

I.V. Shostak, I.V. Gruzdo, M.A. Danova, I.I. Butenko

THEORY OF ALGORITHMS AND COMPUTING

PROCESSES

2013

THE MINISTRY OF EDUCATION AND SCIENCE, YOUTH AND SPORTS OF UKRAINE
National Aerospace University of N.E. Zhukovsky

"Kharkov Aviation Institute"

I.V. Shostak, I.V. Gruzdo, M.A. Danova, I.I. Butenko

THEORY OF ALGORITHMS AND COMPUTING PROCESSES

The manual

Kharkov “KHAI” 2013

THE MINISTRY OF EDUCATION AND SCIENCE, YOUTH AND SPORTS OF UKRAINE
National Aerospace University of N.E. Zhukovsky

"Kharkov Aviation Institute"

I.V. Shostak, I.V. Gruzdo, M.A. Danova, I.I. Butenko

THEORY OF ALGORITHMS AND COMPUTING PROCESSES

The manual

Kharkov “KHAI” 2013

UDC 510.51
Т33

Наведено основні засоби побудови алгоритмічних систем, що

спрямовані на вирішення фундаментальних проблем теорії алгоритмів, а
саме доведення обчислюваності та розв’язуваності. Особливу увагу
приділено прикладним питанням математичної лінгвістики.

Для студентів спеціальності 6.020303 «Прикладна лінгвістика».

Reviewers: dr. techn. science, prof. E. I. Kucherenko,

dr. techn. science, prof. V. M. Levykin

Т33 Theory of algorithms and computing processes [Text]: Tutorial for

students studying in specialty 6.020303 - Applied Linguistics /
I.V. Shostak, I.V. Gruzdo, M.A. Danova, I.I. Butenko. - Kh. : Nat.
aerospace. univ. of N.E. Zhukovsky "Khark. aviat. Inst", 2013. – 80 p.

It is given basic means for algorithmic system development focused to

solving fundamental problems of theory of algorithms namely proof of
computability and resolvability. The applied problems of mathematical
linguistics are under principal concern.

For students of speciality 6.020303 - Applied linguistics.

Il. 18. Table 8. Bibliogr.: 6 titles.

 UDC 510.51

© Shostak I. V., Gruzdo I.V., Danova M. A.,
Butenko I. I., 2013

© National Aerospace University
of N.E. Zhukovsky "Kharkov Aviation
Institute", 2013

3

INTRODUCTION

Initially, the theory of algorithms has arisen in connection with the internal
needs of theoretical mathematics, but as an independent science appeared in
the 30-'40s XX-th century. Along with mathematical logic, it is the basis for the
construction of the theory of computation. They form the theoretical basis for
the design and use of computing devices to bad formalized objects. The first
fundamental work on the theory of algorithms have been published
independently in 1936 by Alan Turing, Alois Church and Emil Post. Their
proposed the Turing machine, the machine Lent and Church's lambda calculus
were equivalent formalisms algorithm, and formulated theses (Lent and the
Church-Turing) postulated the equivalence of their proposed formal systems
and the intuitive notion of an algorithm. An important development of this work
was the formulation and proof of algorithmically unsolvable problems. In the
1950s, substantial contributions to the theory of algorithms have also works by
Kolmogorov and Markov.

Thanks to the theory of algorithms the introduction of mathematical
methods in economics, linguistics, psychology, pedagogy, and other
humanities is happened. The tasks of the theory of algorithms include a formal
proof of the algorithmic unsolvability of the problem, the asymptotic analysis of
algorithms, classification algorithms in accordance with the complexity classes,
criteria comparative quality assessment algorithms, etc. An example of one of
the tasks in this area is the exact description of the algorithm implemented by
the person in the process of forming and decision-making.

In modern conditions, the general computerization of all aspects of
society has given a distinct theory of algorithms applied focus - is primarily
algorithmic systems and algorithmic languages that are the foundation of the
modern theory of programming for both individual computers and networks of
different scales (local, corporate, global) and how to accurately describe the
mappings implemented digital machines. Development of applied linguistics
today also impossible without the use of computers, and consequently, the
basis of the theory of algorithms and computational processes, especially the
theory of formation languages and grammars. Typical problem for applied
linguistics, solutions which are inextricably linked with the theory of algorithms
and computational processes are machine perception and processing of
natural language objects.

Thus, this manual is to form knowledge and skills of students speciality
6.020303 "Applied Linguistics".

4

CHAPTER 1. ALGORITHMIC SYSTEMS

1.1. INTUITIVE CONCEPT OF ALGORITHM. PROPERTIES
OF ALGORITHMS

Intuitively the algorithm is viewed as process of consecutive output of the
problem occurring in discrete time so that in each next moment of time
algorithm system of objects is formed under the certain law from system of the
objects available in the previous moment of time. Strictly speaking, intuitively
such as the concept of algorithm is similar to concept of set it is impossible to
define it mathematically strictly.

It is assumed that the word "algorithm" derives from the name of Central
Asian (Uzbek) mathematician of the IX century Al Khwarizmi (Abu Abdulla
Mohammed ebne Musa al Khwarizmi al Medgusi) — «Algorithmi» in the Latin
transcription, who was the first to formulate calculating rules (procedure) for
four arithmetic actions in a decimal notation.

As long as the calculations were simple, there was no need in algorithms.
As a need in repeated step-by-step procedures appeared the theory of
algorithms arose. However, when problem became even more complicated it
showed that a part from them couldn’t be solved by algorithms. For example,
these are the problems that a human solves based on thinking. The solution of
such problems is based on neuromathematical methods. In this case,
processes of training, tests and mistakes are realized.

Characteristics of algorithm are defined by its properties (characteristics).
Basic properties of algorithm are as follows:

1. Massivness. It is supposed, that the algorithm can satisfy the solution of
all problems of the given type. For example, the algorithm for the solution of
system of the linear algebraic equations should be applicable to the system
consisting of any number of the equations.

2. Productivity. This property means, that the algorithm should lead to
result reception for finite number of steps.

3. Definiteness. The instructions entering into algorithm should be exact
and clear. This characteristic provides unambiguity of result of computing
process at the set initial data.

4. Discretness. This property means that process described by algorithm
and algorithm can be broken into separate elementary stages which possibility
of performance on the computer at the user cause no doubts.

It can seem that any problems is subjected to algorithms. It turns out that
many problems cannot be solved algorithmically. Such problems are called
algorithmically unsolvable.

To prove algorithmic solvability or unsolvability of problems mathematically
strict and exact means are requeired. In the mid-thirties of the last century it
was offered attempts to formalize concept of algorithm have been undertaken

5

and various models of algorithms: recursive functions, Turing and Post
"machines", Markov normal algorithms.

Afterwards it has been ascertained these and other models to be
equivalent in the sense that classes of problems solved by them coincide. This
fact is called Church thesis. Now it is conventional. Formal definition for
concept of algorithm has created prestates for developing the theory of
algorithm even before working out of the first computers. Computer facilities
progress stimulated further development of the theory of algorithms. Besides
the defining the algorithmic resolvability of problems the theory of algorithms is
engaged in an estimation of complexity of algorithms in sense of number of
steps (time complexity) and demanded memory (spatial complexity), and also
is engaged in working out effective algorithms in this sense.

For realization of some algorithms at any reasonable from the point of view
of physics assumptions in performance speed of elementary steps it can
demand more time, than, on modern views, Universe exists, or it is more
memory cells, than the atoms making a planet the Earth.

Therefore, one more problem of the theory of algorithms is the output of a
question of an exception of search of variants in combinatory algorithms.
Estimation of complexity of algorithms and creation of effective algorithm is one
of the major problems of the modern theory of algorithms.

Algotrithm is considered effective when its labour input (number of steps)
is limited by a polynom from the characteristic size of a problem. See examples
for effective and not effective algorithms.

Greedy algorithm. Let’s consider the finite set X containing n elements,
some family of its subsets and XX 2 weight function),0[: Xw .

Let
)(max)(BwAw

XB
 , 




XBb

bwBw).()((1)

The algorithm that in the specified family X chooses a subset A with the
maximum value (weight))(Aw is called as greedy.

The greedy algorithm is effective; the quantity of its steps is)(nO .
Full search. It is given finite set, },...,{ 1 naaX  containing elements n and

predicate },...,{ 1 naaX  n),...,(1 nxxP . This predicate is not symmetric,
i.e ,...),...,(...,,...),...,(..., xyPyxP  . It is required to find a set of elements

),...,(
1 nii aa such that ),...,(

1 nii aaP . The simplest decision of this problem is
that all possible shifts),...,(

1 nii aa from n elements with check of the validity of a
predicate on them get over),...,(

1 nii aa . It is known, that number of shifts is equal
to !n . Hence, labour input of such algorithm of full search is)!(nO . As !n with
growth of n grows faster than any polynom of n degree and faster, than the
given n2 , the algorithm is not effective.

6

1.2. FORMAL CONCEPTS OF STRICT DEFINITION OF ALGORITHMS
When working out an algorithm it is used one of three basic methods.
The first method is to bring a difficult problem to a sequence of more

simple problems – such procedure is called a method of private purposes.
Herewith it is assumed that simpler problems are easier to process than initial
one. The output of the problem can be derived from the outputs off these
simple problems. This method looks rather reasonably, but it is not always easy
for transferring on a specific task. An intelligent choice of simpler problems is
more likely arts or intuitions, than sciences. Moreover, there is no general set of
rules for defining a class of problems that can be solved by means of such
approach.

The second method of developing algorithms is known as a lifting method.
In the beginning it is accepted the initial assumption or calculation for the initial
output of a problem. Then as fast as possible move upward is made in the
direction to better outputs. When the algorithm reaches such point from which it
is impossible to move upward, the algorithm stops. Unfortunately, we cannot
guarantee, that the definitive decision received by means of algorithm of lifting
will be the best. Lifting methods remember some purpose and try to make
everything, they can and where can to reach closer to the purpose. It makes
theim a little shortsighted.

The third method is known as back workout, i.e. we begin with the purpose
or the decision and move back in the direction to initial statement of a problem.
Then, if these actions are reversible, we move from problem statement to the
decision.

The heuristic algorithm usually finds comprehensible though not
necessarily optimum decision, it is possible to realize it faster and easier than
any known exact algorithm. Many of them are based on a method of the private
purposes or on a lifting method. Often very good algorithms should be
considered as heuristic: if we developed fast algorithm that worked on all
known test problems, but we could not prove, that algorithm is correct. Such
proof is not given yet, it is necessary to consider algorithm heuristic.

The instruction about sequence of algorithm actions of can be presented
as a scheme — logic scheme of algorithm, matrix scheme of algorithm,
algorithm flow graph.

The logic scheme of algorithm (LSA) was offered by Soviet mathematician
A. Lyapunov (1911 — 1973) who was the professor of chair of mathematics in
military artillery academy.

LSA is an expression consisting of symbols of operators, logic states
following in a certain order, and also numbered arrows placed in a special way.

The matrix scheme of algorithm (MSA) is the square matrix which
elements specify states of transfer of management from i operator of a line to j
operator of a column. Lines of a matrix are numbered from the first operator to
penultimate, columns — from the second to the last.

The algorithm flow graph (AFG) is a directed graph of a special kind. It

7

contains nodes of four types: 1) operational, designated by rectangles;
2) stateal, designated by rhombuses; 3) initial node and 4) finite node,
designated by ovals. Nodes are connected with arches.

1.3. RECURSIVE FUNCTIONS
Recursion is one of the basic programming techniques. Recursive

functions are the functions dependent on themselves. When we considered
machines we spoke about transition functions that in the next moment of
machine time depend on their values in the previous moment. This is the way
automatic memory is realized.

In the theory of recursive functions that is considered historically the first
formalization of concept of algorithm, it is applied numbering of words in any
alphabet natural numbers (N), and any algorithm is to calculate some function
at integer values of arguments.

Function is computable if there is such an algorithm, i.e. step-by-step
procedure «from simple to difficult» which calculates the value of a function
from input variables or gives a message that the set of values does not belong
to interval on which a function is defined.

Function is semicalculatable if at t the input set which does not belong to a
range of definition of function, the algorithm does not stops (goes in cycles).
The theory of computability was developed by A.Church. The idea was similar
to the problem of functional completeness of switching functions: to find
elementary computable functions (which « are computable intuitively»), i.e. the
basis and offer techniques to get from these elementary computable functions
from more difficult functions for finite number of steps (as a superposition
principle in the theory of switching functions). So received functions are also
computable.

These elementary computable functions are:
1)( xxS – successor function (specifies next natural number);

0)(xO – zero-function;

mn
n
m xxxxI ),...,,(21 – functions-projectors that result in samples of m th of

n arguments nm 1 .
To obtain from some semicomputable functions other functions for finite

number of steps it was offered operators.
The first of them is the operator of superposition, i.e. substitution in

function of functions instead of variables. Thus dimension of function increases.
Definition 1.1. (The operator of superposition). Let’s consider that n -seater

function  is obtained from m -seater function f and n -seater functions mgg ,...,1
by means of the operator of superposition if for all nxx ,...,1 equality is fear:

)),...,(),...,,...,((),...,(1111 nmnn xxgxxgfxx  . (2)
The second operator is the operator of primitive recursion.
Definition 1.2. Let’s consider that)1(n -seater function  is obtained

8

from n -seater function f and)2(n -seater function g by means of the
operator of primitive recursion if for any yxx n ,,...,1 equalities are fear:

)).,,...,(,,,...,()1,,...,(
);,...,()0,,...,(

111

11

yxxyxxgyxx
xxfxx

nnn

nn







 (3)

The third operator is the operator of minimization – operator μ.
Definition 1.3. (The operator of minimization). Let’s consider, that n -seater

function  is obtained from)1(n -seater functions 1f and 2f by means of the
operator of minimization, or the operator of the least number
if for yxx n ,,...,1 equality yxx n ),...,(1 is executed if and only
if values)2,1()1,,...,(),...,0,,...,(11  iyxxfxxf nini are defined, pairwise unequal

)1y,x,...,x(f),...,0,x,...,x(f)0,x,...,x(f n11n12n11 )1y,x,...,x(f n12  and
),,...,(),,...,(1211 yxxfyxxf nn  .

Shortly speaking, the value),...,(1 nxx is equal to the least value of
argument y at which last equality is executed.

Let's consider an example of the task of Fibinacci numbers 1,1, 2, 3, 5, 8,
13, 21... using the operator of primitive recursion:













).1()()2(
;1)1(
;1)0(

nfnfnf
f
f

 (4)

Here are indicated two initial values of function f (0), f (1) and a principle of
forming the subsequent value. Unlike machine transition functions it is indicated
not machine time, but a step of calculations n, i.e. value of function on a step
that is distinct from zero and first one, is equal to the sum of function values in
two previous steps.

Then,
1)0(f 1)1(f 211)1()0()2( fff (3) (1) (2) 1 2 3,f f f    

532)3()2()4( fff …
Are all functions primitive recursive? One can show, that a set of all single-

seater integer functions like NN  , where N being a set of natural numbers is
incalculatable, moreover it is true for functions like NN n  . Each primitive-
recursive function has the finite description, i.e. it is set by a finite word in some
alphabet fixed for all functions. Set of all finite words is denumerable, that’s why
primitive-recursive functions form no more than a calculable subset of
incalculable set of functions like NN n  . However, it happens that not all
computable functions can be described as primitive-recursive.

The third operator is the operator of minimization p that allows search in
calculations to define the necessary value.

Definition 1.4. Function is called as primitively recursive if it can be
obtained from the elementary functions n

mISO ,, by means of finite number of
operators of superposition and primitive recursion.

9

Example. Let’s illustrate that function yxyxs ),(can be obtained from
the elementary by means of the operator of primitive recursion. The following
identities are true for the function:

,1)()1(
;0




yxyx
xx

 (5)

that can be written as

1),()1,(
;)0,(




yxsyxs
xxs

 (6)

or

)),,(()1,(
);()0,(1

1

yxsSyxs
xIxs




 (7)

and that is the scheme of primitive recursion, based on the elementary
functions 1

1I and S .
Definition 1.5. Function is partially recursive if it can be obtained from the

elementary functions n
mISO ,, by means of finite number of superposition,

primitive recursion and operator μ. If function is defined everywhere and
partially recursive it is called general recursive.

