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METHODOLOGY FOR ASSESSING THE IMPACT OF EMERGENCIES ON THE 

SPREAD OF INFECTIOUS DISEASES 
 

The spread of infectious diseases is significantly influenced by emergencies, particularly military conflicts, which 

disrupt healthcare systems and increase the risks of epidemics. The full -scale Russian invasion of Ukraine has 

exacerbated these challenges, causing environmental damage, mass displacement, and the breakdown of 
healthcare services, all of which contribute to the spread of infectious diseases. This study aims to develop a 

comprehensive methodology for assessing the impact of emergencies on the  spread of infectious diseases, focus-

ing on the full-scale invasion of Ukraine. The object of this study is to address epidemic threats posed by emer-
gencies, particularly the increased spread of infectious diseases due to war-related disruptions. The subject of 

this study is methods and models of infectious disease transmission under conditions of emergencies, emphasizing 

the Russian full-scale invasion of Ukraine. The tasks of this study are to provide an analysis of the current state 

of research and develop a methodology for assessing the impact of emergencies on the spread of infectious dis-
eases. The proposed methodology includes several key components. Comprehensive data from public health 

organizations includes infectious disease statistics, demographic shifts, healthcare disruptions, and environmen-

tal factors exacerbated by emergencies. Data preprocessing removes inconsistencies, standardization of formats, 

and normalization for population size differences. Machine learning models, including convolutional neural net-

works and recurrent neural networks, have been developed to simulate the spread of diseases based on demo-

graphic, environmental, and healthcare-related variables. Deep learning models analyze spatial and temporal 

patterns, whereas compartmental models such as SIR estimate changes in reproductive numbers (R₀  and Re). 

Additionally, models of excess mortality incorporate mixed effects to account for regional and time -based vari-

ations. The methodology incorporates real-time monitoring of epidemic threats using real-time data from multi-

ple sources, enabling dynamic assessments of disease spread and facilitating predictive modeling. The models 

were trained on historical data and validated using cross-validation techniques to ensure robustness and relia-
bility, with a specific focus on the pre- and post-invasion phases in Ukraine. Results: The study provides a com-

prehensive framework for collecting and processing data on infectious diseases and epidemic threats in emer-

gencies. The proposed model introduces advanced machine learning and epidemiological models trained on pre- 
and post-invasion data to analyze disease transmission patterns and forecast future epidemic dynamics. Conclu-

sion: The proposed methodology addresses current gaps in infectious disease during emergencies by integrating 

real-time data and machine learning techniques. This research improves decision -making in public health man-

agement and biosafety during crises, particularly in war-affected regions like Ukraine. 
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1. Introduction 

 
The spread of infectious diseases is heavily influ -

enced by various factors, including environmental dis-

ruptions and social upheavals caused by emergencies [1]. 

Among the most impactful emergencies are wars and 

military conflicts, which not only disrupt healthcare sys-

tems but also create conditions that foster the rapid 

spread of infectious diseases [2]. Historically, wars have 

demonstrated a significant correlation between conflict 

and infection outbreaks, with diseases often resulting in 

higher mortality rates than combat-related injuries. 

The ongoing war in Ukraine, resulting from Rus-

sia’s full-scale invasion, has triggered a complex emer-

gency that affects not only public health but also the en-

vironment [3]. This emergency has given rise to addi-

tional crises, including the risk of chemical contamina-

tion, wildfires, and damage to critical infrastructure, all 

of which contribute to deteriorating public health. Under 

such conditions, the risk of infectious disease outbreaks 
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dramatically increases, compounded by mass displace-

ment, shelter overcrowding, and the collapse of essential 

services like water supply and sanitation [4]. The health 

risks are further exacerbated by environmental degrada-

tion, such as pollution and biodiversity loss, which can 

facilitate the spread of zoonotic diseases. 

Epidemiological diagnostics, which include retro-

spective and real-time epidemiological analyses and field 

investigations, play a leading role in assessing the risks 

of deteriorating epidemic conditions and the spread of in-

fectious diseases. 

Advances in epidemiology and healthcare have en-

hanced the ability to respond to infectious diseases; how-

ever, the complexities of large-scale emergencies require 

more dynamic and flexible analysis methods. Traditional 

epidemic models, such as compartmental models, are in-

sufficient for addressing heterogeneous populations and 

rapidly changing conditions typical of emergencies [5]. 

In particular, there is a need for real-time data integration 

and adaptive models that can account for the unpredicta-

ble factors that arise during such crises. 

The scientific application of mathematical models 

and simulation techniques in healthcare has been well es-

tablished [6]. The COVID-19 pandemic has spurred the 

development of methods for modeling epidemic pro-

cesses. However, compartmental modeling remains the 

most popular method. Existing methods for modeling ep-

idemic processes have several drawbacks, including low 

flexibility, difficulty accounting for heterogeneous popu-

lations, high computational complexity, and the inability  

to adapt models to new epidemic processes [7-8]. These 

shortcomings make it impossible to use existing ap-

proaches during emergencies and analyze dynamic pro-

cesses caused by emergencies. This is due to the need for 

rapid analysis of influencing factors and environmental 

changes and an adequate assessment of the situation. The 

multidisciplinary approach proposed in this project over-

comes these limitations and achieves results that could 

lead to global leadership. 

In recent years, the “Big Safety” concept has 

emerged as a framework for addressing multidimensional 

risks that extend across various critical domains, includ-

ing infection control and disaster response [9]. This re-

search explores how infection safety and disaster-related 

health risks can be integrated into public health policies, 

particularly in conflict zones. By recognizing the inter-

connectedness of these safety dimensions, a holistic ap-

proach can be developed to safeguard vulnerable popula-

tions during times of crisis. 

This paper aims to develop a comprehensive meth-

odology for assessing the impact of emergencies on the 

spread of infectious diseases, focusing on modern con-

flicts like the full-scale Russian invasion of Ukraine. Us-

ing a multidisciplinary approach that integrates epidemi-

ological analysis, machine learning, and real-time data 

analytics, this study sought to overcome the limitations 

of existing models. This paper is the study protocol of the 

project “Multidisciplinary study of the impact of emer-

gency situations on infectious diseases spreading to sup-

port management decision-making in the field of popula-

tion biosafety”. It proposes a preliminary study for that 

project. Through this work, we contribute to the growing 

field of predictive epidemiology and provide essential 

tools for mitigating the public health impacts of large-

scale emergencies. 

In this paper, section 2, namely, Background, dis-

cusses the impact of emergencies, particularly military  

conflicts, on epidemic process dynamics. Section 3, titled 

Current Research Analysis, discusses the current state of 

research in emergent disease simulation, estimation of 

excess morbidity and mortality, and basic and effective 

reproductive number evaluation. Section 4, Methodol-

ogy, presents the methodology for assessing the impact  

of emergencies on the spread of infectious diseases. Sec-

tion 5, namely Discussion, discusses the proposed meth-

odology and highlights its novelty, applicability, and lim-

itations. Conclusions describe the outcomes of the re-

search.  
 

2. Background 
 

Wars and military conflicts have a particularly neg-

ative impact on human health during emergencies. Wars 

are always accompanied by outbreaks of infectious dis-

eases, increased morbidity, and mortality [10]. The his-

tory of wars has revealed that deaths from infections of-

ten exceed those from combat injuries [11]. Despite ad-

vancements in modern medicine, infections continue to 

accompany wars in the 21st century. For instance, in 

Syria, after no measles cases were recorded since 1999, 

outbreaks occurred in 2017-2018 due to the civil war 

caused by disruptions in immunization programs [12]. 

The civil war in Yemen led to a cholera outbreak in 2017, 

resulting in 2.5 million suspected cases and 3,868 deaths, 

despite no cases having been recorded in the country be-

fore the war [13]. Research indicates that living condi-

tions during wartime (stress, limited access to safe water 

and food, lack of environmental and personal hygiene, 

etc.) contribute to the spread of numerous infections. Ex-

amples of diseases spreading during military conflicts in-

clude COVID-19, tuberculosis, viral hepatitis A, diar-

rheal diseases, respiratory infections, HIV, leishmaniasis, 

and dengue fever, among others, in Turkey [14], Libya, 

Yemen [15], and Syria [16]. In the scientific literature, 

many examples exist of how conditions for spreading in-

fections are created during war [17, 18]. 

Russia’s full-scale aggression in Ukraine has 

caused a large-scale emergency that has affected all  

aspects of people’s lives and is creating additional emer-
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gencies, such as floods and droughts (caused by the de-

struction of the Kakhovka Hydroelectric Power Plant) 

[19], the risk of radionuclide contamination (events at the 

Chornobyl and Zaporizhzhia nuclear power plants) [20], 

wildfires (fires on the Kinburn Spit that destroyed over 

1,500 hectares of forest) [21], chemical leaks (chlorine, 

ammonia, etc.) [22], and more. 

