
Modelling and digitalization 
 

5 

UDC 004.942: 614:4  doi: 10.32620/reks.2024.4.01 
 

Mykola BUTKEVYCH, Dmytro CHUMACHENKO  

 
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine 

 

TIME SERIES ANALYSIS OF LEPTOSPIROSIS INCIDENCE  

FOR FORECASTING IN THE BALTIC COUNTRIES  

USING THE ARIMA MODEL 
 

Leptospirosis, a zoonotic disease with significant public health implications, presents considerable forecasting 

challenges due to its seasonal patterns and environmental sensitivity, especially in under-researched regions like 
the Baltic countries. This study aimed to develop an ARIMA-based forecasting model for predicting leptospirosis 

incidence across Estonia, Latvia, and Lithuania, where current disease data are limited and variable. This study 

aims to investigate the epidemic process of leptospirosis, while its subject focuses on applying time series fore-

casting methodologies suitable for epidemiological contexts. Methods: The ARIMA model was applied to each 

country to identify temporal patterns and generate short-term morbidity forecasts using confirmed leptospirosis 

case data from the European Centre for Disease Prevention and Control from 2010 to 2022. Results. The model’s 

performance was assessed using the Mean Absolute Percentage Error (MAPE), revealing that Lithuania had the 

most accurate forecast, with a MAPE of 6.841. The accuracy of Estonia and Latvia was moderate, likely reflect-

ing case variability and differing regional epidemiological patterns. These results demonstrate that ARIMA mod-

els can effectively capture general trends and provide short-term morbidity predictions, even within diverse epi-
demiological settings, suggesting ARIMA’s utility in low-resource and variable data environments. Conclusions. 

The scientific novelty of this study lies in its application of ARIMA modelling to leptospiro sis forecasting within 

the Baltic region, where comprehensive time series studies on the disease are scarce. From a practical perspec-

tive, this model offers a valuable tool for public health authorities by supporting targeted interventions, more 

efficient resource allocation, and timely response planning for leptospirosis and similar zoonotic diseases. The 

ARIMA model’s adaptability and straightforward application across countries demonstrate its potential for in-

forming public health decision-making in settings with limited data on disease patterns. Future research should 

expand on this model by developing multivariate forecasting approaches incorporating additional factors to 

refine the model’s predictive accuracy. This approach could further improve our un derstanding of leptospirosis 

dynamics and enhance intervention strategies. 
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Introduction 

 

Leptospirosis, a zoonotic disease engendered by 

bacteria of the Leptospira genus, has emerged as a 

formidable yet frequently marginalized public health 

challenge on a global scale [1]. The disease primarily  

propagates through exposure to the urine of infected 

animals or contamination from infected water and soil. 

Given its expansive range of animal hosts and vast array 

of human clinical presentations, this disease presents an 

intricate epidemiological puzzle. 

The World Health Organization (WHO) approxi-

mates an annual occurrence of 1.03 million cases and 

58,900 fatalities linked to leptospirosis, primarily  

concentrated in marginalized populations and regions 

with lower access to medical care [2]. Nonetheless, it is 

essential to consider these figures as likely  

underrepresentations due to substantial barriers to 

accurate reporting and diagnosis of the disease  [3]. 

Additionally, the distribution and incidence of the 

disease are shaped by a multiplicity of environmental and 

socio-economic determinants, including urbanization, 

climate change, and occupational exposure, among 

others [4]. Despite escalating climatic shifts and 

burgeoning urbanization, it is plausible to anticipate 

further escalation in the prevalence of leptospirosis [5]. 

Recent outbreaks in regions previously untouched 

by the disease underscore the geographical expansion of 

the disease, thereby underscoring the exigency for 

reliable, precise, and efficient forecasting models. Such 

models enable effective preventive strategies, optimized  

allocation of health resources, and prompt response 

mechanisms to potential outbreaks, thereby curtailing the 

morbidity and mortality rates associated with the disease. 
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The leptospirosis situation in the Baltic countries of 

Estonia, Latvia, and Lithuania presents  a complex and 

nuanced landscape [6]. Although these countries have not 

traditionally experienced the brunt of the disease 

compared with other global regions, recent 

epidemiological trends indicate a potential upsurge in 

incidence rates. These countries are characterized by a 

temperate climate, rich biodiversity, and substantial rural 

and agricultural sectors, harboring conducive conditions 

for the proliferation of Leptospira bacteria, fostering the 

persistence and potential escalation of the disease. 

Estonia, punctuated by an extensive network of 

water bodies and high rodent populations, particularly in 

rural locales, presents considerable risk factors for 

leptospirosis transmission [7]. Similarly, with its robust 

agricultural sector and a large semi-rural population, 

Latvia poses specific challenges in disease control and 

prevention [8]. Although slightly superior in terms of 

incidence rates, Lithuania has reported sporadic cases 

predominantly correlated with occupational and 

recreational exposure [9]. 

The epidemiological disposition of these countries 

mirrors the previously delineated global context, as 

factors such as urbanization, climate change, and socio-

economic circumstances play significant roles. With 

these nations experiencing a surge in urbanization and the 

pervasive impacts of climate change, environments 

conducive to the propagation of Leptospira bacteria are 

becoming increasingly prevalent. In tandem with limited  

awareness of the disease among the general population 

and occasionally within the medical fraternity, this 

contributes to underreporting and misdiagnosis, 

paralleling the global context. 

The simulation of epidemic processes has immense 

potential to influence decision-making and shape public 

health policies. In the context of multifaceted diseases 

such as leptospirosis, these models can serve as potent 

instruments for public health professionals and 

policymakers [10]. 

A prominent advantage of such simulation models 

lies in the informed decision-making they facilitate [11]. 

By offering robust quantitative data on disease dynamics, 

models like ARIMA empower policymakers to make 

decisions anchored in empirical evidence rather than 

depending on anecdotal or antiquated information [12]. 