The theorem 1.1 (Kleene theorem) [4]. Any partially-recursive function
),...,(1 nxxf can be obtained with operator μ and the operator of superposition

from two primitive-recursive functions [where one is fixed once and for all, and
the other depends on function),...,(1 nxxf]. According to Kleene theorem there
is such primitive-recursive function,)(xU that for any partially-recursive function

),...,(1 nxxf there exists a primitive-recursive function),,...,(1 yxx n with the
following property:

])0),,...,([(),...,(11  yxxyUxxf nn  . (8)
Let's note that not always partially recursive function can be predetermined

effectively to general recursive. It’s clear, that any primitively recursive function
is also partially recursive (and even general recursive as each primitively
recursive function is defined everywhere) as for construction of partially
recursive functions from the elementary it is used more means, than for
construction of primitively recursive functions. At the same time, the class of
partially recursive functions is wider than a class of primitively recursive
functions as all primitively recursive functions are defined everywhere, and
among partially recursive functions there are also functions that are not defined
everywhere.

The concept of partially recursive function has appeared as exhaustive
formalization of concept of computable function. At developing the axiomatic
theory of statements initial formulas (axiom) and output rules got out so that the
formulas received in the theory would settle all tautologies of algebra of
statements. What do we aspire to in the theory of recursive functions? Why are

10

so chosen the elementary functions and operators for obtaining new functions?
We aspire by recursive functions to settle all conceivable functions that are
calculable by means of any certain procedure of mechanical character. Like
Turing thesis, in the theory of recursive functions it is put forward the
corresponding natural-scientific hypothesis carrying the name of Church thesis
in the theory of recursive functions:

Numerical function if and only if is algorithmically (or machine) computable,
when it is partially recursive.

Recursive functions are a basis of functional programming. An example of
language of functional programming is LISP language developed in 1960 by
D.Makkarti. It is one of the first languages of data processing in the symbolical
form (LISP, from LISt Processing — processing of lists). One of the most
essential properties of LISP language is that data, programs and even
language are simply lists of symbols in brackets. The similar structure allows
writing programs or the subroutines, capable to address to themselves.

Prefix form is used in LISP:

.)))(*(*(

);(*))((*
;)(

22 yxyyxx

yxxxyx
yxxy






 (9)

There are also recursions in languages of structural programming.

1.4. TURING ALGORITHMIC CONCEPT. TURING COMPUTABILITY
Turing thesis (the basic hypothesis in the theory of algorithms) [3].
Let's return to intuitive representation about algorithms. Let’s remind that

one of algorithm properties is that it represents the common way allowing for
each problem from a certain infinite set of problems to find its output for finite
number of step. One can look at concept of algorithm from a different point of
view. From infinite set of problems, it is possible to express (code) each
problem with some word of some alphabet, and the problem decision — any
other word of the same alphabet. As a result, we obtain the function set on
some subset of set of all words from the chosen alphabet and accepting values
in set of all words of the same alphabet. To solve any problem it means to find
value of this function on the word coding the given problem. To have an
algorithm for solving all problems of the given class is to have the common way
allowing in finite number of steps to "calculate" value of constructed function for
any values of argument from its range of definition. Thus, an algorithmic
problem is in essence a problem about calculation of values of the function set
in some alphabet.

It is necessary to specify what it means to be able to calculate values of
function. It means to calculate values of function by means of suitable Turing
machine. For what functions is it possible thier Turing calculation? Numerous
researches of scientists, extensive experience have shown that such class of
functions is extremely wide. Each function, for which calculation of values there

11

is any algorithm, was computable by means of some Turing Machine. It allowed
Turing to state the following hypothesis named the basic hypothesis of the
theory of algorithms, or Turing thesis:

To find values of the function set in some alphabet, if and only if there is an
algorithm when function is computable according to Turing, i.e. when it can be
calculated by suitable Turing machine.

It means that strict mathematical concept of computable (according to
Turing) function is on the substance an ideal model of the concept of algorithm
taken from experience. The given thesis is neither more nor less an axiom, a
postulate that is put forward on interrelations of our experience with that
mathematical theory which we want to bring under this experience. Be finite the
given thesis cannot be proved with mathematics methods because it has no
intramathematical character (one part in the thesis — a concept of algorithm —
is not an exact mathematical concept). It is put forward proceeding from
experience, and experience confirms its solvency. In the same way, for
example, it cannot be proved mathematical laws of mechanics; they were
discovered by Newton and repeatedly confirmed by experience.

However, it is not excluded the basic possibility that Turing thesis will be
denied. It is to be specified a function, which is computable by means of any
algorithm, but incomputable with any Turing machine. Such possibility is
improbable (it is among senses of the hypothesis): any discovered algorithm
could be executed with Turing machine.

Additional indirect arguments confirming this hypothesis will be given in
two subsequent paragraphs where it is considered other formalizations of
intuitive concept of algorithm and is proved their equivalence with concept of
Turing machine.

Turing Machine
Turing machine [1] is one of abstract models of algorithms, named after

English mathematician Alan Turing (1912-1954). Turing machine includes:
1) the actuation device that can be in one of the states forming finite

set },...,,{ 21 kyyyY  ;
2) a tape broken into cells, in each of which can be written down one of

symbols of the finite alphabet },...,,{ 21 nxxxX  ;
3) device of the reference to a tape is a reading out and writing down head

which during each moment of time "surveys" a cell and depending on a symbol
in a cell and actuation device states writes down in this cell a new symbol (it
can coincide with former, read out) or an empty symbol (the former symbol is
erased and the blank symbol registers in its place). Further, the reference
device moves on a cell to the left or to the right or remains on a place. Thus,
the actuation device passes in new inwardness or remains in an old (current)
state. Among control means are initial states 1y and finite states ky (k — a
mnemonic sign on the termination of work). Turing machine is in initial state of
work, in finite — after the work is terminated.

12

Memory of Turing machine is a finite set of states (internal memory) and a
tape (external memory). The tape is infinite in both sides, however during the
initial moment of time only the finite number of cells of a tape is filled by
symbols, the others are empty, i.e. contain an empty symbol — a blank symbol
λ.

Turing machine data are words in the tape alphabet, on a tape register
initial data and result.

Elementary steps are reading and record of symbols, head shift, and
transition of a control means from one position to another one (Fig.1).

Under the influence of an input symbol X, for example 1, read out by a
head, the control mean forms output symbol Z, operates head movement: to
the left (L), to the right (R), on a place ().

Fig. 1. Block diagram of Turing machine

The full state of the machine, or configuration (or a machine word) on
which its further behavior is unequivocally defined, is described by
inwardness, iy , symbols to the left and to the right of a head, for example: the

...... 21 xyx i System of commands of the machine contains kind records
zR
yxy 2

11 

where – 1x a readable symbol in a state 1y ; 2y - new inwardness; z – a written
down symbol; R – a sign of advancement of a head, – a transition symbol in
a new state.

Set of all commands is called a program. Each Turing machine is defined
by the alphabet, states of internal memory and the program. Completely to
define machine work, it is necessary to specify its configuration for the initial
moment of time. Let’s consider that in an initial configuration the head
perceives the most left nonempty cell.

Turing machine is set by a three of data – M = <X, Y>, where X – the
alphabet of symbols of a tape with the allocated empty symbol λ (blank); Y –

13

the alphabet of inwardness with the allocated symbols initial, 1y and finite
states ky ; P – the program, i.e. finite sequence ordered fives of symbols —
commands.

If the machine, begun work with some word that has been written down on
a tape, comes to a finite state it is called applicable to this word. The result of
its work considers the word that has been written down on a tape in a finite
state. If the machine during any moment of time does not come, to a finite
state, it is called inapplicable to the given word and the result of its work is not
defined.

Computability in Turing functions
Function is called computable according to Turing if there is Turing

machine calculating it, i.e. such Turing machine which calculates its values for
those sets of values of arguments for which function is defined, and working
eternally if function for the given set of values of arguments is not defined [1,3].

Partial numerical n-seater function),...,(1 nxxf is called computable
according to Turing if there is the machine calculating it in following sense.

1. If the set of values of arguments belongs to a function range of definition
f the machine, begun work in some configuration setting value of arguments,
stops, finishing work in a configuration corresponding to value of function.

2. If set of values of arguments does not belong to a range of definition of
functions the machine, begun work in some configuration, works infinitely, not
coming in a finite state.

1.5. MARKOV NORMAL ALGORITHM. MARKOV COMPUTABILITY
The theory of normal algorithms has been developed by Soviet

mathematician A.A.Markov (1903–1979) in the late 1940 - beginning of 1950th
of XX century. These algorithms represent some rules on processing of words
in any alphabet so the initial given and required results for algorithms are words
in some alphabet.

Markov substitutions. Alphabet (as before) is called any nonempty set. Its
elements are called letters, and any sequences of letters – words in the given
alphabet. For convenience of reasoning mere words (they do not incorporate
any letter) are supposed. Let’s designate an empty word  . If A and B are two
alphabets, and A  B the alphabet B is called expansion of the alphabet A.

Let’s designate words with Latin letters: Р, Q, R (or the same letters with
indexes). One word can be a component of another word. Then the first is
called subword of the second word or occurrence in the second one. For
example, if A is the alphabet of Russian letters let’s consider such words: Р1 =
paragraph, Р2 = graph, Р3 = ra. Word Р2 is subword of word Р1, and Р3 is a
subword of Р1 and Р2, and word Р1 it enters twice. The first occurrence is of
special interest.

Definition 1.6. Markov substitution [3] is called operation over the words,
set by means of the ordered pair of words (Р, Q), consisting in the following. In

14

set word R they find the first occurrence of word Р (if that is available) and, not
changing other parts of word R, replace in it this occurrence by word Q. The
received word is called as result of application of Markov substitutions (Р, Q) to
word R. If first occurrence Р in word R is not present (and, hence, in general it
is not present any occurrence Р in R) it is considered, that Markov substitution
(Р, Q) is inapplicable to word R.

To designate Markov substitutions (Р, Q) it is used the following record
P-> Q. It is called the substitution formula (Р, Q). Some substitutions (Р, Q)

let’s name finite (the sense of the name becomes clear hardly later). For a
designation of such substitutions, let’s use record P->. Q, naming it a formula of
finite substitution. Word Р is called the left part, and Q — the right part in the
substitution formula.

Normal algorithms
The arranged finite list of formulas of substitutions in the alphabet A is

called the scheme (or record) of normal algorithm in А. (A point in brackets
means, that it can stand in this place or not.) The given scheme defines
(determines) algorithm of transformation of the words, named Markov normal
algorithm. Let’s give its exact definition.

Definition 1.7. Normal algorithm (Markov) in the alphabet A is called the
following rule of construction of sequence Vi of words in the alphabet A,
proceeding from the given word V in this alphabet. As initial word of sequence,
V0 the word V is undertaken. Let for some i> 0 word Vi is constructed and
process of construction of considered sequence has not finished yet. If in the
scheme of normal algorithm there are no the formulas whose left parts would
be in Vi then Vi+1 is equal to Vi and process of construction of sequence is
considered come to the end. If in the scheme there are formulas with the left
parts in Vi then instead of Vi+1 it is taken the result of Markov substitutions in
the right part for the first of such formulas instead of the first occurrence of its
left part in word Vi; process of construction of sequence is considered come to
the end if in the given step the formula of finite substitution has been applied,
and proceeding — otherwise. If process of construction of the mentioned
sequence breaks, they say, that the considered normal algorithm is applicable
to a word V. Last member of Inconsistency is called as result of application of
normal algorithm to a word V. It is said that the normal algorithm processes V in
W.

Let’s write down sequence VI as follows:

mm VVVVV  1210 ... , (10)

where VV 0 and WVm  .

We have defined concept of normal algorithm of alphabet A. If algorithm is
set in some expansion of the alphabet A, they say, that it is a normal algorithm
over A.

15

Normally computable functions and Markov principle of
normalization

As well as Turing machine, normal algorithms do not make actually
calculations: they only make transformations of words, replacing in them one
letters others by the rules ordered to it. In turn, we order them such rules, which
results of application we can interpret as calculation.

Definition 1.8. Function f, set on some set of words of the alphabet i, is
called normally computable if there will be such expansion of the given
alphabet (And) and such normal algorithm in In, that each word V (in the
alphabet) from a function range of definition f this algorithm processes in a
word f (V [3].

The founder of the theory of normal algorithms the Soviet mathematician
A. Markov has put forward the hypothesis which has received the name
«Markov principle of normalization ». According to this principle, for a finding of
values of the function set in some alphabet, in only case when there is any
algorithm, when function normally вычислима.

1.6. METHODS OF ALGORITHM ESTIMATION
In the theory of algorithms the concept "algorithm" is usually specified by

means of the description of "mathematical model» computer. Here two
approaches depending on are possible, whether complexity of algorithm (the
car, the program) or ability of the computing process proceeding according to
algorithm is estimated.

The theoretical and empirical analysis of efficiency is necessary for proved
use of time and memory of the computer.

In practice, it is necessary to be content with the approached decision of a
problem and to be reconciled with uncertainty elements in the decision. As a
rule, problems are precisely solved with finite number of the input and output
data supposing finite representation only. It is possible to allocate two reasons
on which are limited to the approached decision: or the problem cannot be
solved precisely, or the exact decision is not necessary. The impossibility
receives the exact decision can speak that:

 the information is incomplete, i.e. some elements of a problem in
coincident among themselves cannot be distinguished, having only this
information;

 the information approached which can appear as a result of many
reasons, including errors of the computer, errors at the data transmission, the
limited accuracy of representation and processing of numbers, restrictions on
accuracy of measurements;

 the class of admissible algorithms is limited.
The majority of real problems should be solved, having only incomplete or

approached information. Numerical procedures use arithmetic of finite accuracy
and they are based on the approximation theory. It is desirable to describe
numerical algorithms with the same severity, as algebraic. The concept of

16

calculation can concern not only numbers. The first symbolical manipulations
have been connected with use of code numbers and secret writing. Since 1963,
program systems are spread formula transformations. Among other examples
of symbolical calculations are: work with texts, games in draughts, chess, and
guо. Programs for reception of mathematical proofs concern the same group of
programs.

Algebraic algorithms are realized in the program systems supposing input
and output of the information in symbolical designations. It differs in simple
formal descriptions, existence of proofs of correctness and asymptotical
borders of performance time. Besides, it is possible to present algebraic objects
precisely to computer memories; therefore, algebraic transformations can be
executed without accuracy and importance loss. Accuracy at use of algebraic
algorithm is often paid by big time of performance and a necessary memory
size, than for its numerical analogue.

There are a number of important reasons for the analysis of algorithms.
One of them is necessity of reception of estimations (or borders) for a memory
size or an operating time that is required to algorithm for successful processing
of concrete data. Machine time and memory are rather deficit and expensive
resources. Another one is a desire to have a certain quantitative criterion for
comparisons of two algorithms applying for the decision of the same problem.
One more reason is a desire to have the mechanism for revealing of the most
effective algorithms. Sometimes it is impossible to make accurate opinion on
relative efficiency of two algorithms. One can work better on the average, for
example, on casual input data; another works better on some special data. It is
important to establish absolute criterion also. When we consider the problem
decision optimum i.e. when our algorithm is so good, that it is impossible
(irrespective from our mental faculties) to be improved considerably.

Usually it is required efficiency from algorithm. It means, that all operations
which are necessary for making in algorithm, should be simple enough that
they could be executed precisely and for a short time interval by means of a
pencil and a paper.

Finiteness restriction is not rigid enough for practical purposes: the used
algorithm should have not simply finite, but extremely finite, reasonable number
of steps. Whether in real calculations the main question concerning some
function consists in that "is the given function computable", and whether more
likely in that "is it practically computable". I.e. whether there is a program
calculating function in time that we have? It is possible to measure time
demanded for calculation each value of function under the concrete program, in
the assumption, that each step is made for a time unit. As a measure of
computing complexity, it is to be taken calculation time.

It is not enough to prove correctness of algorithm. All of us can make
errors at the proof and while translating correct algorithm in the program.
Everyone can forget some special case of a problem. The smallest features of
operational system can cause such action of a part of your algorithm about

17

which you did not suspect for some input data. The program should be checked
up for a wide spectrum of admissible input data. This process can be tiresome
and difficult. The analytical and experimental analyses supplement each other.
The analytical analysis can be inexact if too strong simplifying assumptions are
made. Only rough estimates in this case can be received. Experimental results,
especially when generated data are used casually, can appear too unilateral.
To receive authentic results, it is necessary to spend both analytical and
experimental research there where it is possible.

As a measure of complexity of algorithms À it is considerd a functional
correlating to each algorithm À some number)À( characterizing its bulkiness,
for example: number of commands À , length of record À or any other
numerical parameter characterizing volume of the information, containing in À .
Similar functionals have already been applied for a long time in theoretic-
cybernetic researches of the schemes realizing functions of logic algebra and
also in calculus mathematics where capacity of the scheme, on which the
multinomial is calculated, is measured by number of the arithmetic operations
appearing in the scheme. Distinction consists only that in the specified works
special narrow classes of functions and special ways of the description of
algorithms are considered. We are interested in working out and application of
similar concepts of more general situation (any computable functions, the
general concepts of algorithm). The first publications, in which such measures
of complexity have found applications, belong to A.A.Markov and
A.N.Kolmogorov.

