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LIST OF SYMBOLS

angles, numerical coefficients;
strain;

strains in the system of principal axes;
Poisson's ratio;

normal stress;

principal stresses;

allowable normal stress;
ultimate stress;

yield stress;

equivalent stress;

shear stress;

allowable shear stress;

lengths of segments, spans;
side length of a square;

width and height of a rectangle;
diameter;

modulus of elasticity (Young’s modulus);

cross-sectional area;

polar moment of inertia of the cross-section;
axial moments of inertia of the cross-section;
centrifugal moment of inertia of the cross-section

radii of gyration of the cross-section;
safety factor;

concentrated moment;

torsional moment;

bending moments about the y- and z-axes;

axial force;

concentrated force;

shear forces;

distributed load;

reaction;

potentional strain energy;
volume;

polar cross-section modulus;

cross-section modulus about the y- and z-axes;

Cartesian coordinates.
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1. THEORIES OF STRENGTH

1.1. Problem Statement and Basic Definitions

1.1.1. Concept of the Limiting Stress State

The most crucial problem of engineering analysis is the assessment of a structural
component's strength based on its known stress state.

The stress state at a point is entirely defined:
— in a simple (uniaxial) stress state — by one principal stress,
— 1in a plane (biaxial) stress state — by two,
— 1in a volumetric (triaxial) stress state — by three.

If the external loads do not exceed a certain value that depends on the material and
the type of stress state, then the material remains in the elastic state. With an increase in
external load, the principal stresses will also increase, and at certain values noticeable
residual deformations or local cracks may appear. Such a stress state is called the limiting
state.

Thus, the limiting state 1s understood as a complex stress state in which the follow-
ing occurs:

a) in a ductile material, residual (plastic) strain begins to develop;

0) in a brittle material, fracture begins.

1.1.2. Necessity of Creating Strength Theories and their Purpose

If the limiting stress state is known, then the strength analysis is reduced to deter-
mining the stress state at the critical point (or at all potentially critical points) of the
body under investigation and comparing it with the limiting value.

In the case of a simple (uniaxial) stress state, it is quite easy to experimentally
determine the limiting stress state through a tension or compression test.



The following are accepted as the limiting values:

— the yield strength of a ductile material (0 = 0yiera);

— the ultimate strength of a brittle material (gy;,,;; = 0,;)-

In these cases, the safety factors are given by:

O-yield Oult

nyield = g Ny = Oyl g

where o is the stress acting at the critical point.

For a complex (biaxial or triaxial) stress state it is practically impossible to conduct
tests for all possible ratios between o4, 0, and o3, since:

1) the number of possible relationships between the components of a complex stress
state is infinite, therefore the number of experiments needed to determine the
limiting states corresponding to these combinations of principal stresses is also
infinite;

2) for many types of complex stress states, it is technically difficult, and sometimes
impossible, to carry out an experiment to determine the limiting stress state. That
is, current experimental techniques do not have the capability to realize tests for
the majority of complex stress states.

Such experiments, which require the use of exceptionally sophisticated equip-
ment for both loading the specimen and recording its behaviour under load, have
so far been conducted in research laboratories for only a very limited number of
types of complex stress states.

The interpretation of the results of such experiments is highly complicated and
often contradictory, since during these tests it is practically impossible to meet
the most important requirement of such experiments to ensure the homogeneity
of the stress-strain state within the gage section of the specimen.

Therefore, there arises the necessity of developing strength theories (also called
strength hypotheses or limit state theories), i.¢., general methods of strength analysis for
any type of complex stress state, based on the mechanical properties of materials obtained
from a limited number of the simplest mechanical tests.

Theories of strength are designed for performing strength analyses under a complex
stress state.



1.1.3. The Concept of Equally Critical (Equally Strong) Stress States

Strength theories are based on the assumption that two stress states are considered
equally strong if, when the principal stresses are proportionally increased, they simulta-
neously reach the limiting state. In that case, the safety factor for both stress states will
be identical.

Two stress states are called equally critical (equally strong) if they have the same

safety factor.

The safety factor is a number indicating how many times all components of a com-
plex stress state must be simultaneously increased for it to become the limiting state.

Let us consider an example. Suppose that for two identical elements made of the
same material, a uniaxial stress state is realized for the first, and a complex stress state
for the second (Fig. 1.1).
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Fig. 1.1

Let us assume that element I began to deform plastically (or to fracture if it is brittle)
at 0 = 280 MPa.

This value of g should be considered the limiting one in the case of a uniaxial (one-
dimensional) stress state:

Olimit = 280 MPa.
Element II began to deform plastically (or to fracture in a brittle manner) at:
0, =170 MPa; 0, = 110 MPa, o3 = 60 MPa.
This combination of stresses should be considered as the limiting stress state for
the given ratio between g, 0,, and g3, 1.e.

01 limit = 170 MPa,' 07 Limit = 110 MPa,' 03 Limit = 60 MPa.



Suppose that for elements I and II it is necessary to ensure the same safety factor
with a coefficient of safety n = 2.

Then the uniaxial tension with a stress of:

g, .. 280
= Zlmit _ 27~ — 140 MPa
n 2
and the volumetric stress state with:
(0} imi 170
o, = —mit — "~ = 85 MPa;
n 2
To i 110
g, = 27’;’"” = — =55 MPa;
O imi 60
o5 = 3;; t=7=30MPa

are equally critical, or equally strong.

1.1.4. The Concept of Equivalent Stress

The comparison of stress states for a given material can be performed using equiv-

alent stresses o,

Equivalent stress (0,,) — is such a stress that must be created in a tensile specimen

(i.e., under a linear (uniaxial) stress state), so that its stress state is equally critical to
a given complex stress state (1.¢., has the same safety factor).

The problem and purpose of all theories of strength is to relate the equivalent
stresses in two equally strong states by a specific relationship based on an analysis of the
causes of fracture or transition of the material into the limiting state. This means deter-
mining the form of the function:

O-equ(o-lao-270-3)- (11)

Thus, by means of strength theories, a transition is carried out from a complex stress
state to an equally critical uniaxial one. That is, the equivalent stress is determined, which
is then compared with the results of the simplest mechanical tests. In this way, a conclu-
sion is drawn about the degree of strength exhaustion under a complex stress state.



1.2. Main Theories of Strength

All theories (criteria, hypotheses) of strength can be divided into two types:
a) theories constructed on hypotheses, i.e., based on logically justified assumptions;

0) theories based on a phenomenological approach, i.e., relying on the logical sys-
tematization of experimental research results.

1.2.1. Theory of Maximum Normal Stresses
(the First Strength Theory)

By historical tradition, the theory (hypothesis) of maximum normal stresses is called
the First Theory of Strength. 1t was formulated in 1638 by Galileo Galilei'. The sup-
porters of this theory included G. Leibniz, G. Lamé, A. Clebsch, and M. Rankine. In
English and American literature, it is known as Rankine’s theory.

This theory is based on the following assumption (hypothesis):

The strength of an element subjected to a complex stress state is considered to be
exhausted (i.e., its limiting stress state is reached), if the magnitude of the largest of
the principal stresses reaches the limiting value determined from simple tension or

compression tests.
Thus, the condition for the strength exhaustion takes the form:
Omax = 01 = O-limitt or Omax = |O-3| = O-limitc’ (12)

where o0y;,,,. and o0y, are the 111’1’11'[11’1g stresses determined from simple tensile and
limit ¢ limit ¢
COl’IlpI‘@SSiOll tests, respectively.

The condition of ensuring strength with a safety factor of n has the form:

oy = 01 < [0]; or ol = o3| < [o],, (1.3)

! Galileo Galilei (Italian: Galileo Galilei; February 15, 1564, Pisa — January 8,
1642, Arcetri) — Italian physicist, mechanic, astronomer, philosopher, and mathemati-
cian, who exerted significant influence on the science of his time. He was the first to
employ the telescope for celestial observations and made a series of outstanding astro-
nomical discoveries. Galileo was the founder of experimental physics and laid the foun-
dation of classical mechanics.



[0], = —=L and [0], = —=< - allowable tensile and compressive
n n stresses, respectively.

where

As experimental verification has shown, this theory of strength:

a) does not reflect the conditions for a material's transition into the plastic state,
meaning it cannot be used for the strength analysis of parts made from ductile

materials;
0) allows to obtain satisfactory results for brittle materials (quartz, rocks, ceram-
ics, tool steels, etc.) under a very limited number of stress state types.

At present, it is rarely applied.

1.2.2. Theory of Maximum Linear Strains
(the Second Strength Theory)

The Theory of Maximum Linear Strains was proposed by Edme Mariotte’ in 1682.
Supporters of this theory included L. Navier and V. Saint-Venant.

It is based on the following hypothesis:

The strength of an element subjected to a complex stress state is considered to be
exhausted (i.e., its limiting stress state is reached), if the magnitude of the maximum

strain (relative elongation) of this element reaches the limiting value determined

from simple tension or compression tests.

Thus, the strength exhaustion will occur when the condition is fulfilled

Emax = €1 = glimitt or Emax = |€3| = |€limitc|a (14)

where &;;,;;, and €,;; — are the maximum strains determined from simple tension and

compression tests, respectively.

According to the generalized Hooke's law for a complex stress state

2 Edme Mariotte (French: Edme Mariotte; 1620, Dijon (Burgundy) — May 12,
1684, Paris) — French physicist of the 17th century, one of the founders (1666) and the
first members of the Paris Academy of Sciences. His scientific work pertained to me-
chanics, heat, and optics. He served as prior of the Saint-Martin Monastery near Dijon.
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1

& = B [0y — u(oy + 03)]; &3 =

For a uniaxial stress state:

1
E [o5 — u(oy + a,)]l.

Olimit, _ Olimit .

Elimit, = E Elimit, = E

This makes it possible to rewrite the limit state equation (1.4) in terms of stresses:
o1 — u(oy +03) = Olimit ,> o3 —u(oy +03) = Olimit .- (1.5)

Strength with a safety factor of n will be ensured under the condition:

= [a]..

Therefore, the strength condition according to the second strength theory finally
takes the form:

Olimit

Olimit
t [ ]t;

01_ﬂ(02+03)= n =10 03‘.“(01"‘02):

O-el(Il = 01 — (o, + 03) < [0];;

| (1.6)
Oeq = 03 — [J(O’l + 02) = [J]Ca

Olimi : :
and [o], = limite — _ a]lowable tensile and compressive

n n stresses, respectively.

Olimit,

where [o], =

Experimental verification of this strength theory has led to results similar to those
of the first strength theory.

Thus, the first and second theories of strength are of historical rather than practical
interest.

1.2.3. Theory of Maximum Shear Stresses
(the Third Strength Theory)

The Theory of Maximum Shear Stress was proposed by C. Coulomb® in 1773. This
theory was further developed in the works of J. Guest, A. Tresca, and J. Bauschinger.

It is based on the following hypothesis:

3 Charles-Augustin de Coulomb (French: Charles-Augustin de Coulomb, June 14,
1736 — August 23, 1806) — French military engineer and physicist, researcher of electro-
magnetic and mechanical phenomena; member of the Paris Academy of Sciences.

10



The strength of an element in a complex stress state is considered exhausted (i.e., its
limiting stress state is reached), if the magnitude of the maximum shear stress
reaches the limiting value determined from simple tension tests.

Consequently, the condition of strength exhaustion takes the form:
Tmax = Tlimit- (1-7)

In case of complex stress state (Fig. 1.2, a)

0-1 - 0-3
Tmax = 2

In case of uniaxial stress state (Fig. 1.2, b)

01
o3 =0 and Tnar = =
hence,
_ Olimit
Tlimir = 5
o-0, |° o l1f
max 2 |~ : Tmax_ 7 :
l l
| |
1 ]
| 1
I
[0 E O'= 0] ! o
o, 0, g, 0,=0,=0 g,
a b
Fig. 1.2

This makes it possible to represent the condition for strength exhaustion (1.7) in
terms of principal stresses:

01 — 03 = Ojimiz-

The strength with a safety factor n will be ensured if

01 — 03 = n

The strength condition according to this theory of strength takes the form

III

0o = 01 — 03 < [0], (1.8)

_ Olimit
n

where [o] — allowable stress.

11



This theory of strength is confirmed by experiments as a theory of the transition of
a material into the plastic state. Thus, in essence, it is a theory of plasticity and is widely
used for the strength analysis of parts made from ductile materials, i.e., materials that
resist tension and compression equally.

A drawback of the third strength theory is that it does not take into account the
intermediate principal stress g,, which, as experiments show, also has some (although
minor) influence on the strength of materials (the discrepancy between theoretical calcu-
lations and experimental data reaches 10—15%).

1.2.4. Energy Theory of Strength
(the Fourth Theory of Strength, Distortion Energy Hypothesis)

In 1885, Italian mathematician E. Beltrami suggested that the specific potential
strain energy (U,) is responsible for strength exhaustion. However, experiments did not
confirm this assumption.

Therefore, in 1904, M. T. Huber * proposed dividing U, into two parts: the specific
potential volumetric strain energy (U, ) and the specific potential deviatoric (or distor-
tional) strain energy (U ;). He assumed that only the distortion energy is responsible for

strength exhaustion.

Further development of this limit state theory was made in the works of
R. von Mises® (1913), H. Hencky (1925).

The fourth strength theory is most often called the von Mises criterion.

It is based on the following hypothesis:
The strength of an element in a complex stress state 1s considered exhausted (i.e., the

limiting stress state occurs) if the specific potential deviatoric strain energy reaches
the limiting value determined from simple tension tests.

* Maksymilian Tytus Huber (Polish: Maksymilian Tytus Huber, January 4, 1872
— December 9, 1950) was a Polish scientist in the field of theoretical and applied me-
chanics, and the founder of the Polish school of mechanics.

> Richard Edler von Mises (German: Richard Edler von Mises, April 19, 1883,
Lemberg, Austro-Hungarian Empire [now Lviv, Ukraine] — July 14, 1953, Boston, USA)
was a mathematician and mechanician of Austrian origin. His works were devoted to
aerodynamics, applied mechanics, fluid mechanics, aeronautics, statistics, and probabil-
ity theory.

12



Thus, the condition of strength exhaustion takes the form:

Uo g = Yo simie (1.9)
where Uy , is the specific potential deviatoric strain energy spent to change the shape of
the element when reaching a given complex stress state;

Uo 4 jimi, 18 the limiting value of specific potential deviatoric strain energy determined

from a simple tension test, i.e., in the case of a uniaxial stress state.

Determining the potential strain energy of an elementary volume

In an ideal elastic material, the potential strain energy accumulated in an elementary
volume during its deformation is numerically equal to the sum of the work done by the
forces applied to the faces of this volume.

In each of the coordinate direc- -
tions, on the faces of an infinitesimal Ul —— e
volume dV = dxdydz (Fig.1.3), nor- /’/ J{ * 7 _ e i
mal forces act: WA 1;___}_____{ i
1l
dP, = 0,dydz; I\‘ﬁ o, I i_*i ’
dP, = 0,dxdz; | ‘4 ______ _&*_ T’}_» N%
2 2 > i 7 dy | // /
dP; = gzdxdy. x ) _21;); __________ L 7

The application of these forces leads to the development of principal strains:

_Adx _Ady _ Adz

(1.10)

Then the displacements of the points of applied forces are:
Adx = &,dx; Ady = &,dy; Adz = g3dz.

By virtue of the validity of Hooke’s law (a directly proportional relationship be-
tween forces and displacements), the total work of these elementary forces on the corre-
sponding displacements 4dx, Ady, and Adz can be determined by the formula:

1 1 1
dW =dU = 5 (o0,dydz)Adx + 5 (o,dxdz)Ady + 5 (o3dydx)Adz. (L.11)

13



Here dU is the elementary potential strain energy of elastic deformation accumu-
lated in the infinitesimal volume dV .

Let's introduce the concept of specific potential strain energy of elastic deformation,
1.e., the energy accumulated in a unit volume:
auv. _ du U
AV dxdydz %

Dividing the left and right parts of equation (1.11) by dV, we obtain:

1 Adx Ady Adz
UO:E<01W+JZW+J3E) (112)
or taking into account expressions (1.10)
1
UO 25(0'151 +O-2€2 +O-3€3). (113)

Let's substitute in (1.13) the values of &4, €,, €3 from the generalized Hooke’s law:

s 1

& = B [0y — u(oy + 03)];
1

162 = E[GZ — u(oy + a3)l;
1

(&5 % lo3 — p(oy + 03)]

and after simple transformations we obtain

1

U, = —
° 7 2F

[0 + 07 + 0% — 2u(0,0, + 0,05 + 0,03)]. (1.14)

The potential strain energy accumulated by an elastic body is expended on changing
its shape and volume. Let's represent the specific potential strain energy U, as the sum
of the specific potential volumetric strain energy and the specific potential deviatoric
(distortional) strain energy:

UO = UOvol + UOda (115)
where U, , is the specific potential strain energy spent on shape change;

Uy ,,, 1s the specific potential strain energy spent on volumetric change.

Using the superposition principle, we transform the initial stress state (Fig. 1.4) and
divide U, into two summands in accordance with expression (1.15).

14



Fig. 1.4 shows that

o, =P+o0] o,=0,—P
o,=P+0,; = g,=0,—Py. (1.16)
o3 =P + o3 o3 =03 —P

It follows that the first summand actually determines only the change in volume,
1.e., it describes the deformation of uniform (hydrostatic) tension. The second summand
complements this stress state to the specified one.

o, P
i o, i P
! — — P: —
) N
Fig. 1.4

Let's find the values of stresses g7, 05, and g3 from the condition that this part of
the stress state does not participate in the change of volume, i.e.

1_2ﬂ ! ! !
& =—F (o; + 0, +03) =0.

Since
1—-2u
E

# 0,
then
o, +0, +03 =0.
Substituting in this expression the values oy, 05, o3 from formula (1.16), we obtain

o +0,+o0o
p=- 32 <y (1.17)

where P is the average normal stress at the point.

Thus, the value P can always be determined unambiguously and in such a way that
no change of volume occurs in the second stress state.

Since there 1s no mutual work in such a division of the initial stress state, this divi-
sion is valid.

Let's determine the specific potential strain energy spent on volume change Uy .

