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1. ORDERED VARIABLES. SEQUENCES

When referring to the independent variable X, we have only been
concerned with the set of the values that X can assume. For example, this
can be the set of values satisfying0 < X <1. We shall now consider the
variable X taking an infinity of values in sequence, i.e. we are now
interested, not only in the set of values of X, but also in the order in which it
takes these values. More precisely, we assume the possibility of
distinguishing, for every value of X, a value that precedes it and a value
that follows one, it being also assumed that no value of the variable is the
last, i.e. whatever value we take, there exists an infinity of successive

values. A variable of this type is sometimes called ordered. If x', x" are two
values of the ordered variable X, a preceding and a succeeding value can

be distinguished, whilst if X’ precedes X", and X" precedes X", then x’
precedes x"". We shall assume, for example, that the set of values of X is

defined by 0 < x <1, and that of two distinct values x' and X" the
succeeding value is the greater. We thus obtain an ordered variable,
continuously increasing through all real values from zero to unity, without
reaching unity. The sequence of values of the variable, for phenomena
occurring in time, is established by the temporal sequence, and we shall
sometimes make use of this time-scheme below, using terms such as
"previous" and "later" in place of "preceding" and "succeeding" values.

An important particular case of an ordered variable is that when the
sequence of values of the variable can be enumerated, by arranging them
in a series of the form:

D S S S
so that, given two values X, and X,, the value succeeds that has the

greater subscript. In the case mentioned above, when the variable
increases from zero to unity, we can clearly not numerate its successive
values. It may also be noted that it is possible to encounter identical values

amongst those of an ordered variable. For example, we might have X, =7

and X, =7 in the enumerated variable. Abstracting, as we always do, from

the concrete nature of the magnitude (length, weight etc.), we must
understand by the term "ordered variable", or as we shall say for brevity,
"variable", simply the total sequence of its numerical values. We normally
introduce one letter, say X, and suppose that it assumes successively the
above-mentioned numerical values.

For every value of the variable X, a corresponding point K is defined
on the axis OX. Thus, as Xvaries in sequence, the point K moves along
OX.

The present book is devoted to the basic theory of limits, which is
fundamental to all modern mathematical analysis. This theory considers
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some extremely simple, and at the same time, extremely important, cases
of variation of magnitudes.

2. INFINITESIMALS

We assume that the point K constantly remains inside a certain
interval of the axis OX. This is equivalent to the condition that the length of

the intervaIO_K, where O is the origin, remains less than a definite positive
number M. The magnitude X is said to be bounded in this case. Noting that

the length of OK is x|, we can give the following definition:

Definition. A variable X is said to be bounded, if there exists a
positive number M, such that |x| <M for all values of X.

We can take X =sina as an example of a bounded magnitude,
where the angle a varies in any manner. Here, M can be taken as any
number greater than unity.

We now consider the case when the point K is displaced
successively, and indefinitely approaches the origin. More precisely, we
suppose that successive displacements of point K bring it inside any

previously assigned small section S’S of the axis OX with centre O, and
that it remains inside this section on further displacement. In this case, we
say that the magnitude X tends to zero or is an infinitesimal.

We denote the length of the interval S/Sﬂ/ 2¢, where ¢ signifies any
given positive number. If the point K is inside S’S, then OK < ¢ and

conversely, if OK <&, Kisinside S'S. We can thus give the following
definition: The variable X tends to zero or is an infinitesimal, if for any given
positive € there exists a value of x, such that for all subsequent values of X,

x| < €.
In view of the importance of the concept of infinitesimal, we give

another formulation of the same definition.
Definition. A magnitude X is said to tend to zero or to be an

infinitesimal, if on successive variation |X| becomes, and on further

variation remains, less than any previously assigned small positive number
E.

The term "infinitesimal” denotes the character of the variation of the
variable described above, and the underlying concept is not to be confused
with that of a very small magnitude, which is often employed in practice.

Suppose that, in measuring a certain tract of land, we obtained 1000
m, with some remainder that we considered very small in comparison with
the total length, so that we neglected it. The length of this remainder is
expressed by a definite positive number, and the



term "infinitesimal” is evidently not applicable here. If we were to meet with
the same remainder in a second, more accurate measurement, we should
cease to consider it as very small, and we should take it into account. It is
thus clear that the concept of a small magnitude is a relative concept,
bound up with the practical nature of the measurement.

Suppose that the successive values of the variable X are

Xy Xgy Xgyeeny X yens
and let € be any given positive number. To prove that X is an infinitesimal,
we must show that, starting with a certain value of n, |Xn |wi|| be less than

g, .e. we must be able to find a certain integer N such that
|x,| <& forn>N.

This N depends on €.
As an example of an infinitesimal, we take the magnitude assuming
successively the values:

1,9°,9%,....9",...(0< g <1) (2.1)

We have to satisfy the inequality:
q" <& or nlog,, q<log, €.

Remembering that 109,, g is negative, we can rewrite the above
inequality as:
log, &
log,, g

since division by a negative number changes the sense of the inequality;
thus we can now take N as the largest integer in the quotient

log,, £ /109,, g . Thus the magnitude in question, or as we usually say, the

sequence (1) tends to zero.

If we replace q by (—q) in the sequence (1), the only difference is the
appearance of the minus sign with odd powers; the absolute magnitude of
the members of the sequence is as before, and hence we also have an
infinitesimal in this case.

The fact that X is infinitesimal is usually denoted by:

limx=0or x—0.
Here, lim is an abbreviation of "limit"

We note two properties of infinitesimals.

1. The sum of any (definite) number of infinitesimals is also an
infinitesimal.

Take, for example, the sum w= X+ Yy + zZ of three infinitesimals, and

suppose that the variables are enumerated. Let

Xis Xoyeers Yis Yoreees 2y 2o,
be the successive values of X, Y, z,respectively. We obtain successive
values forw:

n>



W, =X +Y, +Z,W, =X, +Y, +7Z,,...
Let € be any given positive number. Since X, Y, Z are infinitesimals, we can
say that there exists N, such that |x,| < &/3 forn>N,; N,, such that

|y,|<&/3forn>N,;and N, such that|z,| < £/3 for n> N,. If N
denotes the greatest of N,, N, and N,, we have:

|Xn|<£; |yn|<£; |Zn|<E for n> N
3 3 3
and hence:
|Wﬂ|<|Xn|+|yn|+|zn|<g+g+g forn> N,

ie. |w,| <& for n> N, whence W= X+ Y+ is an infinitesimal. In the
general case of non-enumerated variables we can look at X, Y,z as
functions of some ordered variable t:x = X(t),

y=Yy(t), z=1z(t). variables X, Y,z are themselves ordered, so that if

t =t precedes t =t”, then x(t') precedes x(t"), etc. The sum
W(t) = x(t) + y(t) +z(t) ,
obtained by adding the X, Y, and z corresponding to the same value of t,

is also ordered. The proof is as above, for enumerated variables. In this
latter case, t has the role of subscript; or the subscript can be looked at as
an increasing, integral t.

2. The product of a bounded magnitude and an infinitesimal is an
infinitesimal.

We consider the product of the enumerated variables Xy, where Xis

bounded, and y is an infinitesimal. We have the condition that || remains

less than some positive M for any n. If ¢is any given positive number,
there exists N, such that |y,| <&/M for n>N.

Thus
%Yol = %] -|Ya] < M ﬁ forn>N.

Hence, |X,y,| <& for n> N, so that xy — 0. The proof is analogous for

non-enumerated variables.
We note that the second property is all the more readily justified if X

is a constant. We can now take M as any positive number greater than |X|

I.e. the product of a constant and an infinitesimal is an infinitesimal.

In view of the fundamental importance of the concept of infinitesimal
for what follows, we shall pause to add some remarks supplementary to the
mentioned above.



As we have shown, a variable having the sequence of values (1),
tends to zero, only if 0<g<1lor —-1<q<0. Setting q=1/2, for example,

we obtain the sequence:
1 1
6
Each successive value is less than the previous one in this case, and
the variable tends to zero, diminishing all the time. Setting q=1/2 we

obtain the sequence:

111
21418’

B 11 B 11
2'4" 816"
Here the variable tends to zero, taking values in turn greater than, and less

than, zero.
Suppose that we insert zero in every other place in the above
sequence, i. e. we take a variable with the sequence:

1otototoltolo.
2 4 8 16 32 064

Clearly, the variable in this case tends to zero, though in the process
it takes exactly the value zero an infinite number of times. This does not
contradict the definition of a magnitude tending to zero.

