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OPTIMIZING INFORMATION SUPPORT TECHNOLOGY  

FOR NETWORK CONTROL: A PROBABILISTIC-TIME GRAPH APPROACH 
 

In modern telecommunications and computer networks, efficient and reliable information collection is essential 

for effective decision-making and control task resolution. Current methods, such as periodic data transmission, 
event-driven data collection, and on-demand requests, have distinct advantages and limitations. The object of 

the paper: The study focuses on developing a comprehensive model to optimize information collection processes 

in network environments. Subject of the paper: This paper investigates various information collection methods, 

including periodic data transmission, event-driven data collection, and on-demand requests, and evaluates their 
efficiency under different network conditions. This study proposes a flexible and accurate model that can optimize 

information support technologies for network control tasks. The key tasks include 1. Developing a probabilistic-

time graph model to evaluate the efficiency of different information collection methods. 2. Analyzing model per-

formance through mathematical relationships and simulations. 3. Comparing the proposed model with existing 

methodologies. Results. The proposed model demonstrated significant variations in the efficiency of the infor-

mation collection methods. Periodic data transmission increased network load, while event-driven data collec-

tion was more responsive but could miss infrequent changes. On-demand requests balanced timely data needs 

with resource constraints but faced delays due to packet loss. The probabilistic time graph effectivel y captured 
these dynamics, providing a detailed understanding of the trade-offs. Conclusions. This study developed a flexi-

ble and accurate model for optimizing information support technologies during network control tasks. The mod-

el's adaptability to varying network conditions has significant practical implications for improving network effi-

ciency and performance. Future research should explore the integration of machine learning techniques and 

extend the model to more complex network environments. 

 
Keywords: information support technology; network control; probabilistic-time graph; telecommunications; 

computer networks. 

 

1. Introduction 

 

1.1. Motivation 

 

In telecommunications and computer networks, ef-

ficient and reliable information collection is essential for 

effective decision-making and control processes [1]. The 

increasing complexity and scale of modern networks 

make it increasingly challenging to ensure timely and ac-

curate data transmission [2]. This research was motivated 

by the need to address the limitations of existing infor-

mation collection methods and improve network sys-

tems’ overall performances. 

Current techniques such as periodic data transmis-

sion, event-driven data collection, and on-demand re-

quests have advantages and disadvantages [3]. Periodic 

data transmission ensures regular updates; however, it 

can cause network congestion due to the high volume of 

data [4]. Event-driven data collection responds quickly to 

changes, enhancing real-time decision-making, however, 

it may miss infrequent yet important events [5]. On-de-

mand requests allow for data retrieval as needed, balanc-

ing the need for timely information while maintaining  

network resource constraints; however, such requests can 

be delayed by packet losses and other network issues [6]. 

The variability and unpredictability of network con-

ditions further complicate these challenges. Factors such 

as traffic load, node availability, and error rates can 

change significantly, requiring a flexible and robust ap-

proach to information collection that can adapt to differ-

ent conditions and maintain high performance [7]. 

Improving information collection methods has sig-

nificant practical implications. Enhanced efficiency and 

reliability in data transmission can lead to better decision-

making, more effective network management, and im-

proved service quality [8]. For businesses and industries 

that depend on network infrastructure, such improve-

ments can result in cost savings, increased productivity, 

and a competitive edge [9]. 
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The increasing importance of applications like the 

Internet of Things (IoT), smart cities, and autonomous 

systems underscores the need for reliable and timely data. 

Failures in information collection for such applications 

can cause major disruptions, safety risks, and financial 

losses. Thus, developing a model that optimizes infor-

mation support technologies is crucial for advancing 

these fields and ensuring their success. 

 

1.2. State of the Art 

 
Network control and information collection have 

seen significant advancements in recent years. Various 

methodologies have been developed to address the chal-

lenges of efficient and reliable data transmission in dy-

namic network environments. These methodologies can 

be broadly classified as periodic data transmission, event-

driven data collection, and on-demand requests. 

Periodic data transmission is a widely used method 

for regularly collecting data..This approach ensures that 

the control centre receives consistently updated infor-

mation, which is critical for maintaining up-to-date 

knowledge of the network's state. However, this method 

can lead to network congestion and increased load be-

cause data are transmitted regardless of whether there are 

significant changes in the network. This can result in in-

efficiencies and delays in responding to critical network 

state changes [10]. 

Event-driven data collection triggers data transmis-

sion based on specific changes in the network state. The 

proposed method is more efficient in responding to real-

time events because it only sends data when a predefined 

event occurs. This can reduce unnecessary data transmis-

sion and network load. However, event-driven methods 

can miss infrequent but important changes, leading to 

gaps in the information available to the control centre 

[11]. A recent study by Surenther et al. [12] demonstrated 

that integrating machine learning can enhance the re-

sponsiveness and accuracy of event-driven data collec-

tion in wireless sensor networks. 

