1. A dielectric with permittivity constant 3.95 completely fills

the volume between two capacitor plates. For t > 0, the electric flux

through the dielectric is (8.0 · 103 V·m/s3)t3. The dielectric is ideal and

nonmagnetic; the conduction current in the dielectric is zero. At what

time does the displacement current in the dielectric equal 21 μA?

11.1.2. A 0.400-A current is charging a capacitor that has circular

plates 20.0 cm in radius. If the plate separation is 1.00 mm, (a) what is

the time rate of the electric field increase between the plates? (b) What

is the magnetic field between the plates 2.00 cm from the center?

11.1.3. The electric field of a sinusoidal electromagnetic wave obeys

the equation

E = −(375 V/m) sin
[
(6.28 · 1015 rad/s)t + (2.094 · 107 rad/m)x

]
.

(a) What are the amplitudes of the electric and magnetic fields of this

wave? (b) What are the frequency, wavelength, and period of the wave?

Is this light visible to humans? (c) What is the speed of the wave?

11.1.4. A sinusoidal electromagnetic wave is propagating in a vacuum

in the −y-direction. If at a particular instant and at a certain point in

space the electric field is in the +z-direction and has a magnitude of

4.50 V/m, what are the magnitude and direction of the magnetic field

of the wave at this same point in space and instant in time?

11.1.5. In a region of free space, the electric field at an instant of time

is �E = (1�i + 3�j + 4�k) V/m and the magnetic field is
�H = (1�i+5�j− 4�k) A/m. (a) Show that the two fields are perpendicular

to each other. (b) Determine the Poynting vector for these fields.

Case 11.2

11.2.1. The electric flux through a certain area of a dielectric is

(5.0 · 103 V·m/s4)t4. The displacement current through this area is

8.85 pA at a time t = 20.0 ms. Calculate the dielectric permittivity
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constant for the dielectric.

11.2.2. Consider the situation shown in Fig. 11.1. An electric field

d

r

P

�E

Figure 11.1. Problem 11.2.2

of 500 V/m is confined to a circular area d = 10.0 cm in diameter and

directed toward perpendicular to the plane of the figure. If the field

is increasing at a rate of 36.0 V/(m·s), what are (a) the direction and

(b) the magnitude of the magnetic field at the point P , r = 20.0 cm

from the center of the circle?

11.2.3. At a certain location on the Earth, the rms value of the

magnetic field caused by solar radiation is 1.20 μT. From this value,

calculate (a) the rms electric field due to solar radiation, (b) the average

energy density of the solar component of electromagnetic radiation at

this location, and (c) the average magnitude of the Poynting vector for

the Sun radiation.

11.2.4. An electromagnetic wave has an electric field given by
�E(x, t) = (3.0 · 105 V/m)�j sin

[
kx − (12π · 1014 rad/s)t

]
. (a) In which

direction is the wave traveling? (b) What is the wavelength of the wave?

(c) Write the vector equation for �B(y, t).

11.2.5. In SI units, the electric field in an electromagnetic wave is

described by Ey = 300 sin(3.14 · 107x− ωt). Find (a) the amplitude of

the corresponding magnetic field oscillations, (b) the wavelength λ, and

(c) the frequency f .
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Case 11.3

11.3.1. A sinusoidal electromagnetic wave having a magnetic field

of amplitude 5.0 μT and a wavelength of 0.5 μm is traveling in the

+x-direction through the empty space. (a) What is the frequency of

this wave? (b) What is the amplitude of the associated electric field?

(c) Write the equations for the electric and magnetic fields as functions

of x and t in the form of Eqs. (11.13).

11.3.2. An electromagnetic wave has a magnetic field given by
�B(z, t) = (6.0 · 10−9 T)�j sin

[
(1.57 · 104 rad/m)z + ωt

]
. (a) In which

direction is the wave traveling? (b) What is the frequency f of the

wave? (c) Write the vector equation for �E(z, t).

11.3.3. A parallel-plate air-filled capacitor is being charged as in

r

R

ic ic

+q −q

�E

�B

Figure 11.2. Problem 11.3.3 & 11.4.1

Fig. 11.2. The circular plates have a radius of 4.00 cm, and at a particular

instant, the conduction current in the wires is 0.280 A. (a) What is the

displacement current density j
D
in the air space between the plates?

(b) What is the rate at which the electric field between the plates is

changing? What is the induced magnetic field between the plates at a
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distance (c) of 2.00 cm from the axis; (d) of 1.00 cm from the axis?

11.3.4. Why is the following situation impossible? An electromag-

netic wave travels through empty space with electric and magnetic fields

described by:

E = 1.5 · 104 cos [(5.0 · 106)x− (2.0 · 1015)t],
B = 5.0 · 10−5 cos

[
(5.0 · 106)x− (2.0 · 1015)t],

where all numerical values and variables are in SI units.