The full-scale Russian invasion of Ukraine has had 

a profound impact on public health, worsening the spread 

of infectious diseases and further challenging the coun-

try’s healthcare system. The war has caused widespread 

displacement, with millions of Ukrainians becoming in-

ternally displaced persons or fleeing to neighboring 

countries, increasing the risk of disease outbreaks in 

overcrowded and unsanitary conditions [23]. The disrup-

tion of vaccination programs, particularly in regions like 

Transcarpathia, has led to decreased immunization rates, 

increasing the likelihood of outbreaks of diseases such as 

polio and measles [24]. The war has also intensified the 

spread of antimicrobial-resistant bacteria, a growing 

global health threat. The overuse of antibiotics, espe-

cially for treating war-related injuries, combined with in-

adequate healthcare infrastructure has contributed to the 

rise of resistant pathogens, posing significant challenges 

for medical treatment [25]. Environmental degradation, 

including contamination of water sources and damaged 

sanitation systems, has also created further public health 

risks, particularly the spread of waterborne diseases [26]. 

The ongoing war highlights the need for coordinated in-

ternational efforts to address both immediate health chal-

lenges and the long-term impacts on Ukraine’s healthcare 

system. 

During emergencies, the dynamics and manifesta-

tions of epidemic processes may differ from the natural 

course of events. Key risk factors influencing epidemic 

conditions in cascading emergencies triggered by war in-

clude intense population migration, overcrowding in 

bomb shelters and migration routes, stress and increased 

susceptibility to infections, disruption of water and en-

ergy supplies, mass rodent proliferation and outbreaks of 

diseases among them, food contamination, chemical run-

off into water bodies, flooding of natural biocenoses, ac-

tivation of infection transmission mechanisms, an in-

crease in stray animals and their contact with wild ani-

mals, and environmental pollution caused by missile and 

artillery strikes, as well as landmines. Consuming large 

amounts of fuel during wars leads to significant carbon 

dioxide (CO2) emissions, contributing to climate change 

and the expansion of animal habitats that are sources of 

infections and vectors of pathogens [27]. At the same 

time, the environmental consequences of military actions 

reduce biodiversity, which increases the risk of spreading 

infectious diseases [28]. 

The destruction of healthcare infrastructure, medi-

cal facilities, and equipment and the loss of healthcare 

workers lead to a significant mismatch between 

healthcare services’ needs and their ability to assist vic-

tims [29]. This results in disruptions to the operations of 

healthcare institutions and the Disease Control and Pre-

vention, as well as an inability to conduct timely sanitary, 

hygienic, epidemiological, and preventive measures. 

The Russian full-scale invasion of Ukraine funda-

mentally differs from other wars, making it essential to 

study the conditions and risks of infectious disease spread 

and the unique characteristics of epidemic processes. 

This can form the basis for developing effective tools for 

making informed and rational management decisions to 

ensure population epidemiological welfare and biosecu-

rity. 

 

3. Current Research Analysis  

 

The analysis of current infectious disease research 

focuses on key methodologies developed to understand, 

predict, and mitigate the spread of emerging pathogens. 

Simulation models play a crucial role in forecasting out-

breaks and informing public health strategies. These 

models, ranging from compartmental frameworks like 

SIR to more advanced agent-based and network-based 

models, allow for detailed examination of disease trans-

mission dynamics. Additionally, methods for estimating 

excess mortality provide a clearer understanding of the 

broader impact of outbreaks by comparing observed 

deaths with expected baselines. Evaluation of the basic 

reproductive number (R₀ ), a critical parameter in infec-

tious disease modeling, is essential for determining the 

potential spread of a pathogen. This section reviews the 

methodologies employed in these areas and highlights 

their importance in modern epidemiological research and 

public health decision-making. 

 

3.1. Modern Approaches to Emerging  

Diseases Simulation 

 

The study [30] explores a novel approach for detect-

ing emerging infectious diseases using a two-layer 

model. Based on the TextCNN-Attention model, the first 

layer classifies cases as infectious or non-infectious, and 

the second layer, using LightGBM, identifies whether in-

fectious cases represent emerging diseases. The study uti-

lised medical records from five institutions in Beijing , 

providing a robust real-world dataset for analysis. A key 

strength of this study is the high accuracy and low false-

positive rate achieved by the model, which makes it suit-

able for real-time monitoring in clinical settings. How-

ever, the study’s limitation lies in its inability to fu lly ac-

count for the complexity of real-world scenarios in which 

emerging infectious diseases may evolve in unpredicta-

ble ways, and the model’s reliance on retrospective data 

may not fully capture these dynamics. 
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The study [31] evaluated the performance of 16 

forecasting models during the 2015-2016 Zika epidemic 

in Colombia. This study explores how varying assump-

tions about human mobility, transmission potential, and 

virus introduction affect model accuracy. The authors 

found that individual models sometimes  outperform en-

semble forecasts early in the epidemic, but ensemble 

models provide more robust forecasts overall. A limita-

tion of this study is its retrospective nature, which may 

not fully account for real-time uncertainties or delays in 

data reporting.  

The paper [32] presents a compartmental SEIR 

(Susceptible-Exposed-Infectious-Recovered) model that 

investigates the role of asymptomatic infections in 

emerging infectious disease dynamics. The model ex-

plores the possibility that some pathogens maintain stable 

and endemic circulation in populations through asympto-

matic carriers, potentially affecting future outbreaks. A 

notable study strength is its flexibility, as the model can 

be applied to a range of diseases in which asymptomatic 

carriers play a critical role. However, the model’s as-

sumptions, such as the absence of pathogen mutations 

and the focus on viral infections, may not fully capture 

the complexity of disease dynamics across different path-

ogens. 

The study [33] used an SEIR compartmental model 

to examine how vaccine hesitancy influences the spread 

of infectious diseases. The model includes differential 

morbidity with separate compartments for mild, moder-

ate, and severe symptoms and incorporates vaccine effi-

cacy and hesitancy as key variables. This study found that 

vaccine hesitancy significantly reduced the effectiveness 

of vaccination programs, requiring highly effective vac-

cines to control outbreaks, especially when hesitancy lev-

els were high. A notable limitation of this study is its re-

liance on a hypothetical population, which limits the 

practical applicability of its findings. 

The study [34] explores the dynamics of emerging  

infectious diseases using an age-structured SEIR model, 

focusing on the effectiveness of vaccination and physical 

distancing interventions across different age groups. This 

study uses mathematical modeling to calculate the basic 

reproductive number and evaluate the cost-effectiveness 

of control strategies. A notable strength of this paper is 

its comprehensive approach, which combines optimal 

control theory with age-heterogeneous transmission dy-

namics to identify the most efficient interventions. How-

ever, the study’s limitation lies in its reliance on idealized  

conditions, such as homogeneous population behavior 

within age groups and fixed intervention parameters, 

which may not fully reflect the complexities of real-

world disease transmission and response variability. 

The study [35] investigated how variations in host 

community structure, particularly the presence of inter-

mediate hosts, influence the spread of zoonotic diseases. 

Using a stochastic Susceptible-Infectious-Recovered 

(SIR) model, the authors compare three community  

structures with increasing complexity, analyzing how 

they affect the incidence and prevalence of infections in 

target populations. The results show that intermediate 

hosts can either amplify or dilute epidemic outcomes, de-

pending on their role as a bridge or secondary source of 

infection. One limitation of this study is the assumption 

of fixed community structures and uniform host behav-

iors, which may not fully capture the dynamic nature of 

real-world ecosystems and host interactions . 

The study [36] presented a mathematical model that 

incorporates travel between two regions (patches) and the 

influence of disease surveillance on the infection force. 

This study analyzes how changes in human movement  

and delayed behavior changes due to past disease surveil-

lance data impact the dynamics of an emerging infectious 

disease. A significant contribution of this work is the in-

corporation of surveillance-mediated infection forces, 

which provide a more realistic view of how public health 

data influence the spread of diseases. However, one lim-

itation of this study is its assumption of homogeneous 

populations within each patch, which may not accurately 

represent the diverse social and behavioral factors affect-

ing disease transmission in real-world scenarios. 

In the study [37] a differential equation model was 

employed to examine the impact of quarantining close 

contacts on infectious disease transmission dynamics. 

