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1. ORDERED VARIABLES. SEQUENCES 
 

 When referring to the independent variable x , we have only been 
concerned with the set of the values that x can assume. For example, this 
can be the set of values satisfying0 1x  . We shall now consider the 
variable x  taking an infinity of values in sequence, i.e. we are now 
interested, not only in the set of values of x , but also in the order in which it 
takes these values. More precisely, we assume the possibility of 
distinguishing, for every value of x , a value that precedes it and a value 
that follows one, it being also assumed that no value of the variable is the 
last, i.e. whatever value we take, there exists an infinity of successive 

values. A variable of this type is sometimes called ordered. If 
/ / /,x x are two 

values of the ordered variable x , a preceding and a succeeding value can 

be distinguished, whilst if 
/x  precedes 

//x , and 
//x  precedes 

///x , then 
/x  

precedes
///x .  We shall assume, for example, that the set of values of x  is 

defined by 0 1x  , and that of two distinct values 
/x  and  

//x the 
succeeding value is the greater. We thus obtain an ordered variable, 
continuously increasing through all real values from zero to unity, without 
reaching unity. The sequence of values of the variable, for phenomena 
occurring in time, is established by the temporal sequence, and we shall 
sometimes make use of this time-scheme below, using terms such as 
"previous" and "later" in place of "preceding" and "succeeding" values. 

An important particular case of an ordered variable is that when the 
sequence of values of the variable can be enumerated, by arranging them 
in a series of the form: 

1 2 3, , ,..., ,...nx x x x  

so that, given two values px  and qx , the value succeeds that has the 

greater subscript. In the case mentioned above, when the variable 
increases from zero to unity, we can clearly not numerate its successive 
values. It may also be noted that it is possible to encounter identical values 

amongst those of an ordered variable. For example, we might have 3 7x =  

and 12 7x =  in the enumerated variable. Abstracting, as we always do, from 

the concrete nature of the magnitude (length, weight etc.), we must 
understand by the term "ordered variable", or as we shall say for brevity, 
"variable", simply the total sequence of its numerical values. We normally 
introduce one letter, say x , and suppose that it assumes successively the 
above-mentioned numerical values. 

For every value of the variable x , a corresponding point K is defined 
on the axis OX. Thus, as x varies in sequence, the point K moves along 
OX. 

The present book is devoted to the basic theory of limits, which is 
fundamental to all modern mathematical analysis. This theory considers 
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some extremely simple, and at the same time, extremely important, cases 
of variation of magnitudes. 

 
2. INFINITESIMALS 

 
 We assume that the point K constantly remains inside a certain 

interval of the axis OX. This is equivalent to the condition that the length of 

the intervalOK , where O is the origin, remains less than a definite positive 
number M. The magnitude x  is said to be bounded in this case. Noting that 

the length of OK  is x , we can give the following definition: 

Definition. A variable x  is said to be bounded, if there exists a 

positive number M, such that x M  for all values of x . 

We can take sinx a=  as an example of a bounded magnitude, 
where the angle a  varies in any manner. Here, M can be taken as any 
number greater than unity. 

We now consider the case when the point K is displaced 
successively, and indefinitely approaches the origin. More precisely, we 
suppose that successive displacements of point K bring it inside any 

previously assigned small section 
/S S of the axis OX with centre O, and 

that it remains inside this section on further displacement. In this case, we 
say that the magnitude x  tends to zero or is an infinitesimal. 

We denote the length of the interval 
/S S  by 2ε, where ε signifies any 

given positive number. If the point K is inside 
/S S , then OK   and 

conversely, if OK  , K is inside 
/S S . We can thus give the following 

definition: The variable x  tends to zero or is an infinitesimal, if for any given 
positive ε there exists a value of x, such that for all subsequent values of x , 

x  . 

In view of the importance of the concept of infinitesimal, we give 
another formulation of the same definition. 

Definition. A magnitude x  is said to tend to zero or to be an 

infinitesimal, if on successive variation x  becomes, and on further 

variation remains, less than any previously assigned small positive number 
ε. 

The term "infinitesimal" denotes the character of the variation of the 
variable described above, and the underlying concept is not to be confused 
with that of a very small magnitude, which is often employed in practice. 

Suppose that, in measuring a certain tract of land, we obtained 1000 
m, with some remainder that we considered very small in comparison with 
the total length, so that we neglected it. The length of this remainder is 
expressed by a definite positive number, and the 
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term "infinitesimal" is evidently not applicable here. If we were to meet with 
the same remainder in a second, more accurate measurement, we should 
cease to consider it as very small, and we should take it into account. It is 
thus clear that the concept of a small magnitude is a relative concept, 
bound up with the practical nature of the measurement. 

Suppose that the successive values of the variable x  are  

1 2 3, , ,..., ,...nx x x x  

and let ε be any given positive number. To prove that x  is an infinitesimal, 

we must show that, starting with a certain value of  n , nx will be less than 

ε, i.e. we must be able to find a certain integer N such that 

nx   for n N . 

This N depends on ε. 
As an example of an infinitesimal, we take the magnitude assuming 

successively the values: 
2 3, , ,..., ,...(0 1)nq q q q q       (2.1) 

We have to satisfy the inequality: 
nq   or 10 10log logn q  . 

Remembering that 10log q is negative, we can rewrite the above 

inequality as:  

                                                    
10

10

log

log
n

q


 , 

since division by a negative number changes the sense of the inequality; 
thus we can now take N as the largest integer in the quotient 

10 10log / log q . Thus the magnitude in question, or as we usually say, the 

sequence (1) tends to zero. 
If we replace q by (—q) in the sequence (1), the only difference is the 

appearance of the minus sign with odd powers; the absolute magnitude of 
the members of the sequence is as before, and hence we also have an 
infinitesimal in this case. 

The fact that x  is infinitesimal is usually denoted by: 

lim 0x =  or 0x → . 
Here, lim is an abbreviation of "limit" 

We note two properties of infinitesimals. 
1. The sum of any (definite) number of infinitesimals is also an 

infinitesimal. 
Take, for example, the sum w x y z= + +  of three infinitesimals, and 

suppose that the variables are enumerated. Let 

1 2 1 2 1 2, ,...; , ,...; , ,...;x x y y z z  

be the successive values of , , ,x y z respectively. We obtain successive 

values forw : 
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1 1 1 1 2 2 2 2, ,...w x y z w x y z= + + = + + . 

Let ε be any given positive number. Since , ,x y z  are infinitesimals, we can 

say that there exists 1N  such that / 3nx   for 1n N ; 2N , such that 

/ 3ny   for 2n N ; and 3N , such that / 3nz   for 3n N . If N 

denotes the greatest of 1 2,N N  and 3N , we have: 

;    ;   
3 3 3

n n nx y z
  

    for n N  

and hence: 

3 3 3
n n n nw x y z

  
 + +  + +  for n N , 

i.e. nw   for n N , whence w x y z= + +  is an infinitesimal. In the 

general case of non-enumerated variables we can look at , ,x y z  as 

functions of some ordered variable t : ( )x x t= , 

( )y y t= , ( )z z t= . Variables , ,x y z  are themselves ordered, so that if 
/t t=  precedes 

//t t= , then 
/( )x t  precedes 

//( )x t , etc. The sum  

( ) ( ) ( ) ( )w t x t y t z t= + +  , 

obtained by adding the ,x y , and z  corresponding to the same value of t , 

is also ordered. The proof is as above, for enumerated variables. In this 
latter case, t  has the role of subscript; or the subscript can be looked at as 
an increasing, integral t . 

2. The product of a bounded magnitude and an infinitesimal is an 
infinitesimal. 

We consider the product of the enumerated variables xy , where x is 

bounded, and y  is an infinitesimal. We have the condition that x  remains 

less than some positive M for any n . If  ε is any given positive number, 

there exists N, such that /ny M  for n N . 

Thus 

n n n nx y x y M
M


=     for n N . 

Hence, n nx y   for n N , so that 0xy → . The proof is analogous for 

non-enumerated variables. 
We note that the second property is all the more readily justified if x  

is a constant. We can now take M as any positive number greater than x , 

i.e. the product of a constant and an infinitesimal is an infinitesimal. 
In view of the fundamental importance of the concept of infinitesimal 

for what follows, we shall pause to add some remarks supplementary to the 
mentioned above. 
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As we have shown, a variable having the sequence of values (1), 

tends to zero, only if 0 1q   or 1 0q−   . Setting 1/ 2q = , for example, 

we obtain the sequence: 

1 1 1 1 1
, , , ,..., ,...

2 4 8 16 2n
 

Each successive value is less than the previous one in this case, and 

the variable tends to zero, diminishing all the time. Setting 1/ 2q =  we 

obtain the sequence: 

1 1 1 1
, , , ,...

2 4 8 16
− −  

Here the variable tends to zero, taking values in turn greater than, and less 
than, zero. 

Suppose that we insert zero in every other place in the above 
sequence, i. e. we take a variable with the sequence: 

1 1 1 1 1 1
,0, ,0, ,0, ,0, ,0, ,0,...

2 4 8 16 32 64
 

Clearly, the variable in this case tends to zero, though in the process 
it takes exactly the value zero an infinite number of times. This does not 
contradict the definition of a magnitude tending to zero. 

