

P. A. Luchshev, N. G. Gulub

COMPUTER GRAPHICS

2024

 MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
National Aerospace University

«Kharkiv Aviation Institute»

P. A. Luchshev, N. G. Gulub

COMPUTER GRAPHICS

Tutorial

Kharkіv «KhAI» 2024

UDC 004.92
 L87

Розглянуто принципи та методи створення програмних додатків із

застосуванням комп'ютерної графіки за допомогою бібліотеки OpenGL,

сучасних мов програмування (C#, С++) і об'єктно-орієнтованої моделі

програмування.
Для студентів напряму «Інженерія програмного забезпечення» при

виконанні практичних робіт, повторенні й вивченні принципів ООП.

Previewers: Doctor of Science, Professor M. Volk,
 Condidate of Science, Associate Professor T. Filimonchuk

L87

Luchshev, P. A.
Computer graphics [Electronic resource] : tutorial / P. A. Luchshev,

N. G. Gulub. – Kharkiv: National Aerospace University «Kharkiv

Aviation Institute», 2024. – 80 с.

The principles and methods of creating software applications that use OpenGL

computer graphics, modern programming languages (C#, C++) and an object-
oriented programming model are considered.

For students of the specialty «Software Engineering» for the implementation of
practical work on 2D and 3D computer graphics, game development, studying and
deepening knowledge of OOP.

Figures 23. Tables 14. Bibliogr. : 12 titles.

 UDC 004.92

©
©

Luchshev P. A., Gulub N. G., 2024
National Aerospace University

«Kharkiv Aviation Institute», 2024

3

INTRODUCTION

The C# language, the Visual Studio integrated development environment and

the OpenGL library are used as the basic tools for the practical work. Usage of
other programming languages, for example, C++, Java and the required software
development tools is allowed in agreement with the teacher.

Each practical work is planned to be completed in two weeks. The execution
of practical work means the development of a software application in according
to the variant of the task and the preparation of a final report. After that the file
with report and the zip-archive containing developed software project are sent to
the student work registration system specified by the teacher, for example:
mentor.khai.edu, Google Classroom etc. It should be noted that student work
registration systems record the completion time of student projects and
subsequent archiving of all practical work. To pass practical work and to be
assessed, the student must personally present his work to the teacher.

Typically a report includes the following parts:
− title page;
− personal task according to variant;
− theoretical information about the graphics solutions are used;
− listing of the program with the task implementation;
− one or several screenshorts of the running program;
− the assessment table with marks of objectives completion.

The archive should contain one directory with the source code of the software
project. That's enough to recompile the project. It's required that the names of
the archive and report file are the same, and only their extensions differ. Also the
file name should contain the group number, student surname, practical work
number, for example:

«631 Petrov #3.docx» – report file;
«631 Petrov #3.zip» – project's files zip-archive.

You can use e-mail mailto:computer.graphix@gmail.com to discuss

organizational issues.

mailto:computer.graphix@gmail.com?subject=Группа,%20ФИО,%20Работа%20№%20?

4

Practical work № 1.
THE PRINCIPLES OF USING OPENGL,

BASIC POSSIBILITIES AND COMMANDS

Aim of work: study the features of creating simple software applications that
use the OpenGL library. Learn how to draw flat convex shapes using geometric
primitives and the coordinate system setting by OpenGL commands.

Task

Using the teacher specified development tools, create a simple software
project that supports the OpenGL. Considering the evaluation system
(Table 1.1), develop a software application program using the OpenGL
commands [1, 2, 6], which sets coordinate system creates and displays the
image on the screen or window, according to specified primitives (Table 1.2) and
coordinate limits x1, y1 and x2, y2 in the task variant. Dotted or dash or dash-
dotted lines must be used to draw the grid. The contour of the figure must be
drawn with a bold line (more than one pixel). For even variants, the points of
figure should be square, and for odd ones, round.

Methodical instructions

OpenGL graphic subsystem is supported on various operating systems and
can be linked to many programming languages. The following is a step-by-step
instruction to create of C++ and C# applications on the Windows platform after
installing the projects templates (see Appendix 1).

OpenGL programming and getting started with C++

To create a new program, select Windows OpenGL Application Project
Template. Note that the Project Template may be in different places depending
on the versions of Visual Studio. For example, in Fig. 1.1 is shown the location
for Visual Studio 2015 and Visual Studio 2017 project template.

The project includes several source files. Pay attention to following files (Fig.
1.2):

− StdWindow.cpp – Implementation of standard activities to initialization,
window creation and organization of a message processing loop for
Windows operating system events. This source code have to be changed
if you add standard operating system controls to the application to organize
the user interface (menus, dialog boxes, etc.).

− glWinApp.cpp – the location of the event's handlers and the applied
OpenGL code. It is assumed that the main part of the objectives will be
implemented in this file (see Appendix 2 «Using the windowsx.h file in C++
projects») [10].

5

Fig. 1.1. OpenGL C++ Project Template location

in Visual Studio 2015 and 2017

Fig. 1.2. C++ Project Template files with OpenGL

6

OpenGL programming and getting started with C#

To create a new project, use the New Project dialog. Note that the location
of the Project Template may vary by version of Visual Studio, like for C++
projects. For example, after the automatic installation of the Project Templates
(see Appendix 1), the dialog for creating a new C # project using OpenGL in
Visual Studio 2017 is shown on Fig.1.3.

Fig. 1.3. Main C++ project template files with OpenGL support

After creating the project, you need to compile the application (Ctrl+Shift+B),
since it includes a component for working with OpenGL, which cannot be placed
on the main form of the application without this step. Thus, after creating the
project, the following set of actions is performed in the specified order (Fig. 1.4):

1. Compiling the project with Ctrl+Shift+B.
2. Double-click to open the Main Form of application in designer mode.
3. Place the RenderControl (component for working with OpenGL) on the

main application form.
4. Select the RenderControl.cs file in the project structure and press the F7

key to proceed to editing the source code.

Checklist Questions

1. How do you get color value for emmited light?
2. How do you get color value for reflected light?
3. How is the point size set?
4. How is the line width set?
5. How is the line pattern (solid, dotted, etc.) set?
6. What commands are used to snap the coordinate system to the window size?

7

7. What is the difference between isotropic and anisotropic coordinate
systems?

Fig. 1.4. Order of actions to start a C# application
based on a project template with OpenGL support

Table 1.1

No. Complexity Assignments Points

1

Basic

When launching the application, the image
matches the option 2

2
Correct display of the task when changing the
size / position of the window 1

3 Development of routines to avoid code
duplication 1

4
Using loops to create images

1

5
Advanced

Rendering the image with vector OpenGL
commands (glDrawArrays, etc.) 1

6
Using OOP (developing your own classes)

2

8

Table 1.2
No. Parameters Shape

1

Primitives:
GL_POINTS, GL_LINES

x1 = 0; x2 = 9
y1 = 0; y2 = 4

2

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -1; x2 = 8
y1 = -2; y2 = 2

3

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -8; x2 = 1
y1 = -3; y2 = 1

4

Primitives:
GL_POINTS, GL_LINES

x1 = -4; x2 = 5
y1 = -1; y2 = 3

5

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -9; x2 = 0
y1 = -4; y2 = 0

6

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -7; x2 = 2
y1 = -1; y2 = 3

9

Continuation of Table 1.2
No. Parameters Shape

7

Primitives:
GL_POINTS, GL_LINES

x1 = 0; x2 = 18
y1 = 0; y2 = 8

8

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -2; x2 = 16
y1 = -4; y2 = 4

9

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -16; x2 = 2
y1 = -6; y2 = 2

10

Primitives:
GL_POINTS, GL_LINES

x1 = -8; x2 = 10
y1 = -2; y2 = 6

11

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -18; x2 = 0
y1 = -8; y2 = 0

12

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -14; x2 = 4
y1 = -2; y2 = 6

10

Continuation of Table 1.2
No. Parameters Shape

13

Primitives:
GL_POINTS, GL_LINES:

x1 = 0; x2 = 4.5
y1 = 0; y2 = 2

14

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -0.5; x2 = 4
y1 = -1; y2 = 1

15

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -4; x2 = 0.5
y1 = -1.5; y2 = 0.5

16

Primitives:
GL_POINTS, GL_LINES

x1 = -2; x2 = 2.5
y1 = -0.5; y2 = 1.5

17

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -4.5; x2 = 0
y1 = -2; y2 = 0

18

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -3.5; x2 = 1
y1 = -0.5; y2 = 1.5

11

Continuation of Table 1.2
No. Parameters Shape

19

Primitives:
GL_POINTS, GL_LINES

x1 = -1; x2 = 8
y1 = -2; y2 = 2

20

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -2; x2 = 7
y1 = -4; y2 = 0

21

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -7; x2 = 2
y1 = -2; y2 = 2

22

Primitives:
GL_POINTS, GL_LINES

x1 = -3; x2 = 6
y1 = 0; y2 = 4

23

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -4; x2 = 5
y1 = -1; y2 = 3

24

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -8; x2 = 1
y1 = -3; y2 = 1

12

Continuation of Table 1.2
No. Parameters Shape

25

Primitives:
GL_POINTS, GL_LINES

x1 = -1.5; x2 = 7.5
y1 = -0.5; y2 = 3.5

26

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -2.5; x2 = 6.5
y1 = -2.5; y2 = 1.5

27

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -9.5; x2 = -0.5
y1 = -3.5; y2 = 0.5

28

Primitives:
GL_POINTS, GL_LINES

x1 = -5.5; x2 = 3.5
y1 = -1.5; y2 = 2.5

29

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -7.5; x2 = 1.5
y1 = -3.5; y2 = 0.5

30

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -8.5; x2 = 0.5
y1 = -1.5; y2 = 2.5

13

Continuation of Table 1.2
No. Parameters Shape

31

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -7.5; x2 = 1.5
y1 = -3.5; y2 = 0.5

32

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -8.5; x2 = 0.5
y1 = -1.5; y2 = 2.5

33

Primitives:
GL_POINTS, GL_LINES

x1 = 0; x2 = 9
y1 = 0; y2 = 4.

34

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -1; x2 = 8
y1 = -2; y2 = 2

35

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -8; x2 = 1
y1 = -3; y2 = 1

36

Primitives:
GL_POINTS, GL_LINES

x1 = -4; x2 = 5
y1 = -1; y2 = 3

14

Continuation of Table 1.2
No. Parameters Shape

37

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -9; x2 = 0
y1 = -4; y2 = 0

38

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -7; x2 = 2
y1 = -1; y2 = 3

39

Primitives:
GL_POINTS, GL_LINES

x1 = 0; x2 = 18
y1 = 0; y2 = 8

40

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -2; x2 = 16
y1 = -4; y2 = 4

41

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -16; x2 = 2
y1 = -6; y2 = 2

42

Primitives:
GL_POINTS, GL_LINES

x1 = -8; x2 = 10
y1 = -2; y2 = 6

15

Continuation of Table 1.2
No. Parameters Shape

43

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -18; x2 = 0
y1 = -8; y2 = 0

44

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -14; x2 = 4
y1 = -2; y2 = 6

45

Primitives:
GL_POINTS, GL_LINES:

x1 = 0; x2 = 4.5
y1 = 0; y2 = 2

46

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -0.5; x2 = -4
y1 = -1; y2 = 1

47

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -4; x2 = 0.5
y1 = -1.5; y2 = 0.5

48

Primitives:
GL_POINTS, GL_LINES

x1 = -2; x2 = 2.5
y1 = -0.5; y2 = 1.5

16

Continuation of Table 1.2
No. Parameters Shape

49

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -4.5; x2 = 0
y1 = -2; y2 = 0

50

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -3.5; x2 = 1
y1 = -0.5; y2 = 1.5

51

Primitives:
GL_POINTS, GL_LINES

x1 = -1; x2 = 8
y1 = -2; y2 = 2

52

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -2; x2 = 7
y1 = -4; y2 = 0

53

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -7; x2 = 2
y1 = -2; y2 = 2

54

Primitives:
GL_POINTS, GL_LINES

x1 = -3; x2 = 6
y1 = 0; y2 = 4

17

End of Table 1.2
No. Parameters Shape

55

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -4; x2 = 5
y1 = -1; y2 = 3

56

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -8; x2 = 1
y1 = -3; y2 = 1

57

Primitives:
GL_POINTS, GL_LINES

x1 = -1.5; x2 = 7.5
y1 = -0.5; y2 = 3.5

58

Primitives:
GL_POINTS, GL_LINE_STRIP

x1 = -2.5; x2 = 6.5
y1 = -2.5; y2 = 1.5

59

Primitives:
GL_POINTS, GL_LINE_LOOP

x1 = -9.5; x2 = -0.5
y1 = -3.5; y2 = 0.5

60

Primitives:
GL_POINTS, GL_LINES

x1 = -5.5; x2 = 3.5
y1 = -1.5; y2 = 2.5

18

Practical work № 2.
OPENGL GRAPHICS PRIMITIVES

Aim of work: explore the concept of tessellation and learn how to use
OpenGL graphics primitives to create surfaces. Master the handling of keyboard
and mouse events to create interactive applications

Task

Using the tools specified by the instructor and taking into account the
requirements given in Table 2.1, create software project with under OpenGL
support. Use the glOrtho / gluOrtho2D and glViewport commands to set the
isotropic coordinate system for the stagenat, taking into account the size of the
figure specified in the variant (Table 2.2). After starting the application one tile in
the workspace should be displayed. An example of the initial state of the
application is shown in Fig. 2.1.