For this, we substitute in (1.14) the value P instead of 0y, 0,, and 03. As a result,
we obtain

15



1-2u
2E

1
Us oy = 57 (3P% = 243P2) = 3p2. (1.18)

Substituting into this expression the value of P from (1.17), we finally obtain

1—-2u
UOVO/ZT(O-l-I_O-Z +0.3)2. (119)

Subtracting from Uy (1.14) the value of Uy, , (1.19), after performing the transfor-
mations, we obtain

1
Uog = 6:,'# [(01 — 02)* + (0, — 03)* + (05 — 01)7]. (1.20)

In the case of the uniaxial stress state this expression takes the form

1+u
0d limit — 6E 'Zghz'mit- (L.21)

By substituting the value of Uy , from the equation (1.20) and Uy , . . from the ex-
pression (1.21) into the strength exhaustion condition (1.9), we obtain

(o1 — 02)2 + (0, — 03)2 + (03 — 01)2 = Zahz‘min

or
1 2 2 2
ﬁ\/(ﬁ — 02)% + (03 — 03)* + (03 — 01)* = Ojjmir-
Strength with a safety factor n will be ensured under the condition:
1 Olimit
—/ (01 —0,)% + (0, —03)? + (05 — 0y)? = = [o].
\/E\/ 1~ 02 2~ 03 3 — 01
The strength condition finally takes the form
1
Opy = — /(01 — 02)% + (0, — 03)% + (03 — 0,)? < [0], (1.22)
V2
Olimi :
where [o] = Zn ! is an allowable stress.

The fourth strength theory, like the third one, is well confirmed experimentally as a
theory of material transition to plastic state and, along with the third strength theory, is
widely used to analyse the strength of parts made from ductile materials.

The occurrence of small plastic strains in the material according to the fourth
strength theory is determined more accurately than according to the third theory.

16



1.2.5. The Mohr's Theory of the Strength

Unlike the theories discussed above, the Mohr’s® theory is not founded on hypoth-
eses, but is constructed upon a logical systematization of experimental results.

The main assumption underlying this theory is that the strength exhaustion is deter-
mined only by the quantities o1 and 63, and does not depend on 62, which is fairly well
confirmed by experiment.

The relationship between the strength properties of a material and the type of stress
state is derived and justified by means of Mohr’s circles.

Suppose that it is possible to test specimens of a given material under any arbitrary
complex stress state. Let us select a stress state with a fixed ratio between g; and o3 and,
by proportionally increasing these stress state components, bring the specimen either to
fracture or to the onset of plastic yielding. This stress state will be the limit state. On the
o — 7 plane, we draw the largest of the three Mohr’s circles. Next, we conduct analogous
tests on specimens of the same material at different ratios between g; and 5. Each such
ratio corresponds to its own limiting Mohr’s circle. Next, the envelope of all limiting
Mohr’s circles is constructed. This envelope essentially represents a mechanical charac-
teristic of the material under a complex stress state, just as under a uniaxial stress state,
just as under a uniaxial stress state the principal mechanical strength characteristics are
the yield strength oy, or the ultimate tensile strength g,,, determined from tensile or com-

pressive testing (Fig. 1.5).

If the envelope of the limit Mohr’s circles for a given material has been obtained
experimentally, then, in order to determine whether a stress state characterized by the
principal stresses gy, d,, and g3 is limiting, and to assess the material’s strength, a stress
circle for g; and o3 should be constructed at the critical location. Strength is ensured if
this circle lies entirely within the area of the envelope.

6 Christian Otto Mohr (German: Christian Otto Mohr; 8 October 1835, Wes-
selbiiren — 2 October 1918, Dresden) was a German engineer and scholar in the field of
theoretical mechanics and the mechanics of materials. He studied at the Polytechnic
School in Hanover. Beginning in 1855, he worked on the construction of railways and
bridges in Hanover and Oldenburg. From 1867 he served as professor, first in Stuttgart
and later in Dresden. His research focused on problems of the mechanics of materials,
particularly their graphical representation. In 1882, he developed a graphical method of
stress analysis, known as Mohr’s circle.

17



To determine the safety factor, it is necessary to establish by what multiple o; and
03 must be simultaneously increased so that the largest Mohr’s circle touches the limit
envelope. The number indicating by how many times the values of 0; and g5 are scaled

is equal to the safety factor.
The region of failure /
or transition of the material
into the plastic state /
o444 //

The envelope :
of the limiting Mohr's circles’

707

o

Fig. 1.5

To construct the actual envelope of the limiting Mohr’s circles, it would be neces-
sary to experimentally investigate all possible stress states. his is an unfeasible problem,;
therefore, the question arises of how to construct the envelope of the limiting Mohr’s
circles using only a limited number of sufficiently simple tests, the technical implemen-
tation of which is possible. Three such limiting circles can be constructed in a relatively
simple way (Fig. 1.6):

1% circle: by a simple tension test;
2" circle: by a simple compression test;

3dcircle: by a torsion test of a thin-walled tube, in which a state of pure shear is realized
at all points of the test specimen (the tube).

T
: -
2. Compression gl =
3. Pure shear \// <
/ N
' / "\ .
] | \\ 1. Tension
02i | 9] 01| \
03: -T 0,=T A o
O-Iimil c O-limil t
Fig. 1.6
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For the ductile materials (see Fig. 1.6)

O-limit, = |O-limitC = O-yieldt = O-yieldc;

for the brittle materials
O-limit, = Jult,; O-limitc = O-ultc'

Point 4 on the circular diagram characterizes the state of hydrostatic uniform triaxial
tension.

To obtain relationships suitable for practical strength analysis, the envelope of the
limiting Mohr’s circles is approximated by a tangent line to the tensile and compressive
circular diagrams. This approximation yields sufficiently accurate results if the center of
the stress circle lies between points 0, (the center of the circle of pure tension) and O,
(the center of the circle of pure compression) (Fig. 1.7),

where gy;,;;, and oy, denote the limiting stresses obtained from tests under pure
limit limit .

tension and pure compression, respectively. In the derivation,
the absolute value of gy, 1s used;

01 and o3 are the principal stresses of a complex stress state for which the
Mohr’s circle becomes limiting.

T
4,
1
i
5 %y
; 1
i i
i i ;
i . i
| | I
i | D i i
i i i
i i i
z e
O limit ¢ 02 03 O 03 01 0, O limit 1 o
Jlimit c O-limit t
2 2
|
Fig. 1.7

From the geometric relationships, we obtain the strength condition for an interme-
diate stress state with principal stresses g;, g3 and the limiting Mohr’s circle centered at
point O3 (Fig. 1.7).
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Let's draw the straight lines 0; M;, O,M,, O3 M5 connecting the centres of the lim-
iting Mohr’s circles with their tangent points on the limiting line, as well as the straight
line OD parallel to M; M,. Since the triangles 0, 0;C and 0,0,D are similar, then

05C B 0,05
0,0 0,0,’
where
Oy — O2 O
03C=03M3—01Ml= 1 > 3_ llrzmtt;
Olimi Olimi
OZD _ 02M2 —01M1 _ llztC . 1212‘[;
O o+ o
01032001_0032 lzrznlt,_ 12 3;
O fimi Olimi
0,0, = 00, + 00, = g”’ hz”
Then

(01— 03) = Olimit, _ Olimir, — (01 + 03)

Olimit, — Olimit, Olimit, T Olimit,

Dividing both the numerator and the denominator of the previous expression by
O imit, and denoting

K = Olimit, , (123)
Olimit
we get
(01_03)_k k_01+03
Olimit , _ Olimit .
1-k  k+1

Let's transform this equality to the form
op — kos = kalimitc-
Taking into account expression (1.23), the strength exhaustion condition (with a
safety factor of one) is finally obtained in form
022 =01 —koz = Olimit ,-
The strength with a safety factor of n will be ensured provided that the following
inequality holds:

0oy = 0y — kaz < [0] (1.24)
or
Olimi ¢
Ooq = 01 — Jhm:t o3 < [o], (1.25)



Olimit .
where [o] = is an allowable stress;
n

k= Oyl / Oyield,  Tor ductile materials;
k =0,,/0., 6  forbrittle materials.

For ductile materials, since
Olimit, = Oyield, = Olimit. = Oyield
this relation degenerates into the strength criterion according to the maximum shear stress
theory (the third strength theory).

The Mohr's strength theory can be regarded as the primary theory recommended for
the design of parts made from brittle and semi-brittle materials, i.e., materials that resist
tension and compression differently ([a], # [o].).

Currently, the applicability of the Mohr's theory of strength is limited because ex-
perimental data are practically absent in the regions of hydrostatic tension (at a; > 0 and
o3 > 0) and hydrostatic compression (at g; < 0 and g3 < 0). Nevertheless, such stress
states occur relatively rarely. The Mohr's theory provides the most reliable results for
mixed stress states (at o0; > 0 and g3 < 0).

1.2.6. The Strength Condition According to the Third and Fourth
Theories of Strength under a Particular Case of Plane Stress State

Let us consider a particular case of plane stress state.

i -
<
|
ol A o o Y
-4 ! = —_
o T
jpum—— - T
PEETTL) -
i # T
a b

Fig. 1.8

This case of plane stress state is most frequently realized at critical points of bar-
type parts under combined bending with torsion, as well as under the “plane transverse
bending” deformation mode. Two variants of this case of plane stress state are shown in
Fig. 1.8. In the design practice, the simpler variant (Fig. 1.8, b) is most often used. The
stresses in Fig. 1.8 are given without indices, since specific problems may be considered
in various coordinate systems.

The principal stresses for this case of plane stress state are determined from the
following relationships:
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o 1

04 =E+§\/O'2+4T2;

o, =0; (1.26)
o 1

03 =§—§\/02+4rz.

The indices are assigned to the principal stresses in this manner because, regardless
of the sign of &

o 1 o 1
§+§ 02+4+41t2>0 and E—E\/02+4T2<0

with any non-zero value of .
Let us consider the strength conditions:

a) according to the third strength theory
opy =01 — 03 < [0].

Substituting the values of o; and g3 from equation (1.26) into the previous expres-
sion, we obtain

o 1 o
01— 03 ==+-/02+41%2 — =

1
“Jo2 + 412 = /g2 + 4712,
515 2+2\/O'+T \/0'+T

Thus, finally:

opy =~ 0% + 412 < [0]; (1.27)

b) according to the fourth strength theory with g, = 0 the relation (1.22) will take the
form

vV _ .2 -2
Ocy = \/01 + 05 — 0,03 < [o].

Substituting the values of g; and g3 from equation (1.26) into previous expression,
we obtain

g2 o1 1
\/—+2§-§\/02 + 412 +Z(62 + 412) +

4

o2 o1 1 g 1
+——2=-=+ 0%+ 412 +Z(02 + 472) — (———(02 +4-T2)> =02+ 372,

4 2 2 4 4
Thus, finally:

Ony = Jo2 + 312 < [o]. (1.28)

Remark Relations (1.27) and (1.28), depending on which of the strength theo-
ries is adopted as the working one, allow verification of strength at
characteristic points of a beam cross-section under transverse bending.

22



1.3. Problem-Solving Examples
Example 1.1

Compare the equivalent stresses for the stress states shown in Fig. 1.9. Calculate the
equivalent stresses using the fourth (energy) strength theory. The stress values are given
in MPa.

20 20
ol ® °
A | 60 i 50
: 30\\ . |50 /
/)l— ————— —_—— ,)- ————— _——)
7 Yy 7 Yy
X X
Fig. 1.9
Solution

Determine the principal stresses for the first case:

g, + o Ty — O,\2 60 — 20 60 + 20\2
01,2,3) = yz Zi\/(yz Z) M Z ij( 3 ) +30% =

= 20 + 50;
o1 =70 MPa; o0, =0; 03 =—30MPa.
Equivalent stress according to the fourth strength theory

M i\/(al —03)?+ (0 —03)* + (03 —01)* =

eq _\/E
1 2
— ﬁ\/(m —0)2+ (0 - (=30))" + (=30 — 70)? = 88.9 MPa.

(o)

Determine the principal stresses for the second case:

oy +0 Oy — Oy 2 0—0 0+ 0\°
O-max,minz . yi\/(x y) +T§y:—i\/(—) +502=0i50;

2 2 2 2

01 = 50 MPa; o0, = —20 MPa; o3 =—50 MPa.
Equivalent stress according to the fourth strength theory

IV = i\/(a1 —03)* + (0, —03)* + (03 —01)* =

O'e.q—\/E
1 5 o0 2 Cen 2 _ .
=ﬁ\/(50+20) + (=20 — (=50))" + (=50 — 50)2 = 88.9 MPa.

Thus, the given stress states are equally critical.
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Example 1.2

Z 60

. In the critical cross-section of a part made of

| gray cast iron EN-GJL-200 (o,,, = 200 MPa;

30 ioéﬁ Oy, = 750 MPa; pu = 0.25), an element is isolated,

gl I B on the faces of which stresses (in MPa) act as shown

Y Y in Fig. 1.10. It is necessary to verify the strength of

X the element.

Fig. 1.10

Solution

Let us denote the stresses shown in Fig. 1.10 according to the xyz coordinate sys-

tem:
o, = 40 MPa; gy, = —20 MPa; 0, = —60 MPa;

Tyx = 30 MPa; Tyxy = —30 MPa.

A O
T)Cy‘__
T The plane whose normal is parallel to the
o, —1» % o, z-axis 1s principal, since no shear stresses act on it.
T, Let us show the stress state on the other two
1> planes in the xOy plane (Fig. 1.11).
o,y v
Fig. 1.11

Determine the principal stresses:

0. +o O — G2 40 — 20 40 — (=20)\°
Omax, min = xz yi\/(xz y) +T§y=Ti\/<%> + 30%;

Orax = 10 + 31.46 = 41.46 MPa; o, = 10 — 31.46 = —21.46 MPa.

Assign indices to the principal stresses in accordance with the condition
0, = 0, = 03!

o, = 41.46 MPa; o0, = —21.46 MPa; o3 = —60 MPa.

Let us verify the calculation results using the property of normal stresses invariance:
Oy + 0y + 0, = 01 + 0, + 03 = const,

40 — 20— 60 = 41.46 — 21.46 — 60 = —40.
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Let's check the strength of the element. Assign the allowable stresses, choosing a
safety factor of [n] = 3, which is recommended for brittle materials that resist tension
and compression differently:

o 200 0. 750
[0], = 2 == = 66.67 MPa;  [o], = —% = 2=~ = 250 MPa.
n 3 n 3

According to the first strength theory:
0pq = 07 = 41.46 MPa < [0]; = 66.67 MPa;

0sq = loz| = 60 MPa < [g], = 250 MPa.
Strength is ensured.

According to the second strength theory:
obg = 01— (o, + 03) < [o]y;
41.46 — 0.25(—21.46 — 60) = 61.825 MPa < [0]; = 66.67 MPa,
Uéf; = 03 — p(oy + 03) < [o];

|-60 — 0.25(41.46 — 21.46)| = 65 MPa < [o], = 250 MPa.
Strength is ensured.

According to the third strength theory:
agg =0, — 03 = 41.46 — (—60) = 100.46 MPa = [o]; = 66.67 MPa.
Strength is insufficient.
According to the fourth strength theory:
wv_ L

(0} =
eq \/E

%\/(41-46 — (-21.46))" + (—21.46 — (—60))" + (—60 — 41.46)2 =

\/(0'1 —03)%* + (0, — 03)2 + (03 — 01)? < [0]};

= 102.2 MPa = [o]; = 66.67 MPa.
Strength is insufficient.

According to Mohr’s strength theory

0,
M _ ultt
O-eq —_ 0-1 -

200
03 = 41.46 — m(—60) = 51.46 MPa < [0]; = 66.67 MPa.
O-ultc

Strength is ensured.

This example demonstrates the use of different strength theories for a verification
analysis of a part made from a brittle material. The use of the third and fourth strength
theories, which are applied for ductile materials, led to a negative result.
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2. CONSTRUCTION OF DIAGRAMS
OF INTERNAL FORCES AND MOMENTS
FOR ARBITRARILY LOADED BROKEN BARS

2.1. Diagrams and Fundamental Rules of Their Construction

All six internal forces and moments may act in the cross-sections of a cranked bar:
Ny, Qz, Qy, My, M,, and M,. All the rules used for constructing diagrams in beams and

planar frames also apply to cranked bars.

A diagram (historically on French “épure” — sketch) is a graphical representation
showing the variation of an internal force or an internal moment along the longitu-
dinal axis of the bar.

The graphical representation of a function is highly illustrative, making it easy to
evaluate its key features. In the context of mechanics of materials and structural analysis,
this means the ability to identify the critical section. This is the main purpose of con-
structing diagrams.

Basic rules for constructing diagrams

1. The diagram's base-axis is drawn parallel to the longitudinal axis of the bar. If the bar's
axis is curved, the diagram's axis is also curved (or cranked).

2. The value of the internal force or moment acting in a cross-section of the bar is plotted
to scale along the normal to the base-axis at the point corresponding to that cross-
section.

3. Each diagram must indicate the name of the internal force or moment, the units of
measurement, the sign convention, numerical values at characteristic points, and be
hatched perpendicularly to the diagram's axis.

Rules for dividing a structural element into segments

1. The law of external load application (including support reactions) remains unchanged
within a single segment. That is, segment boundaries are defined by the cross-sections
where concentrated forces (P) or concentrated force couples (moment M) are applied,
or where the action of an external distributed load (q) begins or ends.

2. The geometry of the cross-section does not change within a segment; alternatively,
boundaries occur where the cross-sectional area changes abruptly.
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3. The boundaries of segments in a frame and a cranked bar are also nodal points (points
of bending).
4. The material from which the bar is made does not change within a segment.