Finally, suppose that all the successive values of a variable are equal 
to zero. This also comes under the definition of a magnitude tending to 

zero, all the more since x  is now zero all the time, i.e. x   for any given 

positive ε, not only from a certain initial point of its variation, but always. In 
other words, a constant equal to zero comes under the definition of an 
infinitesimal. No other constant whatever comes under the definition. 

There is one further point. We recall the definition of infinitesimal: for 
any given positive ε, there exists a value of the variable x , such that for all 

subsequent values, x  . It follows immediately, that in proving that a 

given variable x  tends to zero, we can confine ourselves to considering 
only those values of x  that succeed a certain definite value of x , where 
this definite value can be chosen arbitrarily. 

Concerning this, it is useful in the theory of limits to add a rider to the 
definition of a bounded magnitude, viz, there is no need to demand that 

y M  for all values of y ; it is sufficient to take the more general 

definition: a magnitude y  is said to be bounded, if there 

exists a positive number M and a value of y , such that y M  for all 

subsequent values. 
The proof of the second property of infinitesimals remains unchanged 

with this definition of a bounded magnitude. For an enumerated variable, 
the first definition of a bounded magnitude follows from the second, so that 
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the second is not less general. In fact, if 
nx M  for n N , then denoting 

by 
/M  the greatest of numbers 

1 2, ,..., Nx x x  and M, 

we can assert that 
/ 1nx M +  for any n. 

 
3. THE LIMIT OF A VARIABLE 

 
We have called a variable an infinitesimal, if its corresponding point K 

in the axis OX has on displacement the following property: on successive 

variation the length of the interval OK  becomes, and on further variation 
remains, less than any given positive number ε. We now suppose that this 

property is fulfilled, not by the interval OK , but by AK , where A is a 
definite point on the axis OX with abscissa a (Fig. 3.1).  

 

Fig. 3.1 

In this case, the interval 
/S S  of length 2ε will have its centre at the point A, 

abscissa x a= , instead of at the origin, and the point K must come within 
this interval on successive displacement, then remain there on further 
displacement. We say in this case that the constant a is the limit of variable 
x , or that x  tends to a. 

Noting that the length of AK  is a x−  , we can formulate the 

following definition: 
Definition. The constant a is called the limit of the variable x ,when the 
difference a — x (or x — a) is an infinitesimal. 

Having regard to the definition of an infinitesimal, a limit can be 
thus defined: 
Definition. The constant a is called the limit of the variable x ,when we 
have the following property : for any given positive ε there exists a value of 

x  such that, for all subsequent values, a x −  . 

We note some immediately obvious consequences of this definition, 
without dwelling on their detailed proof. 

No variable can tend to two different limits, and not every variable has 

a limit. For example, the variable sina  oscillates between —1 and 1 on 
successive increase of the angle a, and has no limit. 

The limit of an infinitesimal is zero. 
If x  and y  vary simultaneously, and each tends to a limit in the course of 

successive variation, whilst both always satisfy x y , their limits a  and b  

satisfy the conditiona b . 
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We note here, that if the variables satisfy x y , the sign of equality 

can be obtained for their limits, i.e. we have a b . 
If , ,x y z  vary simultaneously and always satisfy the condition x y z   on 

successive variation, and if x  and z  tend to the same limit a , y  also tends 

to the limit a. 
If a  is the limit of x  (or x  tends to a ), we write:  

limx a=  or x a→ . 
If x  tends to a , the difference x a − =  is an infinitesimal, and we can 
write: 

x a = +       (3.1) 
i.e. every variable tending to a limit can be expressed as the sum of two 
terms: a constant term, equal to the limit, and an infinitesimal. Conversely, 
if a variable x  can be expressed in the form (2), where a  is a constant, 
and a  is an infinitesimal, the difference x a−  will be an infinitesimal, and 
hence, a  is the limit of x . 

If the sequence 1 2, ,...x x  tends to the limit a , every infinite 

subsequence 
1 2
, ,...n nx x  contained in the first sequence, also tends toa . In 

this subsequence, the subscript kn  increases with increasing k  and runs 

through some part of the set of positive integers. There is no 
analogous property, generally speaking, for a non-enumerated variable 
tending to a limit. 

We take as an example the variable x with the sequence of values: 

1 2 30.1, 0.11, 0.111,..., 0.11...11,...,nx x x x= = = =  

and we show that its limit is 1/ 9 . We first form the difference 1/ 9 nx− : 

1 2 3

1 1 1 1 1 1 1 1
, , ,...,

9 90 9 900 9 9000 9 9 10
n n

x x x x− = − = − = − =


. 

The condition: 

1

9 10n



 

is evidently equivalent to the condition: 

1
9 10n


   or 10 10

1
log log 9n


 − , 

and we can take N as the greatest integer contained in the difference 

10 10log 1/ log 9 − . In this example, the difference 1/ 9 nx−  is a positive 

number for every n , i. e. x  tends to the limit 1/ 9  whilst always remaining 
less than it. 

We now consider the sum of the first n members of the indefi- 
nitely diminishing geometrical progression: 

2 3 1...    (0 1)n

ns b bq bq bq bq q−= + + + + +   . 

As we know, 
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(1 )

1

n

n

b q
s

q

−
=

−
. 

Setting 1,2,3,...n = , we obtain the sequence: 

1 2 3, , ,..., ,...ks s s s  

We have from the expression for ns : 

1 1

n

n

b bq
s

q q
− =

− −
. 

The right-hand side consists of the product of a constant / (1 )b q−  

and an infinitesimal 
nq . Hence, using the second property of infinitesimals, 

the difference / (1 ) nb q s− −   is an infinitesimal, and we can say that the 

constant / (1 )b q−  is the limit of the sequence 

1 2 3, , ,..., ,...ks s s s . 

Suppose that 0b   and 0q  . The difference / (1 ) nb q s− −  is now 

positive for even n  and negative for odd n , so that the variable ns is 

alternately greater than, and less than, the limit to which it tends. 
The same remarks apply in the case of magnitudes that tend to a 

given limit as were made in the previous paragraph, apropos magnitudes 
that tend to zero. 

Any constant, equal to the number a , comes under the definition of a 
variable, tending to the limit a . We note, here, that a magnitude, all of 
those values are equal to a , has in the ordinary way an infinite set of 
values, though all these values are equal to the same number. This view of 
a constant as a particular case of a variable comes in useful later on. 

Furthermore, there is no need to consider all the values of a variable 
x  when defining its limit; we need only take values subsequent to some 
arbitrarily given value. 

Another point: if a variable x  tends to a limit a , it will differ from a by 
as little as is desired, after a certain initial moment of its variation, and 
hence it is all the more a bounded variable. 

An ordered variable does not always have a limit, as already 
mentioned. If we take, for example, the enumerated variable  

1 2 30.1, 0.11, 0.111,..., 0.11...11,...,nx x x x= = = =  

those limit is 1/ 9 , and the variable 
2 3

1 2 31/ 2, 1/ 2 , 1/ 2 ,...y y y= = =    

those limit is zero, the enumerated variable 
2 3

1 2 3 4 5 60.1, 1/ 2, 0.11, 1/ 2 , 0.111, 1/ 2 ;...,z z z z z z= = = = = = , 

does not tend to a limit. The sequence of its values 1 3 5, , ,...z z z  has the limit 

1/ 9 , and the sequence 2 4 6, , ,...z z z  has the limit zero. 
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4. BASIC THEOREMS 
 

1. The limit of the algebraic sum of a finite number of variables is 
equal to the sum of their limits. 

For the sake of exactness let us take the algebraic sum x y z− +  of 

three simultaneously varying magnitudes. We suppose that ,x yand z  tend 

respectively to limits ,a b  and c . We show that the sum tends to the limit 

a b c− + . 
We have by hypothesis : 

, ,x a y b z c  = + = + = + , 

where , ,    are infinitesimals. We can write for the sum: 

( ) ( ) ( ) ( ) ( )x y z a b c a b c     − + = + − + + + = − + + − + . 

The first bracket on the right-hand side of this equation is a con- 
constant, and the second is an infinitesimal. Hence: 

lim( ) lim lim limx y z a b c x y z− + = − + = − + . 

2. The limit of the product of a finite number of variables is equal to 
the product of their limits. 

We confine ourselves to the case of the product xy  of two variables. 

We suppose that x  and y  vary simultaneously, tending respectively to 

limits a  and b , and we show that xy  tends to the limit ab . 

We have by hypothesis: 

,x a y b = + = + , 

where a  and   are infinitesimals; hence: 

( )( ) ( )xy a b ab a b    = + + = + + + . 

Using both of the properties of infinitesimals from, we see that 
the sum in the bracket on the right of this equation is an infinitesimal, 
and hence we have: 

lim( ) lim limxy ab x y= =  . 

3. The limit of a quotient is equal to the quotient of the limits, provided 
the limit of the denominator is not zero. 

We take the quotient /x y , and suppose that x  and y tend 

simultaneously to their respective limits a  and b , where 0b  . We show 

that /x y  tends to /a b . 

To prove the theorem, it is sufficient to show that the difference 

/ /a b x y− is an infinitesimal. By hypothesis: 

;x a y b = + = +  ( 0)b  , 

where   and   are infinitesimals. Hence: 

1
( )

( )

a x
a b

b y b b
 


− =  −

+
. 
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The denominator of the fraction on the right of this equation is the 

product of two factors, and tends to 
2b . Thus, from some initial moment of 

its variation, it is greater than 
2 / 2b , the fraction as a whole being included 

between zero and 
22 / b , i.e. the fraction is bounded. The term ( )a b −  

is an infinitesimal. Hence, the difference / /a b x y−  is an infinitesimal, and 

lim
lim

lim

x a x

y b y
= = . 

