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INTRODUCTION 

 
 
The C# language, the Visual Studio integrated development environment and 

the OpenGL library are used as the basic tools for the practical work. Usage of 
other programming languages, for example, C++, Java and the required software 
development tools is allowed in agreement with the teacher. 

Each practical work is planned to be completed in two weeks. The execution 
of practical work means the development of a software application in according 
to the variant of the task and the preparation of a final report. After that the file 
with report and the zip-archive containing developed software project are sent to 
the student work registration system specified by the teacher, for example: 
mentor.khai.edu, Google Classroom etc. It should be noted that student work 
registration systems record the completion time of student projects and 
subsequent archiving of all practical work. To pass practical work and to be 
assessed, the student must personally present his work to the teacher.  

Typically a report includes the following parts: 
− title page; 
− personal task according to variant; 
− theoretical information about the graphics solutions are used; 
− listing of the program with the task implementation; 
− one or several screenshorts of the running program; 
− the assessment table with marks of objectives completion. 

The archive should contain one directory with the source code of the software 
project. That's enough to recompile the project. It's required that the names of 
the archive and report file are the same, and only their extensions differ. Also the 
file name should contain the group number, student surname, practical work 
number, for example: 

«631 Petrov #3.docx» – report file; 
«631 Petrov #3.zip» – project's files zip-archive. 

You can use e-mail mailto:computer.graphix@gmail.com to discuss 

organizational issues.  

mailto:computer.graphix@gmail.com?subject=Группа,%20ФИО,%20Работа%20№%20?
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Practical work № 1. 
THE PRINCIPLES OF USING OPENGL, 

BASIC POSSIBILITIES AND COMMANDS 

Aim of work: study the features of creating simple software applications that 
use the OpenGL library. Learn how to draw flat convex shapes using geometric 
primitives and the coordinate system setting by OpenGL commands. 

Task 

Using the teacher specified development tools, create a simple software 
project that supports the OpenGL. Considering the evaluation system 
(Table 1.1), develop a software application program using the OpenGL 
commands [1, 2, 6], which sets coordinate system creates and displays the 
image on the screen or window, according to specified primitives (Table 1.2) and 
coordinate limits x1, y1 and x2, y2 in the task variant. Dotted or dash or dash-
dotted lines must be used to draw the grid. The contour of the figure must be 
drawn with a bold line (more than one pixel). For even variants, the points of 
figure should be square, and for odd ones, round. 

Methodical instructions 

OpenGL graphic subsystem is supported on various operating systems and 
can be linked to many programming languages. The following is a step-by-step 
instruction to create of C++ and C# applications on the Windows platform after 
installing the projects templates (see Appendix 1). 

OpenGL programming and getting started with C++ 

To create a new program, select Windows OpenGL Application Project 
Template. Note that the Project Template may be in different places depending 
on the versions of Visual Studio. For example, in Fig. 1.1 is shown the location 
for Visual Studio 2015 and Visual Studio 2017 project template. 

The project includes several source files. Pay attention to following files (Fig. 
1.2): 

− StdWindow.cpp – Implementation of standard activities to initialization, 
window creation and organization of a message processing loop for 
Windows operating system events. This source code have to be changed 
if you add standard operating system controls to the application to organize 
the user interface (menus, dialog boxes, etc.).  

− glWinApp.cpp – the location of the event's handlers and the applied 
OpenGL code. It is assumed that the main part of the objectives will be 
implemented in this file (see Appendix 2 «Using the windowsx.h file in C++ 
projects») [10].  
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Fig. 1.1. OpenGL C++ Project Template location  

in Visual Studio 2015 and 2017 

 
Fig. 1.2. C++ Project Template files with OpenGL 
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OpenGL programming and getting started with C# 

To create a new project, use the New Project dialog. Note that the location 
of the Project Template may vary by version of Visual Studio, like for C++ 
projects. For example, after the automatic installation of the Project Templates 
(see Appendix 1), the dialog for creating a new C # project using OpenGL in 
Visual Studio 2017 is shown on Fig.1.3.  

 
Fig. 1.3. Main C++ project template files with OpenGL support 

After creating the project, you need to compile the application (Ctrl+Shift+B), 
since it includes a component for working with OpenGL, which cannot be placed 
on the main form of the application without this step. Thus, after creating the 
project, the following set of actions is performed in the specified order (Fig. 1.4): 

1. Compiling the project with Ctrl+Shift+B. 
2. Double-click to open the Main Form of application in designer mode. 
3. Place the RenderControl (component for working with OpenGL) on the 

main application form. 
4. Select the RenderControl.cs file in the project structure and press the F7 

key to proceed to editing the source code.  

Checklist Questions 

1. How do you get color value for emmited light? 
2. How do you get color value for reflected light? 
3. How is the point size set? 
4. How is the line width set? 
5. How is the line pattern (solid, dotted, etc.) set? 
6. What commands are used to snap the coordinate system to the window size? 
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7. What is the difference between isotropic and anisotropic coordinate 
systems? 

 
Fig. 1.4. Order of actions to start a C# application  
based on a project template with OpenGL support 

 

Table 1.1 

No.  Complexity  Assignments Points 

1 

Basic 

When launching the application, the image 
matches the option 2 

2 
Correct display of the task when changing the 
size / position of the window 1 

3 Development of routines to avoid code 
duplication 1 

4 
Using loops to create images 

1 

5 
Advanced 

Rendering the image with vector OpenGL 
commands (glDrawArrays, etc.) 1 

6 
Using OOP (developing your own classes) 

2 
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Table 1.2 
No. Parameters Shape 

1 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = 0;  x2 = 9 
y1 = 0;  y2 = 4 

 

2 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -1;  x2 = 8 
y1 = -2;  y2 = 2 

 

3 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -8;  x2 = 1  
y1 = -3;  y2 = 1 

 

4 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -4;  x2 = 5  
y1 = -1;  y2 = 3 

 

5 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -9;  x2 = 0  
y1 = -4;  y2 = 0 

 

6 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -7;  x2 = 2  
y1 = -1;  y2 = 3 
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Continuation of Table 1.2 
No. Parameters Shape 

7 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = 0;  x2 = 18  
y1 = 0;  y2 = 8 

 

8 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -2;  x2 = 16 
y1 = -4;  y2 = 4 

 

9 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -16;  x2 = 2 
y1 = -6;    y2 = 2 

 

10 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -8;  x2 = 10  
y1 = -2;  y2 = 6 

 

11 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -18;  x2 = 0 
y1 = -8;    y2 = 0 

 

12 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -14;  x2 = 4  
y1 = -2;    y2 = 6 
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Continuation of Table 1.2 
No. Parameters Shape 

13 

 
Primitives:  
GL_POINTS, GL_LINES: 
 
x1 = 0;  x2 = 4.5  
y1 = 0;  y2 = 2 

 

14 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -0.5;  x2 = 4 
y1 = -1;     y2 = 1 

 

15 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -4;     x2 = 0.5  
y1 = -1.5;  y2 = 0.5 

 

16 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -2;     x2 = 2.5  
y1 = -0.5;  y2 = 1.5 

 

17 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -4.5;  x2 = 0 
y1 = -2;     y2 = 0 

 

18 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -3.5;  x2 = 1  
y1 = -0.5;  y2 = 1.5 
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Continuation of Table 1.2 
No. Parameters Shape 

19 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -1;  x2 = 8  
y1 = -2;  y2 = 2 

 

20 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -2;  x2 = 7 
y1 = -4;  y2 = 0 

 

21 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -7;  x2 = 2 
y1 = -2;  y2 = 2 

 

22 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -3;  x2 = 6 
y1 = 0;   y2 = 4 

 

23 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -4;  x2 = 5 
y1 = -1;  y2 = 3 

 

24 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -8;  x2 = 1 
y1 = -3;  y2 = 1 
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Continuation of Table 1.2 
No. Parameters Shape 

25 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -1.5;  x2 = 7.5 
y1 = -0.5;  y2 = 3.5 

 

26 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -2.5;  x2 = 6.5 
y1 = -2.5;  y2 = 1.5 

 

27 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -9.5;  x2 = -0.5 
y1 = -3.5;  y2 = 0.5 

 

28 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -5.5;  x2 = 3.5 
y1 = -1.5;  y2 = 2.5 

 

29 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -7.5;  x2 = 1.5 
y1 = -3.5;  y2 = 0.5 

 

30 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -8.5;  x2 = 0.5 
y1 = -1.5;  y2 = 2.5 
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Continuation of Table 1.2 
No. Parameters Shape 

31 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -7.5;  x2 = 1.5 
y1 = -3.5;  y2 = 0.5 

 

32 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -8.5;  x2 = 0.5 
y1 = -1.5;  y2 = 2.5 

 

33 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = 0;  x2 = 9 
y1 = 0;  y2 = 4. 

 

34 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -1;  x2 = 8 
y1 = -2;  y2 = 2 

 

35 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -8;  x2 = 1  
y1 = -3;  y2 = 1 

 

36 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -4;  x2 = 5  
y1 = -1;  y2 = 3 
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Continuation of Table 1.2 
No. Parameters Shape 

37 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -9;  x2 = 0  
y1 = -4;  y2 = 0 

 

38 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -7;  x2 = 2  
y1 = -1;  y2 = 3 

 

39 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = 0;  x2 = 18  
y1 = 0;  y2 = 8 

 

40 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -2;  x2 = 16 
y1 = -4;  y2 = 4 

 

41 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -16;  x2 = 2 
y1 = -6;    y2 = 2 

 

42 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -8;  x2 = 10  
y1 = -2;  y2 = 6 
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Continuation of Table 1.2 
No. Parameters Shape 

43 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -18;  x2 = 0 
y1 = -8;    y2 = 0 

 

44 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -14;  x2 = 4  
y1 = -2;    y2 = 6 

 

45 

 
Primitives:  
GL_POINTS, GL_LINES: 
 
x1 = 0;  x2 = 4.5  
y1 = 0;  y2 = 2 

 

46 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -0.5;  x2 = -4 
y1 = -1;     y2 = 1 

 

47 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -4;     x2 = 0.5  
y1 = -1.5;  y2 = 0.5 

 

48 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -2;     x2 = 2.5  
y1 = -0.5;  y2 = 1.5 
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Continuation of Table 1.2 
No. Parameters Shape 

49 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -4.5;  x2 = 0 
y1 = -2;     y2 = 0 

 

50 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -3.5;  x2 = 1  
y1 = -0.5;  y2 = 1.5 

 

51 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -1;  x2 = 8  
y1 = -2;  y2 = 2 

 

52 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -2;  x2 = 7 
y1 = -4;  y2 = 0 

 

53 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -7;  x2 = 2 
y1 = -2;  y2 = 2 

 

54 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -3;  x2 = 6 
y1 = 0;   y2 = 4 
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End of Table 1.2 
No. Parameters Shape 

55 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -4;  x2 = 5 
y1 = -1;  y2 = 3 

 

56 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -8;  x2 = 1 
y1 = -3;  y2 = 1 

 

57 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -1.5;  x2 = 7.5 
y1 = -0.5;  y2 = 3.5 

 

58 

 
Primitives:  
GL_POINTS, GL_LINE_STRIP 
 
x1 = -2.5;  x2 = 6.5 
y1 = -2.5;  y2 = 1.5 

 

59 

 
Primitives:  
GL_POINTS, GL_LINE_LOOP 
 
x1 = -9.5;  x2 = -0.5 
y1 = -3.5;  y2 = 0.5 

 

60 

 
Primitives:  
GL_POINTS, GL_LINES 
 
x1 = -5.5;  x2 = 3.5 
y1 = -1.5;  y2 = 2.5 
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Practical work № 2. 
OPENGL GRAPHICS PRIMITIVES 

Aim of work: explore the concept of tessellation and learn how to use 
OpenGL graphics primitives to create surfaces. Master the handling of keyboard 
and mouse events to create interactive applications 

Task 

Using the tools specified by the instructor and taking into account the 
requirements given in Table 2.1, create software project with under OpenGL 
support. Use the glOrtho / gluOrtho2D and glViewport commands to set the 
isotropic coordinate system for the stagenat, taking into account the size of the 
figure specified in the variant (Table 2.2). After starting the application one tile in 
the workspace should be displayed. An example of the initial state of the 
application is shown in Fig. 2.1. 