OpenGL Application

Tile count :

Fill mode

Line mode

Point mode

vertical

horizontal 1

1

Fig. 2.1. Application view after start

All variants of tasks are based on regular polygons, the size of which is
determined by the size of one edge. Six colors are supposed to be used for
shading: white, gray (35 %), red, green, blue and yellow.

Using the keyboard or mouse, the user should be able to tessellate, tilling the
work area horizontally and vertically [5]. In this case, the coordinate system must
be adjusted so that the paved surface is located in the center of the work area.
An example of application workspace tiling is shown in Fig. 2.2.

19

OpenGL Application

Tile count :

Fill mode

Line mode

Point mode

vertical

horizontal 4

1

a

OpenGL Application

Tile count :

Fill mode

Line mode

Point mode

vertical

horizontal 5

3

b

Fig. 2.2. Application view when tiled:
a – only horizontally; b – horizontally and vertically

20

In addition, the user should be able to change the display mode of OpenGL
graphic primitives: point (only the vertices of the shape), outline (Fig. 2.3) and
filled with color (see Fig. 2.2). It is assumed that switching between modes is
performed by an event from the keyboard and / or the mouse. In this case, you
can use both standard controls and your own, which are implemented and
displayed using OpenGL (for an increased level of complexity, see Table 2.1).

OpenGL Application

Tile count :

Fill mode

Line mode

Point mode

vertical

horizontal 4

1

Fig. 2.3. An example of controlling the output mode of graphic primitives

Methodical instructions

When displaying images, you should keep in mind that each surface of the
OpenGL graphics primitive has two sides and the output mode for each of them
can be configured separately using the glPolygonMode command.

To change the modes (model) of painting use the glShadeModel command.
If the grayscale shading mode is disabled, the primitive color is determined by
the color of only one vertex. For example, for GL_TRIANGLE_STRIP, the color
of the first triangle is determined by the color of the third vertex, the second – by
the fourth vertex, and so on.

To set the fill pattern, you must use the glEnable / glDisable toggle
commands (as for the line pattern).

21

Checklist Questions

1. How does primitive coloring depend on vertex color and coloring mode?
2. How are the vertex traversal order and the primitive output mode related?
3. What is the difference and how are the inner and outer edges indicated?
4. How to programmatically implement isotropic and anisotropic coordinate

systems?
5. How can I determine the current output mode of primitives?
6. How to set the fill pattern of a primitive?
7. How to find out if a fill pattern (lines) is being used or not?

Table 2.1

No. Complexity Assignments Points

1

Basic

When the application starts, the image
corresponds to the task variant

1

2
Correct display of the task when changing both
the size / position of the window and the tiling
parameters

2

3
Organization of interaction with the user using
one of the standard tools (keyboard, mouse,
etc.)

1

4
Application of the minimum (within the variant)
number of graphic primitives to complete the
task

1

5

Advanced

Creating your own UI elements with OpenGL

2

6 Using OOP (developing your own classes)

1

22

Table 2.2

No. Parameters Shape

1

Side a = 7

Primitive (s):
 GL_TRIANGLE_STRIP

2

Side a = 4.25

Primitive (s):
 GL_TRIANGLES,
 GL_QUADS

3

Side a = 75

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON

4

Side a = 125

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON

5

Side a = 12

Primitive (s):
 GL_TRIANGLES,
 GL_QUADS

6

Side a = 0.05

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON,

23

Continuation of Table 2.2
No. Parameters Shape

7

Side a = 50

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON

8

Side a = 150

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON

9

Side a = 8.5

Primitive (s):
 GL_TRIANGLES,
 GL_QUAD_STRIP

10

Side a = 10

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON

11

Side a = 75

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON

12

Side a = 100

Primitive (s):
 GL_TRIANGLES

24

Continuation of Table 2.2
No. Parameters Shape

13

Side a = 0.2

Primitive (s):
 GL_POLYGON

14

Side a = 1000

Primitive (s):
 GL_TRIANGLES,
 GL_QUAD_STRIP

15

Side a = 30

Primitive (s):
 GL_TRIANGLES,
 GL_QUAD_STRIP

16

Side a = 5

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_POLYGON

17

Side a = 8.5

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON

18

Side a = 100

Primitive (s):
 GL_POLYGON,
 GL_QUADS

25

Continuation of Table 2.2
No. Parameters Shape

19

Side a = 0.15

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_POLYGON

20

Side a = 1500

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUADS

21

Side a = 25

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUADS

22

Side a = 250

Primitive (s):
 GL_POLYGON

23

Side a = 20

Primitive (s):
 GL_TRIANGLES,
 GL_QUAD_STRIP

24

Side a = 10

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON

26

Continuation of Table 2.2
No. Parameters Shape

25

Side a = 3

Primitive (s):
 GL_TRIANGLE_FAN

26

Side a = 20

Primitive (s):
 GL_POLYGON

27

Side a = 30

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_POLYGON

28

Side a = 0.75

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_POLYGON

29

Side a = 0.25

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUADS

30

Side a = 0.5

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUADS

27

Continuation of Table 2.2
No. Parameters Shape

31

Side a = 1

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUADS

32

Side a = 375

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUAD_STRIP

33

Side a = 50

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUADS

34

Side a = 40

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUAD_STRIP

35

Side a = 1500

Primitive (s):
 GL_POLYGON

36

Side a = 2.5

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUAD_STRIP

28

Continuation of Table 2.2
No. Parameters Shape

37

Side a = 2.5

Primitive (s):
 GL_TRIANGLES,
 GL_POLYGON

38

Side a = 15

Primitive (s):
 GL_TRIANGLES,
 GL_POLYGON

39

Side a = 0.75

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUADS

40

Side a = 5

Primitive (s):
 GL_POLYGON

41

Side a = 0.01

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUAD_STRIP

42

Side a = 75

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUAD_STRIP

29

Continuation of Table 2.2
No. Parameters Shape

43

Side a = 2.25

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUADS

44

Side a = 5.5

Primitive (s):
 GL_POLYGON

45

Side a = 0.01

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUADS

46

Side a = 0.375

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_POLYGON

47

Side a = 12

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_POLYGON

48

Side a = 0.75

Primitive (s):
 GL_POLYGON

30

Continuation of Table 2.2
No. Parameters Shape

49

Side a = 45

Primitive (s):
 GL_POLYGON

50

Side a = 400

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUAD_STRIP

51

Side a = 2.25

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUADS

52

Side a = 600

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUADS

53

Side a = 3.5

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_POLYGON

54

Side a = 0.05

Primitive (s):
 GL_POLYGON

31

End of Table 2.2
No. Parameters Shape

55

Side a = 300

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUAD_STRIP

56

Side a = 15

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUAD_STRIP

57

Side a = 0.1

Primitive (s):
 GL_TRIANGLE_FAN,
 GL_QUADS

58

Side a = 3.5

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_POLYGON

59

Side a = 3.75

Primitive (s):
 GL_POLYGON,
 GL_QUAD_STRIP

60

Side a = 1.25

Primitive (s):
 GL_TRIANGLE_STRIP,
 GL_QUADS

32

Practical work № 3.
SINGLE VARIABLE FUNCTION GRAPH

Aim of work: explore the basic concepts and principles of coordinate
transformation for building a two-dimensional graph.

Task

Using the teacher specified development tools, develop a program for plotting
a function of the form 𝑦 = 𝑓(𝑥) on an arbitrary interval from Xmin to Xmax and
display the points of intersection of the function with the abscissa axis. In
addition, the program must have the following capabilities (Table 3.1):

− allow the user to set an interval from Xmin to Xmax with checking
Xmin < Xmax;

− perform automatic scaling along the Y-axis for a user-specified interval
from Xmin to Xmax (in addition, a manual mode for setting Ymin and Ymax is
allowed);

− display the coordinate axes (and / or the coordinate grid) with the output
of the values Xmin, Xmax, Ymin and Ymax, of the boundaries of the visible
area Xmin, Xmax, Ymin and Ymax, while the coordinate system must be
anisotropic;

− display all points where 𝑓(𝑥) = 0, if they are in the specified interval from
Xmin to Xmax.

An example user interface is shown in Fig. 3.1. Function variants 𝑓1(𝑥) of
the basic level of complexity are shown in the Table 3.2.

For an increased level of complexity, it is necessary to additionally implement
the correct output of the function 𝑓2(𝑥), taking into account the scope of the
function definition (options are indicated in Table 3.3) and display the break lines
(Fig. 3.2).

Methodical instructions

After the user has determined the interval along the X axis in the dialog mode,
you should set the number of points N required to plot the function graph. This
number can be set by the user explicitly or obtained programmatically, for
example, correspond to the width (number of pixels) of the work area. Based on
this information, the step of the function argument is calculated:

ℎ =
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

𝑁 − 1

and the coordinates of the function points are calculated within a user-specified
interval:

𝑥𝑖 = 𝑋𝑚𝑖𝑛 + 𝑖 ∙ ℎ; 𝑦𝑖 = 𝑓(𝑥𝑖) ; 𝑖 ∈ 0 . . . 𝑁 − 1.

33

Chart Y = f(x)

Xmax

Xmin -0.2

0.8

Points 480

Xmin Xmax

Ymin

Ymax

min f (xi)

max f (xi) f(x) = 0

Fig. 3.1. An example of a basic functionality requirements for work

Fig. 3.2. Example function 𝑓2(𝑥) and its break lines (shown by a dotted line)

34

Using these calculations, you can find the vertical boundaries of the work
area:

𝑌𝑚𝑖𝑛 = min(𝑦𝑖) ;

𝑌𝑚𝑎𝑥 = max(𝑦𝑖) ;

 𝑖 ∈ 0 . . . 𝑁 − 1.
Thus, knowing the values of the bounds of the interval along the X axis and

calculating the values of the bounds along the Y axis, you can set the coordinate
system (using the glOrtho(...) command) to display the graph
 𝑦 = 𝑓(𝑥) on the screen.

It is possible to find the roots 𝑥0 of the function (points where 𝑓(𝑥0) = 0)
based on the following property: if there is an intersection with the abscissa in
the interval from 𝑥𝑖 to 𝑥𝑖+1, then as a result of the product of the corresponding
ordinates, the condition 𝑓(𝑥𝑖) ∙ 𝑓(𝑥𝑖+1) ≤ 0 (Fig. 3.3) will be satisfied. In this
case, the coordinates of the point of intersection of the function with the X axis
are calculated simplified by the method of half division: 𝑥0 = (𝑥𝑖 + 𝑥𝑖+1) 2⁄ ,
𝑦0 = 𝑓(𝑥0). If we take into account the discreteness of the screen and use the
number of points to plot the function that is close to the width of the working area
(in pixels) or exceeds it, then the simplified half-division method allows you to get
a solution that is visually indistinguishable from the exact one.

xi xi+1

f (xi)

f (xi+1)

x0

y0

Fig. 3.3. Simplified version of the half division method

Students develop the algorithm for the correct display of a function 𝑓2(𝑥),
that has gaps in the definition area on the screen independently. Additional
analysis of the features of your version of the function 𝑓2(𝑥) can be obtained
using the following electronic resources [7].