The theorems proved are of fundamental importance in the theory of 
limits. The proofs have been given for the general case, and not for the 
case of enumerated variables, as when proving the properties of 
infinitesimals. But the remark we made when proving the first property of 
infinitesimals should be borne in mind. Take the case of a product. We take 

x  and y  as functions of some ordered variable t : ( ); ( )x x t y y t= = . Then 

x  and y  are themselves ordered variables. The same can be said of their 

product: ( ) ( ) ( )w t x t y t=  . The subscript plays the part of t  in enumerated 

variables, increasing through integral values. 
We remark further, that the above theorems establish the existence 

of the limit of a sum, a product and a fraction. For example, the third 
theorem can be stated more fully as: if numerator and denominator tend to 
limits, and the limit of the denominator differs from zero, the quotient then 
tends to a limit, and this limit is the quotient of the limits of numerator and 
denominator. 

We note some consequences of these theorems. If x  tends to the 

limit a , then 
kbx , where b  is a constant and k  a positive integer, tends to 

the limit 
kba , in accordance with Theorem 2. 

Consider the integral polynomial 
1

0 1 1( ) ... ...m m m k

k m mf x a x a x a x a x a− −

−= + + + + + + , 

with constant coefficients ka . Using Theorem 1 and the previous remark, 

we can say that this polynomial tends to a limit: 

lim ( ) ( )f x f a=  as x tends to a where  

                      
1

0 1 1( ) ... ...m m m k

k m mf a a a a a a a a a a− −

−= + + + + + + .           (4.1) 

. 
Similarly, as x  tends to a , the rational fraction: 

1

0 1 1

1

0 1 1

... ...
( )

...

m m m k

k m m

p p

p p

a x a x a x a x a
x

b x b x b x b


− −

−

−

−

+ + + + + +
=

+ + + +
 

tends to a limit: 
1

0 1 1

1

0 1 1

... ...
lim ( ) ( )

...

m m m k

k m m

p p

p p

a a a a a a a a a
x a

b a b a b a b
 

− −

−

−

−

+ + + + + +
= =

+ + + +
  (4.2) 
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if 
1

0 1 1... 0p p

p pb a b a b a b−

−+ + + +  . 

All these remarks are valid, in whatever way x  tends to its limit a . 
We can of course take polynomials arranged in powers of several 

variables, all tending to limits, instead of polynomials arranged in powers of 
a single variable. 

For example, if limx a=  and lim y b= , then  
2 2 2 2lim( )x xy y a ab b+ + = + + . 

 
5. INFINITELY LARGE MAGNITUDES 

 
If the variable x  tends to a limit, it is evidently bounded, as already 
remarked. We now consider some cases of variation of unbounded 
magnitudes. 

As before, we shall take along with x  its corresponding point K, 
displaced on the axis OX. Let the point K move in such a way that, however 

large an interval 
/T T  we take, with the origin as centre, the point K will 

eventually be displaced outside it, and from then on will remain outside. In 
this case, x is an infinitely large magnitude, and tends to infinity. Let 2M be 

the length of the interval
/T T . Recalling that the length of the 

intervalOK x= , we can give the following definition: 

The magnitude x  is said to be infinitely large, or to tend to infinity, if 

on successive variation of x , x becomes, and on further variation remains, 

greater than any given positive number M. In other words, the magnitude x  
is called infinitely large if it satisfies the following 
condition:given any positive number M, there exists a value of x  such that, 

for all subsequent x , x M . 

In particular, if x  is infinitely large, and always remains positive 
during its successive variation as from a certain initial value (point K to the 
right of O), we say that x  tends to plus infinity (+ ). Similarly, if x  remains 
negative (point K to the left of O), we say that x  tends 
to minus infinity (− ). 

The following symbols are used for infinitely large magnitudes: 

lim ,   lim ,   limx x x=  = + = −  

or 
,   ,   x x x→ →+ →− . 

The term "infinitely large" serves merely as a brief designation for the 
character of variation described above of the variable x , and here, as with 
the concept of infinitesimal, a distinction must be made between the 
concepts of "infinitely large" and "very large" magnitudes. 

If, for example, x takes the sequence of values 1, 2, 3, ... then 
evidently, x→+ . If its sequence of values is: —1, —2, —3, ...,then 
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x →− . And finally, if the sequence is: —1, 2, —3, 4, . . ., we can write: 
x → . 

Let us take as a further example the magnitude with the sequence 
of values: 

2 3, , ,..., ,...,   ( 1)nq q q q q  ,    (5.1) 

and let M be any given positive number. The condition 
nq M  

is equivalent to 

10

10

log

log

M
n

q
 , 

and hence, if N is the greatest integer contained in the quotient 

10 10log logM q , we have:  

nq M  for n N , 

i.e. the variable in question tends to + . 
If q  is replaced by ( q− ) in the sequence (5), the only change is in the 

signs of odd powers of q , the absolute values of the members of the 

sequence remaining as before; thus, for negative q , with absolute value 

greater than unity, the sequence (5) tends to infinity. 
When in future we say that a variable tends to a limit, a finite limit is to 

be understood. It is occasionally said that a variable "tends to an infinite 
limit", implying by these words an infinitely large magnitude. 

An immediate consequence of the above definitions is: if variable x  

tends to zero, then /m x , where m  is a given constant, differing from zero, 

tends to infinity; and if x  tends to infinity, /m x tends to zero. 
 

6. MONOTONIC VARIABLES 
 

The important thing is often to show that a given variable tends to a limit, 
without necessarily being able to discover what this limit actually is. We 
now outline an important test for the existence of a limit. 

. 
Fig. 6.1 

We suppose that the variable x  is always increasing (more precisely 
never decreasing) or else always decreasing (more precisely, never 
increasing). In the first case, any given value is not less than all preceding 
values, and not greater than all subsequent values. In the second case, 
any given value is not greater than all preceding, and not less than all 
succeeding, values. We speak of monotonic variation in these cases. 

Point K on the axis OX, corresponding to x , is now displaced in a 
single direction, positively, if x  increases, and negatively, if x decreases. It 
is obvious at once that only two possibilities can arise: either K moves 
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away indefinitely along the line ( x→+or− ), or K indefinitely 
approaches some definite point A (Fig. 6.1), i.e. x  tends to a limit. If x  is 
known to be bounded, as well as varying monotonically, the first possibility 
drops out, and it can be asserted that the variable tends to a limit. 

This argument is based on intuition, and evidently lacks the force of a 
proof. We shall not give the rigorous proof in the book. 

The above test for the existence of a limit is usually formulated as 
follows: if a variable is bounded and varies monotonically, it tends to a limit. 

Take the example of the sequence: 

                           

2 3

1 2 3,   ,   ,...,   ,...,
1 2! 3! !

n

n

x x x x
u u u u

n
= = = =    (6.1) 

where x  is a given positive number. 
We have: 

                                                                       1n n

x
u u

n
−= .    (6.2) 

For n x , /x n  is less than unity, and 1n nu u − ,i.e. from some initial 

value, nu  is always decreasing for n  increasing, whilst remaining greater 

than zero. The variable thus tends to some limit u , in accordance with the 
test for the existence of a limit. Let the integer n   increase indefinitely in 
equation (7). We obtain in the limit: 

0u u=    or  0u = , 
i.e. 

                                                                               lim
!

n

n

x

n→+
.              (6.3) 

If we replace x  by ( x− ) in sequence (6), the only change is in the 
sign of members with odd n , so that the new sequence also tends to zero, 
i.e. equation (8) is valid for any given x , positive or negative. 

We obtain the limit in this example, after first showing that it exists. If 
we did not show its existence, our method could lead to a false result. 
Consider, for instance, the sequence: 

2 3

1 2 3,   ,   ,...,   ,...,( 1)n

nu q u q u q u q q= = = =  . 

We have obviously: 

1n nu u q−= . 

We denote the limit of nu  by u , without troubling about its existence. 

On transition to the limit in the above equation, we obtain: 

u uq= ,i.e. (1 ) 0u q− = , 

and hence, 
0u = . 

But this result is false, since we know that for 1q  , lim nq = + . 
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7. CAUCHY'S TEST FOR THE EXISTENCE OF A LIMIT 
 

The French mathematician Cauchy gave a necessary and sufficient 
condition for the existence of a limit, which we shall now formulate. If the 
limit is known, it is characterized by the fact that, starting with a certain 
value of the variable, the absolute value of the difference between the limit 
and the variable is less than any given positive ε. According to Cauchy's 
test, a necessary and sufficient condition for a limit to exist is that, starting 
from a certain value of the variable, the difference between any two 
successive values of the variable is less than any given positive ε. We 
formulate this rigorously:  

Cauchy's test. A necessary and sufficient condition for a variable x  
to have a limit is that, given any positive number ε, there exists a value of 

x  such that, for any two successive values 
/x  and 

//x , we have 
/ / /x x −  . 

Suppose that we have the enumerated variable  

1 2, ,..., ,...nx x x  

According to Cauchy's test, a necessary and sufficient condition for 
this sequence to have a limit is that, given any positive ε, there exists an N 
(depending on ε) such that  

m nx x −  , for m  and n N .   (7.1) 

It is easy to show that this condition is necessary. If our sequence 

has the limit a , we write ( ) ( )m n m nx x x a a x− = − + − , whence it follows: 

m n m nx x x a a x−  − + − . 