OpenGL Application

Tile count :

Fill mode

Line mode

Point mode

vertical

horizontal 1

1

 
Fig. 2.1. Application view after start 

All variants of tasks are based on regular polygons, the size of which is 
determined by the size of one edge. Six colors are supposed to be used for 
shading: white, gray (35 %), red, green, blue and yellow. 

Using the keyboard or mouse, the user should be able to tessellate, tilling the 
work area horizontally and vertically [5]. In this case, the coordinate system must 
be adjusted so that the paved surface is located in the center of the work area. 
An example of application workspace tiling is shown in Fig. 2.2. 
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OpenGL Application

Tile count :

Fill mode

Line mode

Point mode

vertical

horizontal 4

1

 
a 

 

OpenGL Application

Tile count :

Fill mode

Line mode

Point mode

vertical

horizontal 5

3

 
b 

Fig. 2.2. Application view when tiled: 
a – only horizontally; b – horizontally and vertically 
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In addition, the user should be able to change the display mode of OpenGL 
graphic primitives: point (only the vertices of the shape), outline (Fig. 2.3) and 
filled with color (see Fig. 2.2). It is assumed that switching between modes is 
performed by an event from the keyboard and / or the mouse. In this case, you 
can use both standard controls and your own, which are implemented and 
displayed using OpenGL (for an increased level of complexity, see Table 2.1). 

 

OpenGL Application

Tile count :

Fill mode

Line mode

Point mode

vertical

horizontal 4

1

 
Fig. 2.3. An example of controlling the output mode of graphic primitives 

 

Methodical instructions 

When displaying images, you should keep in mind that each surface of the 
OpenGL graphics primitive has two sides and the output mode for each of them 
can be configured separately using the glPolygonMode command. 

To change the modes (model) of painting use the glShadeModel command. 
If the grayscale shading mode is disabled, the primitive color is determined by 
the color of only one vertex. For example, for GL_TRIANGLE_STRIP, the color 
of the first triangle is determined by the color of the third vertex, the second – by 
the fourth vertex, and so on. 

To set the fill pattern, you must use the glEnable / glDisable toggle 
commands (as for the line pattern). 
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Checklist Questions 

1. How does primitive coloring depend on vertex color and coloring mode? 
2. How are the vertex traversal order and the primitive output mode related? 
3. What is the difference and how are the inner and outer edges indicated? 
4. How to programmatically implement isotropic and anisotropic coordinate 

systems? 
5. How can I determine the current output mode of primitives? 
6. How to set the fill pattern of a primitive? 
7. How to find out if a fill pattern (lines) is being used or not? 

 
Table 2.1 

No. Complexity Assignments Points 

1 

Basic 

When the application starts, the image 
corresponds to the task variant 

 
1 
 

2 
Correct display of the task when changing both 
the size / position of the window and the tiling 
parameters 

2 

3 
Organization of interaction with the user using 
one of the standard tools (keyboard, mouse, 
etc.) 

 
1 
 

4 
Application of the minimum (within the variant) 
number of graphic primitives to complete the 
task 

 
1 
 

5 

Advanced 

Creating your own UI elements with OpenGL 
 

2 
 

6 Using OOP (developing your own classes) 
 

1 
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Table 2.2 

No. Parameters Shape 

1  

Side a = 7 
 
Primitive (s):  
 GL_TRIANGLE_STRIP 

 

2  

Side a = 4.25 
 
Primitive (s):  
 GL_TRIANGLES, 
 GL_QUADS 

 

3  

Side a = 75 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_POLYGON 

 

4  

Side a = 125 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_POLYGON 

 

5  

Side a = 12 
 
Primitive (s):  
 GL_TRIANGLES, 
 GL_QUADS 

 

6  

Side a = 0.05 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_POLYGON,  
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Continuation of Table 2.2 
No. Parameters Shape 

7  

Side a = 50 
 
Primitive (s):  
 GL_TRIANGLE_STRIP, 
 GL_POLYGON 

 

8  

Side a = 150 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_POLYGON 

 

9  

Side a = 8.5 
 
Primitive (s):  
 GL_TRIANGLES,
 GL_QUAD_STRIP 

 

10  

Side a = 10 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_POLYGON 

 

11  

Side a = 75 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_POLYGON 

 

12  

Side a = 100 
 
Primitive (s):  
 GL_TRIANGLES 
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Continuation of Table 2.2 
No. Parameters Shape 

13  

Side a = 0.2 
 
Primitive (s):  
 GL_POLYGON 

 

14  

Side a = 1000 
 
Primitive (s):  
 GL_TRIANGLES,
 GL_QUAD_STRIP 

 

15  

Side a = 30 
 
Primitive (s):  
 GL_TRIANGLES, 
 GL_QUAD_STRIP 

 

16  

Side a = 5 
 
Primitive (s):  
 GL_TRIANGLE_FAN, 
 GL_POLYGON 

 

17  

Side a = 8.5 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_POLYGON 

 

18  

Side a = 100 
 
Primitive (s):  
 GL_POLYGON, 
 GL_QUADS 
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Continuation of Table 2.2 
No. Parameters Shape 

19  

Side a = 0.15 
 
Primitive (s):  
 GL_TRIANGLE_FAN, 
 GL_POLYGON 

 

20  

Side a = 1500 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUADS 

 

21  

Side a = 25 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUADS 

 

22  

Side a = 250 
 
Primitive (s):  
 GL_POLYGON 

 

23  

Side a = 20 
 
Primitive (s):  
 GL_TRIANGLES,
 GL_QUAD_STRIP 

 

24  

Side a = 10 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_POLYGON 
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Continuation of Table 2.2 
No. Parameters Shape 

25  

Side a = 3 
 
Primitive (s):  
 GL_TRIANGLE_FAN 

 

26  

Side a = 20 
 
Primitive (s):  
 GL_POLYGON 

 

27  

Side a = 30 
 
Primitive (s):  
  GL_TRIANGLE_FAN, 
 GL_POLYGON 

 

28  

Side a = 0.75 
 
Primitive (s):  
 GL_TRIANGLE_FAN, 
 GL_POLYGON 

 

29  

Side a = 0.25 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUADS 

 

30  

Side a = 0.5 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUADS 

 



27 

Continuation of Table 2.2 
No. Parameters Shape 

31  

Side a = 1 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUADS 

 

32  

Side a = 375 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUAD_STRIP 

 

33  

Side a = 50 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUADS 

 

34  

Side a = 40 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUAD_STRIP 

 

35  

Side a = 1500 
 
Primitive (s):  
 GL_POLYGON 

 

36  

Side a = 2.5 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUAD_STRIP 
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Continuation of Table 2.2 
No. Parameters Shape 

37  

Side a = 2.5 
 
Primitive (s):  
 GL_TRIANGLES,
 GL_POLYGON 

 

38  

Side a = 15 
 
Primitive (s):  
 GL_TRIANGLES,
 GL_POLYGON 

 

39  

Side a = 0.75 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUADS 

 

40  

Side a = 5 
 
Primitive (s):  
 GL_POLYGON 

 

41  

Side a = 0.01 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUAD_STRIP 

 

42  

Side a = 75 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUAD_STRIP 
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Continuation of Table 2.2 
No. Parameters Shape 

43  

Side a = 2.25 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUADS 

 

44  

Side a = 5.5 
 
Primitive (s):  
 GL_POLYGON 

 

45  

Side a = 0.01 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUADS 

 

46  

Side a = 0.375 
 
Primitive (s):  
 GL_TRIANGLE_FAN, 
 GL_POLYGON 

 

47  

Side a = 12 
 
Primitive (s):  
 GL_TRIANGLE_FAN, 
 GL_POLYGON  

 

48  

Side a = 0.75 
 
Primitive (s):  
 GL_POLYGON 
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Continuation of Table 2.2 
No. Parameters Shape 

49  

Side a = 45 
 
Primitive (s):  
 GL_POLYGON 

 

50  

Side a = 400 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUAD_STRIP 

 

51  

Side a = 2.25 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUADS 

 

52  

Side a = 600 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUADS 

 

53  

Side a = 3.5 
 
Primitive (s):  
 GL_TRIANGLE_FAN, 
 GL_POLYGON 

 

54  

Side a = 0.05 
 
Primitive (s):  
 GL_POLYGON 
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End of Table 2.2 
No. Parameters Shape 

55  

Side a = 300 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUAD_STRIP 

 

56  

Side a = 15 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUAD_STRIP 

 

57  

Side a = 0.1 
 
Primitive (s):  
 GL_TRIANGLE_FAN,
 GL_QUADS 

 

58  

Side a = 3.5 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_POLYGON 

 

59  

Side a = 3.75 
 
Primitive (s):  
 GL_POLYGON, 
 GL_QUAD_STRIP 

 

60  

Side a = 1.25 
 
Primitive (s):  
 GL_TRIANGLE_STRIP,
 GL_QUADS 
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Practical work № 3. 
SINGLE VARIABLE FUNCTION GRAPH 

Aim of work: explore the basic concepts and principles of coordinate 
transformation for building a two-dimensional graph. 

Task 

Using the teacher specified development tools, develop a program for plotting 
a function of the form 𝑦 = 𝑓(𝑥) on an arbitrary interval from Xmin to Xmax and 
display the points of intersection of the function with the abscissa axis. In 
addition, the program must have the following capabilities (Table 3.1): 

− allow the user to set an interval from Xmin to Xmax with checking  
Xmin < Xmax; 

− perform automatic scaling along the Y-axis for a user-specified interval 
from Xmin to Xmax (in addition, a manual mode for setting Ymin and Ymax is 
allowed); 

− display the coordinate axes (and / or the coordinate grid) with the output 
of the values Xmin, Xmax, Ymin and Ymax, of the boundaries of the visible 
area Xmin, Xmax, Ymin and Ymax, while the coordinate system must be 
anisotropic; 

− display all points where 𝑓(𝑥) = 0, if they are in the specified interval from 
Xmin to Xmax. 

An example user interface is shown in Fig. 3.1. Function variants 𝑓1(𝑥) of 
the basic level of complexity are shown in the Table 3.2. 

For an increased level of complexity, it is necessary to additionally implement 
the correct output of the function 𝑓2(𝑥), taking into account the scope of the 
function definition (options are indicated in Table 3.3) and display the break lines 
(Fig. 3.2).  

Methodical instructions 

After the user has determined the interval along the X axis in the dialog mode, 
you should set the number of points N required to plot the function graph. This 
number can be set by the user explicitly or obtained programmatically, for 
example, correspond to the width (number of pixels) of the work area. Based on 
this information, the step of the function argument is calculated: 

ℎ =
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

𝑁 − 1
 

and the coordinates of the function points are calculated within a user-specified 
interval: 

𝑥𝑖 = 𝑋𝑚𝑖𝑛 + 𝑖 ∙ ℎ;    𝑦𝑖 = 𝑓(𝑥𝑖) ;     𝑖 ∈ 0 . . .  𝑁 − 1. 
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Chart Y = f(x)

Xmax

Xmin -0.2

0.8

Points 480

Xmin Xmax

Ymin

Ymax

min f ( xi )

max  f ( xi ) f(x) = 0

 
Fig. 3.1. An example of a basic functionality requirements for work 

 

 

Fig. 3.2. Example function 𝑓2(𝑥) and its break lines (shown by a dotted line) 
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Using these calculations, you can find the vertical boundaries of the work 
area: 

𝑌𝑚𝑖𝑛  = min(𝑦𝑖) ; 

𝑌𝑚𝑎𝑥 = max(𝑦𝑖) ; 

 𝑖 ∈ 0 . . .  𝑁 − 1. 
Thus, knowing the values of the bounds of the interval along the X axis and 

calculating the values of the bounds along the Y axis, you can set the coordinate 
system (using the glOrtho(...) command) to display the graph 
 𝑦 = 𝑓(𝑥) on the screen. 