Finally, suppose that all the successive values of a variable are equal
to zero. This also comes under the definition of a magnitude tending to

zero, all the more since |X| is now zero all the time, i.e. |X| < & for any given

positive g, not only from a certain initial point of its variation, but always. In
other words, a constant equal to zero comes under the definition of an
infinitesimal. No other constant whatever comes under the definition.
There is one further point. We recall the definition of infinitesimal: for
any given positive ¢, there exists a value of the variable X, such that for all

subsequent values, |X| < &. It follows immediately, that in proving that a

given variable X tends to zero, we can confine ourselves to considering
only those values of X that succeed a certain definite value of X, where
this definite value can be chosen arbitrarily.

Concerning this, it is useful in the theory of limits to add a rider to the
definition of a bounded magnitude, viz, there is no need to demand that

|y| <M for all values of y it is sufficient to take the more general
definition: a magnitude Y is said to be bounded, if there
exists a positive number M and a value ofy, such that|y| < M for all

subsequent values.

The proof of the second property of infinitesimals remains unchanged
with this definition of a bounded magnitude. For an enumerated variable,
the first definition of a bounded magnitude follows from the second, so that



the second is not less general. In fact, if |xn| <M for n> N, then denoting

by M’ the greatest of numbers
|X1|’|X2|""1|XN| and M,

we can assert that |X,| <M’ +1 for any n.

3. THE LIMIT OF A VARIABLE

We have called a variable an infinitesimal, if its corresponding point K
in the axis OX has on displacement the following property: on successive

variation the length of the interval OK becomes, and on further variation
remains, less than any given positive number €. We now suppose that this

property is fulfilled, not by the interval O_K but by R where Ais a
definite point on the axis OX with abscissa a (Fig. 3.1).

/
S AK § ¥

0 a-c ¢ Y E gt

Fig. 3.1

In this case, the interval S'S of length 2¢ will have its centre at the point A,
abscissa X = a, instead of at the origin, and the point K must come within
this interval on successive displacement, then remain there on further
displacement. We say in this case that the constant a is the limit of variable
X, or that X tends to a.

Noting that the length of AK is |a— x| , we can formulate the

following definition:
Definition. The constant a is called the limit of the variable X ,when the
difference a — x (or x — a) is an infinitesimal.

Having regard to the definition of an infinitesimal, a limit can be
thus defined:
Definition. The constant a is called the limit of the variable X ,when we
have the following property : for any given positive ¢ there exists a value of

X such that, for all subsequent values,[a—X| < ¢.

We note some immediately obvious consequences of this definition,
without dwelling on their detailed proof.

No variable can tend to two different limits, and not every variable has
a limit. For example, the variable sina oscillates between —1 and 1 on
successive increase of the angle a, and has no limit.

The limit of an infinitesimal is zero.
If X and Yy vary simultaneously, and each tends to a limit in the course of

successive variation, whilst both always satisfy X < y, their limits @ and b
satisfy the conditiona <b.



We note here, that if the variables satisfy X < Yy, the sign of equality

can be obtained for their limits, i.e. we have a <b.
If X,YV,Z vary simultaneously and always satisfy the condition X<y <z on

successive variation, and if X and z tend to the same limit a, y also tends

to the limit a.
If a is the limit of X (or X tends to a), we write:

imx=aor x—a.
If X tends to a, the difference X —a = « is an infinitesimal, and we can
write:

X=a+a«o (3.1)

I.e. every variable tending to a limit can be expressed as the sum of two
terms: a constant term, equal to the limit, and an infinitesimal. Conversely,
if a variable X can be expressed in the form (2), where a is a constant,
and a is an infinitesimal, the difference X —a will be an infinitesimal, and
hence, a is the limit of X.

If the sequence X, X,,... tends to the limit a, every infinite
subsequence X_,X_,... contained in the first sequence, also tends toa. In

m ! n, L
this subsequence, the subscript n, increases with increasing k and runs

through some part of the set of positive integers. There is no
analogous property, generally speaking, for a non-enumerated variable
tending to a limit.

We take as an example the variable x with the sequence of values:

x, =0.1,x,=0.11x, =0.111,...,,x, =0.11...11,..,,
and we show that its limit is 1/9. We first form the difference 1/9 —X. :
1 11 1 1 1 1 1

o 790’9 27 900'9 ® 90009 " g.10"
The condition:
1

9.10"
is evidently equivalent to the condition:

<&

9x10" >1 or n> Ioglol—logloQ,
& &

and we can take N as the greatest integer contained in the difference
log,,1/ & —10g,,9. In this example, the difference 1/9— X is a positive

number for every n, i. e. X tends to the limit 1/9 whilst always remaining
less than it.

We now consider the sum of the first n members of the indefi-
nitely diminishing geometrical progression:

s, =b+bg+bg®+bg’+...+bg"™ (0<|q|<1).
As we know,
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_b@-q")

S, 1—q
Setting N =1,2,3,..., we obtain the sequence:
81,551 S5+ Sy yen
We have from the expression for S :
b _ bq"
g " 1-q

The right-hand side consists of the product of a constant b/ (1—Q)

and an infinitesimal q". Hence, using the second property of infinitesimals,

the differenceb/(1—q)—s, is an infinitesimal, and we can say that the
constant b/ (1—q) is the limit of the sequence
S,1S,,Sgyre Sy ren-

Suppose that b>0 and g <0. The difference b/(1—-q)—Ss, is now

positive for even n and negative for odd n, so that the variable S is

alternately greater than, and less than, the limit to which it tends.

The same remarks apply in the case of magnitudes that tend to a
given limit as were made in the previous paragraph, apropos magnitudes
that tend to zero.

Any constant, equal to the number a, comes under the definition of a
variable, tending to the limit a. We note, here, that a magnitude, all of
those values are equal to a, has in the ordinary way an infinite set of
values, though all these values are equal to the same number. This view of
a constant as a particular case of a variable comes in useful later on.

Furthermore, there is no need to consider all the values of a variable
X when defining its limit; we need only take values subsequent to some
arbitrarily given value.

Another point: if a variable X tends to a limit a, it will differ from a by
as little as is desired, after a certain initial moment of its variation, and
hence it is all the more a bounded variable.

An ordered variable does not always have a limit, as already
mentioned. If we take, for example, the enumerated variable

x, =0.1,x,=0.11x, =0.111,...,,x, =0.11...11,..,,

those limitis 1/9, and the variable y, =1/2,y, =1/2°,y, =1/ 2°,...

those limit is zero, the enumerated variable

2,=012,=1/2,2,=011,z, =1/ 2%z, =0.111,z, =1/ 2°;...,,

does not tend to a limit. The sequence of its values z,,Z,, Z,... has the limit
1/9, and the sequence z,,2,,Z,... has the limit zero.
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4. BASIC THEOREMS

1. The limit of the algebraic sum of a finite number of variables is
equal to the sum of their limits.
For the sake of exactness let us take the algebraic sum X—Yy+ 2z of

three simultaneously varying magnitudes. We suppose that X, yand z tend
respectively to limits a,b and ¢. We show that the sum tends to the limit
a—b+c.

We have by hypothesis :

X=a+a,y=b+p,z=c+y,

where «, B,y are infinitesimals. We can write for the sum:

X—y+z=@+a)—-b+p)+(Cc+y)=(@-b+c)+(a—L+Y).

The first bracket on the right-hand side of this equation is a con-
constant, and the second is an infinitesimal. Hence:

lim(x—y+z)=a-b+c=Ilimx—-limy+limz.
2. The limit of the product of a finite number of variables is equal to

the product of their limits.
We confine ourselves to the case of the product Xy of two variables.

We suppose that X and Yy vary simultaneously, tending respectively to
limits @ and b, and we show that Xy tends to the limit ab.
We have by hypothesis:
X=a+a,y=b+2,
where a and S are infinitesimals; hence:
xy=(a+a)b+p)=ab+(af+ba+ap).

Using both of the properties of infinitesimals from, we see that
the sum in the bracket on the right of this equation is an infinitesimal,
and hence we have:

lim(xy)=ab=Ilimx-limy.

3. The limit of a quotient is equal to the quotient of the limits, provided
the limit of the denominator is not zero.

We take the quotient X/ y, and suppose that X and y tend

simultaneously to their respective limits a and b, where b = 0. We show
that X/ y tendsto a/b.