This aspect is especially pivotal in controlling diseases 

like leptospirosis, where the epidemiological scenario is 

in constant flux and is molded by various determinants, 

including urbanization, climate change, and socio-

economic circumstances. 

Another dimension of the simulation model is its 

predictive prowess. By scrutinizing patterns and trends in 

historical data, these models can forecast future 

outbreaks or disease surges. In leptospirosis, which 

exhibits significant seasonal variations and can be subject 

to abrupt outbreaks, this predictive capability can enable 

health authorities to implement proactive measures, 

thereby preempting potential health crises [13]. 

Epidemic simulation models play an important role 

in the allocation of public health resources. In an 

environment where these resources are often limited , 

effective deployment is paramount for disease control 

and prevention. By identifying periods and high-risk 

areas, these models can inform strategies that concentrate 

resources where they are most needed [14]. 

Epidemic simulations significantly contribute to the 

development of health policy [15]. They provide 

policymakers with a platform to test various strategies in 

simulated environments before deploying them in real-

world situations [16]. This approach minimizes risks and 

enhances the potential for successful disease control by 

enabling a proactive rather than reactive approach to 

public health management. 

The simulation of epidemic processes can deliver a 

scientifically rigorous, predictive, and proactive 

paradigm for public health decision-making and policy 

development. This is of utmost importance when 

addressing complex diseases like leptospirosis, and helps 

reduce its global burden and manage its regional 

manifestations effectively. 

Thus, this study aimed to develop an ARIMA-based 

forecasting model to predict the incidence of 

leptospirosis in Baltic countries and improve the 

accuracy of the prediction. This research is focused on 

the leptospirosis epidemic process. The research subjects 

were methods and models for epidemic process 

simulation. 

To achieve the aim of the research, the following  

tasks were formulated: 

1. Methods and models of the Leptospirosis 

epidemic process should be analyzed. 

2. Data on Leptospirosis in Baltic countries should 

be analyzed. 

3. A simulation model for the leptospirosis  

epidemic process based on the ARIMA method should be 

developed. 

4. Tuning and verification of the proposed model 

were performed. 

5. Estimating the Leptospirosis epidemic process 

dynamics model in Baltic countries is needed. 

7. Results of the experimental study should be 

analyzed. 

The contributions of this research are two-fold. 

First, developing models based on the ARIMA method 

will allow estimation of the accuracy of the method 

applied to the simulation of the Leptospirosis epidemic 

process. Second, using the Leptospirosis epidemic 

process dynamics data from Baltic countries will allow 

us to investigate the epidemic process’s character. 

In this paper, section 1, namely, the current research 



Modelling and digitalization 
 

7 

analysis, provides the current state of leptospirosis 

simulation methods and models. Section 2, namely, 

Materials and Methods, provides an overview of the 

ARIMA model and metrics of the model’s performance 

evaluation. Section 3 presents the data analysis and 

results of forecasting leptospirosis dynamics in Baltic 

countries using the developed model. The discussion 

section presents the obtained results. The conclusions 

describe the outcomes of the investigation. 

The current research is part of a comprehensive in-

formation system for assessing the impact of emergen-

cies on the spread of infectious diseases described in [17]. 

 

1. The current research analysis 
 

This scholarly discourse concerning the simulation 

models for Leptospirosis reveals a growing recognition 

of their value in addressing this multifaceted disease. Ex-

isting research illustrates the utility of models like 

ARIMA in forecasting disease trajectories, thus aiding 

preemptive public health planning. These studies reflect 

an interdisciplinary approach, converging epidemiology, 

biostatistics, and computational biology to effectively  

predict Leptospirosis's incidence and spread of leptospi-

rosis. Simulation models offer valuable insights into the 

disease's temporal and spatial patterns, including sea-

sonal trends and geographical hotspots, which are inte-

gral for tailoring targeted, timely interventions. Never-

theless, while progress has been made, there is a distinct 

need for further research, particularly in regions like the 

Baltic countries where the disease's epidemiological 

footprint is still being ascertained. Incorporating nuanced 

local factors such as climate, biodiversity, and socio-eco-

nomic determinants into these models could further en-

hance their predictive accuracy and utility in these con-

texts. 

In study [18], an innovative Bayesian method for 

inference developed explicitly for the Zero-Modified  

Poisson (ZMP) regression model is presented, exhibiting  

commendable flexibility in analyzing count data, regard-

less of the presence of inflation or deflation of zeros in 

the sample. The proposed methodology incorporates a 

broad class of prior densities based on an information  

matrix for model parameters. The method employs a sen-

sitivity study to identify compelling cases that could 

modify the results. The method uses Kullback-Leibler di-

vergence as a measure, and simulation studies further 

bolster the findings. The model's application on real da-

tasets of leptospirosis notifications from Bahia State in 

Brazil further validates its utility. In conclusion, ZMP re-

gression models offer significant benefits in analyzing 

zero-inflated or zero-deflated datasets and underscore the 

development of a Bayesian approach based on the infor-

mation matrix prior. In addition, it develops an effective 

measure based on the Kullback–Leibler divergence for 

this model. The research reveals that in real-world appli-

cations, the Human Development Index (HDI) covariate 

is a significant factor in explaining leptospirosis notifica-

tions, as leptospirosis notification probability increases 

with the HDI. However, it also warns that a low number 

of leptospirosis notifications in any city does not signify 

an absence of the disease but could reflect the health sys-

tem’s capacity to identify disease cases.  

The present paper [19] introduces a novel method-

ology for numerical simulations of a newly designed 

fractional order Leptospirosis model (FOLM) that lever-

ages the capabilities of stochastic numerical supervised 

neural networks. This research constitutes an innovative 

numerical examination of the Leptospirosis model, cate-

gorized into five dynamics. The problem of biological 

FOLM is approached by considering different fractional-

order derivative values. The numerical formulations of 

the FOLM are produced using supervised neural net-

works (SNNs), and the computational performances are 

evaluated through the lens of Levenberg-Marquardt 

backpropagation (LVMBP), also known as SNNs -

LVMBP. The validity of the proposed approach was as-

sessed by comparing the obtained solutions to reference 

solutions. The statistics revealed that the certification and 

learning processes accounted for 74% and 13% of the in-

vestigation, respectively.  