It is possible to find the roots 𝑥0 of the function (points where 𝑓(𝑥0) = 0) 
based on the following property: if there is an intersection with the abscissa in 
the interval from 𝑥𝑖 to 𝑥𝑖+1, then as a result of the product of the corresponding 
ordinates, the condition 𝑓(𝑥𝑖) ∙ 𝑓(𝑥𝑖+1) ≤ 0 (Fig. 3.3) will be satisfied. In this 
case, the coordinates of the point of intersection of the function with the X axis 
are calculated simplified by the method of half division: 𝑥0 =  (𝑥𝑖 +  𝑥𝑖+1) 2⁄ ,
𝑦0 = 𝑓(𝑥0). If we take into account the discreteness of the screen and use the 
number of points to plot the function that is close to the width of the working area 
(in pixels) or exceeds it, then the simplified half-division method allows you to get 
a solution that is visually indistinguishable from the exact one. 

xi xi+1

f ( xi )

f ( xi+1 )

x0

y0

 
Fig. 3.3. Simplified version of the half division method 

Students develop the algorithm for the correct display of a function 𝑓2(𝑥), 
that has gaps in the definition area on the screen independently. Additional 
analysis of the features of your version of the function 𝑓2(𝑥) can be obtained 
using the following electronic resources [7]. 
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Checklist Questions 

1. How to find out the number of pixels in the width and height of the screen? 
2. How to determine the size of the client (work) area? 
3. How is a forced redrawing of a window done? 
4. What is the algorithm for finding the minimum / maximum of a function on an 

interval? 
5. How to choose a step for plotting a function? 
6. How is an isotropic coordinate system different from an anisotropic one? 
7. How do I set up a coordinate system using OpenGL commands? 
8. What units are used in the Windows coordinate system? 

 

Table 3.1 
No. Complexity Assignments Points 

1 

Basic 

The coordinate axes and the graph of the 
function f1 (x) are displayed on a user-specified 
interval from Xmin to Xmax and from Ymin to 
Ymax 

1 

2 
Automatic calculation of Ymin and Ymax on a 
given interval from Xmin to Xmax of the function 
f1 (x) 

2 

3 Calculation and display of points f1 (x) = 0  2 

4 
Advanced 

Correct display of the f2 (x) graph (without false 
display of breakpoints as points of intersection 
with the abscissa axis) and displaying the break 
lines of the function 

2 

5 
Using OOP (inheritance, applyingvirtual and 
abstract methods) 1 

 
 

Table 3.2 
No. Function f1(x) 

1  𝑓1(𝑥)  =  2cos(0.1𝑥 + cos 𝑥) 

2  𝑓1(𝑥)  =  tg(cos(2𝑥 + 0.1)) 

3  𝑓1(𝑥)  =  arctg(cos13(𝑥 + 2)) 

4  𝑓1(𝑥)  =  
sin(𝑥)

cos(2𝑥) + 1.5
 

5  𝑓1(𝑥)  =  tg(cos(2𝑥)) +
tg(cos 5𝑥)

2
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Continuation of Table 3.2 
No. Function f1(x) 

6  𝑓1(𝑥)  =  (sin(3𝑥) + 1.5)cos 2x − 1 

7  𝑓1(𝑥)  =  
sin(𝑥 + 1)

cos2(4𝑥) + cos3(3𝑥) + 2
 

8  𝑓1(𝑥)  =  sin2(2𝑥) cos3(3𝑥) 

9  𝑓1(𝑥)  =  
cos 3𝑥

cos(5𝑥) + 1.1
 

10  𝑓1(𝑥)  =  5sin(0.2𝑥 + sin 𝑥) 

11  𝑓1(𝑥)  =  tg(1.25 sin 𝑥) 

12  𝑓1(𝑥)  =  
cos(𝜋𝑥)

(sin(5𝜋𝑥 3⁄ ) + 1.5)3
 

13  𝑓1(𝑥)  =  
|cos(0.5𝑥 + 1)| cos 𝑥

|cos(𝑥 + 0.01)|
 

14  𝑓1(𝑥)  =  
cos(𝑥)

√cos(6𝑥) + 1.01
 

15  𝑓1(𝑥)  =  ctg(sin(0.25𝑥) + 1.05) − 2 

16  𝑓1(𝑥)  =  cos(2𝑥 + 1) − 0.5 ∙ sin(5𝑥) 

17  𝑓1(𝑥)  =  
cos(3𝑥 + 1)

(cos(5𝑥) + 1.21)2
 

18  𝑓1(𝑥)  =  sin2(𝑥 + 1) cos3(2𝑥 − 1) 

19  𝑓1(𝑥)  =  tg
0.5 sin(2𝑥)

1.5 + cos(5𝑥)
 

20  𝑓1(𝑥)  =  3 sin(0.2𝑥 + sin 2𝑥) 

21  𝑓1(𝑥)  =  tg(1.3 sin(cos(𝑥) + 𝑥)) 
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Continuation of Table 3.2 
No. Function f1(x) 

22  𝑓1(𝑥)  =  sin(3cos(𝑥2) + 𝑥) 

23  𝑓1(𝑥)  =  
cos(𝜋𝑥 + 𝜋 4⁄ )

√sin(7𝜋𝑥 5⁄ ) + 1.01
 

24  𝑓1(𝑥)  =  
sin(𝜋𝑥 2⁄ )

cos(𝜋𝑥) − 𝜋
 

25  𝑓1(𝑥)  =  ctg (1.25 sin(2𝑥 + cos(4𝑥)) +
𝜋

2
) 

26  𝑓1(𝑥)  =  tg
0.05 + 𝑠𝑖𝑛 𝑥

1.25 + 𝑐𝑜𝑠 𝑥
 

27  𝑓1(𝑥)  =  
cos(𝑥)

√sin(3𝑥) + 1.01
 

28  𝑓1(𝑥)  =  
1 − 𝑒2 sin 𝑥

1 + 𝑒3 cos(𝜋𝑥+1)
 

29  𝑓1(𝑥)  =  ctg(sin(5𝑥) + 1.15) 

30  𝑓1(𝑥)  =  5 cos(0.2𝑥 − sin 𝑥) 

31  𝑓1(𝑥)  =  tg(1.25 cos(2𝑥 + cos(6𝑥))) 

32  𝑓1(𝑥)  =  
sin3(𝑥 − 𝜋 2⁄ )

cos3(4𝑥) + cos2(3𝑥) + 2
 

33  𝑓1(𝑥)  =  cos(sin(2𝑥 + 1) + 𝑥) 

34  𝑓1(𝑥)  =  
cos 3𝑥

√cos(5𝑥 + 1.21)
 

35  𝑓1(𝑥)  =  ctg (sin(2𝑥) −
𝜋

2
) 

36  𝑓1(𝑥)  =  tg(sin(𝑥 + cos(2𝑥))) 

37  𝑓1(𝑥)  =  4 cos4(𝜋𝑥)  sin3(2𝜋𝑥) 



38 

Continuation of Table 3.2 
No. Function f1(x) 

38  𝑓1(𝑥)  =  
1 − 𝑒2 sin 𝑥

1 + 𝑒3 cos(𝜋𝑥+1)
 

39  𝑓1(𝑥)  =  
cos(𝑥)

sin(𝑥) +
𝜋
2

 

40  𝑓1(𝑥)  =  𝜋 sin(0.3𝑥 − cos 𝑥) 

41  𝑓1(𝑥)  =  tg(1.5 cos(cos(3𝑥) + 𝑥)) 

42  𝑓1(𝑥)  =  
2 sin 2𝑥

(cos 𝑥 + 1.5)
+ 1 

43  𝑓1(𝑥)  =  arcsin(cos(𝜋𝑥)) 

44  𝑓1(𝑥)  =  (cos(0.5𝑥) + 1.5)−(sin(2x)+1.2) −
𝜋

2
 

45  𝑓1(𝑥)  =  ctg (1.25 cos(2𝑥 + cos(5𝑥)) +
𝜋

2
) 

46  𝑓1(𝑥)  =  
𝑒cos|3𝑥|

𝑒sin 𝑥
− 𝜋 

47  𝑓1(𝑥)  =  sin(cos(2𝑥) + 𝑥) 

48  𝑓1(𝑥)  =  
sin(𝑥 + 1)

𝑒cos 4𝑥
 

49  𝑓1(𝑥)  =  tg (1.3 sin (𝑥 + 2 cos (
𝑥

2
))) 

50  𝑓1(𝑥)  =  sin(0.75𝑥 − sin 𝑥) 

51  𝑓1(𝑥)  =  tg(1.25 cos(2𝑥 + cos(6𝑥))) 

52  𝑓1(𝑥)  =  
sin (3𝑥 +

𝜋
4)

√cos(5𝑥) + 1.1
 

53  𝑓1(𝑥)  =  arccos(sin(𝜋𝑥)) −
𝜋

2
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End of Table 3.2 
No. Function f1(x) 

54  𝑓1(𝑥)  =  sin2(3𝑥) cos3(2𝑥 + 1) 

55  𝑓1(𝑥)  =  ctg (1.25 sin(2𝑥 + sin(4𝑥)) +
𝜋

2
) 

56  𝑓1(𝑥)  =  
cos 3𝑥

𝑒cos(2𝑥−1.5)
 

57  𝑓1(𝑥)  =  𝑒sin 3𝑥−cos|𝑥| − 1 

58  𝑓1(𝑥)  =  cos (
𝑥

2
) −

𝜋

2
+ 𝑒sin 2𝑥∙cos 5𝑥 

59  𝑓1(𝑥)  =  ctg (cos(𝑥) +
𝜋

2
) 

60  𝑓1(𝑥)  =  tg(1.5 cos(sin(3𝑥) + 2𝑥)) 

 
Table 3.3 

No. Function f2(x) 

1  𝑓2(𝑥)  =  ln(|sin 𝑥|) + sin 3𝑥 

2  𝑓2(𝑥)  =  
cos(𝜋𝑥) 𝑒cos 𝑥

|cos(𝜋𝑥)|
− 0.5 

3  𝑓2(𝑥)  =  tg (
𝜋

2
cos(𝜋𝑥)) 

4  𝑓2(𝑥)  =  
sin 𝑥

cos 𝜋𝑥
 

5  𝑓2(𝑥)  =  
sin(𝜋𝑥)

ln(cos(𝜋𝑥) + 1)
 

6  𝑓2(𝑥)  =  
sin(𝜋𝑥 + 1)

|sin(2𝜋𝑥)|
+ 2 cos(𝜋𝑥) 

7  𝑓2(𝑥)  =  
1

cos 3𝑥
+

1

sin 2𝑥
 

8  𝑓2(𝑥)  =  ln(|sin(𝜋𝑥)|) + cos(3.5 ∙ 𝜋𝑥) 
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Continuation of Table 3.3 
No. Function f2(x) 

9  𝑓2(𝑥)  =  𝑒2 cos 𝜋𝑥  tg
𝜋𝑥

3
 

10  𝑓2(𝑥)  =  𝑒− sin(3𝜋𝑥) tan (
𝜋

2
cos(𝜋𝑥)) 

11  𝑓2(𝑥)  =  
cos(𝜋𝑥)

|cos(𝜋𝑥)|
+ 𝑒

cos(
𝜋𝑥
2

) 

12  𝑓2(𝑥)  =  tg(2 sin(𝑥)) 

13  𝑓2(𝑥)  =  
cos(𝜋𝑥 2⁄ ) cos|𝜋𝑥|

|sin(𝜋𝑥)|
 

14  𝑓2(𝑥)  =  ln(1 + cos(𝑥)) lg(2 + sin(5𝑥)) 

15  𝑓2(𝑥)  =  𝑒− tg 𝜋𝑥  cos(3𝜋𝑥) 

16  𝑓2(𝑥)  =  tg (
𝜋𝑥

3
) 

cos(𝜋𝑥)

|cos(𝜋𝑥)|
 

17  𝑓2(𝑥)  =  ln(sin 𝑥 + 1) + cos(4𝑥 + 1) 

18  𝑓2(𝑥)  =  tg (
𝜋

2
cos(𝜋𝑥)) + sin(2𝜋𝑥) 

19  𝑓2(𝑥)  =  𝑒−1 (10∙cos(𝜋𝑥))⁄  sin(𝜋𝑥) 