But, by definition of a limit, there exists N such that / 2mx a −  and 

/ 2na x −   for m  and n N , and therefore m nx x −    for m  and 

n N . To put the matter briefly, values of x  lying arbitrarily close to a  lie 
arbitrarily close to each other.  
We avoid a rigorous proof of the sufficiency of Cauchy's test and give a 
descriptive explanation instead (Fig. 7.1). 

 

Fig. 7.1 

 

Let sM  be a point of the coordinate axis corresponding to the number sx . 

Suppose that condition (9) is fulfilled. In accordance with this condition, 

there exists a value 1N N=  such that 

1
1s Nx x−  , 
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for 1s N , i.e. every point sM , where 1s N , lies inside the interval 
/

1 1A A , 

the length of which is equal to two and the mid-point of which corresponds 

to 
1Nx . 

Similarly, there exists a value 2 1N N N=  , such that 

2

1

2
s Nx x−   for 2s N . 

We construct an interval, of length unity, with mid-point 
2NM ; and we 

let 
/

2 2A A  be the part of this interval belonging to 
/

1 1A A . 

By virtue of the two conditions above, the point sM  must lie inside 

interval 
/

2 2A A for 2s N . 

Similarly there exists 3 2N N N=  , such that 
3

1

3
s Nx x−   for 

3s N . We proceed as before, and construct 
/

3 3A A , with length not 

exceeding 2/3 and belonging to 
/

2 2A A , all values of sM  being interior 

points of it for 3s N . Setting 1/ 4,1/ 5,...,1 / ,...n = , we obtain in this way 

a sequence of intervals 
/

n nA A , each successive member of which is 

comprised in the previous member, whilst the length of the members tends 
to zero. The ends of these intervals obviously tend to the same point A, and 
the number a corresponding to this point is the limit of the variable x , since 
it follows from the construction described above that, for a sufficiently large 

value of s , all the points sM will lie as close as desired to the point A. 

As an application of Cauchy's test, we take Kepler's equation, which 
defines the position of a planet in its orbit. This equation has the form:  

sinx q x a= + , 

where a  and q  are given numbers, both lying between zero and unity, and 

x  is unknown. 

We take an arbitrary 0x  and construct a sequence of numbers: 

1 0 2 1 1 1sin ,  sin ,...,  sin ,  sinn n n nx q x a x q x a x q x a x q x a− += + = + = + = +  

Subtracting the first equation from the second term by term, we 
obtain: 

1 0 1 0
2 1 1 0(sin sin ) 2 sin cos

2 2

x x x x
x x q x x q

− +
− = − = , 

Noting that sin a a  and cos 1a  , we have: 
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1 0

2 1 1 02
2

x x
x x q q x x

−
−  = −     (7.2) 

We can find in precisely the same way that  

3 2 2 1x x q x x−  − , 

so that, using (10), we can write: 
2

3 2 1 0x x q x x−  −  

Proceeding in this manner, we obtain for every n the condition: 

1 1 0

n

n nx x q x x+ −  −      (7.3) 

We now consider the difference m nx x− , taking m n  for the sake of 

clarity: 

1 1 2 2 3 1...m n m m m m m m n nx x x x x x x x x x− − − − − +− = − + − + − + + − . 

Using (11), and the formula for the sum of the terms of a geometrical 
progression, we may write: 

1 1 2 2 3 1...m n m m m m m m n nx x x x x x x x x x− − − − − +−  − + − + − + + −   

1 2 3

1 0 1 0

1
( ... )

1

m n
m m m n n q

q q q q x x q x x
q

−
− − − −

 + + + + − = −
−

 

As n  tends to infinity, 
nq  tends to zero ; 1 0x x−  is constant; the 

fraction (1 ) / (1 )m nq q−− − always lies between zero and 1/ (1 )q− , i.e. is 

bounded, since, for m n , 
m nq −

 lies between zero and unity. Thus, with 

indefinite increase ofn , and any m n , the  difference m nx x−  tends to 

zero, and condition (9) is fulfilled. We can say, in accordance with Cauchy's 
test, that a limit exists: 

lim n
n

x 
→+

= . 

We let n  tend to infinity in the equation 

1 sinn nx q x a+ = + . 

Using the continuity of the functionsin x , we find in the limit: 

sinq a = +       (7.4) 

i.e. the limit   of the variable nx  is also the root of Kepler's equation.  

We started with an arbitrary 0x  in constructing the sequence nx . We 

show, however, that Kepler's equation does not possess two roots, i.e. that 

nx = is independent of the choice of 0x , and is equal to the single root of 

Kepler's equation. 

We assume there is a root 1  in addition to the root  , so that: 

1 1sinq a = + . 

Subtracting equation (12) term by term from this equation, we obtain: 
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1 1
1 1(sin sin ) 2 sin cos

2 2
q q

   
   

− +
− = − = , 

whence, as before, 

1 1q   −  − . 

But q  lies between zero and unity, so that the above relationship is 

only possible for 1 0 − = , i.e. 1 = , and hence Kepler's equation has 

only one root  . 

 
8. SIMULTANEOUS VARIATION OF TWO VARIABLES, CONNECTED 

BY A FUNCTIONAL RELATIONSHIP 
 

 We consider two variables x and y , connected by the functional 

relationship: 

( )y f x=  

and we let ( )f x  be defined to the left and right of the point x c= . We shall 

assume that x  increases and passes through all real values as it tends to 

c , without in fact reaching c . In this case, ( )f x  is an ordered variable. We 

suppose that it has a limit A. 
This is usually written as follows: 

0 0
lim lim ( )

x c x c
y f x A

→ − → −
= = ,     (8.1) 

where the symbol 0x c→ − indicates that x  tends to c  from the side of 
lower values. 

Similarly, if x  tends to c  whilst diminishing and passing through all 

real values, and if ( )f x  now tends to the limit B, we write this as:  

0 0
lim lim ( )

x c x c
y f x B

→ + → +
= = ,     (8.2) 

The existence of the limit (8.1) is evidently equivalent to ( )f x coming as 

close as desired to the number A, when x  comes sufficiently close to the 
numberc , whilst remaining less than c , i.e. (8.1) is equivalent to the 
following: for any given positive number   there exists a positive number   

such that  

( )A f x −   as soon as 0 c x  −  . 

Of course,   depends on  . 

In precisely the same way, (8.2) is equivalent to: for any given 
positive number   there exists a positive number   such that 

( )B f x −   as soon as 0 x c  −  . 

If limits A and B are equal, we write this as follows: 

lim lim ( )
x c x c

y f x A
→ →

= = .      (8.3) 
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It is immaterial here, whether x  is on one side of c  or the other, and (8.3) 
implies: for any given positive   there exists a positive   such that 

( )A f x −   as soon as c x −   and x c .  (8.4) 

Limit (13) is often denoted by the symbol ( 0)f c−  and limit (8.2) by 

( 0)f c + : 

0 0
lim ( ) ( 0);    lim ( ) ( 0)

x c x c
f x f c f x f c

→ − → +
= − = + . 

Symbols ( 0)f c−  and ( 0)f c +  should be distinguished from ( )f c , i.e. the 

value of ( )f x  for x c= . This latter value can differ from ( 0)f c−  

and ( 0)f c + , or in fact can be entirely meaningless. The limits 

( 0)f c− and ( 0)f c + exist in the case of functions having graphs with no 

discontinuities, when we obviously have: ( 0) ( 0) ( )f c f c f c− = + = , i.e. 

lim ( ) ( )
x c

f x f c
→

= .  

We say in this case that the function ( )f x  is continuous for x c=  (at the 

point x c= ). We shall consider the properties of continuous functions in 
detail later. 

We return to the general case. The above definitions are easily 

generalized for the case when x  or ( )f x  tends to infinity. It is easy to see, 

for example, on the basis of what has been said, that 

0

1
lim

x c x c→ −
= −

−
;   

0

1
lim

x c x c→ +
= +

−
, 

0
2

lim tan
x

x


→ −

= + ;  
0

2

lim tan
x

x


→ +

= −  

 
Taking the principal values of the function arctany x= , we can write: 

0

1
lim arctan

2x c x c



→ −
= −

−
; 

0

1
lim arctan

2x c x c



→ +
=

−
. 

If ( )f x  is defined for all sufficiently large x , the limit can exist:  

lim ( )
x

f x A
→+

= . 

If ( )f x is defined for all x , either positive or negative, that are  sufficiently 

large in absolute value, the limit can exist:  

lim ( )
x

f x A
→

= . 

The latter is equivalent to: for any given positive number   there exists a 

positive number M, such that 

( )A f x −   for x M . 
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The following equations may easily be verified: 

3lim
x

x
→+

= + ; 
3lim

x
x

→−
= − ; 

1
lim 0
x x→

= ; 
2lim

x
x

→
= + . 

 

We also take an example from physics. Suppose that we heat a certain 

solid, and let 0t be its initial temperature. The temperature of the body rises 

on heating, until the melting point is reached. The temperature now 

remains constant on further heating, till the point when the whole of the 

substance has passed over to the liquid state; after this, the temperature-

rise begins again, in the resultant liquid. The situation is similar on passage 

from the liquid to the gaseous state. We shall consider the amount of heat 

Q communicated to the substance as a function of the temperature. 