The authors of this paper [20] employed the Suscep-

tible-Infected-Recovered (SIR) model to better under-

stand leptospirosis transmission dynamics, a globally 

prevalent zoonosis that is typically transmitted by rodents 

and often leads to fatal outcomes in humans. This study 

is particularly prone to outbreaks following heavy rain-

fall and flooding and scrutinizes the factors influencing 

these transmission dynamics. The model identifies dis-

ease-free and endemic equilibrium points from the pro-

posed model and conducts a local stability analysis for 

each point. The paper also encompasses bifurcation anal-

ysis and numerical solutions of the model, noting strong 

concurrence between theoretical discoveries and numer-

ical simulations. Crucially, the research identifies the nat-

ural death rate of the rat population as a significant factor 

for Leptospirosis control, alongside the basic reproduc-

tion number, which holds a vital role in the epidemiology  

of this disease. 

The paper [21] proposes an innovative framework 

for managing rodent-borne Leptospirosis using optimal 

control mathematical model theory, addressing the limi-

tations of traditional control methods, such as rodenticide 

application and habitat management. Leptospirosis, pri-

marily contracted through interaction with animals or en-

vironments contaminated with leptospires in animal 

urine, presents significant control challenges due to the 

complexity and cost of managing reservoir populations. 

Informed by empirical data from Salvador, Brazil, the 

study devised an age-structured model for leptospire  
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infection in the Norwegian rat population, extending it to 

include two temporary control measures, namely, rodent-

icide and resource reduction, and two permanent control 

measures, reducing rat carrying capacity and leptospire 

lifespan in the environment. The optimal control theory 

is applied to determine ideal time-dependent controls 

while factoring in the cost of control measures and the 

societal "cost" of infection. The results suggest that per-

manent controls can decrease leptospiral carriage preva-

lence in rodent populations, and temporary controls can 

effectively reduce the number of infected rats, thereby 

mitigating human infection risk. While this study focused 

on the Norway rat, its approach applies to other disease 

systems with animal and environmental reservoirs, 

providing a valuable tool for informed decision-making  

in public health. 

The study [22] of the newly introduced piecewise 

classical-global and classical-fractional operators is ap-

plied to investigate the dynamics of the Leptospirosis dis-

ease model. This research examined the existence and 

uniqueness of solutions to the piecewise derivatives as-

sociated with the model by employing the piecewise iter-

ative Newton polynomial method to derive an approxi-

mate solution. A numerical scheme was also established 

for the piecewise Leptospirosis model with integer and 

fractional orders. We observed improved dynamics and 

crossover behaviors based on the simulation results for 

both operators. It was found that the recovered human 

population would gradually decline over 350 days, im-

plying that the disease would eventually dissipate. More-

over, a high value of β decreased the susceptibility of the 

rat and human populations, which eventually became sta-

ble. Compared to high β values, the infected human pop-

ulation decreased and stabilized more rapidly. 

The study [23] developed and scrutinized a com-

partmental mathematical model to explore the influence 

of rodent-borne Leptospirosis on human populations, 

taking into account the disease's pathogenic agents in the 

environment and the incidence rate of human infection 

due to the interaction between infected rodents and the 

environment. The model’s basic properties, equilibrium 

points, and stability analysis are investigated, with the 

basic reproduction number R0 is derived using the next-

generation matrix method. Stability analysis reveals that 

the disease-free equilibrium is globally asymptotically 

stable if R0<1 and unstable otherwise, and the model ex-

hibits forward bifurcation. Sensitivity analysis identifies 

key parameters influencing model outcomes. Numerical 

simulations using the fourth-order Runge-Kutta method 

further demonstrated the model’s stability behavior and 

the effect of human transmission, recovery, and rodent 

mortality rates on the model’s dynamics. Results indicate 

that the trajectories of the model solutions evolve toward 

the unique endemic equilibrium over time when R0>1 

and that reducing transmission rates, increasing recovery 

rates, and controlling the rodent population significantly 

mitigate the spread of disease. 

The authors of the paper [24] sought to explore the 

connection between weather parameters at different time 

lags and leptospirosis occurrence in Malaysia, where the 

incidence of leptospirosis has increased. Leveraging data 

mining and machine learning techniques, the study em-

ploys exploratory data analysis (EDA) to determine opti-

mal time lags for rainfall and temperature. Further, based 

on backpropagation training and optimized hidden layers 

and nodes, an artificial neural network (ANN) model was 

designed to classify the selected features into disease oc-

currence and non-occurrence. The study revealed a 

strong correlation between leptospirosis occurrence and 

weekly average temperature at a lag of 16 weeks and 

weekly rainfall amount at 12...20 weeks. The ANN 

model, which was developed using these selected fea-

tures, demonstrated high levels of accuracy, sensitivity, 

and specificity, increasing the accuracy of the predictive 

model by 13.30 ... 31.26 % from the baseline models. 

The present study [25] focused on developing a cel-

lular automata (CA)-based computational model to illus-

trate the spread of Leptospirosis, a disease typically 

transferred from bovine rats to humans. The researchers 

used the Susceptible-Infective-Recovered-Susceptible 

(SIRS) model and innovatively incorporated a voting-

based rule to enhance the traditional CA rule set. By con-

ducting simulations using actual data from Leptospirosis 

infections in Thailand during the years 2000 and 2001, 

the model demonstrated remarkable accuracy, closely 

aligning with real-time infection data. This implies the 

viability of the CA-based model and the introduced vot-

ing-based rule for realistically capturing the dynamics of 

Leptospirosis transmission. 