The study found that the timing of quarantine measures 

is crucial, with early interventions significantly reducing 

the cumulative number of cases and deaths. The model 

reveals a phase-transition structure, indicating that imple-

menting quarantine measures before a critical moment  

can stabilize the epidemic at lower levels. However, one 

limitation of this study is its reliance on idealized popu-

lation structures and assumptions about uniform quaran-

tine compliance, which may not accurately reflect the 

complexities of real-world epidemics. 

Research [38] presented a novel outbreak prediction 

approach using the Mamdani fuzzy inference system. 

The study integrates five input variables —change in 

landscape, gateway of travel, hygiene, sanitation, hous-

ing, regularity of surveillance – Change in Landscape, 

Gateway of Travel, Hygiene, Sanitation, and Housing, 

Regularity of Surveillance, and Health Infrastructure – to 

assess the probability of disease outbreaks. This model 

emphasizes how complex environmental and human fac-

tors contribute to the emergence of infectious diseases 

and how fuzzy logic can be used to simulate such dynam-

ics. A notable strength of this method is the flexibility of 

the fuzzy inference system, which effectively models un-

certainties in epidemiological predictions. However, one 

limitation of this study is its reliance on theoretical inputs 

and lack of real-world data validation, which may limit  

its immediate applicability to public health planning. 
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The paper [39] explores the role of environmental 

pollution and time delays due to disease incubation peri-

ods in the spread of infectious diseases. By developing a 

delayed SIS model, the authors demonstrated that pollu-

tion increases the susceptibility of populations and am-

plifies disease transmission, particularly when combined 

with incubation periods that obscure early detection and 

control efforts. The model identifies the basic reproduc-

tion number and investigates its stability through Hopf 

bifurcation analysis, revealing that pollution intensifies 

disease dynamics by extending the time during which in-

fections remain undetected. A limitation of this study is 

its focus on theoretical simulations, which lack real-

world data validation, making it harder to directly apply 

the results to specific disease outbreaks. 

Table 1 presents an overview of emerging disease 

simulation methods. 

 

 

Table 1 

The overview of the emerging diseases simulation methods  

Paper Task Method Findings 

Wang M.  

et al. [30] 

Early detection of emerging dis-

ease. 

Deep 

learning 

(CNN) 

The proposed hierarchical diagnosis model, which 

combines TextCNN-Attention and LightGBM, 

demonstrated high accuracy and efficiency in real-

time detection of emerging infectious diseases with 

significant potential for clinical application. 

Oidtman R.J. 

et al. [31] 

To assess the potential for un-

certainty regarding emerging  

pathogens forecasting by exam-

ple of Zika epidemic.  

Stochas-

tic mod-

els 

Ensemble forecasting models, which incorporate 

multiple assumptions, consistently outperformed 

individual models in predicting the course of the 

Zika epidemic, especially as the outbreak pro-

gressed. 

Siewe N., 

Greening B., 

Fefferman 

N.H. [32] 

To explore the impact of 

asymptomatic infections on the 

spread and persistence of 

emerging infectious diseases  

Compart-

mental 

model 

Asymptomatic infections can play a significant role 

in the sustained, endemic circulation of certain path-

ogens, potentially influencing the dynamics of fu-

ture outbreaks. 

Hewage I.M., 

Church 

K.E.M., 

Schwartz E.J. 

[33] 

To explore the effects of vac-

cine hesitancy and efficacy on 

the spread of an emerging infec-

tious disease. 

Compart-

mental 

model 

Vaccine hesitancy drastically reduces the effective-

ness of vaccination for controlling infectious dis-

ease outbreaks, requiring vaccines with extremely  

high efficacy to mitigate the impact, especially in 

populations with high levels of hesitancy. 

Jia P.,  

Yang J.,  

Li X. [34] 

To evaluate the effectiveness 

and cost-efficiency of vaccina-

tion and social distancing inter-

ventions in reducing the spread 

of emerging infectious diseases. 

Compart-

mental 

model 

A combined strategy of vaccination and physical 

distancing is the most cost effective approach for 

controlling emerging infectious diseases, particu-

larly among the age groups most vulnerable to se-

vere outcomes. 

Voinson M., 

Smadi C., 

Billiard S. 

[35] 

To investigate how different  

host community structures, in-

cluding reservoirs and interme-

diate hosts, impact the epidemi-

ological dynamics of emerging  

infectious diseases in target 

populations. 

Compart-

mental 

model 

The structure of the host community, particularly  

the presence of intermediate hosts, can either am-

plify or dilute the spread of zoonotic diseases in the 

target population, depending on the complexity of 

the transmission route. 

Sun G.,  

Jin Z.,  

Mai A. [36] 

To investigate the impact of 

travel between regions and dis-

ease surveillance-mediated in-

fection forces on the transmis-

sion dynamics of emerging in-

fectious diseases. 

Compart-

mental 

model 

Inter-patch travel and surveillance-mediated infec-

tion forces significantly affect the spread of infec-

tious diseases, with disease persistence and equilib-

rium states being influenced by travel patterns and 

the responsiveness of susceptible individuals to past 

surveillance data. 

 

 
 



Modelling and digitalization 
 

11 

Continuation of Table 1 

Paper Task Method Findings 

Pan Q., 

Song S., He 

M. [37] 

To study the effect of quaran-

tine measures on the transmis-

sion dynamics of infectious dis-

eases with infectivity during the 

incubation period. 

Compart-

mental 

model 

Early implementation of quarantine measures for 

close contacts reduces the spread of infectious dis-

eases and minimizes the cumulative number of 

cases and deaths. 

Adak S., Kar 

T.K., Jana S. 

[38] 

To predict the probability of 

disease outbreaks based on key 

factors such as landscape 

changes, travel patterns, hy-

giene, surveillance, and health 

infrastructure. 

Fuzzy 

inference 

system 

The fuzzy inference system effectively predicts the 

likelihood of infectious disease outbreaks by incor-

porating environmental and health-related factors, 

thus offering a flexible approach to outbreak mod-

elling. 

Gupta S., 

Bhatia S.K., 

Arya N. [39] 

To analyze the combined ef-

fects of pollution and disease in-

cubation periods on the trans-

mission dynamics of infectious 

diseases, with a focus on stabil-

ity and bifurcation behavior. 

Compart-

mental 

model 

Environmental pollution and incubation signifi-

cantly delay the transmission and persistence of in-

fectious diseases, making early detection and con-

trol more challenging. 

 

The studies reviewed in this subsection collectively 

highlight various innovative approaches to modeling and 

predicting emerging infectious diseases, each with 

unique strengths and limitations. These approaches, rang-

ing from machine learning techniques to compartmental 

and stochastic models, emphasize the importance of real-

time data integration, population dynamics, and environ-

mental factors in understanding disease spread, particu-

larly in emergent contexts. The ongoing Russian full-

scale invasion of Ukraine serves as a crucial example of 

how emergencies such as wars significantly alter disease 

dynamics by disrupting healthcare systems, causing pop-

ulation displacement, and degrading environmental con-

ditions. In such settings, existing models face challenges 

in capturing the full complexity of disease transmission 

because they often rely on assumptions like homogene-

ous populations or idealized conditions, which do not re-

flect the chaotic and rapidly evolving nature of real-world  

epidemics in conflict zones. Furthermore, although sev-

eral models have excelled in theoretical simulation, the 

lack of real-world data validation, particularly in conflict-

affected regions, limits their immediate applicability to 

public health planning. These limitations underscore the 

need for further research to refine these models, better 

account for unpredictable factors in emergencies, and im-

prove their effectiveness in crises like the Russian inva-

sion of Ukraine. 

 

3.2. Methods of Excess Morbidity  

and Mortality Estimation 

 

The paper [40] proposed a linear mixed model for 

estimating excess mortality caused by the COVID- 19 

pandemic in Belgium and the Netherlands. This model 

improves upon the traditional 5-year weekly average ap-

proach by incorporating year-specific predictions and 

down-weighting the influence of historical excess mor-

tality events such as heatwaves and influenza outbreaks. 

The proposed method enhances forecasting accuracy and 

provides more reliable estimates of excess mortality . 

However, one limitation of the study is its focus on high-

mortality events, which may not generalize well to set-

tings with more moderate fluctuations in mortality, and 

the reliance on retrospective data limits its real-time ap-

plicability. 

The study [41] introduced a novel approach for es-

timating excess mortality during the COVID-19 pan-

demic using principal component analysis combined 

with a Lee-Carter mortality model. This method ad-

dresses the limitations of the previous model by consid-

ering long-term mortality trends and correlations among 

demographic groups and countries. This study provides 

insights into excess mortality patterns across 19 coun-

tries, emphasizing the heterogeneous impact of the pan-

demic on different age and sex groups. A key strength of 

this study is its use of a comprehensive dataset and sto-

chastic modeling techniques to account for variability 

and uncertainty in mortality trends. However, one limita-

tion is the lack of real-time applicability because the 

model relies heavily on historical data, which may not 

fully reflect immediate or rapidly changing conditions 

during a pandemic. 

