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INTRODUCTION

Problem solving is an important part of studying physics. It impels

students to work constructively and independently, teaches them to

analyze phenomena, define principal factors, and neglect unimportant

details thus brining them to scientific research. The goal of this manual

is to help students master basic methods of problem solving in physics.

Problems given in this manual cover a wide range of questions within

the course “Experimental and Theoretical Physics”, namely those deal-

ing with: “Kinematics of Translational Motion”, “Dynamics of Trans-

lational Motion”, “Kinematics and Dynamics of Rotational Motion”,

“Work and Energy Conservation Law”, “Mechanical Oscillations and

Waves”, “Molecular Physics and Ideal Gas Law”, “Thermodynamics”.

Most of problems were taken from [1–3]. The structure of the manual

is similar to the structure of analogous publication in Ukrainian [7].

All chapters are intended for practical application of theoretical

knowledge acquired at lectures. At the beginning of every chapter,

there is a table containing the main definitions and physical laws which

relate to the topic of the chapter. Also, we provide students with ref-

erences to corresponding chapters in textbooks where they can find

examples of how to solve typical problems. We hope it will stimulate

them to read textbooks as well. Every chapter consists of five cases

with five problems in each. At the end of the manual, we give answers

to all problems.

Some physical quantities required for problem solving are introduced

in Appendix which also includes some equations from calculus and

vector algebra.

We welcome suggestions and comments from our readers and wish

our students great success in studying physics.
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Chapter 1

KINEMATICS OF TRANSLATIONAL MOTION

E
q
u
a
ti
o
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

1.1 r⃗ = 𝑥i + 𝑦j + 𝑧k⃗ Position vector i⃗, j⃗, k⃗ are unit

vectors; 𝑥, 𝑦,

𝑧 are Cartesian

coordinates

1.2 𝑟 =
√︀
𝑥2 + 𝑦2 + 𝑧2 Length of position

vector

1.3 v⃗ =
𝑑 r⃗

𝑑 𝑡
;

v⃗ = 𝑣𝑥i + 𝑣𝑦j + 𝑣𝑧k⃗

Instantaneous ve-

locity vector

𝑣𝑥 =
𝑑𝑥

𝑑𝑡
,

𝑣𝑦 =
𝑑𝑦

𝑑𝑡
, 𝑣𝑧 =

𝑑𝑧

𝑑 𝑡

1.4 𝑣 =
√︁

𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧 Speed (magnitude

of velocity vector)

1.5 𝑣 =
𝑑𝑠

𝑑𝑡
,

𝑠 =
𝑡∫︀
0

𝑣(𝑡) 𝑑𝑡

Relation of path-

way 𝑠 to the speed

𝑣
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1 2 3 4

1.6 a⃗ =
𝑑 v⃗

𝑑 𝑡
=

𝑑2r⃗

𝑑 𝑡2
;

a⃗ = 𝑎𝑥 i⃗ + 𝑎𝑦 j⃗ + 𝑎𝑧 k⃗

Instantaneous ac-

celeration vector

𝑎𝑥 =
𝑑 𝑣𝑥
𝑑 𝑡

,

𝑎𝑦 =
𝑑 𝑣𝑦
𝑑 𝑡

,

𝑎𝑧 =
𝑑 𝑣𝑧
𝑑 𝑡

1.7 𝑎 =
√︁
𝑎2𝑥 + 𝑎2𝑦 + 𝑎2𝑧 Magnitude of ac-

celeration

1.8 a⃗𝜏 =𝑑𝑣
𝑑𝑡 𝜏⃗ ,

a⃗𝑛 =
𝑣2

𝑅
n⃗,

a⃗ = a⃗𝜏 + a⃗𝑛,

𝑎 =
√︀

𝑎2𝑛 + 𝑎2𝜏

Tangential and

centripetal com-

ponents of accel-

eration

𝜏⃗ is a unit vec-

tor tangent to tra-

jectory; n⃗ is a

unit vector normal

to the trajectory;

𝑅 is a radius of

curvature

1.9 v⃗ = v⃗(0)+
𝑡∫︀
0

a⃗(𝑡) 𝑑𝑡 Velocity vector

1.10 r⃗ = r⃗(0)+
𝑡∫︀
0

v⃗(𝑡) 𝑑𝑡 Position vector

Pre-Class Reading: [1] chap. 2 & 3; [2] chap. 2 & 3; [3] chap. 2 & 4.

Case 1.1

1.1.1. The vector position of a particle varies in time according

to the expression r⃗ = (3.00⃗i − 6.00𝑡2⃗j) m. (a) Find expressions for

the velocity and acceleration as functions of time. (b) Determine the

particle’s position and velocity at 𝑡 = 1.00 s.

1.1.2. A web page designer creates an animation in which a dot

on a computer screen has a position of r⃗ = [4.0𝑐𝑚+ (2.5 cm/s2)𝑡2]⃗i+

(5.0 cm/s)𝑡j. (a) Find the magnitude and direction of the dot’s average
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velocity between 𝑡 = 0 and 𝑡 = 2.0 s. (b) Find the magnitude and

direction of the instantaneous velocity at 𝑡 = 0, 𝑡 = 1.0 s, and 𝑡 = 2.0 s.

(c) Sketch the dot’s trajectory from 𝑡 = 0 to 𝑡 = 2.0 s.

1.1.3. A faulty model rocket moves in the 𝑥𝑦-plane (the positive

𝑦-direction is vertically upward). The rocket’s acceleration has com-

ponents 𝑎𝑥(𝑡) = 𝛼𝑡2 and 𝑎𝑦(𝑡) = 𝛽 − 𝛾𝑡, where 𝛼 = 2.50 m/s4,

𝛽 = 9.00 m/s2, and 𝛾 = 1.40 m/s3. At 𝑡 = 0 the rocket is at the

origin and has velocity v⃗0 = 𝑣0𝑥i + 𝑣0𝑦j with 𝑣0𝑥 = 1.00 m/s and

𝑣0𝑦 = 7.00 m/s. (a) Calculate the velocity and position vectors as

functions of time. (b) What is the maximum height reached by the

rocket? (c) What is the horizontal displacement of the rocket when it

returns to 𝑦 = 0?

1.1.4. An automobile whose speed is increasing at a rate of

0.600 m/s2 travels along a circular road of radius 20.0 m. When the in-

stantaneous speed of the automobile is 4.00 m/s, find (a) the tangential

acceleration component, (b) the centripetal acceleration component,

and (c) the magnitude and direction of the total acceleration.

1.1.5. A particle is located by the position described by the vector

r⃗ = (𝑐1 − 𝑐2𝑡)⃗i + (𝑑1 + 𝑑2𝑡 + 𝑑3𝑡
2)⃗j where 𝑐1 = 12 m, 𝑐2 = 2.0 m/s,

𝑑1 = −7.2 m, 𝑑2 = −6.0 m/s, and 𝑑3 = 0.80 m/s2. a) At what time(s)

does the particle pass through the position 𝑥 = 0 m? b) At what

time(s), and where, does the particle cross the line 𝑥 = 𝑦? c) Sketch

the particle’s trajectory from 𝑡 = −10 s to 𝑡 = +10 s.

Case 1.2

1.2.1. An apple drops from the tree and falls freely. The apple is

originally at rest a height 𝐻 above the top of the grass of a thick lawn,

which is made of blades of grass of height ℎ. When the apple enters

the grass, it slows down at a constant rate so that its speed is 0 when

it reaches ground level. (a) Find the speed of the apple just before it

enters the grass. (b) Find the acceleration of the apple while it is in

the grass. (c) Sketch the 𝑦− 𝑡, 𝑣𝑦− 𝑡, and 𝑎𝑦− 𝑡 graphs for the apple’s
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motion.

1.2.2. If r⃗ = 𝑏𝑡2⃗i+ 𝑐𝑡3⃗j, where 𝑏 and 𝑐 are positive constants, when

does the velocity vector make an angle of 45.0∘ with the 𝑥-and 𝑦-axes?

1.2.3. A rocket is fired at an angle from the top of a tower of

height ℎ0 = 50.0 m. Because of the design of the engines, its position

coordinates are of the form 𝑥(𝑡) = 𝐴+𝐵𝑡2 and 𝑦(𝑡) = 𝐶 +𝐷𝑡3, where

𝐴, 𝐵, 𝐶, and 𝐷 are constants. Furthermore, the acceleration of the

rocket 1.00 s after firing is if a⃗ = (4.00⃗i+ 3.00⃗j) m/s2. Take the origin

of coordinates to be at the base of the tower. (a) Find the constants

𝐴, 𝐵, 𝐶, and 𝐷, including their SI units. (b) At the instant after

the rocket is fired, what are its acceleration vector and its velocity?

(c) What are the 𝑥- and 𝑦-components of the rocket’s velocity 10.0 s

after it is fired, and how fast is it moving? (d) What is the position

vector of the rocket 10.0 s after it is fired?

1.2.4. A ball swings in a vertical circle at the end of a rope 2.00 m

long. When the ball is 36.87∘ past the lowest point on its way up, its

total acceleration is (−6.50⃗i+10.75⃗j) m/s2. At that instant, (a) sketch

a vector diagram showing the components of its acceleration, (b) de-

termine the magnitude of its radial acceleration, and (c) determine the

speed and velocity of the ball.

1.2.5. The position of a particle in a given coordinate system is

r⃗(𝑡) = (−6 + 4𝑡2)⃗i + (−4 + 3𝑡)⃗j, where the distances are in meters

when 𝑡 is in seconds. a) At what time will the particle cross the 𝑦 -axis?

b) At what time will it cross the 𝑥-axis? c) Can you find an equation

that relates the 𝑦-coordinate to the 𝑥-coordinate and therefore gives

the trajectory in the 𝑥𝑦-plane?

Case 1.3

1.3.1. Two cars, A and B, travel in a straight line. The distance of

A from the starting point is given as a function of time by 𝑋𝐴(𝑡) =

𝛼𝑡 + 𝛽𝑡2 , with 𝛼 = 2.60 m/s and 𝛽 = 1.20 m/s2. The distance of B

from the starting point is 𝑋𝐵(𝑡) = 𝛾𝑡2 − 𝛿𝑡3, with 𝛾 = 2.80 m/s2 an

𝛿 = 0.20 m/s3. (a) Which car is ahead just after they leave the starting
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point? (b) At what time(s) are the cars at the same point? (c) At what

time(s) is the distance from A to B neither increasing nor decreasing?

(d) At what time(s) do A and B have the same acceleration?

1.3.2. A jet plane is flying at a constant altitude. At time 𝑡1 = 0 it

has components of velocity 𝑣𝑥 = 90 m/s, 𝑣𝑦 = 110 m/s. At time 𝑡2 =

30.0 s the components are 𝑣𝑥 = −170 m/s, 𝑣𝑦 = 40 m/s. (a) Sketch the

velocity vectors at 𝑡1 and 𝑡2. How do these two vectors differ? For this

time interval calculate (b) the components of the average acceleration,

and (c) the magnitude and direction of the average acceleration.

1.3.3. A bird flies in the 𝑥𝑦-plane with a velocity vector given by

v⃗ = (𝛼−𝛽𝑡2)⃗i+𝛾𝑡j, with 𝛼 = 2.4m/s, 𝛽 = 1.6m/s3, and 𝛾 = 4.0m/s2.

The positive y-direction is vertically upward. At 𝑡 = 0 the bird is at

the origin. (a) Calculate the position and acceleration vectors of the

bird as functions of time. (b) What is the bird’s altitude (𝑦-coordinate)

as it flies over 𝑥 = 0 for the first time after 𝑡 = 0?

1.3.4. A particle is observed to move with the

coordinates 𝑥(𝑡) = (1.5 m/s)𝑡 + (−0.5 m/s2)𝑡2 and

𝑦(𝑡) = 6 m+(−3 m/s)𝑡 + (1.5 m/s2)𝑡2. (a) What are the particle’s

position, velocity and acceleration? (b) At what time(s) are the veloc-

ity’s horizontal and vertical components equal?

1.3.5. At a given moment, a fly moving through the air has a

velocity vector that changes with time according to 𝑣𝑥 = 2.2 m/s,

𝑣𝑦 = (3.7 m/s)𝑡, and 𝑣𝑧 = (−1.2 m/s3)𝑡2+3.3 m/s, where 𝑡 is measured

in seconds. What is the fly’s acceleration?

Case 1.4

1.4.1. At 𝑡 = 0, a particle moving in the 𝑥𝑦 plane with constant

acceleration has a velocity of v⃗𝑖 = (3.00⃗i − 2.00⃗j) m/s and is at the

origin. At 𝑡 = 3.00 s, the particle’s velocity is v⃗ = (9.00⃗i+ 7.00⃗j) m/s.

Find (a) the acceleration of the particle and (b) its coordinates at any

time 𝑡.

1.4.2. A particle initially located at the origin has an acceleration of

a⃗ = 3.00⃗j m/s2 and an initial velocity of v⃗𝑖 = 5.00⃗i m/s. Find (a) the
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vector position and velocity at any time 𝑡 and (b) the coordinates and

speed of the particle at 𝑡 = 2.00 s.

1.4.3. The coordinates of a bird flying in the 𝑥𝑦-plane are given

by 𝑥(𝑡) = 𝛼𝑡 and 𝑦(𝑡) = 3.0𝑚 − 𝛽𝑡2, where 𝛼 = 2.4 m/s and 𝛽 =

1.2 m/s2. (a) Sketch the path of the bird between 𝑡 = 0 and 𝑡 =

2.0 s. (b) Calculate the velocity and acceleration vectors of the bird

as functions of time. (c) Calculate the magnitude and direction of the

bird’s velocity and acceleration at 𝑡 = 2.0 s. (d) Sketch the velocity and

acceleration vectors at 𝑡 = 2.0 s. At this instant, is the bird speeding

up, is it slowing down, or is its speed instantaneously not changing?

Is the bird turning? If so, in what direction?

1.4.4. A particle moves in such a way that its coordinates are

𝑥(𝑡) = 𝐴 cos𝜔𝑡, 𝑦(𝑡) = 𝐴 sin𝜔𝑡. Calculate the 𝑥- and 𝑦-components

of the velocity and the acceleration of the particle.

1.4.5. The Moon circles Earth at a distance of 3.84 · 105 km. The
period is approximately 28 d. What is the magnitude of the moon’s

acceleration, in units of 𝑔 as the Moon orbits Earth?

Case 1.5

1.5.1. A bag is dropped from a hot-air bag balloon. Its height is

given by the formula ℎ = 𝐻 − 𝑢𝑡 − (𝑢/𝐵)𝑒−𝐵𝑡. (a) What are the

dimensions of 𝐵 ? (b) What is the initial velocity? (c) What is the

velocity as 𝑡 → ∞ (d) Calculate the acceleration at 𝑡 = 0 and 𝑡 → ∞.

