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1. STATICS QUANTITIES AND AXIOMS. FORCE PROJECTION
ON AN AXIS AND A PLANE. RESULTANT FORCE. MOMENT
OF THE FORCE ABOUT THE POINT

1.1. Main information from the theoretical course

There are two general problems of rigid body statics. They are:

- the composition of forces and the reduction of the force system acting on
rigid bodies to the simplest equivalent form;

— the determination of conditions for the equilibrium of the force system act-
ing on rigid bodies.

Force is a fundamental quantity of mechanics. In mechanics force can be
defined as measure of mechanical interaction between bodies. Force is vector
and determined by three characteristics: its magnitude, direction and point of
application. Operations with forces obey the rules of vector algebra. In rigid
body statics force may be applied at any point on its given line of action without
altering the resultant effects of the force external to the rigid body on which it
acts (force is sliding vector).

Projection of force F on axis is scalar quantity that is equal to product
of force magnitude and cosine of angle between the axis positive direction and

the direction of the force F (Fig. 1.1, 1.2).

yl _

Fy E

: | |

: | |

: | |

| E

Fx i Fx : ~
X X

F, =F-cosa F, =F-cosa =-F.cospf

F,=F-cosfB=F -sina F,=-F-sinp
Fig. 1.1 Fig. 1.2

A composition (addition) of applied at the same point forces is performed
in accordance with parallelogram law: two forces applied at one point of a body
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have as their resultant force applied at the same point and represented by the
diagonal of parallelogram constructed with two given forces as its sides
(Fig.1.3):

R=F +F,
R=\F2+F?+2-F,-F,-cosa,

where a is an angle between vectors F, and F,.

Fig. 1.3

If lines of action of several forces intersect at the same point, the force
system is called concurrent.

A concurrent force system is equivalent to a single force (resultant). The
resultant equals the vector sum of the system forces with its line of action pass-
ing through the point where all the lines of action of the system forces intersect:

n
R=>F.
k=1
The composition of forces can be accomplished:
- geometrically, constructing a vector force polygon drawing every next

vector from an end of previous one; closing vector will be resultant (Fig.
1.4);

2 f

Fig. 1.4



- analytically, summing projections of all forces on selected coordinate ax-
es:

Rx :ZFXK;Ry :ZFyk;Rz :Zsz’
k=1 k=1 k=1

then R =[R2 + R? + RZ.

The resultant R direction can be determined by using direction cosines

cos(R,x) = R cos(Roy ) = 2 cos(R.z) = 2.

If the resultant of force system of applied to a rigid body is equal to zero, it
means that such force system is in equilibrium.

Geometrically the condition R =0 means force polygon of given forces is
closed (Fig. 1.5).

——

F1

Fig. 1.5

General system (non-concurrent) can not be reduced to resultant force in
general case, i. e. an effect of such system on a body can not be equivalent to
an action of only one force.

For coplanar force system (2D force system) algebraic moment of the

force F about a point is considered:

M, =+F-h,

where h is arm of the force with respect to the point O that is the shortest
(perpendicular) distance between the point O and the force line of action.

Sign plus corresponds to body rotation under the action of force F coun-
terclockwise (Fig. 1.6) and sign minus conforms to clockwise one.
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U furve e of action

\ force lne of action {/—

MA:F-h>0, MA:—F-h<0,
counterclockwise rotation clockwise rotation
a b
Fig. 1.6

Very often it is convenient to determine a moment of force about a point
by decomposing of the force into two components parallel to the coordinate ax-
es (Fig. 1.7). Then the moment of force about the point is equal to the sum of
the component moments about this point (in accordance with Varignon’s theo-
rem):

M,(F)=M,(F)+M,(F,)=+Fh, £ Fh,
or for the sketch shown (see Fig. 1.7)
M,(F)=-F -KA+F,-LA.

_ _ 1/
iy
|
|
1)
~ r»T____"'ff
7, I
| S f? —
L \wfﬁ X
5
S
Fig. 1.7



1.2. Solution of problems

Sample problem 1.1

Coplanar force system: F =1N,
F,=2N, F,=3N, F, =4N act on the rigid

body at point O (Fig. 1.8).
Find resultant force if angles between
forces and axes are:

o =30° 3 =45°y =60°.

Solution

For solution of the problem we use analytic method, i. e. project all forces
on two orthogonal axes and find projections of resultant force on these axes:

R, =) F, =F,cos30" —F,cos 8 - F,siny,

R,=1-0,86-2-0,7-3-0,86=-3,15 (N);

R, =) F, =Fsin30" +F,sin - F,cosy - F,,

R,=1.05+2-0,7-3-0,5-4=-32(N).
Then

R=\R?+R? =/(-3,15)* +(-3,2)* = 4,48 (N).

Sample problem 1.2

—

Find the angle between resultant force R of forces IE2 =3\/§] and
IE1 =3 + 2x/§]and the positive direction of x-axis.

Solution

Forces IE1 and IE2 are given by their components along coordinate axes:
F, =3;F, =2J5;F,, =0;F,, =345.

Find resultant force by analytic method:
R,=F,+F,=3+0=3(N);



R, =F, +F,, =25 +3v5 =55 (N).

Then resultant magnitude is

R=JRZ+R? :\/32 +(5v5) =116 (N).

After that find direction cosine:

cos(ﬁ,f) = R, :i =0,26.
R 116

So required angle is arccos 0,26 = 75°.

Sample problem 1.3

The resultant of coplanar concurrent system of forces IE1 IEZ’ 133’ IE4 is

—

equal to zero. Find the magnitude of the force F,, if it is given: F, =4N,
F,,=7N,F,, =-5N,F,, =-5N,F,, =-2 N, F, =0.

Solution

If the resultant R = 0, its x- and y-components are R, = R, =0. There-

fore the sums of projections of all forces also are equal to zero, i. e.

{Rx :lexk :I:1x +F2x +I:3x +I:4x :O’

R, :ZFyk =, +h, +F, +F, =0.
Substituting known values let’s solve the system with respect to F,, and F, :
Foo=~Fo~Fou~Fi=-4+5+2=3(N),

FW :—Fzy —F?)y —F4y =—7+5-0=-2(N).
The magnitude of required force is

Fo=JF+F, =3 +2° = 13 (N).

Sample problem 1.4

Frame with the length of parts a, b, ¢ (m) is fixed rigidly at the point A and
is loaded by the force F that makes angle o with horizontal (Fig. 1.9).

Find the moment of the force F about the point A.



Solution

The algebraic moment of force
can be computed by the formula:

MA(F) =+F -h.
For determination of the distance h we
need to deal with the frame geometric

constructions. That’'s why in this case it
is reasonable to resolve this force into 2

—_ —

components F,,F, parallel to axes x

andy,i.s.
Fig. 1.9 IE=IEX+IEy,
and find the moment of the force as a sum of these components:
M, (F)=M,(F,)+M,(F,).
Magnitudes of components
|F, |=F-cosa, |F,|=F-sina.
Finally subject to law of moments’ signs determining we obtain:

M,(F)=- b—‘Fy‘(a-FC):—FCOSOC‘b—FSinOl'(a+C).
1.3. Solving problems as your own
Problem 1.1
1 kN Determine the resultant R of the two
Y forces shown by summing their scalar compo-
nents (Fig. 1.10).
g kN =

Solution

\/ X

ol

Fig. 1.10

= — -
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Problem 1.2

At what angle 6 (Fig. 1.11)
must the 400-N force be applied in
order to that the resultant R of two
forces will have a magnitude of 1000
N? For this condition what will be the
angle S between R and the horizon-

tal?

Problem 1.3

The ratio of the lift force L
to the drag force D for the simple
airfoil is L/D=10 (Fig. 1.12). If lift
force on short section of airfoil is

00N

N6
\

700 N

Fig. 1.11

200 N, compute the magnitude of ﬁ/mg

C[.—'—>\\

the resultant force R and the an-

gle € which it makes with the 4 7%,

horizontal.

Problem 1.4

On the press at point O the forces ,57 d
F,=5Nand F, =7N act (Fig. 1.13). Their

lines of actions are situated in a plane of
drawing. Determine the magnitude of verti- 0

cal force compressing material, if the an-

glesa =30° and B =45° are given.

11

Fig. 1.13



Problem 1.5
Concurrent system of 3 forces F,,F,,F; is in equilibrium. The magnitudes
of forces F, =3N and F, = 2N are given. The angles formed by vectors of the

forces IE1 and F, with positive direction of horizontal x-axis are o, =15° and

a, = 45°. Determine the magnitude of the force IE3.

Problem 1.6

A force F of magnitude 40 N is ap-
plied to the gear (Fig. 1.14). Determine the
moment of F about point O.

Solution

r=100 mm
Fig. 1.14
Problem 1.7
10 kN |
The rectangular plate is made up of 1-m
1m y/ square as shown (Fig. 1.15). A 10-kN force is ap-
plied at point A in the direction shown. Determine
7m d the moment Mg of force about point B graphically
B by at least two different methods.
4
o
Fig. 1.15
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Problem 1.8

z
On the lever with motionless axis O the B )/ﬁﬁ
forces F,=4N and F, act (Fig. 1.16). Deter-
mine the moment MO(IEZ) from condition that

the sum of moments about the point O is zero,
if a=45°p=120° lengths AO=0,5 m,
BO=0,6 m.

Problem 1.9

In raising the flagpole from the position
shown, the tension T in the cable must supply
moment about O of 72 kNm (Fig. 1.17).
Determine T.

Problem 1.10

Determine the angle 6 which will
maximize the moment M, of the 200-N force

about the shaft axis at O (Fig. 1.18). Also
compute M

0O max *

13



Problem 1.11

The wheel of mass m rotates in a vertical
plane about its geometric center O (Fig. 1.19).
The weight of the wheel acts as its center of
gravity G which is offset from O by the distance
e. Plot the moment of the wheel weight about
point O as a function of the wheel angular posi-
tion.

Fig. 1.19

Problem 1.12
If the combined moment of the
2 forces about point C is zero
(Fig. 1.20). Determine: the magni-
tude of the force P; the magnitude R
p of the resultant of two forces; the
% coordinates x and y of the point A
H..
L

&

10oN

on the rim of the wheel about which

x the combined moment of the two
forces is a maximum; the combined
moment Ma of the two forces about
A.

—— 6_0“

40 mm | 40 mm | 40 mm

Fig. 1.20

Solution

14



NoOORAWN

© o

10.
11.

12.

13.

1.4. Questions for self-testing

What does statics learn?

Give the definition of material point and an absolutely rigid body.
What is a force? What characteristics does it have?

Enumerate the axioms of statics and their contents.

What is the law of forces parallelogram?

How can projections of a force a) on a plane; b) on an axis be deter-
mined?

What is the resultant of a system of forces?

Does an order of forces position matter when constructing a force
polygon?

In what case is a force polygon closed?

Give the definition of vector moment of force about a point. What are
the methods of the vector moment determination?

Does a moment of force about point change when moving the force
along a line of its action?

In what case is a moment of force about a point equal to zero?

15



2. EQUILIBRIUM OF COPLANAR FORCE SYSTEM APPLIED
TO A RIGID BODY. STATICALLY DETERMINATE
AND INDETERMINATE PROBLEMS

2.1. Main information from the theoretical course

In this chapter the action of coplanar force system (for example, XOY) on
body is considered. There are two special coplanar force systems:
o concurrent with forces lines of action intersecting at the same point,
o parallel with parallel forces lines of action.

A system of force is called equilibrated (balanced) or system of force is
equivalent to zero if under the action of this system rigid body is at rest:

(F1.Fa,....Fa)~0.

The sufficient and necessary equilibrium conditions for coplanar force
system are that the projections of all forces on coordinate axes situated in a
plane of forces action are equal to zero and the algebraic sum of the same
forces moments about arbitrary point in this plane is equal to zero. These con-

ditions have view:
n
Zka = 0’
k=1

3 Zn:Fyk =0;
k=1

ZMO(ﬁk):o.
k=1

Equilibrium conditions for general coplanar force system can be written in

other forms:
n
> Fy =0,
k=1

1> M, (F,)=0,
k=1

ZMB(IEk): 0’
k=1

where the segment AB is not perpendicular to the axis OXx;

16



ZMA(IEk) = 01
k=1
ZMB(IEk) = 01
k=1

ZMC(IEk) - 01
k=1

where the points A, B, C belong_to different lines.
For concurrent coplanar force system the equilibrium conditions are:

1.

SEN

MF,=0, YF,=0.
k=1 k=1

For parallel coplanar force system (for example parallel to y-axis) the
equilibrium conditions are:

>F, =0, ZMA(ﬁk): 0.
k=1 k=1

To be soluble (or statically determinate) the statics problem must have
equal number of unknowns (for example, unknown reactions) and the number
of equations of equilibrium. If the number of unknowns is greater than the num-
ber of equilibrium equations the problem is called statically indeterminate and
can not be solved solely by means of rigid body statics.

Algorithm of problems solution is following:
Construct Free body Diagram (FBD)

1.1.
1.2.
1.3.
1.4.
1.5.

1.6.

Determine the rigid body under consideration, i.e. the body the equilib-
rium of which should be considered for finding unknown quantities.
Draw the body under consideration.

Draw all applied forces acting on the body. Replace distributed, applied
loads by their resultants.

Substitute constraints acting on the body for their reactions. Figure on a
scheme all reactions acting on the body.

Determine the type of force system obtained: coplanar concurrent, coplanar
parallel or coplanar general force system.

Choose the set of coordinate axes to be used in solving the problem
and indicate these direction on FBD.

Check statically determinacy of the problem.
If the problem is statically determinate choose appropriate form of equilibrium
equations, write down them and solve regarding to unknown parameters.
Run a check of solution. For this, for example, write down an equation of mo-
ments about any another point not used in making equilibrium equation.

To simplify your solution, it may be helpful to use one of the following so-
lution techniques if applicable:

17



— by summing moments about the point of intersection of the action lines of two
unknown forces, you will obtain an equation in a single unknown;

— by summing components in a direction perpendicular to two unknown paral-
lel forces, you will obtain an equation in a single unknown.

Reactions of constraints (supports and connections) for
two-dimensional structure

A body is considered free if its displacements are not restricted by any
other bodies; otherwise a body is constrained. The bodies that prevent the
motion of the first body are called constraints imposed upon the body.

The mechanical effect of constraint is the same as the action of force.
Therefore the action of constraint in the body may be replaced by the forces
that are called reactions.

Now let us consider some constraints and show their reaction lines of ac-
tions supposing that contacting surfaces are smooth enough to neglect friction
completely (Table 2.1).

2.2. Solution of problems
Sample problem 2.1

The cylinder with weight G=200 N (Fig. 2.1, a) is held by a rope OA on
ideal smooth inclined plane MK making with horizon an angle f =45° and

exert on plane pressure Q=60 N. Determine an angle o and a rope tension T.

Ao y
A
a 8 I
N
K 0 K X
G
o) -
M M
a b
Fig. 2.1
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Reactions at supports and connections for two-dimensional structure

Table 2.1

Number . .
Constraint Schem of quy and Free Body diagram of un- Unknovyn§ Addltlongl infor-
constraint characteristics mation
knowns
Smooth sur- B One force with | Contact force is
faces contact known line of | compressive and
> action normal to the
7 #
1 surface.
S <
"
S~

Rigid weight-
less link (rec-
tilinear or cur-
vilinear)

One force with
known line of
action and un-
known sens

Rigid link reac-
tion is directed
along the line

connecting  the
centers of the
link pins.




0¢

Reactions at supports and connections for two-dimensional structure

Continuation of Table 2.1

Weightless
flexible, non-
stretchable
cord

L

One force with
known line of
action

Force exerted by
a cord is always
a tension away
from the body in
the direction of
cord.

Sliding joint or
roller support

One force with
known line of
action

Sliding joint im-
pedes motion of
the beam end A
in direction that
is perpendicular
to the plane
where the joint
is installed.