Sign conventions for constructing diagrams

1. Axial force N,
p__n2 p ®
An external force acting on either side of the <—|---- —
. .. o 7 N.>0
cross-section n — n makes a positive contribution -
to the magnitude of the axial force N, if it causes y
tension (directed away from that cross-section) and P — n 4!), ________ | P O
negative if it causes compression (directed toward 7 N_<0
that cross-section) (Fig. 2.1). l z
Fig. 2.1
2. Torsional moment M,
When constructing torsional moment dia- M/ M
grams, an arbitrary sign convention is used. In n| _yi (—D
this text, we will use the following rule: an exter-  }——  — 1 M>0
. . . n / X
nal torque acting on either side of the cross-sec- S/ z
tion n — n makes a positive contribution to the
magnitude of the torsional moment M, if, when M o Y /M
viewed from the direction of the outward normal [T - &----. 1 )
to the considered cross-section, it is directed 7 nl M, <0
counter-clockwise, and negative if it is directed 4
clockwise (Fig. 2.2) Fig. 2.2
3. Shear forces Q, and Q,,
Pl oy Y0 )
An external transverse force acting on either  [T-- - &-_--. ] 0,>0
side of the cross-section n — n makes a positive n p >0
. . . z (y) Y (Qy )
contribution to the magnitude of the shear force Q,
(or Q,) acting in that cross-section if it tends to ro- A
v . | . n YAIP O
tate the considered piece of a bar clockwise relative ~ ——— pram— - 0.<0
to the principal central axis of inertia y (or z), and p 7 Z< 0
negative if it rotates it counter-clockwise (Fig. 2.3). Y l z (y) (9,<0)
Fig. 2.3
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4. Bending moments M,, and M,

An external force or a concentrated mo-
ment acting on either side of the cross-section
n —n makes a positive contribution to the
magnitude of the bending moment M,, (or M,),
acting in that cross-section if this external force
or concentrated moment causes compression of
the top fibers and tension of the bottom fibers
of the bar (causing a convex-downward bend),
and negative if it causes tension of the top fi-
bers and compression of the bottom fibers
(causing a convex-upward bend) (Fig. 2.4).

The bending moment diagrams M,, and M, are drawn on the side of the bar’s tensile
fibers.

2.2. Construction of Internal Forces and Moments Diagrams
for a Planar Cranked Bar with Out-of-Plane Loading

A planar cranked bar with out-of-plane loading is a cranked bar whose elements
are rigidly connected at the nodes (fixed joints) and lie in a single plane, but the
external loads act in arbitrary directions.

When constructing diagrams, the external forces are represented by their projec-
tions onto the accepted coordinate axes.

In engineering practice, two main methods are used for constructing diagrams of
internal forces and moments in cranked bars.

2.2.1. The First Method for Constructing Diagrams

The essence of this method is as follows: after determining the internal forces and
moments in the first segment, all external loads (concentrated forces and moments, dis-
tributed loads) acting within that segment are resolved and transferred, in accordance
with the theorems of statics, to the initial cross-section of the second segment. After de-
termining the internal forces and moments in the second segment, all external forces act-
ing within that segment are resolved to the initial cross-section of the third segment, and
so on. With such approach, each segment of the cranked bar is treated as a cantilever.
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Example 2.1

Construct the diagrams of internal forces and mo-
ments for the given cranked bar (Fig. 2.5).

Given: Py = 15 kN; P, = 20 kN; P; = 10 kN;
a=2m; b=3m; c=4m.

It is necessary to construct the diagrams of

Nxa QZ: an MX9 Mya Mz- Flg 2.5

Solution

1. Let us draw the cranked bar to scale and divide it into three segments: 1, II, and III.

In an arbitrary cross-section of each 1 - X C
segment, at a distance x from its beginning, Z ¢y '? X
we will place the local xyz coordinate sys-
tem such that the x-axis coincides with the P, I Y /b
bar's longitudinal axis, the z-axis is directed P y /x - II
downwards, and the horizontal y-axis, to- 2 x|z B/%
gether with the first two axes, forms a right- P, X -
handed orthogonal basis (Fig. 2.6). Fig. 2.6

Remark If the cranked bar is “unfolded” along the shortest angular path into a
straight line, the directions of the x, y and z axes must coincide across
all segments.

2. Using the method of sections, we'll write the equations for the internal forces and
moments for each segment.

Let's consider segment I (Fig. 2.7) (0 < x < a, a =2 m).
Nl = —P, = =20 kN; 4 111 C
QL = P, = 15 kN; A
Qy = —P; = —10 kN;

P, | 11
M; = 0;
PZ A X /y B
My = —P;x = 15x =0 = x
x=0 x=a=2m P 4
= —30 kN"m; ’ .
Fig. 2.7
Mj=-Px=-10x | =0 | = —20 kN-m.
x=0 x=a=2m



Remark The moment created by a non-zero force relative to a certain axis is
zero if the force's line of action intersects or is parallel to that axis.

Let’s consider segment I (0 < x < b, b =3 m).

Let us transfer the forces P;, P,, and P5 to the initial cross-section of segment 11
(point B) (Fig. 2.8).

I C Since the line of action of force P,
passes through point B, according to the prin-
ciples of statics, the application point of force
P, can be simply transferred to point B.

NN\

II
-P1 -Pl .
To resolve force P; to point B, we apply
P, 14 I

a statically equivalent system (a static zero) at
P 3)/ 4 Py P, this point, consisting of two equal and oppo-
sitely directed forces P; whose lines of action

Fig. 2.8 coincide.

Thus, the action of force P; applied at point 4 is statically equivalent to the com-
bined action of force P; and a moment P; a applied at point B.

The same procedure is used to transfer force Ps.

The calculation scheme for segment II is shown in Fig. 2.9.

4
A
Ny = —P3 = =10 kN;
QY = P, = 20 kN;
MI =P,a =152 =30 kN-m;
Fig. 2.9
M =-Px=-15x | =0 | = —45 kN'm;
x=0 x=b=3m
MY = —Psa+ P,x = —10-2 + 20x = —20 kN-m = 40 kN'm.
x=0 x=b=3m
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Let’s consider segment IIT (0 < x < ¢, ¢ = 4 m).

We now resolve the system of external forces acting on segment II to the initial
cross-section of segment III (point C), in the same manner as discussed above.
The calculation scheme of segment I1I is shown in Fig. 2.10.

Remark As shown in static, a moment is considered as a free load and may be
relocated within its plane or between parallel planes without changing
its magnitude or direction.

NHI = p, = 20 kN: 11 P, P,a

PNNANN
)
8
N
—
A

U= p, = 15 kN,

QI = P; = 10 kN;

MU = P,b = 15 -3 = 45 kN-m; Py pb
Fig. 2.10
M = Pia — Pix =152 — 15x =30 kNm | = —30 kN-m;
x=0 xX=c=4m
M =Pb—Pa+Px=20-3-10-2+10x | =40 | = 80 kN-m.
x=0 xX=c=4m

Remarks 1. To correctly establish the sign of the axial force N, created by the
external load P, (P;3) in the cross-sections of Segment II (III), this
force is to be regarded as applied in the same direction at the initial
cross-section of the corresponding segment (see Fig. 2.6 — 2.10).

2. To correctly determine the sign of the shear force @, (Q,) created

by the external load P; (P, and Ps) in the cross-sections of Segments
IT and II1, this force is to be regarded as applied in the same direction
at the initial cross-sections of the corresponding segments II and 11
(see Fig. 2.6 — 2.10).

3. Let us construct the diagrams (Fig. 2.11).

Remark When constructing internal forces and moments diagrams for a
cranked bar, the following must be taken into account:
a) the diagrams of N,, and M,, can be drawn in any plane;
b) the diagrams of Q,, @y, M,,, M, must be drawn only in their re-
spective planes of action,
¢) the diagrams of M,, and M, are drawn on the side of the tensile
fibres of the bar.
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N,, kN M., kN'-m
45
20 ©) ///
@ (
-10 ; //
4 30
220 -45

0., kN -0 M, kN'm

15

G- // I\M\\
/
0 -30
15 15 30
P
0., kN 0 M, kN'-m
/ = 7 40
4
277/
/‘f//
<= J

0 80 =z
Fig. 2.11

4. Let us check the correctness of the diagram construction.

To this end, infinitesimal elements of the cranked bar are isolated at the junctions
of its parts (nodes B and C), and their equilibrium is analysed under the action of internal
and external loads applied within these nodes (Fig. 2.12).

In Fig. 2.12, all internal forces and moments are shown in their true directions.
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. 45
20
30
20
15 /'
x| 20 /;> —
AT JR—
10
z
Fig. 2.12
Equilibrium equations for node B:
2P, =20—-20=0; X P, =10-10 = 0; 2.P,=15-15=0;
>M, =0; XM, =30-30=0; >M,=20-20=0.
Equilibrium equations for node C:
YP.=20—-20=0; XP,=10-10 = 0; Y2P,=15-15=0;
XM, =45—-45=0; XM, =30-30=0; >M, =40-40=0.
Remark When constructing internal forces and moments diagrams for a

cranked bar, each of its elements must be considered as a rod in ten-
sion-compression, a shaft in torsion, and a beam in transverse bending
in two planes. In this process, all sign conventions for Ny, @, Q,,, My,
M,,, M, and all rules for constructing diagrams are preserved.
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Example 2.2

Construct the diagrams of internal forces and moments for the given cranked bar
(Fig. 2.13).

4 Given: P, = 20 kN; P, = 10 kN; q = 15 kN/m;
17 c P, a=2m b=2m c=3m.
b
9 P,  Itis necessary to construct the diagrams of
y Ny, Qz Qys My, My, M,.
Fig. 2.13

Solution

1. Let us draw the cranked bar to scale and divide it into three segments: 1, I, and III.
I11

NSNS

In an arbitrary cross-section of
Py each segment at a distance x from its be-
' # P, ginning, we will place a local xyz coor-
=4 dinate system (Fig. 2.14).

Fig. 2.14

2. Using the method of sections, we'll write the equations for the internal forces and
moments for each segment.

Let’s consider segment I (Fig. 2.15) (0 < x <a, a=2m).

I s Ny =0;

1
2 2 ¢ Ql = —P, = —20 kN;
P
’ A My = 0;
I X Y
B a7 M. = P,x = 20x |x=0
Fig. 2.15 =0 | = 40 kN"m;
x=a=2m
Ml = P,x = 10x =0 = 20 kN'm
x=0 x=a=2m



Let’s consider segment II (0 < x < b, b = 2 m).

Let us transfer the forces P; and P, to the initial cross-section of segment II (point B)
(Fig. 2.16).

NI'= —p, = —10 kN; I /Aq

I'=qgx — P, = 15x — 20 =

x=0

NN\

= —20 AN = 10 kN.
x=b=2m

Since the shear force @, changes sign within
Segment I1, it is necessary to determine the point
x,, at which Q}f =

P,=0 20133
—_ = - == —=1. :
qxe 1 xe q 15 m)
Qy =0;
MI'=Pa=20-2=40kNm;
. qx? 15x2
M, = Pix — —— = 20x — = = 10 AN'm =
2 2 x=0 xX=b=2m x=x,=1,33m

= 13,33 kN'm;
MU = P,a =102 = 20 kN-m.
Let’s consider segment IIT (0 < x < ¢, ¢ = 3 m).

Let us replace the distributed load acting within the second segment with a resultant
force (Fig. 2.17) and resolve the system of external forces on segment II to the initial
cross-section of segment III (point C).

The calculation scheme for segment III is shown in Fig. 2.18.

111

NN\

II

NN\
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N;II — 0
Il = —_p, +gb=-20+15-2 =10 kN;
lelll = P, = 10 kN,

b? 15 - 2?2
M = —P1b+q7= —20-2+

= —10 AN'm;

M} = Pia+ Pyx — qbx = 20-2 4 20x — 15 - 2x

x=0
= 40 kN'm = 10 kN'm;
x=c=3m
M = Pyx + P,a=10-x +10 - 2 =20 kN'm | = 50 kN-m.
x=0 x=c=3m
3. Let us construct the diagrams (Fig. 2.19).
40
/1
/]
/]
/1
LTIl DAL 10
//
y/
N,, kN M,, kN'm J/’
-10 V 10
Ll TTe I
o
S
Qz’ kN A~
LG
Z 2
Q,, kN
Z =

Fig. 2.19
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4. Let us check the correctness of the diagram construction.

To this end, infinitesimal elements of the cranked bar are isolated at the junctions
of its parts (nodes B and C), and their equilibrium is analysed under the action of internal
and external loads applied within these nodes (Fig. 2.20).

In Fig. 2.20, all internal forces and moments are shown in their true directions.

10 40

T
oL A

10

40 20
10
20
40
X / P,
%8 / L/ |
z
20

Fig. 2.20
Equilibrium equations for node B:
Y.P. =0; X P, =10-10 = 0; YP,=20-20=0;
XM, =0; XM, =40—-40 = 0; >M,=20-20=0.
Equilibrium equations for node C:
Y.P. =0; YXP,=10-10 = 0; Y2P,=10—-10=0;
XM, =10—-10=0; XM, =40—-40 = 0; Y2M, =20-20=0.
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2.2.2. The Second Method for Constructing Diagrams

When using the second method, the operation of resolving the system of external
forces acting on the considered segment into the initial section of the subsequent segment
is excluded, which allows the solution to be presented in a more compact form.

Example 2.3

Construct the diagrams of internal forces and moments for the given cranked bar
(Fig. 2.21).

Given: P, =5 kN; P, = 30kN;,
q; = 15 kN/m; q, = 20 kN/m;
M = 20 kNm; a = 3 m;
b=2m; c=2m; |=3m.

It is necessary to construct the dia-

grams of
Nx: Qza Qy: an My: Mz-

Fig. 2.21

Solution

1. Let us draw a cranked bar to scale and divide it into segments. In an arbitrary
cross-section of each segment, at a distance x from its beginning, let us introduce a local
xyz coordinate system so that the x-axis coincides with the longitudinal axis of the bar,
the z-axis is directed downwards, and the horizontal y-axis, together with the first two
axes, forms a right-handed orthogonal basis (Fig. 2.22).




Remarks 1. To obtain a formally ordered sign convention for the internal forces
and moments across all segments, it is preferable to derive the coor-
dinate system for segment I by a simple translation, that is, by rotat-
ing the coordinate system of segment I through 90° about the z-axis,
and so on.

2. If the cranked bar is straightened along the shortest angular path
into a single line, the directions of the x, y and z axes in all segments
must coincide.

2. Using the method of sections, write the equilibrium equations for the internal
forces and moments on each segment.

SegmentI (0 < x <a, a=3m).

Nl =—-P, = -30kN; QL = —P, = —5kN; QJI, = 0;
ML = 0;
M, =Px=5"x =0 = 15 kN'm;
x=0 x=a=3m

Ml =0

Segment I (0 < x <b, b =2m).
Ny = 0;

él - _P1 == _SkN;
Q§’=q2x—P2=20-x—30 = —30 kN = 10 kN.

x=0 xX=b=2m

Since the shear force Q,, changes sign within segment I1, it is necessary to determine
the point x, at which Q3’,I = 0:

P, 30
qzxe_P2=0 = xe:E=%=15m,
MI'=Pa=5-3 =15 kNm;
Mi=Px-M=52x-20= | =-20kNm | = —10 kN'm;
x=0 xX=b=2m
x? 20x?2
mi =2 _p 2 304 —0 -
2 2 x=0 x=b=2m
= —20 kN'm = —22.5 kN'm.



Segment III (0 <x <c¢, ¢c=2m).

Let us construct a separate calculation scheme by replacing the distributed load act-
ing within the second segment with a resultant concentrated force (Fig. 2.23).

q,

Fig.2.23
Ni' = Py — q,b =30 —20-2 = —10kN;
S =—Py = —5kN;
Q)I}II -0

MU = —M + P,b = —20+5-2 = —10 kNm;

My =Py (x —a) =5(x - 3) = —15kN'm = —5kN'm;

x=0 x=c=2m
111 b 2
M} = qob> — P;b =202+ =302 = 20 kN'm.

Segment IV (0 <x <[, | =3m).

Ny = 0;
2 2
v hx 15x
= — P, = -5 = —5iN = 17.5kN.
220 v 23 x=1=3m

x=0
Since the shear force Q,, changes sign within segment IV, it is necessary to deter-
mine the point x, at which QI = 0:

P =0 = «x, = = = 1.414 m;
21 q1 15

IV = g,b— P, =20-2—30 =10 kN:
MYV =p(a—c)=5-(3—-2)=5kNm;
40




v
My

3 . 3

_ q1x _ 15-x _
=P, (b+x) ol M=5-(2+4x) 3 20 =

= —10 kN'm = —17.5 kN'm = —9.998 kN'm;
x=0 x=l=3m x=x,=1.414m

b

=q2b<§+x)—p2(b+x) —20-2-(14x)—30-(2+x) =
= | =-20vm | = 10 kN-m.

x=0 x=1l=3m

. Let us construct the diagrams (Fig. 2.24).

Remarks 1. When constructing internal forces and moments diagrams for a

cranked bar, each of its elements must be considered as a rod in ten-
sion-compression, a shaft in torsion, and a beam in transverse bending
in two planes. In this process, all sign conventions for Ny, @, Q,,, My,

M,,, M,, and all rules for constructing diagrams are preserved:

a) the diagrams of N,, and M,, can be drawn in any plane;
b) the diagrams of Q,, @y, M,,, and M, must be drawn only in their
respective planes of action,
c) the diagrams of M,, and M, are drawn on the side of the tensile
fibres of the bar.

2. At right-angled corners (fixed joints) of a planar cranked bar, there
occurs a mutual transition of M, into M,,, as well as of N, into Q,,

and vice versa.

3. For parallel segments of a planar cranked bar with out-of-plane
loading, the following rules hold true, the following rules hold true,
provided there are no concentrated moments acting perpendicular to
the plane of the bar at the nodes of these segments:

a) for the coincident directions of the paths (see Fig. 2.22, seg-
ments Il and IV), the value of M,, at the end of one segment (seg-
ment IT) must be equal to the value of M,, at the beginning of the
next segment (segment [V) (see Fig. 2.24);

b) for the opposite (counter) directions of the paths (see Fig. 22,
segments I and III), the value of M, at the end of one segment

(segment I) must be equal in magnitude and opposite in sign to
the value of M,, at the beginning of the following segment (seg-

ment II1) (see Fig. 2.24).
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Fig. 2.24

4. Let us check the correctness of the diagram construction.

To this end, infinitesimal elements of the cranked bar are isolated at the junctions
of its parts (nodes A, B and C), and their equilibrium is analysed under the action of
internal and external loads applied within these nodes (Fig. 2.25).