11.3.5. Important news are transmitted by radio waves to people

sitting next to their radios 150 km from the station and by sound waves

to people sitting across the newsroom 3.3 m from the newscaster. Taking

the speed of sound in air to be 330 m/s, who receives the news first?

Explain.

Case 11.4

11.4.1. Suppose that the parallel plates in Fig. 11.2 have an area of

2.00 cm2 and are separated by a 8.85-mm-thick sheet of dielectric that

completely fills the volume between the plates. The dielectric has dielec-

tric constant 5.0. (You can ignore fringing effects.) At a certain instant,

the potential difference between the plates is 50 V and the conduction

current ic equals 7.00 mA. At this instant, what are (a) the charge q

on each plate; (b) the rate of change of charge on the plates; (c) the

displacement current in the dielectric?

11.4.2. An electromagnetic wave of wavelength 400 nm is traveling

in vacuum in the −y-direction. The electric field has amplitude of 1.50 ·
10−3 V/m and is parallel to the z-axis. What are (a) the frequency

and (b) the magnetic-field amplitude? (c) Write the vector equations for
�E(y, t) and �B(y, t).

11.4.3. An electromagnetic wave with frequency 100.0 Hz travels

in an insulating magnetic material that has dielectric constant 10.0 and

relative permeability 2.5 at this frequency. The electric field has an

amplitude of 3.0 · 10−3 V/m. (a) What is the speed of propagation of

the wave? (b) What is the wavelength of the wave? (c) What is the
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amplitude of the magnetic field? (d) What is the intensity of the wave?

11.4.4. If the intensity of sunlight at the Earth’s surface under a

fairly clear sky is 999 W/m2, how much electromagnetic energy per cubic

meter is contained in sunlight?

11.4.5. In 1965, Arno Penzias and Robert Wilson discovered the

cosmic microwave radiation left over from the big bang expansion of the

Universe. Suppose the energy density of this background radiation is

4.00·10−14 J/m3. Determine the corresponding magnetic field amplitude.

Case 11.5

11.5.1. A 26.55-mA current is charging a capacitor that has square

plates 15.0 cm on each side. The plate separation is 2.00 mm. Find

(a) the time rate of change of electric flux between the plates and (b) the

displacement current between the plates.

11.5.2. At the upper surface of the Earth’s atmosphere the time

averaged magnitude of the Poynting vector is referred to as the solar

constant and is given by 〈|�S|〉 = 1.35 kW/m2. If you assume that the

Sun’s electromagnetic radiation is a plane sinusoidal wave, what are the

magnitudes of (a) the electric and (b) magnetic fields?

11.5.3. Consider each of the following electric and magnetic-field

orientations. In each case, what is the direction of propagation of the

wave? (a) �E = E�i, �B = −B�j; (b) �E = E�j, �B = B�i; (c) �E = −E�k,
�B = −B�i; (d) �E = E�i, �B = −B�k.

11.5.4. What is the average magnitude of the Poynting vector 1.0 km

from a radio transmitter broadcasting isotropically (equally in all direc-

tions) with an average power of 100 kW?

11.5.5. Assume the intensity of solar radiation incident on the cloud

tops of the Earth is 1350 W/m2. Taking the average Earth–Sun sep-

aration to be 150 · 106 km, calculate the total power radiated by the

Sun.
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ANSWERS

Chapter 1

1.1.1 375 m

1.1.2 a) �p||�E b) if �p ↑↑ �E,

then the orientation is stable; if

�p ↑↓ �E ⇒ unstable

1.1.3 a) 5.00 · 106 N/C
b) 8.35 · 10−9 s

1.1.4 a) �E(i) = 35 �j N/C,
�E(ii) = −45 �j N/C, �E(iii) = 0

b) �F(i) = −5.6 · 10−18 �j N,
�F(ii) = 7.2 · 10−18 �j N, �E(iii) = 0

1.1.5 Ex = 2k
C

q

πa2
, Ey = 0

1.2.1 b) Fx = 2k
C

qQa

(y2 + a2)3/2
,

Fy = 0 c) 2k
C

qQ

a2

1.2.2 a)
−k

C
q�j

y(y +a)
b)