In study [26], a mathematical model representing 

the transmission of the infectious disease Leptospirosis 

was examined by employing a system of nonlinear ordi-

nary differential equations. Acknowledging the inherent 

difficulty of obtaining an exact solution for this system, 

the authors use He's homotopy perturbation method 

(HPM) to derive an approximate solution. The HPM re-

sults are compared with those obtained using the Runge-

Kutta fourth-order (RK4) method. Illustrative plots are 

included to demonstrate the method's simplicity and reli-

ability, thereby supporting the utility of the homotopy 

perturbation approach for analyzing complex disease 

transmission models like Leptospirosis. 

The paper [27] scrutinized the dynamics of Lepto-

spirosis, a public health issue predominantly spread by 

rodents, using a novel SI-SIR model that deviates from 

traditional models by assuming a logistic growth pattern 

in the rodent population instead of the typical exponential 

growth. This study offers a comprehensive exploration of 

the model’s equilibrium stability. The equation estab-

lishes an equation for the basic reproduction number, R0, 
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which is determined by the rodent infection rate, birth 

rate, and environmental carrying capacity. This  study 

identifies a critical threshold for the environmental car-

rying capacity that dictates disease extinction or persis-

tence. The proposed method further inspects the sensitiv-

ity of R0 and proposes a method to gauge the impact of 

various control measures  on infection dynamics. Numer-

ical simulations are presented to provide a tangible rep-

resentation of the theoretical results . 

Table 1 presents the analysis of the models of Lep-

tospirosis propagation. 

The various studies analyzed illustrate the increas-

ing importance and application of simulation and mathe-

matical models in predicting the spread and control of 

Leptospirosis, a complex and significant public health is-

sue. These papers employ various models  that offer di-

verse perspectives for understanding disease dynamics.  

Overall, these studies highlight the growing im-

portance of utilizing mathematical and computational 

modeling in epidemiology and disease control and under-

score the need for further research and method develop-

ment, particularly in regions where the disease’s epide-

miological footprint is still being ascertained. The mod-

els also emphasize the importance of local factors such 

as climate, biodiversity, and socioeconomic determinants 

to enhance their predictive accuracy and utility. 

 

2. Materials and Methods 
 

2.1. ARIMA model 
 

The Autoregressive Integrated Moving Average 

(ARIMA) model, which was introduced by Box and Jen-

kins, is an esteemed method for analyzing and predicting 

time series data [28]. This model combines the concepts 

of autoregression (AR), differencing (I), and moving av-

erage (MA) to identify systematic patterns in the data and 

use them for future forecasting. It is frequently used 

across various disciplines, from finance and economics 

to public health and environmental studies, due to its 

flexibility and applicability. 

Conceptually, the ARIMA model is a blend of three 

parts: 

1. Autoregressive (AR) Component (p): The AR 

component represents the dependency between an ob-

served value and its initial values. An AR term of order p 

can be expressed as a linear function of the most recent 

value of p in the time series. 

2. Differing (I) Component (d): Differing de-trends 

the time series and ensures stationarity, which is an es-

sential assumption in ARIMA models. The idea behind 

differencing is to consider the changes between one ob-

servation and the next or over a defined number of lagged 

observations. 

3. Moving Average (MA) Component (q): The MA 

component represents the dependency between an ob-

served value and residual error from a moving average 

model applied to lagged observations. 

The mathematical representation of an ARIMA 

model can be given as:  

 

ARIMA(p, d, q) = c+∑φixi−1 + ϵi

p

i=1

+ 

+∑θiϵi−1

q

i=1

, 

 

where xi are a stationary variable; 

c is constant; 

i are autocorrelation coefficients; 

ϵi are white noise with zero mean; 

i are weights; 

0 is assumed to be 1. 

The parameters p and q are referred to as the order 

of autoregressive and moving average. Using ARIMA al-

lows you to make predictions on non-stationary data by 

introducing integration into the model. This is achieved 

by considering differences. 

In the application of epidemiology, ARIMA models 

can be used to predict disease patterns, such as the inci-

dence of Leptospirosis, using historical data. The time se-

ries data represent the logged historical incidence data of 

Leptospirosis. 

The primary steps in implementing an ARIMA 

model involve ensuring the stationarity of the series, 

identifying the appropriate values of p, d, and q using au-

tocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots, and then estimating the parame-

ters for the identified model. Model diagnostics should 

be performed to validate the model fit before its use in 

forecasting future values. 

The ARIMA model is a valuable tool in the field of 

disease forecasting and contributes significantly to public 

health planning and disease control. By accurately pre-

dicting the future incidence of diseases like Leptospiro-

sis, we can better manage resources, implement preven-

tive measures, and mitigate the impact on public health . 

Advantages of ARIMA model: 

1. ARIMA models are relatively easy to understand 

and interpret compared to more complex machine learn-

ing models. The model parameters (p, d, q) have specific 

interpretations related to the underlying temporal struc-

ture of the data. 

2. ARIMA models are versatile and can be applied 

to various time series data, provided the series is station-

ary or can be made stationary through differencing. 

3. ARIMA models are effective for short-term fore-

casting and can often provide robust predictions even 

when the data contain random noise. 

(1) 
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Table 1 

Overview of the Leptospirosis epidemic process models  

Paper Task Method Findings 

Conceicao 

K.S. [18] 

To analyze the frequentist prop-

erties of the Bayesian estimators 

of leptospirosis notifications in  

cities of the Bahia State (Brazil) 

Bayesian ap-

proach for the 

ZMP regres-

sion model. 

The study concluded that the ZMP regression 

models are highly beneficial in analyzing zero-

inflated or zero-deflated datasets and identified 

the Human Development Index (HDI) as a sig-

nificant factor in explaining leptospirosis notifi-

cations, asserting that leptospirosis notification 

probability increases with the HDI. 

Mukdasai, 

K. [19] 

To present numerical simula-

tions of a newly designed frac-

tional-order leptospirosis model 

using stochastic numerical su-

pervised neural networks. 