On-demand requests involve the control centre re-

trieving information as required. This method balances 

the need for timely data with network resource con-

straints, , where data are only requested when necessary. 

While this approach can reduce network load compared 

to periodic transmission, it is susceptible to delays if the 

request or response packets are lost or corrupt during 

transmission [13]. Urooj et al. [14] proposed advanced 

techniques for improving the reliability and efficiency of 

on-demand data requests in 5G networks, highlighting 

the benefits of heuristic-assisted multi-objective optimi-

zation. 

Several studies have compared these methods to 

identify their strengths and weaknesses. For example, Li 

[15] explored improving network controllability   

processes and emphasized the importance of selecting 

appropriate data collection methods based on network 

conditions. Similarly, Surenther et al. [12] examined the 

data transmission efficiency of wireless sensor networks 

and highlighting the role of machine learning in optimiz-

ing energy consumption and data accuracy. 

Recent advancements have also seen integration of 

emerging technologies such as machine learning and ar-

tificial intelligence integration into information collec-

tion methods. These technologies can enhance the adapt-

ability and efficiency of data transmission by predicting 

network conditions and optimizing data collection strat-

egies. For example, Rachakonda et al. [16] demonstrated 

that machine learning techniques can dynamically adjust 

data collection strategies in IoT environments, signifi-

cantly improving efficiency and reliability. 

Moreover, new research by Li et al. [17] has high-

lighted the importance of addressing privacy and security 

challenges in information collection for next-generation 

networks, emphasizing the need for robust and secure 

data transmission methods. Another study by Tso et al. 

[13] reviewed server resource management strategies for 

data centres and provided insights into optimizing infor-

mation collection and transmission in large-scale net-

work environments. 

The increasing complexity of network environ-

ments and increasing demand for reliable and efficient  

data collection have driven research towards developing 

more sophisticated models. These models provide a nu-

anced understanding of the trade-offs involved in differ-

ent information collection strategies, which will lead to 

more resilient and responsive network systems. 

This research seeks to contribute to the ongoing ef-

forts to enhance network control and information collec-

tion processes by synthesising these methodologies and 

integrating modern technological advancements. The 

proposed model addresses the limitations of existing 

methods and provides a flexible, robust framework for 

optimizing information support technologies in dynamic 

network environments. 

 

1.3. Objectives and Structure  

 

The model proposed in this paper addresses these 

challenges by integrating probabilistic and time-based 

analyses to evaluate the efficiency of different infor-

mation collection strategies. By considering factors such 

as packet loss probability, availability of network nodes, 

and likelihood of conflicts during data transmission, the 

proposed model provides a comprehensive framework 

for optimizing information support technologies. 

Previous studies have highlighted the importance of 

timely and reliable data collection for network control 

[9]. However, existing models often lack the flexibility  

to adapt to varying network conditions and do not  
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adequately account for the probabilistic nature of data 

transmission errors and conflicts [10]. This study aims to 

fill this gap by presenting a detailed probabilistic-time 

graph model that can adjust dynamically to different in-

formation collection methods and network states . 

The primary contributions of this paper include: 

1. A detailed probabilistic-time graph model for 

collecting information in network control tasks. 

2. An analysis of the impact of different information  

collection methods on network efficiency and data col-

lection time. 

3. Comparison of the proposed model with existing  

methodologies, demonstrating its advantages in terms of 

flexibility and accuracy. 

The methodology section of this paper describes the 

mathematical foundation of the model, including the der-

ivation of key probabilistic functions and construction of 

probabilistic time graphs. The results section presents a 

series of simulations and comparative analyses that illus-

trate the model's effectiveness under various network 

conditions. Finally, this section explores the implications  

of the findings for network control strategies and sug-

gests potential areas for future research. 

By providing a robust and adaptable model for in-

formation-support technology, this study contributes to 

ongoing efforts to enhance the efficiency and reliability  

of network control processes, ultimately leading to more 

resilient and responsive network environments. 

In this paper, Section 2, Materials and Methods, 

outlines the methodologies employed in this study, in-

cluding the probabilistic-time graph model and its appli-

cation to various information collection methods. This 

section also details the mathematical foundations and 

probabilistic functions used in the analysis. Section 3, 

Results and Discussion, presents the results of the simu-

lations and comparative analyses, highlighting the per-

formance of the proposed model under different network 

conditions. This section interprets these results, examines 

their implications for network control strategies, and 

compares them with existing methodologies. Finally, the 

Conclusions section summarizes the key outcomes of the 

study, highlighting practical applications and suggesting 

directions for future research. 
 

2. Materials and Methods 
 

2.1. System Overview 
 

The information support stage is the first stage of 

control. To reduce the time required to collect infor-

mation about the state of network elements, performing  

this process in parallel for all controlled objects is prefer-

able. The time interval required to obtain data from the 

most remote object determines the total time required for 

information collection. 