35

Checklist Questions

1. How to find out the number of pixels in the width and height of the screen?
2. How to determine the size of the client (work) area?
3. How is a forced redrawing of a window done?
4. What is the algorithm for finding the minimum / maximum of a function on an

interval?
5. How to choose a step for plotting a function?
6. How is an isotropic coordinate system different from an anisotropic one?
7. How do I set up a coordinate system using OpenGL commands?
8. What units are used in the Windows coordinate system?

Table 3.1
No. Complexity Assignments Points

1

Basic

The coordinate axes and the graph of the
function f1 (x) are displayed on a user-specified
interval from Xmin to Xmax and from Ymin to
Ymax

1

2
Automatic calculation of Ymin and Ymax on a
given interval from Xmin to Xmax of the function
f1 (x)

2

3 Calculation and display of points f1 (x) = 0 2

4
Advanced

Correct display of the f2 (x) graph (without false
display of breakpoints as points of intersection
with the abscissa axis) and displaying the break
lines of the function

2

5
Using OOP (inheritance, applyingvirtual and
abstract methods) 1

Table 3.2
No. Function f1(x)

1 𝑓1(𝑥) = 2cos(0.1𝑥 + cos 𝑥)

2 𝑓1(𝑥) = tg(cos(2𝑥 + 0.1))

3 𝑓1(𝑥) = arctg(cos13(𝑥 + 2))

4 𝑓1(𝑥) =
sin(𝑥)

cos(2𝑥) + 1.5

5 𝑓1(𝑥) = tg(cos(2𝑥)) +
tg(cos 5𝑥)

2

36

Continuation of Table 3.2
No. Function f1(x)

6 𝑓1(𝑥) = (sin(3𝑥) + 1.5)cos 2x − 1

7 𝑓1(𝑥) =
sin(𝑥 + 1)

cos2(4𝑥) + cos3(3𝑥) + 2

8 𝑓1(𝑥) = sin2(2𝑥) cos3(3𝑥)

9 𝑓1(𝑥) =
cos 3𝑥

cos(5𝑥) + 1.1

10 𝑓1(𝑥) = 5sin(0.2𝑥 + sin 𝑥)

11 𝑓1(𝑥) = tg(1.25 sin 𝑥)

12 𝑓1(𝑥) =
cos(𝜋𝑥)

(sin(5𝜋𝑥 3⁄) + 1.5)3

13 𝑓1(𝑥) =
|cos(0.5𝑥 + 1)| cos 𝑥

|cos(𝑥 + 0.01)|

14 𝑓1(𝑥) =
cos(𝑥)

√cos(6𝑥) + 1.01

15 𝑓1(𝑥) = ctg(sin(0.25𝑥) + 1.05) − 2

16 𝑓1(𝑥) = cos(2𝑥 + 1) − 0.5 ∙ sin(5𝑥)

17 𝑓1(𝑥) =
cos(3𝑥 + 1)

(cos(5𝑥) + 1.21)2

18 𝑓1(𝑥) = sin2(𝑥 + 1) cos3(2𝑥 − 1)

19 𝑓1(𝑥) = tg
0.5 sin(2𝑥)

1.5 + cos(5𝑥)

20 𝑓1(𝑥) = 3 sin(0.2𝑥 + sin 2𝑥)

21 𝑓1(𝑥) = tg(1.3 sin(cos(𝑥) + 𝑥))

37

Continuation of Table 3.2
No. Function f1(x)

22 𝑓1(𝑥) = sin(3cos(𝑥2) + 𝑥)

23 𝑓1(𝑥) =
cos(𝜋𝑥 + 𝜋 4⁄)

√sin(7𝜋𝑥 5⁄) + 1.01

24 𝑓1(𝑥) =
sin(𝜋𝑥 2⁄)

cos(𝜋𝑥) − 𝜋

25 𝑓1(𝑥) = ctg (1.25 sin(2𝑥 + cos(4𝑥)) +
𝜋

2
)

26 𝑓1(𝑥) = tg
0.05 + 𝑠𝑖𝑛 𝑥

1.25 + 𝑐𝑜𝑠 𝑥

27 𝑓1(𝑥) =
cos(𝑥)

√sin(3𝑥) + 1.01

28 𝑓1(𝑥) =
1 − 𝑒2 sin 𝑥

1 + 𝑒3 cos(𝜋𝑥+1)

29 𝑓1(𝑥) = ctg(sin(5𝑥) + 1.15)

30 𝑓1(𝑥) = 5 cos(0.2𝑥 − sin 𝑥)

31 𝑓1(𝑥) = tg(1.25 cos(2𝑥 + cos(6𝑥)))

32 𝑓1(𝑥) =
sin3(𝑥 − 𝜋 2⁄)

cos3(4𝑥) + cos2(3𝑥) + 2

33 𝑓1(𝑥) = cos(sin(2𝑥 + 1) + 𝑥)

34 𝑓1(𝑥) =
cos 3𝑥

√cos(5𝑥 + 1.21)

35 𝑓1(𝑥) = ctg (sin(2𝑥) −
𝜋

2
)

36 𝑓1(𝑥) = tg(sin(𝑥 + cos(2𝑥)))

37 𝑓1(𝑥) = 4 cos4(𝜋𝑥) sin3(2𝜋𝑥)

38

Continuation of Table 3.2
No. Function f1(x)

38 𝑓1(𝑥) =
1 − 𝑒2 sin 𝑥

1 + 𝑒3 cos(𝜋𝑥+1)

39 𝑓1(𝑥) =
cos(𝑥)

sin(𝑥) +
𝜋
2

40 𝑓1(𝑥) = 𝜋 sin(0.3𝑥 − cos 𝑥)

41 𝑓1(𝑥) = tg(1.5 cos(cos(3𝑥) + 𝑥))

42 𝑓1(𝑥) =
2 sin 2𝑥

(cos 𝑥 + 1.5)
+ 1

43 𝑓1(𝑥) = arcsin(cos(𝜋𝑥))

44 𝑓1(𝑥) = (cos(0.5𝑥) + 1.5)−(sin(2x)+1.2) −
𝜋

2

45 𝑓1(𝑥) = ctg (1.25 cos(2𝑥 + cos(5𝑥)) +
𝜋

2
)

46 𝑓1(𝑥) =
𝑒cos|3𝑥|

𝑒sin 𝑥
− 𝜋

47 𝑓1(𝑥) = sin(cos(2𝑥) + 𝑥)

48 𝑓1(𝑥) =
sin(𝑥 + 1)

𝑒cos 4𝑥

49 𝑓1(𝑥) = tg (1.3 sin (𝑥 + 2 cos (
𝑥

2
)))

50 𝑓1(𝑥) = sin(0.75𝑥 − sin 𝑥)

51 𝑓1(𝑥) = tg(1.25 cos(2𝑥 + cos(6𝑥)))

52 𝑓1(𝑥) =
sin (3𝑥 +

𝜋
4)

√cos(5𝑥) + 1.1

53 𝑓1(𝑥) = arccos(sin(𝜋𝑥)) −
𝜋

2

39

End of Table 3.2
No. Function f1(x)

54 𝑓1(𝑥) = sin2(3𝑥) cos3(2𝑥 + 1)

55 𝑓1(𝑥) = ctg (1.25 sin(2𝑥 + sin(4𝑥)) +
𝜋

2
)

56 𝑓1(𝑥) =
cos 3𝑥

𝑒cos(2𝑥−1.5)

57 𝑓1(𝑥) = 𝑒sin 3𝑥−cos|𝑥| − 1

58 𝑓1(𝑥) = cos (
𝑥

2
) −

𝜋

2
+ 𝑒sin 2𝑥∙cos 5𝑥

59 𝑓1(𝑥) = ctg (cos(𝑥) +
𝜋

2
)

60 𝑓1(𝑥) = tg(1.5 cos(sin(3𝑥) + 2𝑥))

Table 3.3

No. Function f2(x)

1 𝑓2(𝑥) = ln(|sin 𝑥|) + sin 3𝑥

2 𝑓2(𝑥) =
cos(𝜋𝑥) 𝑒cos 𝑥

|cos(𝜋𝑥)|
− 0.5

3 𝑓2(𝑥) = tg (
𝜋

2
cos(𝜋𝑥))

4 𝑓2(𝑥) =
sin 𝑥

cos 𝜋𝑥

5 𝑓2(𝑥) =
sin(𝜋𝑥)

ln(cos(𝜋𝑥) + 1)

6 𝑓2(𝑥) =
sin(𝜋𝑥 + 1)

|sin(2𝜋𝑥)|
+ 2 cos(𝜋𝑥)

7 𝑓2(𝑥) =
1

cos 3𝑥
+

1

sin 2𝑥

8 𝑓2(𝑥) = ln(|sin(𝜋𝑥)|) + cos(3.5 ∙ 𝜋𝑥)

40

Continuation of Table 3.3
No. Function f2(x)

9 𝑓2(𝑥) = 𝑒2 cos 𝜋𝑥 tg
𝜋𝑥

3

10 𝑓2(𝑥) = 𝑒− sin(3𝜋𝑥) tan (
𝜋

2
cos(𝜋𝑥))

11 𝑓2(𝑥) =
cos(𝜋𝑥)

|cos(𝜋𝑥)|
+ 𝑒

cos(
𝜋𝑥
2

)

12 𝑓2(𝑥) = tg(2 sin(𝑥))

13 𝑓2(𝑥) =
cos(𝜋𝑥 2⁄) cos|𝜋𝑥|

|sin(𝜋𝑥)|

14 𝑓2(𝑥) = ln(1 + cos(𝑥)) lg(2 + sin(5𝑥))

15 𝑓2(𝑥) = 𝑒− tg 𝜋𝑥 cos(3𝜋𝑥)

16 𝑓2(𝑥) = tg (
𝜋𝑥

3
)

cos(𝜋𝑥)

|cos(𝜋𝑥)|

17 𝑓2(𝑥) = ln(sin 𝑥 + 1) + cos(4𝑥 + 1)

18 𝑓2(𝑥) = tg (
𝜋

2
cos(𝜋𝑥)) + sin(2𝜋𝑥)

19 𝑓2(𝑥) = 𝑒−1 (10∙cos(𝜋𝑥))⁄ sin(𝜋𝑥)

20 𝑓2(𝑥) =
sin(𝜋𝑥 2⁄) sin|3𝜋𝑥|

|sin(𝜋𝑥)|

21 𝑓2(𝑥) = ctg(𝑥) cos(𝜋𝑥)

22 𝑓2(𝑥) = sin(3𝑥) + ln(cos(𝑥) + 1)

23 𝑓2(𝑥) = tg(𝑒𝑥)

24 𝑓2(𝑥) =
cos(𝜋𝑥)

|cos(𝜋𝑥)|
+ ln(cos(𝜋 𝑥 2⁄) + 1) + 1

25 𝑓2(𝑥) = tg(𝑥) cos(𝜋𝑥)

26 𝑓2(𝑥) =
|cos(𝜋𝑥)|

cos(𝜋𝑥)
+ 2 cos (

𝜋𝑥

2
)

41

Continuation of Table 3.3
No. Function f2(x)

27 𝑓2(𝑥) = ln(sin(𝜋𝑥) + 1) + 𝑒sin(3𝜋𝑥)

28 𝑓2(𝑥) = lg(cos(2𝜋𝑥) + 1) + 𝑒sin 3𝜋𝑥

29 𝑓2(𝑥) =
1

ln(sin(𝜋𝑥) + 1)
− 𝑒2 cos(3𝜋𝑥)

