Ребров В. С., аспірант r.volodymyr@khai.edu **Лукін В. В.,** д.т.н., професор v.lukin@khai.edu

АВТОМАТИЗАЦІЯ ПОСТФІЛЬТРАЦІЇ ЗОБРАЖЕНЬ ПІСЛЯ СТИСНЕННЯ З ВТРАТАМИ

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут»

В різних областях науки і техніки в даний час широко використовуються напівтонові та кольорові зображення [1]. Кількість зображень, а також їх середній розмір швидко збільшуються. Це зумовлює необхідність використовувати стиснення як для передачі даних по лініях зв'язку з обмеженою пропускною здатністю, так і для подальшого зберігання. При цьому стиснення без втрат часто неможливо застосувати через відносно малі значення коефіцієнтів стиснення (КС), які при цьому досягаються [2]. Тому застосовують методи стиснення з втратами, які вносять певні спотворення у стиснені зображення, але дозволять досягти суттєво більших значень КС і, що теж важливо, надають можливість варіювати КС та якість стиснених зображень [3]. Зазвичай для більших значень КС характерним є більш високий рівень внесених спотворень (викривлень, похибок), що вимагає знаходити певний компроміс між КС та якістю стиснених зображень у кожному конкретному випадку, де якість можна характеризувати як за допомогою традиційних кількісних критеріїв, так і метриками візуальної якості, кількість яких постійно зростає, а властивості покращуються [3]. 4].

Нещодавно було проведено аналіз статистичних та просторових спектральних характеристик викривлень, що внесені стисненням з втратами для кількох кодерів на основі дискретного косинусного перетворення (ДКП) [5, 6]. Доведено, що у багатьох випадках внесені викривлення дуже схожі з адитивним білим гаусовим шумом (АБГШ). Відмінності полягають у наступному. По-перше, щільність розподілу ймовірності (ЩРЙ) викривлень може мати більш важкі хвости. Це спостерігається для досить високих ступенів стиснення. По-друге, трохи більша локальна дисперсія внесених викривлень має місце для так званих локально-активних фрагментів, до яких відносяться малорозмірні об'єкти та їх околи, околи меж площинних об'єктів, а також текстури. По-третє, із збільшенням ступеня стиснення поступово проявляється й просторова кореляція внесених викривлень.

В такому випадку з'являється гіпотеза про можливість покращення якості стисненого зображення після його декомпресії. Зазначимо, що є кілька відомих підходів до покращення якості стиснених зображень після їх декомпресії. По-перше, це методи деблокінгу, які довели свою корисність для JPEG та інших методів стиснення, які використовують ДКП в блоках фіксованого або адаптивного розміру [7]. По-друге, це методи придушення залишкових завад у випадках, коли стискаються зображення, що спотворені шумом [8, 9]. Відмінність нашої ідеї, що розглядається у даній публікації, полягає в тому, що аналізується стиснення зображень, для яких припускається відсутність шуму (або його непомітність), а також припускається практична відсутність блочних ефектів, які зазвичай спостерігаються при досить великих значеннях коефіцієнта стиснення. Тож ми фокусуємось на такому стисненні зображень, при якому викривлення, що внесені внаслідок стиснення з втратами можуть бути візуально помітними [10], але не дратівливими, що якраз і відповідає очевидності (помітності) блочних ефектів. Саме таких рівень викривлень є типовим для сучасних застосунків стиснення з втратами на рівні або візуально непомітних викривлень, або викривлень, що є трохи більш інтенсивними [4]. Оскільки наша ідея знаходиться на початковому етапі досліджень, то вона перевіряється для зображень в градаціях сірого.

Існує безліч методів фільтрації зображень, що спотворені шумом з характеристиками, які є близькими до адитивного гаусова білого шума. В якості першого кроку нами було розглянуто фільтр BM3D [11], який залишається одним з найкращих на даний час з 2007 року, коли його було запропоновано. Його перевагами є наступні: 1) основна версія розроблена саме для АБГШ; 2) завдяки пошуку подібних блоків та їх спільному використанню забезпечується ефективне збереження меж об'єктів; 3) фільтр (на відміну від деяких сучасних методів фільтрації на основі навчених нейромереж) має зрозумілий механізм придушення завад; 4) є досить швидкі реалізації цього фільтру; 5) характеристики фільтру можна легко адаптувати до рівня завад та у певних межах змінювати.