As a measure of complexity of calculations it is considered functional,
correlating to each pair)à,À(where À is algorithm, à is an individual problem
from this a class of problems that the algorithm À solves, some number)à,À( .
This number characterizes complexity of work of algorithm with reference to
À initial data and before delivery of corresponding result. For example, as

)à,À( it is possible to take a number of elementary steps of which this work
consists of (in other words, duration of process of calculation) or a memory size
which can be necessary for realization of all calculations in the course of the
given process, etc. As for each algorithm À it is defined the class of problems
 it can solve (for example, that functions f whose value it calculates) than it
is possible to consider, that in a given situation each algorithm À is
characterized by function of variable)a,A()a(

df
A   . In other words, a

measure of complexity of work of algorithm (calculation) is the operator
comparing with each algorithm À corresponding function)a(A .

Such approach to an estimation of complexity of calculations contained in
the work of Soviet mathematician G.S.Tsejtin made it in 1959 in which
complexity of work of normal algorithm was measured by the function
specifying dependence of number of steps of algorithm from a word to which it
is applied. Approximately at the same time and irrespective from G.S.Tsejtin

18

B.A.Trahtenbrot gave the similar functions measuring a memory size,
necessary for recursive calculations, and named their signaling functions.

Defining some measure of complexity for algorithms (or calculations), we
thereby hope to receive the convenient tool for comparison of algorithms, and
for estimation of the objective difficulty inherent in various computable
functions. In this connection, it is possible to note distinction in realization of
such plan in dependence from, whether the measure of complexity of algorithm
or a measure of complexity of its work is considered. As complexity of algorithm
is measured by a real number, any two algorithms are comparable on
complexity.

Usually they consider that the measure of complexity of algorithm accepts
only natural value, therefore for each computable function there is an algorithm
calculating it with the minimum complexity. This minimum complexity is natural
for considering as complexity of the function, thereby and the set of all
dependent functions is ordered on degree of complexity of these functions.

If the initial measure is the measure of complexity of calculations -, another
picture turns out. Two signaling functions can appear incomparable even if to
consider, as usually it is accepted, that signaling less A signaling, B if for all
but for, perhaps, their finite number)()(BA   . Therefore, as far as some

function f it is not clear a priori whether there is its better calculation. Here it is
necessary to be limited in essence to weaker characteristic of complexity of the
function f , namely it is obtained namely functions 1 (the bottom estimation)
and 2 (the top estimation), such as:

1) There is an algorithm 1A calculating f with signaling, not surpassing 2 ;
2) Whichever is the algorithm A calculating f its signaling it is not less 1 .
Certainly, the closer to each other the top and bottom estimations 1 and

2 the complexity of the function f is more precisely characterized.
So, unlike the hierarchies based on complexity of algorithms, the

hierarchies based on a measure of complexity of calculations, are partially
ordered. It complicates their studying, but at the same time allows, apparently,
is thinner to catch essence of that we intuitively understand as complexity of
function evaluations.

The complexity theory depends on the concepts of algorithm put in its
basis (recursive functions, Turing machine, etc.), and from the chosen measure
of complexity.

Therefore a priori it is possible to assume, that at transition from one
concept of algorithm to another it is necessary to build the complexity theory
anew. However, the idea of modeling of one algorithm for others relieves us
from it.

Let's consider estimations of complexity of algorithm with reference to
Turing machines.

19

With each configuration k which Turing machine is applicable to, it is
possible to associate the number characterizing complexity of process)k(M in
this or that sense.

Varying k we obtain function from it, defined on set of all configurations to
which the given machine is applicable. Such type functions are called
signaling functions.

Machine work M is characterized with the following signaling functions:
Signaling time)k(SM is equal to to duration of process ()k(M (i.e. to

number of its configurations) if M it is applicable to k and)k(tM it is not
defined, if M is not applicable to k .

Active zone of process is called the minimum part of a tape, containing
active zones of all its configurations. Working (active) zone of the given
configuration is called the minimum coherent part of a tape containing the
surveyed cell, and all cells in which meaning letters are written down.

Signaling capacity)k(SM is equal to length of an active zone of process
)k(M if M is applicable to, k and it is not defined otherwise.

Signaling fluctuations)k(M is equal to number of fluctuations (change
of directions) heads in time if)k(tM M is applicable to, k and it is not defined
otherwise.

Signaling a mode)k(rM it is equal to the maximum number of passages
of a head over cell edge in time)k(tM if M is applicable to, k and it is not
defined otherwise.

In particular, when as configurations k it is taken initial configurations for a
word p the processes will be characterized by signaling functions.

)k(tM)k(SM)k(M)k(rM Along with them type functions are also considered.
() ()

| | | |
() ()

| | | |

m ax (), m ax ();

m ax (), m ax (),

n n
M MM Mp n p n

n n
M MM Mp n p n

t t p p

S S p r r p

 

 

   

 

where |p| is length of a word p and is also function
() max (), () max ();

() max (), () max (),

M M M M
n n

M M M M
n n

t n t n

S n S r n r

 

 
 

 

     

   

where  is the longest of words ip .
Machine construction gives only top estimations of the signaling. The

finding of the bottom estimations is more difficult and it requires special theory.
There is a theorem showing, that in the presence of the top estimation, for

any one of signaling, t s and r the set parameters and m (n m—number of
symbols of the external alphabet, — n number of symbols of the internal
alphabet) it is possible to receive the top estimations for the others.

The theorem. For any machine M and for any word p to which it is

20

applicable the following inequalities are fair:

.n)p(sm)p(t
;n2|p|)p(s

;1)p()p(r
);p(t)p(

)p(s

1)p(r













Let's consider in more details estimations for complexities of algorithm Р
and NР-classes complexities in details.

Complexity is a way of comparison of algorithms [1]. They are compared in
quantity necessary for performance of algorithm of steps (time complexity) and
on memory size, necessary for algorithm work (capacitor complexity).

Complexity of algorithm reflects the expenses demanded for its work. We
consider time complexity. It is function which puts to each input length the
minimum time spent by algorithm on the decision of all same individual
problems of this length in conformity.

From a course of the mathematical analysis it is known, that function
is,)(nf))((ngO if there is a constant with such, that))((|)(| ngcnf  for all 0n .

)(nO – Complexity of order n, n is parameter of initial data of algorithm. –
)(2nO is complexity of order 2n .
Complexity can be minimum, average and maximum.
Classes of problems Р and NP
Complexity of a problem is estimated, as a rule, from the point of view of

expense of time necessary for the Turing-Post machine to calculate function by
means of which there is a decision of a considered problem [1,2].

Class of problems Р
Let's consider a mass problem under which actually mean class P of the

same problems consisting of infinite number of individual specific outputs and
described by set of parameters. Each specific task Z has its set of
parameters. Concerning each problem the attention to the question is brought,
the answer on which looks like "YES" or "NO". For example, we are interested,
whether partially recursive functions have property X.

It is necessary, that the decision of problem P is reduced to calculation by
the Turing-Post machine of some function.

We assume, that the coding system α is connected with class P that to
each problem Z puts in conformity a word)(Z in some alphabet. The size of
problem Z is a length of word |)(| Z .

Let Turing machine solve  problems of class P and

,| ()|
() max (()).

Z Z n
t n t Z 

 
  (11)

It is corresponding time complexity (in the worst case).
It is said that Turing machine  solves problem P for polynomial time, if

() (()).t n O p n  (12)

21

It is for some polynom)(np . Otherwise, they say, that the problem dares
for exponential time.

The class of problems P is called polynimial solvable if there is Turing
machine  solving problems z in polynomial time.

Set of classes of problems, solvable for polynimial time, is called a class of
problems P.

Class of problems NP
Mass problem P belongs to class NP if in case of the answer "YES" for a

problem z there is a word)(Zc with length |)))((|(ZpO  such, that the
problem))(,(ZcZ belongs to P. Word)(Zc is called true or guess for problem Z.
It allows checking if problem Z belongs to class P.

For example, feasibility of the formula),...,(1 nXX is checked if but for the
formula it is given the specific set of variables – 0

1
0
1 ,..., XX a guess promoting

feasibility of the formula A.

1.7. ALGORITHMICALLY SOLVEBLE AND UNSOLUBLE PROBLEMS
Object of studying in the theory of algorithms is, first, algorithmic

resolvability of some mass problem. Solvable problem is that for which there is
an abstract model, for finite number of steps checking for any input data,
whether is available the decision of the given problem.

Examples of algorithmically solvable problems are [1]:
 finding of the sum of two numbers;
 resolvability of propositional formulas, i.e. a finding the algorithm

allowing for any PF for finite number of actions to solve, whether it is a
tautology or not;

 equivalence of two propositional formulas, i.e. a problem of algorithm
finding the equivalence or non-equivalence for any two PF, etc.

Problems are called algorithmically unsolvable if there is no single
algorithm solving all individual semiproblems of these problems. It does not
mean that such algorithm does not exist for some subclass of all class of
problems of algorithmically unsolvable problem. For example, the problem of
the decision of predicate formulas, a problem of equivalence of two predicate
formulas, problems of applicability for Turing machine and Markov normal
algorithms, a problem of equivalence of words in associative calculations and
others are algorithmic unsolvable.

Let's remind, that the machine is called applicable to an initial word if it,
having started to work with this word, comes in a finite state.

Example of the inapplicable machine — Turing machine that in the first
part of commands does not have a finite state ky . The machine 1M applicable to
word)(1Mn i.e. to a code of own number, is called self-applicable. It is
supposed, that Turing machine is universal, it reads a code of number
(program) from a tape, deciphers it and according to it carries out necessary

22

actions depending on the initial configuration (data), also written down on a
tape.

The machine, inapplicable to word)(Mn is called as not self-applicable.
Self-applicability problem (for the first time this problem is considered by

domestic mathematician O.B.Lupanov is in that on set program Р for the
abstract machine to learn, whether it is applicable to own record Р ((P)), where
(P) is program or subroutine record)(Pn .

For example, the program of the machine replacing symbols 1 for 0, and 0
for 1, is applicable to any word, in particular and to the record if we code
records of programs in a binary code that is quite possible, therefore it self
applicable, and the program B

B: 1) }2,?{ ;
2) HLT,

is applicable only to an empty word, i.e. unselfapplicable.
In the machine B if the head during the initial moment surveys a cell in

which the blank λ is written down not, there will be an ineffectual stop.
The problem is in search of such algorithm that would define its self-

applicability for any program.
The theorem 1.2. The self-applicability problem is algorithmically

unsolvable.
Unsolvabilities become a mathematics life, and with their existence, it is

necessary to be considered. From the theoretical point of view, unsolvability is
not failure, but the scientific fact. The knowledge of the cores unsovlability
theories of algorithms should be for the expert in the discrete mathematics the
same element of scientific culture, as for the physicist — knowledge of
impossibility of a perpetuum engine. If it is important to deal with a solvable
problem (and this aspiration is natural to applied sciences) it is necessary to
imagine two circumstances accurately. First (about it it was already spoken at
discussion of a problem of a stop), absence of the general algorithm solving the
given problem, does not mean, that it is impossible to become successful in
each special case of this problem. Therefore, if the problem is unsolvable, it is
necessary to search for it solvable special cases. Secondly, insolvability
occurrence is, as a rule, result of an excessive generality of a problem (or
language on which objects of a problem are described). The problem in more
general statement has more chances to appear unsoluble. Except concepts of
resolvability and insolvability the concept of complexity of algorithms is entered.

EXAMPLES AND PRACTICAL TASKS

1.1. Effective resolvability
Example 1
To show MNP functions   yxyxf , .
The output
Let's make the MNR-PROGRAM of calculation  yxf , leaning on algorithm

of addition 1 to x equal to y times and using the register 3R as the counter of
additions 1 to at xR 1 an initial configuration

23

R1 R2 R3 R4
x y 0 0 . . .

The program stops process of calculations when yRR  32 and thus in
the register 1R the number, 1R yx  collects as it is required.

The MNR-PROGRAM:
1 (3,2 ,5),I J)1(2 SI  ,)3(3 SI  ,)1,1,1(4 JI  .

Obviously, it is carried out by a command of conditional transfer 1I to
command 5I that is absent in the program. Hence,)(),(yxyxf  is computable.

Example 2
Prove MnR computability of function

g (x, y) =
0, if ,
1, if .

x y
x y


 

The solution
g (x, y) can be calculated on the algorithm given by the following block

diagram (Fig. 2) ;XX  ;YY 
Initial configuration

1R 2R 3R 4R 5R
X Y X Y 0

Fig. 2. Block diagram for calculation g (x, y)

24

Exercises
1. Show МНР – computability for the following functions:

10)(xf








;0xif,1
,0xif,0

)x(f









;yxif,1
,yxif,0

)y,x(f







;otherwise_defined_not_is

,3multiplexif,x
3
1

)x(









.yxif,1
,yxif,0

)y,x(g

2. Prove that for each command of readdressing),(nmT at any
configuration МНР there is a program, which does not contain),(nmT .

3. Prove resolvability of following predicates:
)(),(yxyxR  ; () (0);Q x x 
)(),(1 yxyxR  ч xxQ ()(1  is even).

4. Prove that function 1)( xxf in Z is computable.
5. Prove that a predicate)0()( xxQ in Z is solvable.

1.2. Recursive functions
1. Prove that any primitively recursive function is defined everywhere.
2. Prove that from 1O and n

mI using superpositions and schemes of
primitive recursion it is impossible to receive functions and 1x x2 .

3. Using the operator of primitive recursion on variables 2x and 3x to
functions)(1xg and),,(321 xxxh f obtain function),(21 xxf . Write function

),(21 xxf in the analytical form:
11)(xxg  31321),,(xxxxxh  ;

11)(xxg  21321),,(xxxxxh  .

To (accept 12)(1
xxg  1

3321),,(xxxxxh  100 );
1)(1 xg |)22|1(),,(313321 xxsgxxxxh  .

4. Apply the operator of minimization to function f in variable ix . Resultant
function is to be given in «the analytical form»:

3)(1 xf 1i ;
]2/[)(11 xxf  1i ;

2121),(xxxxf  2i ;
),(),(21

)2(
121 xxIxxf  2i ;

2121),(xxxxf  2,1i ;

)12(2),(221
1  xxxf x 2,1i .

5. Having applied minimization operation to corresponding primitively
recursive function, prove that function f is partially recursive:

25

2/)(11 xxf  ;
11 2)(xxf  ;

2121 2),(xxxxf  .

1.3. Turing machine
Example 1
Develop the T-machine with the alphabet A = {0, 1} which would

transform any finite word into a word of the same length, but with 0 instead of 1
standing on odd places.

The solution
Action of the required T-machine, obviously, consists in movement on a

tape from left to right and replacement through one symbol 1 into 0; to stop the
T-machine should at the first survey of an empty cell, i.e. a symbol. These
actions are provided with TQ -program, 2110gg 22 0 gg  121 gg  with an initial
configuration on a tape

 
. . .   1 1 1 . . . 1 1   . . .
 g1

The finite configuration on a tape looks like,

  
. . .   0 1 0 . . . 1 0   . . .
 g2

If the initial word contains even number "1", or a configuration

 
. . .   0 1 0 . . . 0 1   . . .
 g1

at odd number "1" in an initial word. The T-machine stops, as, surveying an
empty cell in, TQ does not find a command defining the further actions of the T-
machine.

When calculating numerical functions (i.e. defined on N and accepting
values from N) by Turing machines they use special coding of numbers. For
example, natural number m we set a set from m+1 units and to designate
through 11 m . Then the zero is coded 1, unit - 11, the two - 111 etc.

Example 2
Develop 1T machine with the external alphabet A = {1}, calculating function

() 1.S x x 

26

The solution
It is obvious two states of Т1-machine - g1 and g2, and program QT: g11Пg1,

g1Л1g2. Work Т1-machine at calculation, for example, S (1) consists of
configurations:

  
. . . 1 1  . . . , . . . 1 1  . . . ,
 g1 g1
  
. . . 1 1  . . . , . . . 1 1 1 
 g1 g2

Exercises
1. Develop Turing machine that transforms word  for word  in

alphabet }1,0{ :
n1 nn011 ;

nn10 n)01( ;
n1 121  n ;

mn011 nm011 .
2. Develop Turing machine that on any input chain of a kind mn10 defines

whether equality mn  is true. Whether it is possible thereof to draw a
conclusion, what Turing machine can more in comparison with the finite state
machine? Prove the answer.

3. Develop Turing machine that each word nn xxxx 121 ...  in alphabet },{ ba
transforms to word 121... xxxx nn  .

4. Calculates a symmetry predicate)(S : for any word nn xxxx 121 ...  in
the alphabet, },{ ba 1)(S if 1 ini xx for all ni ,...,2,1 and 0)(S otherwise.