Sirag and Gissler [42] presented a methodology for 

estimating excess mortality in Canada during the 

COVID-19 pandemic. To estimate baseline mortality, the 

authors used an overdispersed Poisson generalized linear 

model with seasonal adjustments based on a rolling ref-

erence period from 2016 to 2020. The model was further 
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enhanced to adjust for provisional death counts and to ac-

count for reporting delays  due to the pandemic. Although 

the study provides timely and reliable estimates of excess 

mortality, a significant limitation is its reliance on provi-

sional death data, which are subject to delays and un-

derreporting, particularly in the early stages of the pan-

demic. This limitation may affect the accuracy of real-

time mortality estimates and hinder the ability to capture 

the full impact of the pandemic on mortality. 

Research [43] investigated the spatial heterogeneity 

of excess mortality in Mexico during the COVID-19 pan-

demic. Using Serfling regression models, the authors es-

timated all-cause excess mortality across 32 states, find-

ing significant variations influenced by sociodemo-

graphic factors, such as aging, household size, and mar-

ginalization. Central states had higher mortality rates, 

whereas southern states, with higher indigenous popula-

tions, exhibited lower mortality rates. A notable strength 

of this study is its use of a comprehensive set of demo-

graphic and environmental variables to explain these var-

iations. However, this approach is limited by reliance on 

aggregated state-level data, which may obscure individ-

ual-level risk factors and lead to potential ecological fal-

lacy. 

The study [44] compared five approaches to esti-

mating excess mortality during the pandemic, including 

quasi-Poisson models, the European Monitoring of Ex-

cess Mortality algorithm, and a 5-year average model. 

Each method captures varying aspects of mortality  

trends, such as seasonal fluctuations and registration de-

lays, and adjusts for factors like the reduced circulation  

of other infections during lockdowns. A key strength of 

this paper is its comprehensive comparison of different 

methodologies, which enhances our understanding of ex-

cess mortality estimation during health crises. However, 

one limitation is the inconsistency in adjusting for factors 

like mortality displacement and differences between 

models using date of occurrence versus registration, 

which can affect the comparability of results. 

The paper [45] introduced a method for assessing 

hospital performance by calculating the excess cumula-

tive incidence of cause-specific outcomes, such as cere-

brovascular deaths, in stroke patients. This approach con-

trasts a hospital’s observed outcomes with the expected 

outcomes if the same patients were treated at another hos-

pital. The proposed method offers a practical interpreta-

tion that can guide improvements in healthcare delivery. 

However, one limitation of this study is its reliance on the 

assumption of proportional cause-specific hazards, 

which may not hold in all real-world settings. 

Delbrouck and Alonso-García [46] integrated epi-

demiological and actuarial models to estimate the excess 

mortality caused by COVID-19 in Belgium in 2020. 

These findings are applied to assess the financial impact  

on life insurance products. By combining a SIRD  

(Susceptible-Infectious-Recovered-Death) epidemiolog-

ical model with an actuarial mortality model, the authors 

provide detailed insights into how the pandemic has af-

fected mortality rates across different age groups and its 

implications for the insurance industry. A key strength of 

this study is its ability to provide a comprehensive frame-

work that bridges epidemiological forecasting with actu-

arial risk assessments. However, this study has a limita-

tion in that it focuses on short-term excess mortality dur-

ing the first year of the pandemic, which may not capture 

the long-term effects on mortality trends or fully account 

for potential waves of future infections . 

Research [47] has examined the impact of COVID-

19 on excess mortality among different age groups in 

Malaysia. Using various parametric models, such as the 

Heligman-Pollard model for men and the Rogers–Planck 

model for women, the study forecasts mortality rates un-

der both normal and COVID-19 conditions. The analysis 

highlights that excess mortality was observed primarily  

among individuals aged 60 years, with men’s mortality  

rates showing a delayed but prolonged increase com-

pared with women’s. A limitation of this study is its reli-

ance on historical data up to 2020, which may not fully  

capture the long-term effects of the pandemic or account 

for future variants and waves of infection. 

The study [48] applies generalized linear mixed  

models to estimate excess all-cause and pneumonia mor-

tality during the COVID-19 outbreak in Thailand from 

April to October 2021. The study found that cumulative 

excess deaths were significantly higher during this pe-

riod, with most increases observed in older age groups 

and in males. Approximately 75% of the excess deaths 

were directly attributed to COVID-19, while the remain-

ing 25% were likely due to indirect effects, such as 

healthcare disruptions. A notable strength of this study is 

its incorporation of detailed age- and sex-specific mortal-

ity data, which provides a clearer understanding of the 

pandemic's demographic impact. However, one limita-

tion is the lack of data on other contributing factors, such 

as influenza and pollution, which could influence the ac-

curacy of mortality estimates. 

The study [49] estimates excess mortality across 

Italian regions during the initial stages of the Omicron  

variant wave in early 2022. Using a generalized linear 

mixed model trained on pre-pandemic mortality data 

from 2011 to 2019, this study captures excess deaths by 

adjusting for seasonal patterns and regional variations. 

The findings reveal that 14 of 20 Italian regions experi-

enced significant excess mortality during January, with a 

marked decline in February. A key study strength is its 

ability to model regional-specific mortality patterns dur-

ing the Omicron wave. However, one limitation of this 

study is its reliance on aggregated regional data, which 

might obscure localized factors, such as hospital capacity 

or vaccination coverage, influencing mortality outcomes. 
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Table 2 presents an overview of excess morbidity  

and mortality methods. 

The analysis of these studies collectively highlights 

the diversity of methodologies used to estimate the ex-

cess mortality and morbidity of different infectious dis-

eases, each offering unique insights and contributing to a 

more nuanced understanding of the pandemic’s impact. 

While some approaches, such as generalized linear mixed  

models and principal component analysis, provide robust 

frameworks for estimating mortality by incorporating de-

mographic, seasonal, and geographic variables, their re-

liance on historical data and assumptions about popula-

tion behaviour can limit their applicability in rapidly 

evolving real-world conditions. This challenge is espe-

cially evident in emergent contexts, such as the full-scale 

Russian invasion of Ukraine, where war-induced disrup-

tions to healthcare, infrastructure, and population stabil-

ity likely have exacerbated public health crises, including 

infectious disease outbreaks and increased mortality. The 

impact of conflict on public health introduces unique 

complexities that many existing models may not fully ac-

count for, such as mass displacement, interruptions in 

healthcare services, and environmental degradation. 

 

Table 2 

The overview of the excess morbidity and mortality methods  

Paper Task Method Findings 

Verbeeck J.  

et al. [40] 

To estimate excess mortality dur-

ing the COVID-19 pandemic, im-

prove existing methods by address-

ing limitations such as historical 

mortality biases and forecasting 

precision. 

Linear 

mixed 

model 

The proposed linear mixed model provides 

more accurate and reliable estimates of ex-

cess COVID-19 mortality than the tradi-

tional 5-year weekly average method by ac-

counting for year-specific trends and reduc-

ing the impact of past mortality spikes. 

Vanella P., 

Basellini U., 

Lange B. [41] 

To estimate excess mortality dur-

ing pandemics, focusing on captur-

ing long-term mortality trends and 

cross-country correlations. 

Principal 

component 

analysis 

Principal component analysis combined  

with the Lee-Carter mortality model pro-

vides a more accurate estimation of excess 

mortality during the COVID-19 pandemic 

by accounting for long-term trends and de-

mographic correlations across countries. 

Sirag E.,  

Gissler G. 

[42] 

To estimate excess mortality dur-

ing the COVID-19 pandemic, ad-

justing for undercoverage and re-

porting delays. 

Poisson  

generalized 

linear model 

The adapted statistical model effectively es-

timates excess mortality during the COVID-

19 pandemic in Canada despite challenges 

in reporting data and provisional death 

counts. 

Dahal S.  

et al. [43] 

To estimate the spatial distribution 

of excess mortality in Mexico dur-

ing the COVID-19 pandemic and 

analyze how socio-demographic, 

climate, and population health 

characteristics contribute to this 

geospatial variability. 

Serfling  

regression 

model 

Excess mortality during the COVID-19 

pandemic in Mexico showed significant  

spatial variation, with higher mortality rates 

in central states and lower rates in southern 

regions, influenced by socio-demographic 

and environmental factors. 