To prove the theorem, it is sufficient to show that the difference
a/b—x/ yis an infinitesimal. By hypothesis:

Xx=a+a;y=b+ 4 (b=0),
where « and £ are infinitesimals. Hence:
a X 1

by bbrp PP
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The denominator of the fraction on the right of this equation is the
product of two factors, and tends to b?. Thus, from some initial moment of
its variation, it is greater than b?/ 2, the fraction as a whole being included
between zero and 2/b?, i.e. the fraction is bounded. The term (a3 —bea)
is an infinitesimal. Hence, the difference a/b— X/ y is an infinitesimal, and

X a limx

lim==2=—2",
y b limy

The theorems proved are of fundamental importance in the theory of
limits. The proofs have been given for the general case, and not for the
case of enumerated variables, as when proving the properties of
infinitesimals. But the remark we made when proving the first property of
infinitesimals should be borne in mind. Take the case of a product. We take
X and Yy as functions of some ordered variablet: X = X(t); y = y(t). Then
X and Yy are themselves ordered variables. The same can be said of their
product: W(t) = X(t)- y(t) . The subscript plays the part of t in enumerated
variables, increasing through integral values.

We remark further, that the above theorems establish the existence
of the limit of a sum, a product and a fraction. For example, the third
theorem can be stated more fully as: if numerator and denominator tend to
limits, and the limit of the denominator differs from zero, the quotient then
tends to a limit, and this limit is the quotient of the limits of numerator and
denominator.

We note some consequences of these theorems. If X tends to the

limit &, then bx*, where b is a constant and k a positive integer, tends to

the limit ba* , in accordance with Theorem 2.
Consider the integral polynomial

f(x)=ax" +a X" +..+a X"  +..+a_ x+a_,
with constant coefficients a, . Using Theorem 1 and the previous remark,

we can say that this polynomial tends to a limit:
lim f (x) = f(a) as xtends to awhere

f(a)=a,a" +aa™ +..+aa"  +..+a_,a+a_. (4.1)

Similarly, as X tends to a, the rational fraction:
m m-1 m—k
):aox +aXx " +..+ax " 4..+a X+a,
p p-1
bx" +b X" +...+b x+Db,

@(X

tends to a limit;
m m-1 m—k
)_aoa +aa +..+aa  +..+a ,a+a,
o p p-1
b,a"+ba"" +..+b ja+b,

lime(x) = p(a (4.2)
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. -1
if b,a” +ba”" +..+b _,a+b, #0.

All these remarks are valid, in whatever way X tends to its limit a.
We can of course take polynomials arranged in powers of several
variables, all tending to limits, instead of polynomials arranged in powers of
a single variable.
For example, if limx=a and limy =b, then

lim(x* + xy + y*) =a* + ab+b*.
5. INFINITELY LARGE MAGNITUDES

If the variable X tends to a limit, it is evidently bounded, as already
remarked. We now consider some cases of variation of unbounded
maghnitudes.

As before, we shall take along with X its corresponding point K,
displaced on the axis OX. Let the point K move in such a way that, however

large an interval T'T we take, with the origin as centre, the point K will
eventually be displaced outside it, and from then on will remain outside. In
this case, Xis an infinitely large magnitude, and tends to infinity. Let 2M be

the length of the intervalT'T. Recalling that the length of the
interval OK =|x|, we can give the following definition:

The magnitude X is said to be infinitely large, or to tend to infinity, if
on successive variation of X, |X|becomes, and on further variation remains,

greater than any given positive number M. In other words, the magnitude X
is called infinitely large if it satisfies the following
condition:given any positive number M, there exists a value of X such that,

for all subsequent X, |X|>M .

In particular, if X is infinitely large, and always remains positive
during its successive variation as from a certain initial value (point K to the
right of O), we say that X tends to plus infinity (+c0). Similarly, if X remains
negative (point K to the left of O), we say that X tends
to minus infinity (—o0).

The following symbols are used for infinitely large magnitudes:

imx=o00, limx=+o0, limx=-ow
or
X —> 00, X—+00, X —>—00.

The term "infinitely large" serves merely as a brief designation for the
character of variation described above of the variable X, and here, as with
the concept of infinitesimal, a distinction must be made between the
concepts of "infinitely large" and "very large" magnitudes.

If, for example, X takes the sequence of values 1, 2, 3, ... then
evidently, X — +o0. If its sequence of values is: —1, —2, —3, ...,then

14



X — —oo. And finally, if the sequence is: —1, 2, —3, 4, . . ., we can write:
X —> 00,

Let us take as a further example the magnitude with the sequence
of values:

1.9%,9,....9",..., (q>1), (5.1)
and let M be any given positive number. The condition
q" >M
IS equivalent to
. log,, M |
log,, q

and hence, if N is the greatest integer contained in the quotient
log,, M -log,, q, we have:

q">M forn>N,

I.e. the variable in question tends to +o0.

If g is replaced by (—Q) in the sequence (5), the only change is in the
signs of odd powers of (, the absolute values of the members of the
sequence remaining as before; thus, for negative q, with absolute value
greater than unity, the sequence (5) tends to infinity.

When in future we say that a variable tends to a limit, a finite limit is to
be understood. It is occasionally said that a variable "tends to an infinite
limit", implying by these words an infinitely large magnitude.

An immediate consequence of the above definitions is: if variable X
tends to zero, then m/ X, where m is a given constant, differing from zero,
tends to infinity; and if X tends to infinity, m/ Xtends to zero.

6. MONOTONIC VARIABLES
The important thing is often to show that a given variable tends to a limit,

without necessarily being able to discover what this limit actually is. We
now outline an important test for the existence of a limit.

- X

o-—O0—0—0——0—
K KKK A
Fig. 6.1

We suppose that the variable X is always increasing (more precisely
never decreasing) or else always decreasing (more precisely, never
increasing). In the first case, any given value is not less than all preceding
values, and not greater than all subsequent values. In the second case,
any given value is not greater than all preceding, and not less than all
succeeding, values. We speak of monotonic variation in these cases.

Point K on the axis OX, corresponding toX, is now displaced in a
single direction, positively, if X increases, and negatively, if X decreases. It
IS obvious at once that only two possibilities can arise: either K moves
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away indefinitely along the line (X-—>+ocor—o0), or K indefinitely
approaches some definite point A (Fig. 6.1), i.e. X tends to a limit. If X is
known to be bounded, as well as varying monotonically, the first possibility
drops out, and it can be asserted that the variable tends to a limit.

This argument is based on intuition, and evidently lacks the force of a
proof. We shall not give the rigorous proof in the book.

The above test for the existence of a limit is usually formulated as
follows: if a variable is bounded and varies monotonically, it tends to a limit.

Take the example of the sequence:

u—X u—X2 u—x3 u—Xn (6.1)
S R TR S TR TR '
where X Is a given positive number.
We have:
X
Uy = Uy (6.2)

For n> X, x/n is less than unity, and u, <u,_, ,i.e. from some initial

value, U, is always decreasing for n increasing, whilst remaining greater

than zero. The variable thus tends to some limit U, in accordance with the
test for the existence of a limit. Let the integer n increase indefinitely in
equation (7). We obtain in the limit:
u=u-0 or u=0,
i.e.
n

lim 2. (6.3)

n—+w ) I

If we replace X by (—X) in sequence (6), the only change is in the
sign of members with odd n, so that the new sequence also tends to zero,
i.e. equation (8) is valid for any given X, positive or negative.

We obtain the limit in this example, after first showing that it exists. If
we did not show its existence, our method could lead to a false result.
Consider, for instance, the sequence:

2 3
u=g, U,=9g°, U;=q°,..., U, =q",..,(q>1).
We have obviously:
u,=u,.q.
We denote the limit of U, by u, without troubling about its existence.

On transition to the limit in the above equation, we obtain:
u=ug,.e. ul—q)=0,

and hence,
u=_0.