Pinned joint,
pin

Force with un-
known magni-
tude and direc-
tion or two mu-
tually perpen-
dicular forces.
Application
point is at pin
center.

Pinned joint pre-
vents the motion
of the beam end
in two mutually
perpendicular di-
rections:  along
axes x and y.




Lc

Reactions at supports and connections for two-dimensional structure

Ending of Table 2.1

Collar or slid-
ing support

\‘

One force per-
pendicular to
collar axis and

one couple
with unknown
moment

Collar restricts
the motion of
body in the direc-
tion normal to the
guide and body’s
rotation.

Double stage One couple | Double stage
sliding  sup- with unknown | sliding  support
port moment prevents rotation
\yé\\ about axis per-
pendicular to the

plane of sketch

Fixed  sup- 7 Y2 Two mutually | Clamped joint,
port, clamped J perpendicular | or fixed support
joint /2 forces and one | prevents motion
o couple with | of the beam end

7‘ unknown mo-|in all directions

Y ment (along axes X

andy, rotation
about axis z).




Solution

1. Construct a Free body Diagram (FBD) (see Fig. 2.1, b).
1.1. Equilibrium of the cylinder is considered.
1.2. Figure the considering cylinder on certain drawing.
1.3. Gravity force is the single applied force acting at mass center of the

cylinder.
1.4. Two constraints restrict the cylinder motion: smooth inclined surface
and rope. Substituting constraints for their reactions we obtain two re-

actions N and T. Here we note that normal reaction of the surface on
the cylinder is equal by the magnitude to pressure force Q on surface

and opposite in direction N = —-Q.

.5. Force system obtained is coplanar concurrent.

.6. We choose a coordinate system, put its origin at the center of the

cylinder.

2. The problem is statically determinate because for the coplanar concurrent
force system there are two equilibrium conditions and our problem has two
unknown quantities.

3. The first method (analytical).

Equilibrium equations

Zka =0, ZFyk =0

Tsina —Nsin g =0;
Tcosa+Ncosp—-G=0.

From the 15t equation of the system we express the magnitude of the
force

1
1

will view as:

T =nSINA
SINx

and substitute it to the 2" one. Then

Nsinpctga + Ncos 5 —G =0.
From here
G-Ncosp 200-60-0,7

N sin g 60-0,7
o = arcctg 3,8 =15°.

Cthl = 3!81

Rope tensile load will be
7_:603|.n45 _ 60 0,7
sin15° 0,26

~163(N).

22



4.  The second method (graphical, Fig. 2.2).
We apply graphical interpretation of rigid body equilibrium
condition under action of concurrent system of forces, i. e. if the

sum of vectors G,N, T is equal to zero the vector force polygon
is closed. Let’s figure on a scale known by the magnitude and

the direction vector of the force G. From its end at an angle S

we put on the same scale vector N.A segment connecting the
end of vector N and the origin of vector G will be required

magnitude of vector T . Measured the length of this segment
and multiplied it on a scale coefficient we will find the magnitude
of the force T.

The same value can be found also using cosine theorem:

T =G?+N?-2G-Ncos B ~ 163 (N).

The angle o can be found directly by measurement on the drawing or us-
ing sine theorem:

Fig. 2.2

N T

sina  sinf

Then sina =N TIB 0,26 and o =15°.

Sample problem 2.2

On the frame fixed with the use of clamped joint (Fig. 2.3, a), the following
loads act: couple of forces with moment M = 4 N m, concentrated force
P = 10 N, distributed load with intensity g = 1,5 N/m. The distances are known:
a=2m,b=3m.

Determine the reaction of clamped joint - )?A,VA,MA.

Solution
1.  Construct a Free body Diagram (FBD) (see Fig. 2.3, b).
1.1. We consider the frame equilibrium.
1.2. Figure the considering frame on a certain drawing.
1.3. Applied forces acting on the frame: concentrated force P, couple of

forces with moment M and distributed load with intensity q that is
changed on concentrated force Q=q-a=15-2=3(N).The force

Q is the resultant of parallel force system and because g=const the
resultant Q passes through the middle of the segment CD.
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Fig. 2.3

1.4. Motion of the frame is limited by clamped joint. Substituting con-
straint for its reactions we obtain two reactions X,,Y, and reactive

moment M.
.5. Obtained system of forces is general coplanar one.
.6. We choose a coordinate system such as its origin coincides with the
point A.
The problem is statically determinate because the conditions of body equi-
librium under action of general coplanar forces include three equations and
our problem has three unknown quantities.
Equilibrium equations will be:

Y Fu=X,+Q+Pcos60° =0;
D> F,=Y,—Psin60" =0;
> M,(F,)=M,+M-Q-3-Pcos60"-2a—-Psin60"-b =0.

1
1

-

We put into these equations known values:

X,+3+10:0,5=0;
Y,—10-0,85=0;
M,+4-3-3-10-0,5-4-10-0,85-3=0.

From here

X,=-8N, Y,=85N, M,=505N-m.
24



Sample problem 2.3

On the double-beat frame (Fig. 2.4, a) distributed load with intensity
gmax=20 N/m acts. The lengths of sections are I = 0,3 m.
Determine the reaction of constraint A (Ra).

Y.
/ B
v :
s8] o]
/qﬁmx A ! XB
3
Nl 4
a
| &
A Gy A
a b
Fig. 2.4
Solution

1. Construct a Free body Diagram (FBD) (Fig. 2.4, b).

1. We consider the frame equilibrium.

2. Figure the considering frame on a certain drawing.

3. Applied forces acting on the frame: two distributed loads with intensity
g on the segments AC and BC that are changed on concentrated

%(20 : 0,3) = 3(N).In given case the lines of

1.
1.
1.

forces Q = %(qmax 1) =

their actions is on the distance of 1/3| from the point A and B, where
q = CImax'

1.4. Motion of the frame is limited by fixed pin at the point B and roller at
the pomt A. Exchanglng constraints by their reactions we obtain 3 re-

actions XB,YB,RA

1.5. Obtained system of forces is general coplanar one.

2. The problem is statically determinated because the conditions of body equi-
librium under action of general coplanar forces include 3 equations and our
problem has 3 unknown quantities.

3. For finding unknown reaction Ra it is sufficient to make only one equation
(the sum of moments about point B):

25



= 1 2
M (F )=—Q-—/I-Q-—/+R,-/=0.
Z B( k) 3 3 A
After solving this equation we will find that R, = Q = 3N.

Sample problem 2.4

Homogeneous rod CD (Fig. 2.5, a) with weight G = 600 N and length 4 m
is leaned by the end C on a smooth surface and by intermediate point B on the
asperity of height h = 3 m forming with vertical an angle o = 30°. The rod is
held by inextensible rope AC that is parallel to the surface.

Determine the reactions of constraints at points B and C and rope tensile
load T.

[
0 I, 4
B 8 %
a a
£ e
GO G
K7
A [ AT c
—— -
a b
Fig. 2.5
Solution

1. Construct a Free body Diagram (FBD) (Fig. 2.5, b).
1.1. We consider the rod equilibrium.
1.2. Figure the considering rod on a certain drawing.
1.3. Gravity force is the only applied force acting on the rod applied in a
mass center of the rod.
1.4. The rod is leaned by the end C on a smooth surface and by interme-
diate point B on the asperity. The rod is held by inextensible rope AC.
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Exchanging these constraints by their reactions we obtain two reac-

tions R,, R, and tensile load T .
.5. Obtained system of forces is general coplanar one.
.6. We choose a coordinate system such as its origin coincides with the

point A.

2. The problem is statically determinated because the conditions of body equi-
librium under action of general coplanar forces include 3 equations and our
problem has 3 unknown quantities.

3. Equilibrium equations for general coplanar force system will be:

1
1

Y Fy =Rgc0s30° T =0;
1> F,=Rgsin30°+R, -G =0;

> M,(F)=-R, -BC+GC7Dsin30° = 0.

We substitute into these equations known values:

R, -0,85-T =0;
R,-0,5+R,_—600 =0;

~R, -23/3+60-2-0,5=0,

where BC =

h 3-2
= =23 (m).
cos30° /3 (m)

Solving this system of equations we will find:

T=150 N, Re=173 N, Rc =513 N.

Sample problem 2.5

On cantilever beam AB (Fig. 2.6, a) the couple of forces with the moment
M = 2 N m, the concentrated force P = 4 N, distributed load g = 1,5 N/m. Di-
mensions in meters shown on the figure. Determine the reaction of clamped

joint.
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Solution

1. Construct Free body Diagram (FBD) (Fig. 2.6, b).

1. We consider the beam equilibrium.

.2. Figure the considering beam on certain drawing.

.3. Applied forces acting on the beam: concentrated force P, a couple of

forces with moment M and distributed load with intensity q that is
changed on concentrated force Q=q -/ =1,5-3 =4,5(N).
The force Q is the resultant of parallel force system and because
g=const the resultant Q passes through the middle of the segment
AC.

1.4. Motion of the beam is limited by clamped joint. Exchanging constraint

by its reactions we obtain two reactions X,,Y, and reactive moment
Ma.

1.5. Obtained system of forces is general coplanar one.

1.6. We choose a coordinate system superposed its center with the
point A.

2. The problem is statically determinate because the conditions of body equi-
librium under action of general coplanar forces include 3 equations and our
problem has 3 unknown quantities.

3. Equilibrium equations for general coplanar force system will be:

1
1
1

(> F, =X, —Pcos45° =0;
D> F.=Y,—Q+Psin45 =0;
> M, (F)=M,-Q-15+P-5sin45" - M =0.

N

Solving the system we’ll find:
Xa=28N, Ya=17N, Ma=-535Nm.
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2.3. Solving problems as your own
Problem 2.1

A bar is loaded and supported
as shown in Fig. 2.7. The bar has a
uniform cross section and weighs
500 N. Determine the reactions at
supports A, B and C.

Problem 2.2

A beam is loaded and supported as
shown in Fig. 2.8. The beam has a uniform
cross section and a mass of 120 kg. deter-
mine the reactions at supports A and B.

Problem 2.3

. The mass of the cylin- 2,
er shown in Fig. 2.9 is 100 4
kg. Determine the reactions

at contact points A and B. All
surfaces are smooth.

J00 N

700 mm

Fig. 2.9
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100 mm 300 mm 700 mm Problem 2.4

500 Bar AC supports two 500
[/i N loads as shown in Fig. 2.10.
/’\| Rollers A and C rest against fric-
tionless surfaces and a cable
BD is attached at B. Determine:
s00 N 5 a) the tension in cable BD;
B § b) the reaction at A;
Q :
Ve c) the reaction at C.
.l 0
y, z
%7
50 mm
500 mm
Fig. 2.10

Problem 2.5 -2.11

In the problems (2.5 — 2.11) two methods of frame fixing are shown on

the schemes. Axis of a frame is polyline. Specified loads and dimensions in 2
cases are equal.

Determine reactions of constraints for the method of frame fixing at which
examining reaction has the smallest value.

Data for problem 2.5

Concentrated force P = 12 kN, couple of forces with moment M=6 kN*m,
distributed load with intensity q = 2 kN/m, examining reaction — Ma (Fig. 2.11).
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Data for problem 2.6

Concentrated force P = 6 kN, couple of forces with moment M = 2 kN*m,
distributed load with intensity g = 1 kN/m, examining reaction is Ma (Fig. 2.12).

y g b
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F 1 /
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L
, = I
AL 4
a b
Fig. 2.12

Data for problem 2.7

Concentrated force P = 2 kN, couple of forces with moment M = 4 kN*m,
distributed load with intensity q = 2 kN/m, examining reaction is Xa (Fig. 2.13).

Y
q
Ay 7
! . M i Z
" p
\ B B
2 g
7
a b
Fig. 2.13
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Data for problem 2.8

Concentrated force P = 20 kN, couple of forces with moment
M = 10 kN*m, distributed load with intensity q = 4 kN/m, examining reaction
is Re (Fig. 2.14).

A
N v /P A
| 2
~ [0% ©
r ™ 0

f L A ;;5
75;;/, i
Fig. 2.14
Data for problem 2.9

Concentrated force P = 12 kN, couple of forces with moment M = 6 kN*m,
distributed load with intensity q = 2 kN/m, examining reaction is Ma (Fig. 2.15).

A A

0o M
R q 972\
N
1 & B

Fig. 2.15
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Data for problem 2.10

Concentrated force P = 10 kN, distributed load with intensity g = 4 kN/m,
examining reaction — Ya (Fig. 2.16).
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Fig. 2.16

Problem 2.11

Concentrated force P = 20 kN, couple of forces with moment M = 10
kN*m, distributed load with intensity g = 2 kN/m, examining reaction is Ya
(Fig. 2.17).
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Fig. 2.17
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2.4. Problems for independent decision

When you get an assignment, you should know that the number of a prob-
lem is given in the format X.1 ... X.30, where X is a loading structure from 1 to
30, and numeral is a line from 1 to 30 from the table of initial data with values of
the geometric dimensions, numerical values of the forces, moments and dis-
tributed loads.

It should also be noted that the problems 3-5 are divided into three levels of
complexity.

Problem 1. Determination of the reactions in the rod with fixed support
loaded by the system of forces acting along the same line.

The stepped rod with fixed support is shown on Figs. 2.18 — 2.21. Axis of
the rod is a straight line. The rod is loaded by the system of forces acting along
the same line. The lengths of the rod sections and the values of the forces (P;,
P,, P;) applied to the rod are shown in Table 2.2. Determine the reactions on the
side of the fixed support of the rod.

Table 2.2
Number of a problem P4, KN P2, kKN Ps, KN P4, KN a,m
1 2 3 4 5 6
X1 10 25 14 30 0,2
X.2 11 24 15 29 0,3
X.3 12 23 16 28 0,4
X.4 13 22 17 27 0,5
X.5 14 21 18 26 0,6
X.6 15 20 19 25 0,7
X.7 16 19 20 24 0,8
X.8 17 18 21 23 0,9
X.9 18 17 22 2 1,0
X.10 19 16 23 3 1.1
X.11 20 15 24 4 1,2
X.12 21 14 11 5 1,3
X113 22 13 12 6 1,4
X.14 23 12 13 7 1,5
X.15 24 11 14 8 0,3
X.16 25 10 15 9 0,4
XA7 26 9 16 10 0,5
X.18 27 8 17 11 0,6
X.19 28 7 18 12 0,7
X.20 29 6 19 13 0,8
X.21 30 5 20 14 0,9
X.22 31 4 40 15 1,0
X.23 32 3 39 16 0,2
X.24 33 4 38 17 0,3

w
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Ending of Table 2.2

Number of a problem P4, kKN P2, kKN Ps, kKN P4, kKN a,m
1 2 3 4 5 6
X.25 34 5 37 18 0,4
X.26 35 6 36 19 0,5
X.27 36 7 35 20 0,6
X.28 37 8 34 21 0,7
X.29 38 9 33 22 0,8
X.30 39 10 4 23 0,9
| 2 | 3 1
‘ { P { P4 ] { P4
° P ° | f P
\ 4 + 2 y : B, { 2
4 A | [ 1
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Problem 2. Determination of the equilibrium of the rod loaded by the cou-

ples of forces lying in the same plane.
The rod under the action of couples of forces lying in the same plane is

shown in Figs. 2.22 — 2.25. The rod axis is a straight line.