Barnard S.  

et al. [44] 

To evaluate and compare multip le 

statistical approaches for modeling  

excess mortality across England  

during the COVID-19 pandemic, 

aiming to identify the most reliable 

method for estimating mortality  

under fluctuating public health 

conditions. 

Poisson 

model,  

5-year aver-

age model 

Different models for estimating excess mor-

tality during the COVID-19 pandemic in  

England yielded varying results, with meth-

ods like quasi-Poisson models providing 

more accurate adjustments for seasonal ef-

fects and reporting delays than simpler ap-

proaches. 

Van Rompaye 

B., Eriksson 

M., Goetghe-

beur E. [45] 

To assess hospital performance by 

comparing observed cause-specific 

outcomes with expected outcomes, 

aiming to identify areas where hos-

pitals can improve their care qual-

ity. 

Statistical 

model 

The proposed method for evaluating hospi-

tal performance based on excess cause-spe-

cific incidence provides a detailed assess-

ment of hospital outcomes and highlights 

performance gaps in specific disease treat-

ment areas. 
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Continuation of Table 2 

Paper Task Method Findings 

Delbrouck C., 

Alonso-Garcia 

J. [46] 

To estimate excess mortality due to 

COVID-19 in Belgium and assess its 

implications for life insurance liabili-

ties and risk management. 

Actuarial 

mortality 

model 

Integrating epidemiological and actuarial 

models provides a more accurate estimation 

of excess COVID-19 mortality and its finan-

cial impact on life insurance products. 

Erdus R.A. et 

al. [47] 

To compare forecasted mortality  

rates under normal conditions with  

the excess mortality caused by the 

COVID-19 pandemic in Malaysia, 

using parametric models to assess the 

pandemic’s age-specific impacts. 

Helig-

man-Pol-

lard 

model, 

Rogers 

Planck 

model 

COVID-19 has led to significant excess mor-

tality in Malaysia, particularly among indi-

viduals aged 60 and over, with men experi-

encing a delayed but more prolonged increase 

in mortality compared to women. 

Wilasang C 

et al. [48] 

To estimate excess all-cause and 

pneumonia mortality in Thailand dur-

ing the COVID-19 outbreak, using 

generalized linear mixed models to 

assess the direct and indirect impacts  

of the pandemic on mortality rates. 

Linear 

mixed 

model 

The COVID-19 pandemic has significantly 

increased all-cause mortality in Thailand, 

with most excess deaths occurring among 

older males and 75% directly attributable to 

COVID-19. 

Maruotti A., 

Ciccozzi M., 

Jona-Lasinio 

G. [49] 

To estimate COVID-19-induced ex-

cess mortality during the Omicron 

wave in Italy using a generalized lin-

ear mixed model that accounts for 

regional variations and seasonal 

mortality patterns. 

Linear 

mixed 

model 

The Omicron variant caused significant ex-

cess mortality in several Italian regions dur-

ing early 2022 although the impact was nota-

bly less severe than in previous COVID- 19 

waves. 

 

3.3. Methods of Basic and Effective  

Reproductive Number Evaluation 

 

Sisk and Fefferman [50] introduced a novel ap-

proach for calculating the basic reproductive number (R0) 

using network theory, specifically, the Max-Flow Min-

Cut (MFMC) theorem. The proposed method simplifies  

the traditionally complex next-generation matrix ap-

proach, making it more accessible to a broader scientific 

community by reducing the mathematical burden. The re-

sults demonstrate that the MFMC method is equivalent 

to the next-generation matrix method and can be applied 

to simple and complex epidemiological models. A key 

strength of this approach is its accessibility and intuitive 

nature, particularly for non-mathematicians, which can 

accelerate real-time responses during outbreaks. How-

ever, a limitation is that the MFMC method may require 

additional adjustments for models with non-closed sys-

tems or more complex dynamics, potentially reintroduc-

ing some of the computational difficulties it was designed 

to avoid. 

The study [51] presented a comprehensive frame-

work for comparing and combining different early esti-

mates of the basic reproductive number during the initial 

phase of COVID-19. By decomposing R₀  into three key 

components – exponential growth rate, mean generation 

interval, and generation – interval dispersion – the study 

enables a more consistent evaluation of disparate esti-

mates. This paper highlights that many early R0 estimates 

were overly confident because uncertainties in these 

components. A key limitation of this study is its reliance 

on early outbreak data from a narrow window in January 

2020, which may not have captured the full scope of un-

certainties as the pandemic progressed. 

Research [52] employs the Next Generation  

Method approach to estimate the basic number of women 

who have contracted COVID-19 in Ghana. The authors 

used a SEIAHR (Susceptible, Exposed, Infectious, 

Asymptomatic, Symptomatic, and Recovered) compart-

mental model and parameter estimates from real-world  

data to determine that the R0 for Ghana was approxi-

mately 2.52. This study provides valuable insights into 

the transmission dynamics of COVID-19 in Ghana, em-

phasizing how a small increase in transmission rates sig-

nificantly affects R0. However, one limitation of this 

study is its reliance on data up to July 2020, which may 

not reflect the impact of subsequent pandemic waves or 

the introduction of vaccines, potentially limiting the 

long-term applicability of the results. 

The study [53] outlined a framework for estimating 

R0 during infectious disease outbreaks using case notifi-

cation data. This study explores various statistical meth-

ods, including the sequential Bayesian approach and 

maximum likelihood estimation, and highlights the  
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importance of the generation or serial interval in calcu-

lating R0. This work's practical application is a key 

strength because it allows real-time monitoring and as-

sessment of intervention effectiveness during outbreaks. 

However, one limitation of this study is its reliance on 

complete and accurate case notification data, which may 

be unavailable or incomplete in real-world situations, po-

tentially affecting the accuracy of R0 estimates. 

Al-Raeei M. [54] applies the SIRD (Susceptible, In-

fected, Recovered, Deceased) model to estimate R0 for 

COVID-19 in multiple countries using real-world data up 

to July 2020. The study finds that the R0 values across 

these countries range between 1.0011 and 2.7936, with 

the Syrian Arab Republic having the highest R0, indicat-

ing a higher transmission rate. A strength of this study is 

its application of a consistent model across diverse geo-

graphical contexts, offering comparative insights into the 

pandemic's spread. However, one limitation is the use of 

early pandemic data, which may not fully account for 

later waves of infection or the effects of interventions 

such as vaccination campaigns. 

The paper [55] investigated the discrepancies in the 

estimated effective reproductive number (Re) for 

COVID-19 across various research groups in Germany  

during 2020 and 2021. The authors assessed within- and 

between-method variations by comparing the results of 

the eight methods. They identified that differences in the 

analytical choices, such as the data source, preprocessing, 

generation time distribution, and delay assumptions, play 

a significant role in shaping the results, sometimes more 

than the statistical method. This paper's systematic ap-

proach to standardizing these analytical choices is a 

strength that helps understand the sources of disagree-

ment between Re estimates. However, one limitation of 

the study is that it focuses on retrospective analysis, 

which may not fully capture the real-time challenges of 

updating estimates during an evolving outbreak. 

The study [56] presented a detailed analysis of the 

transmission dynamics and reproductive numbers (R0 

and Re) of hypervirulent Neisseria meningitidis strains 

circulating in Italy between 2012 and 2017, including a 

major outbreak in Tuscany. Using a Bayesian method 

and whole-genome sequencing, the study estimates R₀  

to be between 1.22 and 1.4 for different subsets of the 

data, with a peak Rt of 3.22 during the 2015 outbreak. A 

significant strength of this study is its use of molecular 

epidemiology to track population changes and transmis-

sion dynamics. However, this approach is limited by re-

liance on historical data, which may not fully account for 

emerging strains or new public health interventions that 

could influence transmission. 

The paper [57] analyzes the effectiveness of lock-

down strategies in controlling the spread of COVID- 19 

by calculating R0 across different phases of lockdown  

implementation. Using data from the Saudi Ministry of 

Health and Google Mobility Reports, the study divided 

the outbreak timeline into three intervals: pre-lockdown, 

partial lockdown, and full lockdown. The results indicate 

that R0 values slightly increased during the full lockdown 

period, which the authors attribute to enhanced active 

surveillance and improved healthcare accessibility, in-

cluding free medical care for all residents regardless of 

their legal status. A limitation of this study is its reliance 

on short time intervals for analysis, which may not fully  

capture the long-term effectiveness of lockdown 

measures. In addition, using mobility data from Google 

does not represent the entire population because it is lim-

ited to individuals with GPS-enabled devices. 