1.5.2. A boy shoots a rock with an initial velocity of 24 m/s straight

up from his slingshot. He quickly reloads and shoots other rock in the

same way 2.0 s later. (a) At what time and (b) at what height do the

rocks meet? (c) What is the velocity of each rock when they meet?

1.5.3. The motion of a planet about a star is described by the vector

r⃗ = 𝑅 cos(𝜔𝑡)⃗i+𝑅 sin(𝜔𝑡)⃗j. Calculate a) the acceleration vector of the

planet and b) normal and tangential components of acceleration.

1.5.4. An automobile moves on a circular track of radius 0.5 km.

It starts from rest from point (𝑥, 𝑦) = (0.5 km, 0 km) and moves coun-

terclockwise with a steady tangential acceleration such that it returns
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to starting point with speed 32.0 m/s after one lap. (The origin of the

system is at the center of the circular track.) What is the car’s velocity

when it is one-eighth of the way track?

1.5.5. An airplane flies due south with respect to the ground at an

air speed of 900 km/h for 2.0 h before turning and moving southwest

with respect to ground for 3.0 h. During the entire trip, a wind blows

in the easterly direction at 120 km/h. (a) What is the plane’s aver-

age speed with respect to the ground? (b) What is the plane’s final

position.(c) What is the plane’s average velocity with respect to the

ground?
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Chapter 2

DYNAMICS OF TRANSLATIONAL MOTION

E
q
u
a
ti
o
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

2.1 p⃗ = 𝑚v⃗ Momentum of a

point particle

v⃗ is a velocity;

𝑚 is a mass

2.2
𝑑p⃗

𝑑𝑡
=F⃗

Σ
Newton’s second

law (universal

format)

F⃗
Σ
is a net (resul-

tant) force applied

2.3 𝑚
𝑑2r⃗

𝑑𝑡2
= 𝑚

𝑑v⃗

𝑑𝑡
=

= 𝑚a⃗ = F⃗
Σ

Newton’s second

law (differential

form)

r⃗ is a position vec-

tor of the particle

2.4 𝑀
𝑑V⃗

𝐶

𝑑𝑡
=F⃗

𝑒𝑥𝑡

Σ
Law of motion for

center of mass of a

system of particles

𝑀 is a total mass of

the system, F⃗
𝑒𝑥𝑡

Σ
is

a net external force

applied

2.5 R⃗
𝐶
=

𝑁∑︀
𝑖=1

r⃗𝑖𝑚𝑖

𝑁∑︀
𝑖=1

𝑚𝑖

Center of mass po-

sition vector

r⃗
𝑖
is a position vec-

tor of an individual

particle
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1 2 3 4

2.6 V⃗
𝐶
=

𝑁∑︀
𝑖=1

𝑚𝑖v⃗𝑖

𝑁∑︀
𝑖=1

𝑚𝑖

=
p⃗

Σ

𝑀
Velocity of the

center of mass of

𝑁 particles

p⃗
Σ
is a total mo-

mentum of the

system

2.7 p⃗
Σ
=

𝑁∑︀
𝑖=1

p⃗𝑖 = const Momentum con-

servation law

For an isolated sys-

tem, (F⃗
𝑒𝑥𝑡

Σ
= 0)

2.8 F⃗ = 𝑚g⃗ Gravity force g⃗ is an acceleration

due to gravity

2.9 F⃗
𝐴
= −g⃗𝜌𝑉 Buoyancy force 𝜌 is a mass density

of a fluid (gas); 𝑉

is a displaced fluid

volume

2.10 F⃗ = −𝑘x⃗ Elastic force

(Hook’s law)

𝑘 is a spring

constant; 𝑥 is a

displacement

2.11 F⃗12 = −𝐺
𝑚1𝑚2
𝑟2
12

r⃗12
𝑟12

Universal gravita-

tion force law

𝐺 is a gravitational

constant; 𝑚1, 𝑚2

are masses of par-

ticles; r⃗12 is a po-

sition vector of the

second body with

respect to the first

one

2.12 𝐹 = 𝑃𝐴 Pressure force 𝑃 is a pressure; 𝐴 is

a surface area

2.13 𝐹 = 𝑇 Tension force Acts along the

thread
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1 2 3 4

2.14 𝐹 = 𝑁 Normal contact

force

Perpendicular to a

contact surface

2.15 𝐹 = 𝜇𝑁 Kinetic friction

force

Opposite to mo-

tion; 𝜇 is a kinetic

friction coefficient

2.16 F⃗ = −𝑟v⃗ Linear drag force

(low speed)

𝑟 is a linear resis-

tance coefficient, v⃗

is a velocity of the

body

2.17 F⃗ = −1
2𝐶𝐷𝜌𝐴𝑣v⃗ Quadratic drag

force exerted on

an object moving

with a high speed

𝑣 in a medium

𝜌 is the mass den-

sity of a medium 𝐴

is a cross-sectional

area of an object,

𝐶𝐷 is a dimension-

less drag coefficient

2.18 F⃗
thr

= −u⃗𝑑𝑚
𝑑𝑡 Thrust force u⃗ is a relative veloc-

ity of an escaping or

incoming mass

2.19 F⃗ = 𝑞E⃗ Electrostatic force 𝑞 is a charge; E⃗

is an electric field

vector

2.20 F⃗ = 𝑞v⃗× B⃗ Magnetic force B⃗ is a magnetic

field vector

Pre-Class Reading: [1] chap. 4 & 5; [2] chap. 4 & 5; [3] chap. 5 & 6.

Case 2.1

2.1.1. Two objects are moving in the 𝑥𝑦-plane. The first one of
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mass 2.4 kg, has a velocity v⃗1 = −(2.0⃗i + 3.5⃗j) m/s; the second one,

of mass 1.6 kg, has a velocity v⃗2 = (1.8⃗i− 1.5⃗j) m/s. (a) What is the

total momentum of the system? (b) If the system observed later shows

that the 2.4-kg object has v⃗′1 = (2.5⃗i) m/s, what is the velocity of the

1.6-kg object? Assume that objects interact only on each other.

2.1.2. Two blocks, each with weight 𝑊 , are held in place on a fric-

𝛼

𝐵

𝐴

Figure 2.1. Problem 2.1.2

tionless incline (Fig. 2.1 ). In terms of𝑊 and the angle 𝛼 of the incline,

calculate the tension in (a) the rope connecting the blocks and (b) the

rope that connects block 𝐴 to the wall. (c) Calculate the magnitude

of the force that the incline exerts on each block. (d) Interpret your

answers for the cases 𝛼 = 0 and 𝛼 = 90∘.

2.1.3. Two children of masses 25 and 30 kg, respectively, stand

2.0 m apart on skates on a smooth ice rink. The lighter of the children

holds a 3.0-kg ball and throws it to the heavier child. After the throw

the lighter child recoils at 2.0 m/s. With what speed will the center of

mass of two children and the ball move?

2.1.4. A 50.0-kg stunt pilot who has been diving her airplane ver-

tically polls out of the dive by changing her course to a circle in a

vertical plane. (a) If at the lowest point of the circle, the plane’s speed
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is 95.0 m/s, what is the minimum radius of the circle for the accel-

eration at this point not to exceed 4.00 g? (b) What is the apparent

weight of the pilot at the lowest point of the pullout?

2.1.5. Calculate the force required to pull an iron ball (of density

7.8 g/cm3) of diameter 3.0 cm upward through a fluid at the constant

speed 2.0 cm/s. Take the drag force proportional to the speed with the

proportionality constant equal to 1.0 kg/s. Ignore the buoyant force.

Case 2.2

2.2.1. An electron (𝑚𝑒 = 9.11 · 10−31 kg) leaves one end of a TV

picture tube with zero initial speed and travels in a straight line to the

accelerating grid, which is 1.80 cm away. It reaches the grid with a

speed of 3.00 · 106 m/s. If the accelerating force is constant, compute
(a) the acceleration; (b) the time to reach the grid; (c) the net force.

(You can ignore the gravitational force on the electron.)

2.2.2. A 9.00-kg block of ice, released from rest at the top of a 1.50-

m-long frictionless ramp, slides downhill, reaching a speed of 2.50 m/s

at the bottom. (a) What is the angle between the ramp and the hor-

izontal? (b) What would be the speed of the ice at the bottom if the

motion were opposed by a constant friction force of 12.0 N parallel to

the surface of the ramp?

2.2.3. Consider the system shown in Fig. 2.2. Block 𝐴 weighs

45.0 N, and block 𝐵 weighs 25.0 N. Once block 𝐵 is set into downward

motion, it descends at a constant speed. (a) Calculate the coefficient

of kinetic friction between the block 𝐴 and the tabletop. (b) A cat

of weight 30.0 N falls asleep on the top of the block 𝐵. If block 𝐵

is now set into downward motion, what is its acceleration (magnitude

and direction)?

2.2.4. Two small bodies are moving in the 𝑦𝑧-plane. The first one,

of mass 1.5 kg, has a velocity v⃗1 = (2.00⃗j−3.60k⃗) m/s; the second one,

of mass 2.5 kg, has a velocity v⃗2 = (−1.80⃗j+2.40k⃗) m/s. Suppose that

there has been a mass transfer so that both bodies have got the same

mass. The total mass is conserved. What is the velocity of the first

16



𝐴

𝐵

Figure 2.2. Problem 2.2.3

body v⃗′1 if the velocity of the second one is v⃗
′
2 = (−2.50⃗i+1.25⃗j) m/s?

2.2.5. A mallet forms a symmetric T-shape. The top of the T is

a uniform iron block of mass 4.0 kg. The wooden handle is uniform,

1.2 m long, and has a mass of 2.0 kg. Where is the mallet’s center of

mass?

Case 2.3

2.3.1. A machine gun in automatic mode fires 20-g bullets with

𝑣bullet = 300 m/s at 60 bullets/s. (a) If the bullets enter a thick wooden

wall, what is the average force exerted against the wall? (b) If the

bullets hit a steel wall and rebound elastically, what is the average

force on the wall?

2.3.2. A light rope is attached to a block with mass 4.00 kg that

rests on a frictionless, horizontal surface. The horizontal rope passes

over a frictionless, massless pulley, and a block with mass 𝑚 is sus-

pended from the other end. When the blocks are released, the tension

in the rope is 10.0 N. (a) Draw two free-body diagrams, one for the

4.00-kg block and one for the block with mass 𝑚. (b) What is the ac-

celeration of either block? (c) Find the mass 𝑚 of the hanging block.

(d) How does the tension compare to the weight of the hanging block?

2.3.3. A 25.0-kg box of textbooks rests on a loading ramp that
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makes an angle a with the horizontal. The coefficient of kinetic friction

is 0.25, and the coefficient of static friction is 0.35. (a) As the angle

𝛼 is increased, find the minimum angle at which the box starts to

slip. (b) At this angle, find the acceleration once the box has begun to

move. (c) At this angle, how fast will the box be moving after it has

slid 5.0 m along the loading ramp?

2.3.4. Estimate (a) the mas of the Sun and (b) the orbital speed

of the Earth. Assume that orbit is circular. Check the appendix for

astronomical data.

2.3.5. A small sphere of mass 2.00 g is released from rest in a large

vessel filled with oil. It experiences a resistive force proportional to its

speed. The sphere reaches a terminal speed of 5.00 cm/s. Determine

(a) the resistance coefficient of the oil and (b) the time at which the

sphere reaches 63.2% of its terminal speed. Ignore the buoyant force.

Case 2.4

2.4.1. A billiard ball with velocity v⃗ = (2.5⃗i) m/s strikes a sta-

tionary billiard ball of the same mass. After collision, the first billiard

ball has a velocity v⃗1 = (0.5⃗i− 1.0⃗j) m/s. What is the velocity of the

second billiard ball?

2.4.2. The height achieved in a jump is determined by the initial

vertical velocity that the jumper is able to achieve. Assuming that this

is a fixed number, how high can an athlete jump on Mars if she can

clear 1.85 m on Earth? The radius of Mars is 3.4 · 103 km. The mass
of Mars is 6.42 · 1023 kg.
2.4.3. A physics student playing with an air hockey table (a fric-

tionless surface) finds that if she gives the puck a velocity of 3.50 m/s

along the length (1.75 m) of the table at one end, by the time it has

reached the other end the puck has drifted 2.50 cm to the right but still

has a velocity component along the length of 3.50 m/s. She correctly

concludes that the table is not level and correctly calculates its incli-

nation from the given information. What is the angle of inclination?

2.4.4. An airplane flies in a loop (a circular path in a vertical plane)
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of radius 160 m. The pilot’s head always points toward the center of

the loop. The speed of the airplane is not constant; the airplane goes

slowest at the top of the loop and fastest at the bottom. (a) At the

top of the loop, the pilot feels weightless. What is the speed of the

airplane at this point? (b) At the bottom of the loop, the speed of the

airplane is 288 km/h. What is the apparent weight of the pilot at this

point? His true weight is 700 N.

2.4.5. A hammer is hanging by a light rope from the ceiling of a

bus. The ceiling of the bus is parallel to the roadway. The bus is

traveling in a straight line on a horizontal street. You observe that the

hammer hangs at rest with respect to the bus when the angle between

the rope and the ceiling of the bus is 74∘. What is the acceleration of

the bus?

Case 2.5

2.5.1. Three masses 𝑚1 = 0.3 kg, 𝑚2 = 0.4 kg, and 𝑚3 = 0.2 kg

𝑚1 𝑚3𝑚2
F⃗

Figure 2.3. Problem 2.5.1

are connected by light cords to make a “train” sliding on a frictionless

surface, as shown in a Fig. 2.3. They are accelerated by a constant

horizontal force 𝐹 = 1.5 N that pulls the 𝑚3 mass to the right. What

is the tension 𝑇 in the cord (a) between the masses 𝑚1 and 𝑚2 and

(b) between the masses 𝑚2 and 𝑚3.

2.5.2. Estimate the orbital radius of the Moon. Use 28 days as an

approximate value of the orbital period of the Moon. Assume that the

orbit is circular. Check the appendix for astronomical data.

2.5.3. An object of mass 𝑚 is constrained to move in a circle of

radius 𝑅 by a central force 𝐹 proportional to the speed 𝑣 of the ob-

ject, 𝐹 = 𝐶𝑣. Calculate the proportionality coefficient 𝐶 in terms of
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𝑌

𝑋1 m

1 m

𝑚1

𝑚2

𝑚3

𝑚4

Figure 2.4. Problem 2.5.4

momentum of the object and radius 𝑅. (This kind of force acts on a

charged object in a uniform magnetic field.)