Figure (8.1) shows the graph of this function, with temperature on the 

horizontal axis, and the amount of heat absorbed on the vertical axis. Let 

1t be the temperature at which transition to the liquid state begins, and 2t  

the temperature at which the transition from the liquid to the gaseous state 

begins. Evidently: 

1 0
lim .

t t
Q ord AB

→ −
=   and 

1 0
lim .

t t
Q ord AC

→ +
= . 

 

Fig. 8.1 

 

The size of the segment BC  gives the latent heat of fusion, and that 

of EF  the latent heat of vaporization.  

If limits ( 0)f c−  and ( 0)f c +  exist and differ, their difference 

( 0) ( 0)f c f c+ − −  is called the break, or jump, of function ( )f x  at x = c 

(at the point x = c). 
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The function arctan1/ ( )y x c= − has a jump of  at x c= . The 

function ( )Q t just considered has a jump equal to the latent heat of fusion 

at the melting-point 1t t= . 

In defining the limit of ( )f x  as x  tends to c , we assumed that x  

never actually coincides with c . This proviso is made, since the value  

of ( )f x for x c= either sometimes does not exist, or else has nothing in 

common with the values of ( )f x for x  close to c . The function ( )Q t , for 

example, is not defined for 1t t= . 

Another explanatory example may be given. We assume that a 
function is defined as follows in the interval (—1. +1): 

1y x= +     for    1 0x−   ; 

1y x= −     for    0 1x  ; 0y =    for 0x = . 

Fig. 8.2 shows the graph of this function; it consists of two straight sections, 
with their ends excluded (for 0x = ), and a single isolated point, the origin. 
We now have: 

0
lim ( ) 1
x

f x
→−

= ;  
0

lim ( ) 1
x

f x
→+

= −  ;  (0) 0f = . 

 

Fig. 8.2 

 

9. IMPORTANT LIMIT 
0

sin
lim
x

x

x→
 

 
We consider an example that is important later on. We take 

sin x
y

x
= . 

This function is defined for all x , other than 0x = , for which both 
numerator and denominator become zero, so that the fraction loses its 
meaning. We shall see how y  varies as x  tends to zero. The magnitude of 

the fraction does not change when x  changes sign, so that it is sufficient to 
find the limit of the fraction as x  tends to zero through positive values, i.e. 
in the first quadrant. This limit exists, as we shall show. From the above 
remarks, the same limit is obtained for x  tending to zero through negative 
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values. We note that the theorem regarding the limit of a quotient cannot be 
used, since the denominator tends to zero as 0x → . 

 We shall take x  as the angle subtended at the centre of a circle of 
unit radius. Measuring angle in radians, we have  
 

sin x AC= , 
1

2
x arcAB= , tan x AD= , 

where AD  is the tangent to the circle at the end of arc x (see Fig 9.1). 

 

Fig. 9.1 

 
Since the length of the arc is intermediate between the length of the 

chord and the sum of the tangents, we can write: 

2sin 2 2tanx x x  , 

whence, dividing by 2sin x , we have: 

1
1

sin cos

x

x x
   

or 

sin
1 cos

x
x

x
       (9.1) 

But as x  tends to zero,cos x , given by the distance OC , evidently 

tends to unity, i.e. the variable sin /x x  always lies between unity and a 
magnitude tending to unity, and hence: 

0 0

sin
lim lim 1
x x

x
y

x→ →
= = . 

We determine for this case  , encountered in condition (8.4). 

Subtracting the three terms of (9.1) from unity, we have: 

sin
0 1 1 cos

x
x

x
 −  − , 

and this shows that 

sin
1

x

x
−   if 1 cos x −  . 

Recalling that the sine of an arc in the first quadrant is less than the 
arc itself, we obtain: 
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2 2
21 cos 2sin 2

2 2 2

x x x
x

 
− =  = 

 
, 

and it is sufficient to choose: 
2

2

x
 , i.e. 2x   

Thus, 2 can act as   in the given case. 

 
10. CONTINUITY OF FUNCTIONS 

 
We have already introduced the definition of the continuity of a function at 
the point x c= , if the function is defined both at the point and in the vicinity 
to left and right. We give the definition again.  

Definition. The function ( )f x  is said to be continuous for x c=  (at the 

point x c= ), if a limit of ( )f x  exists for x c→  and if this limit is equal 

to ( )f c : 

lim ( ) ( ) (lim )
x c x c

f x f c f x
→ →

= =     (10.1) 

We recall that this is equivalent to the fact that there exist limits 

( 0)f c−  and ( 0)f c +  to left and right, and to the fact that these limits are 

equal to each other and to ( )f c , i.e. 

( 0) ( 0) ( )f c f c f c− = + = .Alternatively, the definition given above is 

equivalent, as we have seen, to: for any given positive  , there exists a 
positive   such that  

( ) ( )f c f x −    for  c x −  .    (10.2) 

It may be remarked that, in view of the arbitrariness of the choice of , we 

can write ( ) ( )f c f x −   in place of ( ) ( )f c f x −   in this definition. 

This remark applies to all previous similar definitions, and in particular, to 
the definition of an infinitesimal and a limit, as also to the following 
equivalent definition of continuity. 

The difference x c−  is the increment of the independent variable, 

whilst ( ) ( )f x f c−  is the corresponding increment of the function, so that 

the definition of continuity just given is equivalent to the following: a 
function is said to be continuous at the point x c= , if to 
an infinitesimal increment of the independent variable (from the initial value 
x c= ) there corresponds an infinitesimal increment of the function. 

We note that the property of continuity, as expressed in equation 
(18), amounts to the possibility of finding the limit of the function by directly 
replacing the independent variable with its limit. 
We saw from formulae (3) and (4), that polynomials in x  and the quotients 
of such polynomials, i.e. rational functions of x , are functions continuous 
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for any x , except those for which the denominator of the rational function 
becomes zero.  

The function y b=  is also obviously continuous, its value being the 

same for all x .  
All the elementary functions, discussed in the first chapter (power, 

exponential, logarithmic, trigonometric and inverse circular), are continuous 
for all the x for which they exist, except those for which they tend to infinity. 

For example, 10log x  is a continuous function of x  for all positive x ; 

tan x  is a continuous function of x  for all x , except  

(2 1)
2

x k


= + , 

where k  is any integer.  

Notice further the function 
vu , where u  and v  are continuous 

functions of x , u  being assumed not to take negative values. This is also 
called an exponential function. It likewise has the property of  continuity, 
except for those x  for which u and v  are simultaneously zero or 0u =  and 

0v  . 
We shall accept without proof what has been said about the 

continuity of the elementary functions, although proof is of course required, 
and can in fact be given with complete rigour. We shall later examine the 
question in detail. 

It can easily be shown that the sum or product of any finite number of 
continuous functions is itself a continuous function; the same is true of the 
quotient of two continuous functions except for those values of the 
independent variable for which the denominator tends to zero. 

We only consider the case of a quotient. We assume that functions 

( )x  and ( )x  are continuous for x a=  and that ( ) 0a  . We take the 

function  

( )
( )

( )

x
f x

x




= . 

Using the theorem concerning the limit of a quotient, we obtain: 

lim ( ) ( )
lim ( ) ( )

lim ( ) ( )

x a

x a

x a

x a
f x f a

x a

 

 
→

→

→

= = = , 

which proves the continuity of the quotient ( )f x  for x a= .  

We note one simple example. If siny x=  is a continuous function of 

x , siny b x= , where b  is a constant, will also be continuous, being the 

product of the continuous functions y b=  (see above) and siny x= .  
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We turn again now to the function sin /y x x= . This is not defined for 

0x = , but we know that 
0

lim 1
x

y
→

= . Hence, if we put 1y =  for 0x = , y  will 

be a continuous function at the point 0x = .  
Such a process of finding the limit of a function for x  tending to its 

point of indeterminacy is called disclosing the indeterminacy, and the limit 
itself, if it exists, is sometimes called a true value of the function at this 
point of indeterminacy. We shall have many examples later on of the 
disclosure of indeterminacies. 

 
11. THE PROPERTIES OF CONTINUOUS FUNCTIONS 

 
We defined above the continuity of a function for a given value of x . 

We now suppose that the function is defined in a finite interval a x b  . If 
it is continuous for any given x  in this interval, we say that it is continuous 

in the interval( , )a b . We note here that continuity of the function at the ends 

of the interval, x a=  and x b= , consists in: 

0
lim ( ) ( )

x a
f x f a

→ +
= ,

0
lim ( ) ( )

x b
f x f b

→ −
= . 

All continuous functions have the following properties: 

1. If the function ( )f x  is continuous in the interval ( , )a b , there 

exists at least one value of x  in this interval at which ( )f x  takes 

its maximum value, and at least one value of x  for which the 
function takes its minimum value. 

2. I f the function ( )f x  is continuous in the interval ( , )a b , with 

( )f a m=  and ( )f b n= , and if k  is any number lying between m  

and n , there exists at least one x  in the interval such that 

( )f x k= ; and in particular, if ( )f a  and ( )f b  have opposite 

signs, there exists at least one x  in the interval such that ( )f x  is 

zero. 
These two properties are immediately clear, if we note that the graph 

corresponding to a continuous function is a continuous curve. This remark 
cannot serve as a proof, of course. The concept itself of a continuous 
curve, obvious at first sight, is seen to be unusually complex on closer 
inspection. The rigorous proof of the two properties mentioned, as also of 
the third, to follow, is based on the theory of irrational numbers. We accept 
these properties without proof. 