The lengths of the rod sections and the values of couples of forces mo-
ments (M4, M2, M; M,) applied to the rod are shown in Table 2.3. Determine the
moment of a couple of forces under the action of which the rod will be in equi-
librium.
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Table 2.3

Number of a problem | My, KN-m | Mz, KkKN-m | M3, KN-m | My, KN-m a,m
1 2 3 4 5 6
XA 50 10 200 130 0,1
X.2 60 20 210 120 0,2
X.3 70 30 220 110 0,3
X.4 80 40 230 100 0,4
X.5 90 50 240 90 0,5
X.6 100 60 250 80 0,6
X.7 110 70 260 70 0,7
X.8 120 80 270 60 0,6
X.9 130 90 280 50 0,5
X.10 140 100 290 60 0,4
X1 150 110 300 70 0,3
X.12 160 120 290 80 0,2
X113 170 13 280 90 0,1
X.14 180 140 270 100 0,2
X.15 190 150 260 110 0,3
X.16 200 160 250 120 0,4
X7 210 150 240 130 0,5
X.18 220 140 230 120 0,6
X.19 230 130 220 110 0,5
X.20 240 120 210 100 0,4
X.21 250 110 200 90 0,3
X.22 260 100 190 80 0,2
X.23 270 90 180 70 0,1
X.24 280 80 170 60 0,2
X.25 290 70 160 50 0,3
X.26 300 60 150 40 0,4
X.27 310 50 140 50 0,5
X.28 320 40 130 60 0,6
X.29 330 30 120 70 0,5
X.30 340 20 110 80 0,4
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Fig. 2.22
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Problem 3. Determination of the reactions in the cantilever rod loaded by
arbitrary system of forces in plane.

The cantilever rod is shown in Figs. 2.26 — 2.29 for level 1, Figs. 2.30 — 2.33
for level 2, Figs. 2.34 — 2.37 for level 3. It is loaded by arbitrary system of forces
in plane. The rod axis is a straight line.

The lengths of the rod sections, the values of the forces forces (P4, P>),
moments (M4, M;) and distributed loads maximum intensity (q4, gz, g3), angles of
the force application to rod (a, B) are shown in Tables 2.4 — 2.6 accordingly to
the level of problems. Determine the reactions on the side of fixed support of
the rod which is loaded with such system of forces.
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Table 2.4
Number of P1, Pz, M1, Mz, ° °
a problem KN KN kN'm | kN-m | @ B> |am bmicmidm
1 2 3 4 5 6 7 8 9 10 11
X.1 25 37 4,5 19 30 | 45 1 0,4 1 0,7
X.2 24 36 6,5 3 45 1 60 | 1,2 | 0,5 2 0,8
X.3 23 35 8,5 20 60 | 90 | 14 | 0,6 3 0,9
X.4 22 34 10,5 4 90 | 30 | 16 | 0,7 2 1
X.5 21 33 12,5 21 30 | 45 | 18 | 0,8 1 1,1
X.6 20 32 14,5 5 45 | 60 2 0,9 2 1,2
X.7 19 31 16,5 22 60 | 90 | 2,2 1 3 1,3
X.8 18 30 18,5 6 90 | 30 | 24 | 11 2 1,4
X.9 17 29 20,5 23 30 | 45 | 26 | 1,2 1 1,5
X.10 16 28 22,5 7 45 |1 60 | 2,8 | 1,3 2 1,4
X.11 15 27 24,5 10 60 | 30 3 1,4 3 1,3
X.12 14 26 26,5 13 90 | 45 | 28 | 15 2 1,2
X.13 13 25 28,5 16 30 | 60 | 26 | 1,6 1 1,1
X.14 12 24 30 19 45 | 30 | 24 | 17 2 1,0
X.15 11 23 27 22 60 | 45 | 22 | 1,8 3 0,9
X.16 10 22 24 8 90 | 60 2 1,9 3 0,8
X7 9 21 21 9 30 | 45 | 1,8 1 0,7
X.18 8 20 18 10 45 | 30 | 16 | 1,9 3 0,6
X.19 7 21 15 20 60 | 90 | 14 | 1,8 3 0,7
X.20 6 22 12 22 90 | 30 | 1,2 | 1,7 2 0,8
X.21 5 23 9 24 30 | 45 1 1,6 1 0,9
X.22 6 24 10 26 45 1 60 | 0,8 | 15 2 1,0
X.23 7 25 11 28 60 | 30 | 0,6 | 14 3 1,1
X.24 8 26 12 30 90 | 45 | 04 | 13 2 1,2
X.25 9 27 13 32 30 | 60 | 0,6 | 1,2 1 1,3
X.26 10 28 14 31 45 | 30 | 0,8 | 1,1 2 1,4
X.27 11 29 15 33 60 | 45 1 0,9 3 1,5
X.28 12 30 16 35 90 | 60 | 1,2 | 0,8 2 1,6
X.29 13 31 17 37 30 | 45 | 14 | 0,7 1 1,7
X.30 14 32 18 39 45 | 30 | 16 | 0,6 2 1,8
M M 2
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) a B ) a
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Fig. 2.26
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Level 2
Table 2.5
Number of | Py, P2, My, di, ° °
a problem KN KN KN-m | kKN/m a B M| bmicm dm
1 2 3 4 5 6 7 8 9 10 1
X.1 1,5 10 2 1 30 | 45 | 0,8 | 30 | 0,2 | 0,6
X.2 2 11 4 2 45 1 60 | 09 | 29| 04 | 0,7
X.3 2,5 12 6 3 60 | 30 | 1,0 | 28 | 06 | 0,8
X.4 3 13 8 4 30 | 45 | 11 ] 27 | 08 | 0,9




Ending of Table 2.5

Number of P1, Pz, M1, 1, ° °
a problem KN KN KN-m Kﬂl/M a B M bwmicm dm
1 2 3 4 5 6 7 8 9 10 1
X.5 3,5 14 10 5 45 60 | 1,2 | 26 | 1,0 | 11
X.6 4 15 12 6 60 30 | 1,3 | 25| 12 | 12
X.7 4,5 14 14 7 30 45 | 14 | 24 | 1,4 | 1,3
X.8 5 13 16 8 45 60 | 1,5 | 23| 16 | 14
X.9 5,5 12 18 9 30 45 | 16 | 22 | 1,8 | 15
X.10 6 11 20 10 45 60 | 1,7 | 21 | 20 | 1,6
X.11 6,5 10 22 11 60 30 | 1,8 | 20 | 22 | 1,7
X.12 7 11 24 12 30 45 119 | 21|24 | 18
X.13 7,5 12 26 13 45 60 | 20 | 22 | 26 | 1,9
X.14 8 13 28 14 60 30 | 21 | 23 | 2,8 2
X.15 8,5 14 30 15 30 45 | 22 | 24 | 26 | 0,5
X.16 9 15 28 16 45 60 | 23 | 25 | 24 | 0,6
X7 9,5 16 26 17 60 30 | 24 | 26 | 2,2 | 0,7
X.18 10 17 24 18 30 45 | 25 | 2,7 | 20 | 0,8
X.19 10,5 18 22 19 45 60 | 26 | 28 | 1,8 | 0,9
X.20 11 19 20 20 60 30 | 2,7 | 29| 16 | 1,0
X.21 11,5 20 18 19 30 45 | 28 | 30 | 1,4 | 11
X.22 12 21 16 18 45 60 | 29 | 04 | 1,2 | 1,2
X.23 12,5 22 14 17 60 30 | 30 | 05|10 | 13
X.24 13 23 12 16 30 45 | 31 106 | 0,8 | 1,4
X.25 13,5 24 10 15 45 60 | 3,2 | 0,7 | 06 | 1,5
X.26 14 25 8 14 60 30 | 33 108 |04 | 16
X.27 14,5 26 6 13 30 45 | 34 | 09 | 0,2 | 1,7
X.28 15 27 4 12 45 60 | 35|10 | 04 | 1,8
X.29 15,5 28 2 11 60 30 | 36 | 1,1 ] 06 | 1,9
X.30 16 29 10 10 30 45 | 3,7 | 1,2 | 0,8 2
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Fig. 2.33

Level 3
Table 2.6
Number of | P4, M, 1, 2 3, 0
a problem KN KN-Mm Kﬁl/M Kﬁl/M Kﬁl/M a M| b,micm dwm
1 2 3 4 5 6 7 8 9 10 11
X.1 5 10 2 4 10 30 02|10 ] 03 | 15
X.2 10 12 3 6 20 45 | 04 | 09 | 06 | 14
X.3 15 14 4 8 30 60 06 | 0,8 09 | 13
X.4 20 16 5 10 40 90 08 | 0,7 | 12 | 1,2
X.5 25 18 6 12 50 30 1,0 1 06 | 1,5 | 11
X.6 30 20 7 14 60 45 |1 0,8 | 0,5 | 1,2 | 1,0
X.7 35 22 8 16 50 60 06 | 04|09 09
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Ending of Table 2.6

Number of | P, My, d1, d2, ds, 0
a problem KN kN-M | kN/m | kN/m | kN/m | © M| b,micm dwm
1 2 3 4 5 6 7 8 9 10 1
X.8 40 24 9 18 40 90 04 | 03| 06 | 0,8
X.9 45 26 10 20 30 30 02 |01 ] 03| 0,7
X.10 50 28 11 22 20 45 | 04 | 0,2 | 06 | 0,6
X.11 55 30 12 24 10 60 06 | 03109 |05
X.12 60 32 13 26 20 90 08 | 04 | 1,2 | 04
X.13 65 34 14 28 30 30 1,0 1 05 | 1,5 | 0,3
X.14 70 36 15 30 40 45 | 0,8 | 0,6 | 1,2 | 0,2
X.15 75 38 16 32 50 60 06 | 0,7 | 09 | 0,3
X.16 80 40 17 30 60 90 04 | 08 | 06 | 04
X7 75 42 18 28 50 30 02 109103 05
X.18 70 44 19 26 40 45 | 04 | 10 | 06 | 0,6
X.19 65 46 20 24 30 60 06 | 09| 09 | 0,7
X.20 60 48 21 22 10 90 08 |08 | 12 | 0,8
X.21 55 50 22 20 10 30 1,0 1 0,7 | 1,5 | 0,9
X.22 50 52 23 18 20 45 | 0,8 | 06 | 1,2 | 1,0
X.23 45 54 24 16 30 60 06 | 05|09 | 11
X.24 40 56 25 14 40 90 04 | 04 | 06 | 1,2
X.25 35 58 26 12 50 30 02 031103 ] 13
X.26 30 60 27 10 60 45 | 04 | 0,2 | 06 | 14
X.27 25 62 28 8 50 60 06 | 0,1 ] 09 | 15
X.28 20 64 29 6 40 90 08 | 02| 12 | 16
X.29 15 66 30 4 30 30 1,0 1 0,3 | 1,56 | 1,7
X.30 10 68 31 2 20 45 1 0,8 | 04 | 1,2 | 1,8
1 M, 2 M
of ds _}1 /Ch ds
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Problem 4. Determination of the reactions in the double-support rod loaded
by arbitrary system of forces in plane.

The double-support rod is shown in Figs. 2.38 — 2.41 for level 1, Figs. 2.42
— 2.45 for level 2, Figs. 2.46 — 2.49 for level 3. It is loaded by arbitrary system
of forces in plane. The rod axis is a straight line.

The lengths of the rod sections, the values of the forces (P4, P2), moments

(M., M;) and distributed loads maximum intensity (q+, gz, g3), angles of the force
application to rod (a, B) are shown in Tables 2.7 — 2.9 accordingly to the level
of problems. Determine the reactions in supports of the rod which is loaded
with such system of forces.

Level 1
Table 2.7

Number of P4, P2, Ps, M,, o o o | a, b, cC,

a problem Kr1\1 Krfl K;l KNTM a B \ M M M d,m
XA 5 30 20 8 30 |45 |60 | 1 051104
X.2 7 29 25 10 45160 | 90| 2 [10] 1206
X.3 9 28 30 12 60 |90 | 30| 3 | 15|13 |08
X.4 11 27 10 14 90 |30 |45 | 4 |20 (14|10

o4



Ending of Table 2.7

Number of P4, Pa, Ps, M, a | B° |y a, b, c, d,
a problem KN KN KN KN-m M M M M
X.5 13 26 15 16 3045|160 | 5 |25]15]| 1,2
X.6 15 25 20 18 45160 | 90| 4 | 30|16 |14
X.7 17 24 30 20 60 |90 | 30| 3 | 35|17 |16
X.8 19 23 35 22 90 |30 45| 2 |40 (18| 1,8
X.9 21 22 40 24 30 145 |60 | 1 451191 20
X.10 23 21 5 26 45 160 |90 | 2 | 50|20 |22
X. 11 25 20 10 28 60 190 |30 3 |45 |21 |24
X.12 27 19 15 30 90 |30 |45 | 4 |40 |22 | 26
X.13 29 18 40 28 30 45|60 5 | 35|23 28
X.14 31 17 45 26 45 160 |90 | 4 | 30|24 |30
X.15 33 16 50 24 60 |90 | 30| 3 | 25|25 | 3.2
X.16 35 15 20 22 90 |30 |45 | 2 | 20|26 | 34
X7 37 16 25 20 30 |45 |60 | 1 15|27 | 36
X.18 39 17 30 18 45160 90| 2 |10]28 |34
X.19 41 18 40 16 60 |90 | 30| 3 | 1529372
X.20 43 19 35 14 90 |30 |45 | 4 | 20|30 30
X.21 45 20 30 12 30 45|60 5 | 252928
X.22 47 21 5 10 45160 | 90| 4 | 3,028 |26
X.23 49 22 10 8 60 190 | 30| 3 | 35|27 |24
X.24 51 23 15 6 90 |30 |45 | 2 |40 |26 | 2,2
X.25 53 24 30 10 30 |45 |60 | 1 45|25 | 2,0
X.26 55 25 35 12 45160 | 90| 2 | 50|24 |18
X.27 57 26 40 14 60 |90 | 30| 3 |45 |23 |16
X.28 59 27 35 16 90 |30 |45 | 4 40|22 |14
X.29 61 28 30 18 30 45|60 5 | 352112
X.30 63 29 25 20 45160 | 90| 4 | 3,0 20|10

Fig. 2.38
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Level 2
Table 2.8
Number of P4, P2, 15 ° °
a problem KN KN Kﬁl/M a | B b,m | c,m|dm
1 2 3 5 6 | 7 9 10 11
XA 10 22 4 30 | 90 1,0 | 1,2 | 1,8
X.2 11 21 5 45 | 30 1,1 | 14 | 1,7
X.3 12 20 6 60 | 45 12 | 16 | 16
X.4 13 19 7 90 | 60 1,3 | 1,8 | 15
X.5 14 18 8 30 | 90 14 | 20 | 14
X.6 15 17 9 45 | 30 15122 | 13
X.7 16 26 10 60 | 45 16 | 24 | 1,2
X.8 17 15 11 90 | 60 1,7 | 26 | 1,1
X.9 18 14 12 30 | 90 1,8 | 28 | 1,2
X.10 19 13 13 45 | 30 1,9 | 30 | 1,3
X.11 20 12 14 60 | 45 20 | 32 | 14
X.12 21 11 15 90 | 60 21 |1 34 | 15
X.13 22 10 16 30 | 90 22 | 36 | 16
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Ending of Table 2.8