Information about the network state can be col-

lected either at the initiative of the switching centre, 

which handles network control tasks periodically accord-

ing to a set schedule, or at the initiative of all nodes whose 

state changes may affect the network’s performance. In 

the first case, information was collected via a special re-

quest from the control centre. In other cases, the request 

is not transmitted, and the information is provided at the 

initiative of the switching nodes. In this scenario, infor-

mation about a switching node's state change should be 

transmitted when this change is detected. With periodic 

transmission, there may be a delay in providing updated 

data equal to half the information transmission period. 

Upon request, information is collected by sending a 

call packet fcall(z) to the requested node. The controlled 

node responds with reply packet fans(z), which includes, 

in addition to the address of the control centre, all neces-

sary information required to assess the node's state. This 

information is crucial, so its receipt must be acknowl-

edged. When transmitting a call packet, it may be lost 

(function f𝑐𝑎𝑙𝑙
𝑙𝑜𝑠𝑡 (𝑧)), received with a distorted address of 

the called or calling subscriber (functions f𝑐𝑎𝑙𝑙
𝑎𝑑𝑟1 (𝑧) and  

f𝑐𝑎𝑙𝑙
𝑎𝑑𝑟2 (𝑧) respectively), correctly received (function  

f𝑐𝑎𝑙𝑙
𝑟𝑡 (𝑧)), and recognized with probability Pdet. The packet 

can be accepted if the subscriber is free (probability Pfree). 

If a call packet is lost or received with a distorted address, 

no acknowledgement is sent, and the message is retrans-

mitted after interval TTA. If the subscriber was busy or the 

call packet was not recognized (probability Pundet), the 

call is repeated after the interval TTA. If the call packet is 

received by another subscriber (distorted address of call-

ing subscriber A1) and the subscriber is free, a reply 

packet will be sent. Network error detection causes a time 

interval ΔT upon correct receipt of a packet, and the call 

packet is lost. 

Upon correct receipt of the call packet (function  

f𝑐𝑎𝑙𝑙
𝑟𝑡 (𝑧)), a reply packet will be issued, which may be cor-

rectly received (function  f𝑎𝑛𝑠
𝑟𝑡 (𝑧)), lost (function  

f𝑎𝑛𝑠
𝑙𝑜𝑠𝑡 (𝑧)), received with a distorted address (function  

f𝑎𝑛𝑠
𝑎𝑑𝑟2 (𝑧)), detected error (function  f𝑎𝑛𝑠

𝑑𝑒 (𝑧)), received 

with distorted information field (function  f𝑎𝑛𝑠
𝑒𝑟𝑟 (𝑧)), out-

dated data (function f𝑎𝑛𝑠
𝑜𝑑 (𝑧)), or incomplete data (func-

tion  f𝑎𝑛𝑠
𝑖𝑑 (𝑧)). 

If the call and reply packets are received correctly, 

and the subscriber is free (Pfree), the control task is re-

solved. In the case of lost reply packets (f𝑎𝑛𝑠
𝑙𝑜𝑠𝑡 ), detected 

errors (f𝑎𝑛𝑠
𝑑𝑒 ), or address distortion (f𝑎𝑛𝑠

𝑎𝑑𝑟2), the call packet 

is retransmitted after an interval TTA. 

When information about the network state is trans-

mitted at the initiative of the controlling switching node, 

a call packet is not issued. The information collection 

process proceeds similarly to the process described 

above. 
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2.2. Probabilistic-Time Graph Model 
 

Let the probabilities of using information collection 

methods via call packets, state changes, and periodic 

schedules be denoted as P1, P2, and P3, respectively, 

where these probabilities can take values of 1 or 0. The 

generalized probabilistic-time graph characterizing the 

information collection process for the three indicated 

methods is shown in Figure 1. This graph also indicates 

the waiting time for data issuance in the network state 

during periodic transmission ΔTcycle. 

In Figure 1, the following designations are intro-

duced: 

fst1 = f6 ∙ fans
rt (z); fst2 = f6 ∙ fans

err(z);  

fst3 = f6 ∙ fans
od (z); fst4 = f6 ∙ fans

id (z) 

fst5 = f1 ∙ f3 + f6 ∙ f5 + f2 ∙ f4 

fst6 = (1 − Pc
) ∙ (P2 + P3 ∙ z∆Tcycle ) ∙ fans

rt ; (1) 

fst7 = (1 − Pc
) ∙ (P2 + P3 ∙ z∆Tcycle ) ∙ fans

err(z); 

fst8 = (1 − Pc
) ∙ (P2 + P3 ∙ z∆Tcycle ) ∙ fans

od (z); 

fst9 = (1 − Pc
) ∙ (P2 + P3 ∙ z∆Tcycle ) ∙ fans

id (z); 

 

 

 
 

Fig. 1. The probabilistic-time graph of the information collection stage 
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The graph shown in Figure 1, through equivalent 

transformations, is presented in the form shown in Fig-

ure 2.  