−k
C
qQ�j

y(y +a)
1.2.3 a) 0.91 N/C b) no,

2.72 μm above midpoint

1.2.4 a) 0.90 N, along the dipole

from the negative toward the pos-

itive charge b) 7.79 · 10−3 N·m,

clockwise

1.2.5 a) 9 · 1019 N
b) 3.91 · 1023 m/s2 c) no

1.3.1 +1.00 nC

1.3.2 a) 3600 �i N/C

b) −18.0 · 10−3�i N

1.3.3 a) −�i b)
�i−�j√

2
c) 0.8�i + 0.6�j

1.3.4 a) 2.0 · 10−10 C·m from q2
toward q1 b) 80.0 N/C

1.3.5 a) d

√
mg

k
C

d√
4R2 − d2

b) ≈ 1 μC

1.4.1 2.25 · 10−9 N/m

1.4.2 b) 7.07 μC c) 67◦

1.4.3 a) 8.64 · 104 N/C
b) 104 N/C c) 270 N/C

d) 1.15 · 105 N/C
1.4.4 2 · 106 N/C
1.4.5 a) Ey =

2k
C
λa

y
√

y2 + a2

b) Ey =
2k

C
λ

y

1.5.1 q1 = q2 =
1

2
q

1.5.2 3.0 · 10−7 N·m
1.5.3 105 N/C

1.5.4 k
C

q

l2

(
1−

√
2

2

)

1.5.5 a) �E = 99.50�i N/C
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c) smaller

Chapter 2

2.1.1 a) 1.0 N·m2/C

2.1.2 a) 0 b) 6.75 · 105 N/C
c) 3.00 · 105 N/C
2.1.3 2.25 · 109
2.1.4 a) 2.00 · 103 N·m2/C b) 0

c) 300�i N/C

2.1.5 a) 6·10−2 N, toward the cen-

ter of the shell b) 0

2.2.1 a) 1.31 · 105 N·m2/C

b) 1.00 · 10−6 C

2.2.2 a) 6.37 · 10−5 C/m3

b) 2.40 · 104 N/C
2.2.3 5.0 · 10−8 C/m2

2.2.4 a)
2k

C
λ

r
, radially inward

b)
2k

C
λ

r
, radially inward

d) inner: −λ; outer: λ

2.2.5 a) 1
3πρ0R

3 b)
k
C
Q

r2

c)
ρ0r

3ε0

(
1− 3r

4R

)
e)

2

3
R,

ρ0R

9ε0

2.3.1 a) λ = 2πRσ b)
σR

ε0r
2.3.2 a) 0 b) 1.2 · 105 N/C

c) 1.2 · 106 N/C d) 3.0 · 105 N/C
2.3.3 πr2E

2.3.4 45◦

2.3.5 a) �E =
ρ

3ε0

(
�r− �b

)

b) �E =
ρ�b

3ε0

2.4.1 a) 333 N·m2/C

b) no change

2.4.2 a) 0 b)
2λ

ε0

√
R2 − d2

2.4.3 �E =
ρ�r

2ε0
2.4.4 a) 0 < r < R, E = 0;

R < r < 2R, E = k
C

Q

r2
; r > 2R,

E = 2k
C

Q

r2

2.4.5 a) −1

4

k
C
Q

R2
�i b)

1

18

k
C
Q

R2
�i

c) 0 d)
10

9

k
C
Q

R2
�i

2.5.1 a) 2.40 · 103 N·m2/C b) 0

c) 1.20 · 103 N·m2/C

2.5.2 −1.77 · 10−12 C/m3

2.5.3 r < r1: 0;

r1<r<r2:
ρ

2ε0r

(
r2−r21

) �r
r
;

r > r2:
ρ

2ε0r

(
r21 − r21

) �r
r

2.5.4 a) (i) 0, (ii) 0, (iii) k
C

2q

r2
,

(iv) 0, (v) k
C

6q

r2
b) i) 0, (ii) +2q,

(iii) −2q, (iv) +6q

2.5.5 3.33 · 103 N·m2/C out of the

sides parallel to xy- or yz- planes;

4.33 · 103 N·m2/C out of the side

perpendicular to −x-axis;

2.33 · 103 N·m2/C out of the side

perpendicular to +x-axis
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Chapter 3

3.1.1 −81 nJ

3.1.2 VC > VA, VB < VA, VD =

VA

3.1.3 b) 1.2 · 107 m/s

3.1.4 a) Ex = 0, Ey = (Cz −B),

Ez = (Cy − 2Az)

b) ∀ x, y = −2AB/C2, z = B/C

3.1.5 a) 22.0 cm b) 6.6 nC

c) 2.0 cm or 1.62 m d) 0.444 nC

or 36.0 nC e) No

3.2.1 2.7 · 10−13 J= 1.69 MeV

3.2.2 a) 0 b) −60 μJ c) 30 μJ

3.2.3 a) 3.50 · 10−8 C/m b) less

then 630 V c) 0

3.2.4 a) 0 b) k
C

q

r2
�r

r
3.2.5 a) −32.0 μJ b) −4.00 kV

c) 80 kV/m

3.3.1 a) 20 m/s b) 0.357 m

3.3.2 0.8 · k
C

q

R
3.3.3 a) −57.6 V b) −72.0 V

c) 36.0 μJ

3.3.4 (i) k
C
Q

(
1

a
− 1

b

)