Supervised 

neural net-

works 

The study established the efficacy, stability, pre-

cision, reliability, and fitness of the proposed 

method, with statistics showing 74% and 13% 

for certification and learning respectively. 

Bhalraj,  

A. [20] 

To improve our understanding of 

Leptospirosis transmission dy-

namics worldwide 

Compartmental 

model 

The natural death rate of the rat population, 

alongside the basic reproduction rate, plays a 

pivotal role in controlling the outbreak of Lepto-

spirosis. 

Minter,  

A. [21] 

To develop an optimal control 

mathematical model that effec-

tively manages the spread of lep-

tospirosis 

Compartmental 

model 

This study concludes that both permanent and 

temporary controls can effectively reduce the 

prevalence of leptospiral carriage in the rodent 

population and the number of infected rats, 

thereby lowering the risk of human infection. 

Qu, H. [22] To examine the dynamics of lep-

tospirosis using piecewise classi-

cal global and classical fractional 

operators 

Compartmental 

model 

The simulation results showed improved dynam-

ics and crossover behaviors, with a decline in the 

recovered human population over 350 days and 

a decrease and stabilization in the susceptible rat 

and human populations with high β values, indi-

cating potential disease dissipation. 

Engida, 

H. A. [23] 

To investigate the impact of ro-

dent-borne leptospirosis on hu-

man populations, considering the 

incidence rate of human infec-

tion and the quantity of patho-

genic agents in the environment. 

Compartmental 

model 

The study revealed that the disease-free equilib-

rium is globally asymptotically stable if the basic 

reproduction number is less than one and unsta-

ble otherwise and that decreasing transmission 

rates, increasing recovery rates, and controlling 

the rodent population have a significant role in 

reducing the spread of the disease in the popula-

tion. 

Rahmat,  

F. [24] 

To understand the relationship 

between leptospirosis occur-

rence and weather parameters at 

different time lags in Malaysia. 

Artificial neu-

ral network 

The study identified a significant correlation be-

tween leptospirosis occurrence and weekly aver-

age temperature at a lag of 16 weeks and weekly  

rainfall at a lag of 12-20 weeks. 

Athithan,  

S. [25] 

To construct a computational 

model for Leptospirosis’ spread 

using cellular automata and a 

voting-based rule. 

Cellular Au-

tomata 

The simulation results closely match the actual 

data from Thailand, demonstrating the potential 

applicability of this voting-rule-based approach 

in accurately representing Leptospirosis trans-

mission dynamics. 

Ikram,  

R. [26] 

Applying a mathematical model 

to the study of leptospirosis  

transmission 

Compartmental 

model 

The results indicate that  He's homotopy pertur-

bation method effectively approximates a solu-

tion for the leptospirosis transmission model. 

Galego, 

M. A. [27] 

To investigate the dynamics of 

leptospirosis transmission be-

tween rodents and humans 

Compartmental 

model 

The researchers found a critical threshold for the 

environmental carrying capacity that determines 

whether the disease persists or becomes extinct 
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4. The model can accommodate various time series 

patterns (e.g., trend, seasonality) by adjusting the model 

parameters. 

Disadvantages of ARIMA model: 

1. The ARIMA models assume that the underlying 

data follows a linear pattern. This assumption may not 

hold true in many real-world epidemic scenarios, which 

often involve nonlinear processes. 

2. ARIMA models require the time series data to be 

stationary (i.e., the properties of the series do not change 

over time). Many epidemic processes might exhibit non-

stationary behavior due to various factors such as policy 

changes, intervention measures, and population behavior 

changes. 

3. Traditional ARIMA models do not incorporate 

external variables or factors that might influence the epi-

demic process, such as socioeconomic factors, environ-

mental conditions, or intervention strategies.  

ARIMA models are most effective for short-term 

forecasts. Their performance tends to decline for longer-

term forecasts because they rely on the assumption that 

future patterns will resemble past patterns . 
 

2.2. Model Performance Metrics  
 

The model’s accuracy was assessed using the Mean 

Absolute Percentage Error (MAPE) to confirm its predic-

tive ability as follows:  

 

MAPE =
100%

n
∑ |

At − Ft

At
|

n

t=1

 

 

where At is the actual value; Ft is the forecasted value. 

The MAPE is commonly used to evaluate the accu-

racy of forecasting models, including those used for in-

fectious disease forecasting. The MAPE method provides 

a measure of the relative error of the forecast, which is 

particularly useful when dealing with time series data that 

exhibit trends or seasonality. This means that the metric 

considers the magnitude of actual values, providing a 

more accurate representation of forecasting error. 

 

3. Results 
 

3.1. Data analysis  

 

The data used for that research were collected from 

the open Annual epidemiological reports of European 

Centre for Disease Prevention and Control for 2010-2013 

[29], 2014-2018 [30] and 2018-2022 [31]. The data on 

reported confirmed leptospirosis cases and their respec-

tive rates per 100000 population in Estonia, Lithuania, 

and Latvia from 2010 to 2022 were used for the experi-

mental study. The results are presented in Table 2. 

Figure 1 presents the number of leptospirosis cases 

and their rates per 100,000 population in Estonia, Lithu-

ania, and Latvia from 2010 to 2022. The first chart dis-

plays the number of cases, and the second chart shows 

the incidence rates. 

The stacked bar plot shows the number of leptospi-

rosis cases in Estonia, Lithuania, and Latvia from 2010 

to 2022 (Figure 2). Each bar represents the total number 

of cases per year, and different colors indicate the contri-

bution from each country. This comparative visualization  

underscores the differences in leptospirosis incidence 

among the three countries during the given period. 

In this study, we employed Pearson and Spearman 

correlation analyses to examine the relationships within  

our dataset. The Pearson correlation was used to assess 

the strength and direction of linear associations between 

variables, which is valuable for understanding straight-

forward proportional relationships in the data. In con-

trast, Spearman correlation was applied to explore mon-

otonic relationships, which do not require linearity and 

are thus more robust to outliers and non-normal distribu-

tions.  