But this result is false, since we know that for g >1, limq" = +oo.
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7. CAUCHY'S TEST FOR THE EXISTENCE OF A LIMIT

The French mathematician Cauchy gave a necessary and sufficient
condition for the existence of a limit, which we shall now formulate. If the
limit is known, it is characterized by the fact that, starting with a certain
value of the variable, the absolute value of the difference between the limit
and the variable is less than any given positive €. According to Cauchy's
test, a necessary and sufficient condition for a limit to exist is that, starting
from a certain value of the variable, the difference between any two
successive values of the variable is less than any given positive €. We
formulate this rigorously:

Cauchy's test. A necessary and sufficient condition for a variable X
to have a limit is that, given any positive number &, there exists a value of

X such that, for any two successive values x' and X", we have
‘x’ —x" ‘ <g.
Suppose that we have the enumerated variable
X5 Xo gy X yens
According to Cauchy's test, a necessary and sufficient condition for

this sequence to have a limit is that, given any positive ¢, there exists an N
(depending on ¢€) such that

|, —X,| <&, formand n>N. (7.1)
It is easy to show that this condition is necessary. If our sequence
has the limit a, we write X —X = (X, —a)+(a—X,), whence it follows:
X, =X, | < [x, —a] +|a—x,|.
But, by definition of a limit, there exists N such that |x,, —a| < &/ 2and
la—x,|<&/2 for m and n> N, and therefore |x, —X,|<¢& for m and

n> N. To put the matter briefly, values of X lying arbitrarily close to a lie
arbitrarily close to each other.

We avoid a rigorous proof of the sufficiency of Cauchy's test and give a
descriptive explanation instead (Fig. 7.1).

AN < ’M/v_g M’V?\\"/z_'i’ (42)

Let M be a point of the coordinate axis corresponding to the number X, .

Suppose that condition (9) is fulfilled. In accordance with this condition,
there exists a value N = N, such that

S

X —le‘<1,
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fors > N,, i.e. every point M _, where s > N,, lies inside the interval A/ A ,

the length of which is equal to two and the mid-point of which corresponds
to X, -

Similarly, there exists a value N =N, = N,, such that

1
xs—xN2‘<§fors>N2.

We construct an interval, of length unity, with mid-point M N, and we

let AJA, be the part of this interval belonging to A A, .
By virtue of the two conditions above, the point M must lie inside

interval AJA, for s> N, .

1
X —XN3‘<§ for

S

Similarly there exists N =N, >N,, such that

s> N,. We proceed as before, and construct A3/A3 with length not

exceeding 2/3 and belonging to AéAz, all values of M, being interior
points of it for s> N,. Setting £ =1/4,1/5,...,1/n,..., we obtain in this way

a sequence of intervals A'A , each successive member of which is

comprised in the previous member, whilst the length of the members tends
to zero. The ends of these intervals obviously tend to the same point A, and
the number a corresponding to this point is the limit of the variable X, since
it follows from the construction described above that, for a sufficiently large

value of s, all the points M will lie as close as desired to the point A.

As an application of Cauchy's test, we take Kepler's equation, which
defines the position of a planet in its orbit. This equation has the form:

X=gsinx+a,
where a and ( are given numbers, both lying between zero and unity, and
X is unknown.
We take an arbitrary X, and construct a sequence of numbers:
X, =qsinx, +a, X, =qsinx, +a,..., X, =gsinx., +a, X,,, =gsinx, +a
Subtracting the first equation from the second term by term, we
obtain:

— X + X

X, — X, =(q(sinx, —sin x,) = 2gsin >

Noting that |sina| <|a| and |cosa| <1, we have:

18



|X2—X1|32q@

We can find in precisely the same way that
|X3 _X2| < Q|X2 _X1| d
so that, using (10), we can write:
2
|X3 _X2| <q |X1 _X0|
Proceeding in this manner, we obtain for every n the condition:
|Xn+l—Xn|Sqn|X1—Xo| (73)
We now consider the difference X, — X, taking m > n for the sake of
clarity:
Xo =X =X =X+ X =X ,+X =X s+..+X,, —X.
Using (11), and the formula for the sum of the terms of a geometrical
progression, we may write:
X0 = Xa| <X = Xooa| [ X2 = Xono| + [ X = Xipoa| oo [X

=%, — X,| (7.2)

<

| <

X

n+l

<@ +g" P+ 0" = %[ =1 ﬁm — Xy

As N tends to infinity, q" tends to zero ;|x —X,| is constant; the

fraction (1—q™ ")/ (1—q)always lies between zero and 1/ (1—Q), i.e. is

bounded, since, for m>n, q™ " lies between zero and unity. Thus, with
indefinite increase ofn, and any m >n, the difference X 6 — X, tends to

zero, and condition (9) is fulfilled. We can say, in accordance with Cauchy's
test, that a limit exists:

limx =¢&.

N—+00

We let n tend to infinity in the equation
X, =QgsInx, +a.
Using the continuity of the functionsin X, we find in the limit;
E=gsiné+a (7.4)
i.e. the limit & of the variable X, is also the root of Kepler's equation.
We started with an arbitrary X, in constructing the sequence X . We

show, however, that Kepler's equation does not possess two roots, i.e. that
X, = & is independent of the choice of X,, and is equal to the single root of

Kepler's equation.
We assume there is a root & in addition to the root &, so that:
& =qsiné +a.
Subtracting equation (12) term by term from this equation, we obtain:
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& —E=q(sin& —sin&) = 2gsin él;’tcosé;é,

whence, as before,
|§1_§| < CI|§1 _§|
But g lies between zero and unity, so that the above relationship is
only possible for § =& =0, i.e. § =&, and hence Kepler's equation has
only one root ¢ .

8. SIMULTANEOUS VARIATION OF TWO VARIABLES, CONNECTED
BY A FUNCTIONAL RELATIONSHIP

We consider two variables Xand Yy, connected by the functional
relationship:
y=f(x)

and we let f(X) be defined to the left and right of the point x = c. We shall

assume that X increases and passes through all real values as it tends to
C, without in fact reaching ¢ . In this case, f (X) is an ordered variable. We
suppose that it has a limit A.
This is usually written as follows:
limy=Ilim f(x)=A, (8.1)

x—c-0 x—c-0

where the symbol X — ¢ —Qindicates that X tends to ¢ from the side of
lower values.

Similarly, if X tends to ¢ whilst diminishing and passing through all
real values, and if f(X) now tends to the limit B, we write this as:

limy=Ilim f(x)=8B, (8.2)

Xx—c+0 x—c+0

The existence of the limit (8.1) is evidently equivalent to f(X)coming as

close as desired to the number A, when X comes sufficiently close to the
numberC, whilst remaining less than C, i.e. (8.1) is equivalent to the
following: for any given positive number ¢ there exists a positive number 7

such that
|A—f(x)|<& assoonas 0<c—x<7.
Of course, 17 depends on ¢.
In precisely the same way, (8.2) is equivalent to: for any given
positive number ¢ there exists a positive number 77 such that
|B—f(x)|<& assoonas 0<x—c<7.

If limits A and B are equal, we write this as follows:
limy=Ilimf(x) =A. (8.3)
C

X—C X—>
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It is immaterial here, whether X is on one side of C or the other, and (8.3)
implies: for any given positive £ there exists a positive 77 such that

|A—f(x)| <& assoonas [c—x|<7 and X #C. (8.4)
Limit (13) is often denoted by the symbol f (c—0) and limit (8.2) by
f(c+0):

Xx—c—0

Symbols f(c—0) and f (c+0) should be distinguished from f (c), i.e. the
value of f(X) for X =c. This latter value can differ from f (c —0)

and f (c+0), or in fact can be entirely meaningless. The limits

f(c—0)and f(c+0)exist in the case of functions having graphs with no
discontinuities, when we obviously have: f(c—0)= f(c+0)= f(c), i.e.
IXiLTg f(x)= f(c).

We say in this case that the function f (X) is continuous for x = C (at the

point X = C). We shall consider the properties of continuous functions in
detail later.

We return to the general case. The above definitions are easily
generalized for the case when X or f(X) tends to infinity. It is easy to see,

for example, on the basis of what has been said, that

lim f(x)=f(c-0); XIircrjof(x): f(c+0).

) 1 ] 1

Iim —=-0; |lim — =+w0,
Xx—c-0 X—C Xx—c+0 X—C

lim tanx=+4o0: lim tanx=—w
x—>%—0 x—>%+0

Taking the principal values of the function y =arctan X, we can write:

: 1 T
lim arctan —— = ——;
x—c—0 X—C 2
: 1 T
lim arctan ——=—.
X—¢+0 X—C
If f(X) is defined for all sufficiently large X, the limit can exist:
lim f(x)=A.

X—>+00

If f(X)is defined for all X, either positive or negative, that are sufficiently

large in absolute value, the limit can exist:
lim f (x) =A.