Остання властивість вимагає додаткового пояснення. Фільтр BM3D аналогічно іншим фільтрам на основі ДКП використовує поріг T, який встановлюється як $\beta\sigma$, де σ – середньоквадратичне відхилення завад, а β – параметр, що задається користувачем або встановлюється приблизно рівним 2,7. Збільшення β зазвичай призводить до більш ефективного придушення завад за рахунок гіршого збереження меж та текстур (локальноактивних ділянок зображень). Що стосується σ , то його треба знати до початку фільтрації. Наша ідея полягає в тому, що значення σ (або дисперсії викривлень) може бути швидко розраховано після стиснення зображення та збережено у стиснених даних. Крім того, зараз існують досить точні методи автоматичного визначення дисперсії АБГШ [12, 13], які можна застосувати після декомпресії до пост-фільтрації.

Втім, як показали результати дослідження в роботі [8], при пост-фільтрації можливі ситуації, коли оптимальні значення β помітно відрізняються від рекомендованих до використання по дефолту. Крім того, можливою є також залежність оптимального значення β від характеристик (складності) оброблюваного зображення. Тому в ході нашого аналізу розглядався набір тестових зображень, в який входили зображення різної складності, включаючи відносно прості (з великим відсотком пікселів, що належать квазіоднорідним ділянкам) та текстурні зображення. Значення β змінювались під час моделювання в широких межах. Аналізувались дані для кодеру BPG (better portable graphics) [14], який є одним з найефективніших на даний час та використовується як складова частина стандарту стиснення відео HEVC. Параметром, що курує стисненням (ПКС), для BPG-кодеру є Q, який є цілим числом, що змінюється від 1 до 51, де більші значення відповідають більшому КС та більшому рівню внесених спотворень відповідно до різних метрик якості, включаючи традиційне пікове відношення сигнал-шум (peak signal-to-noise ratio – PSNR) та метрики візуальної якості, наприклад PSNR-HVS-M [15]. Більші значення PSNR та PSNR-HVS-M (обидві метрики вимірюються в дБ) відповідають кращій якості.

В таблиці 1 наведено дані для тестового зображення Barbara. Дані в таблиці надані тільки для оптимальних значень β.

Як можна побачити, в широкому діапазоні значень Q, що відповідають як ледве помітним спотворенням (середньоквадратична похибка (MSE) внесених спотворень порядку 30-50), так і суттєвим викривленням (MSE>100), пост-фільтрація здатна забезпечити позитивний результат, тобто покращення як PSNR, так і PSNR-HVS-M. Це покращення не є великим (в найкращому разі близько 0,5 дБ). Також спостерігається тенденція до збільшення оптимального значення β при збільшенні Q.

Аналогічні тенденція спостерігаються і для тестового зображення Peppers (табл. 2), хоча й позитивний ефект від пост-фільтрації дещо менше. Втім, для зображень із складною структурою (дивись дані для тестового зображення Baboon в табл. 3) позитивний ефект від фільтрації не спостерігається зовсім (оптимальне значення $\beta=1$ фактично свідчить про те, що пост-фільтрація «нічого не робить»).

Відзначимо, що дещо аналогічні тенденції спостерігались для випадків фільтрації зображень, що спотворені АБГШ, фільтрами на основі ДКП, а також іншими сучасними методами [16]. Тож, з одного боку можна констатувати, що пост-фільтрація здатна забезпечити покращення якості зображень після декомпресії. Втім, це має місце не завжди і тому в подальшому нами

планується розробити методи прогнозування ефективності пост-фільтрації та прийняття рішення щодо доцільності її використання.