Table 2 

Reported confirmed leptospirosis cases: numbers and rate per 100 000 population  

Year Estonia cases Estonia rate Lithuania cases Lithuania rate Latvia cases Latvia rate 

2010 1 0.1 5 0.2 2 0.1 

2011 2 0.2 3 0.1 6 0.3 

2012 5 0.4 20 0.7 1 0.0 

2013 2 0.2 10 0.3 1 0.0 

2014 2 0.15 3 0.1 7 0.35 

2015 2 0.15 10 0.34 2 0.1 

2016 3 0.23 18 0.62 5 0.25 

2017 5 0.38 16 0.56 8 0.41 

2018 6 0.45 3 0.11 4 0.21 

2019 5 0.38 0 0 4 0.21 

2020 10 0.75 0 0 3 0.16 

2021 8 0.6 0 0 1 0.05 

2022 9 0.68 1 0.04 0 0 

,                (2) 
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Figure 1. Trends in Reported Leptospirosis Cases and Incidence Rates in Estonia, Lithuania, and Latvia (2010-2022) 

 

 
Figure 2. Stacked Bar Plot of Leptospirosis cases  

 

This dual approach provided a comprehensive view, 

enabling us to confirm linear patterns while also detect-

ing potential nonlinear associations, thereby enhancing 

the reliability of our exploratory data analysis. 

Table 3 compares Pearson correlation coefficients.  

Table 4 compares the Spearman correlation coeffi-

cients. 

Figure 3 presents scatter plots for each pair of coun-

tries with the Pearson correlation coefficient displayed. 

 

Table 3 

Comparison of Pearson correlation coefficients  

Countries 
Pearson correla-

tion coefficient 
P-value Interpretation 

Estonia vs.  

Lithuania 

-0.36 0.23 Moderate inverse relationship 

Estonia vs.  

Latvia 

-0.30 0.31 Weak inverse relationship. There is a slight trend towards 

the opposite movement of the number of incidents 

Lithuania vs. 

 Latvia 

0.13 0.67 A very weak positive relationship. There is practically no 

linear relationship between the cases. 



Modelling and digitalization 
 

13 

Table 4 

Comparison of Spearman correlation coefficients  

Countries 
Spearman correla-

tion coefficient 
Interpretation 

Estonia vs.  

Lithuania 

-0.48 Average negative correlation. The number of incidents in one country 

tends to decrease as well as in the one with which it is compared. 

Estonia vs.  

Latvia 

-0.25 Weak negative correlation. There is a slight trend towards the opposite 

movement of the number of incidents. 

Lithuania vs.  

Latvia 

0.11 A very weak positive correlation. There is practically no linear rela-

tionship between the number of incidents. 

 

 
 

Figure 3. Comparative visualization of Pearson correlation coefficients 

 

Pearson and Spearman correlations generally agree 

in identifying the type of relationship (positive or nega-

tive), but Spearman correlation sometimes reveals a 

stronger connection (for example, between Estonia and 

Lithuania). 

In this analysis, both approaches show that there is 

the most significant negative correlation between inci-

dents in Estonia and Lithuania, whereas there is almost 

no correlation between incidents in Lithuania and Latvia. 
 

3.2. Experimental results  

 

First, we apply data normalization by adjusting the 

values of each feature in the dataset to fall within a spec-

ified range, i.e., between 1 and 2. This process ensures 

that all features contribute equally to subsequent analyses 

or models, regardless of their scales. By transforming the 

data in this manner, we can improve the performance and 

interpretability of machine learning algorithms that are 

sensitive to feature scales. 

Random splitting, which typically involves select-

ing a percentage of the data (e.g., 70% for training and 

30% for validation) and randomly distributing the obser-

vations between the two sets. The data were split into 

training (the first 9 years) and validation (the last 3 years) 

sets. 

The range is experimentally determined by defining 

the upper limits for the values of p, d, and

q (in this example, the upper limit is set to 6). 

Iterates through all possible combinations of p, d, 

and q values within the specified ranges. For each com-

bination: 

1. Attempt to construct an ARIMA model in the 

given order (p, d, q). 

2. Forecast values for the validation period. 

3. The MAPE was calculated to assess forecast 

quality. 

4. If the current MAPE value is lower than the pre-

vious best, the best MAPE values, model order, and fore-

casts are updated. 

Figure 4 presents the ARIMA model’s retrospective 

prediction of leptospirosis morbidity in Estonia. This 

graph shows the model’s capacity to capture observed 

patterns of leptospirosis incidence over time. The align-

ment of predicted values with actual data points suggests 

that the model performs reliably for Estonia, providing a 

clear basis for its applicability in forecasting future 

trends. 
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Figure 4. Prediction of leptospirosis in Estonia 

 

 
Figure 5. Prediction of leptospirosis in Lithuania 

 

 
 

Figure 6. Prediction of leptospirosis in Latvia 
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Figure 5 presents a similar retrospective prediction 

for Lithuania, in which the ARIMA model follows the 

actual incidence pattern. Despite some deviations, partic-

ularly in high-incidence periods, the model adequately 

represents disease progression, indicating its robustness 

in forecasting trends within Lithuanian data. 

Figure 6 shows the ARIMA prediction of leptospi-

rosis morbidity in Latvia. The model’s predictions align 

well with the observed values, capturing the primary  

trends and fluctuations in the data. This consistency un-

derscores the model’s potential utility in forecasting for 

Latvia, where incidences are less variable but still require 

reliable prediction methods . 

Table 5 summarizes each country’s ARIMA coeffi-

cients and Mean Absolute Percentage Error (MAPE). Es-

tonia’s  model, with an order of (2, 2, 3), achieved a 

MAPE of 7.076, indicating an accurate fit. Lithuania’s 

model (1, 2, 2) had the lowest MAPE of 6.841, suggest-

ing the highest prediction accuracy among the countries. 