The study [58] estimated R0 of monkeypox during 

the initial outbreak phase in three countries: England, 

Portugal, and Spain. Using a branching process with 

Poisson likelihood and gamma-distributed serial inter-

vals, the study found that R0 ranges from 1.4 in Portugal 

to 1.8 in Spain, indicating sustained transmission in these 

populations. A key strength of this study is its early esti-

mation of transmissibility, which provides valuable data 

for informing public health responses. However, a limi-

tation of this research is its focus on a homogeneous mix-

ing assumption and its reliance on early outbreak data, 

which may not fully represent ongoing transmission dy-

namics, particularly in more diverse populations or as the 

outbreak evolves. 

The study [59] presented a novel approach using 

network theory to estimate R0 for infectious diseases. By 

applying graph-based models, this study demonstrates 

how R0 can be accurately determined based on the struc-

ture of contact networks rather than relying solely on 

compartmental models. This method accounts for heter-

ogeneous contact patterns within populations, which can 

significantly impact disease spread. A key strength of this 

approach is its flexibility in capturing complex transmis-

sion dynamics, especially when traditional models are in-

sufficient. However, this method has the limitation that it 

requires detailed contact pattern data, which may not al-

ways be available in real-world settings. 

Table 3 presents the overview of the R0 and Re. 

The reviewed papers illustrate a diverse range of ap-

proaches to estimating and analyzing R0 across various 

infectious diseases, each of which contributes valuable 

insights into the complexities of disease transmission and 

the effectiveness of public health interventions. From 

network-based models that account for heterogeneous 

contact patterns to traditional compartmental models and 

molecular epidemiology, these methods offer robust 

tools for understanding disease spread. However, many 

of these studies reveal limitations associated with early 

outbreak data, population homogeneity assumptions, and 

the availability of real-world contact patterns.  
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Table 3 

The overview of the basic and effective reproductive number evaluation methods  

Paper Task Method Findings 

Sisk A.,  

Fefferman 

N.H. [50] 

To calculate the basic reproductive 

number that simplifies the complex 

mathematical processes of tradi-

tional approaches, making it more 

accessible for real-time application  

in infectious disease modeling. 

Max-Flow 

Min-Cut 

method 

The Max-Flow Min-Cut (MFMC) theorem is 

an accessible and computationally efficien t  

alternative to the traditional next-generation  

matrix method for calculating the basic re-

productive number in epidemiological mod-

els. 

Park S.W.  

et al. [51] 

To reconcile and combine early out-

break estimates of R0 while account-

ing for uncertainties in growth rates 

and generation intervals, focusing on 

the initial phase of the COVID-19 

pandemic. 

Determinis-

tic and sto-

chastic 

branching 

process 

model 

Early estimates of the basic reproductive 

number for COVID-19 were often overly 

confident due to underestimating uncertain-

ties in key components like the exponential 

growth rate and generation interval. 

Otoo D.,  

Donkoh E.K., 

Kessie J.A. 

[52] 

To estimate R0 of COVID-19 in  

Ghana using the Next Generation  

Method and a SEIAHR compart-

mental model based on real-world  

data from March to July 2020. 

Next Gen-

eration 

Method 

R₀  for COVID-19 in Ghana was 2.52, indi-

cating that each infected person was likely to 

spread the virus to more than two other indi-

viduals during the early stages of the pan-

demic. 

White L.F. 

et al. [53] 

To estimate R0 from the case notifi-

cation data to enable real-time mon-

itoring during infectious disease out-

breaks. 

Sequential 

Bayes esti-

mator and 

maximum 

likelihood 

method 

Real-time estimation of R0 using case notifi-

cation data can provide timely insights into 

outbreak dynamics, but its accuracy depends 

on the completeness and reliability of the 

data. 

Al-Raeei M. 

[54] 

To estimate R0 for COVID-19 in  

eight countries using the SIRD 

model, analyzing differences in  

transmission rates and providing in-

sights into the pandemic's progres-

sion up to July 2020. 

Runge-

Kutta 

method 

R0 for COVID-19 across eight countries 

ranged from 1.0011 to 2.7936, with the high-

est R0 observed in the Syrian Arab Republic, 

indicating widespread transmission in that 

region. 

Brockhaus 

E.K. et al. [55] 

To estimate the effective reproduc-

tive number (Re) for COVID- 19 , 

identify the sources of variation, and 

propose ways to standardize analyti-

cal choices to improve consistency 

in real-time outbreak monitoring. 

Cori 

method 

Discrepancies in estimates of the effective 

reproductive number (Re) for COVID-19 in  

Germany are largely due to differences in  

data sources, preprocessing methods, and as-

sumptions about generation time and delays 

rather than the statistical methods them-

selves. 

Lo Presti A. 

et al. [56] 

To estimate the reproductive num-

bers and analyze the demographic 

dynamics of Neisseria meningitidis  

strains in Italy, using Bayesian meth-

ods and genomic data to track trans-

mission during outbreaks. 

Bayesian 

method 

R0 for hypervirulent Neisseria meningitidis  

strains circulating in Italy ranged from 1.22 

to 1.4, with a peak Rt of 3.22 during the 2015 

outbreak, indicating significant transmission 

potential. 

Ahmad 

Alajlan S.  

et al. [57] 

To evaluate the effectiveness of var-

ious lockdown phases in Saudi Ara-

bia by calculating R0 for COVID-19 

during different stages of the out-

break using mobility data and gov-

ernment-reported infection rates. 

Compart-

mental 

model 

While the early implementation of lockdown 

strategies in Saudi Arabia helped contain the 

COVID-19 outbreak, R0 slightly increased 

during the full lockdown period due to en-

hanced active surveillance and broader 

healthcare access. 
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Continuation of Table 3 

Paper Task Method Findings 

Kwok K.O. 

et al. [58] 

To estimate R0 for monkeypox in 

the early phase of the 2022 out-

break using daily case data from 

three high-incidence populations 

to inform public health strategies 

for outbreak control. 

Poisson 

likelihood 

method 

R0 values for monkeypox during the early 2022 

outbreak ranged from 1.4 to 1.8 across Eng-

land, Portugal, and Spain, indicating sustained 

transmission in immunologically naive popula-

tions. 

Huisman 

J.S. et al. 

[59] 

To calculate R0 in infectious dis-

eases, and demonstrate its ad-

vantages over traditional compart-

mental models in capturing com-

plex transmission patterns. 

Cori 

method 

A network-theoretic approach offers a more 

precise estimation of R0 by accounting for het-

erogeneous contact patterns within popula-

tions, improving the understanding of disease 

transmission dynamics. 

 

The research on effective reproductive numbers further 

underscores the impact of methodological choices on the 

variability of estimates and highlights the need for stand-

ardized approaches to ensure consistency. 

These limitations become more pronounced in the 

context of emergent crises, particularly the full-scale 

Russian invasion of Ukraine. The war has created condi-

tions where infectious disease outbreaks are more likely 

due to overcrowding, limited medical access, and deteri-

orating sanitary conditions, further complicating the cal-

culation of R0 and the design of effective interventions. 

These emergent contexts underscore the need for flexi-

ble, real-time models that incorporate rapidly changing 

conditions and provide actionable insights for public 

health responses in conflict zones and other crises . 

 

4. Methodology 

 

The proposed methodology is illustrated in Figure 

1. 

The first step of the proposed methodology is data 

preparation aimed at classifying and analyzing epidemic 

threats caused by emergencies. This research also in-

volves conducting a retrospective and real-time epidemi-

ological analysis of infectious disease morbidity in the 

context of changes in the dynamics and manifestations of 

epidemic processes due to Russia’s full-scale invasion of 

Ukraine. 

The methodology involves comprehensive data col-

lection, which focuses on gathering information on emer-

gencies-related epidemic threats through collaboration 

with public health organizations. Specifically, for the 

analysis related to Russia’s full-scale invasion of 

Ukraine, data on infectious diseases, demographic shifts, 

and other factors that may influence disease spread will 

be collected. The next step is data preprocessing, which 

includes cleaning to remove inconsistencies, duplicates, 

and missing values and standardizing important variable 

formats, such as dates, geographic identifiers, and disease 

classifications, to ensure smooth integration and  

compatibility of various datasets. Data normalization to 

facilitate comparative analysis by adjusting for differ-

ences in population size, reporting standards, and diag-

nostic criteria over time is also part of this stage. 

Epidemiological analysis forms the methodology’s 

core, encompassing both retrospective and real-time as-

pects. The retrospective analysis focuses on identifying 

trends in infectious disease dynamics before and after 

emergencies, with particular emphasis on Russia’s inva-

sion of Ukraine, and assesses changes in morbidity rates, 

transmission patterns, and population vulnerability. Real-

time analysis focuses on monitoring the epidemiological 

situation using near real-time data from various sources 

to assess the current spread of infectious diseases and the 

factors driving their dynamics. It also uses predictive 

modeling to forecast the Russian war’s short- and long-

term impacts on infectious disease dynamics. 