5. Develop Turing machine that is applicable to words of a kind)1(13 nn
and is not applicable to words of a kind)2,1;1(13  mnmn .

6. Develop Turing machine that calculates numerical function
34321

)4(
3),,,(xxxxxI  .

7. Develop Turing machine that calculates numerical function
, if x y;

0 , in other case.
x y

x y
 

  


8. Develop Turing machine that calculates numerical function
0 , if x 0;

()
1, in other case.

sg x


 


9. Develop Turing machine that calculates numerical function
1, if x 0 ;

()
0 , in other case.

sg x


 


27

10. Develop Turing machine that calculates numerical function
}.,min{),(yxyxf 

11. Develop Turing machine that calculates numerical function
.12)( xxf

12. Develop Turing machine that calculates numerical function if
mxyxf ]2/[),(if mx 2 or 0,12  mmx .

13. Are Turing machines 1T and 2T which are given with commands
applicable?

.0,00,1
;,10,1:

;,00,11:

122211

0121112

1101111

ÏqqËqqÏqq
ÍqqËqqÏqqT
ÏqqHqqÏqqT





To words а-d?
a) 1111111;
b) 0110111;
c) 111101;
d) 001101.

1.4. Markov computability
1) Develop the graph for realization of algorithm in the

alphabet, }?,,,{ QA  set by substitutions '''Q?',?'''',''? ,  :
a) define to what kind of normal algorithms it concerns;
b) consider on it examples of deductive chains, setting an initial word not

less than three symbols length.
2) Set the Markov algorithm realizing subtraction where BA  values and

A are B the natural numbers given in the lines, consisting of symbols 1 (for
example, for word 1BA,3B,4A  ‘ 1111—111 ’ should be processed
algorithm in a word ‘).

Check up work of algorithm for cases:
a) 2,6  BA ;
b) 5B,3A  .
Markov normal algorithm realizing operation of multiplication, is set by the

alphabet }Ô,T,,1{A  and sequence of supports:

.11;1Ô;ÔÒÔ;Ò1Ò;Ô11Ô
;ÒÔÔÒ;Ô1TT1;T1;1T11




Develop a deductive chain from a word ‘111*1111’ to a word
‘11111111111’.

Set Markov normal algorithm realizing operation of multiplication of
numbers, units given in the form of sequence (the algorithm should be distinct
from algorithm of item 3). Develop a deductive chain for one of input words.

Set the normal algorithm realizing operation of comparison a sign part of

28

two numbers, set in a kind:
111111111111  èëè ;

11111111111  èëè ;
. 11111111111  .

Develop corresponding deductive chains on each algorithm.

CONTROL QUESTIONS AND TASKS FOR SELF-CHECKING
1) When did the theory of algorithms arise?
2) What problems have led to occurrence of the theory of algorithms?
3) What is the subject of studying of the theory of algorithms?
4) Whose name is the concept "algorithm" related to?
5) What is a greedy algorithm?
6) What is it necessary to formalize concept of algorithm for?
7) What are the models of specification of concept "algorithm" exist?
8) What are the names of the authors of the basic types of algorithmic

models?
9) What is an alphabet, word, a composition of words, a subword of a

word, length of a word?
10) What methods are used when an algorithim is being developed? What

words are called to be equal?
11) Why is it possible to be limited only to numerical functions, at studying

of computable functions?
12) What is a function, a range of definition, and area of values?
13) What functions are partial, everywhere defined?
14) What is the functional alphabet?
15) What is a term?
16) What functions are called computable?
17) What sets are called solvable? What are their properties?
18) What are the properties of the schedule of computable function?
19) What are the properties of type and prototype of graphable sets at

computable function?
20) What are concepts of Fibonacci numbers?
21) What is the idea for construction of a class of partially recursive

functions?
22) What is the essence of Kleene theorem?

29

23) What elementary functions are included into a base set at construction
of a class of partially recursive functions?

24) Turing thesis?
25) What is the essence of Turing machine?
26) What are normal algorithms intended for?

THEMES FOR INDEPENDENT WORK
1) Algebra solvable sets.
2) Algebra of countable sets.
3) Programming for RAM.
4) Computable functions on RAM.
5) Examples of algorithmically unsoluble problems.
6) The models of calculations distinct from RAM.
7) The proof of equivalence of any two various models of calculations.
8) Examples of the problems belonging to classes P and NP.
9) Examples of NP-full problems.
10) Calculations with the oracle.
11) Countable sets and computable functions.
12) Communication between countable and solvable sets.
13) Derivation trees.

30

CHAPTER 2. BASES OF THE FORMAL GRAMMARS THEORY

2.1. CONCEPT OF FORMAL GRAMMAR. HOMSKY HIERARCHY
In the theory of languages, principles and features of construction of

various languages are considered. Prior to the beginning of the XX-th century
there were only natural (spoken languages). Thus, language was understood
as dialogue means between people. With linguistics development it has been
established, that dialogue means are inherent not only to the person. Now
language is understood as any means of dialogue.

Language includes following components:
 Sign system (set of admissible sequences of signs);
 Set of senses of this system;
 Conformity between sequences of signs and senses.
As language signs can act:
 Symbols (letters) of some alphabet (the written form of language);
 Sounds (the oral form of language);
 Gestures, colour, smells etc.
The most developed are sign systems based on symbols. The symbol is

the elementary element of sign system. Designs that are more difficult are
under construction of symbols. At the analysis of spoken languages the
hierarchy of designs of language looks as follows:

Letter Þ word Þ sentence Þ the text.
 (A sign, a symbol) (phrase)
In the theory of formal languages the formalistic approach at which the set

of designs of language looks as follows is used:
Symbol Þ a line Þ the text.
 (A sign, the letter) (a chain, the sentence)
In any language, it is possible to allocate correct (admissible) and wrong

designs. Rules of construction of correct texts make syntax of language. The
conformity description between senses and texts make semantics of
language.

Semantics of language depends on an origin and character of language,
i.e. from character of the objects described by language. Syntax of language
depends on character of language less. Therefore, at syntax studying it is
possible to use a formalistic approach.

The formalistic approach essence consists that language is considered as
set of the formal objects constructed by certain rules. As formal objects
sequences of symbols act. At construction of such sequences, their sense is
not considered. Occurrence and formalistic approach development is
connected with necessity of the decision of problems of following type:

 Machine translation from one natural language on another;
 Working out of compilers;

31

 Recognition of images.
Depending on an origin and degree of universality languages can be

divided into the types given on Fig. 3.

Natural languages arise and develop gradually with society development

for a long time.
Artificial languages are developed specially for a certain scope for rather

short period.
Universal languages are used for dialogue of people in a daily life.
Specialized languages are means of dialogue enough a narrow circle of

people at information interchange in some special field of knowledge. A various
professional slang (language of users of the computer), algebra language,
language of algebra of logic etc. can be examples of specialized languages

Formal systems are systems of operations over the objects understood as
sequence of symbols. It is supposed, that between symbols there are no
communications and relations except what are obviously described by means
of the most formal system.

Problem. Order objects 53, 109, 3?
Most likely they will be arranged as 3, 53, 109, i.e. usual arithmetic

interpretation will be given this problem: the sequence of figures is considered
as the image of numbers in decimal system; streamlining of these sequences is

Universal
(Colloquial)

Universal
(Colloquial)

Specialized Specialized

Languages

Natural Artificial

Fig. 3

Russian
English
German

Professional
slang

Finger language

Algorithmic
languages

Languages of music,
dance

Dance, …

Systems
languages

Esperanto

32

an arrangement of numbers represented by them on increase, and rules of
comparison of such images of numbers are known so well, that anybody and
does not reflect on them.

Actually, such interpretation of a problem does not follow from its text. He
can be understood as a problem of lexicographic streamlining (and then the
result will be 109,3,53), as a problem of distribution of runners with specified
numbers on paths (which decision is connected with procedure of distribution
and obviously is not connected with numerical interpretation of objects) etc.

Possibility of ambiguous extraction of problems from the specified text
means, that this text does not contain formal definition of a problem. For such
definition it is necessary to describe accurately a class of objects for which the
problem dares and to enter obviously for them concept of streamlining, having
described it as system of local operations over symbols of which these objects
consist.

Historically the concept of formal system has arisen within the limits of the
mathematics bases at research of a structure of axiomatic theories and proof
methods in such theories.

Any exact theory is defined, first, by language, т.е some set of the
statements which are making sense from the point of view of this theory, and,
secondly, set of theorems – the subset of language consisting of statements,
true in the given theory.

One of fundamental ideas on the mathematics bases is the idea of
formalization of theories, i.e. consecutive carrying out of an axiomatic method
of construction of theories. Thus, it is not supposed to use any assumptions of
objects of the theory, except what are obviously expressed in the form of
axioms; axioms are considered as formal sequences of symbols, and methods
of proofs – as methods of reception of one the expressions from others by
means of operations over symbols.

Such approach guarantees clearness of initial statements and unambiguity
of outputs, the impression however is made, that intelligence and the validity in
the formalized theory do not play a role. However, actually, and axioms and
output rules aspire to choose so that the formal theory constructed with their
help could give substantial sense.

More particularly, the formal theory is under construction as follows:
1. The set of formulas or correctly constructed expressions forming

language of the theory is defined. This set is set by constructive means (as a
rule, inductive definition) and, hence, it is enumerable and usually it is solvable.

2. The subset of the formulas named axioms of the theory is allocated.
This subset can be and infinite, but anyway it should be solvable.

3. Rules of output of the theory are set. The output rule is a computable
relation on set of formulas. Formulas are called as rule parcels, and its
consequence or the output.

Obtaining formula B from formulas А1, А2... Аn is called such a sequence
of formulas F1, F2... Fm such, that Fm=B, and any Fi is either an axiom, or one

33

of initial formulas А1, А2... Аn, or it is directly deduced from F1... Fi-1 according
to one of obtaining rules.

B it is deduced from А1, А2... Аn if there is output B from А1, А2... Аn. This
fact is designated А1, А2... Аn. А1, А2... Аn are called as hypotheses or output
parcels.

The proof for formula B in theory Т is called the output B from empty set of
formulas, i.e. output in which as initial formulas axioms are used only. The
formula B, for which there is a proof, is called as the formula, demonstrable in
theory Т or the theorem of theory Т.

The fact of demonstrability of the formula B is designated by  B. It is
obvious that joining of formulas to hypotheses does not break deductibility.
Therefore, if IB (B is demonstrable), A B (that is B it is demonstrable and with
some formula A).

At studying of formal theories, there are two types of statements:
1) with statements of the theory, i.e. theorems that are considered as

purely formal objects defined earlier;
2) with statements about the theory (about properties of theorems, proofs,

etc.) which are formulated in language, external in relation to the theory, and
are called as metatheorems.

Terminal symbols are symbols of the alphabet of nonterminal symbols
form set of symbols N that is not entering in Т and used on intermediate steps
of generating process.

As initial symbol is called the non-terminal symbol from, which are
deduced all the line long language.

Formal grammar or simply grammar in the theory of formal languages — a
way of the description of formal language, that is allocation of some subset
from set of all words of some finite alphabet. Distinguish generating and
distinguishing (or analytical) grammar — the first set rules with which help it is
possible to construct any word of language, and the second allow by given
word to define, it enters into language or not [6].

The terminal (terminal symbol) — the object that is directly present at
words of language, corresponding to grammar, and having concrete,
unchangeable value (generalization of concept of "letter"). In the formal
languages used on the computer, as terminals usually take all or a part of
standard symbols ASCII — Latin letters, figures and special symbols.

Non-terminal (a non-terminal symbol) — the object designating any
essence of language (for example: the formula, arithmetic expression, a
command) and not having concrete symbolical value.

Generating process itself consists in application continually one of rules of
transformations or production. This process transforms the set line in a new
line; process comes to an end or when any of productions cannot be applied, or
when the line consists of one thermal symbols.

34

Formal grammar G is four G = (N, T, E, P), where N – set of non-terminal
symbols, T – set of terminal symbols, E – an initial symbol, P – set of
productions, and     ,TN, ‹ŠŒ , 0TN .

Each new line in the course of a conclusion should turn out from already
deduced line production application.

The sentence is the line consisting only from terminal symbols, deduced of
an initial symbol.

Language L defined by grammar G, is a set of the sentences deduced in G
from L:  













 
*

E/TGL * .

Chomsky hierarchy grammars.
Chomsky has offered to divide generating grammars in four types

depending on their rules.
Type 0. Unrestricted grammars. By sight of their rules it is not imposed any

restrictions. Rules look like:
 , (13)

where  and  are chains of terminals and nontermanals. The chain  cannot
be empty.

Type 1. Context-sensitive grammars. Rules in such grammars look like:
A  , where , ,   are chains of terminals and nonterminals; A is a

non-terminal symbol. Such type of rules means, that nonterminal A can be
replaced by a chain  in a context formed by chains and .

Type 2. Context-free grammar. Their rules look like:
A   , where A is nonterminal;  is a chain of terminals and

nontermanals. Prominent feature – in the left part one corrected always
nonterminal.

Type 3. Regular grammar. All rules in regular grammars have one of three
forms:

A aB, A a, A   , (14)
where A, B – nonterminals; a – terminal;  - empty chain.

Apparently, from the definitions, each subsequent grammar is a special
case of previous one.

The languages generated by grammars of type 0-3, are correspondently
called unrestricted, context-sensitive, context-free and regular languages. It is
considered to be, that, for example, language for which exists context-free, but
not regular grammar is context-free. As define both context-sensitive, and
languages without restrictions.

Let's give examples for grammars of various types. Let’s consider the
grammar generating 6G language n n n

6L {a b c | n 0}: 

35

6G : S aSBc (type 2);
 S abc (type 2);
 cB Bc (type 0);
 bB bb (type 1);
 S (type 3).









Grammar type is consided minimum of types of its rules. Hence, the
grammar 6G concerns type 0.

As example of context-free can be the grammar of arithmetic expressions.
With their help, syntax of programming languages is also set. For example let's
consider grammar

7G : S a (1);
 S Sa (2);
 S Sb (3).






It is grammar of type 2 (a rule 1 – type 3, rules 2 and 3 – type 2). Let’s
consider language 7L : the chain a belongs to rule (1). If to correct sentence S to
write a or b it will the correct sentence again. Chains of language 7L beginning
with a, further follow a and b in any order. If under a is meant a letter, and
under b figure then 7G can be considered a grammar of identifiers.

Let's design the regular grammar generating language of identifiers.
The formula (15) it is possible to leave 7G .

8G : S a. (15)
Let's designate B a part of the identifier that can follow the first letter. Then

it is possible to write down a rule (2):
S aB. (16)

Let's write down the formula for В "Tail" can be the letter or figure:
B a, (17)
B b. (18)

Having written down a tail behind the letter or figure, again we will receive
a correct tail:

 B aB, (19)
 B bB. (20)
The grammar 8G is equivalent 7G .

2.2. CLASSES OF FORMAL GRAMMARS
Formal grammar differs from each other first of all in type of rules of output.

Classification of formal grammars according to output rules was given by
American linguist Noam Chomsky. According to Chomsky formal grammar are
divided into 4 types.

36

The formal grammar of type 0 (unlimited grammar or grammar of any type)
uses kind substitutions:   where and  -  chains of any kind.

The formal grammar of type 1 or contextual grammar (context-sensitive
grammar) uses kind substitutions

,А  (21)
where - À a non-terminal symbol;  ,, - chains of any kind, thus the chain 
is not empty or )NUT( ;  , - rule context.

The formal grammar of type 2 or context-free grammar uses
substitutions, A where  - any nonempty line, i.e )NUT( .

The formal grammar of type 3 or regular grammar uses substitutions
,A B or А а  ,

where À and Â non-terminal symbols,  - terminal symbol.
In the theory of formal languages it is proved, that all regular grammars are

context-free, all context-free – context-sensitive, all contextual – unrestricted.
Rules, À are called  as-rules. It is replacement of nonterminal for an

empty word. Otherwise, application -corrected it deletion of a corresponding
non-terminal symbol is simple.

From definitions of Chomsky hierarchy it is obvious, that:
 Any grammar of a class 3 is grammar of a class 2;
 Any grammar of a class 2 without -corrected is grammar of a class 1;
 Any grammar of a class 1 is grammar of a class 0.
Further, we will see, that  -rule in context-free grammar not too strongly

influences set of deduced words. It is more precisely if the empty chain is not
deduced from initial nonterminal of the grammar is easy for altering in
equivalent without -rule. If the empty chain nevertheless is deduced, it is
possible to alter in equivalent with the unique -rule S .