In Fig. 2.25, all internal forces and moments are shown in their true directions.

Equilibrium equations for node A4:
2P, =10-10=0; XP, =0; 2. P, =20-20=0;
XM, =0; XM, =30-30=0; XM, =0.
Equilibrium equations for node B:
2P =0; XP,=0; »P,=20-20=0;

XM, =0; XM, =40—-40 = 0; XM, =0.
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Equilibrium equations for node C:
D Py =0,
XM, =30+ 10—40 = 0;

©

YP, =10-10 = 0;
Y M, =30—30=0;

5

Y M, =30 —30 = 0.

10 -
10 5|

/

oy

10

10

YP,=15-10-5 = 0;

30



Example 2.4

Construct the diagrams of internal forces and moments for the given cranked bar
(Fig. 2.26).

P> Given: P, = 10 kN, P, = 20 kN P; = 5 kN:
M =30kN-m; q =15kN/m;
a=2m; b=3m;, c=2m;
d=2m; | =4m.

It is necessary to construct the diagrams of
Nxa QZ: an Mx: Mya MZ'

Fig. 2.26
Solution

1. Let us draw a cranked bar to scale and divide it into segments. In an arbitrary
cross-section of each segment, at a distance x from its beginning, let us introduce a local
xyz coordinate system so that the x-axis coincides with the longitudinal axis of the bar,
the z-axis is directed downward, and the horizontal y-axis, together with the first two
axes, forms a right-handed orthogonal basis (Fig. 2.27).

NN\

P, [x]

Fig. 2.27

2. Using the method of sections, write the equilibrium equations for the internal
forces and moments on each segment.

SegmentI (0 < x <a, a=2m).

Ng = —P; = =10 kN; Qz=0; Qy = 0;
M; = 0; M, = 0; M} =



Segment II1 (0 < x < b, b =3 m).

NI =0; I =0; Q) =P, = 10 kN;
My = —M = =30 kN'm; M = 0;
MI'=Px=10-x =0 = 30 kN-m.
x=0 x=b=3m
Segment IIl (0 <x <c, ¢c=2m).
NI = 0; I = —P, = —20 kN: Qi = 0;
MU = o; M"=Px=20x | =0 | = 40 kN'm; MU =0
x=0 x=c=3m
Segment IV (0 <x<d, d=2m).
Ng = 0;
V=qr-P,=5¢x-20 | =-20kN = —10 kN;
x=0 x=d=2m
Q) = 0; My = —Pyc = =202 = —40 kN'm;
x? 5x?
MY = px - = 20 - 22 =0 = 30 kN'm;
2 2 x=0 x=d=2m
MY =o0.

SegmentV (0 <x <1, |l =4m).

Let us construct a separate calculation scheme by replacing the distributed load act-
ing within the fourth segment with a resultant concentrated force (Fig. 2.28).

| X C “PZ

NN\




d 2
Q) =0; M,‘C/=—qd§+P2d=—5-2-E+20-2=30kN-m;
My =Pyx+Pi(c+x)—qdx—M=5x+20-(24+x)—5-2-x—30 =
= =10 kN-m =70 kN-m;
x=0 x=l=4m

MY = P,b =103 = 30 kNm.

3. Let us construct the diagrams (Fig. 2.29).

N,, kN M., kN'm
30
@
||||||||@|||||||
[’ -40
//
QZ’ kN 4 %) -20 Aly: kNm
Q 110
-15 @ 10 40
) 30
///
//
70V
0., kN M, kNm
10 j
Fig. 2.29

4. Let us check the correctness of the diagram construction.

To this end, infinitesimal elements of the cranked bar are isolated at the junctions
of its parts (nodes 4, B and C), and their equilibrium is analysed under the action of
internal and external loads applied within these nodes (Fig. 2.30).
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Equilibrium equations for node A4:
YP.=10—-10 = 0; B, =0; Y.P,=20—-20=0;
>M, =0; XM, =30-30=0; >M, =0.
Equilibrium equations for node B:
Y.P. =0; X P, =0; Y.P,=20—-20=0;
XM, =0; XM, =40-40=0; YXM, =0.

Equilibrium equations for node C:
XP,=10-10=0; XPB, =0;
XM, =30-30=0; XM, =30+10-40=0;
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2.3. Construction of Diagrams of Internal Forces and Moments
for a Spatial Cranked Bar

A cranked bar is called spatial if all its elements are rigidly connected at the nodes
(fixed joints) and their longitudinal axes do not lie in a single plane.

Example 2.5

Construct the diagrams of internal forces and moments for the given spatial cranked
bar (Fig. 2.31).

4
1
! Given: P = 10 kN; q = 15 kN/m;
d a=2m; b=1m; c=2m;
d=15m; | =2m.
q |\P
y S a It is necessary to construct the diagrams of
Nx: QZa Qy: an My’ MZ'
Fig. 2.31

Solution
1. Let us draw a cranked bar to scale and divide it into segments.

In an arbitrary cross-section of seg-

1 \ X ment V, at a distance x from its begin-

g I v/ x ning, let us introduce a local xyz coordi-
z . .

nate system so that the x-axis coincides

Zz | with the longitudinal axis of the bar, the

Y ’QE z-axis 1s directed downward, and the hor-

C izontal y-axis, together with the first two

I /ZT Zx axes, forms a right-handed orthogonal ba-
/) a X sis (Fig. 2.32). On segment 1V, the coor-
Z ¢ dinate system is obtained by a 90° rota-
111 tion about the y-axis; on segment III, by a

90° rotation about the z-axis; on segment
I1, also by a 90° rotation about the z-axis;

and on segment I, by a 90° rotation about
Fig. 2.32 the y-axis.

N

q

> | X

X
S_T/y I

4

SSYVYVYYYVYY
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2. Using the method of sections, write the equilibrium equations for the internal
forces and moments on each segment.

Segment I (see Fig. 2.15) (0 <x < a, a=2m).

, \Y%
/! D
Nl =0; Z ]
QL = —-P = —10kN; dliv
Qy = ’
Jylp
M = 0; 141 Lo
> a [ x
M;, = Px = 10x =0 =20 kN'm; 11—, c
x=0 x=a=2m >
> I
Ml =0 :B
Fig. 2.33

SegmentII (0 <x <b, b=1m).
Resolve the load P to the initial cross-section of segment II (point 4). (Fig. 2.34).
NI = —p = —10 kN;

, \%
I'= —gqx = —15x = D
x=0 /
=0 —15 kN; dl1v
x=b=1m
Qy = 0;
y p C
My = 0; Pad 4
x? 15x2 X =17
M§’=Pa+q7=10-2+ 5 = v urs ¢ I
x=0 z ;
= 20 kNm = 27.5 kN'm; 9 B
x=b=1m
My = 0. Fig. 2.34

Segment III (0 < x <c, c =2m).

Replace the distributed load acting within segment Il with an equivalent concen-
trated force, and resolve the system of external forces on segment II to the initial cross-
section of segment III (point B).
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The calculation scheme of segment III is shown in Fig. 2.35.

, v N =
3 D
1 mr — _ o — _ 3
/ ;. =—qb = —15kN;
dlv Q;,” = P =10 kN;
11 b 1
C M, =—Pa—qb§=—10-2—15-1-§=
P y = —27.5 kN-m;
\ I~
— ¢ I
A My =qbx =15-1-x =
* A x=0
qb B + Pa =0 = 30 kN'm;
o qb% xX=c=2m
M = Px = 10x =0 = 20 kN'm.

Fig. 2.35

x=0 X=Cc=2m

SegmentIV (0 <x <d, d =1,5m).

Resolve the system of loads acting on segment III to the initial cross-section of seg-
ment IV (point C) (Fig. 2.36).

\Y%
[

1
Z|

NIV = P = 10 kN:
IV = —gb = —15kN;
Qy =0;

MY = —gbc = —15-1-2 = =30 kN-m;

Fig. 2.36
v b 1
M,” = —-Pa—qb-+qbx=-10-2—-15-1--+15-1-x =
2 2 x=0
= —27.5kN'm = —5 kN'm;
x=d=1.5m

MY = Pc = 20 kN-m.
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SegmentV (0 <x <1, |l=2m).

Resolve the system of loads acting on segment IV to the initial cross-section of
segment V (point D) (Fig. 2.37).

NY = qb = 15 kN;
QY = P = 10 kN;
Qy =0;

MY =Pc=10-2 =20 kN-m; l

NSNS

v b
M, =qbd—qu—Pa—Px=

1
=15-1-1.5—15-1-5—10-2—10x=

x=0 x=l=2m

MY = qbc =15-1-2 =30 kN'm.
3. Let us construct the diagrams (Fig. 2.38).

Remarks | 1. When constructing diagrams of internal forces and moments for a
cranked bar, the following should be taken into account:
a) the diagrams of N,, and M,, can be drawn in any plane;
b) the diagrams of Q,, Q,,, M,,, and M, must be drawn only in their
respective planes of action,
¢) the diagrams of M, and M, are drawn on the side of the tensile
fibres of the bar.

2. If, for the members of a cranked bar lying in parallel planes, the same
orientation of the xyz axes is used, then on all these segments one
obtains a formally ordered system of signs for the internal shear force
Q and bending moment M,,. For example, on segment I — the same

as on segment V, on segment Il — the same as on segment IV (see
Fig. 2.32), and then

QL = P = 10 kN;
Mj=-pPx= | =0 | = —20 kN'm;
x=0 x=a=2m
I'=gqgx = | =0 | = 15 kN;
x=0 x=b=1m
gx2
M) =—Pa——= = —20 kN'm = —27.5 kN-m.
2 x=0 x=b=1m
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Fig. 2.38

4. Let us check the correctness of the diagram construction.

To this end, we will consider the equilibrium of nodes 4, B, C, and D under the action
of internal forces and moments and external forces applied within these nodes (Fig. 2.39).
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Equilibrium equations for node A4:
2P =0; ZPy = 0;
Y M, =0; XM, =20-20=0;

Equilibrium equations for node B:
YP.=10—-10=0; XP, =0;

YM, =0; XM, =275-275=0;
53

Y P, =10—10 = 0;
Y M, =0.

YP, =10 - 10 = 0;
YM, =0.



Equilibrium equations for node C:

YP.=15-15=0; XPB, =0; Y>P,=10—-10=0;

>M, =20-20=0; XM, =275-275=0; >M,=30—-30=0.
Equilibrium equations for node D:

Y.P.=15-15=0; XPB, =0; Y>P,=10—-10=0;

>M, =20-20=0; XM, =5-5=0; >M,=30—-30=0.
Example 2.6

Construct the diagrams of internal forces and moments for the given spatial cranked
bar (Fig. 2.40).

A c
A Given: P =10kN; a=1m; b=2m; |=3m.
’ It is necessary to construct the diagrams of
P Ny, Qz Qys My, My, M,
Fig. 2.40

Solution

1. Let us draw a cranked bar to scale and divide it into segments.
11 In an arbitrary cross-section of segment III, at

—— B a distance x from its beginning, let us introduce a
c J z% local xyz coordinate system so that the x-axis coin-

NN
~

cides with the longitudinal axis of the bar, the z-axis
I is directed downward, and the horizontal y-axis, to-
gether with the first two axes, forms a right-handed
orthogonal basis (Fig. 2.41). On segment II, the co-
“r I ordinate system is obtained by a 90° rotation about
X | = the z-axis of the coordinate system of segment III;
] on segment I, by a 90° rotation about the y-axis of

Fig. 2.41 the coordinate system of segment II.
2. Using the method of sections, write the equilibrium equations for the internal

forces and moments on each segment.

SegmentI (0 < x <a, a=1m).

N. = 0; 0!=0; QL = P = 10 kN;
ML = o0; M; = 0;
Mj=-Px=-10-x | =0 | = —10 kN-m.

x=0 x=a=1m



SegmentII (0 < x <b, b =2m).

NI =0; =0, Q;’ = P =10 kN;
My = —Pa =—-10-1= —10 kN'm; My} = 0;
My=-Px=-10-x | =0 = —20 kN-m.

x=0 x=b=2m

Segment III (0 <x <c¢, ¢ =3m).

N{''=—P = 10 kN; #1=0; Q' =0;
M,’C” =0; Mjl,” = —Pa = —10 kN'm; Mé” = —Pb = —-20 kN m.
3. Let us construct the diagrams (Fig. 2.42).
o eI A
N,, kN M., kN'm
-10
(et

Q,, kN Z\ly kKN'm

Q,, kN M,, kN-m -10




4. Let us check the correctness of the diagram construction.

To this end, infinitesimal elements of the cranked bar are isolated at the junctions
of its parts (nodes 4 and B), and their equilibrium is analysed under the action of internal
forces and moments and external forces applied within these nodes (Fig. 2.43).

10 ”

10 :7 :
> 10
LZ % 10
20 -
10
10
%
V| A
f_ X
l 10
<10
Fig. 2.43
Equilibrium equations for node A4:
Y.P.=10-10 = 0; XP, =0; Y.P,=0;
>M, =0; XM, =10-10=0; >M, =0.
Equilibrium equations for node B:
YP.=10—-10=0; X B, =0; YP, =0;
Y M, =0; XM, =10-10 = 0; >M, =20-20=0.
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3. COMBINED LOADING

3.1. General Provisions

By combined loading we shall understand such a type of deformation in the cross
section of a bar when two or more internal forces and moments act simultaneously in this
section.

In the general case, under arbitrary loading, six internal forces and moments can act
in the cross section of a bar (Fig. 3.1):

N, is an axial force;

Qy and Q, are shear forces; y7
M, 1s a torsional moment; M,
M,, and M, are bending moments. MZ,I “5; a
The realization of tension-compression (pres- y ) "Qz ~,
ence of Ny) or bending (presence of M,, or M) cre- X Ve
ates normal stresses o, at points within the bar's 4
cross-section, whereas the realization of torsion zy M,

(presence of M) or shear (presence of Q,, or Q) cre-

ates shear stresses T. Fig. 3.1

In strength analyses for sufficiently long bars, the shear forces Q, and Q,, are usu-
ally neglected, since the shear stresses they induce are significantly smaller compared
with the shear stresses caused by a torsional moment M, and the normal stresses caused
by bending moments M,, and M,.

The stresses acting in the cross sections of a bar under combined loading will be
determined using the principle of superposition, which is valid if the structures are:

a) physically linear, i.e., obeying Hooke’s law (o < o, here g, is a proportional
limit)

0) geometrically linear, when under the action of loads all displacements remain
much smaller than the characteristic dimensions of the structure (the hypothesis of rela-
tive rigidity holds). This allows one, when compiling the static equilibrium equations to
determine support reactions and internal forces and moments, not to take into account
changes in linear and angular dimensions of the structure.

The methodology of strength analysis depends on the cross-section shape of the bar
(rectangular, circular).
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3.2. The Rectangular Cross-Section

3.2.1. Bending with Torsion and Tension-Compression
of a Rectangular Cross-Section Bar

As practical calculations show, in a rectangular cross-section:

Tmax (Q) K Tmax (M tortional) and Tmax (Q) < Omax (M bending) >

therefore, shear stresses caused by shear forces are neglected in this case.

#c

v
Ly ¥

<| = O s
y
N, ]
=1
Y

M,
yZz
b

Fig. 3.2

Let us consider a rectangular cross section
(Fig. 3.2) with dimensions h X b (for definite-
ness, assume h > b), subjected to:

a) axial force N,;

0) torsional moment M, ;

B) bending moment M,, acting in the vertical
plane;

r) bending moment M, acting in the horizon-
tal plane.

We will construct the stress diagrams due to each internal force or moment sepa-
rately, and by applying the principle of superposition, we will analyze their combined

effect (Fig. 3.3 — 3.6):

1. Only the axial force N, (Fig. 3.3) is applied:

0, (Ny) = &, (3.1)

F

where F = bh is the cross-sectional area.

2. Only the torsional moment M, (Fig. 3.4) is applied:

M,
Tmax = Tp = Tp' = Wt; (3.2)
Tmax = Tc = T¢' = YTmaxs (3.3)
Ty =Ty =Tp =Tp =0, (3.4)
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where W, = ahb? is the torsional section modulus for a rectangular cross-section;

@, y are coefficients depending on the ratio h/b (see Appendix).
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Fig. 3.3 Fig. 3.4
p #|c . D C
A / A / L f\/( A
& Ve L
K ¥ A AN\ M / = /
ol I x| olHiAs
/ L /
did

\
\
D

s.(M) WM, o, (M) & D
zZ zZ
Fig. 3.5 Fig. 3.6

3. Only the bending moment M,, (see Fig. 3.5) is applied:

M
Ox max(My) = UxA(My) = Ox C(My) = UxD(My) = Wy;
y
O-xB(My) == 0,

(3.5)

2

where W, = - 1s the section modulus with respect to the y-axis under bending.

For points of the section that are symmetric about the centroid to points 4, C, and
D, the stresses are equal in magnitude and opposite in sign.
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4. Only the bending moment M, (sce Fig. 3.6) is applied:

Z .
s

Oy max(Mz) = 0y 4(My) = 0y, g(M,) = Oy D’(Mz) =

SIS

(3.6)
Oy C(MZ) = 0,

2
where W, = - is the section modulus with respect to the z-axis under bending.

For points of the section that are symmetric about the centroid to points A4, B, and
D', the stresses are equal in magnitude and opposite in sign.

From the analysis of the diagrams in Fig. 3.3-3.6 it follows that it is not possible to
unambiguously identify an only critical point. Therefore, all potentially critical points
of the section must be considered.

Remark The situation at points D and D' is typically not considered, since at
these points the normal stresses due to bending moments M,, and M,

have opposite signs, which means they cancel each other out.

Based on the diagrams, the following conclusions can be formulated:

Point 4
1. At point 4 of the section, a uniaxial
/ (simple) stress state 1s realized (Fig. 3.7), and
o, (V) at this point, the maximum normal stress oc-
T max (M) curs (the shaded area coincides with the cross-
T max (A/[Z)A/ sectional plane; stresses on hidden faces are
’gc not shown).
Fig. 3.7

The strength condition at this point is as follows:

_INL M| M)

Oxa=0 < [o]. 3.7
x A Xmax F Wy VVZ [ ] ( )
Remark A uniaxial stress state is also realized at all other corner points.
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2. Other potentially critical points are B (midpoint of the longer side) and C (mid-
point of the shorter side). The stress state at these points is shown in Fig. 3.8 (the shaded
areas coincide with the cross-sectional plane; stresses on hidden faces are not shown).