In Figure 2, the following expressions are indicated: 

 

f1
(z) = fcall

lost + f
call

adr2 + fcall
rt ∙ [(1 − Pdet

) + Pdet ∙

(1 − Pfree
) + f

call

adr1 ∙ (1 − Pdet )];  

f2
(z) = f

call

adr1 ∙ Pdet;  

f3
(z) = zTTA;  

f4
(z) = (1 − Pfree

) ∙ zTTA + Pfree ∙ fans
lost ∙ zTTA +

+Pfre e ∙ fans
adr1 ∙ zTTA;  

f5
(z) = Plost ∙ zTTA, где Plost = fans

lost + fans
adr2 + fans

de ; 

f6
(z) = fcall

rt ∙ fdet ∙ ffree ;  

fans
rt (z) = fans

rt ∙ (1 − Pod − Pid − Plost − Pundet ) ∙ zTd; 

fans
err(z) = fans

rt ∙ Pundet ∙ zTd; 

fans
id (z) = fans

rt ∙ Pid ∙ zTd; 

 

The graph shown in Figure 2, through equivalent 

transformations, is presented in the form shown in Fig-

ure 3. 

The graph shown in Figure 3 was transformed into 

the form shown in Figure 4. 

The arc functions in this graph are denoted in the 

same manner as in Figure 4. The functions of the infor-

mation-collection stage arcs are determined by the fol-

lowing formulas: 
 

f1
(z) = [

P1∙fst1

1−fst5
+

fst6

1−fst5 ∙P1

] ∙
1

1−(P2+P3∙z∆T)∙zTd
; 

f2
(z) = [

P1∙fst2

1−fst5
+

fst7

1−fst5 ∙P1
] ∙

1

1−(P2+P3∙z∆T)∙zTd
;  (2) 

f3
(z) = [

P1∙fst3

1−fst5
+

fst8

1−fst5 ∙P1
] ∙

1

1−(P2+P3∙z∆T)∙zTd
; 

f4
(z) = [

P1∙fst4

1−fst5
+

fst9

1−fst5 ∙P1

] ∙
1

1−(P2+P3∙z∆T)∙zTd
. 

 

The generating function of this graph is given by 

 

F(z) = f1
(z) + f2

(z) + f3
(z) + f4

(z).        (3) 

 
Fig. 2. The transformed probabilistic-time graph  
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Fig. 3. The transitional probabilistic-time graph 

 

 
 

Fig. 4. The transformed probabilistic-time graph 

 

The average time required to collect information  

about the network state is 

 

Tavgcoll =
dF(z)

dz
|z=1.     (4) 

 

The probabilities of correct collection, collection 

with error, outdated information, and incomplete infor-

mation are respectively given as follows 

 

Pcollrt = f1(z)|Z=1;Pcollerr = f2(z)|Z=1; 

Pcollod = f3(z)|Z=1;Pcollid = f4(z)|Z=1. 

 

Expressions (2-4) and their data represent the model 

for collecting information about the network state for 

control tasks. In this model, depending on the values of 

P1, P2, and P3, which can be either 1 or 0, methods for 

information collection by request, by state changes of el-

ements, or periodically are implemented. 

 

2.3. Methodology of Determining  

the Arc Functions of Probabilistic-Time Graphs  

in Information Collection Technology 
 

A call packet is transmitted in multi-object control 

based on the “point-to-multipoint” principle. This multi-

route transmission method sends the same message sim-

ultaneously to subordinate switching nodes. The users 

use the received messages to solve various tasks simulta-

neously. The length of the transmitted message should 

ensure a short delivery time. Response packets in multi-

object control are transmitted based on the “multipoint-

to-point” principle. 

The characteristic of the “multipoint-to-point” 

transmission method is that a message from M sources is 

transmitted through M channels to a single user. The 

transmitted messages are different, and their transmission 

times into the channel are generally not synchronized. 

The user processes the received messages simultaneously 

in parallel or uses them to solve a specific control task. 
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From the described features of the two information  

exchange methods, it is clear that they share much in 

common, differing only in the process of using the re-

ceived results. Therefore, the mathematical models of 

these methods are practically identical but have some pe-

culiarities. 

As discussed previously, the network structure 

model is represented as an undirected graph. It is as-

sumed that the network includes multiple switching 

nodes N connected by arcs. Each arc is characterized by 

its length lij and capacity Cij. All of these data are pre-

sented as length matrix h=∣lij∣ and capacity matrix 

C=∣Cij∣. 
A node is characterized by the buffer storage capac-

ity (BSC) Wj, the service rate for incoming requests μj, 

the incoming request rate λi, and the reliability coeffi-

cient Krj (readiness coefficient). 