Number of 15 o o
a problem Kﬁl/M a | B |amibwmicm dm
1 5 6 | 7 8 9 10 11
X.14 17 45 130 29 | 23 | 3,8 | 1,7
X.15 18 60 45| 28 | 24 | 40 | 1,8
X.16 19 90 (60 | 2,7 | 25 | 3,8 | 1,9
X7 20 30 |90 | 26 | 26 | 36 | 2,0
X.18 19 45 130 | 25 | 27 | 34 | 19
X.19 18 60 45| 24 | 28 | 32 | 1,8
X.20 17 90 [60 | 2,3 | 29 | 3,0 | 1,7
X.21 16 30 (90| 22 | 30| 28 | 16
X.22 15 45 130 | 21 | 31 | 26 | 1,5
X.23 14 60 45| 20 | 32 | 24 | 14
X.24 13 90 (60 | 19 | 3,3 | 22 | 1,3
X.25 12 30 (90| 1,8 | 34 | 20 | 1,2
X.26 11 45 130 |17 | 35|18 | 11
X.27 10 60 45| 16 | 36 | 16 | 1,0
X.28 9 90 (60 | 15 | 3,7 | 14 | 11
X.29 8 30 (90| 14 | 38 | 1,2 | 1,2
X.30 7 451301339 |10 | 13
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Level 3
Table 2.9
Number of | Py, My, 1, d2, ds, 0
a problem KN KN-m Kﬂl/M kN/m | kN/im | & [ M b,m|c, M| d,m
1 2 3 4 5 6 7 8 9 10 | 11
X.1 4 10 2 20 15 30 {1 011]031]10] 05
X.2 8 11 4 19 16 45 102 103109105
X.3 12 12 6 18 17 60 0,305 |08 ] 0,5
X.4 16 13 8 17 18 90 | 04|05 | 0,7 | 0,7
X.5 20 14 10 16 19 30 | 05|07 | 06 | 0,7
X.6 24 15 12 15 20 45 1 06 | 0,7 | 0,5 | 0,7
X.7 28 16 14 14 21 60 | 0,7 109 | 04 | 09
X.8 32 17 16 13 22 9 [ 08]109 03109
X.9 36 18 18 12 23 30 1 09]10,2 02109
X.10 40 19 20 11 24 45 1101] 02|01 1] 1,0
X.11 44 20 22 10 25 60 | 09 1 04 | 0,2 | 1,0
X.12 48 21 24 9 26 90 | 0,8 | 04 | 0,3 | 1,0
X.13 52 22 26 8 27 30 | 0,706 |04 ]| 11
X.14 50 23 28 7 28 45 1 06 | 0,6 | 0,5 | 1,1
X.15 48 24 30 10 29 60 | 05|04 | 05| 11
X.16 46 25 28 12 30 90 | 04 |04 | 0,7 | 1,2
X7 44 26 26 14 29 30 10,302 |08 1,2
X.18 42 27 24 16 28 45 1 0,210,209 |12
X.19 40 28 22 18 27 60 | 0,105 | 10| 0,8
X.20 38 29 20 30 26 90 [ 0,205 |09 ] 0,8
X.21 36 30 18 25 25 30 /| 03]0,7 08 0,8
X.22 34 29 16 20 24 45 104 | 0,7 | 0,7 | 0,6
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Ending of Table 2.9

Number of | Py, My, 1, d2, ds, 0
a problem KN KN-m Kﬁl/M kN/m | kN/im | & [ M b,m|c,m|d,m
1 2 3 4 5 6 7 8 9 10 | 11

X.23 32 28 14 15 23 60 | 0,509 |06 | 0,6
X.24 30 27 12 10 22 90 [ 06 |09 | 05 | 06
X.25 28 26 10 5 21 30 | 0,7 10|04 | 04
X.26 26 25 8 10 20 45 1 0811003 ]04
X.27 24 24 6 15 19 60 | 09 108 | 02| 04
X.28 22 23 4 20 18 90 10080103
X.29 20 22 20 25 17 30 | 091060203
X.30 18 21 10 30 16 45 108 |06 | 0,3 | 0,3

Fig. 2.46
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Problem 5. Determination of the reactions in the frame loaded by arbitrary
system of forces in plane.

The frame is shown in Figs. 2.50 — 2.54 for level 1, Figs. 2.55 — 2.58
for level 2, Figs. 2.59 — 2.63 for level 3. It is loaded by arbitrary system of forces
in plane.

The lengths of the rod sections, the values of the forces (P4, P2), moments
(M4, M,) and distributed loads maximum intensity (q+=q2, q), angles of the force
application to rod(a, B) are shown in Tables 2.10— 2.12 accordingly to the level
of problems. Determine the reactions in supports of the frame which is loaded
with such system of forces.

Level 1
Table 2.10
Number of P1, Pz, M1, Mz, ° °

a problem KN KN KN-M | KN'm a B M| bm|cm
1 2 3 4 5 6 7 8 9 10
X.1 10 18 13 27 30 60 0,2 | 0,5 | 0,3
X.2 14 17 15 26 45 90 0,4 1,0 | 04
X.3 18 16 17 25 60 30 0,6 1,5 | 0,5
X.4 22 15 19 24 90 45 08 | 20 | 0,6
X.5 26 14 21 23 30 60 1,0 | 25 | 0,7
X.6 30 13 23 22 45 90 1,2 | 30 | 0,8
X7 34 12 25 21 60 30 14 | 25 | 0,9
X.8 38 11 27 20 90 45 1,6 | 2,0 1,0
X.9 42 10 29 19 30 60 1,8 1,5 1,1
X.10 15 11 31 18 45 90 2,0 1,0 1,2
X.11 20 12 33 17 60 30 22 | 05 1,3
X.12 25 13 35 16 90 45 2,4 1,0 1,4
X.13 30 14 12 15 30 60 2,6 1,5 1,5
X.14 35 15 14 20 45 90 28 | 2,0 1,6
X.15 40 16 16 25 60 30 30 | 2,5 1,7
X.16 3 17 18 30 90 45 28 | 3,0 1,8
X7 7 18 20 35 30 60 26 | 2,5 1,9
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Ending of Table 2.10

Number of P1, Pz, M1, Mz, a® Bo am bm| cM
a problem KN KN KN-M | KN'm ’ ’ ’

1 2 3 4 5 6 7 8 9 10
X.18 11 19 22 40 45 90 2,4 2,0 2,0
X.19 15 20 24 35 60 30 2,2 1,5 2.1
X.20 19 21 26 30 90 45 2,0 1,0 2,2
X.21 23 22 28 25 30 60 1,8 0,5 2,3
X.22 27 23 30 20 45 90 1,6 1,0 2,4
X.23 31 24 10 15 60 30 1,4 1,5 2,5
X.24 35 25 11 10 90 45 1,2 2,0 2,6
X.25 34 26 12 19 30 60 1,0 2,5 2,7
X.26 33 27 13 18 45 90 0,8 3,0 2,8
X.27 32 28 14 17 60 30 0,6 2,5 2,9
X.28 31 29 15 16 90 45 0,4 2,0 3,0
X.29 30 30 16 15 30 60 0,2 1,5 2,9
X.30 29 31 17 14 45 90 1,0 1,0 2,8

2
IV|2 P1 M1
Py P- > P a
O B 4 ‘
B M,
7 €« o
(@] Y
P
P
A A M, 5 B b >
o a 7 v b < > >
4
g a My
B ®)
Y
<«
»i a A




M-
->
»i
7 M, M, 8
(-
‘ B
(3] P, -
a
A P,
ﬁ:a « b R
9 10
P,
N o
(&)
CL\I) MZA \ 4
M,
A A
a 7 v b
11 M 12
P, -i &
a B>¥B
A |
* 4
Mi | 4 Q
A Y
4’ a b A -
|« < >
Fig. 2.51

68




13

15

17

19




21

y M 8~
>
A
Y 7 a
B a
23
P
ap
5 A
M1 2yl
25 M,
KFA
4
A P1
a
4 + M
27

Fig. 2.53
70




30
a
P1 M1 0‘
Bl 4 y
+ M- P2 (&)
Y
Fig. 2.54
Level 2
Table 2.11
Number of P4, Pa, M,, q, o o
a problem KN KN KN-m KN/m a B M| bwmcm
1 2 3 4 5 6 7 8 9 10
X.1 9 25 5 10 90 30 | 0,2 | 1,0 | 0,5
X.2 10 24 6 12 60 45 |1 0,3 | 1,1 | 0,9
X.3 11 23 7 14 45 60 | 04 | 1,2 | 1,3
X.4 12 22 8 16 30 90 | 0,5 | 1,3 | 1,8
X.5 13 21 9 18 90 45 |1 06 | 14 | 22
X.6 14 20 10 20 60 30 | 0,7 | 1,56 | 21
X.7 15 19 11 22 45 90 | 0,8 | 16 | 2,0
X.8 16 18 12 24 30 60 | 09 | 1,7 | 19
X.9 17 16 13 26 90 45 |10 | 1,8 | 18
X.10 18 17 14 28 60 30 1,1 1 1,9 | 17
X.11 19 15 15 30 45 90 1,2 | 20 | 1,6
X.12 20 14 16 29 30 60 1,11 19 | 15
X.13 21 13 17 28 90 45 110 | 18 | 14
X.14 22 12 18 27 60 30 | 09 | 1,7 | 1,3
X.15 23 11 19 26 45 90 | 0,8 | 16 | 1,2
X.16 24 10 20 25 30 60 | 0,7 | 1,56 | 11
X7 25 11 21 24 90 45 1 06 | 14 | 1,0
X.18 26 12 22 23 60 30 | 0,513 ] 09
X.19 27 13 23 22 45 90 | 04 | 1,2 | 0,8
X.20 28 14 24 21 30 60 | 0,3 | 1,1 | 0,7
X.21 29 15 25 20 90 30 | 0,2 | 10 | 0,6
X.22 30 16 20 19 60 45 1 0,3 |1 09 | 05
X.23 31 17 15 18 45 90 | 04 | 08 | 04
X.24 32 18 10 17 30 45 | 0,5 | 0,7 | 0,3
X.25 33 19 12 16 90 60 | 0,6 | 0,6 | 0,2
X.26 34 20 14 15 60 30 | 0,7 | 0,5 | 0,3
X.27 35 21 16 14 45 90 | 0,8 | 04 | 0,5
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Ending of Table 2.11

Number of P4, P., My, q, ° °
a problem KN KN KN-m KN/m a B M| bwmcm
1 2 3 4 5 6 7 8 9 10
X.28 36 22 18 13 30 45 09 | 0,3 | 0,7
X.29 37 23 20 12 90 60 10| 0,2 | 0,9
X.30 38 24 22 11 60 30 1,1 1,0 1,1
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Level 3

Table 2.12
Number of P4, P2, M, d1, AB, | BC, | CD, | DE, | EF, | FG, ° °
a problem KN KN KN-mM KNm M M M M M M a B
1 2 3 4 5 6 7 8 9 [10 | 11 | 12 | 13
X1 5 4 8 25 11121202418 ]3,0] 30 |60
X.2 10 8 9 24 1,56(14118(22 162845 |90
X.3 15 12 10 23 1201616 ]20]14 26|60 |30
X4 20 16 11 22 1251814181224 |90 |45
X.5 25 20 12 21 3 120(1,2]16[1,0]2,2] 30 |60
X.6 30 24 13 20 125(122(10(14]0,8 (20|45 |90
X7 35 28 14 19 12024081206 (18|60 |30
X.8 40 32 15 18 1115|2606 |10(04 |16 |90 | 45
X.9 45 36 16 17 13028040806 |14 |30 |60
X.10 50 40 17 16 10,5/3,0]06]06[08|12]|45 |90
X1 45 44 18 15 110280804 (1,011,060 |30
X112 40 48 19 14 [15|126[10|06 (1,208 |90 |45
X113 35 44 20 13 120/24]15/08 14|06 | 30 | 60
X.14 30 40 21 12 1251222010 (16[04 |45 |90
X.15 25 36 22 11 30/20]25|12|18|0,6 |60 | 30
X.16 20 32 23 10 125183014 (20[0,8|90 |45
X7 15 28 24 15 12016 ]125]|16(22[10 | 30 | 60
X.18 10 24 25 20 1,56(14120 (1,824 1,245 |90
X119 5 20 26 25 110121152026 |1,4|60 30
X.20 10 16 27 20 10,5/10/1,01]22]28|1,6] 90 |45
X.21 15 18 28 15 [1,0)08]05124(3,0[18]|30 |60
X.22 20 14 29 10 15|06 ]10]26(28|20]|45 |90
X.23 25 10 30 5 20|04 11512826 |22|60 |30
X.24 30 14 31 10 125/06(20]3,0(24|24 |90 |45
X.25 35 18 32 15 130/08]25]|20(22]|26 |30 |60
X.26 40 22 33 20 125(10|3,0]10]20(28]|45 |90
X.27 45 26 34 25 120(12125]20]18|3,0]60 |30
X.28 50 30 35 30 [15]14/20,30[16|20]90 |45
X.29 40 34 36 25 110(16(15]20]14|1,0] 30 | 60
X.30 30 38 37 20 105(18]10]10]1,2]0,5[45 |90
2
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2.5. Questions for self-testing

Write an equilibrium equation for general coplanar force system.
Write equilibrium equations for:
a) coplanar parallel force system;
b) coplanar concurrent force system.
Describe types of loads acting on a rigid body.
What is system of distributed forces characterised by?
How can a resultant of distributed forces system be determined?
What is a couple of forces?
What is a couple of forces characterised by? What are properties of
couples?
What is constrained body?
What is a reaction of constraint? Name main types of constraints for
two dimensional case and specify directions of their reactions.
Formulate the principle of constraints replacing (method of FBD
drawing).
What is algorithm of reactions determination?
How can you ascertain if a problem is statically determinate?
How can results of calculations be checked up?
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3. BODIES SYSTEM EQUILIBRIUM. METHOD OF SECTION
3.1. Main information from the theoretical course

In previous chapters the problems on single body equilibrium were exam-
ined, in this chapter we shall consider problems on body system equilibrium.
Body systems (or structures) analyzed in our course are subdivided on:
o Sets of bodies that simply supported (Fig. 3.1,a)
o Frames that are engineering structures designed to support loads, frames
are usually stationary fully constrained structures (Fig. 3.1,b)
o Machines that are engineering structures designed to transmit and modify
forces and are structures containing moving parts (Fig. 3.1,c).

7at

a b C

Fig. 3.1

Parts of the structures are usually connected between themselves by
pins, collars, cords or rods. From the point of view of the system as a whole the

forces of interaction between the parts are internal (F(’)). These internal forc-
es are acted in pair, so in accordance with action and reaction equality principle
the forces in pair are equal in magnitude and act along the same line in oppo-
site direction, therefore for the system as a whole the total vector and the total
moment of the internal forces are equal to zero. All other forces acting on the

body system are external (F').

To determine all unknown reactions (external and internal) it is not
enough to consider equilibrium conditions for the mechanical system as a
whole even if this system is statically determinate. That is why for determination
of all unknown forces in the problem on body system equilibrium we use meth-
od of section. This method consists of the following steps:

1. Divide the system of bodies onto the parts by destroying (sectioning) the
internal constraints between the bodies of the system.
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2. Form FBD for each part of the system (use the first step of the algorithm
of a problem solution in the chapter 2). For each adjacent part at the section
apply the reactions corresponded to the type of the destroyed constraint.
The direction you choose for each of the internal force components exerted
on the first part is arbitrary, but you must apply equal and opposite force
components of the same name to the other parts.

3. For each part write the equilibrium conditions taking into consideration all
forces acting on the part with including reactions of destroyed internal con-
straints.

4. Analyze the statically determinacy of the problem. For the structure
consisting of n members under the action of general coplanar force system
it is possible to form 3n independent equations of equilibrium. If the total
number of unknowns is no more than the number of independent equations
(3n) the problem is statically determinate and can be solved by the methods
of statics.

5. Solve these 3n equations as a system; check the accuracy of your solution
using the equilibrium conditions for the structure as a whole.

3.2. Solution of problems
Sample problem 3.1

Specify the number of statically determinate structure shown in the first
column of Table 3.1.
Solution

Dismember each frame into two parts: bent rod AB and straight rod BC,
that are connected by the pin B (separated part of each structure are shown in
the second and third column of the Table 3.1).

Form FBD for each part of the system.