20  𝑓2(𝑥)  =  
sin(𝜋𝑥 2⁄ ) sin|3𝜋𝑥|

|sin(𝜋𝑥)|
 

21  𝑓2(𝑥)  =  ctg(𝑥) cos(𝜋𝑥) 

22  𝑓2(𝑥)  =  sin(3𝑥) + ln(cos(𝑥) + 1) 

23  𝑓2(𝑥)  =  tg(𝑒𝑥) 

24  𝑓2(𝑥)  =  
cos(𝜋𝑥)

|cos(𝜋𝑥)|
+ ln(cos(𝜋 𝑥 2⁄ ) + 1) + 1 

25  𝑓2(𝑥)  =  tg(𝑥) cos(𝜋𝑥) 

26  𝑓2(𝑥)  =  
|cos(𝜋𝑥)|

cos(𝜋𝑥)
+ 2 cos (

𝜋𝑥

2
) 
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Continuation of Table 3.3 
No. Function f2(x) 

27  𝑓2(𝑥)  =  ln(sin(𝜋𝑥) + 1) + 𝑒sin(3𝜋𝑥) 

28  𝑓2(𝑥)  =  lg(cos(2𝜋𝑥) + 1) + 𝑒sin 3𝜋𝑥 

29  𝑓2(𝑥)  =  
1

ln(sin(𝜋𝑥) + 1)
− 𝑒2 cos(3𝜋𝑥) 

30  𝑓2(𝑥)  =  
cos(𝜋𝑥)  ln(cos(𝜋 𝑥 2⁄ ) + 1)

|cos(𝜋𝑥)|
 

31  𝑓2(𝑥)  =  lg(sin(2𝑥) + 1) + 𝑒2 cos 𝑥 − 𝜋 

32  𝑓2(𝑥)  =  
|sin(𝜋𝑥)|

sin(𝜋𝑥)
+ 2 cos(𝜋𝑥) 

33  𝑓2(𝑥)  =  𝑒− cos(3𝜋𝑥) tg (
𝜋

2
sin(𝜋𝑥)) 

34  𝑓2(𝑥)  =  tg (
𝜋

2
+ sin(3𝑥)) + 2 cos 𝑥 

35  𝑓2(𝑥)  =  
sin(2𝜋𝑥)

|sin(𝜋𝑥)|
− 2 sin(𝜋𝑥) 

36  𝑓2(𝑥)  =  ln(sin(𝑥) + 1) cos(4𝑥 + 1) 

37  𝑓2(𝑥)  =  𝑒− cos(4𝜋𝑥) tg (
𝜋

2
sin(𝜋𝑥)) +cos(𝜋𝑥) 

38  𝑓2(𝑥)  =  
cos(3𝜋𝑥)

ln(sin(𝜋𝑥) + 1)
 

39  𝑓2(𝑥)  =  
cos(𝜋𝑥)  ln(sin(𝑥 2⁄ ) + 1)

|cos(𝜋𝑥)|
 

40  𝑓2(𝑥)  =  𝑒sin(4𝜋𝑥) +ln(cos(𝜋𝑥) + 1) 

41  𝑓2(𝑥)  =  
lg(cos(2𝜋𝑥) + 1)

𝑥
 

42  𝑓2(𝑥)  =  
sin(𝜋𝑥 2⁄ ) sin|𝜋𝑥|

|sin(𝜋𝑥)|
 

43  𝑓2(𝑥)  =  arctg(tan(𝜋𝑥) − 5 cos(𝜋𝑥)) 

44  𝑓2(𝑥)  =  𝑒− cos(4𝜋𝑥) ctg (
𝜋

2
sin(𝜋𝑥)) − sin(2𝜋𝑥) 
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End of Table 3.3 

No. Function f2(x) 

45  𝑓2(𝑥)  =  ctg (
𝜋

2
sin(𝜋𝑥)) + cos(2𝜋𝑥) 

46  𝑓2(𝑥)  =  
(𝑥2 + 1) cos(2𝜋𝑥)

(𝑥2 − 1) sin(2𝜋𝑥)
 

47  𝑓2(𝑥)  =  
cos(𝜋𝑥)  𝑒sin 𝑥

|cos(𝜋𝑥)|
+

𝜋

2
 

48  𝑓2(𝑥)  =  
(9 − 𝑥2)  cos(𝑥)

(9 + 𝑥2) sin(𝑥 + 1)
 

49  𝑓2(𝑥)  =  𝑒cos(4𝜋𝑥) ln(sin(𝜋𝑥) + 1) 

50  𝑓2(𝑥)  =  
sin(𝜋𝑥 2⁄ + 2) |cos(3𝜋𝑥)|

sin|𝜋𝑥|
+ 0.5 

51  𝑓2(𝑥)  =  
sin(𝜋𝑥)

|sin(𝜋𝑥)|
+ ln(sin(𝜋 𝑥 3⁄ ) + 1) + 2 

52  𝑓2(𝑥)  =  𝑒tg(𝜋𝑥 2⁄ ) − 3 cos(𝜋𝑥) 

53  𝑓2(𝑥)  =  
cos(2𝜋𝑥)

ln(cos(3𝜋𝑥) + 1)
 

54  𝑓2(𝑥)  =  𝑒sin(4𝜋𝑥) ln(cos(𝜋𝑥) + 1) 

55  𝑓2(𝑥)  =  𝑒tg(𝜋𝑥 2⁄ ) − 5 cos(5𝜋𝑥) 

56  𝑓2(𝑥)  =  ctg (
𝜋𝑥

2
)

cos(𝜋𝑥)

|cos(𝜋𝑥)|
 

57  𝑓2(𝑥)  =  
cos(𝜋𝑥 2⁄ ) cos|𝜋𝑥|

|cos(𝜋𝑥)|
 

58  𝑓2(𝑥)  =  ln(cos(3𝑥) + 1) sin 𝑥 

59  𝑓2(𝑥)  =  ctg (
𝜋

2
sin(3𝜋𝑥)) cos(𝜋𝑥) 

60  𝑓2(𝑥)  =  𝑒ctg(𝜋𝑥) − 5 sin(4𝜋𝑥) 
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Practical work № 4. 
A CONIC SECTION CURVES 

Aim of work: explore mathematical methods and tools for the 
implementation of graphical primitives. 

Task 

Using the teacher specified development tools, develop a program for 
displaying conic section curves on the screen (to a Windows form) using lines. 
The grading system is shown in Table 4.1, and the options for the tasks are in 
Table 4.2. For curves marked with "++" in the variant, find and display the 
intersection points, if any, with an arbitrary segment, the coordinates of which 
are set by the user. 

Methodical instructions 

Each curve of the second order can be represented as a sequence of line 
segments. In this case, the intersection of a second-order curve and an arbitrary 
segment can be considered as a search for a common point [𝑥0, 𝑦0] of two 
segments[𝑥1, 𝑦1], [𝑥2, 𝑦2] and [𝑥3, 𝑦3], [𝑥4, 𝑦4], given in parametric form (one of 
which is a fragment of the curve). This problem can be represented as a system 
consisting of two linear equations with unknown parameters of the first and 
second segments: 

 

{
𝑥0 = (𝑥2 − 𝑥1)𝑡1 + 𝑥1 = (𝑥4 − 𝑥3)𝑡2 + 𝑥3

𝑦0 = (𝑦2 − 𝑦1)𝑡2 + 𝑦1 = (𝑦4 − 𝑦3)𝑡2 + 𝑦3
 ; 

 

provided that the result of the solution will satisfy the following two conditions: 
0 ≤ 𝑡1 ≤ 1 and 0 ≤ 𝑡2 ≤ 1,  Otherwise, the segments are either parallel, or only 
the straight lines on which they lie intersect [3, 8]. 

Checklist Questions 

1. What is the difference between the explicit and parametric representations of 
a line? 

2. What are the advantages and / or disadvantages of various forms presented 
of conic section curves in computer graphics? 

3. How to draw a Bezier curve using lines in parametric view? 
4. What is the difference when constructing second- and third-order Bezier 

curves using parametric line segments? 
5. How are affine transformations performed on Bezier curves? 
6. Describe all the options for solving the problem of finding the intersection 

point of two segments, given in a parametric form. 
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Table 4.1 
No. Complexity Assignments Points 

1 

Basic 

Setting an isotropic coordinate system for a 
resizable window 1 

2 Output of conic section curves in according the 
variant of the task 2 

3 
Drawing a line and calculating its intersection 
points with a conic section curve in according 
the variant 

2 

4 
Advanced 

Specifying the position of points the segment, in 
the graphic area using the mouse manipulator  2 

5 Using OOP  1 
 

Table 4.2 

No. 

Circle Ellipse Hyperbola Parabola 
representation representation representation representation 

explicit parametric explicit parametric explicit parametric explicit parametric 

1         +     ++ 
2       ++   +     
3 ++     +         
4 +         ++     
5   ++     +       
6   ++           + 
7     +       ++   
8           +   ++ 
9 +             ++ 

10           + ++   
11           ++   + 
12   +     ++       
13 ++         +     
14     +         ++ 
15   +       ++     
16         ++     + 
17   ++   +         
18 ++           +   
19       ++     +   
20       +   ++     
21   ++       +     
22     ++       +   
23           ++ +   
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End of Table 4.2 

No. 

Circle Ellipse Hyperbola Parabola 
representation representation representation representation 

explicit parametric explicit parametric explicit parametric explicit parametric 

24 +       ++       
25       +     ++   
26   +         ++   
27     +   ++       
28   +           ++ 
29     ++     +     
30         +   ++   
31 +           ++   
32       + ++       
33           +   ++ 
34   +       ++     
35     ++         + 
36 +     ++         
37   ++     +       
38   ++         +   
39       ++   +     
40 ++         +     
41 ++   +           
42   + ++           
43         +   ++   
44       +       ++ 
45 ++       +       
46       +   ++     
47     ++   +       
48       ++       + 
49     +     ++     
50 ++             + 
51         ++   +   
52   +   ++         
53     +       ++   
54 +       ++       
55 +   ++           
56           ++ +   
57   ++ +           
58         ++     + 
59       ++ +       
60     ++       +   
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Practical work № 5. 
QUADRICS. 3D AFFINE TRANSFORMATIONS 

Aim of work: learn how to work with three-dimensional graphics primitives 
OpenGL and apply affine transformations to place objects in 3D space. 

Task 

Using the teacher specified development tools, develop a program using 
OpenGL tools that establishes an isotropic coordinate system, creates and 
displays an image of a three-dimensional scene with such elements (the 
assessment system is given in Table 5.1, and the options for the tasks are in 
Table 5.2): 

− coordinate axes with zero in the center of the screen and indicate the axis 
and positive direction; 

− coordinate grid (grid) in one of the planes (X0Y, X0Z or Y0Z); 
− three quadratic shapes – gluDisk / gluPartialDisk, gluSphere, 

gluCylinder in wireframe display mode and glEnable simplified lighting 
model (GL_COLOR_MATERIAL) for basic complexity; 

− clipping plane for one of the shapes (sphere, cylinder, or cone); 
− a full-fledged lighting model and / or textures for the implementation of a 

task with increased complexity. 
The parameters of detailing objects (slices, stacks), color, thickness and line 

type are chosen independently. An example scene is shown in Fig. 5.1. 

 
Fig. 5.1. Example scene with quadratic objects  

and clipping plane for sphere 

OpenGL Application

-3

A 1

Fill mode

Line mode

Clip plane

B 0

C 0

D

Ortho

Perspective
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The minimum user interface should provide the ability to rotate the scene 
relative to the OX and OY axes using the mouse manipulator and control the 
clipping plane parameters [4]. 

Methodical instructions 

An isotropic coordinate system can be established in two ways.  
In the first case, using the glViewport command, set the working area in 
accordance with the smaller value of the width / height of the window, and in the 
second, enter a correction factor (or divisor) equal to the ratio of the window width 
and height when setting the coordinate system (for example, with the glOrtho 
command). The depth must be set in such a way that, at any position of the given 
scene, all objects are within the visible area. 

To display quadric primitives, an object origin point is used. In general, in the 
absence of affine transformations, this origin point of the object coincides with 
the zero point of the coordinate system. The origin point for the sphere and disk 
(full and partial) is their center, and for a cylinder (cone) – the center as one of 
the bases. To place each of the three quadrcs according to the variant of the 
task, you must use one of the affine transformations or their combination: 
rotation, translation, scaling. 