X—>0

The latter is equivalent to: for any given positive number ¢ there exists a
positive number M, such that

|A— f(X)|<g for |X|>I\/I.
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The following equations may easily be verified:

. . 1 i
lim x° = +o0; lim x® =—o0; lim==0; limx* = +oo0.

X—>+00 X——00 X—>00 X X—0

We also take an example from physics. Suppose that we heat a certain
solid, and let t, be its initial temperature. The temperature of the body rises

on heating, until the melting point is reached. The temperature now
remains constant on further heating, till the point when the whole of the
substance has passed over to the liquid state; after this, the temperature-
rise begins again, in the resultant liquid. The situation is similar on passage
from the liquid to the gaseous state. We shall consider the amount of heat
Q communicated to the substance as a function of the temperature.

Figure (8.1) shows the graph of this function, with temperature on the
horizontal axis, and the amount of heat absorbed on the vertical axis. Let

t, be the temperature at which transition to the liquid state begins, and t,

the temperature at which the transition from the liquid to the gaseous state
begins. Evidently:

lim Q =ord.AB and lim Q =ord.AC.

t—-t,-0 t—t,+0

w7

£

¢

|
/l.'j 1A -

7 17 t iz

Fig. 8.1

The size of the segment BC gives the latent heat of fusion, and that

of EF the latent heat of vaporization.
If limits f (c—0) and f (c+0) exist and differ, their difference

f(c+0)— f(c—0) is called the break, or jump, of function f(X) atx=c
(at the point x = c).
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The function y =arctanl/(Xx—c)has ajump of ratx=c. The
function Q(t)just considered has a jump equal to the latent heat of fusion
at the melting-point t =1,.

In defining the limit of f(X) as X tends to ¢, we assumed that X

never actually coincides with C. This proviso is made, since the value
of f(X)for x = ceither sometimes does not exist, or else has nothing in
common with the values of f(X)for X close to ¢. The functionQ(t), for
example, is not defined for t =1t,.

Another explanatory example may be given. We assume that a
function is defined as follows in the interval (—1. +1):
y=x+1 for -1<x<0;

y=x-1 for O<x<l;, y=0 for x=0.
Fig. 8.2 shows the graph of this function; it consists of two straight sections,

with their ends excluded (for x = 0), and a single isolated point, the origin.
We now have:

lim f(x)=1; lim f(x)=-1; (0)=0.

x——0 X—>+0

—/ / -
!

Fig. 8.2

. sSinX
9. IMPORTANT LIMIT lim——

x—0 X

We consider an example that is important later on. We take
_sinx
X
This function is defined for all X, other than X =0, for which both
numerator and denominator become zero, so that the fraction loses its

meaning. We shall see how Yy varies as X tends to zero. The magnitude of

the fraction does not change when X changes sign, so that it is sufficient to
find the limit of the fraction as X tends to zero through positive values, i.e.
in the first quadrant. This limit exists, as we shall show. From the above
remarks, the same limit is obtained for X tending to zero through negative
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values. We note that the theorem regarding the limit of a quotient cannot be
used, since the denominator tends to zero as X — 0.

We shall take X as the angle subtended at the centre of a circle of
unit radius. Measuring angle in radians, we have

sinx = AC, x:%arcﬁ, tanx= AD,

where AD is the tangent to the circle at the end of arc X (see Fig 9.1).

| X

Fig. 9.1

Since the length of the arc is intermediate between the length of the
chord and the sum of the tangents, we can write:
2sinX < 2x < 2tanx,
whence, dividing by 2sin X, we have:

X 1
l1<—<
SINX  COSX

or

sin x
1>——>cCosX (9.1)
X
But as X tends to zero,C0S X, given by the distance OC, evidently
tends to unity, i.e. the variable sin X/ X always lies between unity and a
magnitude tending to unity, and hence:
. . sinXx
limy=Ilim—— =1.
x—0 x>0 X
We determine for this case 77, encountered in condition (8.4).
Subtracting the three terms of (9.1) from unity, we have:

sin X
O0<l-——<1-cosX,
X

and this shows that
sin x
1-—=
X
Recalling that the sine of an arc in the first quadrant is less than the
arc itself, we obtain:

<gif[l—cosx/<e¢.
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2
1—cosX = 2sin? > < Z(EJ =—,
2 2

and it is sufficient to choose:
2

2 <eie |x| <2z
2

Thus,~/2¢ can act as 77 in the given case.

10. CONTINUITY OF FUNCTIONS

We have already introduced the definition of the continuity of a function at
the point X = C, if the function is defined both at the point and in the vicinity
to left and right. We give the definition again.

Definition. The function f(X) is said to be continuous for x = C (at the

point X =¢), if a limit of f(X) exists for X — ¢ and if this limit is equal
to f(C):
limf(x)= f(c)= f(limx) (10.1)

We recall that this is equivalent to the fact that there exist limits
f(c—0) and f(c+0) to left and right, and to the fact that these limits are

equal to each other and to f (C), i.e.

f(c—0)= f(c+0) = f(c).Alternatively, the definition given above is
equivalent, as we have seen, to: for any given positive ¢, there exists a
positive 77 such that

[f(c)- f(x)|<e for [c—X<7. (10.2)
It may be remarked that, in view of the arbitrariness of the choice of¢, we
can write | f(c)—f (X)| <& in place of | f(c)—f (X)| < & in this definition.

This remark applies to all previous similar definitions, and in particular, to
the definition of an infinitesimal and a limit, as also to the following
equivalent definition of continuity.

The difference X —C is the increment of the independent variable,
whilst f (x) — f(c) is the corresponding increment of the function, so that

the definition of continuity just given is equivalent to the following: a
function is said to be continuous at the pointX =cC, if to
an infinitesimal increment of the independent variable (from the initial value
X = C) there corresponds an infinitesimal increment of the function.

We note that the property of continuity, as expressed in equation
(18), amounts to the possibility of finding the limit of the function by directly
replacing the independent variable with its limit.
We saw from formulae (3) and (4), that polynomials in X and the quotients
of such polynomials, i.e. rational functions of X, are functions continuous
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for any X, except those for which the denominator of the rational function
becomes zero.

The function y =D is also obviously continuous, its value being the

same for all X.

All the elementary functions, discussed in the first chapter (power,
exponential, logarithmic, trigonometric and inverse circular), are continuous
for all the x for which they exist, except those for which they tend to infinity.

For example, 10g,, X is a continuous function of X for all positive X;
tan X is a continuous function of X for all X, except

T
X=(2k +1)—,
( )2

where K is any integer.

Notice further the function u*, where u and v are continuous
functions of X, U being assumed not to take negative values. This is also
called an exponential function. It likewise has the property of continuity,
except for those X for which uand v are simultaneously zero or u =0 and
v<O0.

We shall accept without proof what has been said about the
continuity of the elementary functions, although proof is of course required,
and can in fact be given with complete rigour. We shall later examine the
guestion in detail.

It can easily be shown that the sum or product of any finite number of
continuous functions is itself a continuous function; the same is true of the
guotient of two continuous functions except for those values of the
independent variable for which the denominator tends to zero.

We only consider the case of a quotient. We assume that functions
¢(X) and y(X) are continuous for X = a and that y(a) # 0. We take the

function

f ()= 2%
w (X)
Using the theorem concerning the limit of a quotient, we obtain:
lim @(X)
lim £ (x) = 222~ 2@ _ ¢y
o limy (x) v (a)

which proves the continuity of the quotient f (X) for x =a.

We note one simple example. If y=SinX is a continuous function of
X, y=Dbsinx, where b is a constant, will also be continuous, being the
product of the continuous functions y =b (see above) and y =sinXx.
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We turn again now to the function y =sinx/ X. This is not defined for
X =0, but we know that limy =1. Hence, if we put y=1 for x=0, y will

x—0
be a continuous function at the point X =0.

Such a process of finding the limit of a function for X tending to its
point of indeterminacy is called disclosing the indeterminacy, and the limit
itself, if it exists, is sometimes called a true value of the function at this
point of indeterminacy. We shall have many examples later on of the
disclosure of indeterminacies.

