
 
 
 
 

I.V. Shostak, I.V. Gruzdo, M.A. Danova, I.I. Butenko 

 
 
 
 
 
 
 
 
 
 
 

THEORY OF ALGORITHMS AND COMPUTING 

PROCESSES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2013



THE MINISTRY OF EDUCATION AND SCIENCE, YOUTH AND SPORTS OF UKRAINE 
National Aerospace University of N.E. Zhukovsky  

"Kharkov Aviation Institute" 
 
 
 
 
 
 

I.V. Shostak, I.V. Gruzdo, M.A. Danova, I.I. Butenko 

 
 
 
 
 
 
 
THEORY OF ALGORITHMS AND COMPUTING PROCESSES 

 
 

The manual 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kharkov “KHAI” 2013



THE MINISTRY OF EDUCATION AND SCIENCE, YOUTH AND SPORTS OF UKRAINE 
National Aerospace University of N.E. Zhukovsky  

"Kharkov Aviation Institute" 
 
 
 
 
 
 

I.V. Shostak, I.V. Gruzdo, M.A. Danova, I.I. Butenko 

 
 
 
 
 
 
 
THEORY OF ALGORITHMS AND COMPUTING PROCESSES 

 
 

The manual 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kharkov “KHAI” 2013



UDC 510.51  
Т33 

 
Наведено основні засоби побудови алгоритмічних систем, що 

спрямовані на вирішення фундаментальних проблем теорії алгоритмів, а 
саме доведення обчислюваності та розв’язуваності. Особливу увагу 
приділено прикладним питанням математичної лінгвістики. 

Для студентів спеціальності 6.020303 «Прикладна лінгвістика». 
 
Reviewers:  dr. techn. science, prof. E. I. Kucherenko,  

dr. techn. science, prof. V. M. Levykin  
 
 
 

 
Т33 Theory of algorithms and computing processes [Text]: Tutorial for 

students studying in specialty 6.020303 - Applied Linguistics / 
I.V. Shostak, I.V. Gruzdo, M.A. Danova, I.I. Butenko. - Kh. : Nat. 
aerospace. univ. of N.E. Zhukovsky "Khark. aviat. Inst", 2013. – 80 p. 

 
 
It is given basic means for algorithmic system development focused to 

solving fundamental problems of theory of algorithms namely proof of 
computability and resolvability. The applied problems of mathematical 
linguistics are under principal concern. 

For students of speciality 6.020303 - Applied linguistics. 
 
 
 
Il. 18. Table 8. Bibliogr.: 6 titles.  
 

                  UDC 510.51 
 
 
 
 
 
 

© Shostak I. V., Gruzdo I.V., Danova M. A., 
Butenko I. I., 2013 

© National Aerospace University  
of N.E. Zhukovsky "Kharkov Aviation 
Institute", 2013 



3 

INTRODUCTION 
 

Initially, the theory of algorithms has arisen in connection with the internal 
needs of theoretical mathematics, but as an independent science appeared in 
the 30-'40s XX-th century. Along with mathematical logic, it is the basis for the 
construction of the theory of computation. They form the theoretical basis for 
the design and use of computing devices to bad formalized objects. The first 
fundamental work on the theory of algorithms have been published 
independently in 1936 by Alan Turing, Alois Church and Emil Post. Their 
proposed the Turing machine, the machine Lent and Church's lambda calculus 
were equivalent formalisms algorithm, and formulated theses (Lent and the 
Church-Turing) postulated the equivalence of their proposed formal systems 
and the intuitive notion of an algorithm. An important development of this work 
was the formulation and proof of algorithmically unsolvable problems. In the 
1950s, substantial contributions to the theory of algorithms have also works by 
Kolmogorov and Markov. 

Thanks to the theory of algorithms the introduction of mathematical 
methods in economics, linguistics, psychology, pedagogy, and other 
humanities is happened. The tasks of the theory of algorithms include a formal 
proof of the algorithmic unsolvability of the problem, the asymptotic analysis of 
algorithms, classification algorithms in accordance with the complexity classes, 
criteria comparative quality assessment algorithms, etc. An example of one of 
the tasks in this area is the exact description of the algorithm implemented by 
the person in the process of forming and decision-making. 

In modern conditions, the general computerization of all aspects of 
society has given a distinct theory of algorithms applied focus - is primarily 
algorithmic systems and algorithmic languages that are the foundation of the 
modern theory of programming for both individual computers and networks of 
different scales (local, corporate, global) and how to accurately describe the 
mappings implemented digital machines. Development of applied linguistics 
today also impossible without the use of computers, and consequently, the 
basis of the theory of algorithms and computational processes, especially the 
theory of formation languages and grammars. Typical problem for applied 
linguistics, solutions which are inextricably linked with the theory of algorithms 
and computational processes are machine perception and processing of 
natural language objects. 

Thus, this manual is to form knowledge and skills of students speciality 
6.020303 "Applied Linguistics". 
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CHAPTER 1. ALGORITHMIC SYSTEMS 

1.1. INTUITIVE CONCEPT OF ALGORITHM. PROPERTIES 
OF ALGORITHMS 

Intuitively the algorithm is viewed as process of consecutive output of the 
problem occurring in discrete time so that in each next moment of time 
algorithm system of objects is formed under the certain law from system of the 
objects available in the previous moment of time. Strictly speaking, intuitively 
such as the concept of algorithm is similar to concept of set it is impossible to 
define it mathematically strictly.  

It is assumed that the word "algorithm" derives from the name of Central 
Asian (Uzbek) mathematician of the IX century Al Khwarizmi (Abu Abdulla 
Mohammed ebne Musa al Khwarizmi al Medgusi) — «Algorithmi» in the Latin 
transcription, who was the first to formulate calculating rules (procedure) for 
four arithmetic actions in a decimal notation.  

As long as the calculations were simple, there was no need in algorithms. 
As a need in repeated step-by-step procedures appeared the theory of 
algorithms arose. However, when problem became even more complicated it 
showed that a part from them couldn’t be solved by algorithms. For example, 
these are the problems that a human solves based on thinking. The solution of 
such problems is based on neuromathematical methods. In this case, 
processes of training, tests and mistakes are realized.  

Characteristics of algorithm are defined by its properties (characteristics). 
Basic properties of algorithm are as follows:  

1. Massivness. It is supposed, that the algorithm can satisfy the solution of 
all problems of the given type. For example, the algorithm for the solution of 
system of the linear algebraic equations should be applicable to the system 
consisting of any number of the equations.  

2. Productivity. This property means, that the algorithm should lead to 
result reception for finite number of steps.  

3. Definiteness. The instructions entering into algorithm should be exact 
and clear. This characteristic provides unambiguity of result of computing 
process at the set initial data. 

4. Discretness. This property means that process described by algorithm 
and algorithm can be broken into separate elementary stages which possibility 
of performance on the computer at the user cause no doubts.  

It can seem that any problems is subjected to algorithms. It turns out that 
many problems cannot be solved algorithmically. Such problems are called 
algorithmically unsolvable.  

To prove algorithmic solvability or unsolvability of problems mathematically 
strict and exact means are requeired. In the mid-thirties of the last century it 
was offered attempts to formalize concept of algorithm have been undertaken 
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and various models of algorithms: recursive functions, Turing and Post 
"machines", Markov normal algorithms.  

Afterwards it has been ascertained these and other models to be 
equivalent in the sense that classes of problems solved by them coincide. This 
fact is called Church thesis. Now it is conventional. Formal definition for 
concept of algorithm has created prestates for developing the theory of 
algorithm even before working out of the first computers. Computer facilities 
progress stimulated further development of the theory of algorithms. Besides 
the defining the algorithmic resolvability of problems the theory of algorithms is 
engaged in an estimation of complexity of algorithms in sense of number of 
steps (time complexity) and demanded memory (spatial complexity), and also 
is engaged in working out effective algorithms in this sense.  

For realization of some algorithms at any reasonable from the point of view 
of physics assumptions in performance speed of elementary steps it can 
demand more time, than, on modern views, Universe exists, or it is more 
memory cells, than the atoms making a planet the Earth.  

Therefore, one more problem of the theory of algorithms is the output of a 
question of an exception of search of variants in combinatory algorithms. 
Estimation of complexity of algorithms and creation of effective algorithm is one 
of the major problems of the modern theory of algorithms.  

Algotrithm is considered effective when its labour input (number of steps) 
is limited by a polynom from the characteristic size of a problem. See examples 
for effective and not effective algorithms. 

Greedy algorithm. Let’s consider the finite set X containing n elements, 
some family of its subsets and XX 2 weight function ),0[: Xw . 

Let 
)(max)( BwAw

XB
 , 




XBb

bwBw ).()(                              (1) 

The algorithm that in the specified family X chooses a subset A with the 
maximum value (weight) )(Aw  is called as greedy.  

The greedy algorithm is effective; the quantity of its steps is )(nO . 
Full search. It is given finite set, },...,{ 1 naaX   containing elements n  and 

predicate },...,{ 1 naaX  n ),...,( 1 nxxP . This predicate is not symmetric, 
i.e ,...),...,(...,,...),...,(..., xyPyxP  . It is required to find a set of elements 

),...,(
1 nii aa  such that ),...,(

1 nii aaP . The simplest decision of this problem is 
that all possible shifts ),...,(

1 nii aa  from n elements with check of the validity of a 
predicate on them get over ),...,(

1 nii aa . It is known, that number of shifts is equal 
to !n . Hence, labour input of such algorithm of full search is )!(nO . As !n  with 
growth of n grows faster than any polynom of n degree and faster, than the 
given n2 , the algorithm is not effective. 



6 

1.2. FORMAL CONCEPTS OF STRICT DEFINITION OF ALGORITHMS 
When working out an algorithm it is used one of three basic methods. 
The first method is to bring a difficult problem to a sequence of more 

simple problems – such procedure is called a method of private purposes. 
Herewith it is assumed that simpler problems are easier to process than initial 
one. The output of the problem can be derived from the outputs off these 
simple problems. This method looks rather reasonably, but it is not always easy 
for transferring on a specific task. An intelligent choice of simpler problems is 
more likely arts or intuitions, than sciences. Moreover, there is no general set of 
rules for defining a class of problems that can be solved by means of such 
approach. 

The second method of developing algorithms is known as a lifting method. 
In the beginning it is accepted the initial assumption or calculation for the initial 
output of a problem. Then as fast as possible move upward is made in the 
direction to better outputs. When the algorithm reaches such point from which it 
is impossible to move upward, the algorithm stops. Unfortunately, we cannot 
guarantee, that the definitive decision received by means of algorithm of lifting 
will be the best. Lifting methods remember some purpose and try to make 
everything, they can and where can to reach closer to the purpose. It makes 
theim a little shortsighted. 

The third method is known as back workout, i.e. we begin with the purpose 
or the decision and move back in the direction to initial statement of a problem. 
Then, if these actions are reversible, we move from problem statement to the 
decision. 

The heuristic algorithm usually finds comprehensible though not 
necessarily optimum decision, it is possible to realize it faster and easier than 
any known exact algorithm. Many of them are based on a method of the private 
purposes or on a lifting method. Often very good algorithms should be 
considered as heuristic: if we developed fast algorithm that worked on all 
known test problems, but we could not prove, that algorithm is correct. Such 
proof is not given yet, it is necessary to consider algorithm heuristic. 

The instruction about sequence of algorithm actions of can be presented 
as a scheme — logic scheme of algorithm, matrix scheme of algorithm, 
algorithm flow graph.  

The logic scheme of algorithm (LSA) was offered by Soviet mathematician 
A. Lyapunov (1911 — 1973) who was the professor of chair of mathematics in 
military artillery academy.  

LSA is an expression consisting of symbols of operators, logic states 
following in a certain order, and also numbered arrows placed in a special way.  

The matrix scheme of algorithm (MSA) is the square matrix which 
elements specify states of transfer of management from i operator of a line to j 
operator of a column. Lines of a matrix are numbered from the first operator to 
penultimate, columns — from the second to the last.  

The algorithm flow graph (AFG) is a directed graph of a special kind. It 
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contains nodes of four types: 1) operational, designated by rectangles; 
2) stateal, designated by rhombuses; 3) initial node and 4) finite node, 
designated by ovals. Nodes are connected with arches.  

1.3. RECURSIVE FUNCTIONS 
Recursion is one of the basic programming techniques. Recursive 

functions are the functions dependent on themselves. When we considered 
machines we spoke about transition functions that in the next moment of 
machine time depend on their values in the previous moment. This is the way 
automatic memory is realized.  

In the theory of recursive functions that is considered historically the first 
formalization of concept of algorithm, it is applied numbering of words in any 
alphabet natural numbers (N), and any algorithm is to calculate some function 
at integer values of arguments.  

Function is computable if there is such an algorithm, i.e. step-by-step 
procedure «from simple to difficult» which calculates the value of a function 
from input variables or gives a message that the set of values does not belong 
to interval on which a function is defined.  

Function is semicalculatable if at t the input set which does not belong to a 
range of definition of function, the algorithm does not stops (goes in cycles). 
The theory of computability was developed by A.Church. The idea was similar 
to the problem of functional completeness of switching functions: to find 
elementary computable functions (which « are computable intuitively»), i.e. the 
basis and offer techniques to get from these elementary computable functions 
from more difficult functions for finite number of steps (as a superposition 
principle in the theory of switching functions). So received functions are also 
computable.  

These elementary computable functions are:  
1)(  xxS  – successor function (specifies next natural number); 

0)( xO  – zero-function; 

mn
n
m xxxxI ),...,,( 21  – functions-projectors that result in samples of m th of 

n arguments nm 1 . 
To obtain from some semicomputable functions other functions for finite 

number of steps it was offered operators.  
The first of them is the operator of superposition, i.e. substitution in 

function of functions instead of variables. Thus dimension of function increases.  
Definition 1.1. (The operator of superposition). Let’s consider that n -seater 

function   is obtained from m -seater function f  and n -seater functions mgg ,...,1  
by means of the operator of superposition if for all nxx ,...,1 equality is fear:  

)),...,(),...,,...,((),...,( 1111 nmnn xxgxxgfxx  .                        (2) 
The second operator is the operator of primitive recursion.  
Definition 1.2. Let’s consider that )1( n -seater function   is obtained 



8 

from n -seater function f  and )2( n -seater function g  by means of the 
operator of primitive recursion if for any yxx n ,,...,1  equalities are fear: 

)).,,...,(,,,...,()1,,...,(
);,...,()0,,...,(

111

11

yxxyxxgyxx
xxfxx

nnn

nn







             (3) 

The third operator is the operator of minimization – operator μ. 
Definition 1.3. (The operator of minimization). Let’s consider, that n -seater 

function   is obtained from )1( n -seater functions 1f and 2f  by means of the 
operator of minimization, or the operator of the least number 
if for yxx n ,,...,1  equality yxx n ),...,( 1  is executed if and only 
if values )2,1()1,,...,(),...,0,,...,( 11  iyxxfxxf nini  are defined, pairwise unequal  

 )1y,x,...,x(f),...,0,x,...,x(f)0,x,...,x(f n11n12n11   )1y,x,...,x(f n12    and 
),,...,(),,...,( 1211 yxxfyxxf nn  .  

Shortly speaking, the value ),...,( 1 nxx  is equal to the least value of 
argument y  at which last equality is executed.  

Let's consider an example of the task of Fibinacci numbers 1,1, 2, 3, 5, 8, 
13, 21... using the operator of primitive recursion:  













).1()()2(
;1)1(
;1)0(

nfnfnf
f
f

                                 (4) 

Here are indicated two initial values of function f (0), f (1) and a principle of 
forming the subsequent value. Unlike machine transition functions it is indicated 
not machine time, but a step of calculations n, i.e. value of function on a step 
that is distinct from zero and first one, is equal to the sum of function values in 
two previous steps.  

Then, 
1)0( f 1)1( f 211)1()0()2(  fff ( 3 ) ( 1 ) ( 2 ) 1 2 3,f f f    

532)3()2()4(  fff … 
Are all functions primitive recursive? One can show, that a set of all single-

seater integer functions like NN  , where N being a set of natural numbers is 
incalculatable, moreover it is true for functions like NN n  . Each primitive-
recursive function has the finite description, i.e. it is set by a finite word in some 
alphabet fixed for all functions. Set of all finite words is denumerable, that’s why 
primitive-recursive functions form no more than a calculable subset of 
incalculable set of functions like NN n  . However, it happens that not all 
computable functions can be described as primitive-recursive.  

The third operator is the operator of minimization p that allows search in 
calculations to define the necessary value.  

Definition 1.4. Function is called as primitively recursive if it can be 
obtained from the elementary functions n

mISO ,,  by means of finite number of 
operators of superposition and primitive recursion.  
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Example. Let’s illustrate that function yxyxs ),(  can be obtained from 
the elementary by means of the operator of primitive recursion. The following 
identities are true for the function:  

,1)()1(
;0




yxyx
xx

                                    (5) 

that can be written as  

1),()1,(
;)0,(




yxsyxs
xxs

                                       (6) 

or  

)),,(()1,(
);()0,( 1

1

yxsSyxs
xIxs




                                     (7) 

and that is the scheme of primitive recursion, based on the elementary 
functions 1

1I  and S . 
Definition 1.5. Function is partially recursive if it can be obtained from the 

elementary functions n
mISO ,,  by means of finite number of superposition, 

primitive recursion and operator μ. If function is defined everywhere and 
partially recursive it is called general recursive.  