After transformations, the origin point should be located at the coordinates 
x0, y0, z0, and the object axis should be parallel (∥) to a sphere / disk or collinear 
(⇈, ⇅) for a cylinder / cone, taking into account the option. When making images 
with quadric objects, the following parameters are used: 

x0, y0, z0 – coordinates of the shape's origin point; 
R – 

 
the radius of the sphere or the radius of the base of the 
cylinder / cone centered at the anchor point or the outer 
radius of the disc; 

r – radius of the second base of the cylinder / truncated cone; 
inner radius of the disc; 

h – cylinder / cone / truncated cone height; 
∠start – the starting angle of the partial disc; 

∠sweep – the end angle for partial disc; 
axis ∥,⇈,⇅ – parallelism / collinearity of coordinate axes and figures. 

Checklist Questions 

1. On what basis and by what command can the front and back sides of the 
surface be set? 

2. What parameters of the lighting model are adjusted using the glLightModel 
command?  

3. How does the surface normal affect the calculation of the illumination of 
objects and with what commands is it set? 

4. What are the commands for setting fog in object lighting calculations? 
5. What fog models does OpenGL use? 
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Table 5.1 
No. Complexity Assignments Points 

1 

Basic 

Correct (isotropic) display of the task (when 
resizing the window) in orthographic projection 1 

2 
When launching the application, the axes 0X, 
0Y, 0Z, are displayed, the grid and the 
wireframe of quadrac objects 

1 

3 
Clipping plane parameters controled by user 
interface 1 

4 Setting scene lights and material of quadrics 
with glColorMaterial command 1 

5 Using Display Lists 1 

6 

Advanced 

Creating a perspective view of a scene 1 

7 Blending a texture onto a surface with shapes 
specified by a variant 1 

8 
Using the glMaterial command to adjust the 
reflection parameters of the surface of scene 
objects 

1 

 
Table 5.2 

No. Grid Shape 

Parameter values for quadrics 

axis x0 y0 z0 R r h ∠start 
∠swee

p 

1 Y0Z 
sphere ∥  0X -1.5 -0.5 +2.5 1.0 - - - - 
cone ⇅ 0Y +3.5 +1.5 +4.0 1.5 0.0 1.5 - - 
disk ∥  0Z +2.0 -2.0 -3.5 1.5 0.0 - - - 

2 X0Y 
sphere ∥  0Y -4.0 -2.5 -4.5 3.0 - - - - 
truncated cone ⇅ 0X -4.5 +2.5 +2.5 2.5 0.5 2.0 - - 
disk ∥  0Z +3.5 -1.0 +3.0 2.0 0.0 - - - 

3 X0Y 
sphere ∥  0X +2.5 +3.5 +4.5 3.0 - - - - 
truncated cone ⇈ 0Z +1.5 -0.5 -1.5 1.0 2.0 1.5 - - 
partial disk ∥  0Y -3.5 -2.5 +2.0 3.5 1.0 - 180° 90° 

4 X0Y 
sphere ∥  0X -2.5 -2.5 -1.5 2.0 - - - - 
cylinder ⇈ 0Y +1.5 -1.0 +3.0 1.5 - 2.0 - - 
partial disk ∥  0Z -4.0 +2.5 +4.5 4.0 1.5 - 90° 90° 

5 X0Y 
sphere ∥  0X -2.0 +2.0 -3.0 2.5 - - - - 
truncated cone ⇅ 0Y -1.5 -1.0 +3.0 1.5 0.5 1.0 - - 
disk ∥  0Z +1.5 +0.5 +1.5 1.0 0.0 - - - 
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Continuation of Table 5.2 

No. Grid Shape 

Parameter values for quadrics 

axis x0 y0 z0 R r h ∠start ∠sweep 

6 X0Y 
sphere ∥  0Y +3.0 +2.0 -3.5 2.5 - - - - 
cylinder ⇅ 0Z -4.5 -3.0 -3.5 3.0 - 1.5 - - 
partial disk ∥  0X +4.5 -2.5 +1.5 2.5 1.0 - 270° 270° 

7 X0Z 
sphere ∥  0Z +2.5 -0.5 -2.5 1.0 - - - - 
cone ⇅ 0Y -3.5 -2.5 +2.5 0.0 2.5 2.0 - - 
disk ∥  0X +4.5 +3.5 +4.5 4.0 1.5 - - - 

8 X0Y 
sphere ∥  0X -2.5 -1.0 -2.5 1.5 - - - - 
cylinder ⇈ 0Y -4.0 +2.5 +4.0 3.5 - 1.0 - - 
disk ∥  0Z +3.5 -1.0 +3.0 1.0 0.0 - - - 

9 X0Z 
sphere ∥  0Y +1.5 +1.0 +2.5 1.5 - - - - 
truncated cone ⇅ 0Z -2.0 +1.5 -2.5 1.5 0.5 1.0 - - 
partial disk ∥  0X +3.5 -0.5 -2.5 2.5 0.5 - 90° 45° 

10 Y0Z 
sphere ∥  0X -3.5 -3.0 -3.5 3.0 - - - - 
truncated cone ⇅ 0Y -2.0 +2.0 +3.5 2.0 0.5 2.0 - - 
partial disk ∥  0Z +2.5 +2.5 -2.0 2.5 0.5 - 135° 90° 

11 X0Z 
sphere ∥  0Y -1.5 +1.0 +3.0 1.5 - - - - 
cone ⇅ 0Z +3.5 -1.0 +3.0 0.0 3.0 2.5 - - 
disk ∥  0X -4.0 -2.0 -2.5 3.0 1.0 - - - 

12 X0Z 
sphere ∥  0Z +4.0 +1.5 +2.5 2.0 - - - - 

cylinder ⇈ 0X -3.5 +1.5 -4.5 1.5 - 3.0 - - 

disk ∥  0Y +3.5 -1.0 -3.5 3.0 1.5 - - - 

13 Y0Z 
sphere ∥  0Z -4.5 -3.5 +3.5 3.5 - - - - 

truncated cone ⇅ 0Y +3.0 +2.0 +2.5 2.5 1.0 2.0 - - 

partial disk ∥  0X +4.5 -3.5 -4.5 4.5 1.5 - 180° 90° 

14 X0Z 
sphere ∥  0Z +2.5 +1.0 -2.5 1.5 - - - - 

truncated cone ⇈ 0Y -3.0 -2.5 -4.5 3.0 1.0 2.5 - - 

partial disk ∥  0X -3.5 +0.5 +2.0 2.0 0.0 - 225° 180° 

15 X0Y 
sphere ∥  0Z -2.5 -2.5 -2.5 2.5 - - - - 

cone ⇈ 0Y -4.0 +2.0 +2.5 0.0 2.5 1.5 - - 

partial disk ∥  0X +1.5 -1.5 +3.5 3.5 0.5 - 135° 270° 

16 X0Z 
sphere ∥  0Z +4.0 -1.5 +2.0 2.0 - - - - 

cone ⇈ 0X -3.5 +0.5 +2.0 0.0 1.0 2.5 - - 

partial disk ∥  0Y -2.5 -1.5 -3.5 3.5 1.0 - 0° 45° 
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Continuation of Table 5.2 

No. Grid Shape 

Parameter values for quadrics 

axis x0 y0 z0 R r h ∠start ∠sweep 

17 X0Z 
sphere ∥  0X +2.0 +1.5 +2.0 2.0 - - - - 

cylinder ⇅ 0Y +4.5 -3.5 -4.0 4.0 - 1.0 - - 

disk ∥  0Z -2.0 +2.0 -2.5 1.5 0.0 - - - 

18 X0Z 
sphere ∥  0Y -2.0 -2.5 -4.0 2.5 - - - - 

cylinder ⇈ 0X +2.0 -2.5 +4.5 2.0 - 1.0 - - 

disk ∥  0Z +3.5 +3.5 -3.5 3.0 0.5 - - - 

19 X0Z 
sphere ∥  0Y +2.5 +1.0 -3.5 1.5 - - - - 

cylinder ⇅ 0X -2.5 -3.5 -4.5 2.5 - 1.5 - - 

partial disk ∥  0Z -3.5 +3.0 +3.0 3.5 1.0 - 180° 135° 

20 X0Z 
sphere ∥  0X -1.5 +1.5 +3.5 2.0 - - - - 

cone ⇈ 0Y +3.5 -3.0 +3.0 3.0 0.0 2.5 - - 

partial disk ∥  0Z -2.0 -2.5 -4.0 2.5 0.5 - 180° 90° 

21 Y0Z 
sphere ∥  0Y +2.5 +0.5 +2.0 1.0 - - - - 

cylinder ⇈ 0Z -3.5 +3.5 -4.5 3.9 - 3.5 - - 

disk ∥  0X -3.5 -1.0 +3.5 3.0 1.0 - - - 

22 X0Z 
sphere ∥  0X -1.5 -0.5 +1.5 1.0 - - - - 

cone ⇅ 0Z +3.0 +1.5 +1.5 2.5 0.0 1.5 - - 

disk ∥  0Y -4.0 +2.5 -3.5 3.0 1.0 - - - 

23 X0Y 
sphere ∥  0Y -4.5 +3.0 -3.0 3.0 - - - - 

cone ⇈ 0Z -2.5 -1.0 +2.5 0.0 2.0 2.0 - - 

partial disk ∥  0X +2.5 +3.5 +4.0 4.0 1.5 - 90° 180° 

24 Y0Z 
sphere ∥  0Z +2.0 +2.0 +3.5 2.0 - - - - 

truncated cone ⇅ 0Y -3.5 +2.5 -2.0 2.0 0.5 2.0 - - 

disk ∥  0X -2.0 -2.5 +3.5 2.5 0.5 - - - 

25 Y0Z 
sphere ∥  0X +2.5 -0.5 -1.5 1.0 - - - - 

cone ⇈ 0Z -2.0 +2.5 -3.5 2.0 0.0 3.0 - - 

partial disk ∥  0Y +4.5 +2.5 +2.5 4.0 1.0 - 0° 45° 

26 Y0Z 
sphere ∥  0Z +4.5 -3.0 +2.5 3.0 - - - - 

truncated cone ⇈ 0X -2.5 -3.0 -3.0 3.0 0.5 2.0 - - 

partial disk ∥  0Y -4.0 +2.5 +4.0 3.5 1.0 - 45° 90° 

27 X0Y 
sphere ∥  0Z -2.5 +3.0 +3.0 2.5 - - - - 

cone ⇅ 0X +3.5 +1.0 -3.5 2.0 0.0 1.0 - - 

disk ∥  0Y -3.5 -0.5 -2.5 2.5 0.0 - - - 

 
  