The message stream is transmitted along several 

(M) routes to M users (“point-to-multipoint”) or to a sin-

gle user (“multipoint-to-point”). Each message follows  

its route, differing from others according to channel char-

acteristics and the number of transit nodes. There are βα 

network sections on the α-th route. Accordingly, the traf-

fic distribution and control problem can be solved by 

considering the following indicators : 

- message delivery time Td; 

- probability of delivery within a specified time 

P(Td ≤ Tdt); 

- efficiency of channel resource usage Kusej
=

CαOUT

Cα
, where CαOUT is the data transmission rate over 

channel α; 

- ensuring the equality of the output flow intensity 

λOUTj and the input flow intensity of the node λ∑ INj
 with 

the constraint Perr≤Pacpt err, where Pacpt err is the al-

lowable error probability in message delivery. 

In the control process, it is necessary to ensure min-

imal delivery time and maximum delivery probability 

within the specified time, the maximum value of the net-

work resource usage coefficient, and λOUTj
= λ∑ INj

. 

Due to possible buffer storage overflow, some mes-

sages at the switching node may be lost (intensity λlost𝑗
). 

The output flow intensity of node j is then determined by 

the following expression: 

 

λOUTj
= λ∑ INj

− λlostj
.      (5) 

 

In multi-route transmission, each message must 

have its own header. The redundancy due to these head-

ers is denoted as  
 

rrdn = 1 +
kH

n
,    (6) 

 

where kH is the header length, and n is the message 

length. 

The packet transmission time along the chosen path 

τTRFα includes the transmission time along the track 

sections TTRFα, the delay time at the switching node 

TDELαi, and signal propagation time TPROPAGαi. The 

track contains β sections, we get: 

 

τTRFα = TTRFα ∙ rrdn + ∑ TDELαi +

β−1

i =1

∑ TPROPAGαi

β

i=1

 

 

The transmission time TTRFα is determined by the 

message duration n and the modulation rate in the chan-

nel (data transmission rate over channel βα), i.e. 

 

TTRFα
T =

n

βα
.   (7) 

 

The distance between the transit nodes and the sig-

nal propagation speed determines the propagation time. 

A computer network represents a queuing system. 

According to this theory, the delay time at switching 

nodes depends on the arrival flow law. It is often assumed 

that the flow is stationary and follows the Poisson distri-

bution. In this case, the delay time at the node is deter-

mined as follows: 

 

TDELj =
ρj

μj−λj
=

ρj

μj∙(1−ρj )
,            (8) 

 

where ρj =
λj

μj
. 

The probability of packet loss at the j-th switching 

node due to BSC overflow in a simple flow is determined  

by the following formula:  

 

Plostj =
1−ρj

1−ρj
wj+1 ∙ ρj

wj.        (9) 

 

Individual fragments and entire messages may be 

lost during transmission due to BSC overflow at transit 

switching nodes. Consequently, the loss probability over 

the entire route will be: 

 

Plostα1 = 1 − ∏ (1 − Plosti
).

β
i=1  (10) 

 

The message delivery time to M users is equal to the 

maximum transmission time of one message along route 

α 

 

Td = max(τTRFα
).  (11) 

 

As a result, the arc functions during the transmis-

sion of a call packet will be: 

 

fcall
lost (z) = Plostα ∙ zTd; fcall

rt (z) = Prt ∙ zTd; 

f
call

adr1 (z) = f
call

adr2 (z) = Perradr
= 1 − (1 − p)nadr; (12) 
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Prt = (1 − p)n; Perradr
= 1 − (1 − p)nadr, 

 

where nadr is the length of the address field, and p is the 

probability of single-bit error. 

Response packets in multi-route control are trans-

mitted based on the “multipoint-to-point” principle. 

Therefore, at the control centre, overloads may occur dur-

ing the reception of these packets, leading to conflicts be-

tween the received response packets. Upon detecting 

such conflicts, response packets are retransmitted. It can 

be assumed that the incoming response packets follow 

the Poisson distribution. In this case, the probability of 

conflict occurrence is determined by the following for-

mula: 

 

Pc = 1 − e−2ρ1 ,     (13) 

 

where ρ1 is the channel load coefficient; ρ1 = ∑ λi ⋅N
i =1

Tansi
+ ∑ λпi

⋅ Tansi
N
i =1 ; λп,  is the intensity of the trans-

mitted and retransmitted packets; N is the number of 

switching nodes that transmit response packets. 

The transmission method's efficiency, defined by 

the relative number of response packets delivered in the 

first attempt, is expressed as follows:  

 

ρ = ρ1 ∙ e−2ρ1  ,  (14) 

 

In this case, ρmax=0.18. 