30 𝑓2(𝑥) =
cos(𝜋𝑥) ln(cos(𝜋 𝑥 2⁄) + 1)

|cos(𝜋𝑥)|

31 𝑓2(𝑥) = lg(sin(2𝑥) + 1) + 𝑒2 cos 𝑥 − 𝜋

32 𝑓2(𝑥) =
|sin(𝜋𝑥)|

sin(𝜋𝑥)
+ 2 cos(𝜋𝑥)

33 𝑓2(𝑥) = 𝑒− cos(3𝜋𝑥) tg (
𝜋

2
sin(𝜋𝑥))

34 𝑓2(𝑥) = tg (
𝜋

2
+ sin(3𝑥)) + 2 cos 𝑥

35 𝑓2(𝑥) =
sin(2𝜋𝑥)

|sin(𝜋𝑥)|
− 2 sin(𝜋𝑥)

36 𝑓2(𝑥) = ln(sin(𝑥) + 1) cos(4𝑥 + 1)

37 𝑓2(𝑥) = 𝑒− cos(4𝜋𝑥) tg (
𝜋

2
sin(𝜋𝑥)) +cos(𝜋𝑥)

38 𝑓2(𝑥) =
cos(3𝜋𝑥)

ln(sin(𝜋𝑥) + 1)

39 𝑓2(𝑥) =
cos(𝜋𝑥) ln(sin(𝑥 2⁄) + 1)

|cos(𝜋𝑥)|

40 𝑓2(𝑥) = 𝑒sin(4𝜋𝑥) +ln(cos(𝜋𝑥) + 1)

41 𝑓2(𝑥) =
lg(cos(2𝜋𝑥) + 1)

𝑥

42 𝑓2(𝑥) =
sin(𝜋𝑥 2⁄) sin|𝜋𝑥|

|sin(𝜋𝑥)|

43 𝑓2(𝑥) = arctg(tan(𝜋𝑥) − 5 cos(𝜋𝑥))

44 𝑓2(𝑥) = 𝑒− cos(4𝜋𝑥) ctg (
𝜋

2
sin(𝜋𝑥)) − sin(2𝜋𝑥)

42

End of Table 3.3

No. Function f2(x)

45 𝑓2(𝑥) = ctg (
𝜋

2
sin(𝜋𝑥)) + cos(2𝜋𝑥)

46 𝑓2(𝑥) =
(𝑥2 + 1) cos(2𝜋𝑥)

(𝑥2 − 1) sin(2𝜋𝑥)

47 𝑓2(𝑥) =
cos(𝜋𝑥) 𝑒sin 𝑥

|cos(𝜋𝑥)|
+

𝜋

2

48 𝑓2(𝑥) =
(9 − 𝑥2) cos(𝑥)

(9 + 𝑥2) sin(𝑥 + 1)

49 𝑓2(𝑥) = 𝑒cos(4𝜋𝑥) ln(sin(𝜋𝑥) + 1)

50 𝑓2(𝑥) =
sin(𝜋𝑥 2⁄ + 2) |cos(3𝜋𝑥)|

sin|𝜋𝑥|
+ 0.5

51 𝑓2(𝑥) =
sin(𝜋𝑥)

|sin(𝜋𝑥)|
+ ln(sin(𝜋 𝑥 3⁄) + 1) + 2

52 𝑓2(𝑥) = 𝑒tg(𝜋𝑥 2⁄) − 3 cos(𝜋𝑥)

53 𝑓2(𝑥) =
cos(2𝜋𝑥)

ln(cos(3𝜋𝑥) + 1)

54 𝑓2(𝑥) = 𝑒sin(4𝜋𝑥) ln(cos(𝜋𝑥) + 1)

55 𝑓2(𝑥) = 𝑒tg(𝜋𝑥 2⁄) − 5 cos(5𝜋𝑥)

56 𝑓2(𝑥) = ctg (
𝜋𝑥

2
)

cos(𝜋𝑥)

|cos(𝜋𝑥)|

57 𝑓2(𝑥) =
cos(𝜋𝑥 2⁄) cos|𝜋𝑥|

|cos(𝜋𝑥)|

58 𝑓2(𝑥) = ln(cos(3𝑥) + 1) sin 𝑥

59 𝑓2(𝑥) = ctg (
𝜋

2
sin(3𝜋𝑥)) cos(𝜋𝑥)

60 𝑓2(𝑥) = 𝑒ctg(𝜋𝑥) − 5 sin(4𝜋𝑥)

43

Practical work № 4.
A CONIC SECTION CURVES

Aim of work: explore mathematical methods and tools for the
implementation of graphical primitives.

Task

Using the teacher specified development tools, develop a program for
displaying conic section curves on the screen (to a Windows form) using lines.
The grading system is shown in Table 4.1, and the options for the tasks are in
Table 4.2. For curves marked with "++" in the variant, find and display the
intersection points, if any, with an arbitrary segment, the coordinates of which
are set by the user.

Methodical instructions

Each curve of the second order can be represented as a sequence of line
segments. In this case, the intersection of a second-order curve and an arbitrary
segment can be considered as a search for a common point [𝑥0, 𝑦0] of two
segments[𝑥1, 𝑦1], [𝑥2, 𝑦2] and [𝑥3, 𝑦3], [𝑥4, 𝑦4], given in parametric form (one of
which is a fragment of the curve). This problem can be represented as a system
consisting of two linear equations with unknown parameters of the first and
second segments:

{
𝑥0 = (𝑥2 − 𝑥1)𝑡1 + 𝑥1 = (𝑥4 − 𝑥3)𝑡2 + 𝑥3

𝑦0 = (𝑦2 − 𝑦1)𝑡2 + 𝑦1 = (𝑦4 − 𝑦3)𝑡2 + 𝑦3
 ;

provided that the result of the solution will satisfy the following two conditions:
0 ≤ 𝑡1 ≤ 1 and 0 ≤ 𝑡2 ≤ 1, Otherwise, the segments are either parallel, or only
the straight lines on which they lie intersect [3, 8].

Checklist Questions

1. What is the difference between the explicit and parametric representations of
a line?

2. What are the advantages and / or disadvantages of various forms presented
of conic section curves in computer graphics?

3. How to draw a Bezier curve using lines in parametric view?
4. What is the difference when constructing second- and third-order Bezier

curves using parametric line segments?
5. How are affine transformations performed on Bezier curves?
6. Describe all the options for solving the problem of finding the intersection

point of two segments, given in a parametric form.

44

Table 4.1
No. Complexity Assignments Points

1

Basic

Setting an isotropic coordinate system for a
resizable window 1

2 Output of conic section curves in according the
variant of the task 2

3
Drawing a line and calculating its intersection
points with a conic section curve in according
the variant

2

4
Advanced

Specifying the position of points the segment, in
the graphic area using the mouse manipulator 2

5 Using OOP 1

Table 4.2

No.

Circle Ellipse Hyperbola Parabola
representation representation representation representation

explicit parametric explicit parametric explicit parametric explicit parametric

1 + ++
2 ++ +
3 ++ +
4 + ++
5 ++ +
6 ++ +
7 + ++
8 + ++
9 + ++

10 + ++
11 ++ +
12 + ++
13 ++ +
14 + ++
15 + ++
16 ++ +
17 ++ +
18 ++ +
19 ++ +
20 + ++
21 ++ +
22 ++ +
23 ++ +

45

End of Table 4.2

No.

Circle Ellipse Hyperbola Parabola
representation representation representation representation

explicit parametric explicit parametric explicit parametric explicit parametric

24 + ++
25 + ++
26 + ++
27 + ++
28 + ++
29 ++ +
30 + ++
31 + ++
32 + ++
33 + ++
34 + ++
35 ++ +
36 + ++
37 ++ +
38 ++ +
39 ++ +
40 ++ +
41 ++ +
42 + ++
43 + ++
44 + ++
45 ++ +
46 + ++
47 ++ +
48 ++ +
49 + ++
50 ++ +
51 ++ +
52 + ++
53 + ++
54 + ++
55 + ++
56 ++ +
57 ++ +
58 ++ +
59 ++ +
60 ++ +

46

Practical work № 5.
QUADRICS. 3D AFFINE TRANSFORMATIONS

Aim of work: learn how to work with three-dimensional graphics primitives
OpenGL and apply affine transformations to place objects in 3D space.

Task

Using the teacher specified development tools, develop a program using
OpenGL tools that establishes an isotropic coordinate system, creates and
displays an image of a three-dimensional scene with such elements (the
assessment system is given in Table 5.1, and the options for the tasks are in
Table 5.2):

− coordinate axes with zero in the center of the screen and indicate the axis
and positive direction;

− coordinate grid (grid) in one of the planes (X0Y, X0Z or Y0Z);
− three quadratic shapes – gluDisk / gluPartialDisk, gluSphere,

gluCylinder in wireframe display mode and glEnable simplified lighting
model (GL_COLOR_MATERIAL) for basic complexity;

− clipping plane for one of the shapes (sphere, cylinder, or cone);
− a full-fledged lighting model and / or textures for the implementation of a

task with increased complexity.
The parameters of detailing objects (slices, stacks), color, thickness and line

type are chosen independently. An example scene is shown in Fig. 5.1.

Fig. 5.1. Example scene with quadratic objects

and clipping plane for sphere

OpenGL Application

-3

A 1

Fill mode

Line mode

Clip plane

B 0

C 0

D

Ortho

Perspective

47

The minimum user interface should provide the ability to rotate the scene
relative to the OX and OY axes using the mouse manipulator and control the
clipping plane parameters [4].

Methodical instructions

An isotropic coordinate system can be established in two ways.
In the first case, using the glViewport command, set the working area in
accordance with the smaller value of the width / height of the window, and in the
second, enter a correction factor (or divisor) equal to the ratio of the window width
and height when setting the coordinate system (for example, with the glOrtho
command). The depth must be set in such a way that, at any position of the given
scene, all objects are within the visible area.

To display quadric primitives, an object origin point is used. In general, in the
absence of affine transformations, this origin point of the object coincides with
the zero point of the coordinate system. The origin point for the sphere and disk
(full and partial) is their center, and for a cylinder (cone) – the center as one of
the bases. To place each of the three quadrcs according to the variant of the
task, you must use one of the affine transformations or their combination:
rotation, translation, scaling.

After transformations, the origin point should be located at the coordinates
x0, y0, z0, and the object axis should be parallel (∥) to a sphere / disk or collinear
(⇈, ⇅) for a cylinder / cone, taking into account the option. When making images
with quadric objects, the following parameters are used:

x0, y0, z0 – coordinates of the shape's origin point;
R –

the radius of the sphere or the radius of the base of the
cylinder / cone centered at the anchor point or the outer
radius of the disc;

r – radius of the second base of the cylinder / truncated cone;
inner radius of the disc;

h – cylinder / cone / truncated cone height;
∠start – the starting angle of the partial disc;

∠sweep – the end angle for partial disc;
axis ∥,⇈,⇅ – parallelism / collinearity of coordinate axes and figures.