51 

 
Continuation of Table 5.2 

No. Grid Shape 

Parameter values for quadrics 

axis x0 y0 z0 R r h ∠start ∠sweep 

28 X0Z 
sphere ∥  0Y +4.0 -2.5 -4.5 3.0 - - - - 

cone ⇈ 0X -1.5 -1.5 +4.5 1.5 0.0 2.5 - - 

partial disk ∥  0Z +4.0 +2.5 +3.5 3.5 1.0 - 225° 225° 

29 Y0Z 
sphere ∥  0Z -2.5 +3.5 +4.5 3.0 - - - - 

cylinder ⇈ 0Y -2.5 -2.5 -1.5 1.5 - 2.5 - - 

partial disk ∥  0X +2.0 -2.0 +2.5 2.5 0.5 - 135° 135° 

30 Y0Z 
sphere ∥  0Z +3.5 -2.5 +2.0 2.5 - - - - 

cylinder ⇅ 0X -3.5 -3.5 -3.5 3.0 - 1.0 - - 

disk ∥  0Y -3.0 +2.0 +2.5 2.5 0.0 - - - 

31 X0Y 
sphere ∥  0X -4.0 +2.5 +4.0 3.0 - - - - 

cone ⇅ 0Z +4.0 +2.5 -4.5 3.0 0.0 3.5 - - 

partial disk ∥  0Y -2.5 -1.0 -2.5 2.5 0.5 - 90° 45° 

32 Y0Z 
sphere ∥  0X +3.5 -0.5 +2.5 1.0 - - - - 

truncated cone ⇈ 0Y +4.0 +1.5 -1.5 1.5 2.0 1.5 - - 

disk ∥  0Z -4.0 -2.5 -3.5 3.0 0.5 - - - 

33 X0Y 
sphere ∥  0Y -4.0 +2.0 -3.0 2.5 - - - - 

cylinder ⇈ 0X +2.5 +2.5 +2.0 2.5 - 1.0 - - 

partial disk ∥  0Z +1.5 -0.5 -1.5 1.5 0.0 - 270° 135° 

34 X0Y 
sphere ∥  0Z +4.0 -2.0 -3.0 2.5 - - - - 

cylinder ⇅ 0Y +2.5 +3.0 +3.0 2.5 - 2.5 - - 

partial disk ∥  0X -2.5 +3.5 -3.5 3.5 1.5 - 315° 225° 

35 Y0Z 
sphere ∥  0Y -4.0 -1.5 +2.5 2.0 - - - - 

cylinder ⇈ 0Z +2.0 +2.0 +2.5 2.0 - 1.0 - - 

partial disk ∥  0X +4.0 -2.0 -2.5 2.5 1.0 - 225° 315° 

36 Y0Z 
sphere ∥  0Z +4.0 -2.5 -4.5 3.0 - - - - 

cone ⇈ 0X -2.5 +3.5 -4.0 0.0 2.0 2.0 - - 

disk ∥  0Y +4.5 +3.0 +3.0 3.5 1.5 - - - 

37 X0Y 
sphere ∥  0Z +4.0 +2.0 +3.5 2.0 - - - - 

truncated cone ⇈ 0X +4.5 -3.0 -3.5 3.0 0.5 4.0 - - 

disk ∥  0Y -4.0 -2.0 +3.0 2.5 0.5 - - - 

38 X0Z 
sphere ∥  0Z -2.5 -1.0 +2.5 1.5 - - - - 

cylinder ⇅ 0X +3.0 +2.5 +4.0 2.5 - 3.0 - - 

partial disk ∥  0Y -4.5 +3.5 -3.5 4.0 1.0 - 135° 315° 
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Continuation of Table 5.2 

No. Grid Shape 

Parameter values for quadrics 

axis x0 y0 z0 R r h ∠start ∠sweep 

39 X0Y 
sphere ∥  0X +1.5 +0.5 -1.5 1.0 - - - - 

cone ⇈ 0Z -2.0 -2.0 -3.5 0.0 2.0 3.0 - - 

disk ∥  0Y +4.5 -2.5 +2.5 3.0 0.5 - - - 

40 X0Z 
sphere ∥  0Z -4.5 -2.5 -2.5 2.5 - - - - 

truncated cone ⇈ 0Y +4.5 -3.0 +3.5 3.0 1.5 2.5 - - 

disk ∥  0X +2.0 +2.5 -3.5 3.0 1.0 - - - 

41 X0Y 
sphere ∥  0Z -3.5 +3.5 -3.5 3.5 - - - - 

truncated cone ⇅ 0X +2.0 +1.5 +1.5 1.5 2.0 1.0 - - 

partial disk ∥  0Y +2.5 -1.5 -3.5 3.5 1.0 - 90° 270° 

42 X0Y 
sphere ∥  0Y -3.5 -2.5 -2.0 2.5 - - - - 

truncated cone ⇅ 0X +2.5 -1.0 +3.5 1.0 2.0 1.5 - - 

partial disk ∥  0Z -4.5 +3.0 +3.5 4.5 2.0 - 45° 90° 

43 X0Y 
sphere ∥  0Y -3.5 -3.5 -3.5 4.0 - - - - 

cylinder ⇅ 0Z +3.5 -2.5 +2.0 2.5 - 2.0 - - 

disk ∥  0X -2.5 +2.5 +2.0 2.5 0.5 - - - 

44 Y0Z 
sphere ∥  0Y -2.5 +1.0 -3.5 1.5 - - - - 

truncated cone ⇈ 0X +3.5 -3.5 -4.5 3.5 1.0 3.0 - - 

disk ∥  0Z +4.5 +2.5 +2.0 3.0 0.5 - - - 

45 X0Z 
sphere ∥  0Y +2.0 +1.5 +2.0 2.0 - - - - 

truncated cone ⇈ 0Z +1.5 -1.5 -3.5 1.5 0.5 3.0 - - 

disk ∥  0X -3.5 +0.5 -1.5 1.5 0.0 - - - 

46 X0Z 
sphere ∥  0X +3.5 -3.0 +3.5 3.5 - - - - 

truncated cone ⇈ 0Z -4.0 +1.5 +2.0 2.0 0.5 1.0 - - 

disk ∥  0Y -3.0 -2.5 -4.0 3.0 0.5 - - - 

47 X0Y 
sphere ∥  0Y +2.5 -1.5 -3.5 2.0 - - - - 

cone ⇈ 0Z +3.5 +1.0 +3.0 3.0 0.0 2.5 - - 

disk ∥  0X -2.5 +3.0 -2.5 2.0 0.0 - - - 

48 X0Z 
sphere ∥  0X +3.5 +1.5 -3.5 2.0 - - - - 

cone ⇈ 0Y -4.0 -2.5 -4.0 2.5 0.0 3.0 - - 

disk ∥  0Z -4.5 +2.5 +1.5 2.5 0.0 - - - 

49 Y0Z 
sphere ∥  0Y -2.5 -3.5 -4.5 2.5 - - - - 

truncated cone ⇅ 0Z -2.5 +1.5 +4.0 2.0 0.5 3.0 - - 

disk ∥  0X +2.5 +2.5 -2.5 2.0 0.5 - - - 
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End of Table 5.2 

No. Grid Shape 

Parameter values for quadrics 

axis x0 y0 z0 R r h ∠start ∠sweep 

50 X0Z 
sphere ∥  0X -2.0 -2.5 -3.5 2.5 - - - - 

truncated cone ⇅ 0Z +3.5 -3.0 +2.5 3.0 1.0 2.0 - - 

partial disk ∥  0Y +2.0 +1.5 -1.5 2.0 0.0 - 270° 270° 

51 Y0Z 
sphere ∥  0X +2.5 -3.5 +4.0 2.5 - - - - 

cylinder ⇅ 0Z -2.5 -0.5 -2.5 1.0 - 1.0 - - 

partial disk ∥  0Y -2.5 +3.5 +4.5 4.5 1.5 - 180° 315° 

52 Y0Z 
sphere ∥  0X -3.5 -2.5 -1.5 2.0 - - - - 

cylinder ⇈ 0Z -2.0 +2.0 +2.5 2.0 - 1.0 - - 

disk ∥  0Y +3.5 +0.5 -2.0 2.5 0.0 - - - 

53 X0Z 
sphere ∥  0X +3.5 +1.5 +4.0 2.0 - - - - 

cylinder ⇅ 0Y -3.0 +2.5 -3.5 3.0 - 2.5 - - 

partial disk ∥  0Z +3.0 -1.5 -2.0 3.0 1.0 - 45° 45° 

54 X0Y 
sphere ∥  0Z -3.5 +3.5 -3.5 3.5 - - - - 

cylinder ⇈ 0Y +3.5 +3.5 +4.0 3.5 - 1.0 - - 

disk ∥  0X +4.0 -2.5 -4.0 3.5 1.5 - - - 

55 Y0Z 
sphere ∥  0Y +3.5 -0.5 +2.5 1.5 - - - - 

cone ⇅ 0X +2.0 +2.5 -3.5 2.5 0.0 3.0 - - 

partial disk ∥  0Z -2.5 -2.5 -2.5 2.5 0.5 - 90° 270° 

56 Y0Z 
sphere ∥  0Y -4.0 +2.0 +3.5 2.5 - - - - 

cone ⇅ 0X -2.5 -0.5 -1.5 1.5 0.0 3.0 - - 

disk ∥  0Z +4.5 -3.5 +4.5 3.0 1.0 - - - 

57 X0Z 
sphere ∥  0Z +3.0 +2.0 +2.5 2.0 - - - - 

cone ⇅ 0Y +3.5 -3.5 -3.5 2.5 0.0 3.0 - - 

partial disk ∥  0X -3.5 +3.5 -3.5 3.5 1.0 - 315° 90° 

58 X0Y 
sphere ∥  0X +4.5 +2.5 +2.0 2.5 - - - - 

cylinder ⇅ 0Z +4.5 -2.5 -2.5 2.5 - 1.0 - - 

disk ∥  0Y -4.0 -2.5 +4.5 3.5 0.5 - - - 

59 Y0Z 
sphere ∥  0Y +4.5 +3.0 +2.5 3.0 - - - - 

truncated cone ⇈ 0X -1.5 +1.5 -3.5 1.5 2.5 1.5 - - 

partial disk ∥  0Z -4.5 -3.0 +3.0 4.0 1.5 - 45° 90° 

60 Y0Z 
sphere ∥  0Z -1.5 +1.0 -3.0 1.5 - - - - 

cone ⇅ 0X +1.5 -0.5 -1.5 1.0 0.0 3.0 - - 

partial disk ∥  0Y +4.5 +2.5 +1.5 4.0 1.5 - 135° 45° 
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Practical work № 6. 
SCREEN SAVER & ANIMATION 

Aim of work: study of methods and ways of animation by using 
computational resources of operating system during equipment idle time. 

Task 

Using the teacher specified development tools, create a ScreenSaver with 
animation (Table 6.1). The general algorithm of such a program in Windows is 
shown in Fig. 6.1. Choose the animation plot yourself and agree with the teacher. 

 
Fig. 6.1. The general algorithm of the screen saver in OS Windows 
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Methodical instructions 

Actually ScreenSaver is a typical executable file (only with the .SCR 
extension instead of .EXE), which is controlled via command line parameters 
(«/c» – configure, «/p» – preview, «/s» – show): 
ScreenSaver.scr – show the settings window; 
ScreenSaver.scr /c – show the settings window modally; 
ScreenSaver.scr /s – main full-screen mode of operation; 
ScreenSaver.scr /p hWnd – preview of the main mode in the parent window 

with the hWnd descriptor;  
ScreenSaver.scr /a – setting a password in Windows 95 (legacy 

mode, currently not used). 
Usually the run modes can be implemented separately in two window: Setting 

Form and Main Form (see Fig. 6.1), but only one of them works at application 
startup. To select a run mode for development and debugging (under Visual 
Studio control), the command line parameter is set in the project properties (Fig. 
6.2). 

By default, all screen savers are located in directory 
«c:\windows\system32\*.scr», where you can place your program, too [9]. Also, 
available installation and manual test are running the screensver from the context 
menu of the operating system (Fig. 6.3). 

 
Fig. 6.2. Setting command line parameter in project properties 

It is recommended to divide the development process into several steps. At 
the first step, the analysis of the command line is carried out. At the second, a 
dialog box with settings and a mechanism for reading / saving them if changed. 
At the third, a window with graphics output and animation binding to the program 
inactivity mechanism carried out [11, 12]. After that develop interruption running 
at idle time in the main window by event from the manipulator «mouse» or 
keyboard and adapt algorithm of the Main Form for working in the parent window 
for the preview mode. 
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Fig. 6.3. Installing, starting and configuring the Screen Saver in OS Windows 

Checklist Questions 

1. When is double / triple buffering used? 
2. How is double buffering implemented in OpenGL? 
3. What methods and means of double buffering are there in WinAPI? 
4. What are sprites, what are the principles of their use? 
5. How to implement animation with minimal CPU usage? 
6. What is meant by the terms parent / child window? 

 

Table 6.1 
No. Complexity Assignments Points 

1 

Basic 

Binding animation to operating system idle 
mechanism 2 

2 
Full screen implementation  
(command "/ s") 1 

3 Implementing Screen Saver Settings ("/ c" 
Command) 1 

4 
Implementation of preview (command "/ p") 

1 

5 
Advanced 

Saving the ScreenSaver configuration and 
settings in the OS registry 1 

6 
Using complex and spectacular algorithms for 
image formation (for example, fractals) 2 
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Practical work № 7 
FORWARD KINEMATICS VISUALIZATION 

Aim of work: learn how to use affine transformations to create and control 
the model of physical objects.  