In the frame a) the bent rod AB is under the action of applied force IE re-

— —

actions X,, Y, and reactive moment M, that are caused by fixed support at

— —

the point A and reactions Xj, Y that are caused by pin joint at the point B;
straight rod BC is under the action of applied couple M, reactions )?C, VC that
are caused by pin at the point C and reactions )?,;, \73' that are caused by pin

joint at the point B. Here we note that X, = —X4, Y, =-Y;.
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Table 3.1

Structure FBD for parths of the structure
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In the frame b) the bent rod AB is under the action of applied force IE re-

— —

actions X,, Y, and reactive moment M, that are caused by fixed support at

— —

the point A and reactions Xj, Y that are caused by pin joint at the point B;

—

straight rod BC is under the action of applied couple M, reaction XC that is
caused by ideal rod at the point C and reactions )?,;, \73' that are caused by pin
joint at the point B. Here we note that X, = —X4, Y, =-Y;.

In the frame c) the bent rod AB is under the action of applied force IE re-

— —

actions X,, Y, and reactive moment M, that are caused by fixed support at

— —

the point A and reactions Xj, Y that are caused by pin joint at the point B;

-

straight rod BC is under the action of applied couple M, reaction YC that is

— —

caused by sliding joint at the point C and reactions X, Y, that are caused by
pin joint at the point D and reactions )?,;, \73' that are caused by pin joint at the

point B. Here we note that X, =—-Xg, Y; =-Y5;.

Each part is under the action of general coplanar force system, so it is
possible to form three equilibrium conditions for each part.

We have got six independent equations of equilibrium for each frame.
There are seven unknown reactions in the frame a) there are six unknown re-
actions in the frame b) and there are eight unknown reactions in the frame c).
So only frame b) is statically determinate.

Answer: frame b) is statically determinate.

Sample problem 3.2

The structure (Fig. 3.2, a) consists of two parts joined by a pin at point C
and is loaded by the force P=10 N, distributed load with intensity g=1 N/m and
couple M=5 N*m. The distances are known a=2 m, b=3 m, angle isa = 60°.
Determine reactions of constraints and internal forces at point C.

Solution
1. Using method of section dismember the structure at point C into two
parts AC and BC.
2.  Form FBD for each part of the system (Fig. 3.2, b). The rod AC is

under action of the resultant of applied distributed load Q (Q = g*a = =1*2= 2

—

N), reaction R, that is caused by sliding joint at the point A and internal reac-

tions )?C, VC that are caused by pin joint at the point C.
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Fig. 3.2

The rod BC is under action of applied force P and couple M, reactions

— —

X3, Y5 and reactive moment M, that are caused by fixed support at the point

B, internal reactions X, Y/.. Here we note that X, =—-X¢, Y, =-Y_.

3. Each part is under the action of general coplanar force system, so it
is possible to form the three equilibrium conditions for each part. For two parts
we write the equilibrium conditions taking into consideration all forces acting on
the parts with including reactions of destroyed internal constraints.

For the rod AC:

> F.=-X, =0,
ISF, =R, -Q-Y, =0,

ZMC(IEK)zQ-g—RA-a:O.

For the rod BC:

rZFkX =X, + X, —P-cosa =0,

Y F,=Y,+Ys+P-sina =0,
KZMC(IEK):M+MB+XB-2-a+P-b-sina=0.

4.  We have got the six independent equations of equilibrium for the
structure. There are six unknown reactions in the structure. So the problem is
statically determinate and can be solved by the methods of statics.

5. Substituting all known values into the systems we get:

J\
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(—XC =0,

R,-Y,-2=0,

2-0,5-R, =0,

X, +X;-10-0,5=0,

Y. +Y;+10-0,85=0,

S5+ M, +2-X;-2+10-3:0,85=0.

Having solved these equations as a system we find:
Xc=0,Yc=—1IN,Ra=1N,Xg=5N, Ys=-7,66 N, Mg=-51 N-m.

We have got magnitudes of several reactions with minus. It means that

assumptions about their directions were wrong and really they have opposite
sense.

6. To check the accuracy of the solution use the equilibrium conditions
for the structure as a whole:

Y Fo=Xz—P-cosa =0,
SF, =R, —Q+Y, +P-sina =0,

ZMC(E)zo-g—RA-a+M+MB+XB-2-a+P-b-sina=o.

After substituting the values of applied forces and reactions and moments
we get zero in right side of all equations:

Y F=5-10-cos60°=0,
S'F, =1-2-7,66+10-sin60° = 0,

ZMC(E)z2%-1-2+5—51+5.2-2+1o-3-sin6oo=o.

We have received identity that's why all reactions have been found cor-
rectly.

Answer. Xc = 0, Yc = =IN, Ra= 1 N, Xs = 5 N, Y = 7,66 N,
Mg=—-51N-m.

Sample problem 3.3

A load of weight G = 3000 N (Fig. 3.3, a) is hanged with the use of cord
threw over block A and reeled on the winch D.

Determine the forces in rods AB and AC. Angles are shown in the Fig.
Neglect block dimensions.
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Fig. 3.3
Solution

. Dismember the structure at point A onto two parts: block A with rods AB,
AC; and load.
. Form FBD for each part of the system (Fig. 3.3, b). The block is under ac-

tion of reactions S,,S, that are coursed by supporting rods (chosen direc-

- —

tions of reactions S,,S, correspond to assumption about stretched state

—

of the rods) and cord tension T. The load is under action of weight G and

cord tension T'=-T.
From the load equilibrium conditions we get :
Y F,=0:T'-G=0,
T'=G =3000N.
. The first method (analytical).Block is under action of coplanar concurrent
force system, so it is possible to form two equilibrium conditions for it:

Zka =0, ZFyk =0;

{—T sin75° —S,c0s30° — S, sin45° = 0;

Tcos75 —-S,sin30° -S,cos45 -G =0.
. We have got two independent equations of equilibrium. There are two un-
known reactions in the structure. So the problem is statically determinate

and can be solved by the methods of statics.
. Having solved these equations as a system we find:
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S, =S ,=—1840N.

Obtained sign minus means that forces S,,S, have opposite directions,

i. e. really the rods are compressed.
The second method (graphical, Fig. 3.4).

-

. To construct force polygon the known
45° vectors G and T are laid off head-to-tail to
some convenient scale.

-

From the tail (point A) of the vector G

and the head of the vector T (point C)
straight lines parallel to AC and AB corre-
spondingly are drawn. The resulting inter-
section at point D completes the solution,
thus enabling us to measure added before

-

the unknown vectors  S,,S,.
Answer. S, =S ,=-1840N.

Fig. 3.4
Sample problem 3.4

The homogeneous rod AB of length / and weight P = 100 N is fixed to a
wall by pin A (Fig. 3.5, a) and is held at an angle 45 with by cord which pass-
es over a fixed pulley C, the load of weight G is attached to the cord. The cord
branch BC makes an angle 30 with vertical. At the point D (AD = 0,75 ]) the
force Q=200 N is applied.
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Solution

1. Using method of section dismember the structure onto three parts:
rod AB, block C and load G.
2. Form FBD for each part of the system (Fig. 3.5, b). The rod AB is

under action of weight P, applied force Q, reactions )?A, VA that are caused

—

by pin joint at the point A and cord tensile load T,. The block is under action of

reactions X, Y, that are caused by pin joint at the point C and cord tensile

—

loads ﬁ', 712' The load is under action of weight G, cord tensile load T,

3. For load one equilibrium equation can be written:

> F,=-G+T,=0.

From heir T1 = G.

The block is under action of general coplanar force system. As far as
force of action is equal to counteraction T,'=—T,and T, =—T,. It is sufficient to
make one equation for finding tensile forces:

> Mc(F)=T-rT;-r=0,
where r is radius of the block.

Thus T2’ = T4 = T1 = G. Because of T2 = T’ tensile force is equal to
weight of the load, i. e. T2 =G.

The rod AB is under action of general coplanar force system, that's why
three equations of equilibrium can be written:

-

> Fu=X,-T,sin30" =0;
>F,=Y,-Q-P +T,c0s30° = 0;

M, (ﬁk)zpésin45° +Q-%/sin45° ~T,-Isin75 =0.

4. Three independent equations of equilibrium for the rod were ob-
tained and there are three unknown reactions in the system. So the problem is
statically determinate and can be solved by the methods of statics.

5. Having solved these equations as a system we’ll find:

Xa=73N, Ya=173 N, G =146 N.

Answer: Xa=73 N, Ya=173 N, G =146 N.
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Sample problem 3.5

Homogeneous bar AC (AC weight is P1 ) is kept in horizontal position by

homogeneous rod BD (AC=BD=I, BD weight is P1) (Fig. 3.6, a). Force Q=100 N
is applied at point C to the bar AC. It is known that AE=CE, BF=DF,
P1=P>=P=40 N and pin joints are at points A, B, D.

1.

Determine reactions of pin joints A and B (I§A and I§B).

‘H‘ YDT{
— C

AﬁlD%

Fig. 3.6

Solution

Using method of section dismember the structure at point D into two parts
AC and BD.
Form FBD for each part of the system (Fig. 3.6, b). The rod AC is under ac-

-

tion of weight P1, applied force Q, reactions X ,,Y, that are caused by pin

— —

joint at the point A and reactions X, Y, that are caused by pin joint at the

point D. The rod BD is under action of weight P2, reactions )?B, \73 that are
caused by pin joint at the point B, reactions of interaction with separated
part AC X, Y, . Here we note that X, =X, Y, =-Y,.

Each part is under the action of general coplanar force system, so it is pos-
sible to form the three equilibrium conditions for each part. But as far as we
have not to find internal reactions in pin joint D we write three equilibrium
conditions for the structure as a whole and one equation for BD.

For the structure as a whole:
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D Fy=X,+X;+Qcos45°=0;
Y Fy=Y,+Y;—P —P,-Qsin60° =0,

M, (ﬁk) = —Ré—Qsin45°l + X,/ cos45° - P, %sin60° = 0.
For the rod BD:
> M (F, )= X,/ cos60° —Y,Isin60" +P, ésin 60° = 0.

We have got four independent equations of equilibrium for the structure.
There are four unknown reactions that we have to find. So the problem is
statically determinate and can be solved by the methods of statics.
Having solved these equations as a system we’ll find:

Xa=-287 N, Ya=6 N, Xs=216 N, Ys= 145 N.
Then reaction of pin joints will be:

R, = X2 +Y2 =/287% 162 =287,1(N),
Ry = X2+ Y2 =/216% +1452 = 260,2 (N).

We check the accuracy of the solution using the equilibrium condition for the
structure as a whole:

ZMC(E)=—YA/+P1%+ XBlcos60°—YBl+P2(l—ésin600):O.

After substituting the known values we’ll get zero in right side of the equa-

tion:

M (FE)=—6-1+40.-14+216-/cos60°—_145.1 +
> M. (F) !

I .
+40 - (I - Esm 60°)=0.
We have received identity that's why all reactions have been found correct-
Answer. R, =287,1(N),R, =260,2(N).
Sample problem 3.6

The compound structure is loaded by force F=3 kN and couple with mo-

ment M=8 N*m (Fig. 3.7, a). It is known that o = 30°, AB=BC=a (m).

Determine reaction of constraint A (I§A).
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1.

Fig. 3.7
Solution

Using method of section dismember the structure at point C onto two parts
DC and CA.
Form FBD for each part of the system (Fig. 3.7, b). The rod DC is under ac-

tion of applied couple with moment M, reactions X,,Y, and reactive mo-
ment M that are caused by clamped joint at the point D and reactions

—

XC,VC that are caused by pin joint at the point C. The rod CA is under ac-

—

tion of applied force F, reaction R, that is caused by sliding joint at the

point A, reactions of interaction with separated part DC X , \70' Here we
note that )?C = —)?é, \70 :—\70'.

Each part is under the action of general coplanar force system, so it is pos-
sible to form the three equilibrium conditions for each part. But as far as we

have to find only reaction in sliding joint A we write one equilibrium equation
for the rod AC:

> M,(F)=-F-a+R,-2-a-sina =0.
Having solved this equation we’ll find:
F 3
R, =

— = =3(kN).
2sina 2-0,5

Answer: R, = 3kN.
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Sample problem 3.7

Stepladder is on the smooth horizontal surface. It consists of the parts AC

and CB (AC=BC=3 m), has weight P=120 N of each part and is joined by pin C
and rope EF (EF is parallel to AB). Distances AE=BF=c=1 m. Centres of gravity
of the parts AC and CB are in their middles. At point D on a distance a=0,6 m a
man with weight G=720 kg stands. Parts of the stepladder are connected with
inextensible cord (Fig. 3.8, a).

1.

Determine reaction of the surface, pin joint and cord tensile load.

—

Fig. 3.8

Solution

Using method of section dismember the structure at point C onto two parts
AC and CB.
Form FBD for each part of the system (Fig. 3.8, b). The rod AC is under ac-

tion of weight P, reaction N, that is caused by horizontal surface, tensile

— —

load T and reactions X_,Y, that are caused by pin joint at the point C. The
rod CB is under action of weight P, applied force G as weight of a man, re-

—

action N, that is caused by horizontal surface, tensile load T and reactions
)?é, \70' of interaction with separated part AC. Here we note that
X, =-X.,Y, =Y.

Structure as a whole is under action of parallel coplanar force system so it is
possible to form two equilibrium conditions for the structure:
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S F,=N,+N;-2P -G =0;

S My(F,)= P%cos45°+ G -BDcos45° +

+P(BC +%)cos45°—NA (AC +BC)cos45°=0.

Each rod is under the action of general coplanar force system, so it is pos-
sible to form three equilibrium conditions for each part. Let’'s consider rod
AC:

SF.=T+X =0;
SF, =N, ~Y,~P=0;

ZMC =-N, oACcos45°+P-%cos45°+ToCEsin45° =0.

4. We have got five independent equations of equilibrium for the structure.
There are five unknown reactions that we have to find. So the problem is
statically determinate and can be solved by the methods of statics.

5. Having solved these equations as a system we’ll find:

Na =408 N, Ne=552 N, Xc=-522 N, Yc=288 N, T =522 N.

6. We check the accuracy of the solution using the equilibrium condition for the

rod CB:

M, = X -CDcos45°-Y; -CDcos45°—P-(C—B—CD)cos45°+
2

+Ng -BDcos45° T -DF cos45° =0.

After substituting the known values we’ll get zero in right side of the equa-
tion:

ZMD = —522-0,6cos45°—288-0,600345°—120-(%—0,6)00345%

+552-(3-0,6)cos45°-522-(3-0,6 —1)cos45° =0.
We have received identity that's why all reactions have been found cor-
rectly.
Answer: Na =408 N, Ns =552 N, Xc=-522 N, Yc=288 N, T = 522N.

Sample problem 3.8

Homogeneous rod AB with weight P is fixed with pin at point A and leans
on a cylinder C with radius r and weight Q=2P (Fig. 3.9, a). The cylinder is lo-
cated on a horizontal floor and contacts with vertical wall. It is known that
AB=3r, oo = 60°. Determine pressure forces of the bar on the pin A and the cyl-
inder on the horizontal surface if all the surfaces are smooth.
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1.

Fig. 3.9

Solution

According to Newton law about equality of action and counteraction the
pressure forces of rod AB on pin and cylinder on smooth surfaces of floor
and wall are equal to reactions of these constraints but have opposite direc-
tions. To find these reactions we use method of section. Dismember the
structure at point K onto two parts: rod AB and cylinder C.

Form FBD for each part of the system (Fig. 3.9, b). The rod AB is under ac-

tion of weight P, reactions X,,Y, that are caused by pinned joint and re-

action I§K ( I§K is perpendicular to AB) that is caused by cylinder pressure
at point K. The cylinder C is under action of weight Q, reactions ND,NE

—

that are caused by horizontal and vertical surfaces and reaction R, of in-

teraction with separated part AB. Here we note that I?K = —I-?,;

The rod AB is under action of general coplanar force system and the cylin-
der is under action of concurrent coplanar force system. We have not to find

—

reaction N, so it is possible to form one equilibrium condition for the cylin-

der.
For the cylinder:

> Fy=N,-R,sin-Q=0.
For the rod AB:
ZFKX =X,-R,cosp =0,

> F,=Y,—P+R,sinp =0,
ZMA(ﬁk):—P-izrcosw +R,-AK =0.
95



4. We have got four independent equations of equilibrium for the structure.
There are four unknown reactions that we have to find. So the problem is
statically determinate and can be solved by the methods of statics.