2.5.4. A set of point masses is arrayed on the 𝑥𝑦-plane. A mass

of 1 kg is placed at the origin. Two similar masses are at the points

(𝑥, 𝑦) = (1 m, 0) and (0, 1 m), respectively, and a fourth mass of 2 kg

is at the point (1 m, 1 m). (See Fig. 2.4.) (a) Where is the center

of mass? (b) Suppose the fourth mass 1 kg rather 2 kg. Without a

detailed calculation, find the location of the center of mass in this case.

2.5.5. After ejecting a communication satellite, the space shuttle

must make a correction to account for the change in a momentum.

One of the thrusters with the exhaust speed of the gas relative to the

rocket 𝑢𝑒𝑥 = 103 m/s is used to increase the orbital velocity by 10 m/s.

What percent of the mass of the space shuttle must be discarded?
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Chapter 3

KINEMATICS AND DYNAMICS OF ROTATIONAL

MOTION

E
q
u
a
ti
o
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

3.1 𝜔⃗ =
𝑑𝜃⃗

𝑑𝑡
Angular velocity

vector

𝑑𝜃⃗ is an infinites-

imal angle of

rotation

3.2 𝛼⃗ =
𝑑𝜔⃗

𝑑𝑡
Angular accelera-

tion vector

3.3 𝑓 =
𝑁

𝑡
Frequency of uni-

form rotation

𝑁 is a total number

of revolutions per

time 𝑡

3.4 𝑇 =
𝑡

𝑁
=

1

𝑓
Period of uniform

rotation

3.5 𝑙 = 𝜃 𝑅 Arc length (path-

way of a particle)

𝜃 is an angle of

rotation in rad;

𝑅 is a radius

3.6 𝑣 = 𝜔𝑅 Speed of a particle 𝜔 is an angular

speed of rotation
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1 2 3 4

3.7 v⃗ = 𝜔⃗ × r⃗ Velocity vector r⃗ is a position vec-

tor of the particle

with respect to a

point at the axis of

rotation

3.8 𝑎𝜏 =
𝑑𝑣

𝑑𝑡
= 𝛼𝑅 Tangential accel-

eration component

of the particle

𝛼 is an angular

acceleration of the

body

3.9 a⃗𝜏 = 𝛼⃗× r⃗ Vector of tangen-

tial acceleration

3.10 a⃗𝑛 = −𝜔2r⃗ Centripetal accel-

eration vector

3.11 𝜔⃗ = const, 𝛼⃗ = 0,

𝜃 = 𝜃0 + 𝜔𝑡

Uniform rotation

law

𝜃0 is an initial angle

of rotation

3.12 𝛼⃗ = const,

𝜃 = 𝜃0 + 𝜔0𝑡 +
1
2𝛼𝑡

2,

𝜔 = 𝜔0 + 𝛼𝑡

Law of uniformly

accelerated rota-

tion

𝜔0 is an initial an-

gular velocity

3.13 𝜃 = 𝜃0 +
𝑡∫︀

𝑡0

𝜔(𝑡) 𝑑𝑡,

𝜔 = 𝜔0 +
𝑡∫︀

𝑡0

𝛼(𝑡) 𝑑𝑡

General law of

rotational motion

(𝛼 ̸= const)

22



1 2 3 4

3.14 𝜏⃗ = r⃗×F⃗,

𝜏 = 𝐹𝑟 sin𝜙

Torque and its

magnitude with

respect to origin

F⃗ is a force vec-

tor; r⃗ is a position

vector of the point

at which force acts;

𝜙 is an angle be-

tween F⃗ and r⃗

3.15 𝐽 = 𝑚𝑟2 Moment of inertia

of a point particle

𝑚 is a mass

of the particle;

𝑟 is a distance from

axis of rotation to

the particle

3.16 𝐽 =
𝑁∑︀
𝑖=1

𝑚
𝑖
𝑟2
𝑖

Moment of inertia

of a system of par-

ticles

𝑚𝑖 is a mass of the

𝑖-th particle on a

distance 𝑟𝑖 from the

axis of rotation

3.17 𝐽𝑧 =
∫︀
𝑚

𝑟2 𝑑𝑚 =

=
∫︀
𝑉

𝜌𝑟2 𝑑𝑉

Moment of iner-

tia of a rigid body

about 𝑧-axis

𝜌 is a mass density

of the body mate-

rial; 𝑑𝑉 is an in-

finitesimal volume

3.18

a) 𝐽𝑧 =
1

12
𝑚𝑙2;

b) 𝐽𝑧 =
1

3
𝑚𝑙2

Moment of iner-

tia of a uniform

rod about perpen-

dicular axis pass-

ing through its:

a) center of mass;

b) edge

𝑚 is a mass of the

rod;

𝑙 is a length of the

rod

23



1 2 3 4

3.19 𝐽𝑧 = 𝑚𝑅2 Moment of inertia

of a thin ring

about an axis

perpendicular to

a ring’s plane and

passing through

its center

𝑚 is a mass of the

ring; 𝑅 is a radius

of the ring

3.20 𝐽𝑧 =
1

2
𝑚𝑅2 Moment of inertia

of a uniform cylin-

der (disk) about

its axis of symme-

try

𝑚 is a mass of the

cylinder; 𝑅 is a ra-

dius of the cylinder

3.21 𝐽𝑧 =
2

5
𝑚𝑅2 Moment of inertia

of a uniform ball

about its axis of

symmetry

𝑚 is a mass of the

ball; 𝑅 is a radius

of the ball

3.22 L⃗ = r⃗× p⃗ Vector of angular

momentum of the

point particle

p⃗ is a momentum

of the particle; r⃗ is

a position vector of

the particle

3.23 𝐿𝜔 = 𝐽𝜔𝜔 Angular momen-

tum of a rigid

body about axis of

rotation

𝐽𝜔 is a moment of

inertia about the

axis of rotation;

𝜔 is an angular

speed
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1 2 3 4

3.24 𝐽
O
= 𝐽

C
+𝑚𝑎2 Parallel axis theo-

rem

𝐽
C

is a moment

of inertia of the

body about a par-

allel axis passing

through the center

of mass;𝑚 is a mass

of the body; 𝑎 is

a distance between

axises

3.25
𝑑L⃗

𝑑𝑡
= 𝜏⃗

Σ
Torque-angular-

momentum equa-

tion

𝜏⃗
Σ
is a total exter-

nal torque

3.26 𝐽𝜔𝛼 = 𝜏𝜔 The rotational

analog of New-

ton’s second law

𝐽𝜔 is a moment of

inertia about the

axis of rotation; 𝛼 is

an angular accelera-

tion; 𝜏𝜔 is a torque

about the axis of ro-

tation

3.27
𝑁∑︀
𝑖=1

L⃗𝑖 = const Angular momen-

tum conservation

law

For isolated system

(𝜏⃗
Σ

= 0), L⃗𝑖

is an angular mo-

mentum of individ-

ual objects of the

system

Pre-Class Reading: [1] chap. 9&10; [2] chap. 9&10; [3] chap. 10&11.
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Case 3.1

3.1.1. A fan blade rotates with the angular velocity given by 𝜔𝑧(𝑡) =

𝛾 − 𝛽𝑡2 where 𝛾 = 5.00 rad/s and 𝛽 = 0.800 rad/s3. (a) Calculate the

angular acceleration as a function of time. (b) Calculate the instanta-

neous angular acceleration 𝛼𝑧 at 𝑡 = 3.00 s and the average angular

acceleration 𝛼𝑎𝑣−𝑧 for the time interval 𝑡 = 0 to 𝑡 = 3.00 s. How do

these two quantities compare? If they are different, why so?

3.1.2. Four small spheres, each of which you can regard as a point

Figure 3.1. Problem 3.1.2

of mass 0.100 kg, are arranged in a square 0.200 m on a side and

connected by extremely light rods (Fig. 3.1). Find the moment of

inertia of the system about an axis (a) through the center of the square,

perpendicular to its plane (an axis through point 𝑂 in the figure);

(b) bisecting two opposite sides of the square (an axis along the line

𝐴𝐵 in the figure); (c) that passes through the centers of the upper left

and lower right spheres and through point 𝑂.

3.1.3. A woman with mass 55 kg is standing on the rim of a large

disk that is rotating at 0.50 rev/s about an axis through its center.

The disk has mass 90 kg and radius 2.0 m. Calculate the magnitude of

the total angular momentum of the woman-plus-disk system. (Assume
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that you can treat the woman as a point.)

3.1.4. One force acting on a machine part is F⃗ = (5.00 N)⃗i +

(4.00 N)⃗j. The vector from the origin to the point where the force is

applied is r⃗ = (−0.40 m)⃗i + (0.30 m)⃗j. (a) In a sketch, show r⃗, F⃗,

and the origin. (b) Use the right-hand rule to determine the direction

of the torque. (c) Calculate the vector torque produced by this force.

Verify that the direction of the torque is the same as you obtained in

part (b).

3.1.5. The flywheel of an engine has moment of inertia 2.50 kg·m2

about its rotation axis. What constant torque is required to bring it

up to an angular speed of 400 rev/min in 8.00 s, starting from rest?

Case 3.2

3.2.1. The angle 𝜃 through which a disk drive turns is given by

𝜃(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡3, where 𝑎, 𝑏, and 𝑐 are constants, 𝑡 is in seconds,

and 𝜃 is in radians. When 𝑡 = 0 , 𝜃 = 𝜋/4 rad and the angular

velocity is 2.00 rad/s, and when 𝑡 = 1.00 s, the angular acceleration is

1.25 rad/s2. (a) Find 𝑎, 𝑏, and 𝑐, including their units. (b) What is

the angular acceleration when 𝜃 = 𝜋/4 rad? (c) What are 𝜃 and the

angular velocity when the angular acceleration is 3.60 rad/s2?

3.2.2. Small blocks, each with mass 𝑚, are clamped at the ends

and at the center of a rod of length 𝐿 and negligible mass. Compute

the moment of inertia of the system about an axis perpendicular to

the rod and passing through (a) the center of the rod and (b) a point

one-fourth of the length from one end.

3.2.3. Two little bullets of the masses 𝑚1 = 40 g and

𝑚2 = 120 g are connected by a weightless rod 𝑙 = 20 cm long. The

system rotates about the axis which is perpendicular to the rod and

passes through the center of inertia of the system. Determine the an-

gular momentum 𝐿 of the system about axis of rotation. The rotation

frequency 𝑓 = 3 s−1.

3.2.4. What is the torque about the origin on a particle posi-

tioned at r⃗ = (3.0 m)⃗i − (1.0 m)⃗j − (5.0 m)k⃗, exerted by a force of
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F⃗ = (2.0 N)⃗i + (4.0 N)⃗j + (3.0 N)k⃗?

3.2.5. A cord is wrapped around the rim of a solid uniform wheel

𝑅

𝑚

F⃗

Figure 3.2. Problem 3.2.5

0.250 m in radius and of mass 10.0 kg as shown in a Fig. 3.2. A steady

horizontal pull of 40.0 N to the right is exerted on the cord, pulling it

off tangentially from the wheel. The wheel is mounted on frictionless

bearings on a horizontal axle through its center. Compute the angular

acceleration of the wheel and the acceleration of the part of the cord

that has already been pulled off the wheel.

Case 3.3

3.3.1. At 𝑡 = 0, a grinding wheel has an angular velocity of

24.0 rad/s. It has a constant angular acceleration of 30.0 rad/s2 un-

til a circuit breaker trips at 𝑡 = 2.00 s. From then on, it turns

through 420 rad as it coasts to a stop at constant angular accelera-

tion. (a) Through what total angle did the wheel turn between 𝑡 = 0

and the time it stopped? (b) At what time did it stop? (c) What was

its acceleration as it slowed down?

3.3.2. Find the moment of inertia of a uniform ball with mass 𝑀

and radius 𝑅 about an axis at the surface of the ball.

3.3.3. (a) Calculate the magnitude of an angular momentum of the

Earth in a circular orbit around the Sun. Is it reasonable to model

it as a particle? (b) Calculate the magnitude of the Earth’s angular
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momentum due to its rotation around an axis through the North and

South Poles, modeling it as a uniform sphere. Consult Appendix for

the astronomical data.

3.3.4. With what force 𝐹 should you press down the brake block to

𝑑
F⃗

𝑓

𝑀

Figure 3.3. Problem 3.3.4

the wheel which does 𝑓 = 30 rev/s for it to stop in 𝑡 = 20 s? (Fig. 3.3)

The wheel weights is 10 kg. The weight is distributed over the rim.

The diameter 𝑑 of the wheel is equal to 20 cm. The friction coefficient

between the rim and the block is 𝜇 = 0.5.

3.3.5. A wheel with moment of inertia 𝐽 = 240 kg·m2 is rotating

at 𝑓 = 20 rev/s. It comes to rest in 𝑡 = 1 min if the engine that

supports the rotation is turned off. Find the torque of friction force 𝜏
𝑓

and number of turnovers 𝑁 the wheel had done before it stopped?

Case 3.4

3.4.1. A turntable rotates with a constant angular acceleration of

2.25 rad/s2. After 4.00 s it has rotated through an angle of 60.0 rad.

What was the angular velocity of the wheel at the end of the 4.00-s

interval?

3.4.2. A uniform pipe of 2.0 kg is a right cylinder which outer radius

is 4.0 cm and inner radius is 3.0 cm. What is the moment of inertia of

the pipe about its the axis of symmetry?

3.4.3. A diver comes off a board with arms straight up and legs

straight down, giving her a moment of inertia about her rotation axis of
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18 kg· m2. She then tucks into a small ball, decreasing this moment of

inertia to 3.6 kg·m2. While tucked, she makes two complete revolutions

in 1.0 s. If she hadn’t tucked at all, how many revolutions would she

have made in the 1.5 s from board to water?

3.4.4. A solid, uniform cylinder with mass 8.00 kg and diameter

20.0 cm is spinning at 240 rpm on a thin frictionless axle that passes

along the cylinder axis. You design a simple friction brake to stop the

cylinder by pressing the brake against the outer rim with a normal

force. The coefficient of kinetic friction between the brake and rim is

0.333. What must the applied normal force be to bring the cylinder to

rest after it has turned through 6.00 revolutions?

3.4.5. A braking wheel reduces the frequency of rotation uniformly

from 𝑓1 = 360 rpm to 𝑓2 = 180 rpm at the time 𝑡 = 0.5 min. The

moment of inertia of the wheel 𝐽 = 1 kg·m2. (a) Find the magnitude of

retarding torque 𝜏 ; (b) the number of the revolutions 𝑁 of the wheel.