Task 

Using the teacher specified development tools, create an application for 
displaying the manipulator model specified by a kinematic scheme (the 
complexity estimate is given in Table 7.1). To control the model and the viewpoint 
it's necessary to use the keyboard and / or the mouse manipulator to change the 
values of the model's parameters such as the angles , , , the distance S (see 
variants in Table 7.2). 

Methodical instructions 

To simplify calculations, the problem is first considered on the XOY plane. 
After that adding rotation around the OY axis and scaling to the 2D model 
complete 3D model is obtained. 

To solve the problem on the plane, a combination of two affine 
transformations rotation and translation is required. These transformations 
correspond to the OpenGL commands: 

𝑅𝑧(𝜑) =  |

cos 𝜑 sin 𝜑   0    0  
−sin 𝜑 cos 𝜑 0 0

0 0 1 0
0 0 0 1

| → 
// clockwise 

glRotate[f,d]( 𝝋,0,0,-1); 

𝑇(∆𝑦) =  | 

 1  0  0  0 
0 1 0 ∆𝑦
0 0 1 0
0 0 0 1

| → glTranslate[f,d](0, ∆𝒚,0). 

The segment to convert is also specified by the matrix and the OpenGL code: 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑠𝑖𝑧𝑒) =  | 

 0 0
0  𝑠𝑖𝑧𝑒 
0 0
0 0

| → 

glBegin(GL_LINES); 
   glVertex3d(0.0, 0.0, 0.0); 
   glVertex3d(0.0, size, 0.0); 
glEnd(); 

Thus, you should select your set of affin transformations for each segment of 
the manipulator step by step. For example, the sequence of transformations 
(Fig. 7.1) corresponds to the expression: 

𝑆𝑥(𝑠𝑖𝑧𝑒, 𝛼, 𝛽, ∆𝑦) = 𝑅𝑧(𝛽) × 𝑇(∆𝑦) × 𝑅𝑧(𝛼) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑠𝑖𝑧𝑒). 

In addition, some articulation points and a slip point form a triangle, the 
angles of which depend on the value of the parameter S and are calculated 
based on the cosine theorem (see Appendix 3). 
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1 – 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑠𝑖𝑧𝑒) 2 – rotate 𝑅𝑧(𝛼) 3 – translate 𝑇(∆𝑦) 4 – rotate 𝑅𝑧(𝛽) 

Fig. 7.1. Phased formation of a segment in the kinematic scheme  

Table 7.1 

No. Complexity Assignments Points 

1 

Basic 

Implementation of the program of the two-
dimensional model of the manipulator in 
accordance with the option 

5 

2 
Modification of the program to a three-dimensional 
model (rotation of the observation point, scale) 1 

3 Model and point of view control with mouse and / or 
keyboard 

1 

4 Using quadratic primitives to display a kinematic 
diagram 3 

5 Using lighting and defining materials with 
glColorMaterial (...) 4 

6 Report according to the design example 6 
7 

Advanced 

Using OOP (developing your own classes) 1 
8 Using textures for kinematic elements 2 

9 
Defining materials with glMaterial (...), using 
transparency 2 

10 
Using perspective projection to display the 
manipulator model 1 

11 
Implementing shadow lighting from the manipulator 
model 6 

Checklist Questions 

1. What data structures are needed to represent geometric objects in 3D 
space? 

2. How is the stack of transformation matrices used in OpеnGL? 
3. How are light sources used in OpenGL scenes? 
4. How are materials specified for OpеnGL objects? 
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Table 7.2 
No. Parameters Kinematics model 

1 
а = 0.5  
b = 1.2  
c = 0.4 

 

2 
а = 0.4  
b = 0.7  
c = 0.24 

 

3 
а = 0.4  
b = 1.2  

 

4 а = 0.4  
b = 0.7  

 

5 
а = 0.3  
b = 0.8  
c = 0.4 
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Continuation of Table 7.2 
No. Parameters Kinematics model 

6 
а = 0.8  
b = 0.6  
c = 0.6 

 

7 
а = 0.9  
b = 0.24  
c = 0.64 

 

8 а = 0.3  
b = 0.66  

 

9 
а = 0.74  
b = 0.8  
c = 0.32 

 

10 
а = 0.3  
b = 0.36  
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Continuation of Table 7.2 
No. Parameters Kinematics model 

11 
а = 0.28  
b = 0.34 

 

12 
а = 0.6  
b = 0.8 

 

13 
а = 0.8  
b = 0.6 

 

14 
а = 0.46  
b = 0.82  
c = 0.6 

 

15 а = 0.5  
b = 0.3 
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Continuation of Table 7.2 
No. Parameters Kinematics model 

16 
а = 0.6  
b = 1.2  
c = 0.54 

 

17 
а = 0.42  
b = 1.0  
c = 0.56 

 

18 а = 0.4  
b = 0.46 

 

19 а = 0.34  
b = 0.9 

 

20 
а = 0.4  
b = 0.5 
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Continuation of Table 7.2 
No. Parameters Kinematics model 

21 а = 0.3  
b = 0.9 

 

22 
а = 0.3  
b = 1.3  
c = 0.34 

 

23 
а = 0.24  
b = 0.82  
c = 0.4 

 

24 
а = 0.3  
b = 0.5 

 

25 
а = 0.4 
b = 0.9  
c = 0.6 
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End of Table 7.2 
No. Parameters Kinematics model 

26 
А = 0.4  
b = 0.8  
c = 0.34 

 

27 а = 0.2  
b = 0.3  

 

28 
а = 0.3  
b = 0.3  
c = 0.4 

 

29 а = 0.34  
b = 0.24  

 

30 
а = 0.28  
b = 0.86  
c = 0.4 
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Appendix 1. 
INSTALLING PROJECT TEMPLATES  

FOR CREATING OPENGL APPLICATION IN C++ AND C#  

1. Unzip the «OpenGL projects templates.zip» file. 
2. If the operating system and Visual Studio are installed with the default 

settings, you can use the automatic installation using Install.cmd, file, which 
copies the template files to the standard Visual Studio derictories (for 2010, 
2012, 2013, 2015 and 2017 versions). As a result of the batch file operation, 
messages will be displayed on the screen, indicating for which versions of Visual 
Studio the project template files are installed (Fig. A.1.1). 

  
Fig. A.1.1. Installing project templates for Visual Studio 2010, 2015 and 2017 

3. If it was not possible to install templates in automatic mode, then it can be 
done manually by copying the ProjectTemplates and ItemTemplates 
directories from the «OpenGL projects templates.zip» archive according to the 
current system user's directories for each version of Visual Studio, that requires 
these templates. For example, for Visual Studio 2015 the project template 
directories are located as follows (Fig. A.1.2):  

"C:\Users\<User name>\Documents\Visual Studio 2015\Templates\..." 

 
Fig. A.1.2. Standard location of project template directories 

4. When installing templates, it is recommended to close all running instances 
of Visual Studio or restart them after installation / copy project templates. 
Please note that installation directories may vary depending on system regional 
settings of Visual Studio versions and other user settings. Reinstallation 
overwrites the previous version of templates. 
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Appendix 2. 
USING WINDOWSX.H FILE IN C ++ PROJECTS  
TO HANDLE OPERATING SYSTEM MESSAGES 

1. Find out which Windows message is responsible for the event requiring 
processing. 

Example: the WM_SIZE message is responsible for the window resizing 
event. 

 
2. Open the windowsx.h file (in the project it is included in the stdafx.h file, 

Fig. A.2.1) and search (Ctrl + F) for the line, which is formed as follows: in the 
message name, the prefix «WM_» is replaced with «On». 

 

 
Fig. A.2.1. Opening the windowsx.h file using the context menu 

Example: The name of the message WM_SIZE is replaced with OnSize and 
the search for this string is performed (Fig. A.2.2). As a result, the commented 
out line with the prototype of the function that handles the WM_SIZE message is 
found: 

/*void Cls_OnSize(HWND hwnd, UINT state, int cx, int cy)*/ 
 

 
Fig. A.2.2. Finding the prototype of the handler function in the windowsx.h file 
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3. Add the corresponding function to the main program (usually the Cls_ 
prefix is removed) and execute the link between the message handling routine 
WndProc(...) and the event handler routine using the HANDLE_MSG(...) macro. 

 
Example: based on the prototype found in the windowsx.h file, a function is 
added to the program code that will be responsible for the actions performed 
when the window is resized: 
 
void OnSize(HWND hwnd, UINT state, int cx, int cy)  
{ 
 // Commands executed when the window is resized 
} 
 
and binding this function to the general message processing algorithm of the 
operating system: 
 
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM 
wParam, LPARAM lParam) 
{ 
 switch (message){ 
  HANDLE_MSG(hWnd, WM_CREATE, OnCreate); 
  HANDLE_MSG(hWnd, WM_DESTROY, OnDestroy); 
  HANDLE_MSG(hWnd, WM_PAINT, OnPaint); 
  HANDLE_MSG(hWnd, WM_SIZE, OnSize); 
  default:  
   return DefWindowProc(hWnd, message, wParam, lParam); 
 } 
} 
 

4. Do the same with other messages of the operating system that require 
handling in application or non-standard response. 
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Appendix 3. 
EXAMPLE OF FORWARD KINEMATICS VISUALIZATION TASK 

A.3.1. Formulation of the problem 

Develop an application for displaying a manipulator model with a given 
kinematic scheme (Fig. A.3.1) and relative dimensions a = 1.3, b = 1.1, c = 0.55, 
a1 = 0.31a, a2 = 0.69a). To control the movement of the manipulator and / or 
change the viewpoint, it is necessary to use the event handlers of the keyboard 
and / or the mouse manipulator, which change the value of the corresponding 
parameters: 

– angle az – for rotation about the OZ axis; 
– distance S – to change the angles at, ag; 
– angle ay – for rotation about the OY axis. 
 

Z
X

Y

a

b

a1

az

at

ag

c

S

a2

 
 

Fig. A.3.1 Kinematic scheme of the manipulator 

A.3.2. Mathematical model of the kinematic scheme 

The solution to the problem can be carried out in stages. At the first stage, 
the problem is considered as two-dimensional only in one plane. Z = const = 0 
and at the second - in 3D space. 
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A.3.2.1. Affine transformations 

To implement the task on the plane, you can use a combination of two affine 
transformations - rotation and translation. For the given variant, rotation about 
the Z axis is required:  

𝑅𝑧(𝛼) = |

    cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

0 0
0 0

0       0
0       0

1 0
0 1

| (A.3.1) 

and translation along the Y axis: 

𝑇𝑦(𝛿) = |

1 0
0 1

0 0
0 𝛿

0 0
0 0

1 0
0 1

|. (A.3.2) 

To implement the solution in space, additional rotation about the Y axis is 
required: 

𝑅𝑦(𝛼) = |

    cos 𝛼 0
   0 1

sin 𝛼 0
0 0

− sin 𝛼 0
0 0

cos 𝛼 0
0 1

|, (A.3.3) 

rotation around the X axis: 

𝑅𝑥(𝛼) = |

1 0
0     cos 𝛼

0 0
sin 𝛼 0

0  − sin 𝛼
0 0

cos 𝛼 0
0 1

| (A.3.4) 

and scaling along all three axes: 

𝑀𝑥𝑦𝑧(𝑚) = |

𝑚 0
0 𝑚

0  0
0  0

0  0
0  0

𝑚 0
0 1

|. (A.3.5) 

A.3.2.2. Decomposition by segments 

In fact, the kinematic diagram can be represented in the form of three 
segments, which, for simplicity, can be represented as Segments of a given 
size, which in the initial state is a vertical position (along the OY axis): 

 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑠𝑖𝑧𝑒) = |

0
0

0
𝑠𝑖𝑧𝑒

0
1

0
1

|. (A.3.6) 
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Thus, to solve the problem, it is necessary to determine a set of affine 
transformations, which is necessary for the transition from the initial position to 
the one given by the kinematic scheme. 

Mathematical model of segment «а» 
The location of segment a is the same as the starting position of all segments. 