In subsequent paragraphs of the present section, we study the basis 
of the theory of irrational numbers and the relationship of this theory to the 
theory of limits and to the properties of continuous functions. 

We may remark that the second property of continuous functions can 

also be formulated thus: on continuous variation of x  from a  tob , the 
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continuous function ( )f x  passes at least once through every  number lying 

between ( )f a  and ( )f b . 

Figures 11.1 and 11.2 show the graphs of functions, continuous in the 

interval ( , )a b , for which ( ) 0f a   and ( ) 0f b  . In Fig. 11.1 the graph 

cuts the axis OX once, and ( )f x  is zero for the corresponding x . There are 

three such values of x , instead of one, in the case of Fig. 11.2.  
 

 

Fig 11.1 

 

Fig. 11.2 

We now pass to the third property of continuous functions, which is 
less obvious than the two previous ones. 

3. If ( )f x  is continuous in the interval( , )a b , and if 0x x=  is a certain 

value of x  in this interval, by condition (10.2) (replacing c  by 0x ), 

for any given positive   there exists an  , of course depending on 

 , such that  

   0( ) ( )f x f x −  , if 0x x −  , 

it naturally being assumed that x  also lies in this interval. (If, for 

example, 0x a= , x  must be greater than a , and if 0x b= , x b .) 

But the number   can depend, not only on , but also on just what value of 

0x x=  we take in the interval. The third property of continuous functions 

consists in the fact that, for any given , there exists the same   for all 0x  
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in the interval ( , )a b . In other words, if ( )f x  is continuous in the 

interval( , )a b , for any given positive  there exists a positive   such that  

// /( ) ( )f x f x −        (11.1) 

for any two values 
//x  and 

/x  in the interval ( , )a b which satisfy the 

inequality  
// /x x −  .       (11.2) 

This property is referred to as uniform continuity. Thus, if a function is 

continuous in an interval ( , )a b , it is uniformly continuous in this interval.  

We again remark, that we assume ( )f x  to be continuous, not only 

for all x  inside the interval ( , )a b , but also for x a=  and x b= . 

We shall further illustrate the property of uniform continuity by a 
simple example. We first rewrite the above inequality in another form, 

replacing the symbol 
/x  by x , and 

//x by ( )x h+ . Now 
// /x x h− =  is the 

increment of the independent variable, and ( ) ( )f x h f x+ −  is 

the corresponding increment of the function. The property of uniform 
continuity now becomes: 

( ) ( )f x h f x + −     if   h  , 

where x  and ( )x h+  are any two points in the interval ( , )a b . 

Take the example of the function: 
2( )f x x= . 

We now have: 
2 2 2( ) ( ) ( ) 2f x h f x x h x xh h+ − = + − = + . 

For any given x , the expression 
2(2 )xh h+  for the increment of our 

function obviously tends to zero, as the increment of the independent 
variable tends to zero. This is a further confirmation that the function in 
question is continuous for every x . It will be continuous, for instance, in the 
interval 1 2x−   . We show that it is uniformly continuous in this interval. 
We 
have to satisfy the inequality: 

22xh h +         (11.3) 

for suitable choice of   in the inequality h  , where x  and ( )x h+  must 

lie in the interval ( 1,2)− . We have: 

2 2 22 2 2xh h xh h x h h+  + = + . 

The maximum value of x  in the interval is two, and hence we can rewrite 

|the above inequality with greater force as: 
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2 22 4xh h h h+  + . 

We shall always take 1h  . Then 
2h h , and we can write the above in 

the form: 
22 4xh h h h+  +  

or 
22 5xh h h+  . 

The inequality (11.3) will certainly be satisfied, if we take h on the 

condition 5 h  . Thus, h  must satisfy two inequalities: 

1h   and 
5

h


 . 

We can thus take for   the least of the two numbers 1 and / 5 . For small 

 (in fact, 5  ), we must take / 5 = , and this   is evidently the same, 

for a given  , for all x  in the interval ( 1,2)− . 

The property mentioned cannot obtain in the case of discontinuous 
functions, or those continuous only inside an interval. Take the function, the 

graph of which is shown in Fig. 9.2. It is defined in the interval ( 1, 1)− +  and 

has a discontinuity at 0x = . It has values as close as desired to unity, but it 
does not take the value unity, or values greater than unity. There is thus no 
maximum among the values of this function. Similarly, there is no minimum. 
The elementary function y x=  does not take either a maximum or 

minimum value inside the interval (0,1) . If it is considered in the closed 

interval (0,1) , it reaches its minimum value at 0x = , and its maximum at 

1x = . Take another function, ( ) sin(1/ )f x x=  continuous in the 

interval0 1x  , open on the left. As x  tends to zero, the argument 1/ x  

increases indefinitely, and sin(1/ )x  oscillates between (—1) and ( + 1), 

having no limit as 0x →+ . We show that this function is not uniformly 

continuous in the interval 0 1x  . We take two values: 
/ 1/x n=  and 

// 2 / (4 1)x n = + , where n  is a positive integer. Both values lie in the 

interval for any choice 
of n . Further, we have: 

/( ) sin 0f x n= = ; 

// 1
( ) sin 2 1

2
f x n 

 
= + = 

 
. 

Thus: 
// /( ) ( ) 1f x f x− =  

and 
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// / 2 1

(4 1)
x x

n n 
− = −

+
. 

 

As the positive integer n  tends to infinity, the difference 
// /x x−  

tends to zero, whilst 
// /( ) ( )f x f x−  remains equal to 1. It is thus evident 

that there does not exist a positive  , such that, in the interval 0 1x  , 

(11.2) implies
// /( ) ( ) 1f x f x−  ; this corresponds to choosing 1 =  in 

formula (11.1). 

Take the function ( ) sin(1/ )f x x x= . The first term of the product 

tends to zero as 0x →+ , whilst the absolute value of the second, 

sin(1/ )x , does not exceed unity; hence , ( ) 0f x →  as 0x →+ . The 

second term has no meaning for 0x = , but if we complete the definition of 

our function by taking (0) 0f = , i.e. if we take ( ) sin(1/ )f x x x=  for 

0 1x   and (0) 0f = , we obtain a function continuous in the closed 

interval (0,1) . The functions sin(1/ )x  and sin(1/ )x x  are evidently 

continuous for any x , excepting zero. 
 

12. COMPARISON OF INFINITESIMALS AND OF INFINITELY LARGE 
MAGNITUDES 

 
 If   and   are two magnitudes, simultaneously tending to zero, the 

theorem regarding the limit of a quotient cannot be used for finding the limit 

of the ratio /  . We shall assume that the variables   and  , 

whilst tending to zero, do not take the value zero. If the ratio /   tends to 

a finite limit, differing from zero, the ratio /   will also tend to a finite limit, 

differing from zero. We say in this case that   and   are infinitesimals of 

the same order. If the ratio /   has a limit 

at zero, we say that   is an infinitesimal of higher order in comparison with 

 , or that   is an infinitesimal of lower order in comparison with  . If the 

ratio /   tends to infinity, /   tends to zero, i.e.   is of lower order 

compared with  , and   of higher order compared with  . It is easy to 

show that, if   and   are infinitesimals of the same order, and   is an 

infinitesimal of higher order compared with  ,   is also of higher order as 

regards  . By hypothesis / 0  → , and /   has a finite limit, differing 

from zero. From the self evident equation / / /     =  , and using 

the theorem regarding the limit of a product, it follows at once that 

/ 0  → , which proves our statement. 
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We note an important particular case of infinitesimals of the same 

order. If / 1  →  (so that also / 1  → ), infinitesimals   and  are 

referred to as equivalent. It follows at once from the equation  

1
  

 

−
= − , 

that the equivalence of   and   implies that the difference  −  is an 

infinitesimal of higher order than  . It similarly follows from the equation 

1
  

 

−
= −  

that their equivalence implies that  −  is an infinitesimal of higher order 

than   

If / k  , where k  is a positive constant, tends to a finite limit, 

differing from zero, we say that   is an infinitesimal of order k  with respect 

to  . If / c  → , where c  is a number, not zero, / 1kc  → , i.e.   

and 
kca  are equivalent infinitesimals, and therefore, 

kca = −  is an 

infinitesimal of higher order than   (or than 
kca ). If   is taken as the basic 

infinitesimal, the equation
kca = + , where   is an infinitesimal of higher 

order than 
kca , represents the isolation from the infinitesimal   of the 

infinitesimal term 
kca  (of the simplest form with respect to a ), in such a 

way that the remainder is an infinitesimal   of higher order than   (or than 
kca ).  

An analogous comparison can be made of the infinitely large 

magnitudes u  and v . If /v u  tends to a limit, finite and not zero, we say 

that u and v  are infinitely large magnitudes of the same order. If / 0v u → , 

then /u v→ . We say in this case that v  is of a lower order of greatness 
with respect to u , or that u  is of a higher order of greatness with respect to 

v . If / 1v u → , the infinitely large magnitudes are said to be equivalent. If 

/ kv u , where k  is a positive constant, has a limit, which is finite and not 
zero, we say that v  is of the k-th order of greatness with respect to u . All 
the above remarks about infinitesimals apply for infinitely large magnitudes. 

We further remark, that if the ratio /   or /v u  has no limit at all, 

the corresponding infinitesimals or large order magnitudes are said to be 
incomparable. 