Therefore in many sources, not especially going into detail, write, that any
grammar of a class 2 is grammar of a class 1. Moreover, the resulted classes
of grammars form increasingly narrowed hierarchy.

It is accepted a grammar class to consider the minimum class to which it
gets. For example, the grammar is considered G context-free if it is grammar of
a class 2, but is not grammar of a class 3. It does not privet G to be equivalent
to some regular grammar.

Let's notice, that not looking on relative stability of the resulted
classification of Chomsky grammars, in some not too essential details at
different authors it is possible to meet some different interpretations. We will
result the short review of variants of definition of these classes:

1. In definition of context-dependent grammar (a class 1) they sometimes
do not demand

)NUT( i.e. any chain  replacing nontermanal A was
nonempty. Any such grammar is either equivalent to any context-sensitive in
former sense, or can be altered in equivalent with the same states, that in initial
definition, but with the unique -rule S .

37

2. Definition of context-sensitive grammar is given as follows: it is the
grammar in which all rules look like, a where - ,a any words from terminals
and nonterminals, but in a it is obligatory to be nontermanals, and the length,
is not less than length a . It is possible to prove that all such grammars are
equivalent to grammars of class 1 and on the contrary.

3. Grammar of class 3 is called right regular. Together with them, they
define similar concept of left-regular grammar – when all rules look like

,
,
.

A Ba
A a
A





It is possible to prove, that any right-regular grammar is equivalent to left-
regular and on the contrary. Therefore, these grammars are called simply
regular.

4. It is known the concept of so-called linear grammar. Rules of output of
linear grammar have one kind

,
,

,
.

A aB
A Ba
A a
A






Unfortunately, there exists a linear grammar not equivalent to any regular.
Such grammar, for example, is G

,
,

.

S aB
B Sb
B b





Generating language
{ | 0 }.n nL a b n 

It is valid, easy to see, that this language is set by the grammar
abS,aSbS:H  which rules are deduced from data продукций. "Having

designated" B is everything,)0n(ba n1n 

 from rules we will easily receive H
rules G. From here H and G are equivalent.

2.3. CONTEXT-FREE GRAMMARS
Let's pay attention to that in NC-grammar rules one symbol is replaced

only, the left part corrected not necessarily consists only of this symbol: A .
At rules can be present and other symbols — a context:  A . Such
rules mean the permission to replace a symbol on A only  in a context 
and  . The context at this replacement corresponds without change.

The rules using a context, we call contextually connected, and the rules
which are not using a context, — context-free.

38

The NC-grammar, context-free rules of a kind containing only, A are
called as context-free (Ks-grammar) or context-free grammars.

The nanosecond-grammar, the containing contextually connected rules,
are called as contextually connected grammars.

The languages generated Ks-grammars, are called as Ks-languages.
Let's notice, that connected by a context, or free, rules, instead of

elements in a terminal chain are only.
Ks-grammar represents the important special case of NC-grammars. Their

value is caused by following two circumstances:
First, refusal of a context, i.e. the requirement that in the left part of a rule

one symbol was equal, does structure of grammars even more simple, that
facilitates its studying;

Secondly, though in natural languages replacement of one of units with
others is often admissible only in certain contexts, it is expedient to investigate
possibility to describe languages, distracting from the specified fact. In natural
languages situations when the phenomena which are represented essentially
dependent on a context, can be described and as independent of a context are
possible, i.e. In Ks-grammar terms. Thus, certainly, the description can become
complicated in other relations. For example, new categories, rules or that and
another can be demanded many.

In the most general lines such replacement becomes so: let there is a
class of elements X in the neighborhood with elements of some class elements
Y behave X differently, than in the neighborhood with elements of a class 2 so
rules take place

ZCDZX
YABYX


 ,

(Rules use a context).
Let's enter two new symbols 1X and 2X . An element X in a position after

Y let’s desiginate through and 1X and in a position after Z through 2X .
Then we come to the rules that do not use a context

1

2

,
.

X AB
X CD





It is not necessary to think, however, that any contextually connected NC-
grammar can be replaced by Ks-grammar equivalent to it. It is known, that
there are the NC-languages that are not Ks-languages, for example, language,
consisting of every possible chains of a kind or ,...)aabbaa,aba(aba nnn of kind
chains nnn cba . It is impossible to refuse a context, if the rule provide shift of
symbols, as shift on the being is multidimensional operation. Hence, the Ks-
grammar cannot generate the language containing chains that cannot be
constructed without application of shifts.

39

Almost all available examples of the NC-languages that are not Ks-
languages have abstract character and have no interpretations in natural
languages.

Till now we were engaged in introduction all new and new restrictions on
classes considered grammars. At first we have demanded, that the number of
symbols in the right part of rules was not less, than in left, and have received
not shortening grammar. Then have demanded, that one symbol was exposed
to replacement only, and have received NC-grammar. At last, we have
demanded, that in the left part of a rule in general there was only one symbol,
and have received Ks-grammar.

Clearly, that no further restrictions on the left parts of rules can be imposed
already. Therefore, if we wish to allocate narrower classes of grammars, it is
necessary to impose restrictions on the right parts.

Let's begin with number of symbols in the right part. Depending on number
of symbols in the right part of rules of Ks-grammar it is possible to divide in
binary and nonbinary.

Ks-grammar we will name binary if the right part of any rule contains no
more than two symbols.

For example, rules of a kind, BCA .
Or, bBA  BA where TH Vb,VC,B,A  .
Ks-grammar we will name nonbinary if the right part of any rule contains

more than two symbols. For example, grammar with kind rules,
AabA ABCB  A where, TH Vb,a,VC,B,A  not an empty chain in

this grammar, containing more than two symbols.
Binary Ks-grammar possesses that feature that in trees of structure of

components corresponding to them — S-markers — from each top proceeds
no more than two branches. It means that any difficult component always
consists exactly of two components directly enclosed in it.

Linear grammar — such Ks-grammar, the right which parts of rules contain
no more than on one occurrence of a non-terminal symbol. Thus, for binary Ks-
grammars it is kind rules

aBA  ,
where , , .H TB A V a V 

For not binary Ks-grammars kind rules
, ;

, , , , .H T

A aBab A acB
A B V a b c V
 
 

The language generated linear grammars, is called as linear language. Ks-
grammar, the right which parts of rules contain more than one non-terminal
symbol, we will call nonlinear K&-grammars.

The ks-grammar is called as metalinear if the right parts of its rules do not
contain the purpose of grammar and all rules that left parts are distinct from the
purpose, have the same appearance, as a rule linear grammar.

40

As example of metalinear grammar, the following grammar can serve
)S},cT,bTbT,aTaT,TTS{},T,S{},c,b,a({G  .

Language is called as metalinear if there is a metalinear grammar
generating it.

Imposing restrictions on structure of symbols of the right part of rules Ks-
grammars, Floyd has allocated following subclasses not binary, nonlinear
grammars.

Operational grammar — the right which parts of rules cannot contain two
number of standing non-terminal symbols. As examples of rules of such kind
can serve

,
.

A BbC
A BabC



where TH Vb,a,VC,B,A  .
Grammar of precedencies — the right parts of rules that can contain two

nearby of a standing terminal symbol. Thus there is a possibility to specify what
of these terminal symbols arises in word-formation by the first, having large
priority.

As examples of rules of such grammar the following can serve:
BaaBA  ,

where TH Va,VB,A  . There are also other subclasses.
Subclass linear Ks-grammatik are unilateral linear grammar.
Unilateral linear grammar — such grammar, the right which parts of rules

contain terminal symbols, only on the one hand from a non-terminal symbol.
Unilateral linear grammar are subdivided on link sided - with rules of a kind

and xBA  and xA  right-hand - with rules of a kind and BxA  xA  . In
both cases — B,A non-terminal symbols, and — x a nonempty chain of terminal
symbols.

Unilateral linear grammar at which in each rule the chain consists x only of
one symbol, are called as automatic grammars, or A-grammars, and the
languages generated by these grammars, are called as automatic languages,
or A-languages.

From the given definitions clearly, that each following class of grammars
contains in the previous.

It is possible to present interrelation of the considered classes in a kind of
the graph represented on Fig. 4. Thus, KS-grammar represent the most
important subclass of NC - grammars. It speaks following four principal causes:

41

Fig. 4

1) KS-grammar are a definition basis almost all common programming
languages.

2) All actions of system of parse for natural languages are based on KS-
grammars.

3) It is unique type of the grammar which theory is studied and checked
practically up.

4) All transfomational grammars are constructed on KS-grammars.
5) All considered types грамматик generate four types of languages: NC-

language, KS-language; linear language, A-language, not considering the
language generated by the most general type of grammar with unlimited rules
of output by grammar of type 0.

The interrelation between the languages generated by considered types of
grammar will be following:

() () () () ().L O L HC L KC L Л L A   

2.4. BASES OF THE THEORY OF FORMAL LANGUAGES

2.4.1. Properties of formal languages
Let's result a number of the theorems characterizing the basic properties of

languages, generated by four basic types грамматик.
The theorem 20 (Post). Any language of type 0 is recursively listed

(though, probably, and not recursive) set попочек. Any recursively-countable
the set of chains is type 0 language.

42

Owing to this theorem, the theory of languages of type 0 is covered by the
general theory of recursive functions and consequently usually in the theory of
languages - type 0 languages are not considered.

The theorem 2.1. (Chomsky). Type 1 languages, 2, 3 are recursive sets of
chains, i.e. for each language from the specified chips there is an algorithm
allowing on set grammar (that language to distinguish an accessory of any
chain to language. The converse is incorrect, i.e. there are the recursive sets
that are not languages. It has given the basis for carrying out of special
researches of these languages.

The theorem 2.2. (Chomsky). Type 3 languages are regular sets of chains.
Therefore they are sometimes called automatic.

Thus, if the class of languages of type 0 has appeared so wide, that its
theory has coincided with the general theory of recursive functions (the theory
of algorithms) the class of languages of type 3 has appeared, on the contrary,
excessively narrow, coinciding with well studied class “regular sets” (in the
theory of finite state machines). Therefore the special attention at construction
of the theory of languages was given to/type languages / and 2.

The theorem 2.3. There is the language of type 0 which is not language:
type 1. This theorem follows from the theory of recursive functions.

The theorem 2.4. There is the language of type 1 which is not language –
type 2.

As example of such language can serve }cbaba{L 3mnmn .
The theorem 2.5. There is the language of type 2 that is not language of

type 3.
Examples of such languages are languages

}xx{}ba{ Tnn  .
The resulted number of theorems defines the following relation between

various types of languages:
}0òèïL{}1òèïL{}2òèïL{}3òèïL{  .

Languages of types 0-3 form system, their grammar represent system of
rules of uniform type with consistently increasing restrictions. However, they do
not settle construction possibilities of grammars of the same kind, but with other
restrictions that generate the languages that distinct from are already
considered.

In some works, there are described subclasses of languages for which
interesting laws and the properties that do not have places for a class as a
whole can be established.

So, in grammars type 1 the language named language of Larin which
grammar has additional restrictions is considered: the kind 2121 BA   i.e.
rule rules including replacement of one non-terminal symbol by another are
forbidden. Though this language is of interest for mathematical linguistics, it is
studied insufficiently.

43

From all four types of languages the most interesting are type 2 languages
— context-free.

In many respects, it is defined by possibility of their use, for research of
programming languages. As is known, the program of the digital computer can
be considered as a chain of symbols in some alphabet. Then some
programming language represents infinite set of such chains. This language
has grammar and a finite set corrected, programs defining construction.

At the same time at researches of natural languages are used so-called
categorical grammars that allow selecting from among all possible sentences
— correctly constructed. The class of the languages defined categorial
grammars coincides with a class of the languages generated grammars of type
2.

Type 2 languages are closest to languages of regular events (type 3), with
exhaustive completeness investigated in the theory of finite state machines.
Besides, type 2 languages have received adequate representation by means of
mathematical model of the automatic machine with store memory.

At last, languages of this type are more accessible to mathematical
studying, than, for example, languages of type 1 or Parique language and
consequently are most of all used. At research of widespread programming
languages and in mathematical linguistics. From told becomes clear why for
type 2 languages the greatest quantity of results is received and the big
number of their versions is investigated, each of which is a special case of
context-free language.

Let's consider one more subclass of context-free language that is defined
by means of additional restrictions on system of rules.

Let there is a terminal dictionary }an,...,a{V 1T  . We will designate through
the expanded TV dictionary in which to each terminal symbol, ia the symbol is
compared }a,a,...,a,a{V:a nn11Ti  . The language generated by grammar

)S,P},s{,V(G i whose rules look like
: ,

.i i

P S
S Sa Sa S




Sentences of this  language possess following property: gels each pair
of the next)n,...,2,1i(aa ii  symbols containing in to allow  to replace with an
empty symbol for each sentence there will be  such sequence of these
replacements, c by which help it will be reduced  to an empty chain. Interest
to Dick languages speaks that they are evidently connected with brackets
structures, usual for natural and artificial languages.

Let's imagine a set of formulas of some mathematical calculation or the
program that has been written down in language of type ALGOL. It will be the
text in which there will be the signs always used only in pairs: the left and right
brackets of all kinds (round, square, figured, broken) or the operational
brackets consisting of words "beginning" and "end". We will eliminate from the

44

text everything, except signs on the specified type. The new text constructed by
some strict rules will turn out. Similar texts give representation about
languages.

2.4.2. Operations over formal languages
To languages, as well as to any sets, various operations can be applied.

Before to consider operations over languages, we will define property of
isolation of set. It is said that the set is closed concerning some operation, if
result of its application to any element of set or to any; to steam of elements
contains in this set.

For languages, the usual image defines operations of association, crossing
and operation of addition concerning the fixed dictionary TV .

Association of languages 1L and 2L (designation: 21 LL ) is called a set of
all words belonging at least to one of languages.

This operation represents usual theoretically plural association; it is also
comutative and associative:

1 2 2 1

1 2 3 1 2 3

,
() ().
L L L L
L L L L L L





 

   
 (22)

Under the same conditions, intersection of two languages (a
designation: 21 LL ) is called a set of all words belonging simultaneously to both
languages.

This operation represents usual theoretically plural crossing; it is also
comutative and associative.

Addition to language L is called the set of all words belonging to TV  but
not belonging to L .

The set TV  is the language which addition to TV  is an empty language.
Let's underline, that the language containing an empty word, e is not

empty.
Addition operation let’s consider on example

{ , };

{ | 1, 1 };
T

m n

V a b

L a b m n



  

)LLL(L\V 321T  , where — 1L set of all words beginning with,b — the
set of all words beginning with and, aba nm  }a{L3 i.e. 3L is set of all words
consisting only from a .

The relation of languages of types 0, 1, 2, 3 to Boolean to operations
following four theorems that we furnish without the proof define.

The theorem 2.6. A class of languages of type 0 will close concerning -
association and crossing operations. The problem of that definition is
algorithmically unsoluble, whether is addition of language of type 0 concerning
the fixed dictionary also type 0 language.

The theorem 2.7. The class of languages of type 1 closed under
operations of association and intersection.

45

The question on belongs to what class addition of languages of type 1 in
relation to the fixed dictionary, stay opened.

The theorem 2.8. A class of languages of type 2 will close concerning
association operations, but will not close concerning addition operation in
relation to the dictionary containing not less of two symbols, and also in relation
to crossing operation.

The theorem 2.9 (Kleene). A class of languages of type 3 will close
concerning all of boolean operations.

Except boolean operations over languages operations of multiplication,
iterations, transpositions (mirror display of language) and some other are
considered also.

Product of two languages (designation: 21 LL ) is a set of all words that can
be received in the next way is called: some word undertakes from and 1L some
word joins it on the right from, 2L i.e.

}LX,LX|XX{LL 22112121  .
This operation (named multiplication of languages) does not coincide with

the Cartesian multiplication; it is associative, but not commutative.
Let }c,b,a{VT  . Let’s consider the language }a{ consisting of one single

letter word a . Then product is
.TL V 

There is a set of all words beginning with a .
Iteration operation (Kleene operation). As operation of multiplication of

languages is associative, we can erect the given language in 1! degree:
),...LL(LL)LL(L,LLL 32 

Kleene suggested to consider union
...L...LLLEL n32 

of all consecutive degrees of language L . This union is designated L and
called iteration of language L .

For example, let’s consider the alphabet
{ , ,...}.V a b

as the language consisting of single-letter words. Then 2V is a set of all
two-letter words; 3V is a set of all three-letter words etc. Therefore

...VVVE 32  is a set of all words over V i.e. .V 
It is proved isolation of classes of regular and context-free languages

concerning multiplication iteration. Language L called regular if there is a finite
state machine A such, that)A(LL  .