Дані для зображення Barbara							
Q	MSE	β	PSNR, дБ	PSNR, дБ	PSNR-HVS-M, дБ	PSNR-HVS-M,	
			(до фільтрації)	(після	(до фільтрації)	дБ (після	
				фільтрації)		фільтрації)	
37	34,56	4,4	32,74	33,25	33,58	34,08	
38	40,63	4,5	32,04	32,56	32,53	33,10	
39	46,84	4,6	31,42	31,94	31,66	32,19	
40	55,30	4,7	30,70	31,21	30,67	31,24	
41	64,84	4,5	30,01	30,51	29,58	30,13	
42	74,23	5,1	29,42	29,92	28,84	29,39	
43	87,15	5,9	28,72	29,17	27,79	28,37	
44	100,22	4,9	28,12	28,50	26,96	27,44	
45	115,74	5,1	27,49	27,83	26,14	26,58	
46	129,22	5,5	27,01	27,32	25,53	25,95	
47	149,67	5,9	26,37	26,62	24,66	25,05	
48	169,94	5,6	25,82	26,08	23,86	24,24	
49	188,73	5,1	25,37	25,61	23,30	23,64	
50	214,58	5,8	24,81	25,02	22,78	23,07	

Таблиця 2

Дані для зображення Peppers

Q	MSE	β	PSNR, дБ	PSNR, дБ	PSNR-HVS-M, дБ	PSNR-HVS-M,
			(до фільтрації)	(після	(до фільтрації)	дБ (після
				фільтрації)		фільтрації)
38	32,39	1,7	33,03	33,15	33,12	33,23
39	35,41	1,9	32,64	32,78	32,44	32,58
40	39,16	2,5	32,20	32,36	31,60	31,76
41	43,64	3,1	31,73	31,90	30,77	30,95
42	47,90	3,2	31,33	31,49	29,99	30,19
43	53,94	4,9	30,81	31,01	29,09	29,32
44	59,18	5,0	30,41	30,59	28,40	28,59
45	66,84	5,6	29,88	30,07	27,56	27,76
46	75,80	4,7	29,33	29,51	26,63	26,82
47	84	5,9	28,89	29,07	25,94	26,13
48	95,62	5,4	28,33	28,48	25,06	25,23
49	105,21	5,7	27,91	28,07	24,43	24,58
50	120,93	5,8	27,31	27,48	23,56	23,76

Таблиця 3

Q	MSE	β	PSNR, дБ	PSNR, дБ	PSNR-HVS-M, дБ	PSNR-HVS-M,
			(до фільтрації)	(після	(до фільтрації)	дБ (після
				фільтрації)		фільтрації)
32	30,47	1	33,29	33,10	39,53	39,05
33	37,61	1	32,38	32,18	38,16	37,67
34	45,95	1	31,51	31,33	36,81	36,36
35	56,62	1	30,60	30,44	35,37	34,94
36	67,94	1	29,81	29,66	34,09	33,69
37	81,72	1	29,01	28,87	32,81	32,44
38	98,10	1	28,21	28,10	31,61	31,28
39	115,27	1	27,51	27,38	30,41	30,09
40	135,58	1	26,81	26,69	29,22	28,99
41	162,8	1	26,01	25,90	27,95	27,70
42	190,93	1	25,32	25,21	26,81	26,58
43	222,02	1	24,67	24,57	25,70	25,50
44	258,06	1	24,01	23,92	24,57	24,39
45	295,31	1	23,43	23,34	23,51	23,37
46	336,21	1	22,86	22,80	22,57	22,45
47	379,64	1	22,34	22,29	21,62	21,53
48	429,2	1	21,80	21,76	20,68	20,60
49	475,5	1	21,36	21,33	19,84	19,78
50	529,56	1	20,89	20,87	18,98	18,94