(ii) k
C
Q

(
1

r
− 1

b

)
(iii) 0

3.3.5 a) 2.0 · 105 V/m4/3

b) E = −4

3
Cx1/3 c) 6.77 ·10−15 N

3.4.1 a) 1.00 m/s b) No change

3.4.2 a) 0.36 μJ b) 7.4 cm

3.4.3 a) −5.824 · k
C

q2

d

3.4.4 a) 1.38 kV b) 0

3.4.5 b) r1 = 2.72 cm,

r2 = 7.39 cm, r3 = 20.09 cm

c) No, they get farther apart

3.5.1 22.8k
C

Q2

s

3.5.2 b)
2k

C
q√

x2 + a2
d) 0

3.5.3 a) 8.00 kV/m b) 19.2 μN

c) 0.864 μJ d) −0.864 μJ

3.5.4 V = k
C

q(ra − rb)

rarb
3.5.5 a) (i) Vab = 2k

C
λ ln(b/a)

(ii) V (r) = 2k
C
λ ln(b/r)

(iii) 0 b) E(r) =
Vab

r ln(a/b)

Chapter 4

4.1.1 a) 500 V

b) 50.0 cm2

c) 2.82 · 106 V/m
d) 25.0 · 10−6 C/m2

4.1.2 a) q4 = 195 μC,

q1= 130 μC, q2 = q3= 65 μC

b) V2 = V3= 13 V, V1= 26 V,

V4= 39 V

c) Vad =26 V

4.1.3 36.0 μJ

4.1.4 0.15 m2

4.1.5 48 μF

4.2.1 a) 120 μC

b) 60 μC

c) 480 μC

4.2.2 V2 =2.00 V, V3 =3.00 V
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4.2.3 a)
q2x

2ε0A

b)
q2

2ε0A
dx c)

q2

2ε0A
4.2.4 a) 45 · 10−12 C

b) 12.0 pF, 3.75 V

c) 6.66 · 10−9 J

4.2.5 a) 340 J

b) 68 mF

4.3.1 a) 5.56 pF

b) 3.6 V

4.3.2
ε0 (A1 + A2)

d
4.3.3 4.82 kg

4.3.4 a) 1.0 · 105 V
b) 2.8 · 10−4 C/m2,

4.6 · 10−4 C/m2,

4.3.5 a) 32.0 · 10−12 J

b) 16.0 · 10−12 J

4.4.1 a) 20 pF

b) 6.00 cm

c) 6.25 kV/m

4.4.2 7.5 μC

4.4.3 a) 1.0 · 10−3 C

b) 2.5 · 10−4 C, 7.5 · 10−4 C

c) 0.5 J d) 0.125 J, 0.375 J

e) 100 V

4.4.4 a) 30.0 V

b) 1.667

4.4.5 a) 6.00 · 10−5 C

b) 1.80 · 10−3 J c) 9.0 V

d) 8.1 · 10−4 J

4.5.1 a) 5.0 · 10−9 F b) 800 V

4.5.2 2.5 μF

4.5.3 a) 2.67 nC b) 2.72

4.5.4 a) 1.80 mJ, 9.00 mJ

b) 7.2 mJ, increase

4.5.5
ε0A

d
· 2ε1ε2
ε1 + ε2

Chapter 5

5.1.1 a) 3.0 · 1019 s−1

b) 1.53 · 106 A/m2

c) 1.12 · 10−4 m/s

5.1.2 a) 5.81 · 10−2 V/m

b) 6.46 · 10−4 Ω c) 5.81 mV

5.1.3 a) 1.0 A, b) 2.0 A c) 26.0 V

5.1.4 a) 50.0 W b) 0.417 A

5.1.5 65 · 103 s
5.2.1 a) 51 kΩ b) 13 kΩ

5.2.2 9.00 V, 2.00 Ω, 1.00 Ω

5.2.3 560 s

5.2.4 a) 2.00 Ω b) 4.00 Ω

c) 6.00 Ω

5.2.5 a) 3.00 A b) 2.00 Ω

c) 38.0 V d) 4.33 A

5.3.1 a) 13.6 A b) 16.2 Ω

5.3.2 a) I1 = 1.75 A,

I2 = I3 = I4 = 0.583 A

b) P1 = 9.19 W,

P2 = P3 = P4 = 1.02 W

c) I1 = 1.56 A, I2 = I3 = 0.78 A

d) P1 = 7.30 W, P2 = P3 = 1.82 W

5.3.3 a) 32 Ω b) No

5.3.4 a) 140 C b) 14 A
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5.3.5
ρh