Point B Point C
»
Y A
0. W) P 7 (NPT
O-X max (%) \ Tmax GX max (]\4}) T,
// // \ “ max
X X
D — e —
g l | ch I
O-x B Ox B O-x C O-x c
— —
Ty Tc
Fig. 3.8

At these points, a plane (combined) stress state of a particular type is realized,
which was considered in Clause 1.2.6. Therefore, the strength analysis at these poten-
tially critical points should be performed according to one of the strength theories.

The strength conditions at points B and C, according to formulas (1.27) and (1.28),
have the following form:

a) according to the third strength theory

2 2
N M M
o= i (BB o
t

F W

y

2
N M M
aelgczx/02+4rz = —l X|+—| y| +4(V—x) < [ol; (3:9)
F w, Wi
b) according to the fourth strength theory

2
N. M M
O';ZB=\/O'2+3T2=\/<| x|+| Zl) +3(Wx> < [o]; (3.10)
t

F W

Vel M0\ L My
Opgc =02 +312 = ) T 3()/W> < [o]. G.11)
t

F y
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3.2.2. Procedure for Determining the Dimensions
of a Rectangular Cross-Section

Given: Ny, My, My, M,, h/b = k, [g] (see Fig. 3.2).
Determine: h, b.

1. A quarter of the section (quadrant), which is under #riaxial tension (for N, > 0)
or triaxial compression (for N, < 0), is identified (selected), and its three corner points
A, B, and C are marked as potentially critical points. The fourth corner point O, which
coincides with the section centroid, is not considered, since at this point

To(M,y) = O'xO(My) = 0y0(M,) = 0.

2. The dimensions of the rectangular cross-section should be determined succes-
sively for the potentially critical points 4, B and C.

The strength conditions at these points are written in the first approximation by
neglecting N,., since usually o, (N,,) < g, (My, MZ). The calculation begins with the cor-
ner point 4, which in most cases proves to be the critical one in practice.

Strength condition at point A

My My

| +

= =— < [o]. 3.12
O-xA meax Wy Vl/Z — [O-] ( )
bh? hb*
Here Vl/sz; VVZ:T

Taking into account that
h/b=k =  h=kb,
the expressions for the section moduli determination under bending can be rewritten in
the form

k%b3 kb3
W= w = (3.13)
By substituting equations (3.13) into the equation (3.12), we obtain
6M, 6M,
b T e = o)
from which we determine
"k _ 3|6M, + 6kM, (3.14)
- k?[a]

Strength conditions at point B, located at the midpoint of the long side:

2

aggB _ \/(%)2 + 4(MW9:)2 < [o]; aggB _ \](%)2 +3 (MW’:) <|o]. (3.15)
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Here W, = ahb?.
Taking into account h = kb, it follows that
W, = akb?3. (3.16)
By substituting equations (3.13) and (3.16) into the equation (3.15), after transfor-
mations we obtain

' o)

°I(
pll > k (3.17)

Strength conditions at point C, located at the midpoint of the short side:

aelgc=\/<]l:|4/—i> +4(VMW):> < [o]; 0§ZC=\/<IX/—;’> +3(yMW’;) <[o]. (3.18)

By substituting equations (3.13) and (3.16) into the equation (3.18), after transfor-
mations we obtain

6 6My 2 Mx 2 6 6My 2 Mx 2
plIl > ( k? ) +4(yﬁ) . PV < ( k2 ) + B(VW) (3.19)
) [o]? | ) Ci

Remark \ a, vy are coefficients depending on the ratio h/b (see Appendix).

3. Choose the larger dimension b. Then find h = kb.

The cross-sectional point for which the larger pair of dimensions was
selected will be the most critical point of the section.

Remark

4. If an axial force N, acts in the cross-section, in the second approximation the
strength is verified at the critical point (4, B or C) taking into account the presence of N,
(at point A4, according to condition (3.7); at point B, according to expressions (3.8), (3.10);
and at point C, by formulas (3.9), (3.11), depending on which strength theory has been
adopted as the governing one).

If the strength verification confirms fulfillment of the strength conditions with an
accuracy of Ag < 5 %, then the calculation is completed.

If the strength condition at the critical point is not satisfied, it is necessary to in-
crease the dimensions h and b using the method of successive approximations.

Remarks 1. If one of the bending moments M,, or M, is equal to zero, then the
corner points of the cross-section are excluded from the category of
critical points.

2. If the torsional moment M, is equal to zero, then the corner point
becomes the only critical point of the cross-section.
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3.3. The Circular Cross-Section

3.3.1. Bending with Torsion of a Circular Cross-Section Bar

As practical calculations show, in a circular cross-section:

Tmax(Q) K Tmax(Mtorsional) and Tmax(Q) K Gmax(Mbending)a
therefore, the shear stresses resulting from shear forces are neglected in this case.

Since all axes passing through the centroid of a circular cross-section are the prin-
cipal central axes of inertia of that section, it is not necessary to consider bending sepa-
rately in the coordinate planes (horizontal and vertical).

Usually, bending of a circular cross-section bar is considered under the action of the
resultant bending moment (Fig. 3.9)

Mbending = /M321 + MZZ (320)

y M, bending

z

Fig. 3.9

Then, the maximum normal stresses g, acting at points A and B, which are most
distant from the neutral axis (n.ax.), are determined by the formula:

Mbending v MJZI + MZZ (3 21)

Ox max A = |meaxB| =
Wh.ax. Wh.ax.
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Shear stresses T caused by the torsional moment M, reach their maximum value at
the peripheral points of the section, i.e. on the circumference, including at points 4 and B:

Tmax = Ta =T = 77 - (3.22)

Consequently, points 4 and B are the most critical points of the entire cross-section,
since both a,,,4, and 7,4, act at these points. As the strength conditions (1.27) and (1.28)
are independent of the signs of ¢ and t, points 4 and B are equally critical.

Since the stress state at considered points 4 and B is plane (Fig. 3.10) (the shaded
areas coincide with the cross-sectional plane; stresses on hidden faces are not shown),
the strength analysis must be carried out according to one of the strength theories (the
third or the fourth).

Point 4 Point B

0 max (Mbending O max (M bgnding)
)/x Tmax / X Tmax
e — —
UxA GxA O-xB Gx B
— -
T, Tp
Fig. 3.10

The strength conditions at points 4 and B are as follows:

a) according to the third strength theory:

My ondine\ M\’
Ooqam) = VO +41% = (M> +4<—x> < [al,

Whax. W,
nd3® '
where W, = TS is a polar section modulus;
d3
Whax = EVE is the section modulus with respect to the neutral axis.
Since for a circular cross-section:

VVp = 2Whax.
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it follows that

2 M? .+ MZ
I _ Mbending N M?Z _ \/ bending x
e .
14 (8) an.ax. an.ax. Wn.ax.
Let us introduce the notation:
M jesign = \/ M} pnaing + ME = \/ M3 + M2 + MZ, (3.23)
where Mégign is the design (or equivalent) moment according to the fourth strength
theory.
Then, finally:
Maes;
gn
O'elgA(B) = W_ < [O'] (3-24)
n.ax.

b) according to the fourth strength theory:

Menin 2 M 2
O'eIgA(B)=\/O'2+3T2=\/< ° dg) +3<—x> < [a].

Wn.ax.

Then

2 2
olV _ szending E M% _ \/Mbending + 0.75M;
eqA(B) Wi — 4W2 Wiy, :

Let's introduce the notation:

Mjasion = \/szendmg +0.75M2 = \/M§ + M2 + 0.75M2, (3.25)
where M;;’S,.gn 1s the design (or equivalent) moment according to the fourth strength
theory.
Then, finally:
My,
v _ esign
Oeqamy = W < [o]. (3.26)
Since
nd3
Whax. = 32’

then, using the strength condition (3.24) or (3.26), the design problem can be solved, i.e.,
the diameter of the cross-section can be determined:
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3 g
gl — 32M gesign (3.27)

m[o]

3 IV
v = |22 Mdesign (3.28)
m[o]

3.3.2. Bending with Torsion and Tension-Compression
of a Circular Cross-Section Bar

or

This calculation case differs from the previous one by the presence of an axial
force N,,.

Of the two equally critical points considered earlier, only one becomes the critical
one. This is the point, in which the stresses from the action of the axial force N, and the
bending moment My, ;o are summed up.

The strength conditions at the critical point are:

a) according to the third strength theory:

2 2
ING| | Mpending] M
I _ ending _x : 3.29
= + +4 < [o]; (3.29)
Oea J ( F o W w,) =l
b) according to the fourth strength theory:
2 2
ING| | Mbending] M
v _ ending _x 3.30
= + +3 < [a]. (3.30)
Peq \/ ( F o W w,) =

In the design calculation of structures, in this case, in the first approximation, the
diameter d is determined by neglecting the axial force N,, according to formula (3.27)
or (3.28), since in most cases:

Jx(Nx) < Jx(Mbending)a

and in the second approximation, the strength verification at the critical point (4 or B,
depending on the direction of N,,) is performed according to condition (3.29) or (3.30).
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3.4. Problem-Solving Examples

Example 3.1

For the cranked bar, diagrams of internal forces and moments have been constructed

(see Example 2.1). With an allowable stress of [o] = 220 MPa, it is necessary to design:

a) the dimensions of a circular cross-section;

b) the dimensions of a rectangular cross-section with k = h/b = 2;
¢) to construct diagrams of the distribution of normal and shear stresses from the action
of Ny, My, M,,, M, for the rectangular cross-section;

d) to show the stress state at the critical points of the rectangular and circular cross-

sections;

e) to use the third and fourth strength theories for determining the circular cross-sec-
tion, and the third strength theory for the rectangular one;

f) to compare the weights of the resulting bars.

1. Determine the critical cross-section.

Solution

From the analysis of the internal force and moment diagrams (see Example 2.1,
Fig. 2.12), it is evident that the most critical section is at the fixed-end section, where the

following internal forces and moments act:
N, =20kN; M, = 45 kN-m,;

M,

30 kN-m; M, = 80 kN-m.

2. Determine the diameter of the circular cross-section.

M,

ending

g™
S/ /
V4
Fig. 3.11
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The plane of action of the
resultant bending moment
Mbending = M321 + MZZ the po-
sition of the points of maxi-
mum bending normal stresses
(points 4 and B) (Fig. 3.11).
Due to the presence of com-
pressive  normal  stresses
caused by the axial force N,,
the maximum normal stress
occurs at point A, where the
stresses from the axial force
and the bending moment are
summed.



At the same time, this point is also the location of maximum shear stresses resulting
from torsion, since it lies on the circumference of the cross-section.

Thus, point 4 is the only critical point of the circular cross-section.

Since the stress state at point 4 is plane, the strength calculation must be carried out
according to one of the strength theories (the third or the fourth) (Fig. 3.12).

—_—
- .
7, (N) o L o
Oy max (Maendinf)// Tax T
X
Fig. 3.12

The third strength theory

In the first approximation, to determine the diameter d, we write the strength condi-
tion at point 4, neglecting the influence of the axial force N, (3.24):

111 3 I11
I design . nd 32Mdesign
Ocqg, = 5 =3since W, ox = = <l|o
eqda W n.ax. 32 T[d3 —_ ’
n.ax.

from which we obtain:

dHI > 3 BZMCIZIe.ISIgI’l
~y mlel

where, in accordance with equation (3.23),

Mibsion = \/Mﬁ + M2 + M2 = /302 + 802 + 452 = 96.566 kN-m.

Then,

= 0.1647 m.

- 3[32-96.566 x 10°
a' >
= | 7m-220x106

We use formula (3.29) to determine the actual design stresses at the critical point,
taking into account the axial force N, :

2 2

ING| | Mpending] M

111 x ending X
= + +4(Z)

Pea 4 \/ ( F o Woa A

where Myenging = /M2 + M2 = V302 4 802 = 85.44 kN'm;
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nd? m-0.16472
)
nd® mw-0.16473
32 32

md3 - 0.16473 s
Wy = = = 2oy = ———— = 87722 X 107 w®,

F = = 2.1305 x 1072 m?;

Wyax = = 4.3861 x 10™* m?3;

We get:

20 x 103 85.44 x 103 \* 45 %103 \*
ol = + +4 =
eq 2.1305 x 102 ' 4.3861 x 104 8.7722 x 10—+

= 220.995 MPa.

The overstress 1s:

G g 220.995 — 220
eqa — 191 0000 -100 % = 0.45 % < 5 %.
o] 220

Thus, the strength of the bar's cross-section is ensured.

Ao % =

Remark Since 0, (N, ) < [o], the contribution of the axial force N, to the nor-
mal stress at the critical point can be estimated as

N, 20 x 103
Ux(Nx) =7

F - 21305 x 102 _ 0939 MPa.

The fourth strength theory

In the first approximation, to determine the diameter d, we write the strength condi-
tion at point 4, neglecting the influence of the axial force N, (see (3.26)):

7Td3 32M611X9ign
] <

nd3
IV
d“’ > 3 32Mdesign
4y mlal

where, in accordance with equation (3.25),

IV
v Mdesign i

Ocq, = = {since Whax =
A . .
Wn.ax.

from which we obtain:

M i = \/M; + M2 + 0.75 - M2 = /302 + 802 + 0.75 - 452 = 93.908 kN-m.
Then

70



= 0.1632 m.

3132-93.908 x 103
dIV >
- m-220 X 106

We use formula (3.30) to determine the actual design stresses at the critical point,
taking into account the axial force N, :

2 2
O'eIgA _ (lel n |Mbending|> +3 (%) ,
F Wh.ax. W,
where Myenging = /M3 + MZ = V302 4 802 = 85.44 kN'm;
md? m-0.1632

F = = 2.0918 X 1072 m?:
4 4 "
Wy, = e 21016327 o 674 x 1074
n.ax. — 32 = 32 = T m-,
d3 m-0.16323 s
VVp = E = 2Wn.ax. = T = 8.5378 x 10 m-.
We get:
20 x 103 85.44 x 103 \° 45x 103\’
Oav g = + +3 =
€q 2.0918 x 1072  4.2674 x 104 8.5378 x 104
= 220.916 MPa.
The overstress is:
g 4 — [0] 220.916 — 220
AG%=T-100%= 520 100 % = 0.42 % < 5 %.

Thus, the strength of the bar’s cross-section is ensured.

3. Determine the dimensions of the rectangular cross-section.

Since M, > M,,, we orient the section horizontally to ensure the cross-section
strength with smaller dimensions.

The section with the applied internal loads is shown in Fig. 3.13. The internal forces
and moments are applied in accordance with the adopted sign conventions:

— apositive axial force N, means tension;

— apositive torsional moment M, means counter-clockwise rotation;

— a negative bending moment M,, means tension in the top fibers and compression in
the bottom fibers;
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— a positive bending moment M, means tension in the left fibers and compression in
the right fibers.

Let's determine the potentially
A \ critical points of the section. We iden-
tify the triaxially tensioned quarter
(since N, > 0) of the section (hatched
area in Fig. 3.13) and mark its three
corner points: 4, B, and C. These will
h be the potentially critical points.

Fig. 3.13

Let us construct (draw) the diagrams of normal and shear stresses distributions
across the section (Fig. 3.14 — 3.17).

Tmax
A B A D, ]
¥ ¥y inax
"% 1 M, 45
Yy AC Pz Y C [0)
o N, 0 - v N C’
1 X rd B’
PV D A
cSx (N'c) z z Tmax
Fig. 3.14 Fig. 3.15
y »/;// i )/)//
X O /Mz/ x/O
T T T TR ) P .
S, (M) M, o, (M)
Z\
Fig. 3.16 Fig. 3.17

At each of the three potentially critical points of the cross-section, let us present the
type of stress state and formulate the strength conditions (without taking into account the
influence of the axial force N,.).
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Point A

At point A of the cross-section, a uniaxial stress state is realized (Fig. 3.18).

] -
Gx (Nx)/ / Gx A cSx A
Gx max(M’)}/
Gx max(%)
Ve /
X
Fig. 3.18

The strength condition at this point has the form:
_ M| | 1M,

OxA = Oxpax = Wy + W, < [a],

where W, =h—b2={since kZE = h=kb}=k—bs-
y 6 b 6
W=b—hz={since k=ﬁ = h=kb}=k2b3

z 3 b e

Substituting the values of W,, and W, into the strength condition and performing the

transformations, we obtain:

3|6k|M,| + 6|M,| 3[6-2-|-30 x 103| + 6- 80 x 103
> o] — = 0.0985 .

22-220 x 10°

Point B
At point B of the cross-section, a plane stress state is realized (Fig. 3.19).

e —

s oA - —

V4 —
O, max(A:[}/)/ M Tp
X

Fig. 3.19

We write the strength condition using the third strength theory:

2 2
M M
JeIgB =4/ 0% + 41?2 =\/<Wy> +4<W—xl> < [o],
y torsiona
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i k = h = h= kb} = —kb3

_ :

since p g
— 2 [« _h — _ 3.
W,orsionat = @hb* = {smce k = , = h = kb} = akb”;

a = 0.246 is a coefficient that depends on the ratio h/b = 2 (see Appendix).

hb?
where W, = e = {

Substituting the values of W), and W, into the strength condition, we get:

ak .
[0]2 N (220 x 109)2

6| (6My\* | MN\?  6|(6:1=30 x 103\’ 45 x 103>
) t4 7 4\ 07462
pll > = 0.0975 m.

Point C

At point C of the cross-section, a plane stress state is realized (Fig. 3.20).

il —
f_"i 1_.
Gy (NX)/%' O.c O,c
Gx max(%) / \ Tmax TC
Ve
X
Fig. 3.20
The strength condition, using the third strength theory, is:
M2 M 2
Opgc =02 + 412 = (—Z> +4<y ) ) < [a],
VVZ I/Vtorsional
bh? , h k%b3
where WZ=?={smce sz = h=kb}= 6

h
VVtorsional = ath = {since k= E = h= kb} = akb3;

a = 0.246, y = 0.795 are coefficients that depend on the ratio h/b = 2 (see
Appendix).