In the graph in Figure 1, the possibility of conflict  

occurrence and resolution is taken into account by the 

following function: 

 

fc
(z) =

(1−Pc)

1−Pc∙zTTA
∙ (1 − P1).  (15) 

 

When receiving response packets, the message is 

used only after its preparation for simultaneous control 

task solving. Denote the data preparation time for control 

tasks as τprep.  

Therefore, the message delivery time can be deter-

mined by the expression: 

 

Td = max
α

{TTRFj ∙ rrdn +

+ ∑ TDELαi +
β−1
i =1

∑ TPROPAGαi

β
i=1

} + τprep .  (16) 

 

Thus, the arc functions during the transmission of 

the response packet are expressed as follows: 

 

Pundet
(z) = [1 − (1 − р)n ] ⋅

1

2кsd
; Pdet

(z) = 

= [1 − (1 − р)n ] ⋅ (1 −
1

2кsd
); 

fans
lost = Рlost ⋅ zTd; fans

adr = Рerradr
⋅ zTd; fans

rt = 

= (1 − р)n ⋅ zTd; 

fans
err = Рundet ⋅ zTd;fans

det = Рdet ⋅ zTd ;fans
od = fans

id =

= (1 − р)n ⋅ zTd. 

 

3. Results 
 

Graphs were constructed based on the relationships 

derived to compare the information support options. 

These graphs show the dependency of the relative aver-

age information collection time on the state of the com-

munication channel (probability of a single-bit error), the 

probability of subscriber availability, and the probability 

of a potential conflict. 

An informed choice of the information support op-

tion can be made using the developed model and obtained 

mathematical relationships.  

Figures 5 and 6 show the dependency of the relative 

information collection time on the error probability in the 

channel for the three information support options, con-

structed according to expressions (2) – (4), with the sub-

scriber availability probabilities Pfree=0.8 and Pfree=1, 

respectively. 

 

 

Fig. 5. The dependance 
Tavg

TTRF
= f(p) with Pfree=0.8 

 

 

Fig. 6. The dependance 
Tavg

TTRF
= f(p) with Pfree=1 

 

These graphs demonstrate that the information col-

lection time increased significantly with probability  

p > 104 when using any of the analyzed options. The in-

formation collection time on request was more than twice 
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that of the other options. The subscriber availability prob-

ability significantly affects the collection time (Fig-

ure 7, 8). For Pfree=0.8 and p=10−3, the information col-

lection time for the second and third options was almost 

comparable to the same characteristic of the first option 

with Pfree=1 (Figures 5, 6). 

 

 

Fig. 7. The dependance 
Tavg

TTRF
= f(P𝑐 ) with p=10-3 

 

 

Fig. 8. The dependance 
Tavg

TTRF
= f(P𝑓𝑟𝑒𝑒) with p=10-3 

 

There is a similar dependency between the infor-

mation collection time and the probability of service 

packet recognition Pdet. Because many service packets 

are in the network, measures must be taken to distinguish 

and recognize them with a probability of no less than 0.9. 

The probability of conflict occurrence significantly  

influences the time required for information collection 

(Pc), which depends on the network load. As shown in 

Figure 7, when Pc>0.1, the information support time for 

the second and third options began to increase rapidly 

and exceeded the characteristics of the first option (Fig-

ure 7). 

When selecting an information support method, it is 

essential to consider the time and network resources con-

sumed in the information collection process. Network re-

sources are used only during information exchange be-

tween control and control centres. In the first data collec-

tion option, the need for information exchange arises at 

the initiative of the control centre. In contrast, in the sec-

ond option, it is at the initiative of the controlled centres. 

The third option involves periodic transmission of up-

dated data. Since the probability of adjusting the network 

control process under normal operating conditions is not 

very high, we assume that the network resources con-

sumed for information collection in the third option will 

be greater than those in the first and second options. 

In the second information support option, the infor-

mation collection time, and consequently the consumed 

network resources, is slightly less than that in the first 

option. However, the control centre determines the ne-

cessity of using the first option. Therefore, for infor-

mation support, it is necessary to provide the possibility 

of collecting information both on request and when the 

state of network elements changes . 

 

4. Discussion 
 

The proposed probabilistic-time graph model for 

optimizing information support technologies in network 

control tasks demonstrated notable variability in the effi-

ciency of different information collection methods. This 

study analyzes periodic data transmission, event-driven 

data collection, and on-demand requests, each of which 

exhibits distinct advantages and limitations under various 

network conditions. 

Periodic data transmission ensures regular updates 

however, it can cause network congestion due to the high 

volume of data. This finding is consistent with existing  

literature and highlights the challenge of increased net-

work load associated with periodic transmission meth-

ods. For instance, a recent study by Al-Fuqaha et al. [18] 

discussed the significant network load caused by periodic 

data transmission, emphasizing the need to balance data 

timeliness and network efficiency. Our study demon-

strates illustrates that the information collection time in-

creases significantly when the error probability in the 

channel exceeds 10−4. 