πr1r2
5.4.1 a) 3.90 MJ b) 3900 s

5.4.2 a) 1.36 A, clockwise

b) 25.9 V c) 1.44 V

5.4.3 a) 1.09 μF b) 2.73 s

5.4.4 a) 1.25 Ω b) 4.37 V

5.4.5 a) 54 mW

b) 3.5 mW

5.5.1 a) 1.19 A/m2

b) 7.44 · 1012 m−3 c) 6.44 · 109 s
5.5.2 a) 161 Ω b) 1.36 A

c) 248 W

5.5.3 a) I1 = 0.207 A,

I2 = 0.116 A, I3 = 0.323 A

b) P1 = 1.07 W, P2 = 0.135 W,

P3 = 1.56 W

5.5.4 480 μC

5.5.5 a) I = IA

(
1 +

RA

r +R

)
b) 53.5 mΩ

Chapter 6

6.1.1 a) −(7.2�k) · 10−4 N

b) (7.2�i + 7.56�j) · 10−4 N

6.1.2 a) 4.1 · 10−21 kg·m/s

b) 1.64 · 10−21 J·s
6.1.3 a) 7.2�i kV/m

b) −7.2�i kV/m

6.1.4 F = 7.16 · 10−19 N

6.1.5 a) 5.0 · 10−3 A·m2

b) 4.0 · 10−3 N·m
6.2.1 1.95 T, east

6.2.2 8.0 · 10−10 N, south

6.2.3 a) south b) west c) 30◦

west of north 7.2 · 10−3 N

6.2.4 a) 5.06 cm

b) 19.9 ns

6.2.5 6.28 · 10−5 N·m
6.3.1 a) positive b) 50 mN

6.3.2 a) 8.0 · 105 m/s b) 26.2 ns

c) 6.68 kV

6.3.3 10 A

6.3.4 a) 4.8 · 107 rad/s
b) 4.8 · 107 m/s

6.3.5 a) east b) 0.25 T

6.4.1 −0.33�k m/s2

6.4.2 1.36 cm

6.4.3 a) 5.12 · 10−3 N·m
b) 2.56 · 10−2 A·m2

c) 6.89 · 10−3 N·m
6.4.4 a) v = 2E

K
/(qBR)

b) m = (qBR)2/2E
K

6.4.5 m′/m = 8

6.5.1 1.5 · 106 m/s

6.5.2 a) 3.2 · 106 m/s c) 3.6 mm

6.5.3 a) 1.52 ·10−16 s b) 1.05 mA

c) 9.27 · 10−24A·m2

6.5.4 70 mT

6.5.5 6.28 · 10−3 N·m
Chapter 7

7.1.1 a) 8π · 10−7 T·m b) 0

c) 16π · 10−7 T·m d) 0

7.1.2 a) −1.28 · 10−5�k T b) 0

c) 1.28 · 10−5�i T d) 6.4 · 10−6�i T
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7.1.3 2.8 · 10−6 T, north

7.1.4 a) 4.0 · 10−6 T

b) 8.25 · 10−6 T

7.1.5 100 A

7.2.1 a) 0

b) −8.00 · 10−7�k T

c) −2.83 · 10−7�k T

d) 8.00 · 10−7�j T

7.2.2 a) 1.0 cm from lower cur-

rent, between wires b) 2.0 cm from

lower current, outside of wires; both

cases along the line parallel to wires

in their plain

7.2.3 a)
μ0I

2πr
b) 0

7.2.4 a) 1.0 · 10−5 T

b) 5.0 · 10−5 N/m c) 5.0 · 10−5 T

d) 5.0 · 10−5 N/m

7.2.5
μ0I

4R
, from the paper

7.3.1 2.5 · 10−5 T

7.3.2 a) 0 b) 0 c) 4.0 · 10−3 T

7.3.3 a)
μ0I

2πr
b)

μ0I

πr
7.3.4 a) 3.2 T b) 1.8 T

7.3.5 a) 7.5 A b) the same

c) repel with 6.0 · 10−4 N/m

7.4.1 a) 28.3 μT toward the page

b) 24.7 μT

7.4.2 a) 5.0 A b) the same

7.4.3 r = 5.0 cm & r = 20.0 cm

7.4.4
1

2
qωR2B

7.4.5
μ0I

2r

(
1

4
+

1

π

)