Checklist Questions

1. On what basis and by what command can the front and back sides of the
surface be set?

2. What parameters of the lighting model are adjusted using the glLightModel
command?

3. How does the surface normal affect the calculation of the illumination of
objects and with what commands is it set?

4. What are the commands for setting fog in object lighting calculations?
5. What fog models does OpenGL use?

48

Table 5.1
No. Complexity Assignments Points

1

Basic

Correct (isotropic) display of the task (when
resizing the window) in orthographic projection 1

2
When launching the application, the axes 0X,
0Y, 0Z, are displayed, the grid and the
wireframe of quadrac objects

1

3
Clipping plane parameters controled by user
interface 1

4 Setting scene lights and material of quadrics
with glColorMaterial command 1

5 Using Display Lists 1

6

Advanced

Creating a perspective view of a scene 1

7 Blending a texture onto a surface with shapes
specified by a variant 1

8
Using the glMaterial command to adjust the
reflection parameters of the surface of scene
objects

1

Table 5.2

No. Grid Shape

Parameter values for quadrics

axis x0 y0 z0 R r h ∠start
∠swee

p

1 Y0Z
sphere ∥ 0X -1.5 -0.5 +2.5 1.0 - - - -
cone ⇅ 0Y +3.5 +1.5 +4.0 1.5 0.0 1.5 - -
disk ∥ 0Z +2.0 -2.0 -3.5 1.5 0.0 - - -

2 X0Y
sphere ∥ 0Y -4.0 -2.5 -4.5 3.0 - - - -
truncated cone ⇅ 0X -4.5 +2.5 +2.5 2.5 0.5 2.0 - -
disk ∥ 0Z +3.5 -1.0 +3.0 2.0 0.0 - - -

3 X0Y
sphere ∥ 0X +2.5 +3.5 +4.5 3.0 - - - -
truncated cone ⇈ 0Z +1.5 -0.5 -1.5 1.0 2.0 1.5 - -
partial disk ∥ 0Y -3.5 -2.5 +2.0 3.5 1.0 - 180° 90°

4 X0Y
sphere ∥ 0X -2.5 -2.5 -1.5 2.0 - - - -
cylinder ⇈ 0Y +1.5 -1.0 +3.0 1.5 - 2.0 - -
partial disk ∥ 0Z -4.0 +2.5 +4.5 4.0 1.5 - 90° 90°

5 X0Y
sphere ∥ 0X -2.0 +2.0 -3.0 2.5 - - - -
truncated cone ⇅ 0Y -1.5 -1.0 +3.0 1.5 0.5 1.0 - -
disk ∥ 0Z +1.5 +0.5 +1.5 1.0 0.0 - - -

49

Continuation of Table 5.2

No. Grid Shape

Parameter values for quadrics

axis x0 y0 z0 R r h ∠start ∠sweep

6 X0Y
sphere ∥ 0Y +3.0 +2.0 -3.5 2.5 - - - -
cylinder ⇅ 0Z -4.5 -3.0 -3.5 3.0 - 1.5 - -
partial disk ∥ 0X +4.5 -2.5 +1.5 2.5 1.0 - 270° 270°

7 X0Z
sphere ∥ 0Z +2.5 -0.5 -2.5 1.0 - - - -
cone ⇅ 0Y -3.5 -2.5 +2.5 0.0 2.5 2.0 - -
disk ∥ 0X +4.5 +3.5 +4.5 4.0 1.5 - - -

8 X0Y
sphere ∥ 0X -2.5 -1.0 -2.5 1.5 - - - -
cylinder ⇈ 0Y -4.0 +2.5 +4.0 3.5 - 1.0 - -
disk ∥ 0Z +3.5 -1.0 +3.0 1.0 0.0 - - -

9 X0Z
sphere ∥ 0Y +1.5 +1.0 +2.5 1.5 - - - -
truncated cone ⇅ 0Z -2.0 +1.5 -2.5 1.5 0.5 1.0 - -
partial disk ∥ 0X +3.5 -0.5 -2.5 2.5 0.5 - 90° 45°

10 Y0Z
sphere ∥ 0X -3.5 -3.0 -3.5 3.0 - - - -
truncated cone ⇅ 0Y -2.0 +2.0 +3.5 2.0 0.5 2.0 - -
partial disk ∥ 0Z +2.5 +2.5 -2.0 2.5 0.5 - 135° 90°

11 X0Z
sphere ∥ 0Y -1.5 +1.0 +3.0 1.5 - - - -
cone ⇅ 0Z +3.5 -1.0 +3.0 0.0 3.0 2.5 - -
disk ∥ 0X -4.0 -2.0 -2.5 3.0 1.0 - - -