5. According to geometrical considerations 3=30°, triangle AKC is rectangular
and angle KAC is equal to 30°, then AK=r*ctan 30°. After substituting all
known values we’ll get:

X,-R,cos30 =0;
Y,-P+R,sin30° =0,

P 3_rcos 60° + R,r-ctg30° =0;
2

N, -R,sin30°-2P =0.
Having solved these equations as a system we’ll find:
Xa=0,375P N, YA=0,79P N, Np = 1,8 N.
Thus pressure of rod on the pin at point Ais X'a=-0,375P N, Y 'a=- 0,79P

N and pressure of the cylinder on the flooris Np =- 1,8 N.
Answer: X'a=-0,375P N, Y a=-0,79P N, Np=- 1,8 N.

Sample problem 3.9

Smooth rods AB and CD (Fig. 3.10, a) are fixed with pins at points A and
E correspondingly and adjoin at point C. The distances are known AB=CD=2l,
AE=CE=DE=I. Weight of homogeneous bar AB is equal to P, weight of load Q
is 2P. Determine angle ¥ in a position of equilibrium.




Solution

. Using method of section dismember the structure at point C into two parts
AB and CD.
. Form FBD for each part of the system (Fig. 3.10, b). The rod AB is under

action of weight P, reaction R, and reactions X,,Y, that are caused by
pin joint at the point A. The rod CD is under action of applied force Q as
weight of load, reactions X, Y that are caused by pin joint and reaction

—

ﬁé of interaction with separated part AB. Here we note that R, = —Iié

. The rods AB and CD are under action of general coplanar force system. To
find angle y itis sufficient to write only equations of moments for the rods. It

is evident that ACE is isosceles triangle so angle AEC is equal to 180°-2y:

ZMA =P.l-siny-2-1-R,-cosy =0;
> M. =R -l-cosy—-Q-I-sin(180—-2y)=0.

. We have got two independent equations of equilibrium. There are two un-
known values in previous system. So the problem is statically determinate.
. From the 15t equation:

Psiny

~ 2cosy

Re

Substituting it to the second one we'll get:

siny —4-2sinycosy =0,
siny(1-8cosy)=0.

This expression has two solutions:

siny =0, y,=0,
1

COSy = % y, =arccos— ~ 83".

|-

Answer: y =83".
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3.3. Solving problems as your own
Problem 3.1

A cylinder is supported by a bar
as shown in Fig. 3.11. The weight of
the cylinder is 500 N and the weight
of the bar is 100 N. If all surfaces are
smooth, determine the reactions at
supports A and B of the bar.

Fig. 3.11

Problem 3.2

7 A A cylinder is supported by a bar
‘ and cable as shown in Fig. 3.12. The
weight of the cylinder is 750 N and the
weight of the bar is 100 N. if all sur-
B faces are smooth, determine the reac-
tion at support C of the bar and ten-
sion T in the cable.

N

|
|

900 mm

[

/

Fig. 3.12
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Problem 3.3

A two-beam mechanism is
loaded and supported as shown in
Fig. 3.13. Determine:

a. The force F required to

hold the system in equi-
librium.

00N

700 mm

b. The tension in cable CD. R
c. The reaction at support %;

B.
d. The reaction at support
A.

700 mm

200 mm

Problem 3.4

The bar AD shown in Fig. 3.14

weighs 600 N. Determine:

a. The force exerted on the bar
by link CE and the forces ex-
erted on the bar at contact
points B and D. All surfaces
are smooth.

b. The reaction at support F of
the post.
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Problem 3.5

The frame of Fig. 3.15 has a distributed load of w=200 N/m applied to the
member CDE and a concentrated force P=200 N applied to the member ABC.

If a=100 mm, determine all forces acting on the member ABC.

W
< la ) [
r 0 /¢
A= 5
/D
S
| R
8a 4a
g e
A A
AN
Fig. 3.15

In the problems (3.6 — 3.10) in Figs. 3.16 — 3.20 compound structures are
shown. They consist of two rods loaded by concentrated forces, distributed
loads and couples with moments. Values of loads and geometrical parameters
are specified in each problem.

Consider two methods of joining of structure parts at point C: using pin or
sliding support a scheme of which is also shown. Determine at which method of
fixing the magnitude of specified reaction has the minimum value and for that

method of joining determine all reactions and internal forces at point C.
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Problem 3.6

Geometrical parameters:
a=3mb=08m,c=1m,d=1,2m, B =45°.
Loads:

P41 =20 kN, M2 =6 kN*m, g1 = 1 KN/m, q2 = 4 KN/m.
Examining reaction — Rs.

7
A [Mzz%\‘@
7. N\

:‘/ J 5
5 g C ad
L5 7 - nt
7
0 /
a b
Fig. 3.16
Problem 3.7

Geometrical parameters:
a=16mb=14m,c=3m,d=1m, a=180° 3 =90°.
Loads:

P1=2KkN, P2 =6kN, M1 =4 kKN*m, M2 = 10 kN*m, g1 = 6 KN/m.
Examining reaction — Ma.

3 [ o
a /07 4
emm i
TV =[(Unm ‘
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. =
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b | o4 5V
- R
Fig. 3.17

101



Problem 3.8

Geometrical parameters:
a=15m,b=15m,c=6m,d=2m, a=300° 3 =30°.
Loads:

P+ =10 kN, P2 =8 kN, M2 = 6 kKN*m, g1 =4 kN/m.
Examining reaction — Xa.

VanY

A
Bz

P F
2
S\ o
T
Fig. 3.18
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Problem 3.9

Geometrical parameters:
a=2m,b=15m,c=4m,d=2m, a=30°
Loads:
P+ =6 kN, P2 =20 kN, M = 12kN*m, g2 = 3 kN/m.
Examining reaction — Rg.

a+c

\ o[ ——
s (Y |
- & I
- D
L

Fig. 3.19
Problem 3.10

Geometrical parameters:
a=1mb=15m,c=3m,d=2m, =30°
Loads:

P+ =6 kN, P2 =10 kN, Ms =4 kKN*m, g2 = 3 kN/m.
Examining reaction — Ra.

Fig. 3.20
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3.4. Problems for independent decision

Problem 1. Determination of support reactions and internal forces in the
compound frame loaded by arbitrary system of forces in plane. Choice of opti-
mal at different method of connecting parts of the construction.

The compound frames are shown in Figs. 3.21 — 3.25. They consist of two
rods loaded by arbitrary system of concentrated forces (P., P.), distributed load
maximum intensity (qm.) and couple with moment (M) in a plane.

The lengths of the rod sections, the values of the concentrated forces (P,
P.), couple with moment (M) and distributed load maximum intensity (Qma), an-
gles of concentrated force application to rod (a, B) are shown in Table 3.2.

Consider two methods of joining of construction parts at point C: using pin
or sliding support a scheme of which is also shown.

Determine at which method of fixing the magnitude of specified reaction has
the minimum value and for that method of joining determine all reactions and
internal forces in the compound frame.

Table 3.2
Number of P4, P., M, Qmaxs o o | A b, c, Examining
a problem kN kN KN-m kNm | @ B M M M reaction

1 2 3 4 5 6 7 8 9 | 10 11
X.1 10 20 - 10 60 | 45 | 0,204 | 1,2 Ra
X.2 12 19 40 12 45 | 30 | 0,6 | 06 | 1,5 Rs
X.3 8 18 21 14 30 | 60 | 0,1 05]|0,9 Rc
X.4 6 17 22 16 60 | 45 | 0,3 | 0,7 | 1,2 Ra
X.5 15 16 23 18 45 | 30 | 0,2 |06 | 1,8 Re
X.6 50 15 24 20 30 | 60 | 04 08|12 Rec
X7 14 10 25 22 60 | 45 | 0,709 |15 Ra
X.8 18 14 26 24 45 | 30 | 05|08 | 1,8 Rs
X.9 11 13 27 26 30 | 60 | 0,104 |09 Rc
X.10 16 12 28 28 60 | 45 | 0,8 1,220 Ra
X.11 22 11 29 30 45 | 30 | 0,310,512 Rs
X.12 24 9 30 29 30 | 60 | 04|06 |18 Rc
X.13 25 8 11 27 60 | 45 |04 (0,8 | 1,6 Ra
X.14 26 7 12 25 45 | 30 | 050,724 Rs
X.15 27 5 13 23 30 | 60 | 0,10,3]|1,0 Rc
X.16 28 4 14 21 60 | 45 | 0,1 0,4 | 1,2 Ra
X7 5 3 15 19 45 | 30 (0,809 |16 Rs
X.18 7 21 16 17 30 | 60 | 0,7 109 |12 Rc
X.19 9 22 17 15 60 | 45 | 0,2 0,5|0,8 Ra
X.20 13 23 18 13 45 | 30 | 0,2 |0,3|0,8 Rs
X.21 21 24 19 11 30 | 60 | 05|06 |14 Rc
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Ending of Table 3.2

Number of P4, P., M, a1, o o | a | b, | c Examining
a problem kN kN KN-m kNim | @ B M M M reaction
1 2 3 4 5 6 7 8 9 | 10 11
X.22 29 25 20 9 60 | 45 | 0,104 | 1,2 Ra
X.23 30 26 3 7 45 | 30 [ 0,7 |10 1,4 Rs
X.24 17 27 4 5 30 | 60 |10]12]|1,6 Rc
X.25 19 28 5 32 60 | 45 | 1014 |18 Ra
X.26 20 29 6 33 45 | 30 | 0,6 | 0,8 | 0,9 Rs
X.27 30 32 7 34 30 | 60 | 0,3 0,720 Rc
X.28 32 30 8 35 60 | 45 | 10|16 | 1,8 Ra
X.29 33 31 9 36 45 | 30 | 04 |05 0,9 Rs
X.30 34 35 10 37 30 | 60 |0,2|05]| 1,4 Rc

Fig. 3.21

105




1)

l

Cjmax

Fig. 3.22

106



[ 1 1)

B

-~

Fr
L2

™

J b | bz

==}

Fig. 3.23

107



rrrirggt PN
I Q’qfﬂgl('\ N - /é,@ll |
27 ! M . 28 il |

vy P2 il | — M
L%A Q BJ A Tl CB%

I & y I

— f P
Fig. 3.24

108




(nax

: !
~ — [ R ARARERYS
A N N
!
2 N " 30 FDrv .
{fmax 5 \,aij ,@
A prarrytfy A X By
o — B S - ’ . ” M é
| - '*E%‘ \ - || 7z
s = |
Fig. 3.25
3.5. Questions for self-testing

1.  What systems are called compound structures?

2. Give examples of compound structures in which bodies are joined by
pins and show forces of interaction between parts of these struc-
tures.

3. What directions do forces of interaction have if bodies in the system
each other with smooth surfaces?

4. What are directions of forces of interactions between two contacting
smooth bodies?

5. What forces are called external with respect to compound struc-
tures?

6. What forces are called internal with respect to compound structures?

7. What is a main property of internal forces?

8. Can internal forces be called mutually equilibrated?

9. What is statics task in problems on equilibrium of rigid bodies sys-
tem?

10. What is method of section?

11. What is a purpose of the section method?

12. Why can not internal forces be determined from equilibrium equa-
tions formed for the system as a whole?

13. How many equations of equilibrium can be written in two-dimensional
case for the system of N bodies?

14. How can coordinate axes and moment points be rationally chosen for
forming equilibrium equations?

15. Write equilibrium equations for a structure under the action of

a) coplanar parallel or b) coplanar concurrent system of forces.
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4. GENERAL THREE DIMENSIONAL FORCE SYSTEM EQUILIBRIUM
4.1. Main information from the theoretical course

General three-dimensional force system. The sufficient and necessary
conditions for the equilibrium of the rigid body under the action of general three-
dimensional force system are expressed by the following six scalar equations

Zka =0, ZFyk =0, Zsz =0;
k=1 k=1 k=1

M (F.)=0, ZMy(ﬁk)z 0, Y M,(F,)=0.
k=1 k=1

n
k=1

It means that for rigid body complete equilibrium the algebraic sums of
the forces projections on three noncoplanar axes must be equal zero and the
algebraic sums of the moments of forces about the axes must be equal zero.

Concurrent three-dimensional force system. A rigid body under the
action of three-dimensional forces all concurrent at the point is at the state of
equilibrium if the algebraic sums of the forces projections on three noncoplanar

axes are zero
n n n
Zka:Q ZFyKZO’ Zsz:O.
k=1 k=1 k=1

Parallel three-dimensional force system. A rigid body under the action
of parallel three-dimensional forces is at the state of equilibrium if the algebraic
sum of the forces projections on the axis parallel to the forces is zero and the
algebraic sums of the moments of forces about other two axes are zero.

If forces are parallel to the axis Ox (Ifk H Ox) then equilibrium conditions
are

ZkaZO’ZMy(IEk):07 ZMZ(IEk)ZO
k=1 k=1 k=1

Projection of force F ona plane (Fig. 4.1, a) is vector quantity that can
be defined as:

F,

where « is angle between the force and its projection on the plane XOY.

= ‘F‘-cosa,

There are two ways of determination of force F moment about an axis.
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The first. The moment of force F about the given axis may be obtained in
the following three steps:
1. project the force into a plane that is perpendicular to the axis, as result we

get the vector Fo (Fig. 4.1, b);

2.  determine the arm h (see Fig. 4.1, b) of the projection F, with respect to
the point of axis and plane intersection, the arm h is the shortest distance
between the projection line of action and the point;

3. calculate the moment of the force about the axis as positive or negative
product of the magnitude of force projection and arm

M,(F)=+F_h.
The cases when axial moment of force is equal to zero may be determined with
the help of formula: M, (F)= +F h=0:
— F_ =0 in the case when the force and the axis are parallel;

Fig. 4.1

— h =0 in the case when the force line of action crosses the point O, i.e.
the line intersects the axis.
Evidently, both cases may be combined: an axial moment of a force is
equal to zero if the force and the axis are in the same plane.
The second. The scalar magnitudes of force moments about the coordi-
nate axes may be determined by the following formulas

Mo, (F)=y-F,-z-F,
Mo, (F)=z-F,-zF,
MOZ(IE):X'Fy_Y'Fx,

111



where X, ¥,z are coordinates of any point on the force line of action, F,,F, -F,

are force scalar components.

Reactions of constraints (supports and connections)
for three-dimensional structures

Now let us consider some constraints for three-dimensional analysis
(Table 4.1) and show their reaction lines of actions, supposing that contacting
surfaces are smooth enough to neglect friction completely.

The algorithm of three-dimensional problem solution is the same with the
two-dimensional case (see paragraph 2). A problem on equilibrium of single
body under the action of three-dimensional force system is statically determi-
nate if the number of unknowns is no more than six.

4.2. Solution of problems
Sample problem 4.1
Z

Force F1=16 N acts along the diag-
e onal of the cube upper face, a force F, =
4—/-"/&'!#;7 10 N acts parallel to axis Ox along the
Fi 7 edge of the cube lower face (Fig. 4.2).

Cube edge size is a = 0,75 m.

Determine the forces moments
about coordinate axes.