Substituting the values of W, and W;,,siona: into the strength condition, we get:

2 2
6 |(6M,\° MN\% 6 (6 - (80 x 103)> ( 45 X 103>
. () +4(rap) ~ 22 t4\079> 0246 2) _

- [0]2 B (220 - 106)2

= 0.09499 m.
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Let us select the largest of the three values of b:
b, = 0.0985 m;
bg = 0.0975 m;
bc = 0.09499 m.
Thus, point 4 is the most critical point of the cross-section.

The design dimensions of the rectangular cross-section and its geometric character-
istics are:

b = 0.0985 m;
h=kb=2-0.0985 = 0.197 m;

F = bh = 0.0985 - 0.197 = 0.0194 m?;
hb? _0.197- 0.09852

= = =3.1 x 10™% m3;

W, c c 3.1856 x 10™* m3;
bh?> 0.0985-0.1972 _

W, = = c = 6.3711 x 10~ m3;

Wiorsional = @hb? = 0.246+0.197 - 0.0985 2 = 4.7019 x 10~ m?.

Since a uniaxial stress state is realized at point 4, we determine the contribution of
the axial force N, to the total normal stress using the formula:

(N)_Nx_20><103 = 1.031 MP
Oxalx) =5 = 90194 @
The overstress is:
o, A(N,) 1.031
Ao % = 2-22.100% = ——-100 % = 0.47 % < 5 %.
[o] 220

Thus, the strength of the bar’s cross-section is ensured.

4. Compare weights of the circular and rectangular cross-section bars found using
the third strength theory:

G° F° 21305x1072
Gl FU 0.0194

Therefore, for the given combination of internal forces and moments and aspect
ratio k = h/b = 2 for the rectangle, it is more advantageous to use a rectangular cross-
section to reduce the weight of the structure.

= 1.098.

However, the largest overall dimension of the rectangular cross-section is larger
than the diameter of the circular one:

h=0197m>d = 0.1647 m.
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Example 3.2

In the critical cross-section of a bar, a bending moment M,, = 5 kN'm and a torsional
moment M, = 20 kN-m are acting (Fig. 3.21). It is required, according to the fourth
strength theory, to select the diameter, d, of a circular cross-section, the side size, a, of a
square cross-section, and the dimensions b and h (with the ratio k = h/b = 1.75) if the
allowable stress is [g] = 160 MPa. Show the stress state at the critical points of the
cross-sections and compare the bars by weight.

7 Given: M, = —5kN-m; M, = 20 kN-m;,
M, [c] = 160 MPa; k = h/b = 1.75;
Y /-0\ For a square cross-section: @ = 0.208; y = 1;
x| \/ For a rectangular cross-section: @ = 0.239; y = 0.820.
7y It is necessary to determine d, a, b, and h; to show the stress
zy 7 state at the critical points of the cross-sections; and to com-
are the bars by weight.
Fig. 3.21 P Y werg
Solution

1. Let us determine the diameter of the circular cross-section.

In the circular cross-section, under the
specified loading parameters, the maximum
normal stresses from the action of the bending
moment M,, occur at points 4 and B of the

cross-section, which are the most distant from
the neutral axis y (Fig. 3.22).

At the same time, these points are also the

M locations of maximum shear stresses from the

g action of the torsional moment M,., since they

lie on the circumference of the cross-sectionu.

N

Fig. 3.22

Consequently, points A and B are the most critical points of the entire section, since
both the maximum normal stress g,,,, and the maximum shear stress 7,4, act at these
points. Because the strength conditions (1.27) and (1.28) are insensitive to the signs of &
and 7, points 4 and B are equally critical. Therefore, we will consider the stress state
only at point 4.
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There is a plane stress state at point 4, therefore, the strength analysis must be per-
formed according to the fourth strength theory (Fig. 3.23).

—
T4
N ‘_? ‘l_>
O, max(%‘)// G, 4 O, 4
—
e T T,

Fig. 3.23

To determine the diameter d, we write the strength condition (3.26)

My, . md®)  32Mp,
gey . = W:i” = {smce Wy oy = = } — nde;lg" < [o],

from which we get:

\Y%
IV _ 3 32Mdesign

B m[o]

where, in accordance with equation (3.25),

M gision = \/Mﬁ + M2 +0.75 - M2 = /52 + 02 + 0.75 - 202 = 18.028 kN-m.

Then

= 0.1047 m.

3/32-18.028 x 103
dV =
m-160 x 106

2. Let us determine the side size of the square cross-section.

In a square cross-section under the speci-
fied loading parameters (Fig. 3.24), there are D /lC A
two potentially critical and equally critical M,
points, C and C'. The maximum normal and S Y / h B
maximum shear stresses act at these points. B’ J

The corner points of the section X
A A", D, anq D' are e>.<(.:luded frqm the category VL C’kM %
of potentially critical points because . y
OxA = 0xa = 0xp = Oxp' = Oxmayx, While a
Ty =Ty =Tp =T =0. - ~

Fig. 3.24

Points B and B’ are also excluded from the category of potentially critical points,
since 0, g = 0, g = 0, while T = Tp' = Tjax-
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Since points C and C’ are equally critical, we will consider only one of them,
point C. A plane stress state is realized at this point (Fig. 3.25).

e
/ TC
1~ » | i_,
O, 117ax(]\4y}/ O, ¢ O, ¢
/x \ inax Te

Fig. 3.25
We write the strength condition using the fourth strength theory:

2 2
oo = o ¥ 37 = j(’”_) +3( ) <o),

VVy Vl/torsional
here W, = 2 fsince h = b k=7=1] @
= = = = el = — = e —
where W, c since a ; o
: a
Wiorsional = ahb® = {smce h=b=a = k= 5= 1} = aa3;
a =0.239 is a coefficient that depends on the ratio h/b =1 (see
Appendix).
Substituting the values of W,, and Wi,ysionq into the strength condition, we get:
2 3\ 2
°lem,)* +3 (%) ° (6-|—5x103|)2+3<%>
a2 - = ' = 0.0974 m.
B [o]2 (160 x 106)2

3. Let us determine the dimensions of the rectangular cross-section.

In a rectangular cross-section under the spec-

)/1 ified loading parameters (Fig. 3.26), the potentially
D C A critical points are the equally critical points B and
Y B’, at which stresses
;/' O =0, =0 and Tg = Ty = Ty, act,
| & 0 B as well as the equally critical points C and C’,
B’ ; where stresses
/ h Oxc = Ox ¢’ = Oxmax aNd T¢ = Tgr = Tpqy act.
X C’ The corner points A, A’, D, and D’ of the sec-
VE I/ D’ tion are excluded from the category of potentially
zy M, critical points because
b OxA = O0x4 =O0xp = Oxp' = Oxmax>

while
Ty =Ty =Tp =Tp = 0.
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Since points B and B’ are equally critical, we will consider only one of them,
point B. A state of pure shear is realized at this point (Fig. 3.27).

e S

s of

Fig. 3.27

The strength condition at point B has the form:

|M,|
TB B Tmax B M/Z‘OI’SZCOI’ICIZ S [T] ~ 0.5 . [O-]’
h
where W, ona = ahb? = {since k = y = h = kb} = akb3;
a = 0.239 is a coefficient that depends on the ratio h/b = 1.75 (see

Appendix).

Substituting the value of W;,,sionar 1nto the strength condition, we get:

by > Ml _® 20 x 107 = 0.0842
B= lak-05-[6]  /0.239-1.75-0.5-160 x 106 -

Since points C and C' are equally critical, we will consider only one of them,
point C. A plane stress state is realized at this point (Fig. 3.28).

e —

Te
LN E T | a
O, max(M‘f)// O, ¢ O,c
r ,
’/X \ Tmax T c

Fig. 3.28

We write the strength condition using the fourth strength theory:

M\’ M, \?
O'égc=\/0'2+3‘[2= — +3<y ) < [o],

VVy Vl/torsional
(. h k2b3
where Wy=T={smce k=B = h=kb}= 6 ;
h
Wiorsional = ahb? = {Since k= E = h= kb} = akb3;
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a = 0.239, y = 0.820 are coefficients that depend on the ratio h/b = 1.75
(see Appendix).

Substituting the values of W), and W, into the strength condition, we get:

6 |(6M,\° MAN2  6|(6-]-5 % 103\ 20 x 103 \?
LV S ( K2 ) +3(rak) ( 1757 ) 3 (0'820 0239 1.75) _
¢ = [0]2 N (160 x 106)2 =

= 0.0753 m.

Let us select the largest of the two values of b:
bg = 0.0842 m;
{bc > 0.0753 m.
Thus, point B is the most critical point of the cross-section.
The final dimensions of the rectangular cross-section are:

b = 0.0842 m; h =kb =1.75-0.0842 = 0.1474 m.

4. Compare the weight of the circular, square, and rectangular cross-section bars.

Let us calculate the areas of the
circular cross-section:
nd? m-0.10472
4 4

FC = = 8.6096 x 1073 m?2;

square cross-section:
FY = a? = 0.0974% = 9.4868 x 1073 m?;
rectangular cross-section:
FU = bh = 0.0842-0.1474 = 12.4111 x 1073 m?.

Then
G" _ F" _ 94868 x 1073 1102
GO  F© 86096 x 103 ’
¢l F9 124111 x1073
= 1.442.

GO~ FO ~ 8.6096 x 10-3

Thus, for the specified combination of internal forces and moments and the aspect
ratio of the rectangle k = h/b = 1.75 , in order to reduce the weight of the structure, it
is more advantageous to use a circular cross-section, since it is lighter than the square
one by 10.2 % and lighter than the rectangular one by 44.2 %.

In this case, the circular cross-section is also preferable in terms of overall dimen-
sions.
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3.5. Special Cases of Combined Loading

3.5.1. Oblique Bending

Oblique bending, like plane bending, is subdivided into pure and transverse.

Pure oblique bending occurs when only a bending moment acts in the cross-section
of a beam, and the plane of its action does not contain any of the principal central axes
of inertia of the cross-section. In this case, it does not matter whether the principal central
axes of inertia of the section are its axes of symmetry or not.

Transverse oblique bending occurs under the condition that the cross-section of the
beam has two axes of symmetry, and the transverse loads act in different sections and in
different planes containing the longitudinal axis of the beam, or the transverse loads act
in a single force plane that contains the longitudinal axis of the beam, but does not coin-
cide with any of the planes of symmetry of the beam (Fig. 3.29).

Fig. 3.29

If the beam's cross-section has one axis of symmetry or no axes of symmetry at all,
then the transverse loads must act in planes that contain not the beam's longitudinal axis,
but rather the line connecting the shear centers of the beam's cross-sections.

Taking into account that in most standard courses on Mechanics of Materials and
Structures the concept of the shear centre of beam's cross-sections is not considered, and
given the fact that the overwhelming majority of real beams operate under conditions of
transverse bending, we will only consider beams whose cross-sections have two axes of
symmetry. This somewhat narrows the application field of the calculation relations ob-
tained in this section; however, their practical significance is quite high due to the wide-
spread use of beams with rectangular, box, cross-shaped, I-beam, and other sections, in-
cluding composite and multi-cell sections, that have two axes of symmetry.
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Determination of normal stresses in the cross-section of a beam

Let us consider a beam operating under conditions of oblique bending (Fig. 3.30).

In this figure, O is the centroid of the cross-
section, axes y and z are the principal central axes
“ of inertia of the section; Mp,,,4;,, is the bending mo-

ment acting in the cross-section of the bar at an an-
gle a to the z-axis; the shear force is not shown,
since the normal stress g, is determined only by the
presence of bending moments.

X

the plane of loading, contains the x-axis, but does

B
<\ ~ The action plane of the bending moment, i.e.
M, .
bending not contain either the y or z-axis.

Fig. 3.30

Relying on the principle of superposition, oblique bending can be considered as
simultaneous pure plane bending in two principal planes: xOz and xOy. Therefore,
oblique bending is a special case of combined loading.

In Fig. 3.31, the moment M, 4, 1s shown in its usual and vector forms according
to the rule adopted in the Theoretical Mechanics course. From this figure, it is clear that:
M, = My pgine COS O ;
y bending >
: } (3.31)
M, = Mpepging SIn ¢ .

In Fig. 3.32, the diagram of the internal forces and moments action in the section is
shown, transformed in accordance with formula (3.31).

/

v ARy L
bending __ _ J_ _ ___ Z]

K
=
Q

/

/~ Loading s
/ plane z
Fig. 3.31 Fig. 3.32
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The normal stress g, in an arbitrary point C is determined, using the principle of
independence of force action (superposition), as follows:

M,z M,y
= 0,(My) + 0, (M) = 1_ + IZ . (3.32)
y Z
By substituting the values of M,, and M, from relations (3.31) into formula (3.32),
we obtain:
Z y .
x = Mpending T cosa + I—sm al, (3.33)
y z

where y, z are the coordinates of an arbitrary point C;
Mpending 1s the bending moment acting in the cross-section;
I,, and I, are inertia moments of the cross-section;
a 1s the angle of inclination of the loading plane to the z-axis.

Remark Sometimes it is convenient to work directly with the given bending
moments M,, and M,, acting in two arbitrarily chosen perpendicular
planes xOz and xOYy.

Then, the formulas for determining the normal stresses caused by
these moments will have the form:

ox(My) =11 52(12 lyy);
(M) = -7 ,2( ~Lyy)-

These formulas are especially convenient for designing beams where
the web and flanges are parallel to the y and z axes.

Determination of the cross-section neutral axis position

When performing strength analyses, the strength condition is written for the critical
point of the cross-section, i.e., for the point, at which the normal stresses reach their
maximum values. The most stressed point of an arbitrary shape cross-section is the point
most distant from the neutral axis, which separates the tension and compression zones of
the section.

Using equation (3.33), we determine the position of the neutral axis of the section
from the condition that, at the points belonging to the neutral axis, g, = 0. Since
Mpenging # 0, it follows that

Z y .
—cosa +=sina = 0.
Iy .

From this, we obtain the equation of a straight line passing through the origin:
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z= (_I_ysina>y = (—I—ytga)y (3.34)

I, cosa I,
or z=kyy,
Ly
where ki =tgp = —I—tga. (3.35)
Z

Expression (3.35) allows us to find the inclination angle of the neutral axis to the
y-axis, and the minus sign indicates that the loading plane and the neutral axis in oblique
bending pass through opposite quadrants. If the angle ¢ > 0, then it is measured coun-
terclockwise from the y-axis; if the angle a > 0, then it is measured clockwise from the
Z-axis.

The angle ¢ does not depend on the magnitude of the force P, but only on the angle
of inclination of the loading plane to the z-axis and on the shape of the cross-section.

Vi Let us determine the orientation of the neu-
hendingl & tral axis relative to the action plane of M,
E since it cannot be uniquely assumed that they are
¥ :]\7 perpendicular (Fig. 3.33).

. The equation of the loading line, 1.e., the line
" of intersection of the action plane of Mp,,,4;,, and
& the cross-sectional plane (line 4B in Figs 3.30 and
égj\/_’\é’ 3.32), in the coordinate system zOy has the form:

Ny z =k,y,

Fig. 3.33
T 1

where k,=tg (E — a) =ctga = tg_a' (3.36)

From the course of analytic geometry, it is known that the condition of perpendicu-

larity of two straight lines 1s
1

— k_2 _

By comparing the values of k; from equation (3.35) and k, from (3.36), it is evident
that condition (3.37) is not fulfilled in this case:

— I—y tga # —tga.
I,

This means that, in the general case, the neutral line of the cross-section is not per-

pendicular to the action plane of the bending moment M4, (the loading line).

ky = (3.37)

In the special case of cross-sections for which I, = I, = L, 45 = Ijpin (for example,

square or circular), all axes passing through the cross-section centroid are principal
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central axes of inertia. For such sections, according to the definition, realization of
oblique bending is impossible, because the neutral axis is perpendicular to the loading
plane.

During oblique bending, according to formulas (3.31), the ratio of the bending mo-
ments My, and M, is constant along the entire length of the bar (M,/M,, = tga). There-
fore, the inclination angle ¢ of the neutral line is also constant. This means that the cross-
sections of the bar, remaining plane, rotate around neutral axes parallel to each other, as
in the case of simple plane bending. The curvature of the bar axis occurs in a single plane
n — n, normal to the direction of the neutral axis (see Fig. 3.33), which defines the name
of this type of deformation. This plane is called the bending plane.

Remark If the loading line in a bar with a rectangular cross-section passes along
one of the diagonals, the neutral axis will pass along the other diagonal:

L bh* 12 b _ h

The strength condition in oblique bending

Expression (3.33) in the o,, y, z coordinate system represents the equation of a
plane that intersects the beam's cross-section along the neutral axis. Consequently, the
normal stresses (tensile and compressive) reach maximum values at those points of the
cross-section that are most distant from its neutral axis.

If the coordinates of the points most distant from the neutral axis are known (y* and
z"), then the strength condition takes the form:

z v
Ox max = Mbending <I_ cosa + 7sin a> < [o]. (3.38)
y V4

For determining the critical points of complex shape sections, it is necessary to con-
struct tangents to the contour of the section parallel to the neutral axis. The points of
tangency will then be the critical points.

Remark | For cross-sections with protruding corners, in which both principal axes
of inertia are axes of symmetry (rectangular, box-type, I-beam, etc.), the
critical points are located at the corners of these sections, i.e., they can be
found without determining the position of the neutral axis:

|My M, | cosa sina
Ox max =Wy+ w, = |Mbending| Wy + w, = [O-] (339)
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3.5.2. Problem-Solving Examples

Example 3.3

Select the dimensions of a rectangular cross-section of a cantilever beam (Fig. 3.34);

construct the diagram of normal stresses in the critical cross-section; determine the posi-
tion of the neutral axis.

o
<\7 Given: P = 20kN; | =2 m;
P > a = 20° [o] = 120 MPa;
Y <] = k=h/b=2.
Y
! It is necessary to determine b and h; to
AR construct the o, diagram in the critical
b section; and to find the position of the
neutral axis.
Fig. 3.34
Solution

1. From Fig. 3.34, it is seen that the maximum bending moment acts at the fixed
end:

Myoing = —Px=—20x | =0 | = —40 kN-m.
x=0 x=l=2m
Let us represent the maximum bending moment in projections onto the principal
central axes of inertia of the beam's cross-section (the y and z-axes) (Fig. 3.35):
My, = Mpenging OS @ = —40 - cos 20" = —37.588 kN'm;

M, = Mpepging Sina = —40 - sin 20" = —13.681 kN'm.