12 X0Z
sphere ∥ 0Z +4.0 +1.5 +2.5 2.0 - - - -

cylinder ⇈ 0X -3.5 +1.5 -4.5 1.5 - 3.0 - -

disk ∥ 0Y +3.5 -1.0 -3.5 3.0 1.5 - - -

13 Y0Z
sphere ∥ 0Z -4.5 -3.5 +3.5 3.5 - - - -

truncated cone ⇅ 0Y +3.0 +2.0 +2.5 2.5 1.0 2.0 - -

partial disk ∥ 0X +4.5 -3.5 -4.5 4.5 1.5 - 180° 90°

14 X0Z
sphere ∥ 0Z +2.5 +1.0 -2.5 1.5 - - - -

truncated cone ⇈ 0Y -3.0 -2.5 -4.5 3.0 1.0 2.5 - -

partial disk ∥ 0X -3.5 +0.5 +2.0 2.0 0.0 - 225° 180°

15 X0Y
sphere ∥ 0Z -2.5 -2.5 -2.5 2.5 - - - -

cone ⇈ 0Y -4.0 +2.0 +2.5 0.0 2.5 1.5 - -

partial disk ∥ 0X +1.5 -1.5 +3.5 3.5 0.5 - 135° 270°

16 X0Z
sphere ∥ 0Z +4.0 -1.5 +2.0 2.0 - - - -

cone ⇈ 0X -3.5 +0.5 +2.0 0.0 1.0 2.5 - -

partial disk ∥ 0Y -2.5 -1.5 -3.5 3.5 1.0 - 0° 45°

50

Continuation of Table 5.2

No. Grid Shape

Parameter values for quadrics

axis x0 y0 z0 R r h ∠start ∠sweep

17 X0Z
sphere ∥ 0X +2.0 +1.5 +2.0 2.0 - - - -

cylinder ⇅ 0Y +4.5 -3.5 -4.0 4.0 - 1.0 - -

disk ∥ 0Z -2.0 +2.0 -2.5 1.5 0.0 - - -

18 X0Z
sphere ∥ 0Y -2.0 -2.5 -4.0 2.5 - - - -

cylinder ⇈ 0X +2.0 -2.5 +4.5 2.0 - 1.0 - -

disk ∥ 0Z +3.5 +3.5 -3.5 3.0 0.5 - - -

19 X0Z
sphere ∥ 0Y +2.5 +1.0 -3.5 1.5 - - - -

cylinder ⇅ 0X -2.5 -3.5 -4.5 2.5 - 1.5 - -

partial disk ∥ 0Z -3.5 +3.0 +3.0 3.5 1.0 - 180° 135°

20 X0Z
sphere ∥ 0X -1.5 +1.5 +3.5 2.0 - - - -

cone ⇈ 0Y +3.5 -3.0 +3.0 3.0 0.0 2.5 - -

partial disk ∥ 0Z -2.0 -2.5 -4.0 2.5 0.5 - 180° 90°

21 Y0Z
sphere ∥ 0Y +2.5 +0.5 +2.0 1.0 - - - -

cylinder ⇈ 0Z -3.5 +3.5 -4.5 3.9 - 3.5 - -

disk ∥ 0X -3.5 -1.0 +3.5 3.0 1.0 - - -

22 X0Z
sphere ∥ 0X -1.5 -0.5 +1.5 1.0 - - - -

cone ⇅ 0Z +3.0 +1.5 +1.5 2.5 0.0 1.5 - -

disk ∥ 0Y -4.0 +2.5 -3.5 3.0 1.0 - - -

23 X0Y
sphere ∥ 0Y -4.5 +3.0 -3.0 3.0 - - - -

cone ⇈ 0Z -2.5 -1.0 +2.5 0.0 2.0 2.0 - -

partial disk ∥ 0X +2.5 +3.5 +4.0 4.0 1.5 - 90° 180°

24 Y0Z
sphere ∥ 0Z +2.0 +2.0 +3.5 2.0 - - - -

truncated cone ⇅ 0Y -3.5 +2.5 -2.0 2.0 0.5 2.0 - -

disk ∥ 0X -2.0 -2.5 +3.5 2.5 0.5 - - -

25 Y0Z
sphere ∥ 0X +2.5 -0.5 -1.5 1.0 - - - -

cone ⇈ 0Z -2.0 +2.5 -3.5 2.0 0.0 3.0 - -

partial disk ∥ 0Y +4.5 +2.5 +2.5 4.0 1.0 - 0° 45°

26 Y0Z
sphere ∥ 0Z +4.5 -3.0 +2.5 3.0 - - - -

truncated cone ⇈ 0X -2.5 -3.0 -3.0 3.0 0.5 2.0 - -

partial disk ∥ 0Y -4.0 +2.5 +4.0 3.5 1.0 - 45° 90°

27 X0Y
sphere ∥ 0Z -2.5 +3.0 +3.0 2.5 - - - -

cone ⇅ 0X +3.5 +1.0 -3.5 2.0 0.0 1.0 - -

disk ∥ 0Y -3.5 -0.5 -2.5 2.5 0.0 - - -

51

Continuation of Table 5.2

No. Grid Shape

Parameter values for quadrics

axis x0 y0 z0 R r h ∠start ∠sweep

28 X0Z
sphere ∥ 0Y +4.0 -2.5 -4.5 3.0 - - - -

cone ⇈ 0X -1.5 -1.5 +4.5 1.5 0.0 2.5 - -

partial disk ∥ 0Z +4.0 +2.5 +3.5 3.5 1.0 - 225° 225°

29 Y0Z
sphere ∥ 0Z -2.5 +3.5 +4.5 3.0 - - - -

cylinder ⇈ 0Y -2.5 -2.5 -1.5 1.5 - 2.5 - -

partial disk ∥ 0X +2.0 -2.0 +2.5 2.5 0.5 - 135° 135°

30 Y0Z
sphere ∥ 0Z +3.5 -2.5 +2.0 2.5 - - - -

cylinder ⇅ 0X -3.5 -3.5 -3.5 3.0 - 1.0 - -

disk ∥ 0Y -3.0 +2.0 +2.5 2.5 0.0 - - -

31 X0Y
sphere ∥ 0X -4.0 +2.5 +4.0 3.0 - - - -

cone ⇅ 0Z +4.0 +2.5 -4.5 3.0 0.0 3.5 - -

partial disk ∥ 0Y -2.5 -1.0 -2.5 2.5 0.5 - 90° 45°

32 Y0Z
sphere ∥ 0X +3.5 -0.5 +2.5 1.0 - - - -

truncated cone ⇈ 0Y +4.0 +1.5 -1.5 1.5 2.0 1.5 - -

disk ∥ 0Z -4.0 -2.5 -3.5 3.0 0.5 - - -

33 X0Y
sphere ∥ 0Y -4.0 +2.0 -3.0 2.5 - - - -

cylinder ⇈ 0X +2.5 +2.5 +2.0 2.5 - 1.0 - -

partial disk ∥ 0Z +1.5 -0.5 -1.5 1.5 0.0 - 270° 135°

34 X0Y
sphere ∥ 0Z +4.0 -2.0 -3.0 2.5 - - - -

cylinder ⇅ 0Y +2.5 +3.0 +3.0 2.5 - 2.5 - -

partial disk ∥ 0X -2.5 +3.5 -3.5 3.5 1.5 - 315° 225°

35 Y0Z
sphere ∥ 0Y -4.0 -1.5 +2.5 2.0 - - - -

cylinder ⇈ 0Z +2.0 +2.0 +2.5 2.0 - 1.0 - -

partial disk ∥ 0X +4.0 -2.0 -2.5 2.5 1.0 - 225° 315°

36 Y0Z
sphere ∥ 0Z +4.0 -2.5 -4.5 3.0 - - - -

cone ⇈ 0X -2.5 +3.5 -4.0 0.0 2.0 2.0 - -

disk ∥ 0Y +4.5 +3.0 +3.0 3.5 1.5 - - -

37 X0Y
sphere ∥ 0Z +4.0 +2.0 +3.5 2.0 - - - -

truncated cone ⇈ 0X +4.5 -3.0 -3.5 3.0 0.5 4.0 - -

disk ∥ 0Y -4.0 -2.0 +3.0 2.5 0.5 - - -

38 X0Z
sphere ∥ 0Z -2.5 -1.0 +2.5 1.5 - - - -

cylinder ⇅ 0X +3.0 +2.5 +4.0 2.5 - 3.0 - -

partial disk ∥ 0Y -4.5 +3.5 -3.5 4.0 1.0 - 135° 315°

52

Continuation of Table 5.2

No. Grid Shape

Parameter values for quadrics

axis x0 y0 z0 R r h ∠start ∠sweep

39 X0Y
sphere ∥ 0X +1.5 +0.5 -1.5 1.0 - - - -

cone ⇈ 0Z -2.0 -2.0 -3.5 0.0 2.0 3.0 - -

disk ∥ 0Y +4.5 -2.5 +2.5 3.0 0.5 - - -

40 X0Z
sphere ∥ 0Z -4.5 -2.5 -2.5 2.5 - - - -

truncated cone ⇈ 0Y +4.5 -3.0 +3.5 3.0 1.5 2.5 - -

disk ∥ 0X +2.0 +2.5 -3.5 3.0 1.0 - - -

41 X0Y
sphere ∥ 0Z -3.5 +3.5 -3.5 3.5 - - - -

truncated cone ⇅ 0X +2.0 +1.5 +1.5 1.5 2.0 1.0 - -

partial disk ∥ 0Y +2.5 -1.5 -3.5 3.5 1.0 - 90° 270°

42 X0Y
sphere ∥ 0Y -3.5 -2.5 -2.0 2.5 - - - -

truncated cone ⇅ 0X +2.5 -1.0 +3.5 1.0 2.0 1.5 - -

partial disk ∥ 0Z -4.5 +3.0 +3.5 4.5 2.0 - 45° 90°

43 X0Y
sphere ∥ 0Y -3.5 -3.5 -3.5 4.0 - - - -

cylinder ⇅ 0Z +3.5 -2.5 +2.0 2.5 - 2.0 - -

disk ∥ 0X -2.5 +2.5 +2.0 2.5 0.5 - - -

44 Y0Z
sphere ∥ 0Y -2.5 +1.0 -3.5 1.5 - - - -

truncated cone ⇈ 0X +3.5 -3.5 -4.5 3.5 1.0 3.0 - -

disk ∥ 0Z +4.5 +2.5 +2.0 3.0 0.5 - - -

45 X0Z
sphere ∥ 0Y +2.0 +1.5 +2.0 2.0 - - - -

truncated cone ⇈ 0Z +1.5 -1.5 -3.5 1.5 0.5 3.0 - -

disk ∥ 0X -3.5 +0.5 -1.5 1.5 0.0 - - -

46 X0Z
sphere ∥ 0X +3.5 -3.0 +3.5 3.5 - - - -

truncated cone ⇈ 0Z -4.0 +1.5 +2.0 2.0 0.5 1.0 - -

disk ∥ 0Y -3.0 -2.5 -4.0 3.0 0.5 - - -

47 X0Y
sphere ∥ 0Y +2.5 -1.5 -3.5 2.0 - - - -

cone ⇈ 0Z +3.5 +1.0 +3.0 3.0 0.0 2.5 - -

disk ∥ 0X -2.5 +3.0 -2.5 2.0 0.0 - - -

48 X0Z
sphere ∥ 0X +3.5 +1.5 -3.5 2.0 - - - -

cone ⇈ 0Y -4.0 -2.5 -4.0 2.5 0.0 3.0 - -

disk ∥ 0Z -4.5 +2.5 +1.5 2.5 0.0 - - -

49 Y0Z
sphere ∥ 0Y -2.5 -3.5 -4.5 2.5 - - - -

truncated cone ⇅ 0Z -2.5 +1.5 +4.0 2.0 0.5 3.0 - -

disk ∥ 0X +2.5 +2.5 -2.5 2.0 0.5 - - -

53

End of Table 5.2

No. Grid Shape

Parameter values for quadrics

axis x0 y0 z0 R r h ∠start ∠sweep

50 X0Z
sphere ∥ 0X -2.0 -2.5 -3.5 2.5 - - - -

truncated cone ⇅ 0Z +3.5 -3.0 +2.5 3.0 1.0 2.0 - -

partial disk ∥ 0Y +2.0 +1.5 -1.5 2.0 0.0 - 270° 270°

51 Y0Z
sphere ∥ 0X +2.5 -3.5 +4.0 2.5 - - - -

cylinder ⇅ 0Z -2.5 -0.5 -2.5 1.0 - 1.0 - -

partial disk ∥ 0Y -2.5 +3.5 +4.5 4.5 1.5 - 180° 315°

52 Y0Z
sphere ∥ 0X -3.5 -2.5 -1.5 2.0 - - - -

cylinder ⇈ 0Z -2.0 +2.0 +2.5 2.0 - 1.0 - -

disk ∥ 0Y +3.5 +0.5 -2.0 2.5 0.0 - - -

53 X0Z
sphere ∥ 0X +3.5 +1.5 +4.0 2.0 - - - -

cylinder ⇅ 0Y -3.0 +2.5 -3.5 3.0 - 2.5 - -

partial disk ∥ 0Z +3.0 -1.5 -2.0 3.0 1.0 - 45° 45°

54 X0Y
sphere ∥ 0Z -3.5 +3.5 -3.5 3.5 - - - -

cylinder ⇈ 0Y +3.5 +3.5 +4.0 3.5 - 1.0 - -

disk ∥ 0X +4.0 -2.5 -4.0 3.5 1.5 - - -

55 Y0Z
sphere ∥ 0Y +3.5 -0.5 +2.5 1.5 - - - -

cone ⇅ 0X +2.0 +2.5 -3.5 2.5 0.0 3.0 - -

partial disk ∥ 0Z -2.5 -2.5 -2.5 2.5 0.5 - 90° 270°

56 Y0Z
sphere ∥ 0Y -4.0 +2.0 +3.5 2.5 - - - -

cone ⇅ 0X -2.5 -0.5 -1.5 1.5 0.0 3.0 - -

disk ∥ 0Z +4.5 -3.5 +4.5 3.0 1.0 - - -

57 X0Z
sphere ∥ 0Z +3.0 +2.0 +2.5 2.0 - - - -

cone ⇅ 0Y +3.5 -3.5 -3.5 2.5 0.0 3.0 - -

partial disk ∥ 0X -3.5 +3.5 -3.5 3.5 1.0 - 315° 90°

58 X0Y
sphere ∥ 0X +4.5 +2.5 +2.0 2.5 - - - -

cylinder ⇅ 0Z +4.5 -2.5 -2.5 2.5 - 1.0 - -

disk ∥ 0Y -4.0 -2.5 +4.5 3.5 0.5 - - -

59 Y0Z
sphere ∥ 0Y +4.5 +3.0 +2.5 3.0 - - - -

truncated cone ⇈ 0X -1.5 +1.5 -3.5 1.5 2.5 1.5 - -

partial disk ∥ 0Z -4.5 -3.0 +3.0 4.0 1.5 - 45° 90°

60 Y0Z
sphere ∥ 0Z -1.5 +1.0 -3.0 1.5 - - - -

cone ⇅ 0X +1.5 -0.5 -1.5 1.0 0.0 3.0 - -

partial disk ∥ 0Y +4.5 +2.5 +1.5 4.0 1.5 - 135° 45°

54

Practical work № 6.
SCREEN SAVER & ANIMATION

Aim of work: study of methods and ways of animation by using
computational resources of operating system during equipment idle time.

Task

Using the teacher specified development tools, create a ScreenSaver with
animation (Table 6.1). The general algorithm of such a program in Windows is
shown in Fig. 6.1. Choose the animation plot yourself and agree with the teacher.

Fig. 6.1. The general algorithm of the screen saver in OS Windows

55

Methodical instructions

Actually ScreenSaver is a typical executable file (only with the .SCR
extension instead of .EXE), which is controlled via command line parameters
(«/c» – configure, «/p» – preview, «/s» – show):
ScreenSaver.scr – show the settings window;
ScreenSaver.scr /c – show the settings window modally;
ScreenSaver.scr /s – main full-screen mode of operation;
ScreenSaver.scr /p hWnd – preview of the main mode in the parent window

with the hWnd descriptor;
ScreenSaver.scr /a – setting a password in Windows 95 (legacy

mode, currently not used).
Usually the run modes can be implemented separately in two window: Setting

Form and Main Form (see Fig. 6.1), but only one of them works at application
startup. To select a run mode for development and debugging (under Visual
Studio control), the command line parameter is set in the project properties (Fig.
6.2).

By default, all screen savers are located in directory
«c:\windows\system32*.scr», where you can place your program, too [9]. Also,
available installation and manual test are running the screensver from the context
menu of the operating system (Fig. 6.3).

Fig. 6.2. Setting command line parameter in project properties

It is recommended to divide the development process into several steps. At
the first step, the analysis of the command line is carried out. At the second, a
dialog box with settings and a mechanism for reading / saving them if changed.
At the third, a window with graphics output and animation binding to the program
inactivity mechanism carried out [11, 12]. After that develop interruption running
at idle time in the main window by event from the manipulator «mouse» or
keyboard and adapt algorithm of the Main Form for working in the parent window
for the preview mode.

56

Fig. 6.3. Installing, starting and configuring the Screen Saver in OS Windows

Checklist Questions

1. When is double / triple buffering used?
2. How is double buffering implemented in OpenGL?
3. What methods and means of double buffering are there in WinAPI?
4. What are sprites, what are the principles of their use?
5. How to implement animation with minimal CPU usage?
6. What is meant by the terms parent / child window?

Table 6.1
No. Complexity Assignments Points

1

Basic

Binding animation to operating system idle
mechanism 2

2
Full screen implementation
(command "/ s") 1

3 Implementing Screen Saver Settings ("/ c"
Command) 1

4
Implementation of preview (command "/ p")

1

5
Advanced

Saving the ScreenSaver configuration and
settings in the OS registry 1

6
Using complex and spectacular algorithms for
image formation (for example, fractals) 2

57

Practical work № 7
FORWARD KINEMATICS VISUALIZATION

Aim of work: learn how to use affine transformations to create and control
the model of physical objects.

Task

Using the teacher specified development tools, create an application for
displaying the manipulator model specified by a kinematic scheme (the
complexity estimate is given in Table 7.1). To control the model and the viewpoint
it's necessary to use the keyboard and / or the mouse manipulator to change the
values of the model's parameters such as the angles , , , the distance S (see
variants in Table 7.2).

Methodical instructions

To simplify calculations, the problem is first considered on the XOY plane.
After that adding rotation around the OY axis and scaling to the 2D model
complete 3D model is obtained.

To solve the problem on the plane, a combination of two affine
transformations rotation and translation is required. These transformations
correspond to the OpenGL commands:

𝑅𝑧(𝜑) = |

cos 𝜑 sin 𝜑 0 0
−sin 𝜑 cos 𝜑 0 0

0 0 1 0
0 0 0 1

| →
// clockwise

glRotate[f,d](𝝋,0,0,-1);

𝑇(∆𝑦) = |

 1 0 0 0
0 1 0 ∆𝑦
0 0 1 0
0 0 0 1

| → glTranslate[f,d](0, ∆𝒚,0).

The segment to convert is also specified by the matrix and the OpenGL code:

𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑠𝑖𝑧𝑒) = |

 0 0
0 𝑠𝑖𝑧𝑒
0 0
0 0

| →

glBegin(GL_LINES);
 glVertex3d(0.0, 0.0, 0.0);
 glVertex3d(0.0, size, 0.0);
glEnd();

Thus, you should select your set of affin transformations for each segment of
the manipulator step by step. For example, the sequence of transformations
(Fig. 7.1) corresponds to the expression:

𝑆𝑥(𝑠𝑖𝑧𝑒, 𝛼, 𝛽, ∆𝑦) = 𝑅𝑧(𝛽) × 𝑇(∆𝑦) × 𝑅𝑧(𝛼) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑠𝑖𝑧𝑒).

In addition, some articulation points and a slip point form a triangle, the
angles of which depend on the value of the parameter S and are calculated
based on the cosine theorem (see Appendix 3).