Event-driven data collection responds more to real-

time changes, thereby reducing unnecessary data trans-

mission. However, it may miss infrequent but significant 

state changes. This aligns with the observations in recent 

studies, where event-driven methods are praised for their 

responsiveness but are noted for their potential to over-

look rare events. Research by Akkaya and Younis [19] 

highlighted the efficiency of event-driven data collection 

in wireless sensor networks but pointed out the risk of 

missing sporadic but crucial data changes. The proposed 

model demonstrates that event-driven methods maintain 

lower average information collection times under various 

network conditions, particularly when subscriber availa-

bility is high. 

On-demand requests balance the need for timely 

data while maintaining network resource constraints. 

They are effective in minimizing network load but are 

susceptible to delays due to packet loss or corruption. The 
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effectiveness of this method in balancing timely infor-

mation retrieval with resource constraints is supported by 

studies on dynamic network environments. Zhang et al. 

[20] discussed the benefits and challenges of on-demand 

data collection in IoT networks, particularly focusing on 

packet loss and delay issues. The findings of this study 

indicate that on-demand requests exhibit increased col-

lection times when the probability of subscriber availa-

bility is less than 1. 

The study by Inzillo et al. [21] reveals significant 

improvements in energy efficiency and network perfor-

mance through adaptive array technologies. Implement-

ing adaptive beamforming techniques reduces energy 

consumption and enhances packet delivery ratios, which 

is critical for maintaining efficient and reliable network 

control. This aligns with the current study's findings that 

adaptive methods can optimize network performance by 

dynamically adjusting to network conditions. 

Großwindhager et al.'s [22] research on dependable 

IoT systems for networked cars underscores the im-

portance of reliability and security in IoT applications . 

The study emphasizes the need for dependable wireless 

communication and localization, achieved through adap-

tive algorithms and robust protocol testing. These in-

sights are relevant to the current study, highlighting the 

necessity of reliable and timely information collection 

methods for efficient network control. 

The model’s flexibility in adapting to varying net-

work conditions has significant practical implications for 

improving network efficiency and performance. By ena-

bling dynamic selection among different information col-

lection methods, the model can optimize resource utiliza-

tion and enhance decision-making processes in network 

management. This adaptability is particularly relevant in 

modern telecommunications and computer networks, 

where conditions can change rapidly and unpredictably. 

Network administrators can use the proposed model 

to evaluate the trade-offs of each information collection 

method based on real-time network conditions. The pro-

posed approach can lead to more efficient use of network 

resources, reduced data collection times, and improved 

overall network performance. The insights provided by 

the probabilistic-time graph model can inform network 

control strategies and help mitigate the limitations of cur-

rent methodologies. 

Future research should explore integrating machine 

learning techniques to predict network conditions and dy-

namically adjust information collection strategies. Ma-

chine learning can enhance a model's ability to adapt to 

real-time changes, which improves its efficiency and re-

liability. In addition, extending the model to accommo-

date more complex network topologies and heterogene-

ous environments would provide a broader understand-

ing of its applicability. Understanding how the model 

performs under various conditions is crucial as networks 

become increasingly diverse. Research on the impact of 

emerging technologies, such as 6G networks and the In-

ternet of Things, on information collection methods is 

also crucial for future advancements. A recent paper by 

Dang et al. [23] discussed the challenges and opportuni-

ties of 6G networks, emphasizing the need for advanced 

information-collection models. 

The proposed model must develop robust security 

and privacy mechanisms. As network environments in-

crease in complexity, ensuring the security and privacy 

of data transmission is critical. Future studies could in-

vestigate methods to integrate these considerations into 

the model to enhance its practical utility and reliability . 

Ziegeldorf et al. [24] highlighted the importance of incor-

porating security and privacy features into IoT networks 

and provided insights that could be applied to the current 

model. 

This study presents a comprehensive and adaptable 

model for optimizing information support technologies 

for network control tasks. By incorporating probabilistic 

and time-based analyses, the proposed model provides a 

detailed understanding of the trade-offs involved in dif-

ferent information collection methods. The results high-

light the model's potential to improve network efficiency  

and performance, and they have significant practical im-

plications for network control strategies. Future research 

directions include integrating machine learning tech-

niques, extending the model to more complex environ-

ments, and developing robust security mechanisms. 

 

Conclusions 
 

This study presents a comprehensive model for in-

formation support technology aimed at optimizing con-

trol task resolution in network environments. The model 

integrates probabilistic and time-based analyses to eval-

uate the efficiency of various information collection 

methods, including periodic data transmission, event-

driven data collection, and on-demand requests. 

The proposed model demonstrates that the effi-

ciency of information collection significantly varies de-

pending on the method employed. Periodic data transmis-

sion while ensuring regular updates can increase network 

load and reduce unnecessary data transmission. Event-

driven data collection responds more to real-time 

changes but may miss infrequent yet significant state 

changes. On-demand data requests balance the need for 

up-to-date information with network resource constraints 

but are susceptible to delays if packets are lost or cor-

rupted. 