& R : . Solution
. e

% - T Let's consider moments of the first
force. To determine the moment of the
first force about the axis Ox it is neces-

. sary to project the force onto the plane
Fig. 4.2 that is perpendicular to the axis Ox (plane
yOz)

F, 0, = F;8in45".
The vector of projection FIyOz is acted along the cube edge DE in posi-

tive direction of the axis Oy, so the shortest distance between the projection
F, yoz and the point O is a. The moment of the projection is

M, (F, ,0,) = —F, 0, = —F,sin45°a=-16-0,7-0,75 = 8,5 (N - m).
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Table 4.1

Reactions at supports and connections for the three-dimensional structure

Support or connections

Reactions

Number of un-
known

Explanations

Fixed
support

)

Rz
Mz

Rx

My
Ry

6 | Three force
components
and three
couples

This constraint
restricts all six
motions of
beam end A:
linear dis-
placement

along the axes
X, Y, z, and rota-
tions about
these axes

Ball-and-
socket
joint and
footstep
bearing

Rz

Rx

3 | Three force
components

This constraint
restricts the
three linear dis-
placement  of
the center of
the ball




vil

Ending of Table 4.1

Thrust
bearing
support

N

Rx

Rz

Ry

Three force
compo-
nents

Properly aligned
pairs of bear-
ings restrict all
displacements
of the points on
the axis of the
shaft

Hinge and
bearing
support

Bearing supports

Raz

Ray

Rsz

Rey

Two force
compo-
nents

Properly aligned
pairs of bear-
ings (hinges)
restrict the dis-
placements  of
the points on
the axis of the
shaft in the di-
rections per-
pendicular to
the axis of the
bearings (hing-
es)




To determine the moment of the first force about the axis Oy it is neces-
sary to project the force onto the plane that is perpendicular to the axis Oy
(plane x0Oz)

F, o, =F,sin45".

The vector of projection IEI is acted along the cube edge DG in nega-

xOz
tive direction of the axis Ox, so the shortest distance between the projection

F, yoz and the point O is a. The moment of the projection is

M, (F,0,) = —F, 0,8 = F,sin45°a=-16-0,7-0,75=-8,5(N - m).

To determine the moment of the first force about the axis Oz it is neces-
sary to project the force onto the plane that is perpendicular to the axis Oz, but
the force is situated in the cube face that is perpendicular to the axis Oz, so we
need to determine the shortest distance between the force line of action and
point D only (DK)

M,(F,)=F,-DK =F, -asin45° =16-0,7-0,75 = 8,5 (Nm).
The scalar components of the first force moment can be determined by
equations

xOz

e

Mo (F)=yF.-2-F,

e

M, (F)=z-F -z-F,

e

M. (F)=x-F,~y-F.

It is necessary to specify the coordinates of any point on the force line of
action. The force is applied at the point G (a, 0, a), the force scalar components
are the following:

F,, =-F,sin45° =-16-0.7 =—11.2 N,

F,, =F,sin45° =16 -0.7 =11.2 N, F,=0N.
Then
M, (F, )=ysF, —2gF, =0-0-0.75-11.2=—=8.5 (Nm),

M,(F, )=2zsF, — XgF,, =0.75 (= 11.2)- 0.75-0 = —8.5 (Nm),

M,(F, )= xgF,, —ysFx =0.75-11/2-0-11.2 = 8.5 (Nm).

Moments of the second force.

The second force is situated in the plane xOy, so the moments of the
force about the axes Ox and Oy are zero.

The force is in the plane that is perpendicular to the axis Oz, the arm of
the force with respect to the axis Oz is a
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M,(F,)=-F,a=—-10-0,75=—-7,5 (Nm).
Answer: My (F,)=(-8.5, 8.5, 8.5)Nm, My (F,) =(0,0, - 7.5) Nm

Sample problem 4.2

A winch supported by bearings A and B holds the 1-kN load Q in the po-
sition shown in Fig. 4.3, a. A cable is tangent to the drum r = 0.05 m and forms
the angle o = 60° with the horizontal plane. Length of the handle KD is 0.4 m,
AD=0.3m,AC=04m,CB=0.6m.

Determine the reactions at A and B and force P that balances the system
in the position shown ( the handle KD is in horizontal plane).

T

Fig. 4.3

Solution

1.  FBD (Fig. 4.3, b). The winch is at the state of equilibrium. Applied forces
are unknown force P and tension T that is equal to the weight Q of the load if
we neglect friction in the block. Motion of the winch is restricted by two bearings

so reactions are the following: two forces at the bearing A X A ZA and two

forces XB, ZB at the bearing B. The force system acting on the winch is gen-
eral tree-dimensional. Let us choose coordinate system Axyz, axis Ay coincides
with the axis of winch.

2. Problem is statically determinate because we have five unknown forces
and we can write six independent equation of equilibrium for the winch.
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3. Let us write the equilibrium equations. It is useful to project the forces on-
to the coordinate planes and reduce the three-dimensional problem to the set

of two-dimensional problems.
From the xAy projection (Fig. 4.4, a) we get the equations

R,=>F.=0 R, =>F, =0 and ZMZ(IEk): 0 (the axis Az is perpen-
dicular to the xAy coordinate plane, so the projections of the forces onto this
plane form the moments about axis Az):

Ry =Y Fy=X,+Xg+Q-cosa =0,
R, =Y Fy =0;
S M,(F,)=-X,-AB-Q-cosa - AC =0.

Z
f A Q=Qsin60°
P zgé H Zé.=‘-.
. LY
D A H C °B
K d
i 1Q=Qsin60° .
D A Ch B Ty
N
xﬁq? B ¥ x
A
Fig. 4.4

Using the yAz projection (Fig. 4.4, b) we get the equations
R,=> F, =0 and ZMX(IEk): 0 (the axis Ax is perpendicular to the yAz
coordinate plane, so the projections of the forces onto this plane form the mo-

ments about axis Ax):
R.=>F, =Z,+Z,-P+Q-sina=0,
S M (F,)=2,-4B+Q-sina-AC+P-AD =0
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To write the last equation ZMy(IEk):0 we use the xAz projection
(Fig. 4.4,c)
SM,(F)=Q-r-P-KD=0.

Putting the known values and solving the system of the five equations we
get
P=125H, Xa=-300 H, Zr»=-357 H, X =-200 H, Zs=-384 H.
The negative signs associated with the A and B components indicate that
they are in the opposite direction to those shown on the FBD.

Sample problem 4.3

The rectangular plate ABCD of uniform thickness shown in Fig 4.5, has
weight G = 120 N is mounted on horizontal surface by hinges at A and B and is
supported by pined joint link DE, AD =DE .a = 60".

Determine reactions at the supports A, B and link DE.

Fig. 4.5

Solution

1. FBD (Fig. 4.5, b). The plate ABCD is at the state of equilibrium. Applied

force is weight G. Motion of the plate is restricted by two hinges and by
pined joint link so reactions are the following: two forces at the point A
X4, Z,, forces Xg, Zg at the point B and reaction of the link DE S. The
force system acting on the plate is general tree-dimensional. Let us choose
coordinate system Axyz, the axis Ay coincides with the side AB.
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2. Problem is statically determinated because we have five unknown forces
and we can write six independent equation of equilibrium for the winch.
3. Let us write the equilibrium equations. It is useful to note that the triangle

ADE is right-anged and situated in xAz plane, so moments of the force S
about axes Ax and Az are zero.

(>F, =X +X,—S-cos60" =0;

126
Y F, :ZA+ZB—G+S-sin6O° =0;

ZMX(Fk):ZB°/_G°é:O;

<ZM =G- TD cos60°—S-AD-cos30° =0;

> M, (F 1=0.

After problem solution we get Xg = 0, Zg = 60 N, Xa= 17,3 N, Za= 30 N,
S=345N.

Sample problem 4.4

The rectangular plate ABCD of uniform thickness shown in Fig. 4.6, it has
weight G = 200 N is mounted in horizontal plane by hinge at B, ball-and-socket

joint at A and cord CE fixed at the point E, a = 60" =30,
Determine reactions at the supports A, B and tension in cord CE.




Solution

FBD (Fig. 4.6,b). The plate ABCD is at the state of equilibrium. Applied

force is weight G only. Motion of the plate is restricted by hinge at B, ball-
and-socket joint at A and cord CE fixed at the point E so reactions are the

— —

following: two forces at the point B X, Z,,, tree forces X,,Y,,Z, at the

point B and the reaction of the cord CE T. The force system acting on the
plate is general tree-dimensional. Let us choose the coordinate system
Axyz, the axis Ay coincides with the side AB.

Problem is statically determinated because we have six unknown forces
and we can write six independent equations of equilibrium for the winch.
Let us write the equilibrium equations.

(>F. =X,+X,-T-cosasin 8 =0,
SYF =Y, —-T-cosacosf =0;
YF, =Z,+7Z,-G+T-sina=0;

3 M(F,)= —ZBAB—G%JrTSinaAB =0,
3 M, (F,) = G%—Tsina .BC =0,
> M,(F,)=-X,AB=0.

After problem solution we get Xe =0, Zs =0, Za= 100 N, Ya= 150 N,

Xa=86,6 N, T=200N.

Sample problem 4.5

The square plate ABCD of uniform thickness shown in Fig 4.7, a is

mounted in horizontal plane by six links. A force P acts on the plate.

Determine reactions at the links.
Solution

FBD (Fig. 4.7, b). The plate ABCD is at the state of equilibrium. Applied

force is P only. Plate motion is restricted by links so reactions are é,,i =1 ..6,

reactions are directed along the corresponding links. The force system acting
on the plate is general tree-dimensional. Let us choose the coordinate system
Dxyz, the axis Dx coincides with the side DA, the axis Dy coincides with the
side DC.
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Fig. 4.7

2. Problem is statically determinated because we have six unknown forces
and we can write six independent equations of equilibrium for the winch.
3. Let us write the equilibrium equations:

V2
ZFXK 2847—P:O;

\/§+S5\/§:O;
2 2
ZFZk:S1+82g+83+86+85g+81g

> M, (F)= —S6a—85ga =0;

> M, (F)= —83a+84§a = 0;

—S4ga+85ga =0.

ZFYK :Sz

[]
=
B
T
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After problem solution we get

S,=P, S,=-S,=-PJ2, §,=-P, S,=PJ2, S,=-P.

4.3. Solving problems as your own

In the following problems rigid bodies under the action of three-dimensional
force system are shown in Figs. 4.8 — 4.10. Values of loads and geometrical
parameters are specified in sketch and table for each problem.

Determine reactions at supports.

Problem 4.1
Dimensions Loads
£8
©
- £ a, bs C, ds r, o o P’
gg m m m m a B° | Q,kH | N,kH | G, kH kH
17104 | 03|08 | 05| 03| 45 | 60 4 6 12 ?
21 03| 0,2 | 06 | 04| 0,2 | 60 | 45 30 4 10 ?
31051021 03] 041 0,1 90 | 30 10 8 5 ?
7=y y
Q B B
Z
- 7 -_
r d
P
i ! 520,5"
) N, P and Q LA
’%b
A/;/ < d = a X
Fig. 4.8
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Problem 4.2

o Dimensions Loads
€9 o
©
:E a, b; C, ds r, o o 3
gg m m m m a B° |Q,kH | N,kH | T, kH «H

17105 |06 | 03] 0,2 | 01 0 60 10 8 4 ?
21 0305|0402 | 02| 45| 30 12 10 10 ?
3/ 04|06 |04 )] 03| 0,21 30| 45 5 5 15 ?
z
P and Q LA,
NLA,
A y
b
7
Fig. 4.9
Problem 4.3
Dimensions Loads
= O
€ o a b c d r P
m L L L L ) [e) (o) L
%:Es m m m m a B Q,kH | N,kH | T,xkH kH
> ¢
1

0306 |04 08|02
2, 05,04 03|06 |03
31040504 03] 01

0=0,2r
P and Q J_Ay

Fig. 4.10



4.4. Problems for independent decision

Problem 1. Determination of support reactions in the solid body loaded by
arbitrary system of forces in space.

The solid bodies are shown in Figs. 4.11 — 4.16. They are loaded by arbi-
trary system of forces in space. The body axis is a straight line.

The lengths of the rod sections, the values of the forces (Q, F, G) and an-
gles (a, B) are shown in Table 4.2. Determine the reactions in supports of the
body which is loaded with such system of forces.

Table 4.2

Z%T:;Ire:: S\l : SN a, M bbm| ecmM| rnm| a B°
1 2 3 4 5 6 7 8 9 10
XA 10 2 - 0,6 04 | 0,2 | 0,2 | 45 30
X.2 20 6 - 0,7 05| 04 | 0,2 | 45 60
X.3 25 4 - 0,8 0,6 | 0,6 | 0,2 |30 45
X.4 30 8 - 0,9 0,7 | 0,5 | 0,2 | 60 45
X.5 35 10 - 1,0 08 | 0,5 | 0,2 | 30 30
X.6 40 12 - 1,2 09 | 0,6 | 0,1 60 60
X.7 45 1,4 - 1,4 0,8 | 0,6 | 0,1 45 45
X.8 50 16 - 1,6 06 | 0,7 | 0,1 60 30
X.9 55 18 - 1,8 051 03 | 0,1 30 60
X.10 60 20 - 2,0 08 | 04 | 0,1 45 60
X.11 2 3 5 0,8 0,6 | 0,4 - 45 30
X.12 4 8 5 0,6 04 | 01 - 60 30
X113 6 12 5 0,9 0,3 | 0,5 - 30 60
X.14 8 20 4 1,2 1,0 | 0,8 - 30 45
X.15 10 5 4 1,4 1,0 | 0,5 - 60 45
X.16 12 6 4 1,0 0,6 | 0,3 - 45 60
X7 14 15 10 1,2 0,5 | 0,8 - 30 60
X.18 16 20 10 1,2 04 | 0,6 - 60 30
X.19 18 8 10 0,8 0,2 | 0,6 - 45 30
X.20 20 14 8 0,7 05 | 09 - 45 45
X.21 14 6 8 0,9 04 | 0,6 - 30 60
X.22 12 3 14 1,0 0,6 | 0,5 - 30 45
X.23 50 20 40 1,0 0,7 | 0,6 - 60 45
X. 24 10 15 25 0,8 0,2 | 0,6 - 45 60
X.25 5 10 18 0,6 0,1 0,4 - 60 60
X.26 40 16 24 0,7 0,3 1,0 - 30 30
X.27 30 10 20 1,2 0,8 | 0,6 - 45 30
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Ending of Table 4.2

Z%T:&re:: S\l :N SN aam bm|e,m|rnm| o B°
1 2 3 4 5 6 7 8 9 10

X 28 24 12 6 1,4 1,0 | 0,8 - 30 45
X.29 10 15 30 0,9 0,5 | 0,7 - 60 30
X.30 6 18 10 1,2 0,3 | 1,0 - 60 45
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4.5. Questions for self-testing

Write the equilibrium equations of general three-dimensional force
system in vector form and their scalar components.

How many independent equilibrium equations of three-dimensional
concurrent force system can be written?

How many independent equilibrium equations of three-dimensional
parallel force system can be written?

Definition of a force moment about an axis.

Describe the two ways to computing of a force moment about an ax-
is?

Describe the conditions under which a force moment about an axis is
zero?

Write the equations for computation of force moments about the co-
ordinate axes.

Describe the algorithm for determination of supports reactions that
act on a body under the three-dimensional force system?
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5. REDUCING OF FORCE SYSTEM TO THE SIMPLEST FORM

5.1. Main information from the theoretical course

Let us consider force system (Fz, IEz,..., I_fn )
The vector sum of the system forces is called total vector
— — — — n _,
F=F1+F2+...+Fn=ZFk. (5.1)
k=1

Projecting left and right parts of the expressions (5.1) onto the axes of
Cartesian rectangular coordinate system with origin in the center O we obtain

the expressions for the components of the system total vector F

F=YF,
F = iFkr, [ (5.2)
F=YF.

The total vector magnitude is determined by next expression

n 2 n ? n ?
FeJEeR R = (3R (3R ) 4 [BR) . e
k=1 k=1 k=1

Its direction is determined with help of direction cosines

cos(IE, 7): % cos(IE, ]):% cos(IE, E):%, (5.4)

where (F, 7) (ﬁ, ]) (IE, E) are the angles between the total vector direction
an positive x, y, z direction.