58

X

size

Y

 X

∠α

Y

Y

X

Δy

 X

Y ∠α

∠β

1 – 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑠𝑖𝑧𝑒) 2 – rotate 𝑅𝑧(𝛼) 3 – translate 𝑇(∆𝑦) 4 – rotate 𝑅𝑧(𝛽)

Fig. 7.1. Phased formation of a segment in the kinematic scheme

Table 7.1

No. Complexity Assignments Points

1

Basic

Implementation of the program of the two-
dimensional model of the manipulator in
accordance with the option

5

2
Modification of the program to a three-dimensional
model (rotation of the observation point, scale) 1

3 Model and point of view control with mouse and / or
keyboard

1

4 Using quadratic primitives to display a kinematic
diagram 3

5 Using lighting and defining materials with
glColorMaterial (...) 4

6 Report according to the design example 6
7

Advanced

Using OOP (developing your own classes) 1
8 Using textures for kinematic elements 2

9
Defining materials with glMaterial (...), using
transparency 2

10
Using perspective projection to display the
manipulator model 1

11
Implementing shadow lighting from the manipulator
model 6

Checklist Questions

1. What data structures are needed to represent geometric objects in 3D
space?

2. How is the stack of transformation matrices used in OpеnGL?
3. How are light sources used in OpenGL scenes?
4. How are materials specified for OpеnGL objects?

59

Table 7.2
No. Parameters Kinematics model

1
а = 0.5
b = 1.2
c = 0.4

2
а = 0.4
b = 0.7
c = 0.24

3
а = 0.4
b = 1.2

4 а = 0.4
b = 0.7

5
а = 0.3
b = 0.8
c = 0.4

60

Continuation of Table 7.2
No. Parameters Kinematics model

6
а = 0.8
b = 0.6
c = 0.6

7
а = 0.9
b = 0.24
c = 0.64

8 а = 0.3
b = 0.66

9
а = 0.74
b = 0.8
c = 0.32

10
а = 0.3
b = 0.36

61

Continuation of Table 7.2
No. Parameters Kinematics model

11
а = 0.28
b = 0.34

12
а = 0.6
b = 0.8

13
а = 0.8
b = 0.6

14
а = 0.46
b = 0.82
c = 0.6

15 а = 0.5
b = 0.3

62

Continuation of Table 7.2
No. Parameters Kinematics model

16
а = 0.6
b = 1.2
c = 0.54

17
а = 0.42
b = 1.0
c = 0.56

18 а = 0.4
b = 0.46

19 а = 0.34
b = 0.9

20
а = 0.4
b = 0.5

63

Continuation of Table 7.2
No. Parameters Kinematics model

21 а = 0.3
b = 0.9

22
а = 0.3
b = 1.3
c = 0.34

23
а = 0.24
b = 0.82
c = 0.4

24
а = 0.3
b = 0.5

25
а = 0.4
b = 0.9
c = 0.6

64

End of Table 7.2
No. Parameters Kinematics model

26
А = 0.4
b = 0.8
c = 0.34

27 а = 0.2
b = 0.3

28
а = 0.3
b = 0.3
c = 0.4

29 а = 0.34
b = 0.24

30
а = 0.28
b = 0.86
c = 0.4

65

Appendix 1.
INSTALLING PROJECT TEMPLATES

FOR CREATING OPENGL APPLICATION IN C++ AND C#

1. Unzip the «OpenGL projects templates.zip» file.
2. If the operating system and Visual Studio are installed with the default

settings, you can use the automatic installation using Install.cmd, file, which
copies the template files to the standard Visual Studio derictories (for 2010,
2012, 2013, 2015 and 2017 versions). As a result of the batch file operation,
messages will be displayed on the screen, indicating for which versions of Visual
Studio the project template files are installed (Fig. A.1.1).

Fig. A.1.1. Installing project templates for Visual Studio 2010, 2015 and 2017

3. If it was not possible to install templates in automatic mode, then it can be
done manually by copying the ProjectTemplates and ItemTemplates
directories from the «OpenGL projects templates.zip» archive according to the
current system user's directories for each version of Visual Studio, that requires
these templates. For example, for Visual Studio 2015 the project template
directories are located as follows (Fig. A.1.2):

"C:\Users\<User name>\Documents\Visual Studio 2015\Templates\..."

Fig. A.1.2. Standard location of project template directories

4. When installing templates, it is recommended to close all running instances
of Visual Studio or restart them after installation / copy project templates.
Please note that installation directories may vary depending on system regional
settings of Visual Studio versions and other user settings. Reinstallation
overwrites the previous version of templates.

66

Appendix 2.
USING WINDOWSX.H FILE IN C ++ PROJECTS
TO HANDLE OPERATING SYSTEM MESSAGES

1. Find out which Windows message is responsible for the event requiring
processing.

Example: the WM_SIZE message is responsible for the window resizing
event.

2. Open the windowsx.h file (in the project it is included in the stdafx.h file,

Fig. A.2.1) and search (Ctrl + F) for the line, which is formed as follows: in the
message name, the prefix «WM_» is replaced with «On».

Fig. A.2.1. Opening the windowsx.h file using the context menu

Example: The name of the message WM_SIZE is replaced with OnSize and
the search for this string is performed (Fig. A.2.2). As a result, the commented
out line with the prototype of the function that handles the WM_SIZE message is
found:

/*void Cls_OnSize(HWND hwnd, UINT state, int cx, int cy)*/

Fig. A.2.2. Finding the prototype of the handler function in the windowsx.h file

67

3. Add the corresponding function to the main program (usually the Cls_
prefix is removed) and execute the link between the message handling routine
WndProc(...) and the event handler routine using the HANDLE_MSG(...) macro.

Example: based on the prototype found in the windowsx.h file, a function is
added to the program code that will be responsible for the actions performed
when the window is resized:

void OnSize(HWND hwnd, UINT state, int cx, int cy)
{
 // Commands executed when the window is resized
}

and binding this function to the general message processing algorithm of the
operating system:

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM
wParam, LPARAM lParam)
{
 switch (message){
 HANDLE_MSG(hWnd, WM_CREATE, OnCreate);
 HANDLE_MSG(hWnd, WM_DESTROY, OnDestroy);
 HANDLE_MSG(hWnd, WM_PAINT, OnPaint);
 HANDLE_MSG(hWnd, WM_SIZE, OnSize);
 default:
 return DefWindowProc(hWnd, message, wParam, lParam);
 }
}

4. Do the same with other messages of the operating system that require
handling in application or non-standard response.

68

Appendix 3.
EXAMPLE OF FORWARD KINEMATICS VISUALIZATION TASK

A.3.1. Formulation of the problem

Develop an application for displaying a manipulator model with a given
kinematic scheme (Fig. A.3.1) and relative dimensions a = 1.3, b = 1.1, c = 0.55,
a1 = 0.31a, a2 = 0.69a). To control the movement of the manipulator and / or
change the viewpoint, it is necessary to use the event handlers of the keyboard
and / or the mouse manipulator, which change the value of the corresponding
parameters:

– angle az – for rotation about the OZ axis;
– distance S – to change the angles at, ag;
– angle ay – for rotation about the OY axis.

Z
X

Y

a

b

a1

az

at

ag

c

S

a2

Fig. A.3.1 Kinematic scheme of the manipulator

A.3.2. Mathematical model of the kinematic scheme

The solution to the problem can be carried out in stages. At the first stage,
the problem is considered as two-dimensional only in one plane. Z = const = 0
and at the second - in 3D space.

69

A.3.2.1. Affine transformations

To implement the task on the plane, you can use a combination of two affine
transformations - rotation and translation. For the given variant, rotation about
the Z axis is required:

𝑅𝑧(𝛼) = |

 cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

0 0
0 0

0 0
0 0

1 0
0 1

| (A.3.1)

and translation along the Y axis:

𝑇𝑦(𝛿) = |

1 0
0 1

0 0
0 𝛿

0 0
0 0

1 0
0 1

|. (A.3.2)

To implement the solution in space, additional rotation about the Y axis is
required:

𝑅𝑦(𝛼) = |

 cos 𝛼 0
 0 1

sin 𝛼 0
0 0

− sin 𝛼 0
0 0

cos 𝛼 0
0 1

|, (A.3.3)

rotation around the X axis:

𝑅𝑥(𝛼) = |

1 0
0 cos 𝛼

0 0
sin 𝛼 0

0 − sin 𝛼
0 0

cos 𝛼 0
0 1

| (A.3.4)

and scaling along all three axes:

𝑀𝑥𝑦𝑧(𝑚) = |

𝑚 0
0 𝑚

0 0
0 0

0 0
0 0

𝑚 0
0 1

|. (A.3.5)

A.3.2.2. Decomposition by segments

In fact, the kinematic diagram can be represented in the form of three
segments, which, for simplicity, can be represented as Segments of a given
size, which in the initial state is a vertical position (along the OY axis):

𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑠𝑖𝑧𝑒) = |

0
0

0
𝑠𝑖𝑧𝑒

0
1

0
1

|. (A.3.6)

70

Thus, to solve the problem, it is necessary to determine a set of affine
transformations, which is necessary for the transition from the initial position to
the one given by the kinematic scheme.

Mathematical model of segment «а»
The location of segment a is the same as the starting position of all segments.

To be displayed as part of a kinematic schema, we denote it as Sa, depending
on the rotation about the Z axis by the angle az:

𝑆𝑎(𝑎𝑧) = 𝑅𝑧(𝑎𝑧) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑎). (A.3.7)

Mathematical model of segment «b»
The position of segment b depends on two angles – az and ag

(see Fig. A.3.1). In this case, the angle ag, depends on the value of S. Therefore,
to calculate the angle ag consider a triangle formed by the sides a1, S and c, in
which one of the interior angles is adjacent to the angle ag. Then we can use the
cosine theorem, setting the angle adjacent to ag, as (π – ag) and connecting it
by the following expression with the sides a1, S and c:

𝑐2 = 𝑎1
 2 + 𝑆2 − 2𝑎1𝑆 cos(𝜋 − 𝑎𝑔). (A.3.8)

From here we can derive the dependence of the angle ag on the value of S:

𝑎𝑔(𝑆) = 𝜋 − arccos (
𝑎1

 2 + 𝑆2 − 𝑐2

2𝑎1𝑆
). (A.3.9)

Thus, to represent the segment as part of the kinematic schema, we
introduce the designation Sb, the position of which depends on the rotation about
the Z axis by the angle az and the value of S:

𝑆𝑏(𝑎𝑧, 𝑆) = 𝑅𝑧(𝑎𝑧) × 𝑇𝑦(𝑎) × 𝑅𝑧(𝑎𝑔(𝑆)) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑏). (A.3.10)

Mathematical model of segment «c»
The position of segment c depends on two angles – az and at (see Fig.

A.3.1). In this case, the angle at, depends on the value of S. Therefore, to
calculate the angle at consider a triangle formed by the sides a1, S, c and
containing the angle at. Using the cosine theorem, we can associate the angle
at with the sides a1, S and c:

𝑆2 = 𝑎1
 2 + 𝑐2 − 2𝑎1𝑐 cos (𝑎𝑡) (A.3.11)

and express its dependence on the value of S:

𝑎𝑡(𝑆) = arccos (
𝑎1

 2 + 𝑐2 − 𝑆2

2𝑎1𝑐
). (A.3.12)

71

Thus, to represent the segment as part of the kinematic schema, we
introduce the identifier Sc, the position of which depends on the rotation around
the Z axis by the angle az and the value of S:

𝑆𝑐(𝑎𝑧, 𝑆) = 𝑅𝑧(𝑎𝑧) × 𝑇𝑦(𝑎2) × 𝑅𝑧(𝑎𝑡(𝑆)) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑐). (A.3.13)

A.3.2.3. Physical limitations of the model

To calculate the position of the two segments, the cosine theorem is used,
which connects the sides of the triangle a1, S and c. Since the change in the
value of S is used to control the kinematic scheme, it is necessary to take into
account the limitation on the existence of the triangle: any side of the triangle is
less than the sum of the other two sides. This constraint can be expressed by
two predicates:

𝐶ℎ𝑒𝑐𝑘𝑀𝑎𝑥(𝑆) = 𝑆 < 𝑎1 + 𝑐;
𝐶ℎ𝑒𝑐𝑘𝑀𝑖𝑛(𝑆) = 𝑆 > 𝑐 − 𝑎1,

(A.3.14)

both of which are true when S is within acceptable limits.