To be displayed as part of a kinematic schema, we denote it as Sa, depending 
on the rotation about the Z axis by the angle az: 

 

𝑆𝑎(𝑎𝑧) =  𝑅𝑧(𝑎𝑧) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑎). (A.3.7) 

Mathematical model of segment «b» 
The position of segment b depends on two angles – az and ag 

(see Fig. A.3.1). In this case, the angle ag, depends on the value of S. Therefore, 
to calculate the angle ag consider a triangle formed by the sides a1, S and c, in 
which one of the interior angles is adjacent to the angle ag. Then we can use the 
cosine theorem, setting the angle adjacent to ag, as (π – ag) and connecting it 
by the following expression with the sides a1, S and c: 

𝑐2 =  𝑎1
 2 + 𝑆2 − 2𝑎1𝑆 cos(𝜋 − 𝑎𝑔). (A.3.8) 

From here we can derive the dependence of the angle ag on the value of S: 

𝑎𝑔(𝑆) = 𝜋 − arccos (
𝑎1

 2 + 𝑆2 − 𝑐2

2𝑎1𝑆
). (A.3.9) 

Thus, to represent the segment as part of the kinematic schema, we 
introduce the designation Sb, the position of which depends on the rotation about 
the Z axis by the angle az and the value of S: 

𝑆𝑏(𝑎𝑧, 𝑆) = 𝑅𝑧(𝑎𝑧) × 𝑇𝑦(𝑎) × 𝑅𝑧(𝑎𝑔(𝑆)) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑏). (A.3.10) 

Mathematical model of segment «c» 
The position of segment c depends on two angles – az and at (see Fig. 

A.3.1). In this case, the angle at, depends on the value of S. Therefore, to 
calculate the angle at consider a triangle formed by the sides a1, S, c and 
containing the angle at. Using the cosine theorem, we can associate the angle 
at with the sides a1, S and c: 

𝑆2 =  𝑎1
 2 + 𝑐2 − 2𝑎1𝑐 cos (𝑎𝑡) (A.3.11) 

and express its dependence on the value of S: 

𝑎𝑡(𝑆) = arccos (
𝑎1

 2 + 𝑐2 − 𝑆2

2𝑎1𝑐
). (A.3.12) 
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Thus, to represent the segment as part of the kinematic schema, we 
introduce the identifier Sc, the position of which depends on the rotation around 
the Z axis by the angle az and the value of S: 

𝑆𝑐(𝑎𝑧, 𝑆) = 𝑅𝑧(𝑎𝑧) × 𝑇𝑦(𝑎2) × 𝑅𝑧(𝑎𝑡(𝑆)) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑐). (A.3.13) 

A.3.2.3. Physical limitations of the model 

To calculate the position of the two segments, the cosine theorem is used, 
which connects the sides of the triangle a1, S and c. Since the change in the 
value of S is used to control the kinematic scheme, it is necessary to take into 
account the limitation on the existence of the triangle: any side of the triangle is 
less than the sum of the other two sides. This constraint can be expressed by 
two predicates: 

𝐶ℎ𝑒𝑐𝑘𝑀𝑎𝑥(𝑆) = 𝑆 < 𝑎1 + 𝑐; 
𝐶ℎ𝑒𝑐𝑘𝑀𝑖𝑛(𝑆) = 𝑆 > 𝑐 − 𝑎1, 

(A.3.14) 

both of which are true when S is within acceptable limits. 

A.3.2.4. General 3D mathematical model 

Having considered the solution of the problem within one plane, we turn to 
the general three-dimensional model. To do this, we will add scaling and 
rotations about the X and Y axes to the rotation about the Z axis. All 
transformations performed for all segments will be denoted as Q: 

𝑄(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑚, 𝑆) =  𝑅𝑥(𝑎𝑥) × 𝑅𝑦(𝑎𝑦) × 𝑀𝑥𝑦𝑧(𝑚) × 𝑅𝑧(𝑎𝑧), (A.3.15) 

then the full 3D model will look like this: 

𝑆𝑎 = 𝑄(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑚, 𝑆) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑎);  
𝑆𝑏 = 𝑄(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑚, 𝑆) × 𝑇𝑦(𝑎) × 𝑅𝑧(𝑎𝑔(𝑆)) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑏);  
𝑆𝑐 = 𝑄(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑚, 𝑆) × 𝑇𝑦(𝑎2) × 𝑅𝑧(𝑎𝑡(𝑆)) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑐),  

(A.3.16) 

and the transformations defined in Q, for efficiency, can be stored, for example, 
in a matrix stack with subsequent restoration at the right moment. 

A.3.3. Software implementation of the kinematic scheme 

A.3.3.1. Source data 

The source data of the kinematic scheme are set by the basic values a, b, c 
and can be represented in the program by ordinary variables. The auxiliary 
values a1, a2 are dependent on a, so the direct assignment operation is prohibited 
for them, which is implemented by declaring them as read-only properties: 
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public partial class RenderControl : OpenGL  
{  
    public double a = 1.3, b = 1.1, c = 0.55;  
    public double a1 { get { return 0.31 * a; } }  
    public double a2 { get { return 0.69 * a; } }  
...  
}  
 

Restrictions can be implemented in a similar way (A.3.14) to control the 
acceptable value of S: 
 
private double s = 0.2; // initial value 
public double S 
{ 
  get { return s; } 
  set { if ((value >= (c-a1)) && (value <= a1+c)) s = value; } 
} 
 

The angles at and ag, are also functional dependences on the value of S (A.3.9), 
(A.3.12), so the assignment operation is invalid for them. The arccos function 
returns the angle value in radians, and the OpenGL commands work with 
degrees, so we additionally perform the conversion from radians to degrees: 
 
public double ag { 
  get { return 180.0/Math.PI * // convert from radians to degrees 
           (Math.PI - Math.Acos((a1*a1 + S*S - c*c) / (2*a1*S)));  
    } 
} 
 
public double at { 
  get { return 180.0/Math.PI * // convert from radians to degrees 
           (Math.Acos((a1*a1 + c*c - S*S) / (2*a1*c)));  
    } 
} 

A.3.3.2. Setup a coordinate system to viewport 

For the correct display of the proportions of the elements of the kinematic 
scheme, it is necessary to use an isotropic coordinate system. This can be 
implemented in the window resize event handler as follows: 
 
if (ClientSize.Width > ClientSize.Height){ 
    int dx = (ClientSize.Width - ClientSize.Height) / 2; 
    glViewport(dx, 0, ClientSize.Height, ClientSize.Height); 
} else { 
    int dy = (ClientSize.Height - ClientSize.Width) / 2; 
    glViewport(0, dy, ClientSize.Width, ClientSize.Width); 
} 
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A.3.3.3. Setting a perspective projection of a scene 

Self-study OpenGL actions and commands for displaying a scene in 
perspective projection. 

A.3.3.4. Modeling object control and user interface 

To organize the interface with the user, we use the keyboard and the mouse. 
Control of the coordinate system and scale will be connected with the events of 
the manipulator «mouse». Let's fix the pressing of the left button in the logical 
variable MoveAxes and save the current coordinates of the manipulator: 
 
private void Mouse_Down(object sender, MouseEventArgs e) 
{ 
    MoveAxes = (e.Button == MouseButtons.Left); 
    dx = e.X; dy = e.Y; 
} 
 

Then, if the left button is not released and the manipulator is moving, we 
associate the horizontal movement with the rotation angle around the Y axis, and 
the vertical movement with the rotation angle around the X axis: 
 
private void Mouse_Move(object sender, MouseEventArgs e) 
{ 
    if (MoveAxes) { 
        ay += (e.X - dx)/1.0; 
        ax += (e.Y - dy)/1.0; 
        dx = e.X; dy = e.Y; 
        Invalidate(); 
    } 
} 
 

After that, we again save the current coordinates of the manipulator and inform 
the window about the need to redraw the work area using the Invalidate() 
method. Tracking the movements of the manipulator until the left button is 
released: 
 
private void Mouse_Up(object sender, MouseEventArgs e) 
{ 
    MoveAxes = MoveAxes && (e.Button != MouseButtons.Left); 
} 
 

In the same way, we track the necessary events of pressing the keys, linking 
the change in the angle of rotation az by one degree with the «Up» and «Down» 
keys, and the value of S – by the value ds ds with the keys «Left», «Right»: 
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private void Key_Down(object sender, PreviewKeyDownEventArgs e) 
{ 
    if (e.KeyCode == Keys.Up)       az += 1; 
    if (e.KeyCode == Keys.Down)     az -= 1; 
    if (e.KeyCode == Keys.Left)     S -= ds; 
    if (e.KeyCode == Keys.Right)    S += ds; 
    Invalidate(); 
} 

To control the zoom, we'll use the scroll wheel, using the e.Delta value as 
the zoom increment: 
 
private void Mouse_Wheel(object sender, MouseEventArgs e) 
{ 
    m += e.Delta / 2000.0; 
    Invalidate(); 
} 

A.3.3.5. Coordinate axes 

To increase the overall clarity and simplify the orientation of the elements of 
the kinematic scheme, you can use the image of the coordinate axes as follows: 
 
private void Axes(double s) 
{ 
    glColor3d(1.0, 1.0, 1.0); 
    glBegin(GL_LINES); 
        glVertex3d(0.0, 0.0, 0.0);  glVertex3d(s, 0.0, 0.0); 
        glVertex3d(0.0, 0.0, 0.0);  glVertex3d(0.0, s, 0.0); 
        glVertex3d(0.0, 0.0, 0.0);  glVertex3d(0.0, 0.0, s); 
    glEnd(); 
    OutText("X", s, 0, 0); 
    OutText("Y", 0, s, 0); 
    OutText("Z", 0, 0, s); 
} 

A.3.3.6. Segment output 

To display any segment in the initial state in accordance with (A.3.6) we use 
the following program code, adding r, g, b values to control the color of the 
rendered shape: 
 
void Segment(double size, double r, double g, double b) 
{ 
    glColor3d(r, g, b);  glLineWidth(5); 
    glBegin(GL_LINES); 
        glVertex3d(0.0, 0.0, 0.0); 
        glVertex3d(0.0, size, 0.0); 
    glEnd(); 
    glLineWidth(1); 
} 
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Using quadric objects 
The results of self-study that were used to solution this problem. 

Defining light parameters 
The results of self-study that were used to solution this problem. 

Defining material parameters 
The results of self-study that were used to solution this problem. 

Surface texturing of scene objects 
The results of self-study that were used to solution this problem. 

Implementing shadow lighting from the manipulator model 
The results of self-study that were used to solution this problem. 

A.3.3.7. The order of affine transformations 

In the final form, the image is formed in the method that is responsible for 
redrawing the entire work area: 
 
public override void OnRender() 
{ 
    // Set the coordinate system 
    glLoadIdentity(); 
    glOrtho(-2, 2, -2, 2, -2, 2); 
 
     // Set general transformations Q 
    glRotated(ax, 1, 0, 0); 
    glRotated(ay, 0, 1, 0); 
    glScaled(m, m, m); 
 
    Axes(1.8); // // Render the coordinate axes 
 
    glRotated(az, 0, 0, -1); 
    Segment(a, 1,0,0); 
 
    // Store the current transformation matrix on the stack 
    glPushMatrix();  
        glTranslated(0, a, 0); 
        glRotated(ag, 0, 0, -1); 
        Segment(b, 0, 0, 1); 
    // Restore the current transformation matrix from the stack 
    glPopMatrix();  
 
    glTranslated(0, a2, 0); 
    glRotated(at, 0, 0, -1); 
    Segment(c, 0, 1, 0); 
 
} 
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A.3.3.8. Project architecture 

Brief information about the development environment of a software project. 
Description of the files included in the project and their purpose. A diagram of the 
developed classes (if the use of OOP is declared). 

A.3.4. Results of the kinematic scheme model visualization 

Examples of screenshot demonstrating the work of the program (examples 
on Fig. A.3.2 – A.3.4). 
 

 
Fig. A.3.2. Visualization of the task with minimal requirements 
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Fig. A.3.3. Example of rendering a task with lighting 

 
Fig. A.3.4. An example of visualizing a problem with quadric objects 

A.3.5. Conclusions 

A brief description of the software/tools are used and the achieved results. 
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