In Latvia, the (1, 2, 0) model resulted in a MAPE of 

7.765, indicating slightly higher variability but still 

within an acceptable range. This comparative analysis 

showed that the ARIMA models effectively captured dis-

ease trends across the studied countries, with minor ad-

justments in the model order thereby optimizing the ac-

curacy based on the regional data characteristics . 

 

Table 5 

ARIMA coefficients and predictions MAPE 

Country 
Best ARIMA 

order 
MAPE 

Estonia (2, 2, 3) 7,076 

Latvia (1, 2, 0) 7,765 

Lithuania (1, 2, 2) 6,841 

 

The ARIMA models applied to Estonia, Lithuania, 

and Latvia demonstrated a robust capacity to capture 

trends and forecast the incidence of leptospirosis in each 

country. The retrospective analyses indicate that alt-

hough all models achieved reasonable alignment with 

historical data, variations in MAPE values across coun-

tries suggest that some regions exhibit slightly more chal-

lenging patterns for accurate prediction. With the lowest 

MAPE, Lithuania achieved the most reliable forecast, 

while Estonia and Latvia showed moderate accuracy, 

which is suitable for practical forecasting needs. These 

models underscore the ARIMA model’s adaptability to 

different epidemiological profiles, highlighting its poten-

tial as a predictive tool for managing leptospirosis mor-

bidity and aiding public health interventions across vari-

ous regional contexts. The ARIMA model’s performance 

across Estonia, Lithuania, and Latvia demonstrated sig-

nificant prediction accuracy, confirming the model’s ef-

fectiveness in accurately forecasting leptospirosis inci-

dence, thereby fulfilling the research objective of im-

proving prediction accuracy. 

 

4. Discussion 
 

The results of this study highlight the unique dy-

namics of leptospirosis morbidity across Estonia, Lithu-

ania, and Latvia, providing insights into the factors influ-

encing disease transmission in each country and the ef-

fectiveness of ARIMA models in predicting future cases. 

The initial morbidity data revealed that leptospirosis 

cases fluctuate annually and vary substantially between 

the countries. Estonia’s higher incidence rate could be at-

tributed to its rural areas and extensive water networks, 

which support habitats for rodents and other hosts of the 

Leptospira bacteria. This environmental setup, along 

with potentially high wildlife interaction and agricultural  

activities, may increase exposure risks for rural and out-

door residents. Latvia, which has a similarly large rural 

and agricultural sector, also experiences variable infec-

tion rates, suggesting that leptospirosis transmission may 

be influenced by seasonal or socio-economic factors, 

such as agricultural cycles, wildlife activity, or flood-re-

lated water contamination, which tend to vary annually. 

Lithuania’s relatively low and sporadic leptospirosis 

rates could indicate less exposure to high-risk environ-

ments or more successful public health interventions. 

Differences in public awareness, healthcare access, and 

preventive measures could also account for the observed 

differences in morbidity rates. 

The application of ARIMA models in this study 

aimed to leverage historical data to predict short-term 

morbidity trends. The varying MAPE values for each 

country’s model provide insight into the model’s perfor-

mance and potential forecasting challenges in each set-

ting. Lithuania’s model achieved the lowest MAPE, indi-

cating relatively stable historical patterns that may have 

contributed to higher predictive accuracy. This could be 

due to more consistent reporting practices or fewer year-

to-year variations in disease incidence, which makes  

forecasting smoother and more reliable. Conversely, the 

slightly higher MAPE values for Estonia and Latvia may 

reflect the underlying variability in morbidity rates that 

complicate prediction. This variability might be tied to 

periodic environmental shifts, such as fluctuating water 

levels or annual variations in rodent populations, which 

the univariate ARIMA model is less equipped to account 

for. This suggests that although ARIMA models are ben-

eficial for identifying overall trends, the accuracy of 

these forecasts may improve by including external envi-

ronmental data, which could capture the seasonal and 

ecological drivers of leptospirosis transmission more ef-

fectively. 
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Correlation analysis between the three countries’ 

morbidity rates revealed weak or inverse relationships, 

suggesting that leptospirosis cases in each country are 

likely influenced by local rather than regional factors. 

This lack of strong correlation implies that outbreaks in 

one country do not predict similar trends in neighboring 

areas, likely due to differences in local climate, land use, 

and public health strategies. The weak positive correla-

tion between Latvia and Lithuania indicates minimal syn-

chronization in incidence rates. This suggests that na-

tional factors, such as specific rainfall patterns and local 

agricultural practices, may drive infection rates. The in-

verse relationship observed between Estonia and Lithua-

nia may further highlight contrasting environmental or 

social factors that impact transmission, such as different 

water management systems or preventive health policies 

that influence human exposure risks differently in each 

location. 

The findings demonstrated that ARIMA models are 

a feasible tool for short-term forecasting of the incidence 

of leptospirosis in Baltic countries, although the effec-

tiveness varies by setting. In areas where leptospirosis 

rates exhibit significant fluctuations, integrating addi-

tional variables like weather conditions, population 

movement, and socioeconomic factors could enhance 

predictive accuracy and provide a more comprehensive 

understanding of transmission dynamics. This approach 

would be particularly useful in countries with high case 

variability, where identifying the environmental and so-

cial determinants of outbreaks can aid in tailoring effec-

tive public health interventions. 

This study underscores the importance of country-

specific approaches to leptospirosis forecasting and con-

trol, as each region’s unique epidemiological profile re-

quires a customized model. The ARIMA models pro-

vided a foundational analysis; future work should explore 

multivariate forecasting approaches that incorporate cli-

mate data, rodent population trends, and human behavior 

patterns. Such models could offer more precise predic-

tions and facilitate preemptive public health responses, 

especially in regions where the disease remains a persis-

tent public health concern. These insights contribute to a 

better understanding of leptospirosis in varying geo-

graphic and environmental contexts, demonstrating the 

potential of predictive models to guide resource alloca-

tion and disease prevention strategies in Baltic countries 

and similar settings globally. 