A.3.2.4. General 3D mathematical model

Having considered the solution of the problem within one plane, we turn to
the general three-dimensional model. To do this, we will add scaling and
rotations about the X and Y axes to the rotation about the Z axis. All
transformations performed for all segments will be denoted as Q:

𝑄(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑚, 𝑆) = 𝑅𝑥(𝑎𝑥) × 𝑅𝑦(𝑎𝑦) × 𝑀𝑥𝑦𝑧(𝑚) × 𝑅𝑧(𝑎𝑧), (A.3.15)

then the full 3D model will look like this:

𝑆𝑎 = 𝑄(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑚, 𝑆) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑎);
𝑆𝑏 = 𝑄(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑚, 𝑆) × 𝑇𝑦(𝑎) × 𝑅𝑧(𝑎𝑔(𝑆)) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑏);
𝑆𝑐 = 𝑄(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑚, 𝑆) × 𝑇𝑦(𝑎2) × 𝑅𝑧(𝑎𝑡(𝑆)) × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑐),

(A.3.16)

and the transformations defined in Q, for efficiency, can be stored, for example,
in a matrix stack with subsequent restoration at the right moment.

A.3.3. Software implementation of the kinematic scheme

A.3.3.1. Source data

The source data of the kinematic scheme are set by the basic values a, b, c
and can be represented in the program by ordinary variables. The auxiliary
values a1, a2 are dependent on a, so the direct assignment operation is prohibited
for them, which is implemented by declaring them as read-only properties:

72

public partial class RenderControl : OpenGL
{
 public double a = 1.3, b = 1.1, c = 0.55;
 public double a1 { get { return 0.31 * a; } }
 public double a2 { get { return 0.69 * a; } }
...
}

Restrictions can be implemented in a similar way (A.3.14) to control the
acceptable value of S:

private double s = 0.2; // initial value
public double S
{
 get { return s; }
 set { if ((value >= (c-a1)) && (value <= a1+c)) s = value; }
}

The angles at and ag, are also functional dependences on the value of S (A.3.9),
(A.3.12), so the assignment operation is invalid for them. The arccos function
returns the angle value in radians, and the OpenGL commands work with
degrees, so we additionally perform the conversion from radians to degrees:

public double ag {
 get { return 180.0/Math.PI * // convert from radians to degrees
 (Math.PI - Math.Acos((a1*a1 + S*S - c*c) / (2*a1*S)));
 }
}

public double at {
 get { return 180.0/Math.PI * // convert from radians to degrees
 (Math.Acos((a1*a1 + c*c - S*S) / (2*a1*c)));
 }
}

A.3.3.2. Setup a coordinate system to viewport

For the correct display of the proportions of the elements of the kinematic
scheme, it is necessary to use an isotropic coordinate system. This can be
implemented in the window resize event handler as follows:

if (ClientSize.Width > ClientSize.Height){
 int dx = (ClientSize.Width - ClientSize.Height) / 2;
 glViewport(dx, 0, ClientSize.Height, ClientSize.Height);
} else {
 int dy = (ClientSize.Height - ClientSize.Width) / 2;
 glViewport(0, dy, ClientSize.Width, ClientSize.Width);
}

73

A.3.3.3. Setting a perspective projection of a scene

Self-study OpenGL actions and commands for displaying a scene in
perspective projection.

A.3.3.4. Modeling object control and user interface

To organize the interface with the user, we use the keyboard and the mouse.
Control of the coordinate system and scale will be connected with the events of
the manipulator «mouse». Let's fix the pressing of the left button in the logical
variable MoveAxes and save the current coordinates of the manipulator:

private void Mouse_Down(object sender, MouseEventArgs e)
{
 MoveAxes = (e.Button == MouseButtons.Left);
 dx = e.X; dy = e.Y;
}

Then, if the left button is not released and the manipulator is moving, we
associate the horizontal movement with the rotation angle around the Y axis, and
the vertical movement with the rotation angle around the X axis:

private void Mouse_Move(object sender, MouseEventArgs e)
{
 if (MoveAxes) {
 ay += (e.X - dx)/1.0;
 ax += (e.Y - dy)/1.0;
 dx = e.X; dy = e.Y;
 Invalidate();
 }
}

After that, we again save the current coordinates of the manipulator and inform
the window about the need to redraw the work area using the Invalidate()
method. Tracking the movements of the manipulator until the left button is
released:

private void Mouse_Up(object sender, MouseEventArgs e)
{
 MoveAxes = MoveAxes && (e.Button != MouseButtons.Left);
}

In the same way, we track the necessary events of pressing the keys, linking
the change in the angle of rotation az by one degree with the «Up» and «Down»
keys, and the value of S – by the value ds ds with the keys «Left», «Right»:

74

private void Key_Down(object sender, PreviewKeyDownEventArgs e)
{
 if (e.KeyCode == Keys.Up) az += 1;
 if (e.KeyCode == Keys.Down) az -= 1;
 if (e.KeyCode == Keys.Left) S -= ds;
 if (e.KeyCode == Keys.Right) S += ds;
 Invalidate();
}

To control the zoom, we'll use the scroll wheel, using the e.Delta value as
the zoom increment:

private void Mouse_Wheel(object sender, MouseEventArgs e)
{
 m += e.Delta / 2000.0;
 Invalidate();
}

A.3.3.5. Coordinate axes

To increase the overall clarity and simplify the orientation of the elements of
the kinematic scheme, you can use the image of the coordinate axes as follows:

private void Axes(double s)
{
 glColor3d(1.0, 1.0, 1.0);
 glBegin(GL_LINES);
 glVertex3d(0.0, 0.0, 0.0); glVertex3d(s, 0.0, 0.0);
 glVertex3d(0.0, 0.0, 0.0); glVertex3d(0.0, s, 0.0);
 glVertex3d(0.0, 0.0, 0.0); glVertex3d(0.0, 0.0, s);
 glEnd();
 OutText("X", s, 0, 0);
 OutText("Y", 0, s, 0);
 OutText("Z", 0, 0, s);
}

A.3.3.6. Segment output

To display any segment in the initial state in accordance with (A.3.6) we use
the following program code, adding r, g, b values to control the color of the
rendered shape:

void Segment(double size, double r, double g, double b)
{
 glColor3d(r, g, b); glLineWidth(5);
 glBegin(GL_LINES);
 glVertex3d(0.0, 0.0, 0.0);
 glVertex3d(0.0, size, 0.0);
 glEnd();
 glLineWidth(1);
}

75

Using quadric objects
The results of self-study that were used to solution this problem.

Defining light parameters
The results of self-study that were used to solution this problem.

Defining material parameters
The results of self-study that were used to solution this problem.

Surface texturing of scene objects
The results of self-study that were used to solution this problem.

Implementing shadow lighting from the manipulator model
The results of self-study that were used to solution this problem.

A.3.3.7. The order of affine transformations

In the final form, the image is formed in the method that is responsible for
redrawing the entire work area:

public override void OnRender()
{
 // Set the coordinate system
 glLoadIdentity();
 glOrtho(-2, 2, -2, 2, -2, 2);

 // Set general transformations Q
 glRotated(ax, 1, 0, 0);
 glRotated(ay, 0, 1, 0);
 glScaled(m, m, m);

 Axes(1.8); // // Render the coordinate axes

 glRotated(az, 0, 0, -1);
 Segment(a, 1,0,0);

 // Store the current transformation matrix on the stack
 glPushMatrix();
 glTranslated(0, a, 0);
 glRotated(ag, 0, 0, -1);
 Segment(b, 0, 0, 1);
 // Restore the current transformation matrix from the stack
 glPopMatrix();

 glTranslated(0, a2, 0);
 glRotated(at, 0, 0, -1);
 Segment(c, 0, 1, 0);

}

76

A.3.3.8. Project architecture

Brief information about the development environment of a software project.
Description of the files included in the project and their purpose. A diagram of the
developed classes (if the use of OOP is declared).

A.3.4. Results of the kinematic scheme model visualization

Examples of screenshot demonstrating the work of the program (examples
on Fig. A.3.2 – A.3.4).

Fig. A.3.2. Visualization of the task with minimal requirements

77

Fig. A.3.3. Example of rendering a task with lighting

Fig. A.3.4. An example of visualizing a problem with quadric objects

A.3.5. Conclusions

A brief description of the software/tools are used and the achieved results.

78

BIBLIOGRAPHICS

Primary list
1. John Kessenich, Graham Sellers, Dave Shreiner. OpenGL Programming Guide, The

Official Guide to Learning OpenGL, Version 4.5 9th edt. – Addison-Wesley Professional,
2016. – 976 p.

2. Hearn Baker Carithers, Computer Graphics with OpenGL, Fourth Edition. – Pearson
Education Limited, 2014. – 812 p.

3. Mathematical Elements for Computer Graphics (2nd Edition) / David F. Rogers, J. Alan
Adams; – McGraw-Hill Science/Engineering/Math, 1989. – 611 p.

4. Performing Selection and Feedback [electronic resource] // – Access: https://learn.
microsoft.com/en-us/windows/win32/opengl/performing-selection-and-feedback.

5. Procedural elements for computer graphics by David F. Rogers, 1998, WCB/McGraw-Hill
edition, in English - 2nd ed. 1998. – 711 p.

6. Francis S. Hill, Computer Graphics: Using OpenGL. – Prentice Hall, 2001. – 922 p.

Additional list

7. Discontinuities [Electronic resource] // WolframAlpha Computational intelligence. –
Access : https://www.wolframalpha.com/input/?i=discontinuities+1%2F(x-1).

8. Mark de Berg,·Computational Geometry. Algorithms and Applications. Third Edition / Mark
de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars. – Springer, 2008. – 386 p.

9. Windows Graphics Programming: Win32 GDI and DirectDraw / Feng Yuan. – Hewlett-
Packard Professional Books, 2000. – 1234 p.

10. Jeffrey Richter, Programming Applications for Microsoft Windows. – Microsoft Press,
1999. – 1056 p.

11. Robert Nystrom, Game Programming Patterns. – Genever Benning, November 2, 2014.
– 354 p.

12. How is the .NET event, Application.OnIdle, coded in Win32? [electronic resource] //
StackOverflow. – Access : https://stackoverflow.com/questions/3331012/how-is-the-net-
event- application-onidle-coded-in-win32.

79

CONTENT

Introduction .. 3

Practical work № 1. The principles of using OpenGL, basic possibilities

and commands .. 4

Practical work № 2. Opengl graphics primitives ... 18

Practical work № 3. Single variable function graph .. 32

Practical work № 4. A conic section curves .. 43

Practical work № 5. Quadrics. 3D affine transformations 46

Practical work № 6. Screen saver & animation .. 54

Practical work № 7. Forward kinematics visualization 57

Appendix 1. Installing project templates for creating OpenGL application

in C++ and C# .. 65

Appendix 2. Using windowsx.h file in C ++ projects to handle operating

system messages ... 66

Appendix 3. Example of forward kinematics visualization task 68

Bibliographics .. 78

Навчальне видання

Лучшев Павло Олександрович
Голуб Надія Григорівна

КОМП’ЮТЕРНА ГРАФІКА

(Англійською мовою)

Редактор В. В. Рижкова
Технічний редактор А. М. Ємленінова

Зв. план, 2024
Підписано до видання 28.11.2024
Ум. друк. арк. 4,4. Обл.-вид. арк. 5. Електронний ресурс

Видавець і виготовлювач

Національний аерокосмічний університет ім. М. Є. Жуковського
«Харківський авіаційний інститут»
61070, Харків-70, вул. Чкалова, 17

http://www.khai.edu
Видавничий центр «ХАІ»

61070, Харків-70, вул. Чкалова, 17
izdat@khai.edu

Свідоцтво про внесення суб’єкта видавничої справи

до Державного реєстру видавців, виготовлювачів і розповсюджувачів
видавничої продукції сер. ДК № 391 від 30.03.2001