 
13. THE NUMBER e 

 
 Our present example is important later on: we consider the variable taking 
the values  
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1
1

n

n

 
+ 

 
, 

where n  tends to + , increasing through positive integers. Using 
Newton's binomial formula, we obtain: 

2 3

1 1 ( 1) 1 ( 1)( 2) 1
1 1 ...

1 2! 3!

n
n n n n n n

n n n n

− − − 
+ = +  +  +  + 

 
 

( 1)( 2)...( 1) 1 ( 1)( 2)...2 1 1
...

! !k n

n n n n k n n n

k n n n

− − − + − − 
+  + +  =  

1 1 1 1 2 1 1 2 1
1 1 1 1 1 ... 1 1 ... 1 ...

2! 3! !

k

n n n k n n n

−         
= + + − + − − + + − − − + +         

         
 

1 1 2 1
1 1 ... 1

!

n

n n n n

−    
+ − − −    

    
. 

The sum written above contains ( 1)n+  positive terms. As the integer 

n  increases, the number of terms increases and each term itself also 
increases, since in the expression for the general term: 

1 1 2 1
1 1 ... 1

!

k

k n n n

−    
− − −    

    

1 

!k remains unchanged, whilst the differences in brackets increase with 
increasing n . We thus see that the variable in question increases with 
increasing n ; so that it is sufficient to show that the variable I is bounded, 
in order to prove that its limit exists.  

We replace all the differences appearing in the general term by I 

unity, and all the factors of !k , starting with 3, by 2. The general term is 
evidently now increased, and we shall have, on using the formula for the 
sum of the terms of a geometrical progression: 

2 1 1 1

1
1

1 1 1 1 1 121 1 1 ... ... 1 3 3
12 2 2 2 2

1
2

n
n

k n nn − − −

−
 
+  + + + + + + + = + = −  

  −

, 

i.e. the variable ( )1 1/
n

n+  is bounded. We denote its limit by the letter e : 

1
lim 1

n

n
e

n→+

 
+ = 

 
 (n  is a positive integer).   (13.1) 

                                                 

1 (The product 
1 2 1

1 1 1
k

n n n

−   
− − −   

   
 is obtained from the fraction 

( )( ) ( )1 2 ... 1
k

n n n n k

n

− − − +
 ,if; noting that there are k  terms n in the 

denominator, each of the k terms of the product on top is divided by n  .) 
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This limit is evidently not greater than 3.  

We now show that the expression ( )1 1/
x

x+ tends to the same limite , 

if x  tends to + , taking any values. 
Let n  be the greatest integer included in x , i.e.  

1n x n  + . 
The number n  evidently tends to +  along with x . On noting that a 

power term increases, both with increase of the positive base, greater than 
unity, and with increase of the exponent of the power, we can write: 

1
1 1 1

1 1 1
1

n x n

n x n

+

     
+  +  +     

+     
   (13.2) 

But by equation (13.1): 
1

1
1

1 1
lim 1 lim

11 1
1

1

n

n

n n

en
e

n

n

+

→+ →+

 
+ 

+   
+ = = = 

+    + 
+ 

 

and 
1

1 1 1
lim 1 lim 1 1

n n

n n
e

n n n

+

→+ →+

      
+ = + + =      

       

. 

 
Thus, the extreme terms of inequality (13.2) tend to the limit e , and 

hence the middle term must tend to the same limit, i.e.  

1
lim 1

x

x
e

x→+

 
+ = 

 
.    (13.3) 

We now consider the case when x  tends to − .  
We introduce a new variable y  in place of x , putting 

1x y= − − , 

whence 
1y x= − − . 

It is evident from the last equation that y  tends to +  as x  tends 

to− . 

On changing the variables in the expression (1 1/ )xx+ and noting 

equation (13.3), we obtain: 
1 1

1 1
lim 1 lim lim

1

y yx

x y y

y y

x y y

− − +

→− →+ →+

   − + 
+ = = =     

− −     
 

1 1
lim 1 1 1

y

y
e e

y y→+

    
= + + =  =    

     

. 
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If x  tends to  , with either sign, i.e. x →+ , it follows from the 

above that here also: 

1
lim 1

x

x
e

x→

 
+ = 

 
.      (13.4) 

We shall later give a suitable method for calculating e  to any degree 
of accuracy. Clearly, it is an irrational number; we have, to an accuracy of 
seven decimal places: e = 2.7182818 . . . 

We can now easily find the limit of (1 / )xk x+ , where k  is a given 

number. Using the continuity of a power function, we obtain:  

/
1 1

lim 1 lim 1 lim 1
/

kk yx x k

k

x x y

k
e

x x k y→ → →

       
+ = + = + =       

          

, 

 where y  denotes /x k , and tends to infinity along with x . 

An expression of the form (1 / )nk n+ is encountered in compound f 

interest theory. 
We suppose that an increment of capital occurs annually. If capital 

a returns an interest annually of p  per cent, the accumulated capital in the 

course of a year will be: 

(1 )a k+ , 

where 

100

p
k = ; 

after another year has elapsed, it will be: 
2(1 )a k+ ; 

and in general, after the lapse of m  years, it will be: 

(1 )ma k+ . 

We now suppose that the increment of capital takes place every 1/ n  

of a year. The number k  is now diminished n  times, since the percentage 
interest is counted over a year, whilst the number of intervals of time is 
increased n  times; so that the accumulated capital over m  years will be: 

1

mn
k

a
n

 
+ 

 
. 

Finally, let n  tend to infinity, i.e. an increment of capital occurs in 
every smallest possible interval of time, and in the limit, continuously. After 
the lapse of m  years, the accumulated capital will be: 

lim 1 lim 1

m
mn n

km

n n

k k
a a ae

n n→ →

    
+ = + =    

     

. 
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The number e  is used as a base of logarithms. These are referred to as 
natural logarithms and are here denoted by the simple sign ln or log 
without indicating the base.  

For x  tending to zero, both numerator and denominator in the 

expression 
ln(1 )x

x

+
 tend to zero. Let us examine this indeterminate form.  

We introduce a new variable y , putting 
1

x
y

= , i.e. 
1

y
x

= , 

whence evidently, as 0x → , y  tends to infinity. Substituting the new 

variable, and making use of the continuity of a logarithm and formula 
(13.4), we obtain: 

0

ln(1 ) 1 1
lim lim ln 1 limln 1 ln 1

y

x y y

x
y e

x y y→ → →

   +
= + = + = =   

   
. 

The advantage of the present choice of a base of logarithms is clear 
from this. Just as, using radian measure of angles, the true value of 

(sin ) /x x  is unity for 0x = , in the case of natural logarithms the true value 

of 
ln(1 )x

x

+
 is also unity for 0x = .  

The following relationship follows from the definition of logarithm:  
loga N

N a= . 
Taking logarithms to base e  in this equation, we obtain: 

log log logaN N a=     or   
1

log log
log

a N N
a

=  . 

This relationship gives the logarithm of a number N to any base a  in 

terms of its natural logarithm. The factor 1/ lnM a=  is called the modulus 
of the system of logarithms to basea , and for 10a =  it is given with an 
accuracy of seven decimal places by: 

M = 0.4342945 . . . 

Of course 
0

log (1 )
lim a

x

x
M

x→

+
=  

14. ON SOME INFINITESIMALS 

1. Some other limits can be reduced to 
0

sin
lim 1
x

x

x→
=  by substituting 

the new variable or with simple rearrangemant. For example 
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1
1

0 0

0

0 0 0 0

1
1

0 0

0

sin 1
lim sin lim 1,

sinsin
lim

tan sin 1 sin 1
lim lim lim lim 1,

cos cos

tan 1
lim tan lim 1.

tantan
lim

x x

x

x x x x

x x

x

x t
t x

tx t

t

x x x

x x x x x

x t
t x

tx t

t

−
−

→ →

→

→ → → →

−
−

→ →

→

= = = = =

=  =  =

= = = = =

 

Limit 
0

1
lim

x

x

e

x→

−
 can be reduced to 

0

ln(1 )
lim
x

x

x→

+
 as the following 

( ) ( ) ( )0 0

0

11 1
lim lim 1.

ln 1ln 1 ln 1
lim

xx

x t

t

t ee t

tx tx t

t

→ →

→

= −−
= = = =

+= + +
 

Therefore we get equivalent infinitesimals 
1 1sin sin tan tan ln( 1) 1xx x x x x e x− − + − . 

2. Any infinitesimals in a quotient can be replaced with its equivalent, 
but difference of two infinitesimals of the same order is an infinitesimal of 
higher order.  

For example, we saw above that 

0

sin
lim 1
x

x

x→
= , 

i.e. sin x  and x  are equivalent infinitesimals, and therefore sin x x− is an 

infinitesimal of higher order than x  (it is incorrect to replace sin xwith x  !!). 

We see later, that this difference is equivalent to
3 / 6x− , i.e. it is an 

infinitesimal of the third order with respect to x . 
3. We show that the difference 1 cos x−  is an infinitesimal of the 

second order with respect to x . We have in fact, on using a well-known 
trigonometric formula and with a simple rearrangement, 

2

2

2 2

1 1
2sin sin

1 cos 12 2
12

2

x x
x

x x
x

 
 −

= =  
 
 

. 