There is a following theorem concerning languages 0, 1, 2, 3.
The theorem (30). Classes of languages of types 0, 1, 2, 3 are closed

concerning the operation of mirror display defined as follows.
Let language TVL  to be given, through TL it is designated a language

consisting of references of all words of language L :

46

}LX|X{L TT  .
This operation is involutive (i.e. it coincides with its return operation):

() .T TL L
Besides, it is connected with multiplication of languages by a following

correlation:
() .T T TLM M L

For example, language T
TT)V(V  coincides with, TV  as T

T
T V)V(  and

TVE  .
Let's give a concept for operation of homomorphism.
Let's put in conformity to element a of dictionary TV of finite dictionary TaV .

Let’s designate TaV  through a set of all chains from the dictionary TaV and
through)a( - any chain from TaV  . Thus, function  is defined on separate
symbols a from dictionary TV . Define function  on sentences from the
dictionary TV as follows: if. s21 ai...aiaix  then)ai()...ai()ai()x(s21  

Certain function  reflects a subset of chains L from TV  into some subset

of chains from *,
)V(Ta

a


 i.e. () () .Ta
a

L V   

Operation)L( of reflection for language L by means of function is
called operation of homomorphism.

The theorem 2.10 (Bar-Hillel, Pearls and Shamir). Classes of languages of
type 0, 2 and 3 are closed concerning operation homomorphism.

For languages of type 1 (contextual) the following theorem is given.
The theorem 2.11. If TV contains at least two elements than a class of

contextual languages is not closed concerning the operation of homomorphism.
Language projection. For each word in the alphabet YX  .

(1) (1) (2) (2) ... () ()x y x y x t y t    
its projections in X and Y are accordingly called words

).t(y)...1(y
);t(x)...1(x

In other words, if language L in the alphabet YX  is given than a
projection of language L in X is called a language consisting accurately from
projections in X of words from language L .

The language cylinder. Let the alphabet Y and language L in alphabet X .
Y -cylinder of language L is called language L consisting of all words in the
alphabet YX  X whose projections YX  X belong to L .

Properties of languages in relation to considered operations are given in
Tab. 1.

47

Table 1
Language type

Оrder Operation 0 1 2 3
1 Association 1 1 1 1
2 Crossing 1 1 0 1
3 Addition 0 0 1

4 Transposition (mirror display) 1 1 1 1

5 Product 1 1 1
6 Iteration 1 1 1
7 Homomorphism 1 0 1 1

In this table unit designates isolation concerning corresponding operation

of a class of languages of certain type, zero — a closure failure. The empty
cage means, that the question is not solved yet.

2.5. METHODS OF GRAMMARS ANALISYS
Methods of grammatical analysis can be broken into two big classes -

ascending and descending - according to order of construction of a tree of
grammatical analysis. Descending methods (from top to down) begin methods
from the rule of grammar defining an ultimate goal of the analysis from a root of
a tree of grammatical analysis and try to increase it that the subsequent knots
of a tree corresponded to syntax of the analyzed sentence. Ascending methods
(from below upwards) begin methods with finite knots of a tree of grammatical
analysis and try to unite their construction of knots increasingly high level until
the tree root will be reached.

The basic problem of the theory of languages consists in formally to
analyze classes of languages for working out of possible methods as modeling,
and effective processing of languages by machine means.

It is reduced to definition of logic structure of languages, i.e. Systems of
the rules defining syntax of grammar. If the form of rules (i.e. the syntactic part
of grammar) is precisely established, carrying out of a following number of
researches on language is possible:

 communication between kinds of languages with their structural trees
and form of syntactic rules;

 studying of structural properties of the languages generated by some
form of rules of G -grammar;

 relative riches or poverty of various forms of grammars generating
languages L .

 different sort of problems of resolvability of language Lconcerning the
set of G -grammar and a class ofG -grammars;

48

 capacity of G -grammar generating modeling language Ldepending on a
context of application of the last one;

 generating ability of G -grammars, and consequently, definition of
equivalence generated different grammars sets of languages L ;

 measure of complexity, generated by G -grammars of sentences from
language L ;

 reducibility establishment of G -grammars of various complexity to more
simpleG -grammars;

 definition of possible methods of construction distinguishingG -grammars
for set of languages L and a number of other not less important researches
connected with studying of properties of a class of formal grammars with a view
of their practical use.

The greatest development was received by a parse problem of grammars
and the control corresponding languages, consisting from that for any chain

L it is defined its formal correctness (or abnormality is defined L) and
syntactic analysis.

The problem of parse and the language control has arisen in connection
with requirements of translation — working out the specialized program with
whose help the machine translates given the program into a computer
language.

Each of compilers is constructed for some concrete pair of languages: one
— input and the second — output. Put simply, such compilers work by a
dictionary principle: for each concrete combination of the symbols which are
making sense in the given source language, this compiler gives out certain
sequence of symbols of a output language.

Construction of such compilers represents rather labor-consuming work as
it is necessary to consider all possible (making sense) expressions of the
source language and to each of them to compare corresponding expressions
on a output language.

Definition of making sense expressions of the source language is carried
out because of parse of this language. Its essence consists that based on
syntactic rules of grammar check of grammatical correctness set the sentence
or words of language by grammatical analysis is carried out. Thus, a problem of
grammatical analysis is the analysis of sentence from the point of view of an
establishment of their grammatical correctness.

Grammatical analysis is understood as process of definition of a sentence
structure or a word G according to the rules defined by G .

The establishment of that fact, that sentence or word is grammatically
correct, can be executed not in one way. Grammatical analysis can be carried
out in some cases more than in one way.

As a language example for which grammatical analysis can be carried out
not uniquely, let’s consider the language set by grammar with G rules.

49

;
;

;
.

HBC HBc
HBC hBC
BC bc
HB hb







Let's consider a word hbc . This word can be disassembled in two various
ways. Trees of grammatical analysis of this word are given in Fig. 5.

Fig. 5

In the elementary kind grammatical analysis consists in that, having begun
with the first rule, to look through the list corrected from top to down, the
applicable rule will not be found yet, to apply it and to repeat this process so
many times, how many it is necessary. This technique in application to our
rules would give the grammatical analysis shown in the right drawing.

Let's consider one more method of grammatical analysis based on an
order of viewing of the assorted word or the sentence. Rules of grammar of
language look like:

.FHC
;DEB
;BCA





It is necessary to execute grammatical analysis of word DEFH .
Analysis of the given word can be made from left to right or from right to

left. In the first, case in a word the first set of symbols DE accessible to
replacement according to the given grammars. Instead of it, symbols from
some rule are substituted. After that, the received word is looked through again,
beginning at the left, for the purpose of search of set of symbols for
replacement by grammar rules.

For our example viewing from left to right gives the tree of grammatical
analysis given in Fig. 6.

50

Fig. 6

Figures in mugs mean an analysis order. Productive trees are identical.
The difference consists only in the course of analysis: for a - to the left of the
line, for b - to the right of the line.

This difference in an analysis method can be excluded by concept
canonically ordered grammatical analysis.

The canonical form of grammatical analysis is an analysis that is applied
from left to right on a line. Thus, the extremely left part of the sentence first of
all is understood, if it is possible before to promote on a line to the right for
search of a situation accessible to analysis. In fig. a it is given initial
grammatical analysis of the sentence. However, canonically ordered
grammatical analysis cannot always be used. Let’s consider examples:
Example 1. It is given grammar

AxA
xA




(Left recursion)

and line xxxx . Canonical analysis is given in Fig. 7.

Fig. 7

Example 2. It is given grammar

51

xAA
xA




 (Right recursion)

and word xxxx . Grammatical analysis for the given word cannot be canonical
such as it cannot be executed (results in deadlock). Grammatical analysis in
this case can be executed only at analysis to the right of a line (Fig. 8).

Fig. 8

Example 3. It is given grammar is

xAxA
xA




 (Central recursion)

and word xxxx . Make grammatical analysis. In this case, it cannot be
successfully finished at sentence view from left to right (initial analysis), at
viewing from right to left. In this case, analysis at each stage begins with the
middle of the assorted sentence (Fig. 9).

From the considered examples 1, 2, 3 it is possible to draw output, that the
way of analysis of the sentence is defined by type of recursion in output rules of
grammar. Right recursion predetermines the grammatical analysis beginning to
the right.

Left recursion predetermines a successful canonical form of grammatical
analysis.

Fig. 9

Central recursion predetermines the grammatical analysis beginning with
the middle of the sentence. However, not always the way of grammatical

52

analysis can be easily established by grammar rules as it was in the resulted
examples. We will consider the following example.

Example 4. It is given the following grammar rules:
;
;
| ;
;
.

A x
B Ay
C Bz D
D xE
E yv



 



It is necessary to make grammatical analysis of lines xyz and xyv .
Analysis of the first line can be successfully executed because of

application of a canonical form of analysis.
The result of such analysis is shown in Fig. 10, а. Use of initial analysis for

the second line leads up a blind alley (Fig. 10, b).

xW y

A

z

B

C

1 a

xW y

A

U

B

?

2 b

y Vx

E

w

D

C

3 c
Fig. 10

Successful performance of grammatical analysis of the second line is
carried out under a state if analysis is begun with following, beginning at the
left, subline, i.e. with yv . Results of such analysis are given in Fig. 10, c. Thus,
a problem of grammatical analysis is successful carrying out of the analysis of
sentences. The order of grammatical analysis depends on rules of output
(syntax) and a kind of analyzed lines or sentences.

Using formalization as the criterion of the classification, all existing
methods of grammatical analysis can be divided on heuristic and formalized.

Formalization of methods consists in ordering of the rules defining
correctness or an inaccuracy of an initial line concerning set grammar at
application of the given method on each step (stage) of grammatical analysis.

Heuristic methods are not systematized in relation to each step, i.e. they
inform only, whether the given line, only after definitive passage of the analyzed
text is correct.

The heuristic method is known under the name of a trial and error method,
search and substitutions as the correct way of generations is after check of all
possible ways of the decision (analysis). Limitation of use of heuristic methods
consists that:

53

1. Correctness or an inaccuracy of a line is defined not at once on each
step of analysis, and only after the termination of the analyzed text.

2. Correct way of generation is after check of all possible ways of analysis.
3. Choice of a false way demands return returning to last, correctly certain

state.
4. At realization by the machine the sheaf of semantic rules with the

syntactic is very difficultly carried out.
All it negatively affects a method from the point of view of time loss.
At the same time some advantages are inherent in heuristic methods also:

application possibility to all languages that does their universal; orientation or
«on the purpose», or «from the purpose», that defines two directions of a
heuristic method - "from top to down" and «from below upwards».

Grammatical analysis by a method «from below upwards» lines s of

language L generated with grammar,  P,S,V,VG NT begins with line s and
consists in viewing the sequences received because of analysis, conducting to
S (to the purpose). Formally, the purpose of such analysis can be written
as: Ss  i.e. because of grammatical analysis it is defined whether the given
line is a sentence.

All examples of grammatical analysis considered earlier implicitly
demonstrated this method.

Grammatical analysis by a method "from top to down", named a "descent"
method (or «recursive descent»), begins from the purpose S (i.e. from a
starting rule of generation or output), and it is considered the sequence of such
generations which would lead further to s . The formalized representation of
such analysis is sS  . Because of grammatical analysis by the method it is
defined the structure of sentence of language is "from top to down”.

Both methods it is possible can be described by the same trees of
generations, only in one case a tree root below, in other - above. Therefore,
analysis of a word xyz , for example 4, resulted by both methods, is given in
Fig. 11.

The formalized methods appeared and appear in connection with working
out of compilers. Thus in the newest methods sometimes find reflexion good
lines of one and lacks of others before the described methods are eliminated.

Working out of each method is adhered to certain classes of machines
(small, average or large type) and to certain classes of languages (depending
on what languages the machines work with). As all programming languages
concern the second class on Chomsky classification, also methods are focused
on the second class of languages.

54

Fig. 11

Some quality monitoring brings restrictions in grammar of language.
Usually restrictions are imposed on the right part of rules: or on number of
symbols, or on their structure

EXAMPLES AND PRACTICAL TASKS

2.1. Formal grammar
Example — arithmetic expressions
Let's consider the simple language defining the limited subset of arithmetic

formulas, consisting of natural numbers, brackets and signs on arithmetic
actions. It is necessary to notice, that here in each rule on the left side from an
arrow it is necessary one non-terminal symbol. Such grammars are called as
context-free.

The terminal alphabet:
}.)'',('',/'','*','-','+','9','8','7','6','5','4','3','2','1',{'0'=

The non-terminal alphabet:
{FORMUlA, SIGN, NUMBER, FIGURE}.

Rules:

)9...or1or0is figure(9|8|7|6|5|4|3|2|1|0FIGURE.7
)figure andnumber theisnumber (FIGURENUMBERNUMBER.6

)figure theisnumber (FIGURENUMBER.5
)divideor multiply or minusor plus issign (/| |- |SIGN.4

)sparenthesein formulaisformula()FORMULA(FORMULA.3
)numberisformula(NUMBERFORMULA.2

)signcombined,formulastwoisformula(FORMULASIGNFORMULAFORMULA.1










Initial nonterm:
FORMULA
Conclusion:

55

Let's deduce the formula (12+5) by means of the listed rules of output. For
clarity, the parties of each replacement are shown in pairs, in each pair the
replaced part is underlined.

5)27(15)FIGURE1(
5)FIGURE17(5)FIGURE FIGURE(

5)FIGURE FIGURE5(5)FIGURENUMBER(

5)FIGURENUMBER6(5)NUMBER(
5)NUMBER2()5FORMULA(

)5FORMULA7()FIGUREFORMULA(
)FIGUREFORMULA5()NUMBERFORMULA(

)NUMBERFORMULA2()FORMULAFORMULA(
)FORMULAFORMULA(4)FORMULASIGNFORMULA(

)FORMULASIGNFORMULA(1)FORMULA(
)FORMULA(3FORMULA


















Example of regular grammar:
S}P,T,{N,G  .

N {S};
T {a,b};
P:S ; ; ; .a S b S aS S bS



   

By means of this grammar, the lines of symbols a and b are generated. It
is possible to explain sequence of generation of lines with the following
scheme:

Applied rule of output The maintenance of a line
 S

aSS aS
aSS aaS
abS aab

Result of output is line aab.
Example of context-free grammar:

S}P,T,{N,G  .
N {S};
T {a,b};
P:S ; .aSb S ab



 

By means of this grammar lines of a kind are generated
nnba .

Example of output for line
33ba .

56

Applied rule of output The maintenance of a line
 S

aSbS  aSb
aSbS  aaSbb
abS aaabbb

Example of more difficult context-free grammar:

S}P,T,{N,G  .
N {S};
T {IF,THEN,ELSE,U,B};
P:S ;

;
.

B
S IF U THEN S
S IF U THEN S ELSE S







This grammar allows forming various conditional operators of Pascal
language. For example, the operator BELSEBTHENUIFTHENUIF be
can generated as follows.

Applied rule of output The maintenance of a line

 S
STHENUIFS STHENUIF

SELSESTHENUIFS SELSESTHENUIF
BS  SELSEBTHENIFTHENUIF 
BS  BELSEBTHENIFTHENUIF 

The second variant is possible:

Applied rule of output The maintenance of a line
 S

SELSESTHENUIFS SELSESTHENUIF
STHENUIFS SELSESTHENIFTHENUIF 

BS  SELSEBTHENIFTHENUIF 
BS  BELSEBTHENIFTHENUIF 

Exercises
1. Let -)S,P,V,V(G HT is a generating grammar, where.

}e,d,a{VT  }S,C,B{VH  }eC,CdB,aBS{P  . Write out the terminal
chains generated by the given grammar, and define length of their output.

2. Let -)S,P,V,V(G HT , where { , , },TV a d e { , , },HV B C S
}eC,dCB,CdB,aBS{P  Define the terminal chains generated by

the given grammar, and length of their output.

57

3. For grammar G it is known general dictionary }E,D,C,B,A{V  and the

scheme of rules - }BBA,CD,BCD,AE,DCDE{P  . Define
structure of terminal and non-terminal dictionaries, the grammar purpose, to
construct language)G(L and define length of outputs for each terminal chain.

4. Define, whether the following grammars are generating:
a))S},ASB,BSD,ASDS,ABS{P},D,S{},B,A({G  ;
b))S},BAS,ABS,ASBASS{P},S{},B,A({G  ;
c))S},CAA,BA,AS{P},S,A{},C,B({G  ;
d))S},CACA,BA,AS{P},S,A{},C,B({G  .