Case 3.5

3.5.1. A computer disk drive is turned on starting from rest and

has a constant angular acceleration. If it took 0.50 s for the drive to

make its second complete revolution, (a) how long did it take to make

the first complete revolution, and (b) what is its angular acceleration,

in rad/s2?

3.5.2. A stone is suspended from the free end of a wire that is

wrapped around the outer rim of a pulley , similar to what is shown

in Fig. 3.4. The pulley is a uniform disk with mass 8.0 kg and radius

5.0 cm and turns on frictionless bearings. You measure that the stone

travels 1.125 m within the first 3.00 s starting from rest. Find (a) the

acceleration of the stone, (b) the tension in the wire and, (c) the mass

of the stone.

3.5.3. Under some circumstances, a star can collapse into an ex-

tremely dense object made mostly of neutrons and called a neutron

star. The density of a neutron star is roughly 1014 times as great

as that of ordinary solid matter. Suppose the star is a uniform solid
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𝑅

𝑀
𝑚

ℎ

Figure 3.4. Problem 3.5.2

rigid sphere, both before and after the collapse. Its initial radius was

7.0 · 105 km (comparable to our Sun); its final radius is about 14 km.

If the original star rotated once in 30 days, estimate the angular speed

of the neutron star.

3.5.4. A flywheel is rotated with a constant angular velocity by an

engine. The power of the engine was turned off. Once started, the

flywheel made 𝑁 = 120 revolutions during 𝑡 = 30 s and stopped. The

moment of inertia of the flywheel 𝐽 = 0.3 kg·m2. The angular accel-

eration of the flywheel is constant after the engine has stopped. Find

(a) the torque developed by the engine and (b) the rotation frequency

when the flywheel rotates uniformly.

3.5.5. In a homogeneous disk of the mass 𝑚1 = 1 kg and radius

𝑅 = 30 cm, a round aperture is cut of the radius 𝑟 = 10 cm. Its center

is at the distance 𝑙 = 15 cm from the axis of the disk. Find the moment

of inertia of the disk about the axis which passes perpendicular to its

surface through the center of the disk.
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Chapter 4

WORK AND ENERGY CONSERVATION LAW

E
q
u
a
ti
o
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

4.1 𝛿𝑊 =F⃗(⃗r) · 𝑑r⃗ Infinitesimal me-

chanical work

F⃗ is a force vec-

tor; 𝑑r⃗ is an in-

finitesimal displace-

ment vector

4.2 𝑊𝑖𝑓 =
∫︀
𝐿

F⃗(⃗r) · 𝑑r⃗ General definition

of work (linear in-

tegral)

𝐿 is a trajectory of

the motion from the

initial position 𝑖 to

the final position 𝑓

4.3 𝑊 = 𝐹 𝑠 cos𝜑 Work done by the

constant force un-

der straight line

motion

𝑠 is a pathway of

the particle; 𝜑 is

an angle between

the direction of

the force and the

displacement

4.4 𝑃 =
𝛿𝑊

𝑑𝑡
=F⃗ · v⃗ Power in transla-

tional motion

𝛿𝑊 is work done

during the time 𝑑𝑡,

v⃗ is a velocity of the

particle
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1 2 3 4

4.5 𝐾
𝐸
=

𝑚𝑣2

2
=

𝑝2

2𝑚
Kinetic energy of

a particle’s trans-

lational motion

𝑚, 𝑣, 𝑝 are mass,

speed, and momen-

tum of the particle

4.6 𝑊 𝑇𝑜𝑡
𝑖𝑓 = 𝐾

𝐸𝑓
−𝐾

𝐸𝑖
Work–Kinetic En-

ergy Theorem

𝑊 𝑇𝑜𝑡
𝑖𝑓 is the total

work done; 𝐾
𝐸𝑓,𝑖

is

a 𝑓 inal/𝑖nitial ki-

netic energy of the

system

4.7 𝑈 =
𝑘𝑥2

2
Potential energy

of a deformed

spring

𝑥 is a deforma-

tion; 𝑘 is a spring

constant

4.8 𝑈 = −𝐺
𝑚1𝑚2

𝑟
Potential energy

of gravitational

interaction of the

particles

𝑚1, 𝑚2 are masses

of the interacting

particles; 𝑟 is a

distance between

them; 𝐺 is a gravi-

tational constant

4.9 𝑈 = 𝑚𝑔ℎ Gravitational po-

tential energy

ℎ is a height; 𝑚

is the mass of the

body

4.10 𝑊𝐶𝑜𝑛
𝑖𝑓 = 𝑈

𝑖
− 𝑈

𝑓
Potential Energy

Theorem

𝑊𝐶𝑜𝑛
𝑖𝑓 is the work

done by conserva-

tive forces; 𝑈
𝑖,𝑓

is

an 𝑖nitial/𝑓 inal po-

tential energy of the

system
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4.11 F⃗ = −grad𝑈 =

= −∇⃗𝑈 =

= −
(︁
𝜕𝑈
𝜕𝑥 i⃗+

𝜕𝑈
𝜕𝑦 j⃗+

𝜕𝑈
𝜕𝑧 k⃗

)︁
Relation between

a potential energy

and a force

i⃗, j⃗, k⃗ are unit

vectors

4.12 F⃗ = −𝑑𝑈

𝑑𝑟

r⃗

𝑟
Relation between

a potential energy

and a central force

r⃗ is a position

vector

4.13 𝐸 = 𝐾
𝐸
+ 𝑈 =

= const

Mechanical energy

conservation law

𝐸 is a total me-

chanical energy;𝐾
𝐸

is a kinetic energy;

𝑈 is a potential

energy

4.14 𝛿𝑊 = 𝜏⃗ · 𝑑𝜃⃗ Infinitesimal work

under rotational

motion

𝜏⃗ is a torque; 𝑑𝜃⃗ is

an infinitesimal an-

gle of rotation

4.15 𝑃 = 𝜏⃗ · 𝜔⃗ Power in rota-

tional motion

𝜔⃗ is an angular ve-

locity vector

4.16 𝐾
𝐸
=

𝐽𝜔2

2
Rotational kinetic

energy

𝐽 is a moment of in-

ertia about the axis

of rotation; 𝜔 is an

angular speed

Pre-Class Reading: [1] chap. 6 — 8; [2] chap. 6 — 8; [3] chap. 7 — 9.

Case 4.1

4.1.1. A tow truck pulls a car 1.00 km along a horizontal roadway
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using a cable having a tension of 800 N. (a) How much work does the

cable do on the car if it pulls horizontally? If it pulls at 30.0∘ above

the horizontal? (b) How much work does the cable do on the tow truck

in both cases of part (a)? (c) How much work does gravity do on the

car in part (a)?

4.1.2. A car is stopped in a distance 𝑑 by a constant friction force

that is independent of the car’s speed. What is the stopping distance

(in terms of 𝑑) (a) if the car’s initial speed is double, and (b) if the

speed is the same as it originally was but the friction force is doubled?

(Solve using the work-energy theorem.)

4.1.3. A 70-kg swimmer jumps into the swimming pool from a

diving board 3.20 m above the water. Use energy conservation law

to find his speed just he hits the water (a) if he just holds his nose

and drops in, (b) if he bravely jumps straight up (but just beyond

the board!) at 4.00 m/s, and (c) if he manages to jump downward at

4.00 m/s.

4.1.4. The potential energy function for a system of particles is

given by 𝑈(𝑥) = −𝑥3 + 4𝑥2 + 3𝑥, where 𝑥 is the position of one

particle in the system. (a) Determine the force 𝐹𝑥 on the particle as

a function of 𝑥. (b) For what values of 𝑥 is the force equal to zero?

(c) Plot 𝑈(𝑥) versus 𝑥 and 𝐹𝑥 versus 𝑥 and indicate points of stable

and unstable equilibrium.

4.1.5. A waterfall of height 50 m has 12 · 103 m3 of water falling

every minute. If the waterfall is used to produce electricity in a power

station and the efficiency of conversation of kinetic energy of falling

water to electrical energy is 50 %, what is the power production of the

station. (The mass density of water is 103 kg/m3.)

Case 4.2

4.2.1. A forceF⃗ = (−5𝑥i+2𝑦j), whereF⃗ is in newtons and 𝑥 and 𝑦

are in meters, acts on an object as the object moves in the 𝑦-direction

from the origin to 𝑦 = −7.00 m. Find the work done by the force on
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the object.

4.2.2. A soccer ball with mass 0.400 kg is initially moving with

speed 4.00 m/s. A soccer player kicks the ball, exerting a constant

force of magnitude 50.0 N in the same direction as the ball’s motion.

Over what distance must the player’s foot be in contact with the ball

to increase the ball’s speed to 6.00 m/s?

4.2.3. Tarzan, in one tree, sees Jane in another tree. He grabs the

end of a vine with length 20 m that makes an angle of 45∘ with the

vertical, steps off his tree limb, and swings down and then up to Jane’s

open arms. When he arrives, his vine makes an angle of 30∘ with the

vertical. Determine whether he gives her a tender embrace or knocks

her off her limb by calculating Tarzan’s speed just before he reaches

Jane. You can ignore air resistance and the mass of the vine.

4.2.4. A potential energy function for a system in which a three-

dimensional force acts is of the form 𝑈 = −𝛼
𝑟 , where 𝑟 =

√︀
𝑥2 + 𝑦2 + 𝑧2

and 𝛼 is a constant value. Find the force that acts at the point deter-

mined by position vector r⃗ = 𝑥i + 𝑦j + 𝑧k⃗.

4.2.5. A block of mass 0.20 kg is placed on top of a light, vertical

spring of force constant 4 kN/m and pushed downward so that the

spring is compressed by 0.05 m. After the block is released from rest,

it travels upward and then leaves the spring. To what maximum height

above the point of release does it rise?

Case 4.3

4.3.1. The mass of a proton is 1836 times the mass of an electron.

(a) A proton is traveling at speed 𝑣𝑝. At what speed (in terms of 𝑣𝑝)

would an electron have the same kinetic energy as the proton? (b) An

electron has kinetic energy 𝐾𝑒. If a proton has the same momentum

as the electron, what is its kinetic energy (in terms of 𝐾𝑒)? (c) If

a proton in part (b) has the same speed as the electron, what is its

kinetic energy (in terms of 𝐾𝑒)?

4.3.2. A 2.00-kg block of ice is placed against a horizontal spring

that has force constant 𝑘 = 200 N/m and is compressed 0.04 m. The
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spring is released and accelerates the block along a horizontal surface.

You can ignore friction and the mass of the spring. (a) Calculate

the work done on the block by the spring during the motion of the

block from its initial position to where the spring has returned to its

uncompressed length. (b) What is the speed of the block after it leaves

the spring?

4.3.3. A 0.40-kg stone is held 0.5 m above the top edge of a water

well and then dropped into it. The well has a depth of 4.5 m. Relative

to the configuration with the stone at the top edge of the well, what is

the gravitational potential energy of the stone–Earth system (a) before

the stone is released and (b) when it reaches the bottom of the well?

(c) What is the change in gravitational potential energy of the system

from release to reaching the bottom of the well?

4.3.4. The engine delivers 150 kW to an aircraft propeller at

2400 rev/min. (a) How much torque does the aircraft engine pro-

vide? (b) How much work does the engine do in one revolution of the

propeller?

4.3.5. A billiard ball moving at 𝑣0 = 5.0 m/s collides with another

v⃗0

v⃗1

v⃗2

Figure 4.1. Problem 4.3.5

billiard ball at rest, as shown in Fig. 4.1. The balls move off at right

angles to one another. If the first ball continues with a speed of 𝑣1 =
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3.0 m/s, what is the speed 𝑣2 of the ball that was initially at rest?

Case 4.4

4.4.1. You throw a 10-N rock vertically into the air from ground

level. You observe that when it is 20.0 m above the ground, it is

traveling at 15.0 m/s upward. Use the work-energy theorem to find

(a) the rock’s speed just as it left the ground and (b) its maximum

height.

4.4.2. A 10.0-kg rock is sliding on a rough, horizontal surface at

4.00 m/s and eventually stops due to friction. The coefficient of kinetic

friction between the rock and the surface is 0.150. What average power

is produced by friction as the rock stops?

4.4.3. Astronomers discover a meteorite moving directly toward

the Earth with velocity of 1 km/s. The distance from meteorite to the

center of the Earth is equal to 16 times radius of the Earth. Estimate

the velocity of the meteorite when it hits the Earth’s surface. Ignore

all drag effects.

4.4.4. A single conservative force acting on a particle within a

system varies as F⃗ = −2(𝑎𝑥+ 2𝑏𝑥3)⃗i, where 𝑎 and 𝑏 are constants, F⃗

is in newtons, and 𝑥 is in meters. (a) Calculate the potential energy

function 𝑈(𝑥) associated with this force for the system, taking 𝑈 = 0

at 𝑥 = 0. Find (b) the change in potential energy and (c) the change

in kinetic energy of the system as the particle moves from 𝑥 = 1.00 m

to 𝑥 = 2.00 m.

4.4.5. A light rope is 0.90 m long. Its top end is pivoted on a

frictionless, horizontal axle. The rope hangs straight down at rest

with a small, massive ball attached to its bottom end. You strike the

ball, suddenly giving it a horizontal velocity so that it swings around

in a full circle. What minimum speed at the bottom is required to

make the ball go over the top of the circle?

Case 4.5

4.5.1. A boy in a wheelchair (total mass 50.0 kg) has a speed of
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1.50 m/s at the crest of a slope 2.50 m high and 12.5 m long. At

the bottom of the slope, his speed is 6.50 m/s. Assume air resistance

and rolling resistance can be modeled as a constant friction force of

40.0 N. Find the work he did in pushing forward on his wheels during

the downhill ride.

4.5.2. A toy cannon uses a spring to project a 5.0-g soft rubber ball.

The spring is originally compressed by 5.00 cm and has a force constant

of 10.0 N/m. When the cannon is fired, the ball moves 10.0 cm through

the horizontal barrel of the cannon, and the barrel exerts a constant

friction force of 0.025 N on the ball. (a) With what speed does the

projectile leave the barrel of the cannon? (b) At what point does the

ball have maximum speed? (c) What is this maximum speed?

4.5.3. An electric scooter has a battery capable of supplying

0.150 kWh of energy. If friction forces and other losses account for

50.0% of the energy usage, what altitude change can a rider achieve

when driving in a hilly terrain if the rider and the scooter have a com-

bined weight of 900 N?

4.5.4. A 600-kg elevator starts from rest. It moves upward for

2.00 s with a constant acceleration until it reaches its cruising speed of

2.00 m/s. (a) What is the average power of the elevator motor during

this time interval? (b) How does this power compare with the motor

power when the elevator moves at its cruising speed?