The results of this comprehensive methodology in-

clude a detailed database of epidemic threats and infec-

tious disease data related to emergencies, with a specific 

focus on the effects of Russia’s invasion of Ukraine. The 

methodology also includes a set of classification schemes 

for epidemic threats and epidemiological analyses de-

signed to support informed decision-making in public 

health and biosecurity. 

The development of machine learning models to as-

sess the impact of emergencies on infectious diseases be-

gins with feature selection and design to identify key var-

iables affecting disease transmission, such as changes in 

population density, healthcare availability, and environ-

mental factors. Statistical machine learning methods pro-

cess nonlinear relationships and interactions between 

these variables. To ensure reliability and generalizability , 

these models will be trained and validated on historical 

datasets using cross-validation techniques. To assess  the 

impact of Russia’s full-scale war on Ukraine, the models 

will be trained on data before the military invasion of 

February 24, 2022, and applied to subsequent data. 
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For deep learning, convolutional neural networks 

(CNN) will be designed to analyze spatial patterns of dis-

ease spread based on incidence data. In contrast, recur-

rent neural networks (RNN), particularly long short-term 

memory (LSTM) networks, will be deployed to analyze 

temporal dependencies and predict future epidemic dy-

namics based on past trends. Deep learning models will 

be trained using backpropagation to minimize prediction 

errors and using dropout and batch normalization to pre-

vent overfitting. 

The framework for estimating the changes in epi-

demic process dynamics caused by emergencies through 

simulation is presented in Figure 2. 

 
 

 
 

Fig. 1. Methodology of assessing the impact of emergencies on the spread of infectious diseases  

 

 
 

Fig. 2. Framework for assessing the impact of emergency situations on infectious diseases dynamics  
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Mixed-effects models will be developed to assess 

excess mortality from infectious diseases caused by 

emergencies. These models incorporate random effects 

that account for differences across regions and periods. 

The proposed model compares observed mortality levels 

during emergencies with those predicted by the model 

under normal conditions, adjusting for factors such as 

age, gender, and underlying health conditions. 

To assess changes in the reproductive number (R0 

and Re) of infectious diseases, this methodology proposes 

developing compartmental epidemiological models, such 

as the SIR model, enhanced with additional states, inter-

action rules between states, and Bayesian inference meth-

ods for parameter estimation under uncertainty. These 

models will be adapted to incorporate mobility data, vac-

cination rates, and non-pharmaceutical interventions to 

dynamically assess how R0 and Re evolve in response to 

emergencies. 

Experimental studies and the implementation of 

technologies to support biosecurity decision-making dur-

ing emergencies include the creation of an information  

system prototype based on the developed architecture 

and specifications. A series of experimental studies is 

planned during which the prototype will be tested under 

simulated conditions mimicking real emergency scenar-

ios. The developed models, methods, and information 

technologies will be implemented in Ukraine’s  

healthcare system. 
 

5. Discussion 
 

This study introduces an innovative methodology 

designed to assess the impact of emergencies on the 

spread of infectious diseases, with a particular focus on 

the complexities of large-scale conflicts like the full-

scale Russian invasion of Ukraine. The urgency of devel-

oping such a methodology is underscored by the pro-

found disruptions that emergencies impose on social 

structures, healthcare systems, and environmental condi-

tions, significantly altering the dynamics of epidemic 

processes. 

The scientific novelty of our approach lies in its in-

tegrated use of advanced data analytics, machine learn-

ing, deep learning, and systems modeling to address com-

plex biosecurity and epidemiological challenges in the 

context of emergencies. Unlike traditional models, our 

methodology accounts for many factors that are often 

overlooked but crucial during emergencies. These in-

clude biobehavioral changes, social disruptions, and en-

vironmental alterations that emerge as risk factors and 

drivers of infectious disease spread during conflicts. 

Technically, the methodology begins with a com-

prehensive data preparation phase that involves classify-

ing and analyzing epidemic threats specific to emergen-

cies. This includes collecting extensive data on infectious 

diseases, demographic changes, environmental  

conditions, and healthcare disruptions. The data were 

subjected to rigorous preprocessing to ensure accuracy 

and consistency, involving cleaning to remove inconsist-

encies and standardization of variables to facilitate inte-

gration from diverse sources. 

A core component of the proposed methodology is 

the integration of machine learning and deep learning 

models to consider how emergencies affect infectious 

disease dynamics. By identifying key variables influenc-

ing disease transmission, such as population displace-

ment, healthcare accessibility, and environmental degra-

dation, we employ statistical machine learning methods 

to process complex, nonlinear relationships between 

these factors. For example, CNNs are used to analyze 

spatial patterns of disease spread. At the same time, 

RNNs, particularly LSTM networks, capture temporal 

dependencies and forecast future epidemic trends based 

on historical data. 

A significant innovation is the development of an 

information system architecture specifically designed for 

analyzing epidemic threats  in real-time. The proposed 

system leverages the latest advances in data processing 

and artificial intelligence to handle and analyze large vol-

umes of heterogeneous data. The ability to dynamically  

adapt analytical models in response to the evolving na-

ture of emergencies ensures that decision-makers receive 

relevant and up-to-date information. This dynamic adapt-

ability is achieved through the system’s capacity to in-

corporate new data streams and adjust model parameters 

as conditions change, providing a more accurate and 

timely assessment of epidemic threats. 

Our methodology includes developing sophisti-

cated models for assessing excess mortality and evaluat-

ing changes in key epidemiological parameters, such as 

the basic reproductive number (R0) and effective repro-

ductive number (Re), during emergencies. By incorporat-

ing complex variables affected by emergencies, such as 

healthcare system disruptions and behavioral changes in 

the population, we can offer a more precise and dynamic 

evaluation of the impact on public health. For example, 

mixed-effects models are employed to assess excess mor-

tality, accounting for variations across regions and peri-

ods, while enhanced compartmental models are adapted 

to reflect altered transmission dynamics during emergen-

cies. 

The practical implications of this methodology are 

substantial. Providing a comprehensive and nuanced 

analysis of the factors influencing disease spread during 

emergencies enables policymakers and public health of-

ficials to make informed decisions regarding resource al-

location, intervention strategies, and preventive 

measures. The ability to predict disease spread and iden-

tify high-risk areas facilitates targeted actions that are 

crucial for mitigating the impact of infectious diseases 

during crises. 
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One of the key advantages of this methodology over 

existing models is its holistic risk assessment approach. 

Integrating biobehavioral, social, and environmental fac-

tors generated by emergencies captures the multifaceted 

nature of epidemic threats in a way that traditional mod-

els, which often assume homogeneous populations and 

static conditions, cannot. The methodology's flexibility  

and adaptability are also significant strengths. It is de-

signed to adjust dynamically as new data become availa-

ble and conditions evolve, ensuring that it remains rele-

vant and effective during an emergency. 

The urgency of implementing such a methodology 

in the modern world is evident. The increasing frequency 

and complexity of emergencies demand advanced tools 

capable of handling their multifaceted challenges. Socie-

ties’ interconnectedness means that local emergencies 

can have global repercussions, making it imperative to 

enhance our capacity to assess and respond to epidemic 

threats swiftly and effectively. 

Despite the strengths and innovations of the pro-

posed methodology, several limitations must be 

acknowledged. The primary limitation is the dependency 

on data quality and availability during emergencies. 

Emergencies, particularly large-scale conflicts, often dis-

rupt data collection processes, leading to incomplete, in-

consistent, or delayed datasets. This can adversely affect 

the accuracy and reliability of machine learning models 

and simulations, potentially limiting their predictive abil-

ity. To address these challenges, future research could ex-

plore integrating alternative data sources, such as satellite 

imagery, remote sensing, and mobile data. These meth-

ods can provide valuable insights in environments where 

traditional data collection is hindered or incomplete. 

Additionally, integrating diverse data sources, in-

cluding epidemiological, demographic, environmental, 

and social data, poses challenges in harmonization and 

standardization. The computational demands of ad-

vanced machine learning and deep learning models are 

also limited because they require substantial computa-

tional resources and technical expertise that may not be 

readily available in all settings, especially in low-re-

source environments or during acute phases of emergen-

cies. To mitigate the computational demands, future ef-

forts could involve partnerships with international organ-

izations or leverage cloud-based platforms to ensure ac-

cess to scalable computational resources in low-resource 

or conflict-affected environments. 