The theorem 1.1 (Kleene theorem) [4]. Any partially-recursive function 
),...,( 1 nxxf  can be obtained with operator μ and the operator of superposition 

from two primitive-recursive functions [where one is fixed once and for all, and 
the other depends on function ),...,( 1 nxxf ].  According to Kleene theorem there 
is such primitive-recursive function, )(xU  that for any partially-recursive function 

),...,( 1 nxxf  there exists a primitive-recursive function ),,...,( 1 yxx n with the 
following property: 

])0),,...,([(),...,( 11  yxxyUxxf nn  .                         (8) 
Let's note that not always partially recursive function can be predetermined 

effectively to general recursive. It’s clear, that any primitively recursive function 
is also partially recursive (and even general recursive as each primitively 
recursive function is defined everywhere) as for construction of partially 
recursive functions from the elementary it is used more means, than for 
construction of primitively recursive functions. At the same time, the class of 
partially recursive functions is wider than a class of primitively recursive 
functions as all primitively recursive functions are defined everywhere, and 
among partially recursive functions there are also functions that are not defined 
everywhere.  

The concept of partially recursive function has appeared as exhaustive 
formalization of concept of computable function. At developing the axiomatic 
theory of statements initial formulas (axiom) and output rules got out so that the 
formulas received in the theory would settle all tautologies of algebra of 
statements. What do we aspire to in the theory of recursive functions? Why are 
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so chosen the elementary functions and operators for obtaining new functions? 
We aspire by recursive functions to settle all conceivable functions that are 
calculable by means of any certain procedure of mechanical character. Like 
Turing thesis, in the theory of recursive functions it is put forward the 
corresponding natural-scientific hypothesis carrying the name of Church thesis 
in the theory of recursive functions:  

Numerical function if and only if is algorithmically (or machine) computable, 
when it is partially recursive.  

Recursive functions are a basis of functional programming. An example of 
language of functional programming is LISP language developed in 1960 by 
D.Makkarti. It is one of the first languages of data processing in the symbolical 
form (LISP, from LISt Processing — processing of lists). One of the most 
essential properties of LISP language is that data, programs and even 
language are simply lists of symbols in brackets. The similar structure allows 
writing programs or the subroutines, capable to address to themselves.  

Prefix form is used in LISP:  

.)))(*(*(

);(*))((*
;)(

22 yxyyxx

yxxxyx
yxxy






                                      (9) 

There are also recursions in languages of structural programming. 

1.4. TURING ALGORITHMIC CONCEPT. TURING COMPUTABILITY 
Turing thesis (the basic hypothesis in the theory of algorithms) [3].  
Let's return to intuitive representation about algorithms. Let’s remind that 

one of algorithm properties is that it represents the common way allowing for 
each problem from a certain infinite set of problems to find its output for finite 
number of step. One can look at concept of algorithm from a different point of 
view. From infinite set of problems, it is possible to express (code) each 
problem with some word of some alphabet, and the problem decision — any 
other word of the same alphabet. As a result, we obtain the function set on 
some subset of set of all words from the chosen alphabet and accepting values 
in set of all words of the same alphabet. To solve any problem it means to find 
value of this function on the word coding the given problem. To have an 
algorithm for solving all problems of the given class is to have the common way 
allowing in finite number of steps to "calculate" value of constructed function for 
any values of argument from its range of definition. Thus, an algorithmic 
problem is in essence a problem about calculation of values of the function set 
in some alphabet.  

It is necessary to specify what it means to be able to calculate values of 
function. It means to calculate values of function by means of suitable Turing 
machine. For what functions is it possible thier Turing calculation? Numerous 
researches of scientists, extensive experience have shown that such class of 
functions is extremely wide. Each function, for which calculation of values there 
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is any algorithm, was computable by means of some Turing Machine. It allowed 
Turing to state the following hypothesis named the basic hypothesis of the 
theory of algorithms, or Turing thesis:  

To find values of the function set in some alphabet, if and only if there is an 
algorithm when function is computable according to Turing, i.e. when it can be 
calculated by suitable Turing machine.  

It means that strict mathematical concept of computable (according to 
Turing) function is on the substance an ideal model of the concept of algorithm 
taken from experience. The given thesis is neither more nor less an axiom, a 
postulate that is put forward on interrelations of our experience with that 
mathematical theory which we want to bring under this experience. Be finite the 
given thesis cannot be proved with mathematics methods because it has no 
intramathematical character (one part in the thesis — a concept of algorithm — 
is not an exact mathematical concept). It is put forward proceeding from 
experience, and experience confirms its solvency. In the same way, for 
example, it cannot be proved mathematical laws of mechanics; they were 
discovered by Newton and repeatedly confirmed by experience.  

However, it is not excluded the basic possibility that Turing thesis will be 
denied. It is to be specified a function, which is computable by means of any 
algorithm, but incomputable with any Turing machine. Such possibility is 
improbable (it is among senses of the hypothesis): any discovered algorithm 
could be executed with Turing machine.  

Additional indirect arguments confirming this hypothesis will be given in 
two subsequent paragraphs where it is considered other formalizations of 
intuitive concept of algorithm and is proved their equivalence with concept of 
Turing machine. 

Turing Machine 
Turing machine [1] is one of abstract models of algorithms, named after 

English mathematician Alan Turing (1912-1954). Turing machine includes:  
1) the actuation device that can be in one of the states forming finite 

set },...,,{ 21 kyyyY  ;  
2) a tape broken into cells, in each of which can be written down one of 

symbols of the finite alphabet },...,,{ 21 nxxxX  ;  
3) device of the reference to a tape is a reading out and writing down head 

which during each moment of time "surveys" a cell and depending on a symbol 
in a cell and actuation device states writes down in this cell a new symbol (it 
can coincide with former, read out) or an empty symbol (the former symbol is 
erased and the blank symbol registers in its place). Further, the reference 
device moves on a cell to the left or to the right or remains on a place. Thus, 
the actuation device passes in new inwardness or remains in an old (current) 
state. Among control means are initial states 1y  and finite states ky (k — a 
mnemonic sign on the termination of work). Turing machine is in initial state of 
work, in finite — after the work is terminated.  
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Memory of Turing machine is a finite set of states (internal memory) and a 
tape (external memory). The tape is infinite in both sides, however during the 
initial moment of time only the finite number of cells of a tape is filled by 
symbols, the others are empty, i.e. contain an empty symbol — a blank symbol 
λ.  

Turing machine data are words in the tape alphabet, on a tape register 
initial data and result.  

Elementary steps are reading and record of symbols, head shift, and 
transition of a control means from one position to another one (Fig.1). 

Under the influence of an input symbol X, for example 1, read out by a 
head, the control mean forms output symbol Z, operates head movement: to 
the left (L), to the right (R), on a place ().  

 
Fig. 1. Block diagram of Turing machine 

The full state of the machine, or configuration (or a machine word) on 
which its further behavior is unequivocally defined, is described by 
inwardness, iy , symbols to the left and to the right of a head, for example: the 

...... 21 xyx i  System of commands of the machine contains kind records
zR
yxy 2

11   

where – 1x a readable symbol in a state 1y ; 2y  - new inwardness; z – a written 
down symbol; R – a sign of advancement of a head, – a transition symbol in 
a new state.  

Set of all commands is called a program. Each Turing machine is defined 
by the alphabet, states of internal memory and the program. Completely to 
define machine work, it is necessary to specify its configuration for the initial 
moment of time. Let’s consider that in an initial configuration the head 
perceives the most left nonempty cell.  

Turing machine is set by a three of data – M = <X, Y>, where X – the 
alphabet of symbols of a tape with the allocated empty symbol λ (blank); Y – 
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the alphabet of inwardness with the allocated symbols initial, 1y  and finite 
states ky ; P – the program, i.e. finite sequence ordered fives of symbols — 
commands.  

If the machine, begun work with some word that has been written down on 
a tape, comes to a finite state it is called applicable to this word. The result of 
its work considers the word that has been written down on a tape in a finite 
state. If the machine during any moment of time does not come, to a finite 
state, it is called inapplicable to the given word and the result of its work is not 
defined.  

Computability in Turing functions  
Function is called computable according to Turing if there is Turing 

machine calculating it, i.e. such Turing machine which calculates its values for 
those sets of values of arguments for which function is defined, and working 
eternally if function for the given set of values of arguments is not defined [1,3].  

Partial numerical n-seater function ),...,( 1 nxxf  is called computable 
according to Turing if there is the machine calculating it in following sense.  

1. If the set of values of arguments belongs to a function range of definition 
f the machine, begun work in some configuration setting value of arguments, 
stops, finishing work in a configuration corresponding to value of function.  

2. If set of values of arguments does not belong to a range of definition of 
functions the machine, begun work in some configuration, works infinitely, not 
coming in a finite state.  

1.5. MARKOV NORMAL ALGORITHM. MARKOV COMPUTABILITY 
The theory of normal algorithms has been developed by Soviet 

mathematician A.A.Markov (1903–1979) in the late 1940 - beginning of 1950th 
of XX century. These algorithms represent some rules on processing of words 
in any alphabet so the initial given and required results for algorithms are words 
in some alphabet.  

Markov substitutions. Alphabet (as before) is called any nonempty set. Its 
elements are called letters, and any sequences of letters – words in the given 
alphabet. For convenience of reasoning mere words (they do not incorporate 
any letter) are supposed. Let’s designate an empty word  . If A and B are two 
alphabets, and A   B the alphabet B is called expansion of the alphabet A.  

Let’s designate words with Latin letters: Р, Q, R (or the same letters with 
indexes). One word can be a component of another word. Then the first is 
called subword of the second word or occurrence in the second one. For 
example, if A is the alphabet of Russian letters let’s consider such words: Р1 = 
paragraph, Р2 = graph, Р3 = ra. Word Р2 is subword of word Р1, and Р3 is a 
subword of Р1 and Р2, and word Р1 it enters twice. The first occurrence is of 
special interest.  

Definition 1.6. Markov substitution [3] is called operation over the words, 
set by means of the ordered pair of words (Р, Q), consisting in the following. In 
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set word R they find the first occurrence of word Р (if that is available) and, not 
changing other parts of word R, replace in it this occurrence by word Q. The 
received word is called as result of application of Markov substitutions (Р, Q) to 
word R. If first occurrence Р in word R is not present (and, hence, in general it 
is not present any occurrence Р in R) it is considered, that Markov substitution 
(Р, Q) is inapplicable to word R.  

To designate Markov substitutions (Р, Q) it is used the following record  
P-> Q. It is called the substitution formula (Р, Q). Some substitutions (Р, Q) 

let’s name finite (the sense of the name becomes clear hardly later). For a 
designation of such substitutions, let’s use record P->. Q, naming it a formula of 
finite substitution. Word Р is called the left part, and Q — the right part in the 
substitution formula.  

Normal algorithms  
The arranged finite list of formulas of substitutions in the alphabet A is 

called the scheme (or record) of normal algorithm in А. (A point in brackets 
means, that it can stand in this place or not.) The given scheme defines 
(determines) algorithm of transformation of the words, named Markov normal 
algorithm. Let’s give its exact definition.  

Definition 1.7. Normal algorithm (Markov) in the alphabet A is called the 
following rule of construction of sequence Vi of words in the alphabet A, 
proceeding from the given word V in this alphabet. As initial word of sequence, 
V0 the word V is undertaken. Let for some i> 0 word Vi is constructed and 
process of construction of considered sequence has not finished yet. If in the 
scheme of normal algorithm there are no the formulas whose left parts would 
be in Vi then Vi+1 is equal to Vi and process of construction of sequence is 
considered come to the end. If in the scheme there are formulas with the left 
parts in Vi then instead of Vi+1 it is taken the result of Markov substitutions in 
the right part for the first of such formulas instead of the first occurrence of its 
left part in word Vi; process of construction of sequence is considered come to 
the end if in the given step the formula of finite substitution has been applied, 
and proceeding — otherwise. If process of construction of the mentioned 
sequence breaks, they say, that the considered normal algorithm is applicable 
to a word V. Last member of Inconsistency is called as result of application of 
normal algorithm to a word V. It is said that the normal algorithm processes V in 
W. 

Let’s write down sequence VI as follows:  

mm VVVVV  1210 ... ,                                 (10) 

where VV 0 and WVm  . 

We have defined concept of normal algorithm of alphabet A. If algorithm is 
set in some expansion of the alphabet A, they say, that it is a normal algorithm 
over A.  
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Normally computable functions and Markov principle of 
normalization  

As well as Turing machine, normal algorithms do not make actually 
calculations: they only make transformations of words, replacing in them one 
letters others by the rules ordered to it. In turn, we order them such rules, which 
results of application we can interpret as calculation.  

Definition 1.8. Function f, set on some set of words of the alphabet i, is 
called normally computable if there will be such expansion of the given 
alphabet (And ) and such normal algorithm in In, that each word V (in the 
alphabet) from a function range of definition f this algorithm processes in a 
word f (V [3].  

The founder of the theory of normal algorithms the Soviet mathematician 
A. Markov has put forward the hypothesis which has received the name 
«Markov principle of normalization ». According to this principle, for a finding of 
values of the function set in some alphabet, in only case when there is any 
algorithm, when function normally вычислима.  

1.6. METHODS OF ALGORITHM ESTIMATION 
In the theory of algorithms the concept "algorithm" is usually specified by 

means of the description of "mathematical model» computer. Here two 
approaches depending on are possible,  whether complexity of algorithm (the 
car, the program) or ability of the computing process proceeding according to 
algorithm is estimated. 

The theoretical and empirical analysis of efficiency is necessary for proved 
use of time and memory of the computer. 

In practice, it is necessary to be content with the approached decision of a 
problem and to be reconciled with uncertainty elements in the decision. As a 
rule, problems are precisely solved with finite number of the input and output 
data supposing finite representation only. It is possible to allocate two reasons 
on which are limited to the approached decision: or the problem cannot be 
solved precisely, or the exact decision is not necessary. The impossibility 
receives the exact decision can speak that: 

 the information is incomplete, i.e. some elements of a problem in 
coincident among themselves cannot be distinguished, having only this 
information; 

 the information approached which can appear as a result of many 
reasons, including errors of the computer, errors at the data transmission, the 
limited accuracy of representation and processing of numbers, restrictions on 
accuracy of measurements; 

 the class of admissible algorithms is limited. 
The majority of real problems should be solved, having only incomplete or 

approached information. Numerical procedures use arithmetic of finite accuracy 
and they are based on the approximation theory. It is desirable to describe 
numerical algorithms with the same severity, as algebraic. The concept of 
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calculation can concern not only numbers. The first symbolical manipulations 
have been connected with use of code numbers and secret writing. Since 1963, 
program systems are spread formula transformations. Among other examples 
of symbolical calculations are: work with texts, games in draughts, chess, and 
guо. Programs for reception of mathematical proofs concern the same group of 
programs.  

Algebraic algorithms are realized in the program systems supposing input 
and output of the information in symbolical designations. It differs in simple 
formal descriptions, existence of proofs of correctness and asymptotical 
borders of performance time. Besides, it is possible to present algebraic objects 
precisely to computer memories; therefore, algebraic transformations can be 
executed without accuracy and importance loss. Accuracy at use of algebraic 
algorithm is often paid by big time of performance and a necessary memory 
size, than for its numerical analogue. 

There are a number of important reasons for the analysis of algorithms. 
One of them is necessity of reception of estimations (or borders) for a memory 
size or an operating time that is required to algorithm for successful processing 
of concrete data. Machine time and memory are rather deficit and expensive 
resources. Another one is a desire to have a certain quantitative criterion for 
comparisons of two algorithms applying for the decision of the same problem. 
One more reason is a desire to have the mechanism for revealing of the most 
effective algorithms. Sometimes it is impossible to make accurate opinion on 
relative efficiency of two algorithms. One can work better on the average, for 
example, on casual input data; another works better on some special data. It is 
important to establish absolute criterion also. When we consider the problem 
decision optimum i.e. when our algorithm is so good, that it is impossible 
(irrespective from our mental faculties) to be improved considerably. 

Usually it is required efficiency from algorithm. It means, that all operations 
which are necessary for making in algorithm, should be simple enough that 
they could be executed precisely and for a short time interval by means of a 
pencil and a paper.  

Finiteness restriction is not rigid enough for practical purposes: the used 
algorithm should have not simply finite, but extremely finite, reasonable number 
of steps. Whether in real calculations the main question concerning some 
function consists in that "is the given function computable", and whether more 
likely in that "is it practically computable". I.e. whether there is a program 
calculating function in time that we have? It is possible to measure time 
demanded for calculation each value of function under the concrete program, in 
the assumption, that each step is made for a time unit. As a measure of 
computing complexity, it is to be taken calculation time. 