4.5.5. What is the minimum speed (relative to Earth) required for

a rocket to send it out of the solar system? Note that you need to take

use of Earth’s speed to arrive at your result.
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Chapter 5

MECHANICAL OSCILLATIONS AND WAVES

E
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Equation Equation title Comments

1 2 3 4

5.1 𝑇 =
𝑡

𝑁
;

𝑓 =
1

𝑇

Period 𝑇 and fre-

quency of oscilla-

tions 𝑓

𝑁 is a number of os-

cillations per time 𝑡

5.2 𝜔 = 2𝜋𝑓 Angular frequency

of oscillations

5.3
𝑑2𝑥

𝑑𝑡2
+ 𝜔2

0
𝑥 = 0 Differential equa-

tion of simple har-

monic oscillations

𝜔0 is an angular

frequency of un-

damped oscillations

5.4 𝑥 = 𝐴 cos(𝜔𝑡 + 𝜙0) Position under

harmonic oscilla-

tions

𝑥 is a displacement

from equilibrium

position; 𝐴 is an

amplitude of os-

cillations; 𝜙0 is

an initial phase of

oscillations

5.5 𝑇 = 2𝜋

√︂
𝑙

𝑔
Period of a simple

pendulum

𝑙 is a the length of

the pendulum
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1 2 3 4

5.6 𝑇 = 2𝜋

√︂
𝑚

𝑘
Period of a spring-

mass oscillator

𝑘 is a spring con-

stant; 𝑚 is a mass

of the load

5.7 𝑇 = 2𝜋

√︂
𝐽

𝑚𝑔𝑙
Period of a physi-

cal pendulum

𝐽 is a moment of

inertia of a body

about the axis of ro-

tation; 𝑙 is a dis-

tance between the

pivot and the center

of mass

5.8
𝑑2𝑥

𝑑𝑡2
+ 2𝛽

𝑑𝑥

𝑑𝑡
+

+ 𝜔2
0
𝑥 = 0

Differential equa-

tion of free

damped oscilla-

tions

𝛽 = 𝑟
2𝑚 is a damp-

ing coefficient; 𝑟 is

a linear drag (resis-

tance) coefficient

5.9 𝑥 = 𝐴0 exp
−𝛽𝑡×

× cos(𝜔𝑡 + 𝜙0)

Displacement of

under-damped

oscillations

𝜔 =
√︀
𝜔2
0 − 𝛽2

is an angular fre-

quency of damped

oscillations

5.10 𝜔0 = 𝛽 Condition for crit-

ical damping

𝜔0 is a natural oscil-

lation frequency

5.11
𝑑2𝑥

𝑑𝑡2
+ 2𝛽

𝑑𝑥

𝑑𝑡
+

+ 𝜔2
0
𝑥 =

𝐹0

𝑚
cos(Ω𝑡)

Differential equa-

tion of driven os-

cillations

𝐹0 is an amplitude

of a driving force;

Ω is an angular fre-

quency of a driving

force

5.12 𝑥=𝐴(Ω) cos(Ω𝑡−𝜑
𝑑
) Displacement of

driven oscillations

𝜑
𝑑
is a phase shift of

driven oscillations
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5.13 𝐴(Ω) =
𝐹0/𝑚√︁

(Ω2−𝜔2
0
)2+4𝛽2Ω2

Amplitude of

driven oscillations

𝜔0 is an angular

frequency of un-

damped oscillations

5.14 tan𝜑
𝑑
=

2𝛽Ω

Ω2 − 𝜔2
0

Phase shift of driv-

ing oscillations

𝛽 is a damping co-

efficient

5.15
𝜕2𝜉

𝜕𝑡2
= 𝑣2

𝜕2𝜉

𝜕𝑥2
Wave equation 𝑣 is a propagation

speed of a wave

5.16 𝜉(𝑥, 𝑡) =

=𝐴cos(𝜔𝑡−𝑘𝑥+𝜙0),

𝑘 = 2𝜋/𝜆

Equation of a

plane harmonic

wave with the

wavenumber 𝑘

𝜉(𝑥, 𝑡) is a displace-

ment of a particle

at the position 𝑥 at

the time 𝑡; 𝜆 is a

wavelength

5.17 𝑣 = 𝜆𝑓 = 𝜔/𝑘 Propagation speed

of a wave

𝑓 is a frequency of

oscillations

5.18 𝑣⊥ =

√︂
𝐹

𝜇
Propagation speed

of a transversal

wave on a string

𝐹 is a string tension

force; 𝜇 is a linear

mass density

5.19 𝑣‖ =

√︂
𝐸

𝜌
Propagation speed

of a longitudinal

wave in an elastic

medium

𝐸 is Young’s mod-

ule; 𝜌 is a mass den-

sity of the medium

5.20 𝑣 =

√︂
𝛾𝑃

𝜌
Propagation speed

of a sound wave in

gases

𝛾 is an adiabatic in-

dex; 𝑃 is a gas pres-

sure; 𝜌 is a mass

density of a gas
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5.21 ⟨𝑤⟩ = 1

2
𝜌𝐴2𝜔2 Average wave en-

ergy density

𝐴 is an amplitude

of the wave; 𝜔 is an-

gular frequency; 𝜌

is a mass density of

the medium

5.22 j⃗ = ⟨𝑤⟩v⃗ Vector of an en-

ergy flux density

v⃗ is a propagation

velocity vector

Pre-Class Reading: [1] chap. 13&15; [2] chap. 13&14; [3] chap. 15&16.

Case 5.1

5.1.1. This procedure has actually been used to “weigh” astronauts

in space. A 45.0-kg chair is attached to a spring and allowed to oscil-

late. When it is empty, the chair takes 1.50 s to make one complete

vibration. But with an astronaut sitting in it, with his feet off the

floor, the chair takes 2.50 s for one cycle. What is the mass of the

astronaut?

5.1.2. A 0.32-kg toy is undergoing SHM on the end of a horizontal

spring with force constant 𝑘 = 200 N/m. When the object is 0.10 m

from its equilibrium position, it is observed to have a speed of 0.50m/s.

What are (a) the total energy of the object at any point of its motion;

(b) the amplitude of the motion; (c) the maximum speed attained by

the object during its motion?

5.1.3. A mass on spring with a natural angular frequency

𝜔0 = 1.3 rad/s is placed in an environment in which there is a damping

force proportional to the speed of the mass. If the amplitude is reduced

to 36.8 % its initial value in 2.0 s, what is the angular frequency of the

damped motion?

5.1.4. A mass of 1.5 kg is suspended from a spring, which stretches
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by 10 cm. The support from which the spring is suspended is set

into sinusoidal motion. At what frequency would you expect resonant

behavior?

5.1.5. The wave equation for a particular wave is

𝑦(𝑥, 𝑡) = 4.0 sin

(︂
𝜋(𝑥− 400𝑡)

2

)︂
.

All values are in appropriate SI units. What is the (a) amplitude;

(b) wavelength; (c) frequency; (d) and propagation speed of the wave?

Case 5.2

5.2.1. When a 0.650-kg mass oscillates on an ideal spring, the fre-

quency is 6.30 Hz. (a) What will the frequency be if 0.160 kg are added

to the original mass, and (b) subtracted from the original mass? Try

to solve this problem without finding the force constant of the spring.

5.2.2. You are watching an object that is moving in SHM. When the

object is displaced 0.800 m to the right of its equilibrium position, it

has a velocity of 1.50 m/s to the right and an acceleration of 5.00 m/s2

to the left. How much farther from this point will the object move

before it stops momentarily and then starts to move back to the left?

5.2.3. The damping coefficient of a damped harmonic oscillator can

be adjusted. Two measurements are made. First, when the damping

coefficient is zero, the angular frequency of motion is 4000 rad/s. Sec-

ond, a static measurement shows that the effective spring constant of

the system is 200 N/m. To what value should the linear drag coefficient

be set in order to have critical damping?

5.2.4. Consider the driven, damped harmonic motion with natural

oscillation frequency 𝜔0 and damping coefficient 𝛽. Determine resonant

frequency of the system. Resonance occurs when the amplitude has a

maximum as a function of driven frequency.

5.2.5. One end of a horizontal rope is attached to a prong of an

electrically driven tuning fork that vibrates the rope transversely at

440 Hz. The other end passes over a pulley and supports a 2.00-kg

mass. The linear mass density of the rope is 0.050 kg/m. (a) What
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is the speed of a transverse wave on the rope? (b) What is the wave-

length? (c) How would your answers to parts (a) and (b) change if the

mass were decreased to 0.50 kg?

Case 5.3

5.3.1. A 3.00-kg mass on a spring has displacement as a function

of time given by the equation

𝑥(𝑡) = (8.00 cm) cos
[︀
(6s−1)𝑡− 𝜋/2

]︀
.

Find (a) the time for one complete vibration; (b) the force constant

of the spring; (c) the maximum speed of the mass; (d) the maximum

force on the mass; (e) the position, speed, and acceleration of the mass

at 𝑡 = 1.047 s; (f) the force on the mass at that time.

5.3.2. A 0.400-kg glider, attached to the end of an ideal spring with

force constant 𝑘 = 250 N/m, undergoes SHM with an amplitude of

0.050 m. Compute (a) the maximum speed of the glider; (b) the speed

of the glider when it is at 𝑥 = −0.03 m; (c) the magnitude of the

maximum acceleration of the glider; (d) the acceleration of the glider

at 𝑥 = −0.03 m; (e) the total mechanical energy of the glider at any

point in its motion.

5.3.3. A harmonic oscillator with natural period 𝑇 = 6.283 s is

placed in an environment where its motion is damped, with a damping

force proportional to its speed. The amplitude of the oscillation drops

to 95 percent of its original value in 0.5 s. What is the period of the

oscillator in the new environment?

5.3.4. A 2.00-kg object attached to a spring moves without friction

and is driven by an external force given by the expression

𝐹 = 8.00 sin(3𝑡), where 𝐹 is in newtons and 𝑡 is in seconds. The

force constant of the spring is 50.0 N/m. Find (a) the resonance an-

gular frequency of the system, (b) the angular frequency of the driven

system, and (c) the amplitude of the motion.

5.3.5. On December 26, 2004, a great earthquake occurred off the

coast of Sumatra and triggered immense waves (tsunami) that killed

some 200,000 people. Satellites observing these waves from space mea-
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sured 800 km from one wave crest to the next and a period between

waves of 1.0 hour. What was the speed of these waves in m/s and

km/h? Does your answer help you understand why the waves caused

such devastation?

Case 5.4

5.4.1. A 1.50-kg, frictionless block is attached to an ideal spring

with force constant 600 N/m. At 𝑡 = 0 the spring is neither stretched

nor compressed and the block is moving in the positive direction at

8.0 m/s. Find (a) the amplitude and (b) the phase angle. (c) Write

an equation for the position as a function of time.

5.4.2. A harmonic oscillator has angular frequency 𝜔 and amplitude

𝐴. (a) What are the magnitudes of the displacement and velocity when

the elastic potential energy is equal to the kinetic energy? (Assume

that 𝑈 = 0 at equilibrium.) (b) How often does this occur in each

cycle? What is the time between occurrences? (c) At an instant when

the displacement is equal to 𝐴/2, what fraction of the total energy of

the system is kinetic and what fraction is potential?

5.4.3. A spring and an attached bob oscillates in viscous medium

3.0 5.0 𝑡, s

10.0 cm
9.6 cm

Figure 5.1. Problem 5.4.3
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(Fig. 5.1). A given maximum, of +10.0 cm from the equilibrium po-

sition, is observed at 𝑡 = 3.0 s, and the next maximum, of +9.6 cm,

occurs at 𝑡 = 5.0 s. (a) What is the angular oscillation frequency of the

system? (b) What is the damping coefficient of the system? (c) What

will the position of the bob be at 6 s? (d) What is the position at

𝑡 = 0 s?

5.4.4. A block weighing 30.0 N is suspended from a spring that has

a force constant of 300 N/m. The system is undamped and is subjected

to a harmonic driving force of frequency 1.00 Hz, resulting in a forced-

motion amplitude of 5.00 cm. Determine the maximum value of the

driving force.

5.4.5. A piano wire with mass 2.00 g and length 80.0 cm is stretched

with a tension of 36.0N. A wave with frequency 150.0Hz and amplitude

1.0 mm travels along the wire. (a) Calculate the average power carried

by the wave. (b) What happens to the average power if the wave

amplitude is doubled?

Case 5.5

5.5.1. A 250-g block is attached to a horizontal spring and executes

simple harmonic motion with a period of 0.314 s. The total energy

of the system is 8.00 J. Find (a) the force constant of the spring and

(b) the amplitude of the motion.

5.5.2. A ball of mass 𝑚 is connected to two rubber bands of length

Figure 5.2. Problem 5.5.2

𝐿, each under tension 𝑇 as shown in Fig. 5.2. The ball is displaced
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by a small distance 𝑦 perpendicular to the length of the rubber bands.

Assuming the tension does not change, find (a) the restoring force and

(b) the angular oscillation frequency of the system.

5.5.3. A 10.-kg object oscillates at the end of a vertical spring that

has a spring constant of 2.5 · 104 N/m. The effect of air resistance is
represented by the damping coefficient 𝑏 = 2.00 N·s/m. (a) Calculate
the frequency of the damped oscillation. (b) By what percentage does

the amplitude of the oscillation decrease in each cycle? (c) Find the

time interval that elapses while the energy of the system drops to 1.00%

of its initial value.

5.5.4. A particular spring has a spring constant of 76 N/m and

a mass of 0.5 kg at its end. When the spring is driven in a vis-

cous medium, the resonant motion occurs at an angular frequency of

12 rad/s. What is (a) the damping coefficient of the system? (b) the

linear drag coefficient due to the viscous medium?