7.5.1 1.0 · 10−3 T

7.5.2 a) 1000 m−1 b) 31.4 m

7.5.3
μ0I

4πx
7.5.4 4.0 ·10−7 T, toward the page

7.5.5 y = 0.4 m

Chapter 8

8.1.1 a) 2.5 Wb b) 10.0 V

8.1.2 clockwise

8.1.3 a) 48.0 μV b) west end is

positive

8.1.4 5.0 · 10−2 m2

8.1.5 E =
1

2
βRμ0nI0e

−βt in the

same direction as the current in the

solenoid

8.2.1 0.10 T

8.2.2 24.0 V

8.2.3 40 m/s = 144 km/h

8.2.4 a) 6.0 V

b) counterclockwise c) 1.5 N to the

left d) P
mech

= P
elec

= 12.0 W

8.2.5 0 a) 3.14 · 10−4 V/m

b) 6.25 · 10−4 V/m

8.3.1 1.57 · 10−3 V

8.3.2 e) 5.0 · 10−7 V

8.3.3 6.0 T

8.3.4 9.87 mV

8.3.5 5.0 A/s

8.4.1 a) 7.5 · 10−3 V b) clockwise

8.4.2 2.0 A

8.4.3 a) 314 V b) 0 V

8.4.4 8.0 m
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8.4.5 a) 9.87 · 10−3 V/m

b) 9.87 · 10−3 V/m

8.5.1 a) clockwise b) counter-

clockwise c) no current induced

8.5.2 31.4 mA

8.5.3 a) 10−4 cos(100πt) Wb

b) 3.14 · 10−2 sin(100πt) V

c) 1.57 · 10−2 sin(100πt) A

d) 4.93 · 10−4 sin2(100πt) W

e) 1.57 · 10−6 sin2(100πt) N·m
8.5.4 50.0 rad/s

8.5.5 31.4 mV

Chapter 9

9.1.1 a) 40.0 mT b) 99%

9.1.2 600

9.1.3 240

9.1.4 a) 6.37 MJ/m3 b) 5.12 kJ

9.1.5 a) 0.4 mH b) 2.0 ms

9.2.1 a) 2.0 · 103
b) 1.999 · 103
9.2.2 4.55 · 102 A/m
9.2.3 5000

9.2.4 a) 13.86 μs b) 24.56 μs

9.2.5 24.0 Ω, 4.8 mH

9.3.1 10−2 A·m2

9.3.2 31.4 J/m3

9.3.3 a) 0.25 H b) 4.0 · 10−4 Wb

9.3.4 a) 60 mT b) 1.43 kJ/m3

c) 9.0 mJ d) 45.0 μH

9.3.5 a) 0.5 kΩ b) 4.0 μs

9.4.1 a) 3.14 T b) 1.25 ·103 A/m

9.4.2 a)
μ0I

2

8π2r2
b) 2.4 mm

9.4.3 a) 4.42 · 10−8 J/m3

b) 1.43 · 10−3 J/m3

9.4.4 a) 9.05 m3 b) 3.0 T

9.4.5 a)
μ0NIh

2π
ln

(
R + w

R

)

b)
μ0N

2h

2π
ln

(
R + w

R

)

c)
μ0N

2

2πR
hw d) 3.2 mH

9.5.1 999

9.5.2 a)
μ0I

2r2

8π2a4
b) 10−7 J/m

9.5.3 a) 28.8 mH b) 1.44 ms

c) 72.1 μs

9.5.4 51.2 mJ

9.5.5 a) 9.87 mH b) 5.0 A/s

Chapter 10

10.1.1 a) 13.3 mH b) 90.0 nC

c) 540 nJ d) 9.0 mA

10.1.2 2.5 · 105 rad/s
10.1.3 a) 47.1 Ω b) 637 Ω

c) 2.40 kΩ d) 2.33 kΩ e) −14.2◦

10.1.4 a) 80.0 W b) 0.167 A

c) 1.44 kΩ

10.1.5 81 V

10.2.1 0.4 A

10.2.2 a) 250 rad/s b) 346 Ω

10.2.3 a) 3.0 · 10−4 C b) 4.71 V

10.2.4 500 V
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10.2.5 a) 150 V b) 150 V,

1500 V, 1500 V c) 22.5 W

10.3.1 2.0 μF, 0.8 mH

10.3.2 a) 5000 rad/s

b) 4899 rad/s c) −2.0%

10.3.3 a) 1.0 · 103 rad, 0.15 A

b) 0.12 mA, lag

10.3.4 a) 27 μF b) 46 μF

10.3.5 0.24 J

10.4.1 a) 20.0 μC

b) 1.0 · 105 rad/s c) 0.25 J

10.4.2 0.16 Ω

10.4.3 3R

10.4.4 a) N2/N1 = 2 b) 13.3 A

c) 9.0 Ω

10.4.5 a) 1.0 pF b) 10.6 mm

c) 15.7 Ω

10.5.1 L =0.1 mH, C1 =4.0 μF,

C2 =9.1 μF

10.5.2 a) 103 rad/s b) 0.5 A

c) 1756 rad/s & 890 rad/s

d) 866 rad/s d) (i) 5.0 A, 87 rad/s;