11. THE PROPERTIES OF CONTINUOUS FUNCTIONS

We defined above the continuity of a function for a given value of X.
We now suppose that the function is defined in a finite interval a < x <b. If
it is continuous for any given X in this interval, we say that it is continuous
in the interval (a,b). We note here that continuity of the function at the ends

of the interval, X =a and X =D, consists in:
lim f(x)=1f(a), Ii[)r_l0 f(x)=f(b).

x—a+0

All continuous functions have the following properties:
1. If the function f (X) is continuous in the interval (a,b), there

exists at least one value of X in this interval at which f (X) takes

its maximum value, and at least one value of X for which the
function takes its minimum value.
2. | f the function f (X) is continuous in the interval (a,b), with

f(a)=mand f(b)=n, andif k is any number lying between m
and n, there exists at least one X in the interval such that

f (x) =k; and in particular, if f(a) and f (b) have opposite
signs, there exists at least one X in the interval such that f (X) is

zero.

These two properties are immediately clear, if we note that the graph
corresponding to a continuous function is a continuous curve. This remark
cannot serve as a proof, of course. The concept itself of a continuous
curve, obvious at first sight, is seen to be unusually complex on closer
inspection. The rigorous proof of the two properties mentioned, as also of
the third, to follow, is based on the theory of irrational numbers. We accept
these properties without proof.

In subsequent paragraphs of the present section, we study the basis
of the theory of irrational numbers and the relationship of this theory to the
theory of limits and to the properties of continuous functions.

We may remark that the second property of continuous functions can
also be formulated thus: on continuous variation of X from a tob, the
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continuous function f(X) passes at least once through every number lying
between f(a) and f(b).

Figures 11.1 and 11.2 show the graphs of functions, continuous in the
interval (a,b), for which f(a) <0 and f(b) >0. In Fig. 11.1 the graph

cuts the axis OX once, and f(X) is zero for the corresponding X . There are
three such values of X, instead of one, in the case of Fig. 11.2.

Y|

<
<Q
[«

Fig 11.1

b___##ﬁ__
x

£\
\/
Fig. 11.2

We now pass to the third property of continuous functions, which is
less obvious than the two previous ones.

3. If f(X) is continuous in the interval(a,b), and if X =X, is a certain

a
i
i
|
|

value of X in this interval, by condition (10.2) (replacing C by X,),

for any given positive ¢ there exists an 77, of course depending on

&, such that

|FO)— (%) <e,if [x=x|<n,

it naturally being assumed that X also lies in this interval. (If, for

example, X, =a, X must be greater than a, and if X, =b, x<Db.)
But the number 1 can depend, not only on¢g, but also on just what value of
X =X, we take in the interval. The third property of continuous functions

consists in the fact that, for any givene¢, there exists the same # for all X,
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in the interval (a,b). In other words, if f(X) is continuous in the
interval (@,b), for any given positive & there exists a positive 77 such that

HCOERICOIRY (11.1)

for any two values x” and x’ in the interval (@,b)which satisfy the
inequality
X" =X|<7n. (11.2)
This property is referred to as uniform continuity. Thus, if a function is
continuous in an interval (a,b), it is uniformly continuous in this interval.
We again remark, that we assume f (X) to be continuous, not only
for all x inside the interval (a,b), but also for x=a and X =D.

We shall further illustrate the property of uniform continuity by a
simple example. We first rewrite the above inequality in another form,

replacing the symbol X' by x, and x”by (x+h). Now x” —x’ =h is the
increment of the independent variable, and f (x+h)— f(X) is

the corresponding increment of the function. The property of uniform
continuity now becomes:

|f(x+h)— f(x)|<g if |h|<77,
where X and (X+h) are any two points in the interval (a,b).
Take the example of the function:
f(x)=x°.
We now have:
f(x+h)—f(x)=(x+h)*—x*=2xh+h’.
For any given X, the expression (2xh+h?) for the increment of our

function obviously tends to zero, as the increment of the independent
variable tends to zero. This is a further confirmation that the function in
guestion is continuous for every X. It will be continuous, for instance, in the
interval —1< X < 2. We show that it is uniformly continuous in this interval.
We

have to satisfy the inequality:

‘2xh+h2‘ <& (11.3)

for suitable choice of 77 in the inequality |h| <7, where x and (x+h) must
lie in the interval (—1,2). We have:

[2xh + h?| <|2xh|+h® = 2|x||h| + h®.
The maximum value of |x| in the interval is two, and hence we can rewrite
|the above inequality with greater force as:
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[2xh +h?| < 4]h| + h?.
We shall always take |h| <1. Then h® <|h|, and we can write the above in
the form:
[2xh +h?| < 4[| +|h|
or
‘2xh+ hz‘ <5/h|.
The inequality (11.3) will certainly be satisfied, if we take |h|on the

condition 5|h| < &. Thus, h must satisfy two inequalities:
Ih|<1 and |h|< <.
5

We can thus take for 7 the least of the two numbers 1 and ¢ /5. For small
g (in fact, £ <5), we must take 7 =¢/5, and this 7 is evidently the same,
for a given ¢, for all X in the interval (—1,2).

The property mentioned cannot obtain in the case of discontinuous
functions, or those continuous only inside an interval. Take the function, the

graph of which is shown in Fig. 9.2. It is defined in the interval (-1,+1) and

has a discontinuity at X = 0. It has values as close as desired to unity, but it
does not take the value unity, or values greater than unity. There is thus no
maximum among the values of this function. Similarly, there is no minimum.
The elementary function Y = X does not take either a maximum or

minimum value inside the interval (0,1). If it is considered in the closed
interval (0,1), it reaches its minimum value at x = 0, and its maximum at
X =1. Take another function, f(x)=sin(l/x) continuous in the

interval 0 < X <1, open on the left. As X tends to zero, the argument 1/ X
increases indefinitely, and sin(1/ X) oscillates between (—1) and ( + 1),

having no limit as X — +0. We show that this function is not uniformly
continuous in the interval 0 < x <1. We take two values: X' =1/nz and
X" =2/ (4n+1) 7, where n is a positive integer. Both values lie in the

interval for any choice
of n. Further, we have:

f (x')=sinnz=0;

f(x") :sin(Znﬂ+%nj 1.

Thus:
f(x")-f(x)=1
and
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" /: 2 _ 1
(4n+)z nxz

As the positive integer n tends to infinity, the difference X" —x
tends to zero, whilst f(x”)— f(x) remains equal to 1. It is thus evident
that there does not exist a positive 77, such that, in the interval 0 < x <1,

(11.2) implies‘ f(x")-f (X’)‘ <1; this corresponds to choosing ¢ =1 in
formula (11.1).

Take the function f (X) = xsin(1/ x). The first term of the product

tends to zero as X — +0, whilst the absolute value of the second,
sin(1/ x), does not exceed unity; hence , f(X) >0 as Xx— +0. The

second term has no meaning for x =0, but if we complete the definition of
our function by taking f (0) =0, i.e. if we take f (X) = xsin(1/ x) for
0<x<1and f(0)=0, we obtain a function continuous in the closed
interval (0,1). The functions sin(1/ x) and xsin(L/ x) are evidently
continuous for any X, excepting zero.

12. COMPARISON OF INFINITESIMALS AND OF INFINITELY LARGE
MAGNITUDES

If « and £ are two magnitudes, simultaneously tending to zero, the

theorem regarding the limit of a quotient cannot be used for finding the limit
of the ratio B/ «. We shall assume that the variables o and £,

whilst tending to zero, do not take the value zero. If the ratio 8/« tends to
a finite limit, differing from zero, the ratio & / £ will also tend to a finite limit,
differing from zero. We say in this case that f and « are infinitesimals of
the same order. If the ratio / a has a limit

at zero, we say that £ is an infinitesimal of higher order in comparison with
a , or that « is an infinitesimal of lower order in comparison with . If the
ratio #/ « tends to infinity, ¢ / £ tends to zero, i.e. S is of lower order
compared with «, and a of higher order compared with £ . It is easy to
show that, if @ and £ are infinitesimals of the same order, and y is an
infinitesimal of higher order compared with «, ¥ is also of higher order as
regards £ . By hypothesisy / a — 0, anda /  has a finite limit, differing
from zero. From the self evident equation ¥/ f=y/a-a/ 3, and using

the theorem regarding the limit of a product, it follows at once that
y | — 0, which proves our statement.
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We note an important particular case of infinitesimals of the same
order. If «/ f#—1 (sothatalso S/ a —1), infinitesimals « and S are

referred to as equivalent. It follows at once from the equation
pa _PB_
a a
that the equivalence of & and £ implies that the difference S —« is an
infinitesimal of higher order than « . It similarly follows from the equation

,B—azl a

P P

that their equivalence implies that f — « is an infinitesimal of higher order
than [

If ﬂ/ak, where K is a positive constant, tends to a finite limit,
differing from zero, we say that £ is an infinitesimal of order K with respect

to a.If f/ o — C, where C is a number, not zero, ‘ﬂ/c-ak‘—ﬂ, i.e. p

and ca* are equivalent infinitesimals, and therefore, Y= ﬂ—ca" is an
infinitesimal of higher order than £ (or than Cak). If  is taken as the basic
infinitesimal, the equation £ = ca“ + ¥, where ¥ is an infinitesimal of higher
order than ca", represents the isolation from the infinitesimal S of the

infinitesimal term ca* (of the simplest form with respect to a), in such a
way that the remainder is an infinitesimal y of higher order than £ (or than
ca®).