5.5.5. The speed of sound in air at 24∘C is 345 m/s. (a) What

is the wavelength of a sound wave with a frequency of 880 Hz, corre-

sponding to the note A5 on a piano, and how many milliseconds does

each vibration take? (b) What is the wavelength of a sound wave one

octave lower than the note in part (a)?
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Chapter 6

MOLECULAR PHYSICS AND IDEAL GAS LAW

E
q
u
a
ti
o
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

6.1 𝑃𝑉 = 𝜈𝑅𝑇 Ideal gas law 𝑃 is a pressure of

the gas; 𝑉 is a vol-

ume; 𝜈 is a num-

ber of moles of a

substance; 𝑅 is a

universal gas con-

stant; 𝑇 is an abso-

lute temperature

6.2 𝑃 = 𝑛𝑘
𝐵
𝑇 Pressure of an

ideal gas

𝑛 is a number den-

sity of particles; 𝑘
𝐵

is the Boltzmann’s

constant

6.3 𝑃 =
2

3
𝑛⟨𝜀⟩ =

=
1

3
𝑛𝑚⟨𝜐2⟩

The main equa-

tion of a kinetic

theory of gases

⟨𝜀⟩ = 3
2𝑘𝐵

𝑇 is an

average kinetic en-

ergy of a transla-

tional motion of the

molecule with the

mass 𝑚
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6.4 ⟨𝜀⟩ = 𝑖

2
𝑘
𝐵
𝑇 Equipartition en-

ergy theorem

⟨𝜀⟩ is an average ki-
netic energy of the

molecules; 𝑖 is a

number of degrees

of freedom

6.5 𝑓 (𝑣) =
𝑑𝑁

𝑁𝑑𝜐
=

= 𝐴𝜐2𝑒
−
𝑚𝜐2

2𝑘
𝐵
𝑇 ;

𝐴 = 4𝜋

(︂
𝑚

2𝜋𝑘
𝐵
𝑇

)︂3
2

Maxwell–Boltz-

mann speed

distribution func-

tion

𝑑𝑁 is a number

of molecules with

speed from 𝑣 to

𝑣 + 𝑑𝑣; 𝑁 is a

total number of

molecules

6.6 𝜐rms =
√︀

⟨𝜐2⟩ =

=

√︂
3𝑘𝑇

𝑚
=

√︂
3𝑅𝑇

𝜇

Root mean square

speed of the

molecules

𝑚 is a mass of the

molecule

6.7 𝜐mp =

√︂
2𝑅𝑇

𝜇
The most proba-

ble speed of the

molecules

6.8 ⟨𝜐⟩ =
√︂

8𝑅𝑇

𝜋𝜇
The average speed

of the molecules

6.9 𝑃 (𝑧) = 𝑃0𝑒
−
𝜇𝑔𝑧

𝑅𝑇 Barometric for-

mula

𝑃 (𝑧) is a pressure

at the height 𝑧; 𝑃0

is a pressure at sea

level
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6.10 𝑛(𝑧) = 𝑛0𝑒
−
𝑚𝑔𝑧

𝑘
𝐵
𝑇 =

= 𝑛0𝑒
−
𝜇𝑔𝑧

𝑅𝑇

Law of atmo-

sphere

𝑛0 is a number den-

sity of molecules at

sea level; 𝑧 is a

height

Pre-Class Reading: [1] chap. 18; [2] chap. 19; [3] chap. 21.

Case 6.1

6.1.1. Helium gas with a volume of 2.60 L, under a pressure of

1.30 atm and at a temperature of 41.0∘C, is warmed until both pres-

sure and volume are doubled. (a) What is the final temperature?

(b) How many grams of helium are there? The molar mass of helium

is 4.00 g/mol.

6.1.2. Three moles of an ideal gas are in a rigid cubical box with

sides of length 0.200 m. (a) What is the force that the gas exerts on

each of the six sides of the box when the gas temperature is 20.0∘C?

(b) What is the force when the temperature of the gas is increased to

100.0∘C?

6.1.3. Two gases in a mixture diffuse through a filter at rates pro-

portional to their rms speeds. (a) Find the ratio of speeds for the

two isotopes of chlorine, 35Cl and 37Cl, as they diffuse through the air.

(b) Which isotope moves faster?

6.1.4. Consider an ideal gas at 27∘C and 1.00 atm pressure. To get

some idea how close these molecules are to each other, on the average,

imagine them to be uniformly spaced, with each molecule at the center

of a small cube. (a) What is the length of an edge of each cube if

adjacent cubes touch but do not overlap? (b) How does this distance

compare with the diameter of a typical molecule? (c) How does their

separation compare with the spacing of atoms in solids, which typically
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are about 0.3 nm apart?

6.1.5. Assume the Earth’s atmosphere has a uniform temperature

of 17.0∘C and uniform composition, with an effective molar mass of

29 g/mol. Jetliners cruise at an altitude about 8.31 km. Find the ratio

of the atmospheric density there to the density at sea level.

Case 6.2

6.2.1. A cylindrical tank has a tight-fitting piston that allows the

volume of the tank to be changed. The tank originally contains 0.15m3

of air at a pressure of 2.40 atm. The piston is slowly pulled out until

the volume of the gas is increased to 0.360 m3. If the temperature

remains constant, what is the final value of the pressure?

6.2.2. A cylinder contains 0.10 mol of an ideal monatomic gas.

Initially the gas is at a pressure of 1.00 · 105 Pa and occupies a volume
of 2.50 ·10−3 m3. (a) Find the initial temperature of the gas in kelvins.

(b) If the gas is allowed to expand to twice the initial volume, find the

final temperature (in kelvins) and pressure of the gas if the expansion

is (i) isothermal; (ii) isobaric.

6.2.3. Modem vacuum pumps make it easy to attain pressures of

the order of 10−13 atm in the laboratory. (a) At a pressure of 9.00 ·
10−14 atm and an ordinary temperature of 300.0 K how many molecules

are present in a volume of 1.00 cm3? (b) How many molecules would

be present at the same temperature but at 1.00 atm instead?

6.2.4. Consider a container of nitrogen gas molecules at 900 K.

Calculate (a) the most probable speed, (b) the average speed, and

(c) the rms speed for the molecules.

6.2.5. A flask contains a mixture of neon (10Ne), krypton (36Kr),

and radon (86Rn) gases. Compare (a) the average kinetic energies of

the three types of atoms and; (b) the root-mean-square speeds.

Case 6.3

6.3.1. A cylinder contains a mixture of helium and argon gas in

equilibrium at 150∘C. (a) What is the average kinetic energy for each
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type of gas molecule? (b) What is the rms speed of each type of

molecule?

6.3.2. The total lung volume for a typical physics student is 6.00 L.

A physics student fills her lungs with air at an absolute pressure of

1.00 atm. Then, holding her breath, she compresses her chest cavity,

decreasing her lung volume to 5.70 L. What is the pressure of the air

in her lungs then? Assume that the temperature of the air remains

constant.

6.3.3. (a) How many atoms of helium gas fill a spherical balloon

of diameter 30.0 cm at 20.0∘C and 1.00 atm? (b) What is the average

kinetic energy of the helium atoms? (c) What is the rms speed of the

helium atoms?

6.3.4. In a gas at standard conditions, what is the length of the side

of a cube that contains a number of molecules equal to the population

of the Earth (about 7 · 109 people)?
6.3.5. At what temperature is the root-mean-square speed of oxy-

gen molecules equal to the root-mean-square speed of hydrogen molec-

ules at 27.0∘C?

Case 6.4

6.4.1. A 2.00-mol sample of oxygen gas is confined to a 5.00-L vessel

at a pressure of 8.00 atm. Find the average translational kinetic energy

of the oxygen molecules under these conditions.

6.4.2. A diver observes a bubble of air rising from the bottom of

a lake (where the absolute pressure is 3.50 atm) to the surface (where

the pressure is 1.00 atm). The temperature at the bottom is 4.0∘C,

and the temperature at the surface is 23.0∘C. (a) What is the ratio of

the volume of the bubble as it reaches the surface to its volume at the

bottom? (b) Would it be safe for the diver to hold his breath while

ascending from the bottom of the lake to the surface? Why or why

not?

6.4.3. The rms speed of an oxygen molecule (O2) in a container of

53



oxygen gas is 625 m/s. What is the temperature of the gas?

6.4.4. How many moles are in a 1.00-kg bottle of water? How many

molecules? The molar mass of water is 18.0 g/mol.

6.4.5. Smoke particles in the air typically have masses of the order

of 10−16 kg. The Brownian motion (rapid, irregular movement) of these

particles, resulting from collisions with air molecules, can be observed

with a microscope. (a) Find the root-mean-square speed of Brownian

motion for a particle with a mass of 3.00 · 10−16 kg in air at 300 K.

(b) Would the root-mean-square speed be different if the particle were

in hydrogen gas at the same temperature? Explain.

Case 6.5

6.5.1. Given that the molecular weight of water (H2O) is 18 g/mol

and that the volume occupied by 1.0 g of water is 10−6 m3, use Avo-

gadro’s number to find the distance between neighboring water molec-

ules. Assume for simplicity that the molecules stacked like cubes.

6.5.2. The pressure of an ideal gas in a closed container is 0.60 atm

at 35∘C. The number of molecules is 5.0 · 1022. (a) What are the

pressure in pascals and the temperature in kelvins?(b) What is the

volume of the container? (c) If the container is heated to 120∘C, what

is the pressure in atmospheres?

6.5.3. Use the ideal gas law to calculate the volume occupied by

1 mol of ideal gas at 1 atm pressure and 0∘C. Given that the average

molecular weight of air is 28.9 g/mol, calculate the mass density of air,

in kg/m3, at the above conditions.

6.5.4. The rms speed of 1 mol of argon atoms (atomic weight

40 g/mol) in a box is 680 m/s. (a) What is the temperature inside

the box? (b) If the box has a volume of 1 L, what is the pressure?

Treat the gas as ideal.

6.5.5. If the rms speed of molecules of gaseous H2O is 200 m/s,

what will be the rms speed of CO2 molecules at the same temperature?

Assume that both of these are an ideal gas.
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Chapter 7

THERMODYNAMICS

E
q
u
a
ti
o
n

n
u
m
b
er

Equation Equation title Comments

1 2 3 4

7.1 𝛿𝑄 = 𝑑𝑈 + 𝛿𝑊 The first law of

thermodynamics

𝛿𝑄 and 𝛿𝑊 are in-

finitesimal amounts

of heat supplied

to the system

and work done

by the system,

respectively; 𝑑𝑈

is a differential

change in the inter-

nal energy of the

system

7.2 𝛿𝑊 = 𝑃𝑑𝑉 Infinitesimal

amount of work

done by a gas

𝑃 is a gas pressure;

𝑑𝑉 is a differential

volume change

7.3 𝐶 =
𝛿𝑄

𝑑𝑇
Heat capacity of a

body

𝑑𝑇 is a differential

temperature change
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1 2 3 4

7.4 𝑈 = 𝑁⟨𝜀⟩ =

=
𝑚

𝜇

𝑖

2
𝑅𝑇 =

=
𝑚

𝜇
𝐶

V
𝑇

Ideal gas internal

energy

𝑁 is a number of

molecules; ⟨𝜀⟩ is an
average energy of

the molecule; 𝑚 is a

gas mass; 𝜇 is a mo-

lar mass of the gas;

𝐶
𝑉
is a molar heat

capacity under the

constant volume

7.5 𝑐 =
𝐶

𝑚
Specific heat ca-

pacity

𝐶 is a body heat ca-

pacity; 𝑚 is a mass

of a body

7.6 𝐶𝜇 = 𝜇𝑐 =
𝜇

𝑚
𝐶 Molar heat capac-

ity

7.7 𝐶
𝑉
=

𝜇

𝑚

(︂
𝛿𝑄

𝑑𝑇

)︂
𝑉

=

=
𝑖

2
𝑅

Molar heat capac-

ity under constant

volume

(︂
𝛿𝑄

𝑑𝑇

)︂
𝑉

=

(︂
𝑑𝑈

𝑑𝑇

)︂
𝑉

7.8 𝐶
𝑃
=

𝜇

𝑚

(︂
𝛿𝑄

𝑑𝑇

)︂
𝑃

=

=
𝑖 + 2

2
𝑅

Molar heat capac-

ity under constant

pressure

𝑖 is a number of de-

grees of freedom

7.9 𝐶
𝑃
= 𝐶

𝑉
+𝑅 Mayer’s relation Ideal gas only

7.10 𝑃𝑉 𝛾 = const;

𝑇𝑉 𝛾−1 = const;

𝑇𝑃
1−𝛾
𝛾 = const

Equation for an

ideal gas adiabatic

process

𝛾 = 𝐶
𝑃
/𝐶

𝑉
is

adiabatic index;

𝛾 = 𝑖+2
𝑖 ; 𝑖 =

2
𝛾−1
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7.11 𝑊 =
𝑚

𝜇
𝑅𝑇 ln

𝑉
𝑓

𝑉
𝑖

=

=
𝑚

𝜇
𝑅𝑇 ln

𝑃
𝑖

𝑃
𝑓

Work done by an

ideal gas under

constant tempera-

ture

𝑃
𝑖
and 𝑃

𝑓
are initial

and final pressure

of the gas; 𝑉
𝑖
and

𝑉
𝑓
are initial and

final volume occu-

pied by the gas

7.12 𝑊 =
𝑚

𝜇
𝐶

𝑉
(𝑇

𝑖
− 𝑇

𝑓
) Work done by an

ideal gas in adia-

batic process

𝑇
𝑖
and 𝑇

𝑓
are initial

and final tempera-

ture of the gas

7.13 𝜂 =
𝑇
𝐻
− 𝑇

𝐶

𝑇
𝐻

Efficiency of

Carnot cycle

𝑇
𝐻
and 𝑇

𝐶
are tem-

perature of the hot

and cold reservoir,

respectively

7.14 𝜂 =
|𝑄

𝐻
| − |𝑄

𝐶
|

|𝑄
𝐻
|

Efficiency of the

heat engine

𝑄
𝐻

and 𝑄
𝐶

are

heat transfered

from the hot source

and to the cold sink

through working

body, respectively

7.15 Δ𝑆 =
𝑓∫︀
𝑖

𝛿𝑄

𝑇
Entropy change 𝑖nitial and 𝑓 inal

state of the system

Pre-Class Reading: [1] chap. 17 & 19 & 20; [2] chap. 17 & 18 & 20;

[3] chap. 19 & 20 & 22.

Case 7.1

7.1.1. (a) How much heat does it take to increase the temperature
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of 2.50 mol of a diatomic ideal gas by 30.0 K near room temperature

if the gas is held at constant volume? (b) What is the answer to the

question in part (a) if the gas is monatomic rather than diatomic?

7.1.2. Three moles of an ideal monatomic gas expand at a constant

pressure of 2.50 atm; the volume of the gas changes from 3.20 ·10−2 m3

to 4.50 · 10−2 m3. (a) Calculate the initial and final temperatures of

the gas. (b) Calculate the amount of work the gas does in expanding.

(c) Calculate the amount of heat added to the gas. (d) Calculate the

change in internal energy of the gas.

7.1.3. The engine of a Ferrari F355 F1 sport’s car takes in air at

20.0∘C and 1.00 atm and compresses it adiabatically to 0.0900 times

the original volume. The air may be treated as an ideal gas with

𝛾 = 1.40. (a) Draw a 𝑃𝑉 –diagram for this process. (b) Find the final

temperature and pressure.