It is not enough to prove correctness of algorithm. All of us can make 
errors at the proof and while translating correct algorithm in the program. 
Everyone can forget some special case of a problem. The smallest features of 
operational system can cause such action of a part of your algorithm about 
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which you did not suspect for some input data. The program should be checked 
up for a wide spectrum of admissible input data. This process can be tiresome 
and difficult. The analytical and experimental analyses supplement each other. 
The analytical analysis can be inexact if too strong simplifying assumptions are 
made. Only rough estimates in this case can be received. Experimental results, 
especially when generated data are used casually, can appear too unilateral. 
To receive authentic results, it is necessary to spend both analytical and 
experimental research there where it is possible. 

As a measure of complexity of algorithms À  it is considerd a functional 
correlating to each algorithm À  some number )À(  characterizing its bulkiness, 
for example: number of commands À , length of record À  or any other 
numerical parameter characterizing volume of the information, containing in À . 
Similar functionals have already been applied for a long time in theoretic-
cybernetic researches of the schemes realizing functions of logic algebra and 
also in calculus mathematics where capacity of the scheme, on which the 
multinomial is calculated, is measured by number of the arithmetic operations 
appearing in the scheme. Distinction consists only that in the specified works 
special narrow classes of functions and special ways of the description of 
algorithms are considered. We are interested in working out and application of 
similar concepts of more general situation (any computable functions, the 
general concepts of algorithm). The first publications, in which such measures 
of complexity have found applications, belong to A.A.Markov and 
A.N.Kolmogorov. 

As a measure of complexity of calculations it is considered functional, 
correlating to each pair )à,À(  where À  is algorithm, à is an individual problem 
from this a class of problems that the algorithm À  solves, some number )à,À( . 
This number characterizes complexity of work of algorithm with reference to 
À initial data and before delivery of corresponding result. For example, as 

)à,À( it is possible to take a number of elementary steps of which this work 
consists of (in other words, duration of process of calculation) or a memory size 
which can be necessary for realization of all calculations in the course of the 
given process, etc. As for each algorithm À  it is defined the class of problems 
  it can solve (for example, that functions f  whose value it calculates) than it 
is possible to consider, that in a given situation each algorithm À  is 
characterized by function of variable )a,A()a(

df
A   . In other words, a 

measure of complexity of work of algorithm (calculation) is the operator 
comparing with each algorithm À  corresponding function )a(A . 

Such approach to an estimation of complexity of calculations contained in 
the work of Soviet mathematician G.S.Tsejtin made it in 1959 in which 
complexity of work of normal algorithm was measured by the function 
specifying dependence of number of steps of algorithm from a word to which it 
is applied. Approximately at the same time and irrespective from G.S.Tsejtin 
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B.A.Trahtenbrot gave the similar functions measuring a memory size, 
necessary for recursive calculations, and named their signaling functions. 

Defining some measure of complexity for algorithms (or calculations), we 
thereby hope to receive the convenient tool for comparison of algorithms, and 
for estimation of the objective difficulty inherent in various computable 
functions. In this connection, it is possible to note distinction in realization of 
such plan in dependence from, whether the measure of complexity of algorithm 
or a measure of complexity of its work is considered. As complexity of algorithm 
is measured by a real number, any two algorithms are comparable on 
complexity. 

Usually they consider that the measure of complexity of algorithm accepts 
only natural value, therefore for each computable function there is an algorithm 
calculating it with the minimum complexity. This minimum complexity is natural 
for considering as complexity of the function, thereby and the set of all 
dependent functions is ordered on degree of complexity of these functions. 

If the initial measure is the measure of complexity of calculations -, another 
picture turns out. Two signaling functions can appear incomparable even if to 
consider, as usually it is accepted, that signaling less A signaling, B  if for all  
but for, perhaps, their finite number )()( BA   . Therefore, as far as some 

function f it is not clear a priori whether there is its better calculation. Here it is 
necessary to be limited in essence to weaker characteristic of complexity of the 
function f , namely it is obtained namely functions 1  (the bottom estimation) 
and 2  (the top estimation), such as: 

1) There is an algorithm 1A  calculating f  with signaling, not surpassing 2 ; 
2) Whichever is the algorithm A  calculating f  its signaling it is not less 1 . 
Certainly, the closer to each other the top and bottom estimations 1  and 

2  the complexity of the function f  is more precisely characterized. 
So, unlike the hierarchies based on complexity of algorithms, the 

hierarchies based on a measure of complexity of calculations, are partially 
ordered. It complicates their studying, but at the same time allows, apparently, 
is thinner to catch essence of that we intuitively understand as complexity of 
function evaluations. 

The complexity theory depends on the concepts of algorithm put in its 
basis (recursive functions, Turing machine, etc.), and from the chosen measure 
of complexity. 

Therefore a priori it is possible to assume, that at transition from one 
concept of algorithm to another it is necessary to build the complexity theory 
anew. However, the idea of modeling of one algorithm for others relieves us 
from it. 

Let's consider estimations of complexity of algorithm with reference to 
Turing machines. 
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With each configuration k  which Turing machine is applicable to, it is 
possible to associate the number characterizing complexity of process )k(M  in 
this or that sense. 

Varying k  we obtain function from it, defined on set of all configurations to 
which the given machine is applicable. Such type functions are called 
signaling functions. 

Machine work M  is characterized with the following signaling functions: 
Signaling time )k(SM is equal to to duration of process ( )k(M  (i.e. to 

number of its configurations) if M  it is applicable to k  and )k(tM it is not 
defined, if M is not applicable to k . 

Active zone of process is called the minimum part of a tape, containing 
active zones of all its configurations. Working (active) zone of the given 
configuration is called the minimum coherent part of a tape containing the 
surveyed cell, and all cells in which meaning letters are written down. 

Signaling capacity )k(SM  is equal to length of an active zone of process 
)k(M  if M  is applicable to, k  and it is not defined otherwise. 

Signaling fluctuations )k(M  is equal to number of fluctuations (change 
of directions) heads in time if )k(tM  M  is applicable to, k  and it is not defined 
otherwise. 

Signaling a mode )k(rM  it is equal to the maximum number of passages 
of a head over cell edge in time )k(tM  if M  is applicable to, k  and it is not 
defined otherwise. 

In particular, when as configurations k  it is taken initial configurations for a 
word p  the processes will be characterized by signaling functions. 

)k(tM )k(SM )k(M )k(rM Along with them type functions are also considered. 
( ) ( )

| | | |
( ) ( )

| | | |

m ax ( ), m ax ( );

m ax ( ), m ax ( ),

n n
M MM Mp n p n

n n
M MM Mp n p n

t t p p

S S p r r p

 

 

   

 
 

where |p|  is length of a word p  and is also function 
( ) max ( ), ( ) max ( );

( ) max ( ), ( ) max ( ),

M M M M
n n

M M M M
n n

t n t n

S n S r n r

 

 
 

 

     

   
 

where   is the longest of words ip . 
Machine construction gives only top estimations of the signaling. The 

finding of the bottom estimations is more difficult and it requires special theory. 
There is a theorem showing, that in the presence of the top estimation, for 

any one of signaling, t s and r  the set parameters and m (n m—number of 
symbols of the external alphabet, — n number of symbols of the internal 
alphabet) it is possible to receive the top estimations for the others. 

The theorem. For any machine M  and for any word p  to which it is 
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applicable the following inequalities are fair: 

.n)p(sm)p(t
;n2|p|)p(s

;1)p()p(r
);p(t)p(

)p(s

1)p(r













 

 

Let's consider in more details estimations for complexities of algorithm Р 
and NР-classes complexities in details. 

Complexity is a way of comparison of algorithms [1]. They are compared in 
quantity necessary for performance of algorithm of steps (time complexity) and 
on memory size, necessary for algorithm work (capacitor complexity).  

Complexity of algorithm reflects the expenses demanded for its work. We 
consider time complexity. It is function which puts to each input length the 
minimum time spent by algorithm on the decision of all same individual 
problems of this length in conformity.  

From a course of the mathematical analysis it is known, that function 
is, )(nf ))(( ngO  if there is a constant with such, that ))((|)(| ngcnf  for all 0n .  

)(nO  – Complexity of order n, n is parameter of initial data of algorithm. – 
)( 2nO  is complexity of order 2n . 
Complexity can be minimum, average and maximum.  
Classes of problems Р and NP  
Complexity of a problem is estimated, as a rule, from the point of view of 

expense of time necessary for the Turing-Post machine to calculate function by 
means of which there is a decision of a considered problem [1,2].  

Class of problems Р  
Let's consider a mass problem under which actually mean class P of the 

same problems consisting of infinite number of individual specific outputs and 
described by set of parameters. Each specific task Z  has its set of 
parameters. Concerning each problem the attention to the question is brought, 
the answer on which looks like "YES" or "NO". For example, we are interested, 
whether partially recursive functions have property X.  

It is necessary, that the decision of problem P is reduced to calculation by 
the Turing-Post machine of some function.  

We assume, that the coding system α is connected with class P that to 
each problem Z puts in conformity a word )(Z  in some alphabet. The size of 
problem Z is a length of word |)(| Z .  

Let Turing machine solve  problems of class P and  
 

,| ( )|
( ) max ( ( )).

Z Z n
t n t Z 

 
                                         (11) 

It is corresponding time complexity (in the worst case).  
It is said that Turing machine   solves problem P for polynomial time, if  

( ) ( ( )).t n O p n                                               (12) 
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It is for some polynom )(np . Otherwise, they say, that the problem dares 
for exponential time. 

The class of problems P is called polynimial solvable if there is Turing 
machine   solving problems z in polynomial time. 

Set of classes of problems, solvable for polynimial time, is called a class of 
problems P. 

Class of problems NP  
Mass problem P belongs to class NP if in case of the answer "YES" for a 

problem z  there is a word )(Zc  with length |)))((|( ZpO  such, that the 
problem ))(,( ZcZ  belongs to P. Word )(Zc is called true or guess for problem Z. 
It allows checking if problem Z belongs to class P.  

For example, feasibility of the formula ),...,( 1 nXX  is checked if but for the 
formula it is given the specific set of variables – 0

1
0
1 ,..., XX  a guess promoting 

feasibility of the formula A. 

1.7. ALGORITHMICALLY SOLVEBLE AND UNSOLUBLE PROBLEMS 
Object of studying in the theory of algorithms is, first, algorithmic 

resolvability of some mass problem. Solvable problem is that for which there is 
an abstract model, for finite number of steps checking for any input data, 
whether is available the decision of the given problem. 

Examples of algorithmically solvable problems are [1]: 
 finding of the sum of two numbers; 
 resolvability of propositional formulas, i.e. a finding the algorithm 

allowing for any PF for finite number of actions to solve, whether it is a 
tautology or not; 

 equivalence of two propositional formulas, i.e. a problem of algorithm 
finding the equivalence or non-equivalence for any two PF, etc. 

Problems are called algorithmically unsolvable if there is no single 
algorithm solving all individual semiproblems of these problems. It does not 
mean that such algorithm does not exist for some subclass of all class of 
problems of algorithmically unsolvable problem. For example, the problem of 
the decision of predicate formulas, a problem of equivalence of two predicate 
formulas, problems of applicability for Turing machine and Markov normal 
algorithms, a problem of equivalence of words in associative calculations and 
others are algorithmic unsolvable.  

Let's remind, that the machine is called applicable to an initial word if it, 
having started to work with this word, comes in a finite state.  

Example of the inapplicable machine — Turing machine that in the first 
part of commands does not have a finite state ky . The machine 1M  applicable to 
word )( 1Mn  i.e. to a code of own number, is called self-applicable. It is 
supposed, that Turing machine is universal, it reads a code of number 
(program) from a tape, deciphers it and according to it carries out necessary 



22 

actions depending on the initial configuration (data), also written down on a 
tape.  

The machine, inapplicable to word )(Mn  is called as not self-applicable.  
Self-applicability problem (for the first time this problem is considered by 

domestic mathematician O.B.Lupanov is in that on set program Р for the 
abstract machine to learn, whether it is applicable to own record Р ((P)), where 
(P) is program or subroutine record )(Pn .  

For example, the program of the machine replacing symbols 1 for 0, and 0 
for 1, is applicable to any word, in particular and to the record if we code 
records of programs in a binary code that is quite possible, therefore it self 
applicable, and the program B 

B: 1) }2,?{ ; 
2) HLT, 

is applicable only to an empty word, i.e. unselfapplicable.  
In the machine B if the head during the initial moment surveys a cell in 

which the blank λ is written down not, there will be an ineffectual stop.  
The problem is in search of such algorithm that would define its self-

applicability for any program.  
The theorem 1.2. The self-applicability problem is algorithmically 

unsolvable.  
Unsolvabilities become a mathematics life, and with their existence, it is 

necessary to be considered. From the theoretical point of view, unsolvability is 
not failure, but the scientific fact. The knowledge of the cores unsovlability 
theories of algorithms should be for the expert in the discrete mathematics the 
same element of scientific culture, as for the physicist — knowledge of 
impossibility of a perpetuum engine. If it is important to deal with a solvable 
problem (and this aspiration is natural to applied sciences) it is necessary to 
imagine two circumstances accurately. First (about it it was already spoken at 
discussion of a problem of a stop), absence of the general algorithm solving the 
given problem, does not mean, that it is impossible to become successful in 
each special case of this problem. Therefore, if the problem is unsolvable, it is 
necessary to search for it solvable special cases. Secondly, insolvability 
occurrence is, as a rule, result of an excessive generality of a problem (or 
language on which objects of a problem are described). The problem in more 
general statement has more chances to appear unsoluble. Except concepts of 
resolvability and insolvability the concept of complexity of algorithms is entered.  

EXAMPLES AND PRACTICAL TASKS 

1.1. Effective resolvability 
Example 1 
To show MNP functions   yxyxf , . 
The output 
Let's make the MNR-PROGRAM of calculation  yxf ,  leaning on algorithm 

of addition 1 to x  equal to y  times and using the register 3R  as the counter of 
additions 1 to at xR 1 an initial configuration 
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R1 R2 R3 R4  
x y 0 0 . . . 

The program stops process of calculations when yRR  32  and thus in 
the register 1R the number, 1R yx   collects as it is required. 

The MNR-PROGRAM: 
1 ( 3,2 ,5 ),I J  )1(2 SI  , )3(3 SI  , )1,1,1(4 JI  . 

Obviously, it is carried out by a command of conditional transfer 1I to 
command 5I that is absent in the program. Hence, )(),( yxyxf   is computable. 

Example 2 
Prove MnR computability of function  

g (x, y) =
0, if ,
1, if .

x y
x y


 
 

The solution  
g (x, y) can be calculated on the algorithm given by the following block 

diagram (Fig. 2) ;XX  ;YY   
Initial configuration 

1R  2R  3R  4R  5R  
X  Y  X  Y  0 

 

 

  

 
Fig. 2. Block diagram for calculation g (x, y) 
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Exercises 
1. Show МНР – computability for the following functions: 

10)( xf








;0xif,1
,0xif,0

)x(f  

 








;yxif,1
,yxif,0

)y,x(f







;otherwise_defined_not_is

,3multiplexif,x
3
1

)x(  

 








.yxif,1
,yxif,0

)y,x(g  

2. Prove that for each command of readdressing ),( nmT  at any 
configuration МНР there is a program, which does not contain ),( nmT . 

3. Prove resolvability of following predicates: 
)(),( yxyxR  ; ( ) ( 0 );Q x x   
)(),(1 yxyxR  ч xxQ ()(1   is even). 

4. Prove that function 1)(  xxf  in Z  is computable. 
5. Prove that a predicate )0()(  xxQ in Z  is solvable. 

1.2. Recursive functions 
1. Prove that any primitively recursive function is defined everywhere. 
2. Prove that from 1O  and n

mI  using superpositions and schemes of 
primitive recursion it is impossible to receive functions and 1x x2 . 

3. Using the operator of primitive recursion on variables 2x  and 3x  to 
functions )( 1xg  and ),,( 321 xxxh f obtain function ),( 21 xxf . Write function 

),( 21 xxf  in the analytical form:  
11)( xxg      31321 ),,( xxxxxh  ; 

11)( xxg     21321 ),,( xxxxxh  . 

To (accept 12)( 1
xxg  1

3321 ),,( xxxxxh  100  ); 
1)( 1 xg |)22|1(),,( 313321 xxsgxxxxh  . 

4. Apply the operator of minimization to function f  in variable ix . Resultant 
function is to be given in «the analytical form»: 

3)( 1 xf 1i ; 
]2/[)( 11 xxf  1i ; 

2121 ),( xxxxf  2i ; 
),(),( 21

)2(
121 xxIxxf  2i ; 

2121 ),( xxxxf  2,1i ; 

)12(2),( 221
1  xxxf x 2,1i . 

5. Having applied minimization operation to corresponding primitively 
recursive function, prove that function f  is partially recursive: 
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2/)( 11 xxf  ;  
11 2)( xxf  ; 

2121 2),( xxxxf  . 

1.3. Turing machine 
Example 1 
Develop the T-machine with the alphabet A = {0, 1} which would 

transform any finite word into a word of the same length, but with 0 instead of 1 
standing on odd places. 