(ii) 50 A, 8.7 rad/s; (ii) 500 A,

0.9 rad/s

10.5.3 a)
1√
LC

b)

√
1

LC
− R2

2L2

c)

√(
LC − R2C2

2

)−1

10.5.4 a) 43 W b) 23 W

c) 484 W

10.5.5 a) 103 s−1 b) 125 W

c) 951 s−1, 1051 s−1 d) 10

Chapter 11

11.1.1 5.0 s

11.1.2 a) 4.0 · 1010 V/(m·s)
b) 4.0 · 10−8 T

11.1.3 a) 375 V/m, 12.5 μT

b) 1015 Hz, 10−15 s, 3.0 · 10−7 m

c) 3.0 · 108 m/s

11.1.4 1.50 · 10−8 T, in the −x-

direction

11.1.5 b) (−32�i+8�j+2�k) W/m2

11.2.1 6.25

11.2.2 2.5 · 10−18 T

11.2.3 a) 360 V/m

b) 1.14 · 10−6 J/m3 c) 342 W/m2

11.2.4 a)+x–direction b) 0.5 μm

c) (10−3T)�k sin
[
(4π·106 rad/m)x−

−(12π · 1014 rad/s)t]
11.2.5 a) 1.0 μT b) 2.0 · 10−7 m

c) 1.5 · 1015 Hz
11.3.1 a) 6.0 · 1014 Hz
b) 1.5 kV/m

c) 1.5 kV/m sin
[
4π·106(x−3·108t)],

5.0μT sin
[
4π ·106(x−3·108t)]

11.3.2 a) −z–direction

b) 7.5 · 1011 Hz c) (−1.8V/m)�i×
× sin

[
1.57 · 104x + 4.71 · 1012t],

11.3.3 a) 55.7 A/m2

b) 6.29 · 1012 V/(m·s) c) 0.70 μT

d) 0.35 μT

11.3.4 4 · 108 m/s > c
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11.3.5 5.0 · 10−4 s < 10−2 s, radio

audience first

11.4.1 a) 5.00 nC

b) 7.00 · 10−3 C/s c) 7.00 mA

11.4.2 a) 7.50 · 1014 Hz
b) 5.0 pT c) (1.5 · 10−3V/m)�k ×
× sin

[
5π · 106y + 15π · 1014t],

(5.0 pT)�i sin
[
5π ·106y+15π ·1014t]

11.4.3 a) 6.0 · 107 m/s

b) 6.0 · 105 m c) 5.0 · 10−11 T

d) 23.9 · 10−9 W/m2

11.4.4 3.33 · 10−6 J/m3

11.4.5 2.24 · 10−10 T

11.5.1 a) 3.00 · 109 V·m/s

b) 2.655 · 10−2 A

11.5.2 a) 1.01 kV/m b) 3.4 μT

11.5.3 a) −z b) −z c) +y

d) +y

11.5.4 7.96 · 10−3 W/m2

11.5.5 3.82 · 1026 W
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APPENDIX

Universal physical constants

e = 1.602 176 565·10−19 C Elementary charge e ≈ 1.60 · 10−19 C

c = 299 792 458 m/s Speed of light
in vacuum

c ≈ 3.00 · 108 m/s

h = 6.626 069 57 · 10−34 J·s Plank’s constant h ≈ 6.63 · 10−34 J·s
μ

0
= 4π · 10−7 H/m Magnetic constant μ

0
≈ 1.26 · 10−6 H/m

ε
0
=

1

c2μ
0

Electric constant ε
0
≈ 8.85 · 10−12 F/m

k
C
=

1

4πε
0

Coulomb’s constant k
C
≈ 8.99·109Nm2/C2

� =
h

2π
Reduced Plank’s
constant

� ≈ 1.05 · 10−34 J·s

me = 9.109 382 91 · 10−31 kg Rest mass of
electron

me ≈ 9.11 · 10−31 kg

mp = 1.672 621 777 · 10−27 kg Rest mass of proton mp ≈ 1.67 · 10−27 kg

μ
B
=

e�

2me
Bohr magneton μ

B
≈9.27·10−24A·m2

Some Electric & Magnetic Quantities and their Units

Electric Charge q C = A·s coulomb

Electric Field E V/m = N/C

Electric Potential V V = J/C volt

Electric Capacitance C F = V/C farad

Electric Current I A = C/s ampere

Electric Resistance R Ω = V/A ohm

Power P W = V·A watt

Magnetic Flux Φm Wb = V·s weber

Magnetic Field B T = Wb/m2 tesla

Inductance L H = Wb/A henry
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Relative Dielectric Permittivity of the Substances