An analogous comparison can be made of the infinitely large
magnitudes U and V. If v/ U tends to a limit, finite and not zero, we say
that uand v are infinitely large magnitudes of the same order. Ifv/u — 0,
then u/v — 0. We say in this case that Vv is of a lower order of greatness
with respect to U, or that U is of a higher order of greatness with respect to
V. If v/u —1, the infinitely large magnitudes are said to be equivalent. If

v/u®, where k is a positive constant, has a limit, which is finite and not
zero, we say that v is of the k-th order of greatness with respect to u. All
the above remarks about infinitesimals apply for infinitely large magnitudes.

We further remark, that if the ratio f/ a or v/ U has no limit at all,
the corresponding infinitesimals or large order magnitudes are said to be
incomparable.

13. THE NUMBER e

Our present example is important later on: we consider the variable taking
the values
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where n tends to +o0, increasing through positive integers. Using
Newton's binomial formula, we obtain:

(1+1)n_1 = -0 1 n(-Hn-2) 1

n 21 n? 3! n’
+n(n—1)(n—2)...(n—k+l)'ikerJrn(n—l)(n—2)...2-1.in:
k! n n! n

S O e ) T
4305

The sum written above contains (n+1) positive terms. As the integer

N increases, the number of terms increases and each term itself also
increases, since in the expression for the general term:

oo 22

k!'remains unchanged, whilst the differences in brackets increase with
increasing N. We thus see that the variable in question increases with
increasing N; so that it is sufficient to show that the variable | is bounded,
in order to prove that its limit exists.

We replace all the differences appearing in the general term by |
unity, and all the factors of k!, starting with 3, by 2. The general term is
evidently now increased, and we shall have, on using the formula for the
sum of the terms of a geometrical progression:

1
n :|__7n
1+l <1+1+£+i+...+i_+...+ 1_ 14— 2 - 1_ <3,
n 2 22 2kl 2n1 1_1 2n1
2

i.e. the variable (1+1/n)" is bounded. We denote its limit by the letter e:

lim (1+ lj =e (N is a positive integer). (13.1)
n

N—>+w0

1 (The product (1—%)(1—%)(1—%} Is obtained from the fraction

n(n—1)(n—§k)...(n—k+1) if; noting that there are K terms n in the

denominator, each of the k terms of the product on top is divided by N )
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This limit is evidently not greater than 3.
We now show that the expression (1+1/ )" tends to the same limite,

if X tends to +o0, taking any values.
Let n be the greatest integer included in X, i.e.
n<x<n+1.
The number n evidently tends to +oo along with X. On noting that a
power term increases, both with increase of the positive base, greater than
unity, and with increase of the exponent of the power, we can write:

n X n+1
(1+ i) <(1+ lj <(1+ 1) (13.2)
n+1 X n

But by equation (13.1):
n+1

1Y (H 11) e

Iim(1+—jzlim Lt VAR -

n+1 n%( 1 ) 1
1+
n+1

n+1 n
lim (1+3j _ lim Hli) (1+3ﬂ=e.
N—>-+o0 n N—>+o0 n n

Thus, the extreme terms of inequality (13.2) tend to the limit €, and
hence the middle term must tend to the same limit, i.e.

lim (1+Ej =e. (13.3)

X—>+0 X

We now consider the case when X tends to —oo.
We introduce a new variable Y in place of X, putting

X=-1-vy,

N—+o00

and

whence
y=-1-X.
It is evident from the last equation that y tends to +o0 as X tends
t0—oo0.
On changing the variables in the expression (1+1/ X)*and noting
equation (13.3), we obtain:

1 X -1-y 1 l+y
lim (1+—) T [‘—yj — lim £+—yj _
X—>—00 X y—o+o| —] — y y—>+00 y

y
= |im (1+£j [1+£] =e-1=¢e.
o+ y y

34



If X tends to oo, with either sign, i.e. || — +oo, it follows from the
above that here also:

Im{#+3):e. (13.4)
X—>00 X

We shall later give a suitable method for calculating € to any degree
of accuracy. Clearly, it is an irrational number; we have, to an accuracy of
seven decimal places: e = 2.7182818 . . .

We can now easily find the limit of (L+k /X)*, where K is a given
number. Using the continuity of a power function, we obtain:

) 1 xik K 1Y k
lim{1+— | =lim||1+— =lim||1+= =eX,
X—>00 X X—>00 X/ Kk y—o0 y

where y denotes X/k, and tends to infinity along with X.

An expression of the form (1+k / n)"is encountered in compound f

interest theory.
We suppose that an increment of capital occurs annually. If capital
areturns an interest annually of p per cent, the accumulated capital in the

course of a year will be:

a(l+k),
where

k= L;

100

after another year has elapsed, it will be:

al+k)?;
and in general, after the lapse of m years, it will be:

a(l+k)™.

We now suppose that the increment of capital takes place every 1/ n

of a year. The number K is now diminished n times, since the percentage

interest is counted over a year, whilst the number of intervals of time is
increased N times; so that the accumulated capital over m years will be:

a(L+Kj .
n

Finally, let n tend to infinity, i.e. an increment of capital occurs in
every smallest possible interval of time, and in the limit, continuously. After
the lapse of m years, the accumulated capital will be:

Hma@+£j =Hma(LJ€) = ae'™.
Nn—o n n—oo n
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The number € is used as a base of logarithms. These are referred to as
natural logarithms and are here denoted by the simple sign In or log
without indicating the base.

For X tending to zero, both numerator and denominator in the

. In(1+x) _ . _
expression ——— tend to zero. Let us examine this indeterminate form.
X
: : . 1 . 1
We introduce a new variable Yy, putting X=—,i.e. y=—,
X

whence evidently, as X — 0, y tends to infinity. Substituting the new

variable, and making use of the continuity of a logarithm and formula
(13.4), we obtain:

y
imNA+%) i, y|n(1+lj _ |im|n£1+l] lne=1.
x—0 X y—>0 y y—0 y

The advantage of the present choice of a base of logarithms is clear
from this. Just as, using radian measure of angles, the true value of
(sinx)/ x is unity for x =0, in the case of natural logarithms the true value

In(1+ x
of M is also unity for X =0.
X
The following relationship follows from the definition of logarithm:

N = alogaN
Taking logarithms to base € in this equation, we obtain:

logN =1log, N -loga or log, N =logN i
loga
This relationship gives the logarithm of a number N to any base a in
terms of its natural logarithm. The factor M =1/Ina is called the modulus
of the system of logarithms to basea, and for a =10 it is given with an
accuracy of seven decimal places by:
M = 0.4342945 . ..

M
14. ON SOME INFINITESIMALS

. log.(1+ x
Of course |II’T]M =
Xx—0 X

_ . sinX o
1. Some other limits can be reduced to Ilrrol— =1 by substituting
X—> X

the new variable or with simple rearrangemant. For example
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- 1
. SInNT X ) t 1
lim :‘t:sm‘1 X| = lim— —
x=0 X x=0 sint Iimsmt
x>0 {
. tanx . sinx 1 sin X 1
Iim——=1Iim . =lim—— lim——— =1,
x>0 X =0 ¥ COSX x>0 X x=0 COS X
. tan™ t 1
lim =‘t=tan‘1x‘—llm =
x—0 X x-0 tant "mtant
x>0 ¢t
. et -1 . InQA+x
Limit lim can be reduced to IImM as the following
Xx—0 X Xx—0 X
|imex -1 t=e"-1 _lim t 1 -
x>0 x  |x=In(t+1)] 0In(t+1 _In(t+1)
(1) i) G

Therefore we get equivalent infinitesimals
sinxUsin™ xU tanx U tan™' xJ In(x +1) 0 e* —10 x.