The solution 
Action of the required T-machine, obviously, consists in movement on a 

tape from left to right and replacement through one symbol 1 into 0; to stop the 
T-machine should at the first survey of an empty cell, i.e. a symbol. These 
actions are provided with TQ -program, 2110gg 22 0 gg  121 gg  with an initial 
configuration on a tape 

            
. . .   1 1 1 . . . 1 1   . . . 
   g1         

 
The finite configuration on a tape looks like, 

            
. . .   0 1 0 . . . 1 0   . . . 
         g2   

 
If the initial word contains even number "1", or a configuration 

            
. . .   0 1 0 . . . 0 1   . . . 
         g1   

 
at odd number "1" in an initial word. The T-machine stops, as, surveying an 
empty cell in, TQ  does not find a command defining the further actions of the T-
machine. 

When calculating numerical functions (i.e. defined on N and accepting 
values from N) by Turing machines they use special coding of numbers. For 
example, natural number m we set a set from m+1 units and to designate 
through 11 m . Then the zero is coded 1, unit - 11, the two - 111 etc. 

Example 2 
Develop 1T machine with the external alphabet A = {1}, calculating function 

( ) 1.S x x   
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The solution 
It is obvious two states of Т1-machine - g1 and g2, and program QT: g11Пg1, 

g1Л1g2. Work Т1-machine at calculation, for example, S (1) consists of 
configurations: 

             
. . . 1 1  . . . , . . . 1 1  . . . ,  
 g1       g1     
             
. . . 1 1  . . . , . . . 1 1 1  . . . . 
   g1      g2    

Exercises 
1. Develop Turing machine that transforms word   for word   in 

alphabet }1,0{ : 
n1 nn011 ; 

nn10 n)01( ; 
n1 121  n ; 

mn011 nm011 . 
2. Develop Turing machine that on any input chain of a kind mn10  defines 

whether equality mn   is true. Whether it is possible thereof to draw a 
conclusion, what Turing machine can more in comparison with the finite state 
machine? Prove the answer. 

3. Develop Turing machine that each word nn xxxx 121 ...   in alphabet },{ ba  
transforms to word 121... xxxx nn  .  

4. Calculates a symmetry predicate )(S : for any word nn xxxx 121 ...  in 
the alphabet, },{ ba 1)( S  if 1 ini xx  for all ni ,...,2,1  and 0)( S  otherwise. 

5. Develop Turing machine that is applicable to words of a kind )1(13 nn  
and is not applicable to words of a kind )2,1;1(13  mnmn . 

6. Develop Turing machine that calculates numerical function 
34321

)4(
3 ),,,( xxxxxI  . 

7. Develop Turing machine that calculates numerical function 
, if x y;

0 , in other case.
x y

x y
 

  


 

8. Develop Turing machine that calculates numerical function 
0 , if x 0;

( )
1, in other case.

sg x


 


 

9. Develop Turing machine that calculates numerical function 
1, if x 0 ;

( )
0 ,  in other case.

sg x


 


 



27 

10. Develop Turing machine that calculates numerical function 
}.,min{),( yxyxf   

11. Develop Turing machine that calculates numerical function 
.12)(  xxf  

12. Develop Turing machine that calculates numerical function if 
mxyxf  ]2/[),(  if mx 2  or 0,12  mmx . 

13. Are Turing machines 1T  and 2T  which are given with commands 
applicable? 

.0,00,1
;,10,1:

;,00,11:

122211

0121112

1101111

ÏqqËqqÏqq
ÍqqËqqÏqqT
ÏqqHqqÏqqT





 

To words а-d? 
a) 1111111; 
b) 0110111; 
c) 111101; 
d) 001101. 

1.4. Markov computability 
1) Develop the graph for realization of algorithm in the 

alphabet, }?,,,{ QA   set by substitutions '''Q?',?'''',''? ,  : 
a) define to what kind of normal algorithms it concerns;  
b) consider on it examples of deductive chains, setting an initial word not 

less than three symbols length. 
2) Set the Markov algorithm realizing subtraction where BA  values and 

A are B the natural numbers given in the lines, consisting of symbols 1 (for 
example, for word 1BA,3B,4A  ‘ 1111—111 ’ should be processed 
algorithm in a word ‘). 

Check up work of algorithm for cases: 
a) 2,6  BA ; 
b) 5B,3A  . 
Markov normal algorithm realizing operation  of multiplication, is set by the 

alphabet }Ô,T,,1{A   and sequence of supports: 

.11;1Ô;ÔÒÔ;Ò1Ò;Ô11Ô
;ÒÔÔÒ;Ô1TT1;T1;1T11




 

Develop a deductive chain from a word ‘111*1111’ to a word 
‘11111111111’. 

Set Markov normal algorithm realizing operation of multiplication of 
numbers, units given in the form of sequence (the algorithm should be distinct 
from algorithm of item 3). Develop a deductive chain for one of input words. 

Set the normal algorithm realizing operation of comparison a sign part of 
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two numbers, set in a kind: 
111111111111  èëè ; 

11111111111  èëè ; 
. 11111111111  . 

Develop corresponding deductive chains on each algorithm. 

CONTROL QUESTIONS AND TASKS FOR SELF-CHECKING 
1) When did the theory of algorithms arise? 
2) What problems have led to occurrence of the theory of algorithms? 
3) What is the subject of studying of the theory of algorithms? 
4) Whose name is the concept "algorithm" related to? 
5) What is a greedy algorithm? 
6) What is it necessary to formalize concept of algorithm for? 
7) What are the models of specification of concept "algorithm" exist? 
8) What are the names of the authors of the basic types of algorithmic 

models? 
9) What is an alphabet, word, a composition of words, a subword of a 

word, length of a word? 
10)  What methods are used when an algorithim is being developed? What 

words are called to be equal? 
11) Why is it possible to be limited only to numerical functions, at studying 

of computable functions? 
12) What is a function, a range of definition, and area of values? 
13) What functions are partial, everywhere defined? 
14) What is the functional alphabet? 
15) What is a term? 
16) What functions are called computable? 
17) What sets are called solvable? What are their properties? 
18) What are the properties of the schedule of computable function? 
19) What are the properties of type and prototype of graphable sets at 

computable function? 
20) What are concepts of Fibonacci numbers? 
21) What is the idea for construction of a class of partially recursive 

functions? 
22) What is the essence of Kleene theorem? 
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23) What elementary functions are included into a base set at construction 
of a class of partially recursive functions? 

24) Turing thesis? 
25) What is the essence of Turing machine? 
26) What are normal algorithms intended for? 

THEMES FOR INDEPENDENT WORK 
1) Algebra solvable sets.  
2) Algebra of countable sets. 
3) Programming for RAM. 
4) Computable functions on RAM. 
5) Examples of algorithmically unsoluble problems. 
6) The models of calculations distinct from RAM. 
7) The proof of equivalence of any two various models of calculations. 
8) Examples of the problems belonging to classes P and NP. 
9) Examples of NP-full problems.  
10) Calculations with the oracle.  
11) Countable sets and computable functions. 
12) Communication between countable and solvable sets. 
13) Derivation trees. 
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CHAPTER 2. BASES OF THE FORMAL GRAMMARS THEORY 

2.1. CONCEPT OF FORMAL GRAMMAR. HOMSKY HIERARCHY 
In the theory of languages, principles and features of construction of 

various languages are considered. Prior to the beginning of the XX-th century 
there were only natural (spoken languages). Thus, language was understood 
as dialogue means between people. With linguistics development it has been 
established, that dialogue means are inherent not only to the person. Now 
language is understood as any means of dialogue. 

Language includes following components: 
 Sign system (set of admissible sequences of signs); 
 Set of senses of this system; 
 Conformity between sequences of signs and senses. 
As language signs can act: 
 Symbols (letters) of some alphabet (the written form of language); 
 Sounds (the oral form of language); 
 Gestures, colour, smells etc. 
The most developed are sign systems based on symbols. The symbol is 

the elementary element of sign system. Designs that are more difficult are 
under construction of symbols. At the analysis of spoken languages the 
hierarchy of designs of language looks as follows: 

Letter Þ word Þ sentence Þ the text. 
                           (A sign, a symbol) (phrase) 
In the theory of formal languages the formalistic approach at which the set 

of designs of language looks as follows is used: 
Symbol Þ a line Þ the text. 
                           (A sign, the letter) (a chain, the sentence) 
In any language, it is possible to allocate correct (admissible) and wrong 

designs. Rules of construction of correct texts make syntax of language. The 
conformity description between senses and texts make semantics of 
language.  

Semantics of language depends on an origin and character of language, 
i.e. from character of the objects described by language. Syntax of language 
depends on character of language less. Therefore, at syntax studying it is 
possible to use a formalistic approach. 

The formalistic approach essence consists that language is considered as 
set of the formal objects constructed by certain rules. As formal objects 
sequences of symbols act. At construction of such sequences, their sense is 
not considered. Occurrence and formalistic approach development is 
connected with necessity of the decision of problems of following type: 

 Machine translation from one natural language on another; 
 Working out of compilers; 
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 Recognition of images. 
Depending on an origin and degree of universality languages can be 

divided into the types given on Fig. 3. 
                                

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Natural languages arise and develop gradually with society development 

for a long time. 
Artificial languages are developed specially for a certain scope for rather 

short period. 
Universal languages are used for dialogue of people in a daily life. 
Specialized languages are means of dialogue enough a narrow circle of 

people at information interchange in some special field of knowledge. A various 
professional slang (language of users of the computer), algebra language, 
language of algebra of logic etc. can be examples of specialized languages 

Formal systems are systems of operations over the objects understood as 
sequence of symbols. It is supposed, that between symbols there are no 
communications and relations except what are obviously described by means 
of the most formal system. 

Problem. Order objects 53, 109, 3? 
Most likely they will be arranged as 3, 53, 109, i.e. usual arithmetic 

interpretation will be given this problem: the sequence of figures is considered 
as the image of numbers in decimal system; streamlining of these sequences is 

Universal 
(Colloquial) 

Universal 
(Colloquial) 

Specialized Specialized 

Languages 

Natural Artificial 
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Russian 
English 
German 
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Finger language 
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Systems 
languages 
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an arrangement of numbers represented by them on increase, and rules of 
comparison of such images of numbers are known so well, that anybody and 
does not reflect on them. 

Actually, such interpretation of a problem does not follow from its text. He 
can be understood as a problem of lexicographic streamlining (and then the 
result will be 109,3,53), as a problem of distribution of runners with specified 
numbers on paths (which decision is connected with procedure of distribution 
and obviously is not connected with numerical interpretation of objects) etc. 

Possibility of ambiguous extraction of problems from the specified text 
means, that this text does not contain formal definition of a problem. For such 
definition it is necessary to describe accurately a class of objects for which the 
problem dares and to enter obviously for them concept of streamlining, having 
described it as system of local operations over symbols of which these objects 
consist. 

Historically the concept of formal system has arisen within the limits of the 
mathematics bases at research of a structure of axiomatic theories and proof 
methods in such theories. 

Any exact theory is defined, first, by language, т.е some set of the 
statements which are making sense from the point of view of this theory, and, 
secondly, set of theorems – the subset of language consisting of statements, 
true in the given theory. 

One of fundamental ideas on the mathematics bases is the idea of 
formalization of theories, i.e. consecutive carrying out of an axiomatic method 
of construction of theories. Thus, it is not supposed to use any assumptions of 
objects of the theory, except what are obviously expressed in the form of 
axioms; axioms are considered as formal sequences of symbols, and methods 
of proofs – as methods of reception of one the expressions from others by 
means of operations over symbols. 

Such approach guarantees clearness of initial statements and unambiguity 
of outputs, the impression however is made, that intelligence and the validity in 
the formalized theory do not play a role. However, actually, and axioms and 
output rules aspire to choose so that the formal theory constructed with their 
help could give substantial sense.  

More particularly, the formal theory is under construction as follows: 
1. The set of formulas or correctly constructed expressions forming 

language of the theory is defined. This set is set by constructive means (as a 
rule, inductive definition) and, hence, it is enumerable and usually it is solvable. 

2. The subset of the formulas named axioms of the theory is allocated. 
This subset can be and infinite, but anyway it should be solvable. 

3. Rules of output of the theory are set. The output rule is a computable 
relation on set of formulas. Formulas are called as rule parcels, and its 
consequence or the output. 

Obtaining formula B from formulas А1, А2... Аn is called such a sequence 
of formulas F1, F2... Fm such, that Fm=B, and any Fi is either an axiom, or one 
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of initial formulas А1, А2... Аn, or it is directly deduced from F1... Fi-1 according 
to one of obtaining rules. 

B it is deduced from А1, А2... Аn if there is output B from А1, А2... Аn. This 
fact is designated А1, А2... Аn. А1, А2... Аn are called as hypotheses or output 
parcels. 

The proof for formula B in theory Т is called the output B from empty set of 
formulas, i.e. output in which as initial formulas axioms are used only. The 
formula B, for which there is a proof, is called as the formula, demonstrable in 
theory Т or the theorem of theory Т. 

The fact of demonstrability of the formula B is designated by   B. It is 
obvious that joining of formulas to hypotheses does not break deductibility. 
Therefore, if IB (B is demonstrable), A B (that is B it is demonstrable and with 
some formula A). 

At studying of formal theories, there are two types of statements:  
1) with statements of the theory, i.e. theorems that are considered as 

purely formal objects defined earlier; 
2) with statements about the theory (about properties of theorems, proofs, 

etc.) which are formulated in language, external in relation to the theory, and 
are called as metatheorems. 

Terminal symbols are symbols of the alphabet of nonterminal symbols 
form set of symbols N that is not entering in Т and used on intermediate steps 
of generating process. 

As initial symbol is called the non-terminal symbol from, which are 
deduced all the line long language. 

Formal grammar or simply grammar in the theory of formal languages — a 
way of the description of formal language, that is allocation of some subset 
from set of all words of some finite alphabet. Distinguish generating and 
distinguishing (or analytical) grammar — the first set rules with which help it is 
possible to construct any word of language, and the second allow by given 
word to define, it enters into language or not [6].  

The terminal (terminal symbol) — the object that is directly present at 
words of language, corresponding to grammar, and having concrete, 
unchangeable value (generalization of concept of "letter"). In the formal 
languages used on the computer, as terminals usually take all or a part of 
standard symbols ASCII — Latin letters, figures and special symbols. 

Non-terminal (a non-terminal symbol) — the object designating any 
essence of language (for example: the formula, arithmetic expression, a 
command) and not having concrete symbolical value. 

Generating process itself consists in application continually one of rules of 
transformations or production. This process transforms the set line in a new 
line; process comes to an end or when any of productions cannot be applied, or 
when the line consists of one thermal symbols. 
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Formal grammar G is four G = (N, T, E, P), where N – set of non-terminal 
symbols, T – set of terminal symbols, E – an initial symbol, P – set of 
productions, and     ,TN, ‹ŠŒ ,   0TN . 

Each new line in the course of a conclusion should turn out from already 
deduced line production application. 

The sentence is the line consisting only from terminal symbols, deduced of 
an initial symbol. 

Language L defined by grammar G, is a set of the sentences deduced in G 
from L:  













 
*

E/TGL * . 

Chomsky hierarchy grammars. 
Chomsky has offered to divide generating grammars in four types 

depending on their rules. 
Type 0. Unrestricted grammars. By sight of their rules it is not imposed any 

restrictions. Rules look like: 
 ,      (13) 

where  and   are chains of terminals and nontermanals. The chain   cannot 
be empty. 

Type 1. Context-sensitive grammars. Rules in such grammars look like: 
A  , where , ,    are chains of terminals and nonterminals; A is a 

non-terminal symbol. Such type of rules means, that nonterminal A can be 
replaced by a chain   in a context formed by chains and . 

Type 2. Context-free grammar. Their rules look like: 
A   , where A is nonterminal;   is a chain of terminals and 

nontermanals. Prominent feature – in the left part one corrected always 
nonterminal. 

Type 3. Regular grammar. All rules in regular grammars have one of three 
forms: 

A aB,  A a,  A   ,    (14) 
where A, B – nonterminals; a –  terminal;   - empty chain. 

Apparently, from the definitions, each subsequent grammar is a special 
case of previous one. 

The languages generated by grammars of type 0-3, are correspondently 
called unrestricted, context-sensitive, context-free and regular languages. It is 
considered to be, that, for example, language for which exists context-free, but 
not regular grammar is context-free. As define both context-sensitive, and 
languages without restrictions. 

Let's give examples for grammars of various types. Let’s consider the 
grammar generating 6G language n n n

6L {a b c | n 0}:   
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6G :   S aSBc        (type 2);
         S abc           (type 2);
         cB Bc          (type 0);
         bB bb          (type 1);
         S                (type 3).









 

Grammar type is consided minimum of types of its rules. Hence, the 
grammar 6G  concerns type 0. 

As example of context-free can be the grammar of arithmetic expressions. 
With their help, syntax of programming languages is also set. For example let's 
consider grammar 

7G :   S a        (1);
         S Sa      (2);
         S Sb      (3).






 

It is grammar of type 2 (a rule 1 – type 3, rules 2 and 3 – type 2). Let’s 
consider language 7L : the chain a belongs to rule (1). If to correct sentence S to 
write a or b it will the correct sentence again. Chains of language 7L  beginning 
with a, further follow a and b in any order. If under a is meant a letter, and 
under b figure then 7G  can be considered a grammar of identifiers. 