Material Relative di-
alectic per-
mittivity ε

r

Material Relative di-
alectic per-
mittivity ε

r

Bakelite 4.9 Polyvinyl chloride 3.4
Mylar 3.2 Porcelain 6
Neoprene rubber 6.7 Pyrex glass 5.6
Nylon 3.4 Silicone oil 2.5
Paper 3.7 Strontium titanate 233
Polystyrene 2.6 Water 80
Teflon 2.1 Air (dry) 1.0006

Electrical Resistivity of the Substances

Material Electrical resis-
tivity ρ, Ω·m

Material Electrical resis-
tivity ρ, Ω·m

Silver 1.47 · 10−8 Copper 1.7 · 10−8

Gold 2.44 · 10−8 Aluminum 2.82 · 10−8

Tungsten 5.6 · 10−8 Iron 10 · 10−8

Platinum 11 · 10−8 Lead 22 · 10−8

Nichrome 1.00 · 10−6 Carbon 3.5 · 10−5

Germanium 0.46 Silicon 2.3 · 103
Glass 1010 to 1014 Quartz (fused) 7.5 · 1016

Magnetic Susceptibility of the Substances

Material Magnetic
susceptibility
κ

m

Material Magnetic
susceptibility
κ

m

Copper −1.0 · 10−5 Mercury −2.9 · 10−5

Silver −2.6 · 10−5 Bismuth −1.7 · 10−4

Lead −1.8 · 10−5 Sodium chloride −1.4 · 10−5

Oxygen gas 0.19 · 10−5 Sodium 0.72 · 10−5

Aluminum 2.2 · 10−5 Platinum 2.6 · 10−4

Tungsten 6.8 · 10−5 Uranium 4 · 10−4

Iron 4.5 · 103 Nickel 6 · 102
Cobalt 2.5 · 102 Permalloy 8 · 103
μ−metal 1 · 105 Metglas 1 · 106
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Vector Algebra

�a = ax�i + ay�j + az�k,

�b = bx�i + by�j + bz�k

Dot (scalar) product of vectors

�a · �b def
= |�a||�b| cos

(
∠�a�b

)
= �b · �a

�i ·�i =�j ·�j = �k · �k = 1

�i ·�j =�j · �k = �k ·�i = 0

�a · �b = axbx + ayby + azbz

Cross (vector) product of vectors

|�a× �b| def= |�a||�b| sin
(
∠�a�b

)
�i×�i =�j×�j = �k× �k = 0

�a⊥
(
�a× �b

)
⊥�b

�a× �b = −�b× �a

�i×�j = �k, �j× �k =�i, �k×�i =�j

�a× �b =�i (aybz − azby) +�j (azbx − axbz) + �k (axby − aybx)

�a× �b =

∣∣∣∣∣∣∣
�i �j �k

ax ay az
bx by bz

∣∣∣∣∣∣∣
Scalar triple product

�a ·
(
�b× �c

)
= �b · (�c× �a) = �c ·

(
�a× �b

)
= −�c ·

(
�b× �a

)
Vector triple product

�a×
(
�b× �c

)
= �b (�a · �c)− �c

(
�a · �b

)
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Vector Calculus

�∇ def
=

∂

∂x
�i +

∂

∂y
�j +

∂

∂z
�k

Δ
def
= ∇2 = �∇ · �∇ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Gradient of the Scalar Field and Nabla Operator

�E = − �∇V = −gradV = −
(
∂V

∂x
�i +

∂V

∂y
�j +

∂V

∂z
�k

)
�E = Ex

�i + Ey
�j + Ez

�k

Divergence of the Vector Field and Laplace Operator

div�E
def
= �∇ · �E =

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

ΔV
def
= div(gradV ) = ( �∇ · �∇)V = ∇2V =

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2

Curl of the Vector Field

rot�E
def
= �∇× �E =

∣∣∣∣∣∣∣∣
�i �j �k
∂

∂x

∂

∂y

∂

∂z
Ex Ey Ez

∣∣∣∣∣∣∣∣
rot�E =

(
∂Ez

∂y
− ∂Ey

∂z

)
�i +

(
∂Ex

∂z
− ∂Ez

∂x

)
�j +

(
∂Ey

∂x
− ∂Ex

∂y

)
�k

rot(rot �H) = �∇× ( �∇× �H ) = grad(div �H)−Δ �H

Gauss–Ostrogradsky Divergence Theorem∫∫
∂Vol

⊂⊃ �E · d�A =
∫∫∫
Vol

div�E dVol

Stokes Theorem∮
∂A

�H · d�� =
∫∫
A

rot �H · d�A
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