5. It is given grammar (, , ,),T HG V V P S where)S,P,V,V(G HT .
}B,A{VT  }D,S{VH  }D,BDS,BSBD,ADSBS,ABS{P  .

Prove, that the chain ABABBAB belongs to set)G(L .
6. It is given grammar

,edA{P},E,D,C,B,A{},e,d,c,b,a({G 
)C},bcE,aED,dDC,BcC,AbB 

Define whether the chain)G(L belongs to set eadbcbc .
7. It is given grammar }b,a,S,C{V  and }b,a{V  . Define, whether the four

)S,P,V,V(HT for the following sets of rules a grammar:
a) { , };P C b S aCb  
b) }SbC,ab{P  ;
c) }CS,bCaCC{P  ;
d) }aS,aSCS,bCC{P  .

8. Let for every)S},SS{},a({G1n n . Prove, that what whatever
)G(L,n n  .

9. It is determined terminal dictionary of grammar. Define grammars
generating following languages:

a) language for nnn aba 1n  ;
b) language 2na for 1n  ;
c) language 2nnba for 1n  .

2.2 Context-free grammars
Exercises
1. Let }b,a{VT  . Develop grammar, generating the following languages:

Language }1n|aba{L nnn  ;
Language }1n|a{L 2n  ;
Language }1n|ba{L 2nn  .

2. Grammars 1G and 2G are set by the rules:

58

}.BB,AA{PP
};abB,bAbB,BB,bAbbB

,bA,AA,bBA,aAbBA{P

12

1






Show that)G(L)G(L 21  .
3. It is given grammar)S,P,V,V(G HT where. { , , },TV a b c
{ , , },HV S B S { , , , , , , }.P S aSBC S aBC CB BC aB ab bB bb bC bc cB cc       

Define type of grammar and the language generated by it.
4. Prove, that each linear language is generated by grammar in which

each rule is either left or right linear.
5. It is set two grammars 1G and 2G with the following rules:

}.cB,cA,aBbB,aAbA,ABS{P
};aA,baAA,cAS,abSS{P

2

1




Define grammar type.
6. Prove, that language }baba{L nnmm is not linear.
7. Construct an example of Ks-language not being A-language and

generated by Ks-grammar where each rule is either let-linear or right-linear.
8. Let)S,P,V,V(G HT where }c,b,a{VT  ,aAbA,ABS{P 

}cB,cA,aBbB  . Prove that Ks-language is metalinear, but not linear.
9. Grammar G is set by rules ,bSbS,aSaS{P  }cS,aaSaaS  .

Prove that it is not essentially ambiguous.
10. Language }rmn|cba{L rmn  is Ks-language. Write out the Ks-

grammar generating this language. Define, to what narrower class of
languages it belongs to.

2.3 Basic properties of languages
Exercises
1. It is given language }aaaaaab,aaaab,aab{L  .
Execute operations of multiplication, iteration and transposition over it.
2. It is set a dictionary of terminal symbols }b,c{V  and language

}b,c{V  }1n|bcc{L nn  .
Define language addition.
3. It is set languages }ac,abcc,ab,abbc{L1  and

}yzx,yz,xzy,xz,xyz,xy{L 2  . Execute operation of multiplication of these
languages.

4. It is set language }1n|ba{L nn  . Execute operations of a
transposition, multiplication, and iteration.

5. Let }b,a{VT  }1j,i|aba{L jji  }1j,i|aba{M ijj  }1k,j,i|aba{L kji
1 

Prove, that language MLL2  is context-free.

59

6. It is set language }0n|cba{L nn  . Execute all possible operations over
the given language.

CONTROL QUESTIONS AND TASKS FOR SELF-CHECKING
1) What words are called equal?
2) What are the components of language?
3) What is the essence of formalistic approach in?
4) What is problem type that is connected to occurrence and formalistic

approach development?
5) What are the features of formal languages?
6) What are the basic constructions of formal languages?
7) Characteristics of unlimited formal grammar?
8) In what is the essence of contextual formal grammar?
9) Give the characteristic of context-free formal grammar?
10) Give the characteristic of regular formal grammar?
11) What is the grammatical analysis?
12) What are the basic types of generating grammars?
13) Classes of formal grammars?
14) What is the basic definition for context-free grammars?
15) Is it possible to give interrelation of grammar classes as a graph?
16) What are the properties of formal languages?
17) Can various operations be applied to any sets?
18) What are the basic classes of methods of grammatical analysis?
19) In what limitation of use of heuristic methods consists?

THEMES FOR INDEPENDENT WORK
1) Chomsky - Schuttsenberzhe. Metalanguage.
2) Forms of Bekus-Naur (FBN).
3) Examples of the description of FBN identifier.
4) Examples of identifier description.
5) Figure Wirth.
6) Examples of description of identifier with figure Wirth.
7) Definition and structure of recognizer.
8) Elementary designs.
9) Examples of elementary designs.

60

CHAPTER 3. FINITE STATE MACHINES AND THEIR CONNECTON
TO LANGUAGES AND GRAMMARS

3.1. GENERAL DEFINITION OF FINITE STATE MACHINE
Finite state machine (FSM) is called the five

A = (N, T, P, S, F),
where N – finite set of states of the automatic machine;

Т – alphabet – finite set of symbols;
P – transition function of automaton;
S – initial state S N ;
F – set of finite states F N .

In the beginning, the automaton is in state S. On input FSM, the symbols
belonging to the input alphabet arrive. The sequence of input symbols forms an
input chain. Being in some state and having received on an input the next
symbol, the automaton passes in the following state defined by value of
function of transitions.

Generally function of transitions for given pair of symbols – a state can
define some variants of transition. In that case, the automaton is called not
determined (NFSM).

If having read an input chain the automaton  stopped in some state B
they say, that  converts the automaton in V. If state N is one of finite states,
i.e. F B F then FSM allows chain .

The set of all chains accepted by the automaton forms language L(A)
accepted by the automaton.

The language generated by automatic grammar G, coincides with the
language accepted by the corresponding finite state machine

L(G) L(A) .
FSM can be set by means of the diagram of transitions. For example, the

graph of automatic grammar 8G can be considered transition diagramme 8A .
At transition from automatic grammar a FSM generally receives not

determined FSM that complicates its use in a role of recognizer for automatic
language. Indeterminacy the automaton is defined by that for some tops of its
diagram of transitions there are some arches leaving these tops and marked
with the same symbol.

For elimination of ambiguity NFSM translate in DFSM (determined FSM).
The simplest model is the automaton with finite number of states (with

finite memory) — the finite state machine.
Determined finite state machine is called the ordered system from five

objects — «the ordered five»:
0(, , , ,).A X S s F 

61

Where }x,...,x,x{X r21 is a set of input symbols (input alphabet),
}s,...,s,s{S r21 is s set of inner states, n,r are finite, Ss0  is initial state, is a

function displaying XS in S that is usually written as SXS:  . This
function unequivocally puts in conformity to pair of symbols)x,s(ji some
symbol - SF,Ssk  some allocated subset of states of the automaton (finite
states).

This automaton can be interpreted as it is shown in Fig. 12.
The automaton consists of the actuation device, a reading out head and

infinite to the right the input tape divided into cages. In the beginning on a tape
the input chain is so written down, that in each cage of a tape contains on one
symbol of a chain. The initial symbol is written down in an extreme left cage,
and all cages of that part of a tape which is located more to the right of last
symbol of record of an input chain, are empty, i.e. In each of these cages the
"empty" symbol A is written down. The head during the initial moment is
located against an extreme left cage of a tape, and the actuation device is in an
initial state.

 

1x 2x 3x   …

 y.y

Fig. 12

In each next step, the head perceives a symbol on a tape, the actuation
device changes the state according to display  and the tape moves on one
cage to the left. If the head perceives an empty symbol  that is written down
more to the right of last symbol of input sequence it will mean automaton
cessation of work, i.e. the actuation device state does not change any more.

Admissible or comprehensible is called an input sequence possessing
following property: when the head perceives last symbol of this input sequence,
the automaton passes in one of set states F .

The set of admissible input sequences of the automaton A or set of
sequences, representable in the automaton A by set of states F is
designated)A(L . Such set, being set of chains of symbols from the finite
alphabet X will be from the point of view of the theory of languages to some
languages over the terminal dictionary XVT  . Thus, naturally there is a way of
comparison of automatons, languages and grammars.

For finite state machines, the set)A(L is allocated with known Kleene
theorem.

The theorem 41 (Kleene). For any finite state machine the set A of
admissible)A(L sequences is regular, i.e. language of type 3. This theorem

62

explains, why type 3 languages are called as languages with finite number of
states.

As the determined finite state machine with two tapes is called the ordered
six 0(, , , , ,).A X Y S s  

Where 0s,S,X and  have the same sense as finite state machine with one
tape, - }y,...,y,y{Y l21 is a set of output symbols (output alphabet), l - finite,
 is a function reflects XS in Y i.e. YXS: 

Interpretation of this automaton is given in Fig. 13.
But for input tape, the automaton has infinite to the right a output tape that

can move only to one party — from right to left. Each next step in a tape cage
is printed a symbol, and the tape moves on one cage. This automaton is called
as consecutive machine, or Mealy machine. Mealy machine M to each chain of
input symbols u unequivocally puts a chain of output symbols  that registers
in conformity with  )u(M . It is obvious, that )(M .

 Input tape

 y.y

 output tape

Fig. 13

Nondetermined finite state machine with one tape is called the ordered five
0(, , , ,).A X S S F 

Where F,S,X have the same sense, as in definition of the determined
automaton,  set XS in set of all subsets of states S and 0S some allocated
(initial) subset of set S.

Representation of set of input sequences in not determined automaton is
understood as follows. The set of input sequences U is admissible in not
determined finite state machine, if for each sequence of this set there will be
such two states 0i Ss  and Fs i  and such variant of work (i.e. Such concrete
values of function), that the sequence U translates the automaton from
state is into state js .

The following theorem is proved.
The theorem 42 (Rabin and Scott). In not determined single-tape finite

state machines as well as in determined are admissbible only regular sets of
chains. By means of not determined automatons it is impossible to expand a
class of representable sets. However not determined finite state machine

63

usually has smaller number of states in comparison with the determined
automaton representing the same set.

The finite state machine with two tapes is not determined, if at the same
situation characterised in pair,)x,s(ji probably finite number of variants of its
action. Hence, such automaton can put to one input chain in conformity finite
set of output chains.

The bilateral finite state machine differs from the usual determined
automaton that the input tape infinite in both parties and can move not only to
the left, but also to the right, and also can remain motionless. Thus displaying
function is replaced SXS:  with function, dSXS: 
where }1,0,1{d  . The symbol d shows in what party the input tape should
move: - 1 corresponds to shift on one cage to the right, 1 to shift to the left on
one cage, 0 the tape remains motionless.

The set)A(L of all admissible sequences of such automaton is defined by
the following theorem.

The theorem 43 (Rabin, Scott). For each bilateral automaton A it is
possible to define effectively such automaton Bhaving the same set of
comprehensible input sequences, as the automaton A . Therefore the set)A(L
is regular i.e. it is type 3 language.

Thus, the bilateral automaton does not expand possibility of finite state
machines.

3.2. MEALY MACHINE AND MOORE MACHINE
Mealy machine is a finite state machine, which output sequence (unlike

Moore machine) depends on a state of the automaton and input signals. It
means that in a state graph to each edge there corresponds some value (a
output symbol). In tops of the graph of Mealy machine leaving signals register,
and to arches of the graph attribute a state of transition from one state in
another, and also input signals. Mealy machine can be described the
five,)g,f,Y,X,Q(where Q set of states of the automaton, X set of input
symbols, Y set of output symbols,)X,Q(fq  function of states,

)Y,Q(gy  function of output symbols.
The law of functioning of Mealy machine is set by the equations:

(1) ((), ()); () ((), (), 0,1,2, ...).a t a t z t w t a t z t t     
The law of functioning of Moore machine is set by the equations:

(1) ((), ()); () (()), 0,1,2, ...).a t a t z t w t a t t     
From comparison of laws of functioning, it is visible, that, unlike Mealy

machine, the output signal in Moore machine depends only on a current state
of the automaton and in an explicit form does not depend on an input signal.
For the full task of Mealy and Moore machines in addition to functioning laws, it
is necessary to specify an initial state and to define internal, input and output
alphabets. Mealy machines - automatic machines of 1st sort, R a-bus Moore

64

machines – automatons of 2nd sort, S a-bus SRC  the-combined
automatons.

3.2.1. Synthesis of mealy machine
At a stage of reception inputs of the tops following for operational, mark a

flowgraph of algorithm symbols ,...a,a 21 following rules:
1) 1)symbol 1a marks an input of the top following for initial, and also an

input of finite top;
2) inputs of all tops following for operational, should be noted;
3) inputs of various tops, except for finite, are marked by various symbols;
4) if the top input is marked, only one symbol.
For carrying out of marks the finite number of symbols m1 a,...,a is required.

Result of the first stage is noted the flowgraph of algorithm which forms a basis
for the second stage - transition to the graph or tables of transitions-exits.

At the second stage, from noted algorithm flowgraph, the graph of the
automaton or the table of transitions-exits is built. For this purpose they believe,
that in the automaton there will be so much states how many symbols i ia t was
required at a mark an algorithm flowgraph.

On a drawing plane it is marked all states of the automaton ia . For each of
states ia define on noted an algorithm flowgraph all ways which are conducting
in other states and passing necessarily only through one operational top.

On the basis of noted an algorithm flowgraph it is possible to construct the
table of transitions-exits. For microprogram automatons the table of transitions-
exits is under construction in the form of the list and direct and return tables
differ. For the given automaton the direct table is given to Tab. 2, return - in
Tab. 3.

Table 2 Table 3
Am As X Y Am As X Y

1a 2a 1 3,1 yy 22a 1a 5,6 xx 91 , yy

2a 5a 2x 6y 23a 5x 91 , yy
 7a 2x 4y 24a 2x -

3a 4a 1 2y 1a 2a 1 3,1 yy

4a 5a 5x 6y 10a 3a 65 , xx в3,в6
 6a 5x 107 , yy 3a 4a 1 2y

5a 6a 1 107 , yy 12a 2x 2y

6a 8a 4x 2y 2a 5a 2x 6y
 9a 4x 42 , yy 4a 5x 6y

7a 9a 1 42 , yy 4a 6a 5x 107 , yy

65

Ending of Table 2 Ending of Table 3
Am As X Y Am As X Y

8a 10a 1 63 , yy 5a 1 107 , yy

9a 11a 1 7y 2a 7a 2x 4y

10a 3a 65 , xx 63 , yy 6a 8a 4x 2y
 11a 5x 7y 6a 9a 4x 42 , yy
 12a 65 , xx 8y 7a 1 42 , yy

11a 12a 1x 8y 8a 10a 1 63 , yy
 13a 1x 91 , yy 9a 11a 1 7y

12a 4a 2x 2y 10a 5x 7y
 16a 2x 42 , yy 10a 12a 65 , xx 8y

13a 16a 1 42 , yy 11a 1x 8y

14a 15a 1 63 , yy 11a 13a 1x 91 , yy

15a 17a 5x 7y 22a 14a 1,6 xx 2y
 18a 65 , xx 8y 14a 15a 1 63 , yy
 20a 65 , xx 63 , yy 24a 2x 63 , yy

16a 17a 1 7y 12a 16a 2x 42 , yy

17a 18a 1x 8y 13a 1 42 , yy
 19a 1x 91 , yy 15a 17a 5x 7y

18a 21a 2x 43 , yy 16a 1 7y
 22a 2x 96 , yy 15a 18a 65 , xx 8y

19a 21a 1 43 , yy 17a 1x 8y

20a 22a 1 96 , yy 17a 19a 1x 91 , yy

21a 23a 1 8y 15a 20a 65 , xx 63 , yy

22a 1a 5,6 xx 91 , yy 18a 21a 2x 43 , yy
 14a 1,6 xx 2y 19a 1 43 , yy
 24a 1,6 xx 7y 18a 22a 2x 96 , yy

23a 1a 5x 91 , yy 20a 1 96 , yy
 24a 5x 7y 21a 23a 1 8y

24a 15a 2x 63 , yy 22a 24a 1,6 xx 7y
 1a 2x - 23a 5x 7y

3.2.2. Synthesis of moore machine
At a stage of reception a flowgraph of algorithm the marking is made for

Moore machine according to following rules:

66

1) the symbol 1a marks initial and finite tops;
2) various operational tops are marked by various symbols;
3) all operational tops should be noted.
The table of transitions-exits of Moore machine is given in Tab. 4 (straight

line). Usually for Moore machine in the table of transitions-exits the additional
column for output signals not used also a output signal registers in a column
where the initial state am or transition states S is underlined.