Let's design the regular grammar generating language of identifiers. 
The formula (15) it is possible to leave 7G . 

8G :  S a.                                                   (15) 
Let's designate B a part of the identifier that can follow the first letter. Then 

it is possible to write down a rule (2): 
S aB.                                                       (16) 

Let's write down the formula for В "Tail" can be the letter or figure: 
B a,        (17) 
B b.        (18) 

Having written down a tail behind the letter or figure, again we will receive 
a correct tail: 

      B aB,        (19) 
      B bB.        (20) 
The grammar 8G  is equivalent 7G . 

2.2. CLASSES OF FORMAL GRAMMARS 
Formal grammar differs from each other first of all in type of rules of output. 

Classification of formal grammars according to output rules was given by 
American linguist Noam Chomsky. According to Chomsky formal grammar are 
divided into 4 types. 
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The formal grammar of type 0 (unlimited grammar or grammar of any type) 
uses kind substitutions:    where and  -  chains of any kind. 

The formal grammar of type 1 or contextual grammar (context-sensitive 
grammar) uses kind substitutions 

,А       (21) 
where - À a non-terminal symbol;  ,,  - chains of any kind, thus the chain   
is not empty or  )NUT( ;  ,  - rule context. 

The formal grammar of type 2 or context-free grammar uses 
substitutions, A  where  - any nonempty line, i.e  )NUT( . 

The formal grammar of type 3 or regular grammar uses substitutions 
,A B or А а  , 

where À  and Â non-terminal symbols,   - terminal symbol. 
In the theory of formal languages it is proved, that all regular grammars are 

context-free, all context-free – context-sensitive, all contextual – unrestricted.  
Rules, À  are called  as-rules. It is replacement of nonterminal for an 

empty word. Otherwise, application -corrected it deletion of a corresponding 
non-terminal symbol is simple. 

From definitions of Chomsky hierarchy it is obvious, that: 
 Any grammar of a class 3 is grammar of a class 2; 
 Any grammar of a class 2 without -corrected is grammar of a class 1; 
 Any grammar of a class 1 is grammar of a class 0.  
Further, we will see, that  -rule in context-free grammar not too strongly 

influences set of deduced words. It is more precisely if the empty chain is not 
deduced from initial nonterminal of the grammar is easy for altering in 
equivalent without -rule. If the empty chain nevertheless is deduced, it is 
possible to alter in equivalent with the unique -rule S .  

Therefore in many sources, not especially going into detail, write, that any 
grammar of a class 2 is grammar of a class 1. Moreover, the resulted classes 
of grammars form increasingly narrowed hierarchy. 

It is accepted a grammar class to consider the minimum class to which it 
gets. For example, the grammar is considered G context-free if it is grammar of 
a class 2, but is not grammar of a class 3. It does not privet G  to be equivalent 
to some regular grammar. 

Let's notice, that not looking on relative stability of the resulted 
classification of Chomsky grammars, in some not too essential details at 
different authors it is possible to meet some different interpretations. We will 
result the short review of variants of definition of these classes: 

1. In definition of context-dependent grammar (a class 1) they sometimes 
do not demand 

 )NUT( i.e. any chain  replacing nontermanal A  was 
nonempty. Any such grammar is either equivalent to any context-sensitive in 
former sense, or can be altered in equivalent with the same states, that in initial 
definition, but with the unique -rule S . 
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2. Definition of context-sensitive grammar is given as follows: it is the 
grammar in which all rules look like, a  where - ,a any words from terminals 
and nonterminals, but in a  it is obligatory to be nontermanals, and the length,  
is not less than length a . It is possible to prove that all such grammars are 
equivalent to grammars of class 1 and on the contrary. 

3. Grammar of class 3 is called right regular. Together with them, they 
define similar concept of left-regular grammar – when all rules look like  

,
,
.

A Ba
A a
A





 

It is possible to prove, that any right-regular grammar is equivalent to left-
regular and on the contrary. Therefore, these grammars are called simply 
regular.  

4. It is known the concept of so-called linear grammar. Rules of output of 
linear grammar have one kind 

,
,

,
.

A aB
A Ba
A a
A






 

Unfortunately, there exists a linear grammar not equivalent to any regular. 
Such grammar, for example, is G  

,
,

.

S aB
B Sb
B b





 

Generating language 
{ | 0 }.n nL a b n   

It is valid, easy to see, that this language is set by the grammar 
abS,aSbS:H  which rules are deduced from data продукций. "Having 

designated" B is everything, )0n(ba n1n 

 from rules we will easily receive H 
rules G. From here H and G are equivalent.  

2.3. CONTEXT-FREE GRAMMARS 
Let's pay attention to that in NC-grammar rules one symbol is replaced 

only, the left part corrected not necessarily consists only of this symbol: A . 
At rules can be present and other symbols — a context:  A . Such 
rules mean the permission to replace a symbol on A only   in a context   
and  . The context at this replacement corresponds without change. 

The rules using a context, we call contextually connected, and the rules 
which are not using a context, — context-free. 
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The NC-grammar, context-free rules of a kind containing only, A  are 
called as context-free (Ks-grammar) or context-free grammars. 

The nanosecond-grammar, the containing contextually connected rules,  
are called as contextually connected grammars. 

The languages generated Ks-grammars, are called as Ks-languages. 
Let's notice, that connected by a context, or free, rules, instead of 

elements in a terminal chain are only. 
Ks-grammar represents the important special case of NC-grammars. Their 

value is caused by following two circumstances: 
First, refusal of a context, i.e. the requirement that in the left part of a rule 

one symbol was equal, does structure of grammars even more simple, that 
facilitates its studying; 

Secondly, though in natural languages replacement of one of units with 
others is often admissible only in certain contexts, it is expedient to investigate 
possibility to describe languages, distracting from the specified fact. In natural 
languages situations when the phenomena which are represented essentially 
dependent on a context, can be described and as independent of a context are 
possible, i.e. In Ks-grammar terms. Thus, certainly, the description can become 
complicated in other relations. For example, new categories, rules or that and 
another can be demanded many. 

In the most general lines such replacement becomes so: let there is a 
class of elements X in the neighborhood with elements of some class elements 
Y behave X differently, than in the neighborhood with elements of a class 2 so 
rules take place 

ZCDZX
YABYX


 ,

 

(Rules use a context). 
Let's enter two new symbols 1X  and 2X . An element X in a position after 

Y let’s desiginate through and 1X  and in a position after Z through 2X . 
Then we come to the rules that do not use a context 

1

2

,
.

X AB
X CD




 

It is not necessary to think, however, that any contextually connected NC-
grammar can be replaced by Ks-grammar equivalent to it. It is known, that 
there are the NC-languages that are not Ks-languages, for example, language, 
consisting of every possible chains of a kind or ,...)aabbaa,aba(aba nnn of kind 
chains nnn cba . It is impossible to refuse a context, if the rule provide shift of 
symbols, as shift on the being is multidimensional operation. Hence, the Ks-
grammar cannot generate the language containing chains that cannot be 
constructed without application of shifts. 
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Almost all available examples of the NC-languages that are not Ks-
languages have abstract character and have no interpretations in natural 
languages. 

Till now we were engaged in introduction all new and new restrictions on 
classes considered grammars. At first we have demanded, that the number of 
symbols in the right part of rules was not less, than in left, and have received 
not shortening grammar. Then have demanded, that one symbol was exposed 
to replacement only, and have received NC-grammar. At last, we have 
demanded, that in the left part of a rule in general there was only one symbol, 
and have received Ks-grammar. 

Clearly, that no further restrictions on the left parts of rules can be imposed 
already. Therefore, if we wish to allocate narrower classes of grammars, it is 
necessary to impose restrictions on the right parts. 

Let's begin with number of symbols in the right part. Depending on number 
of symbols in the right part of rules of Ks-grammar it is possible to divide in 
binary and nonbinary. 

Ks-grammar we will name binary if the right part of any rule contains no 
more than two symbols. 

For example, rules of a kind, BCA . 
Or, bBA   BA where TH Vb,VC,B,A  . 
Ks-grammar we will name nonbinary if the right part of any rule contains 

more than two symbols. For example, grammar with kind rules, 
AabA ABCB  A where, TH Vb,a,VC,B,A   not an empty chain in 

this grammar, containing more than two symbols. 
Binary Ks-grammar possesses that feature that in trees of structure of 

components corresponding to them — S-markers — from each top proceeds 
no more than two branches. It means that any difficult component always 
consists exactly of two components directly enclosed in it. 

Linear grammar — such Ks-grammar, the right which parts of rules contain 
no more than on one occurrence of a non-terminal symbol. Thus, for binary Ks-
grammars it is kind rules  

aBA  , 
where , , .H TB A V a V   

For not binary Ks-grammars kind rules 
, ;

, , , , .H T

A aBab A acB
A B V a b c V
 
 

 

The language generated linear grammars, is called as linear language. Ks-
grammar, the right which parts of rules contain more than one non-terminal 
symbol, we will call nonlinear K&-grammars. 

The ks-grammar is called as metalinear if the right parts of its rules do not 
contain the purpose of grammar and all rules that left parts are distinct from the 
purpose, have the same appearance, as a rule linear grammar. 
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As example of metalinear grammar, the following grammar can serve 
)S},cT,bTbT,aTaT,TTS{},T,S{},c,b,a({G  . 

Language is called as metalinear if there is a metalinear grammar 
generating it. 

Imposing restrictions on structure of symbols of the right part of rules Ks-
grammars, Floyd has allocated following subclasses not binary, nonlinear 
grammars. 

Operational grammar — the right which parts of rules cannot contain two 
number of standing non-terminal symbols. As examples of rules of such kind 
can serve 

,
.

A BbC
A BabC



 

where TH Vb,a,VC,B,A  . 
Grammar of precedencies — the right parts of rules that can contain two 

nearby of a standing terminal symbol. Thus there is a possibility to specify what 
of these terminal symbols arises in word-formation by the first, having large 
priority. 

As examples of rules of such grammar the following can serve: 
BaaBA  , 

where TH Va,VB,A  . There are also other subclasses. 
Subclass linear Ks-grammatik are unilateral linear grammar. 
Unilateral linear grammar — such grammar, the right which parts of rules 

contain terminal symbols, only on the one hand from a non-terminal symbol. 
Unilateral linear grammar are subdivided on link sided - with rules of a kind 

and xBA  and xA  right-hand - with rules of a kind and BxA  xA  . In 
both cases — B,A non-terminal symbols, and — x a nonempty chain of terminal 
symbols. 

Unilateral linear grammar at which in each rule the chain consists x only of 
one symbol, are called as automatic grammars, or A-grammars, and the 
languages generated by these grammars, are called as automatic languages, 
or A-languages. 

From the given definitions clearly, that each following class of grammars 
contains in the previous. 

It is possible to present interrelation of the considered classes in a kind of 
the graph represented on Fig. 4. Thus, KS-grammar represent the most 
important subclass of NC - grammars. It speaks following four principal causes: 
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Fig. 4 

1) KS-grammar are a definition basis almost all common programming 
languages. 

2) All actions of system of parse for natural languages are based on KS-
grammars. 

3) It is unique type of the grammar which theory is studied and checked 
practically up. 

4) All transfomational grammars are constructed on KS-grammars. 
5) All considered types грамматик generate four types of languages: NC-

language, KS-language; linear language, A-language, not considering the 
language generated by the most general type of grammar with unlimited rules 
of output by grammar of type 0. 

The interrelation between the languages generated by considered types of 
grammar will be following: 

( ) ( ) ( ) ( ) ( ).L O L HC L KC L Л L A     

2.4. BASES OF THE THEORY OF FORMAL LANGUAGES 

2.4.1. Properties of formal languages 
Let's result a number of the theorems characterizing the basic properties of 

languages, generated by four basic types грамматик. 
The theorem 20 (Post). Any language of type 0 is recursively listed 

(though, probably, and not recursive) set попочек. Any recursively-countable 
the set of chains is type 0 language. 
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Owing to this theorem, the theory of languages of type 0 is covered by the 
general theory of recursive functions and consequently usually in the theory of 
languages - type 0 languages are not considered. 

The theorem 2.1. (Chomsky). Type 1 languages, 2, 3 are recursive sets of 
chains, i.e. for each language from the specified chips there is an algorithm 
allowing on set grammar (that language to distinguish an accessory of any 
chain to language. The converse is incorrect, i.e. there are the recursive sets 
that are not languages. It has given the basis for carrying out of special 
researches of these languages. 

The theorem 2.2. (Chomsky). Type 3 languages are regular sets of chains. 
Therefore they are sometimes called automatic. 

Thus, if the class of languages of type 0 has appeared so wide, that its 
theory has coincided with the general theory of recursive functions (the theory 
of algorithms) the class of languages of type 3 has appeared, on the contrary, 
excessively narrow, coinciding with well studied class “regular sets” (in the 
theory of finite state machines). Therefore the special attention at construction 
of the theory of languages was given to/type languages / and 2. 

The theorem 2.3. There is the language of type 0 which is not language: 
type 1. This theorem follows from the theory of recursive functions. 

The theorem 2.4. There is the language of type 1 which is not language – 
type 2. 

As example of such language can serve }cbaba{L 3mnmn . 
The theorem 2.5. There is the language of type 2 that is not language of 

type 3. 
Examples of such languages are languages 

}xx{}ba{ Tnn  . 
The resulted number of theorems defines the following relation between 

various types of languages: 
}0òèïL{}1òèïL{}2òèïL{}3òèïL{  . 

Languages of types 0-3 form system, their grammar represent system of 
rules of uniform type with consistently increasing restrictions. However, they do 
not settle construction possibilities of grammars of the same kind, but with other 
restrictions that generate the languages that distinct from are already 
considered. 

In some works, there are described subclasses of languages for which 
interesting laws and the properties that do not have places for a class as a 
whole can be established. 

So, in grammars type 1 the language named language of Larin which 
grammar has additional restrictions is considered: the kind 2121 BA    i.e. 
rule rules including replacement of one non-terminal symbol by another are 
forbidden. Though this language is of interest for mathematical linguistics, it is 
studied insufficiently. 
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From all four types of languages the most interesting are type 2 languages 
— context-free. 

In many respects, it is defined by possibility of their use, for research of 
programming languages. As is known, the program of the digital computer can 
be considered as a chain of symbols in some alphabet. Then some 
programming language represents infinite set of such chains. This language 
has grammar and a finite set corrected, programs defining construction.  

At the same time at researches of natural languages are used so-called 
categorical grammars that allow selecting from among all possible sentences 
— correctly constructed. The class of the languages defined categorial 
grammars coincides with a class of the languages generated grammars of type 
2. 

Type 2 languages are closest to languages of regular events (type 3), with 
exhaustive completeness investigated in the theory of finite state machines. 
Besides, type 2 languages have received adequate representation by means of 
mathematical model of the automatic machine with store memory. 

At last, languages of this type are more accessible to mathematical 
studying, than, for example, languages of type 1 or Parique language and 
consequently are most of all used. At research of widespread programming 
languages and in mathematical linguistics. From told becomes clear why for 
type 2 languages the greatest quantity of results is received and the big 
number of their versions is investigated, each of which is a special case of 
context-free language. 

Let's consider one more subclass of context-free language that is defined 
by means of additional restrictions on system of rules. 

Let there is a terminal dictionary }an,...,a{V 1T  . We will designate through 
the expanded TV dictionary in which to each terminal symbol, ia  the symbol is 
compared }a,a,...,a,a{V:a nn11Ti  . The language generated by grammar 

)S,P},s{,V(G i whose rules look like 
: ,

.i i

P S
S Sa Sa S




 

Sentences of this   language possess following property: gels each pair 
of the next )n,...,2,1i(aa ii  symbols containing in to allow   to replace with an 
empty symbol for each sentence there will be   such sequence of these 
replacements, c by which help it will be reduced   to an empty chain. Interest 
to Dick languages speaks that they are evidently connected with brackets 
structures, usual for natural and artificial languages. 

Let's imagine a set of formulas of some mathematical calculation or the 
program that has been written down in language of type ALGOL. It will be the 
text in which there will be the signs always used only in pairs: the left and right 
brackets of all kinds (round, square, figured, broken) or the operational 
brackets consisting of words "beginning" and "end". We will eliminate from the 
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text everything, except signs on the specified type. The new text constructed by 
some strict rules will turn out. Similar texts give representation about 
languages. 

2.4.2. Operations over formal languages 
To languages, as well as to any sets, various operations can be applied. 

Before to consider operations over languages, we will define property of 
isolation of set. It is said that the set is closed concerning some operation, if 
result of its application to any element of set or to any; to steam of elements 
contains in this set. 

For languages, the usual image defines operations of association, crossing 
and operation of addition concerning the fixed dictionary TV . 

Association of languages 1L and 2L (designation: 21 LL  ) is called a set of 
all words belonging at least to one of languages. 

This operation represents usual theoretically plural association; it is also 
comutative and associative: 

1 2 2 1

1 2 3 1 2 3

,
( ) ( ).
L L L L
L L L L L L





 

   
    (22) 

Under the same conditions, intersection of two languages (a 
designation: 21 LL  ) is called a set of all words belonging simultaneously to both 
languages. 

This operation represents usual theoretically plural crossing; it is also 
comutative and associative. 