The probabilistic-time graph model effectively cap-

tures the dynamic nature of network conditions and pro-

vides a robust framework to evaluate different infor-

mation collection strategies. By considering factors such 

as packet loss probability, node availability, and conflict 
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likelihood, the proposed model provides a detailed un-

derstanding of the trade-offs involved in each method. 

This study highlights that network conditions, such as the 

probability of single-bit errors, subscriber availability , 

and potential conflicts, significantly impact the infor-

mation collection time and the overall network effi-

ciency. For example, high error probabilities and low 

subscriber availability can drastically increase the time 

required to collect data, thereby affecting the timeliness  

and reliability of the control task resolution. 

The proposed model offers greater flexibility and 

accuracy when adapting to varying network conditions 

than existing methodologies. Traditional models often 

cannot dynamically adjust to real-time changes and prob-

abilistic transmission errors. Integrating probabilistic-

time graphs into the proposed model addresses these lim-

itations, providing a more comprehensive and adaptable 

network control approach. 

The findings of this study have significant practical 

implications for network control strategies. Network ad-

ministrators and engineers can use the proposed model to 

make informed decisions about the most suitable infor-

mation collection methods based on current network con-

ditions. This can lead to more efficient use of network 

resources, reduced data collection times, and improved 

overall network performance. 

Although the proposed model provides a robust 

framework for optimizing information support technolo-

gies, further research is required to refine and expand its 

applicability. Future studies could explore the integration 

of machine learning techniques to predict network condi-

tions and dynamically adjust information collection strat-

egies. In addition, the proposed model can be extended to 

consider more complex network topologies and hetero-

geneous network environments. 

This study has developed a novel and effective 

model for providing information support technology for 

network control tasks. By incorporating probabilistic and 

time-based analyses, the proposed model offers a detailed 

and adaptable framework for optimizing information col-

lection methods, ultimately enhancing the efficiency and 

reliability of network control processes. The insights 

gained from this research can guide the development of 

more resilient and responsive network environments, 

thereby contributing to the advancement of telecommu-

nications and computer network technologies . 
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ОПТИМІЗАЦІЯ ТЕХНОЛОГІЇ ІНФОРМАЦІЙНОЇ ПІДТРИМКИ УПРАВЛІННЯ МЕРЕЖЕЮ:  

ПІДХІД НА ОСНОВІ ЙМОВІРНІСНО -ЧАСОВИХ ГРАФІВ 

К. М. Руккас, А. Г. Морозова, Д. Ю. Узлов,  

В. О. Кузнецова, Д. І. Чумаченко 

У сучасних телекомунікаційних та комп'ютерних мережах ефективний та надійний збір інформації є ва-

жливим для прийняття рішень та розв'язання задач управління. Методи, що існують, такі як періодична пере-

дача даних, збір даних на основі подій та запити на вимогу, мають свої переваги та обмеження. Об'єктом 

статті є розробка комплексної моделі для оптимізації процесів збору інформації в мережевих середовищах. 

Предметом статті є методи збору інформації, включаючи періодичну передачу даних, збір даних на  основі 

подій та запити на вимогу, та оцінюється їх ефективність за різних умов мережі. Метою цього дослідження є 

розробка гнучкої та точної моделі, яка може оптимізувати технології інформаційного забезпечення для за-

вдань управління мережею. Основні задачі дослідження включають: 1. Розробка ймовірнісно-часової графо-

вої моделі для оцінки ефективності різних методів збору інформації. 2. Аналіз продуктивності моделі за до-

помогою математичних співвідношень та симуляцій. 3. Порівняння запропонованої моделі з існуючими ме-

тодологіями. Результати: Запропонована модель показала значні варіації в ефективності методів збору інфо-

рмації. Періодична передача даних збільшувала навантаження на мережу, тоді як збір даних на основі подій 

був більш оперативним, але міг пропускати рідкісні зміни. Запити на вимогу балансували між необхідністю 

своєчасних даних та обмеженнями ресурсів, але стикалися із затримками через втрату пакетів. Ймовірнісно -

часовий граф ефективно відображав ці динаміки, забезпечуючи детальне розуміння компром ісів. Висновки: 

В рамках дослідження розроблено гнучку та точну модель для оптимізації технологій інформаційного забез-

печення в завданнях управління мережами. Здатність моделі адаптуватися до різних умов мережі має значні 

практичні наслідки для покращення ефективності та  продуктивності мереж. Майбутні дослідження повинні 

дослідити інтеграцію методів машинного навчання та розширити модель для більш складних мережевих се-

редовищ. 

Ключові слова: технологія інформаційного забезпечення; управління мережею; ймовірнісно-часовий 

граф; телекомунікації; комп'ютерні мережі. 
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