2. Any infinitesimals in a quotient can be replaced with its equivalent,
but difference of two infinitesimals of the same order is an infinitesimal of

higher order.
For example, we saw above that
. sinXx
lim——=1,
=0 X

i.e. SinX and X are equivalent infinitesimals, and therefore Sin X — Xis an
infinitesimal of higher order than X (it is incorrect to replace Sin Xwith x ).

We see later, that this difference is equivalent to —x3/6,i.e.itis an
infinitesimal of the third order with respect to X.

3. We show that the difference 1—C0S X is an infinitesimal of the
second order with respect to X. We have in fact, on using a well-known

trigonometric formula and with a simple rearrangement,
2
. .1 .1
2
1-cosx 2sin 2x 1] s 2x
2 - 2 ol 1
X X 2 <y
2

IfXx > 0, a =X/ 2also tends to 0, and as we have shown:

sSin 1x
] sma
lim =lim =1,
x—0 a»O o
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and hence,

. 1-cosx 1

lim———=—,

x—0 X 2
i.e. in fact, 1—cos X is an infinitesimal of the second order with respect to
X.

4. From the expression

Vit X —1=——
\/1+ +1

we have:
Ji+x-1 B 1
X J1+x+1
whence

e

x—0 X 2 ’

i.,e.v1+ X —1 and x are infinitesimals of the same order, v/1+ X —1 being
equivalentto X/ 2.
5. We show that a polynomial of degree m >1 is an infinitely large
magnitude of order m with respect to X. In fact,
m m-1
fim 20X+ 2, +n;..+am_1x+am =Iim[ LA, arr: 1 +a_2j:a0.
X—>00 X X—>00 X X X

15. APPLICATIONS TO PROBLEMS
Let us consider several applications the theory to certain problems.
1. Determine the following limit

lim 4x* —5x+3
o= (5 +1)(6x+2)(7x+3)

We can'’t apply the theorem concerning the limit of a quotient to the
problem immediately, because the numerator and the denominator are

(0.0)
infinitely large magnitudes, thus we have the indeterminate form (—] :
o0

Therefore we need to remove the indeterminacy. Let factor out the highest

power of X:
x3(4—512+313j
lim x X

T(se o272
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1
On canceling X* and taking into account that ——>0,n=12,3. we

X
: 4 2
get lim = =
x-=5.6-7 210 105
We can arrive at the same result on keeping the highest power of X
in every factor and on neglecting other.

. 4%° —5%x+3 . 4x° 2
lim =lim = :
o (5x+1)(6x+2)(7x+3) *>=(5x)(6x)(7x) 105
It can be easily seen that two polynomials of the same degree are
infinitely large magnitudes of the same order, for X — oco. The limit of their
ratio is the ratio of the coefficients of their highest terms.
If the two polynomials are of different degree, the one of higher
degree is an infinitely large magnitude of higher order with respect to the
other, forX — o0,

2. It's impossible to apply theorem concerning the limit of a quotient to
3

s X : :
the limit lim > immediately, because the numerator and the
x->2 X° —7x+10

. . . 0
denominator take value 0O, thus we have the indeterminate form (—j

This means the polynomials in the numerator and in the denominator
posses the root at the point X =2. If a polynomial posses root X, it can be

divided by X —X,. Lets factorize the numerator and the denominator.
. x_g _ (x=2)(x*+2x+4)
lim— =lim
o2 x* —7x+10 2 (x-2)(x-5)
On canceling (x — 2) we avoid the indeterminacy and get
immediately

> +2x+4
Iim(x +2X+ ):12:_4
2 (x—5) -3

3. We can'’t apply theorem concerning the limit of a sum to the limit
lim+/n? +5n —8 —/n? — 3n + 5 immediately, because we have the

N—o0

indeterminacy (o0 — ).

o0
We can reduce it to indeterminacy (—j instead:
o0

Iim\/n2 +5n—8—\/n2 -3n+5 =(oo—oo):

N—00
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(\/n2 +5n—8—+/n —3n+5)(\/n2 +5n—8++/n? —3n+5)

— i
o N2 +5n—8 +4/n’ —3n+5
_I|m(<”2+5n—8)—(n2—3n+5)) i 8n-13

= \/n +5n— 8+\/n —-3n+5 rHOO\/n +5n— 8+\/n —3n+5
On dividing by n we get:

n =§:4
2

n—> 5 8 3 5
I+ + 1-—+—=
n n N n
.. SIn3x . : . 0
4. The limit [im———— is another example of indeterminacy | —
-0 In(1+5x) 0

It can be found in two ways.

A)
With the following simple rearrangement we can reduce it to the product of

3 known limits. Then we apply the limit of product theorem, and get:
sin 3x : 3X-Sin3x - 5x

lim——2
x'm|n(1+5x) o 3x-5x-In(1+5x)
3

sin3x .. 3X 5X 3
= dim—-lim———=1-—--1=—
503X x05x %0 In(1+5X) 5 5

B) By using equivalent infinitesimals sin3x U 3x, In(1+5x)0 5x as

. . . sin3x . 3x 3
X — Owe get immediately liIm———=lim—=—
x>0 In(1+ 5x) x>05x 5

5. Limits lim, lim (named one-sided limits from the negative and the

x—a-0 x—a+0

positive direction respectively) allow we to investigate discontinuity of a

function. There exist 3 cases:
1) lim f(x)= lim f(x)= A, where A is certain finite number. Under

x—a-0 x—a+0

this condition point X = a is either point of continuity (if f(x)=A) or
a point of so-called a removable discontinuity (if f(X) = A). A'is

called the true value of the function
2) Iim f(x)=A= lim f(x)=B, where A B are certain finite

x—a-0 x—a+0

number. In this case function f (X) takes a discontinuity of the 1%
kind or jump discontinuity at X =a
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3) If at least one of these one-side limits does not equal a finite number,
function f(X) takes a discontinuity of the 2" kind or essential

discontinuity at X =a

1
Let us take for example f (x)=e*" at point 5.
1

lim e*5 =0, because X increases and tends to 5. i.e.
X—>5-0 X — 5

1

tends to —oo. At the same time lim e*® =+ because X decreases and

Xx—5+0

<0 and

tendsto 5, i.e. >0 and tends tooo.

X—95
The point X, =5 is discontinuity of the 2" kind.

EXERCISES

. 2+n-n*+3n° 3
1. lim s .- Answer: — .
n>o 12 —-7n+5n 5

| (2n+1)4—(n—1)4
e (2n+1)" +(n-1)’

(

(

. Answer: — .
!

oo (n+2)-(n+1)!
3 2 3/ A4
4 lim \/n —-2n +1+\/n +1
> 4n® +6n° +2 —3n” +3n° +1

5. Iim(\/(n +1)(n+2)—\/(n—1)n) Answer: 2.

N—00

Answer: 1.

o 2x2-11x-21 17
6. lim > Answer: —.
x->7 X -9x+14 5
X =3x+2
7. im——— Answer: 1.

-1 X° — 4% +3

Iim\/1+ 2X —3 4

8. Answer: —.
X—4 / _2 3

9. lim 9+2Xx -5 Answer: —.
X—8 3 /X -2 5

41



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

lim

(2x3 +7X —1)6

Answer: 8.

X (2x6 —13x% + x)3
tan 4x
x=0 Sjn X

lim

x—0

Answer: 4.

lim(xcot5x) Answer: % .

. Sinax a

lim — Answer: —.

x>0 §In BX

. Sinbx 5

lim — Answer: —— .

x=>7 SN 2X 2

) sin x

lim— _ Answer: -1.

x=0 SINBX —SIN 7 X

) 2 1 1
lim| — — ———— | Answer: —.
x>0\ SIN2XSINX SIN“ X 2
. cos3x® -1 9
lim———— Answer.——.

x=0  §In° 2X 128

. Sin7xx

lim— Answer: ——.

x->1 SN 278X

. sinX 1

lim > = Answer: —.

x>1 ¢ — X 27

Iim[
X—00
Iim(xz(
X—0o0

im J1+2sin3x —+/1—4sin5x A

X

. T
XSIn—j Answer: .

COS— —COS—

)
Answer: 4 .
X X

x—0

N1+ xsinx -1

Sin6Xx

lim

x—0

X—2

X—>+0

d

sin
X2

e

5x3 +

1
Answer: —.
-1 2

lim(2x - 3)X—X2 Answer: e*

5x°

5 Jx
j Answer: 1.
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1-Vx

. (14X ) Bx
26. lim| —— Answer: 1.

X—>-+00 2 + X
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