Table 4
Transitions-exits of the Moore machine

Am(y) As X
 1a 2a 1

 3,12 yya 4a 2x
 5a 2x
 23 ya 5a 5x
 6a 5x
 44 ya 7a 1

( 65 ya 6a 1
 1076 y,ya 7a 4x

 8a 4x
 427 y,ya 10a 1

( 28 ya 9a 1
 639 y,ya 10a 5x

 12a 65 , xx

 13a 65 , xx
 77 ya 11a 1x
 12a 1x

 9111 y,ya 14a 1
 812 ya 14a 2x
 3a 2x

( 313 ya 3a 1
 4214 y,ya 16a 1
 6315 y,ya 16a 5x

 18a 65 , xx

 19a 65 , xx
 716 ya 17a 1x
 18a 1x

 9117 y,ya 20a 1

67

Ending of Table 4
Am(y) As X

 818 ya 20a 2x
 22a 2x
 319 ya 22a 1

 4320 y,ya 21a 1
 821 ya 23a 5x
 24a 5x

 9622 y,ya 23a 5,6 xx

 24a 1,6 xx

 25a 1,6 xx
 9123 y,ya 1a 1

)y(a 724 1a 2x
 15a 2x
 225 ya 15a 1

3.2.3. Transformation of mealy machine to moore machine
Between Mealy and Moore machiness (Fig. 14) there is conformity,

allowing transforming the law of functioning of one of them to another or back.
Moore machine can be considered as a special case of Mealy machine,
meaning, that the sequence of states of exits of Mealy machine advances
sequence of states of exits of Moore machine on one step, i.е distinction
between Mealy and Moore machiness consists that in automatons of Mealy the
exit state arises simultaneously with a state of an input causing it, and in Moore
machines - with a delay on one step, suh as in Moore machines input signals
change only an automaton state.

Fig.14

68

Let it be necessary to transform Mealy machine to Moore machine.
The graph of Mealy machine is on Fig.15:

Fig. 15. The graph of Mealy machine

In Mealy machine }a,a,a{A},y,y{Y},x,x{X 210a21a21a  .
In equivalent Moore machine }y,y{YY},x,x{XX 21ab21ab  .
Let's construct set of states of the automaton bA of Moore for what we will

find sets of the pairs generated by each state of the automaton aS .

Condition Generated pairs
0a }b,b{)}y,a(),y,a{(212010 
1a }b{)}y,a{(311 
2a }b,b{)}y,a(),y,a{(542212 

From here they have sets of states bA of Moore

machine }b,b,b,b,b{A 54321b  . To find function of outputs bL with each state
representing to steam of a kind,)y,a(gi let’s identify the output signal which is
the second element of this pair. The result is as follows:

25b214b3b1 y)b(l)b(b;y)b(l)b(l)b(b  .

Let's construct function of transitions bd . Such as in the automaton aS from state
0a there is a transition under the influence of a signal 1x in state 2a from

delivery from 1y set of the states generated, }b,b{ 21 0a in the automaton bS there
should be a transition in state 412 b)y,a( influenced by signal 1x . Similarly, from

}b,b{ 21 under the influence of 2x there should be a transition in
state 110 b)y,a( . From 311 b)y,a( under the influence of 1x in transition

110 b)y,a( and 2x - under the influence of 522 b)y,a( . At last from states
}b,b{)}y,a(),y,a{(542212  under the influence of 1x in 220 b)y,a( and

69

2x - under the influence of 311 b)y,a( . As a result we have a graph (Fig. 16)
and the table of transitions of the equivalent Moore machine.

Fig. 16. The graph of the equivalent Moore machine

yg y1 y2 y1 y1 y2
xj\bj b1 b2 b3 b4 b5
x1 b4 b4 b1 b2 b2
x2 b1 b1 b5 b3 b3

As an initial state of the automaton bS it is possible to take any of states

1b or 2b such as both of them are generated by state 0a of automaton aS .

3.2.4. Connection between mealy and moore machines
Two automatons with identical input and output alphabets are called

equivalent if after their installation in their initial state, their reactions to any
input word coincide.

Despite the fact that automatons function differently, it is always possible
to construct the automaton of one model of other model equivalent to the
automaton in the sense that their reactions to one and the same input chains
will be identical. The general approach to developing automaton equivalents:

1) let it be given Moore automatic machine that it is necessary to transform
Mealy machine to equivalent.

)Aa,.,W,Z,A(S 1aaaaaa  — Moore machine,
)Ba,.,W,Z,A(S 1bbbbbb  — Mealy machine.

70

2) let’s require: ?,AaBa,.,WW,ZZ,AA b11aabababab   .
To transform from Moore machine to Mealy machine it is necessary in the

column of Moore machine to take out a symbol of the output alphabet from
considered top and to attribute it to all arches entering into this top. In the
equivalent Mealy machine quantity of states are the same, as well as in Moore
machine.

Transformation from Mealy machine to equivalent Moore machine is more
complicated. It is due to the fact that in Moore automatic machine only one
output signal is developed. The single restriction imposed on possibility of such
transformation is that the initial automatic machine of Mealy should not have
unattainable states:

1) Let it be given Mealy machine which it is necessary to transform into
equivalent Moore machine.

)Aa,.,W,Z,A(S 1aaaaaa  - Mealy machine,

)Ba,.,W,Z,A(S 1bbbbbb  - Moore machine.

Let’s require abab WW,ZZ  .
2) Let’s define the set of states of Moore, bA for this purpose each

state, aS AA  is put in conformity set SA which represents every possible steams
of a kind)w,a(gS where gw - are output signals which have been put down
along arches of Mealy machine, entering into top Sa .

Set bA is an association bS AA )M,1(S  Generally, quantity of tops in
Moore machine is more than in Mealy machine. Output function b and
transition function bW are defined as follows: to each state of Moore machine,
represents pair,)w,a(gS we put in conformity with output signal gw . If in Mealy
machine aS there was a transition from fish-traps ma under the influence of
signal in fz in top Sa i.e. Sfma a)z,a(S  herewith it makes a signal

kfma w)z,a( to Moore machine there will be a transition from set of
states, Sfma a)z,a(S  under the influence of kw the same input signal fz .

3.3. REPRESENTATION OF FORMAL GRAMMARS POSSIBILITIES IN THE
FORM OF FINITE STATE MACHINES

The resulted definitions from section 3.1 of the description of the
nomenclature of definitions and unequivocal conformity with formal languages
of various types are reflected in Tables 5, 6.

Conformity between principal views of automatic machines and
representable languages in them are shown in Tab. 5.

71

Table 5

Оrder Automaton names Type of language

1 Determined and not determined finite state machine 3

2 Determined push down machine 2

3 Not determined push down machine 2

4 Determined liner limited automaton 1
2




5 Not determined liner limited automaton 1

6 Determined and not determined Turing machine 0

In this table the following designations are used. The arrow means,

that language)3,2,2,1,0i(i D when and only when we will give in the type of
automatic machine)6,...,2,1k(A k  . The arrow means,  that if language we
will present in the automaton kA is language i . The arrow means,  that if
language is if type i then there will be automatic machine kA where it is
representable.

In summary we consider possible treatment of concepts and results of the
general theory of languages with reference to three basic areas where these
results are used: to mathematical linguistics, programming languages and the
theory of automatic machines.

In Tab. 6 similar concepts from these three areas are collected and
concepts of the general theory of languages corresponding to them are
specified.

Table 6
Designati

on
The general theory

of languages
Mathematical

linguistics
Programmi

ng
The mathematical

Models

TV The terminal
dictionary
(alphabet)

The basic
dictionary of

language

Output
symbols

The output
alphabet

HV
The non-terminal

dictionary
(alphabet)

Auxiliary
grammatical

terms

Set of
commands

Set of states of the
actuation device

S Initial non-terminal
symbol Sentences The

program Initial condition

P System Syntactic rules Operations Displaying function

72

EXAMPLES AND PRACTICAL TASKS

3.1. Finite state machines
Exercises
1) On each of resulted below finite state machines construct A right liner

Ks-grammar generating set-)A(T .
 }),p{,p,X,S(A 3 Tab. 7 is set  }),p{,p,X,S(A 3 .

 }),p,p{,p,X,S(A 541 Tab. 8 is set  }),p,p{,p,X,S(A 541 .

 Table 7 Table 8
 A B A B C

5

4

3

2

1

P
P
P
P
P

2

3

2

3

2

P
P
P
P
P

4

1

5

4

5

P
P
P
P
P

6

5

4

3

2

1

P
P
P
P
P
P

1

4

2

4

1

2

P
P
P
P
P
P

2

6

3

4

6

3

P
P
P
P
P
P

6

3

1

2

6

1

P
P
P
P
P
P

On crossing of line ip and column x it is given value)x,p(i .
2) Develop MT-automaton 1M such that }b,a{X  and)M(T — set of all

chains containing identical number of input symbols anda b .
3) Develop MT-automatic machine, M such that }b,a{X  and
)M(T }1i,1n|baba{U}1i,1n|aba{ i3in2ninn  .
4) Develop MT-automatic machine supposing language, generated by

grammar with rules }cT,bTT,TaT,TTs{P  .
5) It is given a set of commands of the finite state machine supposing

language }0m,n|ba{ nn  :

.S)Sb(
;S)Sb(
;S)Sb(
;S)Sa(
;S)Sa(

021

221

211

111

101








Construct the grammar generating this language, and define its type.
6) Construct linear limited automatic machines supposing languages:

1

2

{ | 0 };
{ | { , } }.

n n nL a b a n
L xcx x a b

 

  

Language }rqp|cba{L rqp  is KC-language.

73

Write out the Ks-grammar generating this language. Define what narrower
class of languages it belongs to. Construct the determined MT-automatic
machine supposing this language.

7) What of the following sets of sequences can be distinguished as the
finite state machine:

a) Set of all sequences: 0, 1, 00, 01, 10, 11, 000, 001, 010, …;
b) Numbers 1, 2, 4, 8, …, 2n, …, written down in a binary notation;
c) The same set of the numbers which have been written down in a

monadic code: 1, 11, 1111, 11111111, 1111111111111111, …;
d) Set of sequences, in which number of 0t is equal to number of 1;
e) Sequences: 0, 101, 11011, …, 1k01k (k – number of enterins of 1)?

3.2. Mealy and moore machines
Any finite set of words E = {a1.... ak} can be represented in the automatic

machine. The idea of construction of the automatic machine on finite set of
words is illustrated by the graph in Fig. 17, where finite states qn-k......, qn-1 are
represented by a double circle. For specific sets this idea is modified because
words can have commom beginnings (then the beginnings of corresponding
ways need to be united not to break a automation state) or easier to contain in
each other (then from one finite state there is a way to other finite state). The
example of the automatic machine for E = {ab, the expert, аbаа} with finite
states F = {3, 5, 6} is given in Fig. 17.

Fig. 17. The idea of construction of the automatic machine on finite set of words

In the automaton representing finite set of words, the way from an initial
state in any finite state cannot contain cycles or contain in a cycle as then there
would be an infinite set of ways from an initial state in F and corresponding

74

event would be infinite. Therefore such automatic machine cannot be strongly
coherent, it is the device, so to say, disposable action.

a) Independent automatons represent events in single-letter alphabet;
words in such events differ only in length. For example, the automaton from
example 2.3 with initial state 1 and F = {7} (outputs are ignored) is an infinite
event consisting of all words whose lengths at division on 4 give in the rest 3. If
to put F = {2} this automaton is of empty event.

b) The automaton, whose graph given in Fig. 18 (F = {1}), is an infinite set
{е, аbа, abaaba., {aba}.

Events are sets of finite words. However it is possible to say, that the

automaton distinguishes infinite sequence of letters  = ,,,
111 iii ааа …, if it is a

set E = { ,,,
111 iii ааа …}, consisting of all initial pieces of sequence .

Fig. 18

CONTROL QUESTIONS AND TASKS FOR SELF-CHECKING
1) The general definition of the finite state machine.
2) What the basic essence of finite state machine?
3) Interpretation of the finite state machine.
4) Not determined finite state machine.
5) Finite state machine with two tapes.
6) Mealy machine?
7) Moore machine?
8) How is it possible to convert Mealy machine to Moore machine?
9) What is the connection between Mealy and Moore models?

75

TOPICS FOR SELF-DEPENDENT WORK
1) The linear-bounded automaton.
2) Connection between linear-bounded automaton and context-sensitive

grammars.
3) Kurod theorem.
4) Context-sensitive languages.
5) Push-down automaton.
6) Context-free languages characteristics.
7) Push-down automatons with single-letter transitions.
8) Hayes- theorem.
9) Examples of not determined push-down automaton.
10) Algorithmic problems.
11) Algorithmically unsolvable problems.
12) Algorithmically solvable problems.

76

BIBLIOGRAPHIC LIST

1. Аляев, Ю.А. Дискретная математика и математическая логика [Текст]:
учебник / Ю.А. Аляев, С.Ф. Тюрин. – М. : Финансы и статистика, 2006. –
368 с.

2. Гуц, А.К. Математическая логика и теория алгоритмов [Текст] : учеб.
пособие / А.К. Гуц. – Омск: Наследие. Диалог-Сибирь, 2003. – 108 с.

3. Игошин, В.И. Математическая логика и теория алгоритмов [Текст] :
учеб. пособие / В.И. Игошин. – М. : изд. центр «Академия», 2008. – 448 с.

4. Колмогоров, А.Н. К определению алгоритма [Текст] /
А.Н. Колмогоров, В.А. Успенский // Успехи математических наук. – 1958. –
Т. 13. – № 4(82) - С. 3 – 28.

5. http://ru.wikipedia.org/wiki/Формальная_грамматика.
6. Хопкрофт, Джон. Введение в теорию автоматов, языков и

вычислений [Текст] / Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман.
– М. : Вильямс, 2002. – 528 с.

77

CONTENT

INTRODUCTION ... 3
CHAPTER 1. ALGORITHMIC SYSTEMS... 4
1.1. Intuitive concept of algorithm. Properties of algorithms 4
1.2. Formal concepts of strict definition of algorithms... 6
1.3. Recursive functions .. 7
1.4. Turing Algorithmic concept. Turing computability 10
1.5. Markov Normal algorithm. Markov Computability 13
1.6. Methods of algorithm estimation .. 15
1.7. Algorithmically SOLVEBLE AND unsoluble problems 21
Examples and practical tasks .. 22
1.1. Effective resolvability .. 22
1.2. Recursive functions .. 24
1.3. Turing machine ... 25
1.4. Markov computability .. 27
Control questions and tasks for self-checking... 28
Themes for independent work ... 29
CHAPTER 2. BASES OF THE FORMAL GRAMMARS THEORY 30
2.1. Concept of formal grammar. Homsky Hierarchy .. 30
2.2. Classes of formal GRAMMARS ... 35
2.3. Context-free grammars... 37
2.4. Bases of the theory of formal languages.. 41
2.4.1. Properties of formal languages ... 41
2.4.2. Operations over formal languages .. 44
2.5. methods of GRAMMARS analisys ... 47
Examples and practical tasks .. 54
2.1. Formal grammar ... 54
2.2 Context-free grammars.. 57
2.3 Basic properties of languages ... 58
Control questions and tasks for self-checking... 59
Themes for independent work ... 59
CHAPTER 3. FINITE STATE MACHINES AND THEIR CONNECTON TO
LANGUAGES AND GRAMMARS ... 60
3.1. general definition of finite State Machine ... 60
3.2. Mealy machine and Moore machine .. 63
3.2.1. Synthesis of mealy machine.. 64
3.2.2. Synthesis of moore machine ... 65
3.2.3. Transformation of mealy machine to moore machine 67
3.2.4. Connection between mealy and moore machines 69
3.3. Representation of formal grammars possibilities in the form of finite state
machines.. 70
Examples and practical tasks .. 72
3.1. Finite state machines.. 72
3.2. Mealy and moore machines ... 73
Control questions and tasks for self-checking... 74
Topics for self-dependent work ... 75
BIBLIOGRAPHIC LIST .. 76
CONTENT.. 77

Навчальне видання

Шостак Ігор Володимирович
Данова Марія Олександрівна

Бутенко Юлія Іванівна
Груздо Ірина Володимирівна

ТЕОРІЯ АЛГОРИТМІВ І ОБЧИСЛЮВАЛЬНИХ ПРОЦЕСІВ

(Англійською мовою)

Редактор В.В. Рижкова
Технічний редактор Л.О. Кузьменко

Зв. план, 2013
Підписано до видання 12.04.2013
Ум. друк. арк. 4,4. Обл.– вид. арк. 5. Електронний ресурс

Національний аерокосмічний університет ім. М.Є. Жуковського
«Харківський авіаційний інститут»
61070, Харків-70, вул. Чкалова, 17

http://www.khai.edu
Видавничий центр «ХАІ»

61070, Харків-70, вул. Чкалова, 17
izdat@khai.edu

Свідоцтво про внесення суб’єкта видавничої справи

до Державного реєстру видавців, виготовлювачів і розповсюджувачів
видавничої продукції сер. ДК № 391 від 30.03.2001