Addition to language L is called the set of all words belonging to TV   but 
not belonging to L . 

The set TV   is the language which addition to TV   is an empty language. 
Let's underline, that the language containing an empty word, e  is not 

empty. 
Addition operation let’s consider on example 

{ , };

{ | 1, 1 };
T

m n

V a b

L a b m n



  
 

)LLL(L\V 321T  , where — 1L set of all words beginning with,b  — the 
set of all words beginning with and, aba nm  }a{L3  i.e. 3L is set of all words 
consisting only from a . 

The relation of languages of types 0, 1, 2, 3 to Boolean to operations 
following four theorems that we furnish without the proof define. 

The theorem 2.6. A class of languages of type 0 will close concerning -
association and crossing operations. The problem of that definition is 
algorithmically unsoluble, whether is addition of language of type 0 concerning 
the fixed dictionary also type 0 language. 

The theorem 2.7. The class of languages of type 1 closed under 
operations of association and intersection. 
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The question on belongs to what class addition of languages of type 1 in 
relation to the fixed dictionary, stay opened. 

The theorem 2.8. A class of languages of type 2 will close concerning 
association operations, but will not close concerning addition operation in 
relation to the dictionary containing not less of two symbols, and also in relation 
to crossing operation. 

The theorem 2.9 (Kleene). A class of languages of type 3 will close 
concerning all of boolean operations. 

Except boolean operations over languages operations of multiplication, 
iterations, transpositions (mirror display of language) and some other are 
considered also. 

Product of two languages (designation: 21 LL  ) is a set of all words that can 
be received in the next way is called: some word undertakes from and 1L some 
word joins it on the right from, 2L  i.e. 

}LX,LX|XX{LL 22112121  . 
This operation (named multiplication of languages) does not coincide with 

the Cartesian multiplication; it is associative, but not commutative. 
Let }c,b,a{VT  . Let’s consider the language }a{  consisting of one single 

letter word a . Then product is 
.TL V   

There is a set of all words beginning with a . 
Iteration operation (Kleene operation). As operation of multiplication of 

languages is associative, we can erect the given language in 1! degree: 
),...LL(LL)LL(L,LLL 32   

Kleene suggested to consider union 
...L...LLLEL n32   

of all consecutive degrees of language L . This union is designated L  and 
called iteration of language L . 

For example, let’s consider the alphabet 
{ , ,...}.V a b  

as the language consisting of single-letter words. Then 2V is a set of all 
two-letter words; 3V  is a set of all three-letter words etc. Therefore 

...VVVE 32  is a set of all words over V  i.e. .V   
It is proved isolation of classes of regular and context-free languages 

concerning multiplication iteration. Language L  called regular if there is a finite 
state machine A  such, that )A(LL  . 

There is a following theorem concerning languages 0, 1, 2, 3.  
The theorem (30). Classes of languages of types 0, 1, 2, 3 are closed 

concerning the operation of mirror display defined as follows. 
Let language TVL   to be given, through TL  it is designated a language 

consisting of references of all words of language L : 
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}LX|X{L TT  . 
This operation is involutive (i.e. it coincides with its return operation): 

( ) .T TL L  
Besides, it is connected with multiplication of languages by a following 

correlation: 
( ) .T T TLM M L  

For example, language T
TT )V(V   coincides with, TV   as T

T
T V)V(    and 

TVE  . 
Let's give a concept for operation of homomorphism. 
Let's put in conformity to element a of dictionary TV  of finite dictionary TaV . 

Let’s designate TaV   through a set of all chains from the dictionary TaV  and 
through )a(  - any chain from TaV  . Thus, function   is defined on separate 
symbols a  from dictionary TV . Define function   on sentences from the 
dictionary TV  as follows: if. s21 ai...aiaix   then )ai()...ai()ai()x( s21    

Certain function   reflects a subset of chains L  from TV   into some subset 

of chains from *, 
)V( Ta

a


 i.e. ( ) ( ) .Ta
a

L V     

Operation )L(  of reflection for language L  by means of function  is 
called operation of homomorphism.  

The theorem 2.10 (Bar-Hillel, Pearls and Shamir). Classes of languages of 
type 0, 2 and 3 are closed concerning operation homomorphism. 

For languages of type 1 (contextual) the following theorem is given. 
The theorem 2.11. If TV  contains at least two elements than a class of 

contextual languages is not closed concerning the operation of homomorphism. 
Language projection. For each word in the alphabet YX  . 

( 1 ) ( 1 ) ( 2 ) ( 2 ) ... ( ) ( )x y x y x t y t      
its projections in X and Y  are accordingly called words 

).t(y)...1(y
);t(x)...1(x

 

In other words, if language L  in the alphabet YX   is given than a 
projection of language L  in X  is called a language consisting accurately from 
projections in X  of words from language L . 

The language cylinder. Let the alphabet Y  and language L  in alphabet X . 
Y -cylinder of language L  is called language L  consisting of all words in the 
alphabet YX  X whose projections YX  X belong to L . 

Properties of languages in relation to considered operations are given in 
Tab. 1. 
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Table 1 
Language type 

Оrder Operation 0 1 2 3 
1 Association 1 1 1 1 
2 Crossing 1 1 0 1 
3 Addition 0  0 1 

4 Transposition (mirror display) 1 1 1 1 

5 Product 1  1 1 
6 Iteration 1  1 1 
7 Homomorphism 1 0 1 1 

 
In this table unit designates isolation concerning corresponding operation 

of a class of languages of certain type, zero — a closure failure. The empty 
cage means, that the question is not solved yet. 

2.5. METHODS OF GRAMMARS ANALISYS 
Methods of grammatical analysis can be broken into two big classes - 

ascending and descending - according to order of construction of a tree of 
grammatical analysis. Descending methods (from top to down) begin methods 
from the rule of grammar defining an ultimate goal of the analysis from a root of 
a tree of grammatical analysis and try to increase it that the subsequent knots 
of a tree corresponded to syntax of the analyzed sentence. Ascending methods 
(from below upwards) begin methods with finite knots of a tree of grammatical 
analysis and try to unite their construction of knots increasingly high level until 
the tree root will be reached. 

The basic problem of the theory of languages consists in formally to 
analyze classes of languages for working out of possible methods as modeling, 
and effective processing of languages by machine means. 

It is reduced to definition of logic structure of languages, i.e. Systems of 
the rules defining syntax of grammar. If the form of rules (i.e. the syntactic part 
of grammar) is precisely established, carrying out of a following number of 
researches on language is possible: 

 communication between kinds of languages with their structural trees 
and form of syntactic rules; 

 studying of structural properties of the languages generated by some 
form of rules of G -grammar; 

 relative riches or poverty of various forms of grammars generating 
languages L . 

 different sort of problems of resolvability of language Lconcerning the 
set of G -grammar and a class ofG -grammars; 
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 capacity of G -grammar generating modeling language Ldepending on a 
context of application of the last one; 

 generating ability of G -grammars, and consequently, definition of 
equivalence generated different grammars sets of languages L ; 

  measure of complexity, generated by G -grammars of sentences from 
language L ; 

 reducibility establishment of G -grammars of various complexity to more 
simpleG -grammars; 

 definition of possible methods of construction distinguishingG -grammars 
for set of languages L  and a number of other not less important researches 
connected with studying of properties of a class of formal grammars with a view 
of their practical use. 

The greatest development was received by a parse problem of grammars 
and the control corresponding languages, consisting from that for any chain 

L  it is defined its formal correctness (or abnormality is defined L ) and 
syntactic analysis. 

The problem of parse and the language control has arisen in connection 
with requirements of translation — working out the specialized program with 
whose help the machine translates given the program into a computer 
language. 

Each of compilers is constructed for some concrete pair of languages: one 
— input and the second — output. Put simply, such compilers work by a 
dictionary principle: for each concrete combination of the symbols which are 
making sense in the given source language, this compiler gives out certain 
sequence of symbols of a output language. 

Construction of such compilers represents rather labor-consuming work as 
it is necessary to consider all possible (making sense) expressions of the 
source language and to each of them to compare corresponding expressions 
on a output language. 

Definition of making sense expressions of the source language is carried 
out because of parse of this language. Its essence consists that based on 
syntactic rules of grammar check of grammatical correctness set the sentence 
or words of language by grammatical analysis is carried out. Thus, a problem of 
grammatical analysis is the analysis of sentence from the point of view of an 
establishment of their grammatical correctness. 

Grammatical analysis is understood as process of definition of a sentence 
structure or a word G  according to the rules defined by G . 

The establishment of that fact, that sentence or word is grammatically 
correct, can be executed not in one way. Grammatical analysis can be carried 
out in some cases more than in one way. 

As a language example for which grammatical analysis can be carried out 
not uniquely, let’s consider the language set by grammar with G rules. 
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;
;

;
.

HBC HBc
HBC hBC
BC bc
HB hb







 

Let's consider a word hbc . This word can be disassembled in two various 
ways. Trees of grammatical analysis of this word are given in Fig. 5. 

 
Fig. 5 

In the elementary kind grammatical analysis consists in that, having begun 
with the first rule, to look through the list corrected from top to down, the 
applicable rule will not be found yet, to apply it and to repeat this process so 
many times, how many it is necessary. This technique in application to our 
rules would give the grammatical analysis shown in the right drawing. 

Let's consider one more method of grammatical analysis based on an 
order of viewing of the assorted word or the sentence. Rules of grammar of 
language look like: 

.FHC
;DEB
;BCA





 

It is necessary to execute grammatical analysis of word DEFH . 
Analysis of the given word can be made from left to right or from right to 

left. In the first, case in a word the first set of symbols DE  accessible to 
replacement according to the given grammars. Instead of it, symbols from 
some rule are substituted. After that, the received word is looked through again, 
beginning at the left, for the purpose of search of set of symbols for 
replacement by grammar rules. 

For our example viewing from left to right gives the tree of grammatical 
analysis given in Fig. 6. 
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Fig. 6 

Figures in mugs mean an analysis order. Productive trees are identical. 
The difference consists only in the course of analysis: for a  - to the left of the 
line, for b - to the right of the line. 

This difference in an analysis method can be excluded by concept 
canonically ordered grammatical analysis. 

The canonical form of grammatical analysis is an analysis that is applied 
from left to right on a line. Thus, the extremely left part of the sentence first of 
all is understood, if it is possible before to promote on a line to the right for 
search of a situation accessible to analysis. In fig. a it is given initial 
grammatical analysis of the sentence. However, canonically ordered 
grammatical analysis cannot always be used. Let’s consider examples: 
Example 1. It is given grammar 

AxA
xA




(Left recursion) 

and line xxxx . Canonical analysis is given in Fig. 7. 

 
Fig. 7 

Example 2. It is given grammar  
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xAA
xA




 (Right recursion) 

and word xxxx . Grammatical analysis for the given word cannot be canonical 
such as it cannot be executed (results in deadlock). Grammatical analysis in 
this case can be executed only at analysis to the right of a line (Fig. 8). 

 
Fig. 8 

Example 3. It is given grammar is  

xAxA
xA




 (Central recursion) 

and word xxxx . Make grammatical analysis. In this case, it cannot be 
successfully finished at sentence view from left to right (initial analysis), at 
viewing from right to left. In this case, analysis at each stage begins with the 
middle of the assorted sentence (Fig. 9). 

From the considered examples 1, 2, 3 it is possible to draw output, that the 
way of analysis of the sentence is defined by type of recursion in output rules of 
grammar. Right recursion predetermines the grammatical analysis beginning to 
the right. 

Left recursion predetermines a successful canonical form of grammatical 
analysis. 

 

 
Fig. 9 

Central recursion predetermines the grammatical analysis beginning with 
the middle of the sentence. However, not always the way of grammatical 
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analysis can be easily established by grammar rules as it was in the resulted 
examples. We will consider the following example. 

Example 4. It is given the following grammar rules:  
;
;
| ;
;
.

A x
B Ay
C Bz D
D xE
E yv



 



 

It is necessary to make grammatical analysis of lines xyz  and xyv . 
Analysis of the first line can be successfully executed because of 

application of a canonical form of analysis. 
The result of such analysis is shown in Fig. 10, а. Use of initial analysis for 

the second line leads up a blind alley (Fig. 10, b). 

xW y

A

z

B

C

1     a

xW y

A

U

B

?

2     b

y Vx

E

w

D

C

3     c  
Fig. 10 

Successful performance of grammatical analysis of the second line is 
carried out under a state if analysis is begun with following, beginning at the 
left, subline, i.e. with yv . Results of such analysis are given in Fig. 10, c. Thus, 
a problem of grammatical analysis is successful carrying out of the analysis of 
sentences. The order of grammatical analysis depends on rules of output 
(syntax) and a kind of analyzed lines or sentences. 

Using formalization as the criterion of the classification, all existing 
methods of grammatical analysis can be divided on heuristic and formalized. 

Formalization of methods consists in ordering of the rules defining 
correctness or an inaccuracy of an initial line concerning set grammar at 
application of the given method on each step (stage) of grammatical analysis. 

Heuristic methods are not systematized in relation to each step, i.e. they 
inform only, whether the given line, only after definitive passage of the analyzed 
text is correct. 

The heuristic method is known under the name of a trial and error method, 
search and substitutions as the correct way of generations is after check of all 
possible ways of the decision (analysis). Limitation of use of heuristic methods 
consists that: 
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1. Correctness or an inaccuracy of a line is defined not at once on each 
step of analysis, and only after the termination of the analyzed text. 

2. Correct way of generation is after check of all possible ways of analysis. 
3. Choice of a false way demands return returning to last, correctly certain 

state. 
4. At realization by the machine the sheaf of semantic rules with the 

syntactic is very difficultly carried out. 
All it negatively affects a method from the point of view of time loss. 
At the same time some advantages are inherent in heuristic methods also: 

application possibility to all languages that does their universal; orientation or 
«on the purpose», or «from the purpose», that defines two directions of a 
heuristic method - "from top to down" and «from below upwards». 

Grammatical analysis by a method «from below upwards» lines s  of 

language L  generated with grammar,  P,S,V,VG NT  begins with line s  and 
consists in viewing the sequences received because of analysis, conducting to 
S  (to the purpose). Formally, the purpose of such analysis can be written 
as: Ss   i.e. because of grammatical analysis it is defined whether the given 
line is a sentence. 

All examples of grammatical analysis considered earlier implicitly 
demonstrated this method. 

Grammatical analysis by a method "from top to down", named a "descent" 
method (or «recursive descent»), begins from the purpose S  (i.e. from a 
starting rule of generation or output), and it is considered the sequence of such 
generations which would lead further to s . The formalized representation of 
such analysis is sS  . Because of grammatical analysis by the method it is 
defined the structure of sentence of language is "from top to down”. 

Both methods it is possible can be described by the same trees of 
generations, only in one case a tree root below, in other - above. Therefore, 
analysis of a word xyz , for example 4, resulted by both methods, is given in 
Fig. 11. 

The formalized methods appeared and appear in connection with working 
out of compilers. Thus in the newest methods sometimes find reflexion good 
lines of one and lacks of others before the described methods are eliminated. 

Working out of each method is adhered to certain classes of machines 
(small, average or large type) and to certain classes of languages (depending 
on what languages the machines work with). As all programming languages 
concern the second class on Chomsky classification, also methods are focused 
on the second class of languages. 



54 

 
Fig. 11 

Some quality monitoring brings restrictions in grammar of language. 
Usually restrictions are imposed on the right part of rules: or on number of 
symbols, or on their structure 

EXAMPLES AND PRACTICAL TASKS 

2.1. Formal grammar 
Example — arithmetic expressions 
Let's consider the simple language defining the limited subset of arithmetic 

formulas, consisting of natural numbers, brackets and signs on arithmetic 
actions. It is necessary to notice, that here in each rule on the left side from an 
arrow it is necessary one non-terminal symbol. Such grammars are called as 
context-free. 

The terminal alphabet: 
}.)'',('',/'','*','-','+','9','8','7','6','5','4','3','2','1',{'0'=  

The non-terminal alphabet: 
{FORMUlA, SIGN, NUMBER, FIGURE}. 

   
Rules: 

)9...or1or0is figure(  9|8|7|6|5|4|3|2|1|0FIGURE.7
)figure andnumber  theisnumber (FIGURENUMBERNUMBER.6

)figure  theisnumber (FIGURENUMBER.5
)divideor multiply or  minusor  plus issign (   /|    |-  |SIGN.4

)sparenthesein formulaisformula()FORMULA(FORMULA.3
)numberisformula(NUMBERFORMULA.2

)signcombined,formulastwoisformula(FORMULASIGNFORMULAFORMULA.1










 

Initial nonterm: 
FORMULA  
Conclusion: 
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Let's deduce the formula (12+5) by means of the listed rules of output. For 
clarity, the parties of each replacement are shown in pairs, in each pair the 
replaced part is underlined. 

5)27(15)FIGURE1(
5)FIGURE17(5)FIGURE FIGURE(

5)FIGURE FIGURE5(5)FIGURENUMBER(

5)FIGURENUMBER6(5)NUMBER(
5)NUMBER2()5FORMULA(

)5FORMULA7()FIGUREFORMULA(
)FIGUREFORMULA5()NUMBERFORMULA(

)NUMBERFORMULA2()FORMULAFORMULA(
)FORMULAFORMULA(4)FORMULASIGNFORMULA(

)FORMULASIGNFORMULA(1)FORMULA(
)FORMULA(3FORMULA


















 

Example of regular grammar: 
S}P,T,{N,G  . 