This study significantly contributes to biosecurity, 

public health preparedness, and emergency response by 

presenting a methodology that advances our ability to 

control epidemic threats during emergencies. Integrating 

advanced analytics, machine learning, deep learning, and 

system modeling provides a more accurate, dynamic, and 

comprehensive assessment of the impact on public 

health. This methodology not only fills current research 

and application gaps but also sets the stage for more ef-

fective epidemic threat management in an increasingly 

uncertain world. 

These findings align with the principles of Big  

Safety, which emphasize the integration of diverse safety 

concerns, such as infection control and disaster mitiga-

tion. This multidimensional approach is essential for for-

mulating effective responses to public health emergen-

cies, particularly in conflict zones where disaster effects 

and infectious disease outbreaks are often intertwined. 

Addressing these interconnected risks through a Big 

Safety lens enhances the resilience and preparedness of 

healthcare systems in such environments . 

 

Conclusions 
 

This study presents a comprehensive methodology 

for assessing the impact of emergencies on the spread of 

infectious diseases, using the full-scale Russian invasion 

of Ukraine as a case study. This research has introduced 

significant advancements in biosecurity and epidemiol-

ogy by integrating advanced data analytics, machine 

learning, deep learning, and system modeling. 

The novelty of our approach lies in its integrated 

methodology, which combines cutting-edge data analyt-

ics with machine learning and deep learning models to 

tackle complex biosecurity and epidemiological chal-

lenges in the context of emergencies. For the first time, 

we have identified the driving forces, developmental 

characteristics, and manifestations of the epidemic pro-

cesses of current infectious diseases during a large-scale 

war in a European country. This includes accounting for 

the complex interplay between social and natural factors. 

Unlike existing models, our methodology incorporates 

biobehavioral, social, and environmental components 

generated by the conflict, recognizing their roles as risk 

factors and drivers of epidemic processes. This compre-

hensive perspective enables the development of strate-

gies to mitigate or eliminate the negative impact of infec-

tious disease morbidity. 

A key contribution of this study is the development 

of an information system architecture specifically de-

signed for analyzing epidemic threats. This new structure 

integrates real-time data collection, advanced analytics, 

and ergonomic information visualization. The proposed 

system can handle and analyze large volumes of hetero-

geneous data by leveraging the latest advances in data 

processing and artificial intelligence. Its ability to dy-

namically adapt analytical models  in response to the 

evolving nature of emergencies provides decision-mak-

ers with relevant and timely information, enhancing their 

capacity to implement effective interventions. 

Integrating machine learning and deep learning  

models allows to explore more deeply how emergencies 

influence the dynamics of infectious diseases. We have 
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developed new models and methods capable of rapidly 

adapting to emergencies by considering new factors that 

affect epidemic processes. This represents a significant 

advancement in predictive epidemiology, providing de-

tailed and comprehensive insights into disease dynamics 

in crisis contexts. 

The study contributes to the field by developing so-

phisticated models for assessing excess mortality and 

evaluating changes in key epidemiological parameters, 

such as the basic reproductive number (R₀ ) and effective 

reproductive number (Re), during emergencies. By incor-

porating complex variables affected by emergencies, 

such as healthcare system disruptions and changes in hu-

man behavior, our approach provides a more accurate 

and dynamic assessment of their impact on public health. 

In future research, it will be essential to validate and 

refine the proposed methodology across different types 

of emergencies and regions to enhance its generalizabil-

ity and effectiveness. Improving data collection methods 

during emergencies is crucial, potentially through remote 

sensing technologies, mobile data collection platforms, 

or international collaborations to ensure reliable and 

timely data. Optimizing the computational efficiency of 

models will also make advanced modeling techniques 

more accessible in various settings, including low-re-

source environments. 
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The scientific and scientific-technical production 

created by this project is a comprehensive intellectual de-

cision-support system for biosecurity in emergencies, 

which, unlike existing ones, will identify factors affect-

ing the epidemic process and quickly adapt to emergent 

diseases and the spread of new dangerous pathogens. Un-

like existing models, new epidemic process models and 

epidemiological diagnostic methods will allow the devel-

opment of effective scientifically-based strategies for dis-

ease prevention and epidemic dynamics mitigation. 

The practical value of the project results consists 

not only of the social and medical components, dictated 

by the reduction of epidemic morbidity but also of an im-

portant economic component, dictated by the scientific 

justification of anti-epidemic measures, including restric-

tive and isolation measures, which will significantly re-

duce the economic losses caused by infectious diseases 

during wartime conditions. 

The implementation of the project’s scientific and 

applied results in the Public Health Centers of Ukraine 

and preventive medicine facilities will ensure the making  

of effective preventive decisions and reduce the negative 

economic, medical, and social impact of epidemics on so-

ciety and the state conditions of Russia’s full-scale inva-

sion of Ukraine. 
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МЕТОДОЛОГІЯ ОЦІНКИ ВПЛИВУ НАДЗВИЧАЙНИХ СИТУАЦІЙ  

НА ПОШИРЕННЯ ІНФЕКЦІЙНИХ ХВОРОБ 

Д. І. Чумаченко, К. О. Базілевич, М. В. Буткевич, Є. С. Меняйлов,  

Ю. Л. Парфенюк, Є. В. Сіденко,  

Т. О. Чумаченко 

На поширення інфекційних захворювань значно впливають надзвичайні ситуації, зокрема військові кон-

флікти, які порушують функціонування систем охорони здоров'я та підвищують ризики епідемій. Повномас-

штабне російське вторгнення в Україну ще більше загострило ці проблеми, спричинивши екологічні пошко-

дження, масові переміщення населення та руйнування системи охорони здоров’я, що сприяє поширенню ін-

фекційних захворювань. Метою дослідження є розробка комплексної методології для оцінки впливу надзви-

чайних ситуацій на поширення інфекційних захворювань, зосереджуючись на повномасштабному вторгненні 

Росії в Україну. Об'єктом дослідження є епідемічні загрози, що виникають у зв'язку з надзвичайними ситуа-

ціями, зокрема збільшене поширення інфекційних захворювань через фактори, викликані війною. Предметом 

дослідження є методи і моделі передачі інфекційних захворювань в умовах надзвичайних ситуацій, з акцентом  

на повномасштабне російське вторгнення в Україну. Задачі дослідження полягають в аналізі поточного стану  

досліджень і розробці методології оцінки впливу надзвичайних ситуацій на поширення інфекційних захворю-

вань. Запропонована методологія включає кілька ключових компонентів. Комплексні дані від установ охо-

рони здоров'я містять статистику інфекційних захворювань, демографічні зміни, порушення в охороні здоро-

в'я та екологічні фактори, загострені надзвичайними ситуаціями. Попередня обробка даних забезпечує усу-

нення невідповідностей, стандартизацію форматів і нормалізацію для врахування різниці в розмірах насе-

лення. Моделі машинного навчання, включаючи згорткові нейронні мережі та рекурентні нейронні мережі, 

розробляються для моделювання поширення захворювань на основі демографічних, екологічних і медичних 

змінних. Моделі глибокого навчання аналізують просторові та часові закономірності, тоді як компартментні 

моделі, такі як SIR, оцінюють зміни в репродуктивних числах (R0 і Re). Крім того, моделі надлишкової смер-

тності включають змішані ефекти для врахування регіональних та часових варіацій. Методологія включає  

моніторинг епідемічних загроз у режимі реального часу з використанням даних з різних джерел, що дає змогу 

динамічно оцінювати поширення захворювань і сприяє прогнозному моделюванню. Моделі тренуються на 

історичних даних і верифікуються за допомогою методів перехресної перевірки, щоб забезпечити надійність 

і можливість узагальнення, з особливим акцентом на періоди до і після вторгнення в Україну. Результати: 

Дослідження пропонує комплексний фреймворк для збору та обробки даних про інфекційні захворювання та 

епідемічні загрози в умовах надзвичайних ситуацій. Розроблені моделі машинного навчання та епідеміологі-

чні моделі, які тренувалися на даних до та після вторгнення, дозволять аналізувати закономірності передачі 

захворювань та прогнозувати динаміку майбутніх епідемій. Висновок: Запропонована методологія усуває 

поточні прогалини в моделюванні інфекційних захворювань в умовах надзвичайних ситуацій, інтегруючи дані 

в реальному часі та техніки машинного навчання. Це дослідження покращує процес прийняття рішень у сфері 
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управління охороною здоров’я та біобезпеки під час криз, особливо в регіонах, постраждалих від війни, таких 

як Україна. 

Ключові слова: епідемічна модель; надзвичайна ситуація; війна; епідемічний процес; моделювання;   

інфекційні хвороби. 
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