The moment of the force F about the point is vector with magnitude
determined as a product of force magnitude and the shortest distance between
the point and the force line of action. The vector of moment is directed along
perpendicular to the plane formed by the point and force and points in such
way that rotation of the force about the point is viewed anti-clockwise from the
end of the vector.

The magnitude and the direction of the vector moment are completely de-
fined from the relation:

W, (F) =7 xF,
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where r is vector position from center O on force point of application (Fig. 5.1).

Fig. 5.1

The magnitude of moment by cross product definition is equal to
M,y (F)=r-F-sina=F-h,
where h is the shortest distance between the point and the force line of action
“an arm”). Vector position, force and moment form “right-hand system”.
The projection I\7IO on axis through the point O is called axial moment.
For example,
M, (F)=np, My = M, cos 3,
where f is angle between axis and vector moment (see Fig. 5.1).
If you know the forces projections on coordinate axes F,,F,,F, and coor-
dinates of any point on force line of action x, y, z, the moment of the force
about the point can be computed using the law of vector product:

i j k
A?IO(IE):FXIE:: Ii_/ If :T(yFZ—sz)+]'(zFX—xFZ)+
X y z

+E(xFy—ny).
Then
M =y-F,-z.FM =z-Fx-x-F,M,=x-F,-y-F,

where My is the moment of force F with respect to coordinate axes.
The vector sum of moments of forces about the given center is called the
total moment about the center O

132



_ n __, ., n _ .
Mo = Y Mo(F)= > rk xFi, (5.5)
k=1 k=1
where r« is vector position of the force F« with respect to the center O.

Projecting left and right parts of the expression (5.5) onto the axes of Car-
tesian rectangular coordinate system with origin in the center O we obtain the

expressions for the components of the system total vector Mo:

M,, = ZMOX (Fx)

~~

M, = kZ:MOV (Fr) (5.6)

M,, = kzz;/\/loz (Fe)

In the same manner magnitude and direction of the system (131, 132,..., f?n)

P

total moment Mo about center O can be determined
Mo = M, + M3, +MS,, (5.7)
Mo
M

—_— —

cos(ﬁo, 7): MA;X , cos(Mo, j)= MA;y, cos(m, E):

z  (5.8)

wherein M, , M, , M, _ are given by expressions (5.6).
Ox Oy Oz

Any general force system applied to a rigid body can be reduced to an
equivalent force-couple system acting at the chosen center O. The force is
equal to the total vector. The couple has vector moment equal to the total mo-
ment of the original force system about chosen center O.

The magnitude and direction of the total vector are independent of the re-
duction position center. The magnitude and direction of the total moment vary
with changing of the reduction position center.

There are several special opportunities of the force system reducing de-

pending on magnitude and mutual orientation of R and I\7lo (Table 5.1).

It is important to note that resultant of the force system and the total vec-
tor are no equivalent notion although they are determined by the same equa-
tion.

Some value is called invariant with respect to the some parameter (argu-
ment) if the value does not vary when the parameter changes.

133



Stated above the total vector does not change when the center of reduc-
tion changes its position. So the total vector is invariant with respect to the cen-
ter of the reduction position.

Table 5.1
Total vector, total The simplest equivalent force system
moment
F =0: ,\7]0 —0 Balanced force system
F # 0, I\7IO =0 The resultant R =F passing through
the chosen center of reduction O.
F+0;, M,#0;, FL1M, The resultant R = F with the line of ac-
tion determined by the equation
M, (R) = Mo,
F=0; M,=0; FLM,  Thewrench
F — 0; ,\7]0 =0 The couple

The total vector magnitude is called the first statics invariant
— n —
/1:‘/:0‘: > Fu =\/F02 +F2 +F2. (5.9)
X y z
k=1

The dot product of the total vector and the total moment is called the sec-
ond statics invariant:

l,=F,-M,. (5.10)
5.2. Solution of problems

Sample problem 5.1

y The force F=420 N applied at the point A is sit-
uated in XOY plane (Fig. 5.2).

\?‘\ Determine the moment of force about the
OINGA point O, if x, =0,2m,y, =0,3m,a = 30°.

Fig. 5.2

Solution
In a common case

M, =7(yFZ —sz)+]'(zFx —xFZ)+R(xFy —yFX).
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Because the force lies in XOY plane its projection on z-axis and coordi-
nate z are equal to zero (F, =0,z =0). That's why we can simplify the previ-

ous formula

—

M, =k (xF, - yF,),
where
F, =-Fcosa =-420-0,85=-357 (N),
F, = Fsina =420-0,5=210(N).
Thus
M,|=|x-F, -y -F,|=[0,2-210-0,3-(~357)| = 149,1(N - m).

Sample problem 5.2

Total vector R (0; 3; 4) (N) and total moment Mo (2; -1; 2) (N-m) of a sys-
tem applied to a rigid body are known. Determine the simplest system equiva-
lent to the given one.

Solution

Scalar components of the system total vector and total moment are:
F,=0,F, =3,F, =4;
My, =2,M,, =1, M,, =2.
Magnitudes of total vector and total moment are:
F=\F2+F?+F? =3? +4? =5(N);

M, = My, 2 + M2, + M?,, =J2* + 1 +22 =3(N-m).

Total vector and total moment are not equal to zero. Using the feature
that dot product of two nonzero vectors is zero if they are mutually perpendicu-
lar we can check the orthogonality of the total vector and total moment (second
statics invariant):

F-My,=FM,, +FM, +FM,=0-2+3-(-1)+4-2=5.
So the total vector is perpendicular to the total moment about the center.
As faras F#0,M, =0, FL MO we can make a conclusion that system
of forces is reduced to a wrench.
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Sample problem 5.3

Couples of forces with moments Ms=M>=M3=2 N-m are acted on a cube
(Fig. 5.3). Determine the magnitude of couple resultant.

Solution

As far as the magnitude of couple
resultantis M, = \/MXZ + My2 +M7?,we de-

termine scalar components of the system total
moment:

M, =M, =M, =2(N-m);
M, =M, =M,=2(N-m);
M,=>M, =M, =2(N-m).

Fig. 5.3

Then M, =V2* +22 +22 =2J/3 (N-m).

Sample problem 5.4

Forces F1=F2=F3=F4=F (N) are applied at the following points of the
cube: A (along the diagonal AC), H (along the edge HF), B (along the diagonal
BE), D (B (along the diagonal DG) respectively (Fig. 5.4).

Reduce the system to an equivalent force-couple system at the center A.
Determine the simplest system equivalent to the given one.

| <




Solution

Determine the scalar components of the system total vector and the sys-
tem total moment about the point A:

F =iF, + jF, + kF,;
M, =iM, + jM, + kM,.
Scalar components of the system total vector are:
Fx:Zka:_ \/2_ P£_O
F, =Y F, */_ \/2_ */2_ */_ =PJ2 (N

F,=>F,=P, */_ P£—Px/—(N)

The total vector is situated in the plane zAy, the total vector magnitude is
— 2 2
| F |= \/(P\/E) +(PJ§) =2P (N).

The scalar components of the system total moment about the point A are:

-y, (F)--P Laip L2

+P,—a=0;
2

M, =ZMy(IEk):—P2%a—P4%a:—Pa\/?;

=ZM2(ﬁk)=P2%a+P4%a=Pa\/§.

The total moment magnitude is

M, = \/(Pﬁa)z +(Pv2a) =2Pa(N-m).

It is obviously that the total moment is situated in the plane zAy too.
Using the feature that dot product of two non-zero vectors is zero if they

are mutually perpendicular we can check the orthogonality of the total vector
and the total moment

—

F-M,=FM,+FM, +FM = 0-0+(PJ§)(—PaJ§)+(PJ§)x
x(Pa\/§)=

So the total vector is perpendicular to the total moment about the center A.

137



We have thus found that F =0, I\7lA #0 u IEJ_I\7IO, so the original

force system can be reduced further to a resultant. The resultant is parallel to
the total vector and is at a distance d of the total vector

M, Pay2

R P2
The procedure of drawing of the resultant is
the following: the plane II perpendicular to the
total moment must be drawn at the point A, in the
plane II total vector must be moved to another
line of action that is away from the initial center A
at the distance a, the direction of moving is such
that the vector of the system total moment and

B _  the vector moment of resultant R with respect to

Y the initial center of reduction have the same
sense. We obtain that the resultant is applied at
the point D and directed along the diagonal DG
(Fig. 5.5).

a.

N

m
-

Fig. 5.5

Sample problem 5.5

Force system is reduced to total vector F (0; 3; 4) and total moment Mo
(0; 4; 0) about an origin. Determine angle y between these vectors.

Solution

Dot product of vectors can be represented in the following view:
F-M,=F-M,-cosy.
At the same time:
F-M,=FM,+FM, +FM,.

Then
FM, + FyMy +F,M,

F-M, '
Let’s find magnitudes of total vector and total moment:

F=\F2+F+F2 =3 +4% =5(N);

M, = JM? + M2 + M? =42 =4 (N -m).

CoSy =
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Finally we have got:

0-0+3-4+4.0 3
CoOSy = 52 =5

y =arccos(0,6) =53,13°.

Sample problem 5.6

Forces P1=P2=P3=P act along the edges
of parallelepiped (Fig. 5.6). Length of parallel-
epiped sides are a, b, c. Determine projections
of total vector and total moment on axes.

Solution
According to geometrical considerations:

c
Vb% +¢?

Sino = ,COSoL =

b
N

Determine scalar components of the system total vector:

b

Jb? +¢%

F,=>P,=P,=P;

) C
FZ:ZPZk:PI_P:;SIna:P£1_WJ.

Determine scalar components of the system total moment:
M,=> M, (P )=-Pc—-P,sina-a=P(c-asina);

M,=>M,(P)=-Pb+P,cosa-c=P(c-cosa—b);
M,=>M,(P,)=Pb-P,cosa-a=P(b-acosa).

F,=> Py=P,cosa=P
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5.3. Solving problems as your own

In the following problems determine total vector and total moment of the
given force system about center O. Ascertain the simplest system equivalent to

the given one. Dimensions of parallelepiped and magnitudes of forces
are given.

0 K Problem 5.1
|17, J
t
|
r W a=20sm; b=10 sm; ¢c =20 sm.
Al 5 Pi = 20 N; P2 = 30 N; Ps = 20 N;
? P4 =30 N (Fig. 5.7).
0 - LY _ y
I
A //7 B, ©
P I,
//
Fig. 5.7
AZ Problem 5.2
J 4/04/( a = 20 sm; b = 40 sm;
| 4 ¢ =30 sm.
£l - F P1=8N; P2=12N; P3 = 20
| N v N; P4 = 16 N (Fig. 5.8).
| /
v ‘
PYO” I y
/ B
A 7 o
ans -
Fig. 5.8
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Problem 5.3

a=8sm;b=8sm;c=6sm.

P1=6N; P2=20N;Ps= 10 N; P4 = 8 N (Fig. 5.9).

4
i
0, F K
| ]
| r
| | v
dRN p
0 /______j_QL*y
Pl 7
AL 5l
V4
X
Fig. 5.9
Problem 5.4

a=40sm; b=20sm;c=20sm.
P1=8N; P2=8N; P3=8N (Fig. 5.10).

Z
)
N
CEEN
3 L ENP |
|
O | N1y
///07
/
A~ g
g .

Fig. 5.10
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Problem 5.5

a=40sm;b=5sm;c=8sm.
P1=40 N; P2=30 N (Fig. 5.11).

Z
h -
P W
o lcr_,
/S
£/ F/ "
AR\
45
X’JL
Fig. 5.11

Problem 5.6

a=80sm; b=20sm;c=40sm.
P1=15N; P2=10N; P3=15N; P4 =10 N (Fig. 5.12).

£
Ah K
| |
|
|
2/ ~
£ 7
)»0__[ 1>}/
Vs
/D7 // /D i\
A7 8l
b
Fig. 5.12



Problem 5.7

a=60sm; b=30sm;c=30sm.
P1=6 N; P2=10N; P3 =20 N (Fig. 5.13).

7
ok K
NS
CF/
£ |
0 P \C 7
/s 7/
/ // B &
X/ b
Fig. 5.13

Problem 5.8

a=30sm;b=15sm; c=20sm.
P1=30N; P2=40N; P3=10N; P4 =32 N (Fig. 5.14).

Z
[N il
@ A
/
[ iF /g
P
I/D /Dg
/i Y A I Ny
//\\
A// O
e
Fig. 5.14
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Problem 5.9

a=20sm;b=15sm; c =20 sm.
P1=40 N; P2=20N; P3 =16 N (Fig. 5.15).

Z
A
Vi K
3
|
£ | FoP
|
|
|
|
|
/B R
//
AP B
A
Fig. 5.15
Problem 5.10
a=40sm;b=15sm;c=15sm.
P1=40 N; P2 =20 N (Fig. 5.16).
z
o
|
|
|
|
£ Vs,
SE——— =4
//0 p
/
///// i\
7
A= B
174 b
Fig. 5.16
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5.4. Problems for independent decision

Problem 1. Determination of support reactions in the bent rod with fixed
support loaded by arbitrary system of forces in space.

The bent rod OAB are shown in Figs. 5.17 — 5.21. It is loaded by forces P1
and Pa.

The lengths of the rod sections and the values of the forces are shown in
Table 5.2. Determine the reactions in fixed support of the bent rod which is
loaded with such system of forces.

Table 5.2
Number of P, P,

a problem kH kH am B, M c, M
1 2 3 4 5 6
XA 2 4 0,8 0,4 0,6
X.2 4 6 1,4 0,6 0,9
X.3 6 8 0,2 0,7 05
X.4 8 2 1,0 0,5 0,8
X.5 10 15 1,2 0,6 0.6
X.6 12 3 0,6 0,2 0.8
X.7 14 6 0,8 1,2 1,0
X.8 16 5 0,4 0,5 0.9
X.9 18 24 0,6 1,4 0,7
X.10 20 10 1,2 1,2 0,5
X.11 22 6 1,4 0,4 0,6
X.12 24 4 0,5 0,1 0,3
X113 26 8 0,3 0,4 0,8
X.14 28 10 0,9 0,3 0,5
X.15 30 15 1,0 1,8 1,4
X.16 1 8 0,8 0,3 0,1
X.17 3 6 0,6 0,1 0,5
X.18 5 14 0,7 0,6 0,2
X.19 7 8 0,5 0,8 1,1
X.20 9 22 0,2 0,4 0,9
X.21 11 14 0,4 0,6 0,8
X.22 13 20 1,0 0,5 0.5
X.23 15 30 0,3 0,7 0,4
X.24 17 4 0,7 0,3 1,2
X.25 19 6 0,9 0,4 0,6
X.26 21 8 1,3 0,8 0,5
X.27 23 5 1,5 0,5 0,8
X.28 25 12 0,6 1,0 0,4
X.29 27 20 0,5 1,0 0,5
X.30 29 25 0,2 0,4 0,6
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Fig. 5.17
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Fig. 5.18
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Fig. 5.19
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15.
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5.5. Questions for self-testing

Formulate the theorem about reducing force system to a center.
What is total vector of the force system?

How can magnitude and direction of the total vector be determined?
What is total moment of a force system about a center?

How can magnitude and direction of a total moment be determined?
Does total vector depend on a position of reducing center?

What is the difference between total vector and resultant of force
system?

How does total moment of force system depend on a position of re-
ducing center?

Enumerate special cases of force system reducing to a center.

Write equations for statics invariant determination?

What is the system reduced to if R =0, M, = 0? What are invariants
/1 and /2 equal to in this case?
What is the system reduced to if R # 0, M, = 0? What are invariants
/1 and /2 equal to in this case?
What is system reduced to if R #0, I\7I0 =0, I\7I0 L R? What are in-

variants /7 and /2 equal to in this case?

In what case is a force system reduced to a wrench?

What are statics invariants /1 and /2 equal to if system can be re-
duced to a wrench?

What is algorithm of the force system reducing to a center?
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