2. Show the scheme of internal forces and moments acting in the critical cross-sec-
tion (Fig. 3.36).

i Mbending \Aly
7] D A
(0 J AN 0
g My ~{ Y x }}
. [ bending B ’
Loading Yz C x
line -
Fig. 3.35 Fig. 3.36
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From this figure, it is evident that the most critical points of the cross-section are
the corner points 4 (with the maximum tensile stress) and C (with the maximum com-
pressive stress).

Since the beam is made of a ductile material, [o], = [c]. = [o], and consequently,
points A and C are equally critical.

Let us write the strength condition for oblique bending at the critical point 4

|My M, | cosa sina
O-xmaxzvy-l_ VVZ = |Mbending| VVy + VVZ < [O-]

We can rewrite this formula in another form:

Ox max = Wb;/—'fmg'(cosa +%sina> = %(cosa + ksina) < [o],
where W, =b—hz={since k =ﬁ = h=kb}=k2b3'
Y 6 b 6 ’
W=h—bz={since k=ﬁ = h=kb}=k—bg'
z 6 b 6 ’
W, k*b* 6
W, 6 kb3

Then

3 6|Mbending| .
b > sz—m(cosa+k31na) =

3| 640 % 103 . o
= |32 120 < 106 (c0S 20" + 2 5in 20°) = 0.0933 m;

h=kb=2-0.0977 = 0.1866 m;
bh? _0.0933- 0.18662

— _ - 3.
Wy =—= - = 541.444 x 107 m3;
hb?  0.1866 - 0.09332 e s
W, =—= - = 270.722 x 1076 m?.

3. Let us determine the acting stresses at the corner points of the cross-section and
construct the diagram of normal stress distribution acting in the critical cross-section
(Fig. 3.37):
|M,| 37.588 x 103

o(M,) = = — = 69.422 MPa;
YW, 541444 x 1076
IM,|  13.681 x 103
o(M,) = = = 50.535 MPa;

W, — 270.722 x 106
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o4 = 0(My,) + o0(M,) = 69.422 + 50.535 = 119.957 MPa;

op = —o(M,) + 0(M,) = —69.422 + 50.535 = —18.887 MPa;
oc = —o(M,) — o(M,) = —69.422 — 50.535 = —119.957 MPa;
op = o(M,) —a(M,) = 69.422 — 50.535 = 18.887 MPa.

o,, MPa
a
D A
18.887 \ 119.957
| ?(NJo
y X
-119.957
%
C _ | B &
Loading
line -18.887
Fig. 3.37

4. We determine analytically the position of the neutral axis

tgp = —I—ytga = —b—hgﬁtga = —k?tga = —22-tg20° = —1.4559;
I, 12 hb3
¢ = —55.52°.
5. Let us compare the stresses in oblique and plane bending (with & = 0):
M, 40 x 103
Oxmax@=0) = = 5a1 a4 x 106 o0/ M
o, 119957
Oq-0 73.877

The maximum stresses in oblique bending are greater than in plane bending by a
factor of 1.62, i.e., oblique bending is more dangerous than plane bending.
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Example 3.4

When installing an I-beam (No. 20, W, = 184 X 107¢ m>, W, = 23.1-107° m?)
on supports, intended to operate in bending in the vertical plane coinciding with the web
plane, an error was made: the web of the I-beam deviated from the vertical by an angle
a = 1°. Determine the increase in the maximum normal stresses associated with this de-
viation.

Solution

The deviation of the I-beam's axis (the z-axis) from the vertical leads to occurrence
of oblique bending (Fig. 3.38) and the appearance of bending moments M,, and M,.

a

Let's represent the caused by the action of force
P in projections onto the principal central axes of in-
ertia of the beam's cross-section (the y and z-axes): ‘
Ya o

My = Mbending cosa = Mbending * COS 10 = — |
= 0,99985 - Mbending; bending
M, = Mbending sina = Mbending sinl’ =
= 0,01745 * Mpe,ging-
Fig. 3.38
The maximum stress during oblique bending is:
Ox max = |My| + M, | = Mbending cosa Mbendi”g sina = Mbending (COS a + %sin a) .
Wy W Wy W, w, w,
Then
Mpendi . 184x107¢ | M., .
O max = bending cos + 521 < 1n-% sin1 =1.139- bending -
y 23.1 x 10 W,

In the case of correct installation of the beam, the force P would coincide with the
vertical z-axis, and simple (plane) bending would occur; the bending moment would be
equal to Mpenging» and the maximum normal stress would be

Mbending

Ox max(a=0) — m
y

Thus, the maximum stresses during oblique bending due to such a minor deviation
from the vertical increase by 13.9%.
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Example 3.5

A cantilever beam of rectangular cross-section is loaded by a concentrated force P

and a uniformly distributed (rectangular) load g (Fig. 3.39). Determine the maximum
stress acting in the critical cross-section.

%
N
q
\\ Given: P =12 kN, q = 14 kN/m;
Pyte, | | b=01m; k=h/b=15
1 No l=15m; a=20°
AN
Y y It is necessary to define o, ,4y-
[
Y
ZF G
-% b t
Fig. 3.39
Solution

1. Let's represent all external loads acting on the beam in projections onto the prin-

cipal central axes of inertia of the beam's cross-section (the y and z-axes).
In this case:

P, =Pcosa =12-cos20° = 11.276 kN; q; = q =14 kN/m;
P, = Psina = 12 - sin 20° = 4.104 kN; q, = 0.

2. Construct the bending moment diagram acting in the vertical plane (x0z)
(Fig. 3.40):

2 2

My = Px -1 =11276-x - 14; | =0 | = 1.164 kNm.
x=0 x=1l=1,5m
Let's determine the extreme value of M,
%—P— B _&_11.276_ . .
o qx, =0 = xe—q— 12 = 0.805m and My = 4.541 kN-m.

3. Construct the bending moment diagram acting in the horizontal plane (xOy)
(see Fig. 3.40):

M,=-Px=-4104-x | =0 | = —6.156 kN'm.

x=0 x=1l=1,5m
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Fig. 3.40

4. Let us calculate the stress acting at the critical point of the critical cross-section:

In any cross-section, the maximum stress acts at one of the points most distant both

from the y-axis and from the z-axis. Therefore,

2

qx
- _ |M, | 4 M| _ FX =5 +Pyx
X max Wy M/Z Wy M/Z .

Introduce the notation: _W, _bht 6 —h—k—15
ntroauce € notation. m_VVZ_ 6 hbz—b— = 1.0.

Then

W, 2

1 qx?
Oxmax = 77\ BeXx ——— +mB,x |.
y

We determine the maximum value of the maximum stress.

d(ax max) 1
—_— = —(P —x2 +mP, ) = 0, from where
dx w, v e Y
J_PZ+ Py_{, _k_15}_11.276_|_1.5-4.104_1245
xe—q mq—smcem— =15} =—1 12 = 1. m.
Let us determine the values of the bending moments acting in the critical section:
14x?
M, = 11276 x — | =3188kVm;
2 x=x9
M, =—4104-x |  =-5109kNm.
x=x2g
Thus, finally:
|M,| M, 3.188x10% |-5.109 x 10°|
= + = = 28.937 MPa.

emax = @ T 70000375 | 0.00025
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Remark With oblique bending, the critical cross-section is not always the one
where the bending moment has the greatest value. In this case,
at the critical section:

Mpending = /MZ + M2 =/3.1882 + 5.1092 = 6.022 kN'm;

Oy max = 28.937 MPa;
at the fixed end:

Mpending = |MZ + M2 = /1.1642 + 6.1562 = 6.265 kN-m;

_My M, _ 1164 6156 _ .
Txmax =yt Y= 5000375 T 0.00025 < “

at the section with x, = 0.805 m:

Mpending = /MZ + M2 = /45412 + 3.3042 = 5.616 kN'm;

My M, 4541 N 3.304
W), W ~0.000375 * 0.00025

Ux max —

= 25.325 MPa.

Example 3.6

A cantilever beam of I-section with a length [ = 1 m is subjected to a uniformly
distributed (rectangular) load with an intensity of ¢ = 5 kN/m (Fig. 3.41). The loading
plane forms an angle of @ = 15° with the web plane of the I-beam. Design the [-beam

section if [o] = 160 MPa.
o

q
N
q Given: | =1m; q = 10kN/m;
Y y y VY y y VY VY
3,_“— a = 15°; [o] = 160 MPa.
[
It is required to select the I-beam number.
qéﬁ
YZ
Fig. 3.41
Solution

From Fig. 3.41 it is clear that the maximum bending moment will act at the fixed
end:

Mpepding = — —— = —5x | =0 | = —5 kN'm.



The strength condition in this case (a section with protruding corners) has the form

cosa sina |Mbending| W,
. = My ( + ) = (cosa +—sina) < [a],
x max | en zng| Wy w, W- W.
from which we get:

y z

M. . 74 5x 103 W,

| bendzngl (COS o+ —ysin CZ) — —(COS 15° + —ysin 150> =
o] "

W, 160 x 106 A
Wy Wy
=31.25%107° (0.966 + —0.259) = 30.188x107% + —=8.094x107% m>.
W, W,
The section will be designed using the method of successive approximations. The

right side of this expression contains the ratio W, /W,, which varies from 6.12 (I-beam
No. 10) to 14.07 (I-beam No. 60).
As a first approximation, we assume W, /W, = 10, then

W, = 30.188%x107° + 10 - 8.094%x107% = 111.128x1076 m3.

w, >

From the steel section tables, we select I-beam No. 16, which has
W, = 109x10~®m3; W, = 14.5x107% m3.
Let us check its strength:

= lee”di”g|< + B ) _ _5x10° (0 966 + 22 . 259) =
Oxmax =Ty T\ SO Y S ) 09 x 1076\ 145 7)) 7
= 133.62 MPa.
o 133.88 — 160
Underload is given by Acg % = | 160 = 16.325 %.

Then, we select from the steel section tables I-beam No. 14, which has:
W, = 81.7x107% m3; W, = 11.5x107° m3.
Let us check its strength

_ 5% 107 (0 966 + 8L.7 0 259) = 171.73 MP
Oxmax = g1 7% 10-6\ " 115 = - a
o 171.73 — 160
Overload is given by Ac % = | 160 | =7.33% > 5 %.

Such an overload is not permissible; therefore, we finally select [-beam No. 16.
Let us compare the maximum stresses under oblique and plane bending (at « = 0):
M, 5x 103 _ 45872 MPa: o, _ 133.62
Oxmax @=0 =y =709 x 106 “ e, 45872

Thus, the maximum stresses under oblique bending are greater than under simple
bending by a factor of 2.91.
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3.5.3. Eccentric Tension-Compression

Eccentric tension-compression occurs in a bar's cross-sections, in the case when
the bar is loaded by a force whose action line is parallel to the longitudinal axis of the
bar but does not coincide with it.

Let a force P act on a bar, parallel to the longi-
tudinal axis and applied at point C of the cross-sec-
tion. The coordinates of this point in the principal
axes system are denoted as yp and zp, and the dis-
tance from this point to the x-axis, which is called
the eccentricity, is e (Fig. 3.42).

If the force P is transferred parallel to itself from
point C to the centroid of the cross-section, then the
eccentric tension can be represented as the sum of
three simple deformations: tension and bending in

Fig. 3.42 two planes.
Then, in all cross-sections of the bar, the following internal forces and moments will
act:
N, = P;
My =P zp; (3.40)
MZ = P - yp.

Thus, eccentric tension-compression can be considered, based on the principle of
superposition, as the result of the combined action of pure tension-compression and
oblique or plane pure bending. That is, it is a special case of combined loading.

Determining the acting stresses

In Fig. 3.43 a diagram of internal forces
and moments action in the bar's cross-section
is shown. The absence of a shear force in the
bar's section means that pure bending (plane
or oblique) occurs. This removes the limita-
tions that must be satisfied in the case of trans-
verse oblique bending.
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Using the principle of superposition, we determine the normal stresses at an arbi-
trary point of the cross-section located in the first quadrant, with coordinates y, z (see
Fig. 3.43). We choose the direction of the y and z axes (i.e. the position of the first quad-
rant) such that N,, M,,, and M, create positive stresses in this quadrant. Then:

N
Oy = Gx(Nx) + O'x(My) + O-x(Mz) = Fx

M, M,
+_I Z+_I v, (3.41)
y VA

where F is the area of the cross-section;
I, I, are the inertia moments of the cross-section.

Substitute into this relation the values of N, M,,, and M, from formulas (3.40):

P Pzp Pyp P Zp Vp
Oy F+1y z+ LY F +IyZ+IZ (3.42)
F F
Let us introduce the notation:
. I . I
ly = Fy’ l, = F’ (343)

where i, i, are the radii of gyration of the bar's cross-section relative to its principal
central axes of inertia.

Taking into account relations (3.43), we rewrite expression (3.42) in the following
form:
i O/ P 3.44
O'xE—F +gZ+gy , (3.44)
wherezp, yp are the coordinates of the P-force application point;
y, z are the coordinates of the point at which the stress is determined.

The obtained expression makes it possible to find the stress at any point of the cross-
section in any quadrant.

Determining of the neutral axis position

To find the critical point (or points) of the section, it is necessary to determine the
position of the neutral axis of the section.
The equation of the neutral axis is obtained from the condition g,, = 0, by equating
the right side of expression (3.44) to zero. Since P/F + 0, it follows that:
Yp

Zp
1+i_2Z+i_2y= 0. (345)
y Z
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This is the equation of a straight line not passing through the origin.

We transform equation (3.45) into the intercept form on the coordinate axes

4 y
2 + 2\ 1 (3.46)
X —-Z
( Zp) ( YP>
or
z .y
—+—=1 (3.47)
a, Qy

Consequently, the intercepts cut off by the neutral axis on the y and z-axes can be
determined from the relations

i32, (3.48)
a, = ——, a, =——. .
Y Yp ’ Zp

From these relations, it follows

Compression that a,, and yp, and a, and zp always

field have mutually opposite signs. That is,
the point of application of the force
y Sy |0 (point C) and the neutral axis always lie
VP! a, on opposite sides of the centroid of the

! 1’-«94,_ section (Fig. 3.44).
Let's consider some characteristic
features related to the behaviour of the
neutral axis with different positions of

Fig. 3.44 the P-force application point:

Tension
P z field

1. The neutral axis position does not depend on the magnitude or sign of force P;

2. Under eccentric tension-compression, the neutral axis can either intersect the cross-
section or lie outside its boundaries. In the first case, stresses of different signs arise
in the cross-section: one part of the section is in tension, and other part is in com-
pression. In the second case, the stresses at all points of the cross-section will have
the same sign.

3. The neutral axis position depends on the coordinates of load application point. The
closer the force is applied to the centroid of the cross-section (the smaller the eccen-
tricity), the farther away the neutral axis is located from it.

4. If force P is applied at a point on the y-axis (zp = 0), then the neutral axis will be
parallel to the z-axis, since a, = —if/zp = —i5/0 = —oo.
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If force P is applied at a point on the z-axis (yp = 0), then the neutral axis will be
parallel to the y-axis, since a, = —i7/yp = —i/0 = —oo.

Strength condition for eccentric tension-compression

Expression (3.44) in the o,, y, z coordinate system represents the equation of a
plane. Consequently, o, = 0,4, Will occur at those points of the cross-section most dis-
tant from its neutral axis.

If the coordinates of the critical point are defined and equal to y* and z*, then the
strength condition takes the form

P Zp . Yp
Ox max = F(l +i_IZJZ +l._§y ) < [o]. (3.49)
y z

For cross-sections of complex shapes, the coordinates of the critical points can be
determined by drawing tangents to the contour of the cross-section parallel to the neutral
axis. The points of tangency whose distance to the neutral axis is maximal are the critical
points of the cross-section.

Remark For cross-sections with protruding corners, where both principal axes
of inertia are axes of symmetry (e.g., rectangular, box, [-beam, etc.),
the critical points are located at the corners of these sections. That is,
they can be found without determining the position of the neutral axis:

_IN M M)

= ) 3.50
Ox max F Wy W, [o] ( )

3.5.4. Cross-Section Core

When designing bars made of materials with poor resistance to tension (e.g., cast
iron, brickwork, concrete), it is desirable to ensure that the entire cross-section works
only in compression. This is achieved by preventing the P-force application point from
moving too far from the centroid of the section, thereby limiting the eccentricity.

It is also desirable to know in advance what eccentricity may be allowed for a se-
lected type of cross-section without risking the occurrence of opposite signs stresses in
the section of the bar. To this end, it is necessary to establish the region of possible posi-
tions of the force application point, within which the stresses at all points of the cross-
section will have the same sign. This region is called the core of the cross-section.
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The cross-section core is the region located in the vicinity of the cross-sectioncen-
troid, within which the application of a tensile or compressive force results in stresses
of the same sign at all points of the cross-section.

From this definition, it follows that if a tensile or compressive force is applied on
the boundary of the cross-section core, the neutral axis touches the contour of the cross-
section.

To construct the boundary contour of the cross-section core, it is necessary to con-
sider various positions of the neutral axis tangent to the cross-section contour and com-
pute the coordinates of the corresponding P-force application points using formulas de-
rived from relations (3.46):

i i5

Yp = —— Zp =

. 3.51
- - (3.51)

The calculated coordinates determine points lying on the boundary of the cross-
section core.

H,

H, /1- To facilitate the construction of the cross-sec-
0 tion core, we use a property of the neutral axis: when
y the neutral axis rotates around some fixed-point 4 on
O 3 the section contour, the point of application of the
\ A force moves along a certain straight line (Fig. 3.45).

H, \ _/Hl In Fig. 3.45 three positions of the P-force appli-
H, z cation point are shown on a certain line 1-3, and cor-

H, respondingly, three positions of the neutral axis.