7.1.4. A gasoline engine has a power output of 180 kW (about

241 hp). Its thermal efficiency is 28.0%. (a) How much heat must be

supplied to the engine per second? (b) How much heat is discarded by

the engine per second?

7.1.5. One kilogram of iron at 80∘C is dropped into 0.5 L of water

at 20∘C. Given that the specific heat of water is 1 cal/(g·K) and that

of iron 0.107 cal/(g·K), calculate (a) the final equilibrium temperature

of the system and (b) the increase of entropy.

Case 7.2

7.2.1. Two perfectly rigid containers each hold 𝜈 moles of ideal gas,

one being hydrogen (H2) and other being neon (Ne). If it takes 100 J

of heat to increase the temperature of the hydrogen by 2.50∘C, by how

many degrees will the same amount of heat raise the temperature of

the neon?

7.2.2. The temperature of 0.150 mol of an ideal gas is held constant

at 77.0∘C while its volume is reduced to 25.0% of its initial volume.

The initial pressure of the gas is 1.25 atm. (a) Determine the work done

by the gas. (b) What is the change in its internal energy? (c) Does
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the gas exchange heat with its surroundings? If so, how much? Does

the gas absorb or liberate heat?

7.2.3. During an adiabatic expansion the temperature of 0.450 mol

of argon (Ar) drops from 50.0∘C to 10.0∘C. The argon may be treated

as an ideal gas. (a) Draw a 𝑃𝑉 –diagram for this process. (b) How

much work does the gas do? (c) What is the change in internal energy

of the gas?

7.2.4. A Carnot engine whose high-temperature reservoir is at 620K

takes in 550 J of heat at this temperature in each cycle and gives up

335 J to the low-temperature reservoir. (a) How much mechanical

work does the engine perform during each cycle? (b) What is the

temperature of the low-temperature reservoir? (c) What is the thermal

efficiency of the cycle?

7.2.5. One mole of an ideal gas expands at constant pressure from

an initial volume of 250 cm3 to a final volume of 650 cm3. What is the

change in entropy, assuming that the gas is monatomic?

Case 7.3

7.3.1. (a) Calculate the specific heat capacity at constant vol-

ume of water vapor, assuming the nonlinear triatomic molecule has

three translational and three rotational degrees of freedom and that

vibrational motion does not contribute. The molar mass of water is

18.0 g/mol. (b) The actual specific heat capacity of water vapor at low

pressures is about 2000 J/(kg·K). Compare this with your calculation

and comment on the actual role of vibrational motion.

7.3.2. A gas in a cylinder is held at a constant pressure of 2.30 ·
105 Pa and is cooled and compressed from 1.70 m3 to 1.20 m3. The

internal energy of the gas decreases by 1.40 · 104 J. (a) Find the work

done by the gas. (b) Find the absolute value |𝑄| of the heat flow into

or out of the gas, and state the direction of the heat flow. (c) Does it

matter whether the gas is ideal? Why or why not?

7.3.3. Propane gas (C3H8) behaves like an ideal gas with 𝛾 = 1.127.

Determine the molar heat capacity at constant volume and the molar
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heat capacity at constant pressure.

7.3.4. A Carnot engine has an efficiency of 59% and performs 2.5×
104 J of work in each cycle. (a) How much heat does the engine extract

from its heat source in each cycle? (b) Suppose the engine exhausts

heat at room temperature (20.0∘C). What is the temperature of its

heat source?

7.3.5. Calculate the change in entropy of the universe if 0.3 kg of

water at 70∘C is mixed with 0.2 kg of water at 15∘C in a thermally

insulted container. Specific heat of water is 4.2 J/(K·g)

Case 7.4

7.4.1. Six moles of an ideal gas are in a cylinder fitted at one end

with a movable piston. The initial temperature of the gas is 27.0∘C

and the pressure is constant. As part of a machine design project,

calculate the final temperature of the gas after it has done 1.75 · 103 J
of work.

7.4.2. A system is taken from state 𝑎 to state 𝑏 along the three

paths shown in Fig. 7.1. (a) Along which path is the work done by the

system the greatest? The least? (b) If 𝑈𝑏 > 𝑈𝑎, along which path is

the absolute value |𝑄| of the heat transfer the greatest? For this path,

is heat absorbed or liberated by the system?

0

𝑃

𝑉

𝑎

𝑏
1

2

3

Figure 7.1. Problem 7.4.2
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7.4.3. An experimenter adds 970 J of heat to 1.75 mol of an ideal

gas to heat it from 10.0∘C to 25.0∘C at constant pressure. The gas

does +223 J of work during the expansion. (a) Calculate the change

in internal energy of the gas. (b) Calculate 𝛾 for the gas.

7.4.4. A Carnot heat engine has a thermal efficiency of 0.600, and

the temperature of its hot reservoir is 800 K. If 3000 J of heat is rejected

to the cold reservoir in one cycle, (a) what is the work output of the

engine during one cycle? (b) What is the temperature of its cold

reservoir?

7.4.5. A gas obeys the well-known equation of state

𝑃𝑉 = (a constant)𝑇 . The gas expands, doubling in volume. (a) Plot

𝑃 versus 𝑉 when the expansion is isobaric and when it is isothermal.

(b) What work is done by the gas on its surroundings for both cases

above? (c) What is the entropy change of the gas for both cases above?

Case 7.5

7.5.1. Two moles of an ideal gas are compressed in a cylinder at a

constant temperature of 85.0∘C until the original pressure has tripled.

(a) Sketch a 𝑃𝑉 –diagram for this process. (b) Calculate the amount

of work done.

7.5.2. When a quantity of monatomic ideal gas expands at a con-

stant pressure of 4.00 · 104 Pa, the volume of the gas increases from
2.00 · 10−3 m3 to 8.00 · 10−3 m3. What is the change in the internal

energy of the gas?

7.5.3. A monatomic ideal gas that is initially at a pressure of 1.50 ·
105 Pa and has a volume of 0.0800 m3 is compressed adiabatically to

a volume of 0.0400 m3. (a) What is the final pressure? (b) How much

work is done by the gas? (c) What is the ratio of the final temperature

of the gas to its initial temperature? Is the gas heated or cooled by

this compression?

7.5.4. An aircraft engine takes in 9000 J of heat and discards 6400 J

each cycle. (a) What is the mechanical work output of the engine
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during one cycle? (b) What is the thermal efficiency of the engine?

7.5.5. A sophomore with nothing better to do adds heat to 0.350 kg

of ice at 0.0∘C until it is all melted. Latent heat of ice melting is

3.34·105 J/kg. (a) What is the change in entropy of the water? (b) The

source of heat is a very massive body at a temperature of 25.0∘C. What

is the change in entropy of this body? (c) What is the total change in

entropy of the water and the heat source?
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ANSWERS

Chapter 1

1.1.1. a) v⃗ = −12⃗j m/s2 𝑡,

a⃗ = −12⃗jm/s2 b) r⃗ = (3⃗i−6⃗j)m,

v⃗ = −12⃗j m/s

1.1.2. a) v⃗𝑎𝑣
⃒⃒2𝑠
0
= 5⃗i + 5⃗j,

𝑣𝑎𝑣 = 5
√
2 m/s b) v⃗ = 5𝑡i + 5⃗j,

𝑣 = 5
√
𝑡2 + 1 c) 𝑥 = 4 + 0.1𝑦2

1.1.3. a) v⃗ = (𝑣0𝑥 + 𝛼𝑡3

3 )⃗i +

(𝑣0𝑦 + 𝛽𝑡− 1
2𝛾𝑡

2)⃗j, r⃗ = (𝑣0𝑥𝑡 +
𝛼𝑡4

12 )⃗i+(𝑣0𝑦𝑡+
𝛽𝑡2

2 − 𝛾𝑡3

6 )⃗j b) 341 m

c) 176 m

1.1.4. a) 0.6 m/s2 b) 0.8 m/s2

c) 1 m/s2, a⃗ = 0.6𝜏⃗ + 0.8n⃗

1.1.5. a) 6.0 s b) 𝑡1 = −3.0 s,

𝑥1 = 𝑦1 = 18 m; 𝑡2 = 8 s, 𝑥2 =

𝑦2 = 4 m

1.2.1. a)
√
2𝑔𝐻 b) 𝑔𝐻

ℎ

1.2.2. 2𝑏
3𝑐

1.2.3. a) 𝐴 = 0, 𝐵 = 2 m/s2,

𝐶 = 50 m, 𝐷 = 0.5 m/s3 b) v⃗ =

0, a⃗ = 4⃗i m/s2

c) 𝑣𝑥 = 40 m/s, 𝑣𝑦 = 150 m/s, 𝑣 =

155 m/s d) r⃗ = (200⃗i + 550⃗j) m

1.2.4. b) 12.5 m/s2 c) 5 m/s,

v⃗ = (4⃗i + 3⃗j) m/s

1.2.5. a) 1.225 s b) 1.333 s

c) 𝑦 = −4 + 3
2

√
𝑥 + 6

1.3.1. a) A b) 0 s, 2.28 s, 73 s?

c) 1 s, 4.33 s d) 2.67 s

1.3.2. b) −26
3 m/s2, −7

3 m/s2

c) 8.98 m/s2, 15∘ below −𝑥-axis

1.3.3. a) r⃗ = (𝛼𝑡 − 𝛽
3 𝑡

3)⃗i + 𝛾
2𝑡

2⃗j,

a⃗ = −2𝛽𝑡i + 𝛾j b) 3𝛼𝛾
2𝛽 = 9 m

1.3.4. a) r⃗(𝑡) = (1.5𝑡 − 0.5𝑡2)⃗i +

(6− 3𝑡 + 1.5𝑡2)⃗j,

v⃗(𝑡) = (1.5 − 𝑡)⃗i + (−3 + 3𝑡)⃗j,

a⃗(𝑡) = −⃗i + 3⃗j b) 1.125 s

1.3.5. 3.7⃗j− 2.4𝑡k⃗

1.4.1. a) (2⃗i + 3⃗j) m/s2

b) 𝑥 = 3𝑡 + 𝑡2, 𝑦 = 2𝑡 + 1.5𝑡2

1.4.2. a) r⃗ = 5𝑡i + 1.5𝑡2⃗j,

v⃗ = 5⃗i+3𝑡j b) 𝑥 = 10m, 𝑦 = 6m,

v⃗ = 7.81 m/s

1.4.3. b) v⃗ = 𝛼i−2𝛽𝑡j, a⃗ = −2𝛽j

c) 5.37 m/s, 63∘ below +𝑥-axis,

2.4 m/s2, along −𝑦-axis

1.4.4. 𝑣𝑥(𝑡) = −𝐴𝜔 sin𝜔𝑡,

𝑣𝑦(𝑡) = 𝐴𝜔 cos𝜔𝑡, 𝑎𝑥(𝑡) =

−𝐴𝜔2 cos𝜔𝑡, 𝑎𝑦(𝑡) = −𝐴𝜔2 sin𝜔𝑡

1.4.5. 2.64 · 10−4 𝑔

1.5.1. a) s−1 b) 0 c) −𝑢

d) −𝐵𝑢, 0

1.5.2. a) 3.4 s b) 23.8 m

c) ±10 m/s
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1.5.3. a) a⃗ = −𝜔2𝑅[⃗i cos(𝜔𝑡) +

j⃗ sin(𝜔𝑡)] b) 𝑎𝑛 = 𝜔2𝑅, 𝑎𝜏 = 0

1.5.4. v⃗ = 8.0 m/s (−⃗i + j⃗)

1.5.5. a) 843 km/h b) 3500 km

S and 1720 km W from initial po-

sition c) 780 km/h, 26∘ W of S

Chapter 2

2.1.1. a)−(1.92⃗i + 10.8⃗j) kg·m/s
b) −(4.95⃗i + 6.75⃗j) kg·m/s
2.1.2. a) 𝑊 sin𝛼 b) 2𝑊 sin𝛼

c) 𝑊 cos𝛼

2.1.3. 0 m/s

2.1.4. a) 230 m b) 250 N

2.1.5. 3.1 N

2.2.1. a) 2.5 · 1014 m/s2 b) 1.2 ·
10−8 s c) 2.28 · 10−16 N

2.2.2. a) 12∘ b) 1.5 m/s

2.2.3. a) 0.556 b) 3 m/s2,

downward

2.2.4. (1.25⃗i−2.00⃗j−0.30k⃗)m/s

2.2.5. 20 cm from the midpoint of

the iron block along the handle

2.3.1. a) 360 N b) 720 N

2.3.2. b) 2.5 m/s2 c) 1.37 kg

d) 𝑇 = 0.745 W

2.3.3. a) 19.3∘ b) 0.93 m/s2

c) 3.05 m/s

2.3.4. a) 2 · 1030 kg b) 30 km/s

2.3.5. a) 0.4 kg/s b) 5 ms

2.4.1. (2.0⃗i + 1.0⃗j) m/s

2.4.2. 5.0 m

2.4.3. 1.15∘

2.4.4. a) 40 m/s= 144 km/h

b) 3500 N

2.4.5. 2.87 m/s2

2.5.1. a) 0.5 N b) 1.2 N

2.5.2. 3.9 · 105 km
2.5.3. 𝐶 = 𝑚𝑣

𝑅

2.5.4. a) 𝑋 = 𝑌 = 0.6 m

b) 𝑋 = 𝑌 = 0.5 m

2.5.5. 1%

Chapter 3

3.1.1. a) 𝛼𝑧(𝑡) = −1.6 (rad/s3)𝑡

b) 𝛼𝑧

⃒⃒
𝑡=3 𝑠

= −4.8 rad/s2;

𝛼𝑎𝑣−𝑧

⃒⃒3 𝑠
0

= −2.4 rad/s2

3.1.2. a) 8.0 · 10−3 kg·m2 b) 4.0 ·
10−3 kg·m2 c) 4.0 · 10−3 kg·m2

3.1.3. 1.257 · 103 kg·m2/s

3.1.4. c) (−3.1 N·m)k⃗

3.1.5. 785 N·m
3.2.1. a) 𝑎 = 𝜋/4, 𝑏 = 2 rad/s,

𝑐 = 0.2 rad/s3 b) zero

c) 12.18 rad, 7.4 rad/s

3.2.2. a) 𝑚𝐿2/2 b) 11𝑚𝐿2/16

3.2.3. 2.26 · 10−2 kg·m2/s

3.2.4. (17⃗i− 19⃗j + 14k⃗) N·m
3.2.5. 32 rad/s2, 8 m/s2

3.3.1. a) 528 rad b) 12 s

c) −8.4 rad/s2

3.3.2. 7
5 𝑀𝑅2

3.3.3. a) 2.7 · 1040 kg·m2/s

b) 7.15 · 1032 kg·m2/s

3.3.4. 18.85 N

3.3.5. 503 N·m, 600 rev
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3.4.1. 19.5 rad/s