If 0x → , / 2x = also tends to 0, and as we have shown: 

0 0

1
sin

sin2lim lim 1
1

2

x

x

x




→ →
= = , 
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and hence, 

20

1 cos 1
lim

2x

x

x→

−
= , 

i.e. in fact, 1 cos x−  is an infinitesimal of the second order with respect to 
x . 

4. From the expression 

1 1
1 1

x
x

x
+ − =

+ +
 

we have: 

1 1 1

1 1

x

x x

+ −
=

+ +
 

whence 

0

1 1 1
lim

2x

x

x→

+ −
= , 

i.e. 1 1x+ −  and x  are infinitesimals of the same order, 1 1x+ −  being 

equivalent to / 2x . 
5. We show that a polynomial of degree 1m   is an infinitely large 

magnitude of order m  with respect to x . In fact,  
1

0 1 1 11
0 01

...
lim lim ...

m m

m m m m

m m mx x

a x a x a x a a aa
a a

x x x x

−

− −

−→ →

+ + + +  
= + + + + = 

 
. 

 
15. APPLICATIONS TO PROBLEMS 

Let us consider several applications the theory to certain problems. 
1. Determine the following limit 

( )( )( )

34 5 3
lim

5 1 6 2 7 3x

x x

x x x→

− +

+ + +
 

We can’t apply the theorem concerning the limit of a quotient to the 
problem immediately, because the numerator and the denominator are 

infinitely large magnitudes, thus we have the indeterminate form 
 

 
 

 . 

Therefore we need to remove the indeterminacy. Let factor out the highest 
power of x : 

3

2 3

3

1 1
4 5 3

lim
1 2 3

5 6 7
x

x
x x

x
x x x

→

 
− + 

 

   
+ + +   
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On canceling 
3x  and taking into account that 

1
0, 1,2,3.

n
n

x
→ =  we 

get 
4 4 2

lim
5 6 7 210 105x→

= =
 

  

We can arrive at the same result on keeping the highest power of x  
in every factor and on neglecting other. 

( )( )( ) ( )( )( )

3 34 5 3 4 2
lim lim

5 1 6 2 7 3 5 6 7 105x x

x x x

x x x x x x→ →

− +
= =

+ + +
. 

It can be easily seen that two polynomials of the same degree are 
infinitely large magnitudes of the same order, for x → . The limit of their 
ratio is the ratio of the coefficients of their highest terms.  

If the two polynomials are of different degree, the one of higher 
degree is an infinitely large magnitude of higher order with respect to the 
other, for x → . 
      2. It’s impossible to apply theorem concerning the limit of a quotient to 

the limit 

3

22

8
lim

7 10x

x

x x→

−

− +
 immediately, because the numerator and the 

denominator take value 0, thus we have the indeterminate form 
0

0

 
 
 

.  

This means the polynomials in the numerator and in the denominator 

posses the root at the point 2x = . If a polynomial posses root 0x  it can be 

divided by 0x x− .  Lets factorize the numerator and the denominator.  

( )( )
( )( )

23

22 2

2 2 48
lim lim

7 10 2 5x x

x x xx

x x x x→ →

− + +−
=

− + − −
 

On canceling ( )2x −  we avoid the indeterminacy and get 

immediately 

( )
( )

2

2

2 4 12
lim 4

5 3x

x x

x→

+ +
= = −

− −
 

     3.  We can’t apply theorem concerning the limit of a sum to the limit 
2 2lim 5 8 3 5

n
n n n n

→
+ − − − + immediately, because we have the 

indeterminacy ( )− .  

We can reduce it to indeterminacy 
 

 
 

 instead:  

( )2 2lim 5 8 3 5
n

n n n n
→

+ − − − + = − =  
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( )( )2 2 2 2

2 2

5 8 3 5 5 8 3 5
lim

5 8 3 5n

n n n n n n n n

n n n n→

+ − − − + + − + − +
= =

+ − + − +
  

( ) ( )( )2 2

2 2 2 2

5 8 3 5 8 13
lim lim

5 8 3 5 5 8 3 5n n

n n n n n

n n n n n n n n→ →

+ − − − + −
= =

+ − + − + + − + − +
. 

On dividing by n  we get: 

2 2

13
8

8
lim 4

25 8 3 5
1 1

n

n

n n n n

→

−

= =

+ − + − +

. 

4. The limit 
( )0

sin3
lim

ln 1 5x

x

x→ +
 is another example of indeterminacy 

0

0

 
 
 

 

It can be found in two ways. 
A)  
With the following simple rearrangement we can reduce it to the product of 
3 known limits. Then we apply the limit of product theorem, and get: 

( ) ( )

( )

0 0

0 0 0

sin3 3 sin3 5
lim lim

ln 1 5 3 5 ln 1 5

sin3 3 5 3 3
lim lim lim 1 1

3 5 ln 1 5 5 5

x x

x x x

x x x x

x x x x

x x x

x x x

→ →

→ → →

 
=

+   +

=   =   =
+

 ,  

B) By using equivalent infinitesimals ( )sin3 3 ,  ln 1 5 5x x x x+  as 

0x → we get immediately 
( )0 0

sin3 3 3
lim lim

ln 1 5 5 5x x

x x

x x→ →
= =

+
 

 

    5. Limits 
0 0

lim , lim
x a x a→ − → +

(named one-sided limits from the negative and the 

positive direction respectively) allow we to investigate discontinuity of a 
function. There exist 3 cases: 

1) 
0 0

lim ( ) lim ( )
x a x a

f x f x A
→ − → +

= = , where A  is certain finite number. Under 

this condition point x a=  is either point of continuity (if ( )f x A= ) or 

a point of so-called a removable discontinuity (if ( )f x A ). A  is 

called the true value of the function 

2) 
0 0

lim ( ) lim ( )
x a x a

f x A f x B
→ − → +

=  = , where ,A B  are certain finite 

number. In this case function ( )f x  takes a discontinuity of the 1st 

kind or jump discontinuity at x a=  
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3) If at least one of these one-side limits does not equal a finite number, 

function ( )f x  takes a discontinuity of the 2nd kind or essential 

discontinuity at x a=   
 

Let us take for example ( )
1

5xf x e −=  at point 5 .  

1

5

5 0
lim 0x

x
e −

→ −
= , because x  increases and tends to 5, i.e. 

1
0

5x


−
 and 

tends to − . At the same time 

1

5

5 0
lim x

x
e −

→ +
= +  because x  decreases and 

tends to 5, i.e. 
1

0
5x


−
 and tends to .  

The point 0 5x =  is discontinuity of the 2nd kind. 

 
EXERCISES 

1. 

2 3

3

2 3
lim

12 7 5n

n n n

n n→

+ − +

− +
 . Answer: 

3

5
 . 

2. 
( ) ( )

( ) ( )

4 4

4 4

2 1 1
lim

2 1 1n

n n

n n→

+ − −

+ + −
 . Answer: 

15

17
 . 

3. 
( ) ( )

( ) ( )

2 ! 1 !
lim

2 ! 1 !n

n n

n n→

+ + +

+ − +
 Answer: 1 . 

4. 

33 2 4

54 6 5 7 3

2 1 1
lim

6 2 3 1n

n n n

n n n n→

− + + +

+ + − + +
 Answer: 1.  

5. ( )( ) ( )( )lim 1 2 1
n

n n n n
→

+ + − −  Answer: 2 . 

6. 

2

27

2 11 21
lim

9 14x

x x

x x→

− −

− +
 Answer: 

17

5
.  

7. 

4

51

3 2
lim

4 3x

x x

x x→

− +

− +
 Answer: 1. 

8. 
4

1 2 3
lim

2x

x

x→

+ −

−
 Answer: 

4

3
. 

9. 
38

9 2 5
lim

2x

x

x→

+ −

−
 Answer: 

12

5
. 



 42 

10. 
( )

( )

6
3

3
6 2

2 7 1
lim

2 13
x

x x

x x x
→

+ −

− +
 Answer: 8. 

11. 
0

tan 4
lim

sinx

x

x→
 Answer: 4. 

12. ( )
0

lim cot5
x

x x
→

 Answer:
1

5
. 

13. 
0

sin
lim

sinx

x

x



→
 Answer:




. 

14. 
sin5

lim
sin 2x

x

x→
 Answer:

5

2
− . 

15. 
0

sin
lim

sin 6 sin 7x

x

x x→ −
 Answer: -1. 

16. 
20

2 1
lim

sin 2 sin sinx x x x→

 
− 

 
 Answer:

1

2
. 

17. 

3

60

cos3 1
lim

sin 2x

x

x→

−
 Answer:

9

128
− . 

18. 
1

sin 7
lim

sin 2x

x

x



→
 Answer:

7

2
− . 

19. 
2 2

sin
lim
x

x

x → −
 Answer:

1

2
. 

20. lim sin
x

x
x



→

 
 
 

 Answer: . 

21. 
2 1 3

lim cos cos
x

x
x x→

  
−  

  
 Answer: 4 . 

22. 
0

1 2sin3 1 4sin5
lim

sin 6x

x x

x→

+ − −
 Answer:

13

6
. 

23. 
2

0

1 sin 1
lim

1xx

x x

e→

+ −

−
 Answer:

1

2
. 

24. ( ) 2

2
lim 2 3

x

x

x
x −

→
−  Answer:

4e . 

25. 

3

3

5 2
lim

5

x

x

x

x→+

 +
 
 

 Answer: 1. 
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26. 

1

11
lim

2

x

x

x

x

x

−

+

→+

+ 
 

+ 
 Answer: 1.  
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