The study's limitation is the potential variability in 

data quality and reporting accuracy across the three coun-

tries. Differences in diagnostic capabilities, healthcare 

access, and reporting practices may lead to underreport-

ing or inconsistent data, particularly in rural or resource-

limited areas where leptospirosis cases are less likely to 

be diagnosed and documented. This variability could af-

fect the robustness of the ARIMA model because  

fluctuations in reported cases may not always reflect ac-

tual changes in disease incidence, potentially impacting  

the reliability of the model’s predictions. 

To mitigate the impact of these data quality issues, 

future work could incorporate approaches like data im-

putation to handle missing or inconsistent data. Integrat-

ing external factors such as climatic conditions, agricul-

tural practices, and socioeconomic variables into the 

model could help account for fluctuations in leptospirosis 

incidence. Multivariate models incorporating these addi-

tional predictors could enhance the robustness and gen-

eralizability of the findings by more effectively capturing 

the underlying drivers of leptospirosis . 

 

Conclusions 
 

In conclusion, this study comprehensively evaluates 

the ARIMA model’s potential for forecasting leptospiro-

sis morbidity across Estonia, Lithuania, and Latvia, con-

tributing scientifically and practically to epidemiological 

modelling. Scientifically, this research advances our un-

derstanding of leptospirosis by demonstrating the utility 

of univariate time-series analysis in regions with varied 

ecological and socioeconomic contexts. The results un-

derscore the adaptability of the ARIMA models in cap-

turing distinct disease transmission patterns within the 

Baltic countries, where each country’s unique geographic 

and environmental factors, such as rural landscapes and 

water networks, contribute to disease prevalence. This 

approach provides a better understanding of the regional 

dynamics that drive leptospirosis transmission and offers 

foundational insights that can broaden forecasting meth-

ods for zoonotic diseases. 

From a practical perspective, the ARIMA-based 

forecasting model developed in this study presents a val-

uable tool for public health authorities in these countries. 

By enabling short-term prediction of leptospirosis inci-

dence, this model can support health agencies in planning 

preventive measures, optimizing resource allocation, and 

preparing for potential outbreaks, thereby reducing mor-

bidity and supporting proactive disease management. 

The model’s ease of implementation, combined with the 

meaningful results obtained for each country, demon-

strates its applicability in low-resource settings and its 

potential to inform timely and effective public health re-

sponses to leptospirosis and similar zoonotic diseases. 

Future research should focus on enhancing predic-

tive accuracy by integrating additional variables, such as 

climate data, socioeconomic factors, and animal popula-

tion dynamics, which are known to influence leptospiro-

sis transmission. The incorporation of multivariate ap-

proaches could improve the model’s robustness and ex-

tend its predictive power by accounting for seasonal and 

environmental fluctuations affecting leptospirosis trends. 

In addition, exploring machine learning-based models 
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could provide new perspectives and increase forecasting 

precision, especially in areas with high variability in case 

data. This expanded approach will refine disease man-

agement strategies, enabling more precise targeting of 

high-risk periods and locations, ultimately improving  

public health outcomes in leptospirosis -endemic areas 

and beyond. 
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АНАЛІЗ ЧАСОВИХ РЯДІВ ЗАХВОРЮВАНОСТІ НА ЛЕПТОСПІРОЗ ДЛЯ ПРОГНОЗУВАННЯ  

В КРАЇНАХ БАЛТІЇ ЗА ДОПОМОГОЮ МОДЕЛІ ARIMA 

М. В. Буткевич, Д. І. Чумаченко 

Лептоспіроз, зоонозне захворювання з вагомими наслідками для громадського здоров’я, представляє зна-

чні труднощі для прогнозування через сезонні особливості та чутливість до екологічних факторів, особливо в 

недостатньо досліджених регіонах, таких як країни Балтії. Метою цього дослідження є розробка прогнозної 

моделі на основі ARIMA для передбачення захворюваності на лептоспіроз у Естонії, Латвії та Литві, де наявні 

дані про захворювання обмежені та варіативні. Об'єктом дослідження є епідемічний процес лептоспірозу, а 

предметом – застосування методології прогнозування часових рядів, придатних для епідеміологічних кон-

текстів. Методи. Модель ARIMA була застосована до кожної країни для визначення часових закономірностей 

і генерації короткострокових прогнозів захворюваності, використовуючи дані про підтверджені випадки леп-

тоспірозу з Європейського центру профілактики та контролю захворювань за 2010–2022 роки. Результати. 

Продуктивність моделі оцінювалася за середньою абсолютною відносною помилкою (MAPE), що виявила 

найбільш точний прогноз у Литві з MAPE 6.841. Естонія та Латвія показали помірні рівні точності, що, ймо-

вірно, відображає варіативність випадків і відмінності в регіональних епідеміологічних особливостях. Ці ре-

зультати демонструють, що моделі ARIMA можуть ефективно відображати загальні тенденції та забезпечу-

вати короткострокові прогнози захворюваності навіть у різноманітних епідеміологічних умовах, що вказує на 

корисність ARIMA у середовищах з обмеженими ресурсами та  змінними даними. Висновки. Наукова новизна 

цього дослідження полягає у застосуванні моделі ARIMA для прогнозування лептоспірозу в країнах Балтії, де 

комплексні дослідження часових рядів захворювання на лептоспіроз є рідкістю. Практична значущість поля-

гає у розробці цінного інструменту для органів охорони здоров’я, для обґрунтування цільових втручаннь, за-

безпечення ефективнішого розподілу ресурсів та планування своєчасного реагування на лептоспіроз та поді-

бні зоонозні захворювання. Адаптивність моделі ARIMA  та її проста реалізація в кожній країні показують її 

потенціал для інформування процесу прийняття рішень у сфері громадського здоров’я в умовах з обмеженими 

даними про закономірності захворювання. 

Ключові слова: епідемічна модель; епідемічний процес; моделювання епідемії; моделювання; лептоспі-

роз, ARIMA. 
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