3.4.2. 2.5 · 10−3 kg·m2

3.4.3. 0.6 rev

3.4.4. 10.05 N

3.4.5. a) 0.63 N·m b) 135 rev

3.5.1. a) 1.207 s b) 8.624 rad/s2

3.5.2. a) 0.25 m/s2 b) 1.00 N

c) 0.1 kg

3.5.3. ≈ 1.0 · 10−3 s

3.5.4. a) 0.50 N·m b) 8 Hz

3.5.5. 4.2 · 10−2 kg·m2

Chapter 4

4.1.1. a) 8.00 · 105 J, 6.93 · 105 J
b)−8.00·105 J,−6.93·105 J c) 0 J

4.1.2. a) 4 𝑑 b) 𝑑
2

4.1.3. a) 7.92 m/s b) 8.87 m/s

c) 8.87 m/s

4.1.4. a) 𝐹𝑥 = 3𝑥2 − 8𝑥 − 3

b) 𝑥1 = −1/3m, 𝑥2 = 3m c) 𝑥1 –

stable, 𝑥2 – unstable

4.1.5. 50 MW

4.2.1. −49 J

4.2.2. 8 cm

4.2.3. 7.8 m/s

4.2.4. 𝛼
𝑟3

(︁
𝑥i + 𝑦j + 𝑧k⃗

)︁
4.2.5. 2.5 m

4.3.1. a) 42.85 𝑣𝑝 b) 𝐾𝑒/1836

c) 1836𝐾𝑒

4.3.2. a) 0.16 J b) 0.4 m/s

4.3.3. a) 2 J b) −18 J

c) −20 J

4.3.4. a) 597 N·m b) 3.75 · 103 J

4.3.5. 4.0 m/s

4.4.1. a) 25 m/s b) 31.25 m

4.4.2. −30 W

4.4.3. 11 km/s

4.4.4. a) 𝑎𝑥2 + 𝑏𝑥4 b) 3𝑎 + 15𝑏

c) −3𝑎− 15𝑏

4.4.5. 6 m/s

4.5.1. 250 J

4.5.2. a) 2 m/s b) 4.75 cm after

release c) 2.12 m/s

4.5.3. 300 m

4.5.4. a) 6.60 kW b) 12.0 kW

4.5.5. 12.4 km/s

Chapter 5

5.1.1. 80 kg

5.1.2. a) 1.04 J b) 0.102 m

c) 2.55 m/s

5.1.3. 1.2 rad/s

5.1.4. 1.6 Hz

5.1.5. a) 4.0 m b) 4.0 m

c) 100 Hz d) 400 m/s

5.2.1. a) 5.6 Hz b)7.2 Hz

5.2.2. 0.2 m

5.2.3. 0.1 kg/s

5.2.4.
√︀

𝜔2
0 − 2𝛽2

5.2.5. a) 20 m/s b) 0.045 m

c) both decrease by factor of 2

5.3.1. a) 1.047 s b) 108 N/m

c) 0.48 m/s d) 8.64 N e) 0.0 m;

0.48 m/s; 2.88 m/s2 f) 8.64 N

5.3.2. a) 1.25 m/s b) 1 m/s

c) 31.25 m/s2 d) 18.25 m/s2
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e) 3.125 J

5.3.3. 6.314 s

5.3.4. a) 5 rad/s b) 3 rad/s

c) 0.25 m

5.3.5. 222 m/s = 800 km/h

5.4.1. a) 0.4 m b) −𝜋/2 rad

c) 𝑥(𝑡) = (0.4 m) sin ([20 rad/s]𝑡)

5.4.2. a)
√
2
2 𝐴,

√
2
2 𝐴𝜔 b) 4 times

per cycle, 𝜋
2𝜔 c) 3/4, 1/4

5.4.3. a) 3.14 rad/s b) 0.02 s−1

c) −9.4 cm d) −10.6 cm

5.4.4. 9.0 N

5.4.5. a) 0.13 W b) increased by

factor of 4

5.5.1. a) 100 N/m b) 0.4 m

5.5.2. a) −2𝑇
𝐿 𝑦 b)

√︁
2𝑇
𝑚𝐿

5.5.3. a) 7.96 Hz b) 1.26 %

c) 11.5 s

5.5.4. a) 2.0 s−1 b) 2.0 kg/s

5.5.5. a) 0.392 m, 1.136 ms

b) 0.784 m

Chapter 6

6.1.1. a) 983∘C b) 0.52 g

6.1.2. a) 36.5 kN b) 46.5 kN

6.1.3. a) 1.028 b) 35Cl

6.1.4. a) 3.5 nm

6.1.5. 0.368

6.2.1. 1.0 atm

6.2.2. a) 300 K b) (i) 300 K,

5 · 104 Pa (ii) 600 K, 105 Pa
6.2.3. a) 2.2 · 106 b) 2.4 · 1019

6.2.4. a) 731 m/s b) 825 m/s

c) 895 m/s

6.2.5. a) the same

b) 𝑣Nerms > 𝑣Kr
rms > 𝑣Rnrms

6.3.1. a) 8.75 · 10−21 J

b) 𝑣Herms = 1.62 km/s,

𝑣Arrms = 513 m/s

6.3.2. 1.05 atm

6.3.3. a) 3.54 · 1023
b) 6.065 · 10−21 J c) 1.35 km/s

6.3.4. 6.38 · 10−6 m

6.3.5. 4527∘C

6.4.1. 5.0 · 10−21 J

6.4.2. a) 3.74

6.4.3. 501 K

6.4.4. 55.6 mol,

3.35 · 1025 molecules
6.4.5. a) 6.4 mm/s b) No

6.5.1. 3.1 · 10−10 m

6.5.2. a) 6.1 · 104 Pa, 308 K
b) 3.5 · 10−3 m3 c) 0.77 atm

6.5.3. 22.4 · 10−3 m3, 1.29 kg/m3

6.5.4. a) 742 K b) 6.2 MPa

6.5.5. 128 m/s

Chapter 7

7.1.1. a) 1558 J b) 935 J

7.1.2. a) 321 K, 451 K

b) 3.25 kJ c) 8.1 kJ d) 4.85 kJ

7.1.3. b) 25.1 atm, 768 K

7.1.4. a) 643 kJ/s b) 463 kJ/s

7.1.5. a) 31∘C b) 10 J/K

7.2.1. 4.15 K
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7.2.2. a) −605 J b) 0 c) 605 J,

liberate

7.2.3. b) 224 J c) −224 J

7.2.4. a) 215 J b) 378 K c) 39%

7.2.5. 20 J/K

7.3.1. a) 1385 J/(kg·K)
7.3.2. a) 1.15 · 105 J
b) 1.29 · 105 J, out
7.3.3. 𝐶

𝑉
= 65.43 J/(K·mol),

𝐶
𝑃
= 73.74 J/(K·mol)

7.3.4. a) 4.24 · 104 J b) 715 K

7.3.5. 8 J/K

7.4.1. 62.1 K

7.4.2. a) 1, 3 b) 1, absorbed

7.4.3. a) 747 J b) 1.3

7.4.4. a) 4500 J b) 320 K

7.4.5. b) 𝑊
𝑃=const

= 𝑃1𝑉1,

𝑊
𝑇=const

= 𝑃1𝑉1 ln 2

c) Δ𝑆
𝑃=const

= 𝜈𝐶
𝑃
ln 2,

Δ𝑆
𝑇=const

= 𝜈𝑅 ln 2

7.5.1. b) −6540 J

7.5.2. 240 J

7.5.3. a) 4.76 · 105 Pa
b) −10.6 kJ c) 1.59

7.5.4. a) 2600 J b) 28.9%

7.5.5. a) 428 J/K b) −392 J/K

c) 36 J/K
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APPENDIX

Universal physical constants

𝐺 = 6.674 · 10−11 N·m2/kg2 Gravitational con-
stant

Universal law of
gravity

𝑐 = 299 792 458 m/s Speed of light in vac-
uum

𝑐 ≈ 3 · 108 m/s

𝑘
𝐵
= 1.38 · 10−23 J/K Boltzmann’s con-

stant
Entropy of a thermo-
dynamic system

𝑁
A
= 6.02 · 1023 mol−1 Avogadro’s number Number of molecules

in 1 mole of substance

𝑅 = 8.31 J/(K·mol) Universal gas con-
stant

𝑅 = 𝑘
𝐵
𝑁

𝐴

Some properties of the Earth

𝐿
𝐸
= 4.0 · 107 m Length of the Earth

meridian
Former definition of
one meter

𝑅
𝐸
= 𝐿

𝐸
/(2𝜋) Average radius of the

Earth
𝑅

𝐸
≈ 6.4 · 106 m

𝑅
𝑂
= 1.5 · 1011 m Average radius of the

orbit of the Earth
𝑇

𝑂
= 3.15576 · 107 s Period of orbital mo-

tion of the Earth, one
solar year

𝑇
𝑂

≈ 365.25 day ·
24 h · 60 min · 60 s,
former definition of
one second

𝑀
𝐸
= 6.0 · 1024 kg Mass of the Earth 𝑀

𝐸
= 𝑔𝑅2

𝐸
/𝐺

𝑔 = 9.81 м/с2 Acceleration due to
gravity

𝑔 ≈ 10 m/s2

(in calculations)

𝜇air = 29 · 10−3 kg/mol Molar mass of the air

𝛾air = 1.4 Adiabatic constant of
the air

N2:O2 ≈ 80 : 20 – air
composition

𝑇st = 0 ∘C Standard conditions 𝑇st ≈ 273 K

𝑃st = 1 atm = 1.013 · 105 Pa Standard conditions 𝑃st ≈ 105 Pa
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Derivatives. Basic rules

𝑑(𝑓+𝑔)
𝑑𝑥 = 𝑑𝑓

𝑑𝑥 +
𝑑𝑔
𝑑𝑥

𝑑(𝐶𝑓)
𝑑𝑥 = 𝐶 𝑑𝑓

𝑑𝑥 (𝐶 = const)

𝑑(𝑓 𝑔)
𝑑𝑥 = 𝑑𝑓

𝑑𝑥 𝑔 + 𝑓 𝑑𝑔
𝑑𝑥

𝑑
(︁
𝑓
𝑔

)︁
𝑑𝑥 =

𝑑𝑓
𝑑𝑥 𝑔−𝑓 𝑑𝑔

𝑑𝑥
𝑔2

𝑑
𝑑𝑥 [𝑓 (𝑔(𝑥))] = 𝑑𝑓

𝑑𝑔
𝑑𝑔
𝑑𝑥

𝑑𝑥
𝑑𝑦 =

(︁
𝑑𝑦
𝑑𝑥

)︁−1

(𝑑𝑦𝑑𝑥 ̸= 0)

Derivatives of some functions

𝑑𝐶
𝑑𝑥 = 0 𝑑𝑥

𝑑𝑥 = 1

𝑑
𝑑𝑥 (𝑥

𝛼) = 𝛼𝑥𝛼−1 𝑑
𝑑𝑥 (exp

𝑥) = exp𝑥

𝑑
𝑑𝑥 (sin𝑥) = cos𝑥 𝑑

𝑑𝑥 (cos𝑥) = − sin𝑥

𝑑
𝑑𝑥 (ln𝑥) = 1

𝑥
𝑑
𝑑𝑥 (tan𝑥) = 1

cos2 𝑥

Fundamental Theorem of Calculus
𝑏∫︁

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝐹 (𝑏)− 𝐹 (𝑎), where𝐹 (𝑥) − an antiderivative of 𝑓 (𝑥)

𝐹 (𝑥) − is an antiderivative of 𝑓 (𝑥) ⇔ 𝑑𝐹 (𝑥)

𝑑𝑥
= 𝑓 (𝑥)

Antiderivatives of some functions 1∫︀
𝑑𝑥 = 𝑥

∫︀
𝑥𝛼 𝑑𝑥 = 𝑥𝛼+1

𝛼+1 (𝛼 ̸= −1)∫︀
𝑑𝑥
𝑥 = ln |𝑥|

∫︀
exp𝑥 𝑑𝑥 = exp𝑥∫︀

sin𝑥 𝑑𝑥 = − cos𝑥
∫︀
cos𝑥 𝑑𝑥 = sin𝑥∫︀

𝑑𝑥
1+𝑥2

= arctan𝑥
∫︀

𝑑𝑥
1−𝑥2

= ln
⃒⃒
1−𝑥
1+𝑥

⃒⃒

1An arbitrary constant can be added to the right part of every equations.
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Dot (scalar) product of vectors

a⃗ · b⃗ 𝑑𝑒𝑓
= |a⃗||⃗b| cos

(︁
∠a⃗b⃗

)︁
= b⃗ · a⃗

i⃗ · i⃗ = j⃗ · j⃗ = k⃗ · k⃗ = 1

i⃗ · j⃗ = j⃗ · k⃗ = k⃗ · i⃗ = 0

a⃗ = 𝑎𝑥i + 𝑎𝑦j + 𝑎𝑧k⃗,

b⃗ = 𝑏𝑥i + 𝑏𝑦j + 𝑏𝑧k⃗

a⃗ · b⃗ = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧

Cross (vector) product of vectors

|a⃗× b⃗| 𝑑𝑒𝑓= |a⃗||⃗b| sin
(︁
∠a⃗b⃗

)︁
i⃗× i⃗ = j⃗× j⃗ = k⃗× k⃗ = 0

a⃗⊥
(︁
a⃗× b⃗

)︁
⊥b⃗

a⃗× b⃗ = −b⃗× a⃗

i⃗× j⃗ = k⃗, j⃗× k⃗ = i⃗, k⃗× i⃗ = j⃗

a⃗ = 𝑎𝑥i + 𝑎𝑦j + 𝑎𝑧k⃗,

b⃗ = 𝑏𝑥i + 𝑏𝑦j + 𝑏𝑧k⃗

a⃗× b⃗ = i⃗(𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦) + j⃗(𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧) + k⃗(𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥)

a⃗× b⃗ =

⃒⃒⃒⃒
⃒⃒⃒ i⃗ j⃗ k⃗

𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧

⃒⃒⃒⃒
⃒⃒⃒

Scalar triple product

a⃗ ·
(︁
b⃗× c⃗

)︁
= b⃗ · (c⃗× a⃗) = c⃗ ·

(︁
a⃗× b⃗

)︁
= −c⃗ ·

(︁
b⃗× a⃗

)︁
Vector triple product

a⃗×
(︁
b⃗× c⃗

)︁
= b⃗ (a⃗ · c⃗)− c⃗

(︁
a⃗ · b⃗

)︁
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