N {S};
T {a,b};
P:S ; ; ; .a S b S aS S bS



   

  

By means of this grammar, the lines of symbols a and b  are generated. It 
is possible to explain sequence of generation of lines with the following 
scheme: 

Applied rule of output The maintenance of a line 
 S 

aSS  aS  
aSS  aaS  
abS  aab  

Result of output is line aab. 
Example of context-free grammar: 

S}P,T,{N,G  . 
N {S};
T {a,b};
P:S ; .aSb S ab



 

  

By means of this grammar lines of a kind are generated 
nnba . 

Example of output for line 
33ba . 
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Applied rule of output The maintenance of a line 
 S 

aSbS   aSb  
aSbS   aaSbb  
abS  aaabbb  

 
Example of more difficult context-free grammar: 

S}P,T,{N,G  . 
N {S};
T {IF,THEN,ELSE,U,B};
P:S ;

;
.

B
S IF U THEN S
S IF U THEN S ELSE S







  

This grammar allows forming various conditional operators of Pascal 
language. For example, the operator BELSEBTHENUIFTHENUIF be 
can generated as follows. 

 
Applied rule of output The maintenance of a line 

 S 
STHENUIFS  STHENUIF  

SELSESTHENUIFS  SELSESTHENUIF  
BS   SELSEBTHENIFTHENUIF   
BS   BELSEBTHENIFTHENUIF   

 
The second variant is possible:  

Applied rule of output The maintenance of a line 
 S 

SELSESTHENUIFS  SELSESTHENUIF  
STHENUIFS  SELSESTHENIFTHENUIF   

BS   SELSEBTHENIFTHENUIF   
BS   BELSEBTHENIFTHENUIF   

 

Exercises 
1. Let - )S,P,V,V(G HT  is a generating grammar, where. 

}e,d,a{VT  }S,C,B{VH  }eC,CdB,aBS{P  . Write out the terminal 
chains generated by the given grammar, and define length of their output. 

2. Let - )S,P,V,V(G HT , where { , , },TV a d e  { , , },HV B C S  
}eC,dCB,CdB,aBS{P   Define the terminal chains generated by 

the given grammar, and length of their output. 
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3. For grammar G  it is known general dictionary }E,D,C,B,A{V   and the 

scheme of rules - }BBA,CD,BCD,AE,DCDE{P  . Define 
structure of terminal and non-terminal dictionaries, the grammar purpose, to 
construct language )G(L  and define length of outputs for each terminal chain. 

4. Define, whether the following grammars are generating: 
a) )S},ASB,BSD,ASDS,ABS{P},D,S{},B,A({G  ; 
b) )S},BAS,ABS,ASBASS{P},S{},B,A({G  ; 
c) )S},CAA,BA,AS{P},S,A{},C,B({G  ; 
d) )S},CACA,BA,AS{P},S,A{},C,B({G  . 

5. It is given grammar ( , , , ),T HG V V P S  where )S,P,V,V(G HT . 
}B,A{VT  }D,S{VH  }D,BDS,BSBD,ADSBS,ABS{P  . 

Prove, that the chain ABABBAB  belongs to set )G(L . 
6. It is given grammar 

,edA{P},E,D,C,B,A{},e,d,c,b,a({G 
)C},bcE,aED,dDC,BcC,AbB    

Define whether the chain )G(L belongs to set eadbcbc . 
7. It is given grammar }b,a,S,C{V  and }b,a{V  . Define, whether the four 

)S,P,V,V( HT for the following sets of rules a grammar: 
a) { , };P C b S aCb    
b) }SbC,ab{P  ; 
c) }CS,bCaCC{P  ; 
d) }aS,aSCS,bCC{P  . 

8. Let for every )S},SS{},a({G1n n . Prove, that what whatever 
)G(L,n n  . 

9. It is determined terminal dictionary of grammar. Define grammars 
generating following languages: 

a) language for nnn aba 1n  ; 
b) language 2na  for 1n  ; 
c) language 2nnba  for 1n  . 

2.2 Context-free grammars  
Exercises 
1. Let }b,a{VT  . Develop grammar, generating the following languages: 

Language }1n|aba{L nnn  ; 
Language }1n|a{L 2n  ; 
Language }1n|ba{L 2nn  . 

2. Grammars 1G and 2G  are set by the rules: 
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}.BB,AA{PP
};abB,bAbB,BB,bAbbB

,bA,AA,bBA,aAbBA{P

12

1





 

Show that )G(L)G(L 21  . 
3. It is given grammar )S,P,V,V(G HT  where. { , , },TV a b c  
{ , , },HV S B S { , , , , , , }.P S aSBC S aBC CB BC aB ab bB bb bC bc cB cc         

Define type of grammar and the language generated by it. 
4. Prove, that each linear language is generated by grammar in which 

each rule is either left or right linear. 
5. It is set two grammars 1G  and 2G with the following rules: 

}.cB,cA,aBbB,aAbA,ABS{P
};aA,baAA,cAS,abSS{P

2

1




 

Define grammar type. 
6. Prove, that language }baba{L nnmm  is not linear. 
7. Construct an example of Ks-language not being A-language and 

generated by Ks-grammar where each rule is either let-linear or right-linear. 
8. Let )S,P,V,V(G HT  where }c,b,a{VT   ,aAbA,ABS{P   

}cB,cA,aBbB  . Prove that Ks-language is metalinear, but not linear. 
9. Grammar G  is set by rules ,bSbS,aSaS{P  }cS,aaSaaS  . 

Prove that it is not essentially ambiguous. 
10. Language }rmn|cba{L rmn   is Ks-language. Write out the Ks-

grammar generating this language. Define, to what narrower class of 
languages it belongs to. 

2.3 Basic properties of languages  
Exercises 
1. It is given language }aaaaaab,aaaab,aab{L  . 
Execute operations of multiplication, iteration and transposition over it. 
2. It is set a dictionary of terminal symbols }b,c{V   and language 

}b,c{V  }1n|bcc{L nn  . 
Define language addition. 
3. It is set languages }ac,abcc,ab,abbc{L1   and 

}yzx,yz,xzy,xz,xyz,xy{L 2  . Execute operation of multiplication of these 
languages.  

4. It is set language }1n|ba{L nn  . Execute operations of a 
transposition, multiplication, and iteration. 

5. Let }b,a{VT  }1j,i|aba{L jji  }1j,i|aba{M ijj  }1k,j,i|aba{L kji
1   

Prove, that language MLL2   is context-free. 
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6. It is set language }0n|cba{L nn  . Execute all possible operations over 
the given language. 

CONTROL QUESTIONS AND TASKS FOR SELF-CHECKING 
1) What words are called equal? 
2) What are the components of language? 
3) What is the essence of formalistic approach in? 
4)  What is problem type that is connected to occurrence and formalistic 

approach development? 
5) What are the features of formal languages? 
6) What are the basic constructions of formal languages? 
7) Characteristics of unlimited formal grammar? 
8) In what is the essence of contextual formal grammar? 
9) Give the characteristic of context-free formal grammar? 
10) Give the characteristic of regular formal grammar? 
11) What is the grammatical analysis?  
12) What are the basic types of generating grammars? 
13) Classes of formal grammars? 
14) What is the basic definition for context-free grammars? 
15) Is it possible to give interrelation of grammar classes as a graph? 
16) What are the properties of formal languages? 
17) Can various operations be applied to any sets? 
18) What are the basic classes of methods of grammatical analysis?  
19) In what limitation of use of heuristic methods consists? 

THEMES FOR INDEPENDENT WORK 
1) Chomsky - Schuttsenberzhe. Metalanguage. 
2) Forms of Bekus-Naur (FBN). 
3) Examples of the description of FBN identifier. 
4) Examples of identifier description. 
5) Figure Wirth. 
6) Examples of description of identifier with figure Wirth. 
7) Definition and structure of recognizer. 
8) Elementary designs. 
9) Examples of elementary designs. 
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CHAPTER 3. FINITE STATE MACHINES AND THEIR CONNECTON 
TO LANGUAGES AND GRAMMARS 

3.1. GENERAL DEFINITION OF FINITE STATE MACHINE 
Finite state machine (FSM) is called the five  

A = (N, T, P, S, F), 
where N – finite set of states of the automatic machine; 

Т – alphabet – finite set of symbols; 
P – transition function of automaton; 
S – initial state S N ; 
F – set of finite states F N . 

In the beginning, the automaton is in state S. On input FSM, the symbols 
belonging to the input alphabet arrive. The sequence of input symbols forms an 
input chain. Being in some state and having received on an input the next 
symbol, the automaton passes in the following state defined by value of 
function of transitions. 

Generally function of transitions for given pair of symbols – a state can 
define some variants of transition. In that case, the automaton is called not 
determined (NFSM). 

If having read an input chain the automaton   stopped in some state B 
they say, that   converts the automaton in V. If state N is one of finite states, 
i.e. F B F  then FSM allows chain . 

The set of all chains accepted by the automaton forms language L(A)  
accepted by the automaton. 

The language generated by automatic grammar G, coincides with the 
language accepted by the corresponding finite state machine 

L(G) L(A) . 
FSM can be set by means of the diagram of transitions. For example, the 

graph of automatic grammar 8G  can be considered transition diagramme 8A . 
At transition from automatic grammar a FSM generally receives not 

determined FSM that complicates its use in a role of recognizer for automatic 
language. Indeterminacy the automaton is defined by that for some tops of its 
diagram of transitions there are some arches leaving these tops and marked 
with the same symbol. 

For elimination of ambiguity NFSM translate in DFSM (determined FSM). 
The simplest model is the automaton with finite number of states (with 

finite memory) — the finite state machine. 
Determined finite state machine is called the ordered system from five 

objects — «the ordered five»: 
0( , , , , ).A X S s F   
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Where }x,...,x,x{X r21  is a set of input symbols (input alphabet), 
}s,...,s,s{S r21  is s set of inner states, n,r  are finite,  Ss0   is initial state,  is a  

function displaying XS  in S that is usually written as SXS:  . This 
function unequivocally puts in conformity to pair of symbols )x,s( ji  some 
symbol - SF,Ssk   some allocated subset of states of the automaton (finite 
states). 

This automaton can be interpreted as it is shown in Fig. 12. 
The automaton consists of the actuation device, a reading out head and 

infinite to the right the input tape divided into cages. In the beginning on a tape 
the input chain is so written down, that in each cage of a tape contains on one 
symbol of a chain. The initial symbol is written down in an extreme left cage, 
and all cages of that part of a tape which is located more to the right of last 
symbol of record of an input chain, are empty, i.e. In each of these cages the 
"empty" symbol A  is written down. The head during the initial moment is 
located against an extreme left cage of a tape, and the actuation device is in an 
initial state. 

           

1x  2x  3x           … 
           
   y.y     
           

Fig. 12 

In each next step, the head perceives a symbol on a tape, the actuation 
device changes the state according to display   and the tape moves on one 
cage to the left. If the head perceives an empty symbol   that is written down 
more to the right of last symbol of input sequence it will mean automaton 
cessation of work, i.e. the actuation device state does not change any more. 

Admissible or comprehensible is called an input sequence possessing 
following property: when the head perceives last symbol of this input sequence, 
the automaton passes in one of set states F . 

The set of admissible input sequences of the automaton A  or set of 
sequences, representable in the automaton A  by set of states F  is 
designated )A(L . Such set, being set of chains of symbols from the finite 
alphabet X  will be from the point of view of the theory of languages to some 
languages over the terminal dictionary XVT  . Thus, naturally there is a way of 
comparison of automatons, languages and grammars. 

For finite state machines, the set )A(L  is allocated with known Kleene 
theorem. 

The theorem 41 (Kleene). For any finite state machine the set A of 
admissible )A(L sequences is regular, i.e. language of type 3. This theorem 
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explains, why type 3 languages are called as languages with finite number of 
states. 

As the determined finite state machine with two tapes is called the ordered 
six 0( , , , , , ).A X Y S s    

Where 0s,S,X and   have the same sense as finite state machine with one 
tape, - }y,...,y,y{Y l21 is a set of output symbols (output alphabet), l  - finite, 
 is a function reflects XS  in Y  i.e. YXS:   

Interpretation of this automaton is given in Fig. 13. 
But for input tape, the automaton has infinite to the right a output tape that 

can move only to one party — from right to left. Each next step in a tape cage 
is printed a symbol, and the tape moves on one cage. This automaton is called 
as consecutive machine, or Mealy machine. Mealy machine M  to each chain of 
input symbols u  unequivocally puts a chain of output symbols  that registers 
in conformity with  )u(M . It is obvious, that )(M . 

 
         
         
     Input tape 
         
  y.y    
     
     output tape 
         

 
Fig. 13 

Nondetermined finite state machine with one tape is called the ordered five 
0( , , , , ).A X S S F   

Where F,S,X  have the same sense, as in definition of the determined 
automaton,   set XS  in set of all subsets of states S and 0S  some allocated 
(initial) subset of set S. 

Representation of set of input sequences in not determined automaton is 
understood as follows. The set of input sequences U  is admissible in not 
determined finite state machine, if for each sequence of this set there will be 
such two states 0i Ss  and Fs i   and such variant of work (i.e. Such concrete 
values of function ), that the sequence U  translates the automaton from 
state is into state js . 

The following theorem is proved. 
The theorem 42 (Rabin and Scott). In not determined single-tape finite 

state machines as well as in determined are admissbible only regular sets of 
chains. By means of not determined automatons it is impossible to expand a 
class of representable sets. However not determined finite state machine 
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usually has smaller number of states in comparison with the determined 
automaton representing the same set. 

The finite state machine with two tapes is not determined, if at the same 
situation characterised in pair, )x,s( ji  probably finite number of variants of its 
action. Hence, such automaton can put to one input chain in conformity finite 
set of output chains. 

The bilateral finite state machine differs from the usual determined 
automaton that the input tape infinite in both parties and can move not only to 
the left, but also to the right, and also can remain motionless. Thus displaying 
function is replaced SXS:  with function, dSXS:   
where }1,0,1{d  . The symbol d shows in what party the input tape should 
move:  - 1 corresponds to shift on one cage to the right, 1 to shift to the left on 
one cage, 0 the tape remains motionless. 

The set )A(L  of all admissible sequences of such automaton is defined by 
the following theorem. 

The theorem 43 (Rabin, Scott). For each bilateral automaton A it is 
possible to define effectively such automaton Bhaving the same set of 
comprehensible input sequences, as the automaton A . Therefore the set )A(L  
is regular i.e. it is type 3 language. 

Thus, the bilateral automaton does not expand possibility of finite state 
machines.  

3.2. MEALY MACHINE AND MOORE MACHINE 
Mealy machine is a finite state machine, which output sequence (unlike 

Moore machine) depends on a state of the automaton and input signals. It 
means that in a state graph to each edge there corresponds some value (a 
output symbol). In tops of the graph of Mealy machine leaving signals register, 
and to arches of the graph attribute a state of transition from one state in 
another, and also input signals. Mealy machine can be described the 
five, )g,f,Y,X,Q(  where  Q  set of states of the automaton, X set of input 
symbols, Y set of output symbols, )X,Q(fq  function of states, 

)Y,Q(gy  function of output symbols. 
The law of functioning of Mealy machine is set by the equations: 

( 1 ) ( ( ), ( )); ( ) ( ( ), ( ), 0,1,2, ...).a t a t z t w t a t z t t       
The law of functioning of Moore machine is set by the equations: 

( 1 ) ( ( ), ( )); ( ) ( ( )), 0,1,2, ...).a t a t z t w t a t t       
From comparison of laws of functioning, it is visible, that, unlike Mealy 

machine, the output signal in Moore machine depends only on a current state 
of the automaton and in an explicit form does not depend on an input signal. 
For the full task of Mealy and Moore machines in addition to functioning laws, it 
is necessary to specify an initial state and to define internal, input and output 
alphabets. Mealy machines - automatic machines of 1st sort, R a-bus Moore 
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machines – automatons of 2nd sort, S a-bus SRC  the-combined 
automatons.  

3.2.1. Synthesis of mealy machine 
At a stage of reception inputs of the tops following for operational, mark a 

flowgraph of algorithm symbols ,...a,a 21 following rules: 
1) 1)symbol 1a  marks an input of the top following for initial, and also an 

input of finite top; 
2) inputs of all tops following for operational, should be noted; 
3) inputs of various tops, except for finite, are marked by various symbols; 
4) if the top input is marked, only one symbol. 
For carrying out of marks the finite number of symbols m1 a,...,a  is required. 

Result of the first stage is noted the flowgraph of algorithm which forms a basis 
for the second stage - transition to the graph or tables of transitions-exits. 

At the second stage, from noted algorithm flowgraph, the graph of the 
automaton or the table of transitions-exits is built. For this purpose they believe, 
that in the automaton there will be so much states how many symbols i ia  t was 
required at a mark an algorithm flowgraph. 