Дані для зображення Baboon

Список використаних джерел

- 1. Szeliski, R. Computer Vision: Algorithms and Applications 2nd ed / R. Szeliski // Springer Science. 2021. DOI: 10.1007/978-3-030-34372-9
- Hussain, A. J. Image compression techniques: A survey in lossless and lossy algorithms / A. J. Hussain, , A. Al-Fayadh, N. Radi // Neurocomputing. – 2018. – vol. 300. – pp. 44-69. DOI: 10.1016/j.neucom.2018.02.094.
- Blau, Y. & Michaeli, T. Rethinking lossy compression: The rate-distortion-perception tradeoff / Y. Blau, T. Michaeli //. International Conference on Machine Learning. – PMLR. – 2019. – pp. 675–85. DOI: https://doi.org/10.48550/arXiv.1901.07821
- Bondžulić, B. Efficient prediction of the first just noticeable difference point for JPEG compressed images / B. Bondžulić, N. Stojanović, V. P etrović, B. Pavlović, Z. Miličević, // Acta Polytechnica Hungarica. 2021. vol. 18. № 8. pp. 201-220. DOI: 10.12700/APH.18.8.2021.8.11.
- Abramov, S. K. Analysis of statistical and spatial spectral characteristics of distortions in lossy image compression / S. K. Abramov, V. V. Abramova, V. V. Lukin, K. D. Abramov, E. V. Bataeva // Proceedings of IEEE UkrMW-2022. – November 2022, Kharkov, Ukraine, 2022. – pp. 644-649. DOI: 10.1109/UkrMW58013.2022.10036949.
- Kovalenko, B. Analysis of distortions due to BPG-based lossy compression of noise-free and noisy images / B. Kovalenko, V. Lukin // Herald of Khmelnytskyi National University, Technical sciences. - 2023. - vol. 325. - no. 5. - pp. 128-135. DOI: 10.31891/2307-5732-2023-325-5-128-135
- Wang, L. Image Deblocking Scheme for JPEG Compressed Images Using an Adaptive-Weighted Bilateral Filter. / L. Wang, C. Wang, W. Huang, X. Zhou // Journal of Information Processing Systems. – 2016. – vol. 12. – pp. 631-643. DOI: 10.3745/JIPS.02.0046.

- Rebrov, V. Post-processing of compressed noisy images using BM3D filter. / V. Rebrov, V. Lukin // Radioelectronic and computer systems. – 2023. – vol. 108. – no. 4. – pp. 100-111. DOI: 10.32620/reks.2023.4.09
- Zemliachenko, A. Lossy Compression of Noisy Remote Sensing Images with Prediction of Optimal Operation Point Existence and Parameters. / A. Zemliachenko, S. Abramov, V. Lukin, B. Vozel, K Chehdi // SPIE Journal on Advances in Remote Sensing. – 2015. – vol. 9. – no. 1. – p. 26. DOI: 10.1117/1.JRS.9.095066
- Ponomarenko, N. Analysis of HVS-Metrics' Properties Using Color Image Database TID2013 / N. Ponomarenko, V. Lukin, K. Egiazarian, J. Astola // Advanced Concepts for Intelligent Vision Systems. – 2015. – vol. 9386. – pp. 613-624. DOI: 10.1007/978-3-319-25903-1_53
- Dabov, K. Image denoising by sparse 3D transform-domain collaborative filtering / K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian // IEEE Transactions on Image Processing. - 2007. - vol. 16. - no. 8. - pp. 2080–2095. DOI:10.1109/TIP.2007.901238
- Colom, M. Nonparametric noise estimation method for raw images / M. Colom, A. Buades, J. Morel // Journalof the Optical Society of America. – 2014. – vol. 31. – no. 4. – pp. 863– 871. DOI: 10.1364/JOSAA.31.000863.
- Lukin, V. Segmentation-based method for blind evaluation of noise variance in images / V. Lukin, S. Abramov, B. Vozel, K. Chehdi, J. Astola // SPIE Journal on Applied Remote Sensing. – 2008. – vol. 2. – 15 p. DOI: 10.1117/1.2977788
- 14. Bellard, F. (2024), BPG image format, available at: http://bellard.org/bpg/
- Egiazarian, K. Analysis of the effectiveness of image compression methods in accordance with various quality criteria / K. Egiazarian, N. Ponimarenko, V. Lukin, A. Zelensky // Radioelectronics and computer science. – 2007. – pp. 85-90.
- 16. Rubel, O. Is Texture Denoising Efficiency Predictable / O. Rubel, S. Abramov, V. Lukin, K. Egiazarian, B. Vozel, A. Pogrebnyak // International Journal on Pattern Recognition and Artificial Intelligence. 2018. vol. 32. p. 32. DOI: https://doi.org/10.1142/S0218001418600054