On a drawing plane it is marked all states of the automaton ia . For each of 
states ia  define on noted an algorithm flowgraph all ways which are conducting 
in other states and passing necessarily only through one operational top. 

On the basis of noted an algorithm flowgraph it is possible to construct the 
table of transitions-exits. For microprogram automatons the table of transitions-
exits is under construction in the form of the list and direct and return tables 
differ. For the given automaton the direct table is given to Tab. 2, return - in 
Tab. 3. 
 

Table 2                  Table 3 
Am As X Y  Am As X Y 

1a  2a  1 3,1 yy   22a  1a  5,6 xx  91 , yy  

2a  5a  2x  6y   23a   5x  91 , yy  
 7a  2x  4y   24a   2x  - 

3a  4a  1 2y   1a  2a  1 3,1 yy  

4a  5a  5x  6y   10a  3a  65 , xx  в3,в6 
 6a  5x  107 , yy   3a  4a  1 2y  

5a  6a  1 107 , yy   12a   2x  2y  

6a  8a  4x  2y   2a  5a  2x  6y  
 9a  4x  42 , yy   4a   5x  6y  

7a  9a  1 42 , yy   4a  6a  5x  107 , yy  
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Ending of Table 2  Ending of Table 3 
Am As X Y  Am As X Y 

8a  10a  1 63 , yy   5a   1 107 , yy  

9a  11a  1 7y   2a  7a  2x  4y  

10a  3a  65 , xx  63 , yy   6a  8a  4x  2y  
 11a  5x  7y   6a  9a  4x  42 , yy  
 12a  65 , xx  8y   7a   1 42 , yy  

11a  12a  1x  8y   8a  10a  1 63 , yy  
 13a  1x  91 , yy   9a  11a  1 7y  

12a  4a  2x  2y   10a   5x  7y  
 16a  2x  42 , yy   10a  12a  65 , xx  8y  

13a  16a  1 42 , yy   11a   1x  8y  

14a  15a  1 63 , yy   11a  13a  1x  91 , yy  

15a  17a  5x  7y   22a  14a  1,6 xx  2y  
 18a  65 , xx  8y   14a  15a  1 63 , yy  
 20a  65 , xx  63 , yy   24a   2x  63 , yy  

16a  17a  1 7y   12a  16a  2x  42 , yy  

17a  18a  1x  8y   13a   1 42 , yy  
 19a  1x  91 , yy   15a  17a  5x  7y  

18a  21a  2x  43 , yy   16a   1 7y  
 22a  2x  96 , yy   15a  18a  65 , xx  8y  

19a  21a  1 43 , yy   17a   1x  8y  

20a  22a  1 96 , yy   17a  19a  1x  91 , yy  

21a  23a  1 8y   15a  20a  65 , xx  63 , yy  

22a  1a  5,6 xx  91 , yy   18a  21a  2x  43 , yy  
 14a  1,6 xx  2y   19a   1 43 , yy  
 24a  1,6 xx  7y   18a  22a  2x  96 , yy  

23a  1a  5x  91 , yy   20a   1 96 , yy  
 24a  5x  7y   21a  23a  1 8y  

24a  15a  2x  63 , yy   22a  24a  1,6 xx  7y  
 1a  2x  -  23a   5x  7y  

 

3.2.2. Synthesis of moore machine 
At a stage of reception a flowgraph of algorithm the marking is made for 

Moore machine according to following rules: 
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1) the symbol 1a  marks initial and finite tops; 
2) various operational tops are marked by various symbols; 
3) all operational tops should be noted. 
The table of transitions-exits of Moore machine is given in Tab. 4 (straight 

line). Usually for Moore machine in the table of transitions-exits the additional 
column for output signals not used also a output signal registers in a column 
where the initial state am or transition states S is underlined. 

Table 4 
Transitions-exits of the Moore machine 

Am(y) As X 
 1a  2a  1 

 3,12 yya  4a  2x  
  5a  2x  
 23 ya  5a  5x  
 6a  5x  
 44 ya  7a  1 

(  65 ya  6a  1 
 1076 y,ya  7a  4x  

  8a  4x  
 427 y,ya  10a  1 

(  28 ya  9a  1 
 639 y,ya  10a  5x  

 12a  65 , xx  

 13a  65 , xx  
 77 ya  11a  1x  
 12a  1x  

 9111 y,ya  14a  1 
 812 ya  14a  2x  
 3a  2x  

(  313 ya  3a  1 
 4214 y,ya  16a  1 
 6315 y,ya  16a  5x  

 18a  65 , xx  

 19a  65 , xx  
 716 ya  17a  1x  
  18a  1x  

 9117 y,ya  20a  1 
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Ending of Table 4 
Am(y) As X 

 818 ya  20a  2x  
 22a  2x  
 319 ya  22a  1 

 4320 y,ya  21a  1 
 821 ya  23a  5x  
 24a  5x  

 9622 y,ya  23a  5,6 xx  

 24a  1,6 xx  

 25a  1,6 xx  
 9123 y,ya  1a  1 

)y(a 724  1a  2x  
 15a  2x  
 225 ya  15a  1 

3.2.3. Transformation of mealy machine to moore machine 
Between Mealy and Moore machiness (Fig. 14) there is conformity, 

allowing transforming the law of functioning of one of them to another or back. 
Moore machine can be considered as a special case of Mealy machine, 
meaning, that the sequence of states of exits of Mealy machine advances 
sequence of states of exits of Moore machine on one step, i.е distinction 
between Mealy and Moore machiness consists that in automatons of Mealy the 
exit state arises simultaneously with a state of an input causing it, and in Moore 
machines - with a delay on one step, suh as in Moore machines input signals 
change only an automaton state. 

 
Fig.14 
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Let it be necessary to transform Mealy machine to Moore machine. 
The graph of Mealy machine is on Fig.15: 

 
Fig. 15. The graph of Mealy machine 

In Mealy machine }a,a,a{A},y,y{Y},x,x{X 210a21a21a  . 
In equivalent Moore machine }y,y{YY},x,x{XX 21ab21ab  . 
Let's construct set of states of the automaton bA of Moore for what we will 

find sets of the pairs generated by each state of the automaton aS . 
 

Condition Generated pairs 
0a  }b,b{)}y,a(),y,a{( 212010   
1a  }b{)}y,a{( 311   
2a  }b,b{)}y,a(),y,a{( 542212   

 
From here they have sets of states bA of Moore 

machine }b,b,b,b,b{A 54321b  . To find function of outputs bL  with each state 
representing to steam of a kind, )y,a( gi  let’s identify the output signal which is 
the second element of this pair. The result is as follows: 

25b214b3b1 y)b(l)b(b;y)b(l)b(l)b(b  . 

Let's construct function of transitions bd . Such as in the automaton aS from state 
0a  there is a transition under the influence of a signal 1x  in state 2a  from 

delivery from 1y set of the states generated, }b,b{ 21 0a  in the automaton bS there 
should be a transition in state 412 b)y,a(   influenced by signal 1x . Similarly, from 

}b,b{ 21  under the influence of 2x  there should be a transition in 
state 110 b)y,a(  . From 311 b)y,a(   under the influence of 1x in transition 

110 b)y,a(   and 2x  - under the influence of 522 b)y,a(  . At last from states 
}b,b{)}y,a(),y,a{( 542212   under the influence of 1x  in 220 b)y,a(   and 
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2x - under the influence of 311 b)y,a(  . As a result we have a graph (Fig. 16) 
and the table of transitions of the equivalent Moore machine. 

 

Fig. 16. The graph of the equivalent Moore machine 
 

yg y1 y2 y1 y1 y2 
xj\bj b1 b2 b3 b4 b5 
x1 b4 b4 b1 b2 b2 
x2 b1 b1 b5 b3 b3 

 
As an initial state of the automaton bS  it is possible to take any of states 

1b or 2b  such as both of them are generated by state 0a  of automaton aS . 

3.2.4. Connection between mealy and moore machines 
Two automatons with identical input and output alphabets are called 

equivalent if after their installation in their initial state, their reactions to any 
input word coincide. 

Despite the fact that automatons function differently, it is always possible 
to construct the automaton of one model of other model equivalent to the 
automaton in the sense that their reactions to one and the same input chains 
will be identical. The general approach to developing automaton equivalents: 

1) let it be given Moore automatic machine that it is necessary to transform 
Mealy machine to equivalent. 

)Aa,.,W,Z,A(S 1aaaaaa   — Moore machine,  
)Ba,.,W,Z,A(S 1bbbbbb   — Mealy machine. 
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2) let’s require: ?,AaBa,.,WW,ZZ,AA b11aabababab   . 
To transform from Moore machine to Mealy machine it is necessary in the 

column of Moore machine to take out a symbol of the output alphabet from 
considered top and to attribute it to all arches entering into this top. In the 
equivalent Mealy machine quantity of states are the same, as well as in Moore 
machine. 

Transformation from Mealy machine to equivalent Moore machine is more 
complicated. It is due to the fact that in Moore automatic machine only one 
output signal is developed. The single restriction imposed on possibility of such 
transformation is that the initial automatic machine of Mealy should not have 
unattainable states: 

1) Let it be given Mealy machine which it is necessary to transform into 
equivalent Moore machine. 

)Aa,.,W,Z,A(S 1aaaaaa   - Mealy machine, 

)Ba,.,W,Z,A(S 1bbbbbb   - Moore machine. 

Let’s require abab WW,ZZ  . 
2) Let’s define the set of states of Moore, bA for this purpose each 

state, aS AA   is put in conformity set SA  which represents every possible steams 
of a kind )w,a( gS  where gw - are output signals which have been put down 
along arches of Mealy machine, entering into top Sa . 

Set bA  is an association bS AA  )M,1(S   Generally, quantity of tops in 
Moore machine is more than in Mealy machine. Output function b  and 
transition function bW  are defined as follows: to each state of Moore machine, 
represents pair, )w,a( gS  we put in conformity with output signal gw . If in Mealy 
machine aS  there was a transition from fish-traps ma  under the influence of  
signal in fz  in top Sa  i.e. Sfma a)z,a(S   herewith it makes a signal  

kfma w)z,a(   to Moore machine there will be a transition from set of 
states, Sfma a)z,a(S   under the influence of kw the same input signal fz . 

3.3. REPRESENTATION OF FORMAL GRAMMARS POSSIBILITIES IN THE 
FORM OF FINITE STATE MACHINES 

The resulted definitions from section 3.1 of the description of the 
nomenclature of definitions and unequivocal conformity with formal languages 
of various types are reflected in Tables 5, 6. 

Conformity between principal views of automatic machines and 
representable languages in them are shown in Tab. 5. 
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Table 5 

Оrder Automaton names Type of language 

1 Determined and not determined finite state machine 3  

2 Determined push down machine 2  

3 Not determined push down machine 2  

4 Determined liner limited automaton 1
2


  

5 Not determined liner limited automaton 1  

6 Determined and not determined Turing machine 0  
 
In this table the following designations are used. The arrow means, 

that language )3,2,2,1,0i(i D  when and only when we will give in the type of 
automatic machine )6,...,2,1k(A k  . The arrow means,   that if language we 
will present in the automaton kA is language i . The arrow means,   that if 
language is if type i then there will be automatic machine kA where it is 
representable. 

In summary we consider possible treatment of concepts and results of the 
general theory of languages with reference to three basic areas where these 
results are used: to mathematical linguistics, programming languages and the 
theory of automatic machines. 

In Tab. 6 similar concepts from these three areas are collected and 
concepts of the general theory of languages corresponding to them are 
specified. 

Table 6 
Designati

on 
The general theory 

of languages 
Mathematical 

linguistics 
Programmi

ng 
The mathematical 

Models 

TV  The terminal 
dictionary 
(alphabet) 

The basic 
dictionary of 

language 

Output 
symbols 

The output 
alphabet 

HV  
The non-terminal 

dictionary 
(alphabet) 

Auxiliary 
grammatical 

terms 

Set of 
commands 

Set of states of the 
actuation device 

S Initial non-terminal 
symbol Sentences The 

program Initial condition 

P  System  Syntactic rules Operations Displaying function 
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EXAMPLES AND PRACTICAL TASKS 

3.1. Finite state machines 
Exercises 
1) On each of resulted below finite state machines construct A right liner 

Ks-grammar generating set- )A(T . 
 }),p{,p,X,S(A 3  Tab. 7 is set  }),p{,p,X,S(A 3 . 

 }),p,p{,p,X,S(A 541  Tab. 8 is set  }),p,p{,p,X,S(A 541 . 
 

           Table 7           Table 8 
 A B   A B C 

5

4

3

2

1

P
P
P
P
P

 

2

3

2

3

2

P
P
P
P
P

 

4

1

5

4

5

P
P
P
P
P

 
 

6

5

4

3

2

1

P
P
P
P
P
P

 

1

4

2

4

1

2

P
P
P
P
P
P

 

2

6

3

4

6

3

P
P
P
P
P
P

 

6

3

1

2

6

1

P
P
P
P
P
P

 

 
On crossing of line ip and column x  it is given value )x,p( i . 
2) Develop MT-automaton 1M  such that }b,a{X   and )M(T — set of all 

chains containing identical number of input symbols anda b .  
3) Develop MT-automatic machine, M  such that }b,a{X   and 
)M(T }1i,1n|baba{U}1i,1n|aba{ i3in2ninn  . 
4) Develop MT-automatic machine supposing language, generated by 

grammar with rules }cT,bTT,TaT,TTs{P  . 
5) It is given a set of commands of the finite state machine supposing 

language }0m,n|ba{ nn  : 

.S)Sb(
;S)Sb(
;S)Sb(
;S)Sa(
;S)Sa(

021

221

211

111

101








 

Construct the grammar generating this language, and define its type. 
6) Construct linear limited automatic machines supposing languages: 

1

2

{ | 0 };
{ | { , } }.

n n nL a b a n
L xcx x a b

 

  
 

Language }rqp|cba{L rqp   is KC-language. 
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Write out the Ks-grammar generating this language. Define what narrower 
class of languages it belongs to. Construct the determined MT-automatic 
machine supposing this language. 

7) What of the following sets of sequences can be distinguished as the 
finite state machine: 

a) Set of all sequences: 0, 1, 00, 01, 10, 11, 000, 001, 010, …; 
b) Numbers 1, 2, 4, 8, …, 2n, …, written down in a binary notation; 
c) The same set of the numbers which have been written down in a 

monadic code: 1, 11, 1111, 11111111, 1111111111111111, …; 
d) Set of sequences, in which number of 0t is equal to number of 1; 
e) Sequences: 0, 101, 11011, …, 1k01k (k – number of enterins of 1)? 

3.2. Mealy and moore machines 
Any finite set of words E = {a1.... ak} can be represented in the automatic 

machine. The idea of construction of the automatic machine on finite set of 
words is illustrated by the graph in Fig. 17, where finite states qn-k......, qn-1 are 
represented by a double circle. For specific sets this idea is modified because 
words can have commom beginnings (then the beginnings of corresponding 
ways need to be united not to break a automation state) or easier to contain in 
each other (then from one finite state there is a way to other finite state). The 
example of the automatic machine for E = {ab, the expert, аbаа} with finite 
states F = {3, 5, 6} is given in Fig. 17. 

 
 

 
Fig. 17. The idea of construction of the automatic machine on finite set of words 

In the automaton representing finite set of words, the way from an initial 
state in any finite state cannot contain cycles or contain in a cycle as then there 
would be an infinite set of ways from an initial state in F and corresponding 
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event would be infinite. Therefore such automatic machine cannot be strongly 
coherent, it is the device, so to say, disposable action. 

a) Independent automatons represent events in single-letter alphabet; 
words in such events differ only in length. For example, the automaton from 
example 2.3 with initial state 1 and F = {7} (outputs are ignored) is an infinite 
event consisting of all words whose lengths at division on 4 give in the rest 3. If 
to put F = {2} this automaton is of empty event. 

b) The automaton, whose graph given in Fig. 18 (F = {1}), is an infinite set 
{е, аbа, abaaba., {aba}. 

Events are sets of finite words. However it is possible to say, that the 

automaton distinguishes infinite sequence of letters  = ,,,
111 iii ааа …, if it is a 

set E = { ,,,
111 iii ааа …}, consisting of all initial pieces of sequence . 

 
Fig. 18 

CONTROL QUESTIONS AND TASKS FOR SELF-CHECKING 
1) The general definition of the finite state machine. 
2) What the basic essence of finite state machine? 
3) Interpretation of the finite state machine. 
4) Not determined finite state machine. 
5) Finite state machine with two tapes. 
6) Mealy machine? 
7) Moore machine? 
8) How is it possible to convert Mealy machine to Moore machine? 
9) What is the connection between Mealy and Moore models? 
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TOPICS FOR SELF-DEPENDENT WORK 
1) The linear-bounded automaton. 
2) Connection between linear-bounded automaton and context-sensitive 

grammars. 
3) Kurod theorem. 
4) Context-sensitive languages. 
5) Push-down automaton. 
6) Context-free languages characteristics. 
7) Push-down automatons with single-letter transitions. 
8) Hayes- theorem. 
9) Examples of not determined push-down automaton. 
10) Algorithmic problems. 
11) Algorithmically unsolvable problems. 
12) Algorithmically solvable problems. 
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