Fig. 3.45

To prove this property, it is sufficient to substitute the coordinates of point A
(y4, 24), which lies on the neutral axis, into equation (3.45).
We obtain:

Zp Yp
1+-52a+73Ya=0. (3.52)
y z
Indeed, expression (3.52) for z4 = const represents the equation of a straight line

with respect to the coordinates of the points of force application P — (yp, zp).

Thus, to construct the cross-section core for a given shape, it is necessary to draw
several positions of the neutral axis that coincide with the section sides and also touch its
protruding points. Then, the coordinates of the points lying on the boundary of the cross-
section core are calculated.
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3.5.5. Problem-Solving Examples

Example 3.7

For a bar with a rectangular cross-section (Fig. 3.46), find the acting stresses at the
section characteristic points; construct the diagram of normal stress distribution in this
section; and analytically determine the position of the neutral axis.

h/4 l P AX
Given: P = 40 kN: b = 0.08 m; h = 0.04 m. B . 5 \
y :
It is necessary to: h \i\x z
1) determine the acting stresses at the section b i
characteristic points; :
2) construct the diagram of g, distribution, A p__ L
3) determine the position of the neutral axis.
Fig. 3.46

Solution

1. We reduce the external force P to the cross-section centroid as a statically equiv-
alent system (Fig. 3.47). Then, in an arbitrary cross-section of the bar, the following in-
ternal forces and moments will act:

IN,| = P = 40 kN; M
Y N, B
My| = P-zp =1-40-001] = 04 kN-m; R~ A
IM,| = P-yp = 40 - 0.04 = 1.6 kNm, vy O\ 4
where D \t\
b 0.08 >
yp=§=T=0.04m; h
h_ 004 o b
ZP == ——= —0U. m.
4 4 Fig. 3.47

2. Let us determine the stresses in the corner points of the cross-section using for-
mula (3.48) and construct the distribution diagram of the normal stresses acting in the
section (Fig. 3.48):

N | [My] | 1M
F W, w,’

Ox max = O-x(Nx) + Oy max(My) + Oy max(Mz) =

where F = bh = 0.08 - 0.04 = 0.0032 m?;
99



bh? _ 0.08 - 0.04?

— — - 3.

W, = — —— = 2133 107 m*

hb%  0.04-0.082 s
W, = — = = 42.67 x 10~ m3;

6 6

IN,| 40 -103

ox(Ne) = == = 575032 > MPa;

(M)—'MY|— 04 x 10° = 18.753 MPa;
Gxmari®y) =T T 2133 %106 “

(M,) = Mol __16Xx10° 37.497 MP
Txmaxi®a) = = o 67 x 106 @

Then

o4 = —a(Ny) + o(M,) + 6(M,) = —12.5 + 18.753 + 37.497 = 43.75 MPa;

op = —a(N,) —o(M,) + o(M,) = —12.5 — 18.753 + 37.497 = 6.244 MPa;
oc = —0(Ny) — (M) —a(M,) = —12,5 — 18.753 — 37.497 = —68.75 MPa;
op = —o(N,) + o(M,) — 6(M,) = —12.5 + 18.753 — 37.497 = —31.244 MPa.

o,, MPa 6.244

C I
\|\~\ \ B
o h O > 4375
| a4~ S~
/l)/ az

Fig. 3.48

Let us draw the neutral axis through the intersection points of the normal stresses
diagram with the cross-sectional plane (points £ and F). From Fig. 3.48, it is clear that
the force application point and the neutral axis lie on opposite sides of the centroid of the
cross-section.
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3. We analytically determine the neutral axis position, i.e., the intercepts cut by the
neutral axis on the y and z axes, using relations (3.48), and we compare them with the
intercepts obtained by the graphical method (Fig. 3.48):

i2 (2.309 x 1072)2

-z — —0.01333 m;
=Ty, 0.04 "
B i5 _ (1155x107%)% 0.01334
2= —001 "
where
,_bn?_008-004% o
Y12 12 T "
,_hp®_004-008° o
2= 92 T 12 T "
| [e2e7x108
YT FT | 00032 ¢ "
| _ [7067x10°®
2= |F T 0.0032 _ © -
Example 3.8

A crack appeared on the edge of a steel strip loaded with a tensile force (Fig. 3.49).
To prevent the crack from propagating, a fillet was milled out in its place. Determine the
amount by which the stress in the strip increased as a result. Neglect stress concentration.

Given: P = 40kN; b = 50 mm; / / p
t = 8 mm, a = 5 mm. N _77/ ..................................... ——
It is necessary to compare the maximum P =i
stresses acting in the original strip and the r| S
strip with the fillet. Fig. 3.49

Solution

In the cross-sections of the strip without the fillet, pure tension is realized. There-
fore, the normal stresses are uniformly distributed across the section and are determined
from the relation:

P 40 x 103 00 1P
O Tt T 50x103-8x10-3 -
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A A A
N In the section with the fillet, eccentric tension is realized.
Q S| That is, the axial force and the bending moment act:
o= N, =P,
< X b b—a a a
N .
) F Mszez{smce e=§— 5 =§}= 2°
® where e is the eccentricity of the force application (Fig. 3.50).
/
\ S In Fig. 3.50:
‘tZ ‘ O is the P-force application point;
- 0, is the centroid of the cross-section with the fillet.
Fig. 3.50

The maximum normal stress will act in the lower part of the cross-section with the
fillet:

P M, P P(a/2)-6 P 3a
Oxmax — 5 T+ = — + ——7 = — ( + — ) =
F W, tlb—a) tb—a)? tb-a) b—a
= 10 X 107 1+ 3:5x 1077 = 148.15 MP.
T 8x%x1073-(50 X 10~3 — 5 x 10-3) 50x 103—5x103) ~ = a.

The stress increased by the value:
Ox max — Ox _ 148.15—100

Ao, = .100 % = 48.15 %.
Ox oy 100 o o

Remark | If the same fillet is cut out symmetrically from the opposite side of the
strip, then central (axial) tension will occur in this section. Taking into
account the reduction in the cross-sectional area, we get:

P 40 x 103

_ _ — 125 MPa.
O Tt —2a) 8x10-3-(50x 103 —2-5x 10-3) “

Let us consider the distribution of normal stresses along the height of the section
with the fillet:

_P+My B P N Pa-12 _ P (1+ 6a )_
TFTL YT —ax 2tb—a)® T th-\  (b-a)3 )
=111.11 x 10°- (1 + 14.815 - 2) = 148.15 MPa = 74.07 MPa,
Z1 Z2
b—a 50x1073-5x1073 _
where z; = = =225-1073 m;
2 2
Z, = —z; = —22.5X 1073 m.
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The diagrams of the normal stress —
distribution along the height for the sec-  %4.---- 3! SO —— e
tion without the fillet and with the fillet E

are shown in Fig. 3.51. \100 \ 148.15

Example 3.9

Determine the cross-section dimension h of the clamp (Fig. 3.52) if the compression
force on the parts is P = 10 kN.

Given: P = 10 kN; a = 80 mm;
b =14 mm; [o] = 100 MPa.

It is necessary to determine h.

Solution

In the cross-section of the clamp, eccentric tension oc-
curs (Fig. 3.53), for which the strength condition has the

form:
N, M,
O-xmax_F+W<[])
y

where F = bh is the cross-sectional area; e

N, = P is the longitudinal force; i
M, = Pe = P(a + h/2) is the bending moment Pl z Ty Qu
relative to the y-axis; q h
W, = bh? /6 is the section modulus relative to the
y-axis. Fig. 3.53
Then

P(a+h/2)-6 P 6Pa 3P 4P , 6Pa
Oy max = — + S e < [a].
xmax = pp bh? bh bz bR bh T bRz =

After transformations, we obtain a quadratic equation with respect to h:

[6]bh? — 4Ph — 6Pa = 0.

Its solution is
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. —(—4P) £/ (4P)2 —4-[0] b (—6Pa) _ 40 x 103 N
- 2-[c]-b ~2-100x106-14 x 103 —

+\/(4-10X103)2+4-100X106-14X10‘3-6-10><103-80><10‘3
- 2-100 x 106-14 x 1073

_40><103i168>< 103

2.8 x 10°
From which we get:

=14.286 x 1073 + 60 x 1073,

h > 7456 x 1073 m.

Let us compare the contribution of bending and tension to the total stress:

h
p Pla+5):6
Ox max = Ox max(Nx) + 0y max(My) - E + ( bh22) =

74.56 x 1073
3. -3 .

+
14 x 1073 -74.56 x 1073 14 X 1073 - (74.56 X 1073)?
= 9.58 X 10° + 91.41 X 10°® = 99.99 MPa;

Oy max(Ny) _ 9.58 Oy max(My) 9041

= = 0.096; = = 0.904.
Ox max 99.99 ’ Ox max 99.99
Thus, 0, max (My) exceeds 0, g (N,) by a factor of 9.42.
Remark The contribution of tensile stresses from the action of the bending mo-

ment M,, can be reduced by decreasing the eccentricity e. In practice,

T or I-beam cross-sections are typically used, which shifts the cen-
troid of the section O closer to the P-force action line and places more
material in the region of tensile stresses, to which brittle materials are
more sensitive (Fig. 3.54).

A

Y
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Example 3.10
Construct the section core for a circular cross-section with diameter d (Fig. 3.55).

Solution

If the application point of the tensile or compressive stresses lies on the boundary
of the cross-section core, then the neutral axis touches the cross-section without inter-
secting it.

1
A
Assume that the neutral axis 1 —1 is .
tangent to the circle at point 4 and is parallel '%
to the z-axis (see Fig. 3.55). In this case, the - 4,705 < 4l =
intercepts cut by the neutral axis on the co- y = =
ordinate axes are: < Z
a, = —r = _4 a, = ® !
y 2 s Z ° Yz 1
Fig. 3.55

The coordinates of the tensile or compressive force application point are determined
by formulas (3.51):

y"(Al):yP:_a_y__Fay_ 64 md?

i2 1, nd44( 2>_§
- 8

iy nd44<)0
Zna) T 2P T a, Fa, 64 nd?\oco/

where F is the cross-sectional area;

iy, i, are the radii of gyration relative to the y and z-axes;

I, I, are the moments of inertia relative to the y and z-axes.

Thus, in order for the neutral axis to touch the cross-section at point 4, it is necessary
that the tensile or compressive force be applied at point A,{r/4; 0}.

Due to the symmetry of the cross-section with respect to any axes passing through
the geometric centre of the circle, it follows that for other positions of the neutral axis on
the circumference of diameter d, the points of the cross-section core form a concentric
circle with a diameter of d /4.

105



Example 3.11

Construct the section core for a rectangular cross-section with side dimensions
b x h (Fig. 3.56).

Solution
1., bbb i3
/86
2 By 2
H.J1. ad =7 We align the neutral axis with the
o] < 3' 1 =y side of the rectangle AB (position 1-1).
)7 ot Then, the intercepts cut by the neutral axis
> =Y on the coordinate axes are:
b
ay = E; a; =
4 A vZ D 4
b
1! 13
Fig. 3.56

According to equations (3.51), the coordinates of the corresponding point (1") of
the cross-section core are:

iz I,  hb’1 (2)_ b
Yoy =P = T T "Fa, 12bh\b) &
i2 I bh3 1 /1
= ———y=— Y = — ——) =
Zay = 2p = a, Fa, 12 bh (00> 0.

where F is the cross-sectional area;
iy, i, are the radii of gyration relative to the y and z-axes;
I, I, are the moments of inertia relative to the y and z-axes.

Now, let's align the neutral axis with the side BC (position 2- 2). Then, the inter-
cepts cut by the neutral axis on the coordinate axes are:

h
ay = 00; a, = _E’
and the coordinates of the corresponding point (2") of the cross-section core will have
the values:
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Yeh = VP =T T TFa, 12 bh

b

i; hb3 1 (1)
(00]

=z

iy Iy _bh31< 2) h
h

‘@) T =T T "Fa, 12 bh
In a similar way, determine the coordinates of points 3’ and 4’ corresponding to
neutral axis positions 3 — 3 and 4 — 4.

To construct the cross-section core, we use the following property of the neutral
axis: when the neutral axis is rotated about some fixed point on the cross-section contour,
the force application point moves along a straight line. In this case, when the neutral axis
is rotated about the fixed point B (dashed lines in Fig. 3.56), the P-force application point
moves along the straight line passing through points 1’ and 2’.

By connecting points 1’,2',3’, and 4" with straight lines, we get the contour of the
cross-section core in the form of a rhombus with diagonals equal to h/3 and b/3.

Therefore, in a rectangular cross-section under eccentric tension or compression,
the stress will be of a single sign if the force application point does not lie outside the
middle third of the section side.

Let us consider a special case of eccentric compression when one of the eccentrici-
ties is zero (zp = 0, yp = e). Show the diagrams of normal stress distribution for a rec-
tangular section with an eccentricity e that is zero, less than, equal to, and greater than
one-sixth of the section width (Fig. 3.57).

1” iJvf sz.P N
| i I |

|

|

i 2 !Q: !
e P P -0 R P
> F F F | F
£ i | F

h
2.
A

Q
@)
So=
o

iz i .
< \:\ N \:\ N \;\ S \I\
e=0 e<b/6 e=b/6 e>b/6
Fig. 3.57

From Fig. 3.57 it is evident that, for all positions of the force P, the stress at the
centroid (point 0) is the same and equal to P/F.
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Example 3.12

Construct the cross-section core of a Channel section No. 10 (Fig. 3.58).

Solution
I 13 :
I ! ! 1. From the steel section tables, let us
2 B! i C 2 write out all the geometric characteristics
e for channel section No. 10:
— 1 5
L i h=10X 1072 m;
T T i b=4.6x10"2m;
| iy =3.99 x 1072 m;
i, =1.37 x 1072 m;
. . Vo = 1.44 X 1072 m.
= j; i 2. We make a drawing of the channel
| section to scale.
i 3. We align the neutral axis with the
| side AB (position 1-1). Then we deter-
! mine the intercepts that the neutral axis
Yo 12 i cuts on the coordinate axes:
i ay =y, = 1.44 x 1072 m;
JEPNUIVN AN S R G a, = o,
4 A YZ b D 4 . )
According to expression (3.51), the

1! 13 coordinates of the corresponding point
[ | .
(1") of the cross-section core are:

Fig. 3.58
P2 —-2)2
i (1.37 x 107%) _
R e WV S T R —1.30 X 1072 m;
i (3.99 x 107%)?
-, = _Y_ —
Z(ll)—ZP——a—Z—— o —0,

where i, i, are the radii of gyration relative to the y and z-axes.

4. Now we align the neutral axis with the side BC (position 2- 2). We get the inter-
cepts that the neutral axis cuts on the coordinate axes:
h 10 x 1072

= . = —— = —:—5)(1_2
a o) a, > > 07 °m,
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and the corresponding point coordinates (2") of the section core will have the values:

i (137 x 107%)* _

y(zr)zypz——z— 0’
ay (00}
i2 (3.99 x 1072)2
y -2
eh T T T, —5x 1072 "

5. Now we align the neutral axis with the side CD (position 3- 3). Next, let us de-
termine the intercepts cut off by the neutral axis on the coordinate axes:

ay, =—(b—yp) =—(46x1072 — 144 x 1072) = —=3.16 x 107 ? m; a, = o,
and the corresponding point coordinates (3") of the section core will have the values:

i (137x107%)?
Y TP T T T T 316 % 1072

= 0.59 X 1072 m;

B @9x107?
(39 P a, 0 >

6. Now we align the neutral axis with the side DA (position 4-4). Then the inter-
cepts that the neutral axis cuts on the coordinate axes are:

h 100 x 1072

., = 0o: a, = —
8% 9 Z 2 2

and the corresponding point coordinates (4") of the section core will have the values:

=50 X 1072 m,

iz (137 x 107%)* _ 0

YahH =Yp = __ay = o ;
i2 (3.99 x 1072)?
— — Yy _ : — -2
z(4,)_zp_—az_— =% 102 = —3.18 x 1072 m.

By connecting points 1, 2’, 3" and 4’ with straight lines, we obtain the contour of
the section core, which is a quadrilateral that is asymmetrical with respect to the z-axis.

1. The position and shape of the cross-section core depend only on the

Remark
shape and dimensions of the cross-section, but not on the magnitude

of the applied force.

2. The neutral axis, when rolled along the cross-section contour, has
to avoid intersecting the section at any position (position 5-5 in Fig.

3.58 is unacceptable).
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4. SOLVING NONSTANDARD PROBLEMS

Example 4.1

Determine, according to the
maximum shear stress theory, which

i i :T vy of the stress states (Fig. 4.1, Cases A
| . 1 :\ ”O- 1 1 —
Pl = i <l-. A v 19 and B) is more dangerous if 0 = 7.
)_l _ il B oAt | Solution
Sl .4 Using the principle of superposi-
lo LO tion (principle of force action inde-
pendence), we reduce the given stress
Case A Case B state of the elements to the following
Fig. 4.1 forms:

Case A — to a triaxial stress state with the components of the principal normal
stresses (Fig. 4.2):

A 0,=T
¢ oy =T,
0, =T,
T
T O’ll 0-3 = —T.
(0} —
3 03=-T 01=T
_>T In doing so:
n _ _
. Opyg = 01 — O3 = 2T.
Fig. 4.2 eq s

Case B — to hydrostatic tension and pure shear (Fig. 4.3):
0L =T, 03 = —T.
Since no shear stresses arise on any of the cutting planes under hydrostatic ten-
sion, in this case as well:

Opg = 0y — 03 = 2T,




Thus, according to the maximum shear stress theory, stress states A and B are
equally critical.

Example 4.2
The stress state shown in Fig. 4.4 is supple- 60 MPa A 40 MPa
mented by a hydrostatic compression (stresses on the I
invisible faces are not shown). As a result, all the po-
tential strain energy is related only to the change in 15 MPa
shape. Determine the safety factor with respect to /
yielding stress of a,,,; = 240 MPa. Use the maxi-
mum shear stress theory.
Fig. 4.4
Solution
Since the element volume (Fig. 4.5) does not A
z 60-0
change, then T
oy +o0y,+0o,=—(15+0) -0+ (60—0)=0. — 40
Hence 15+0 F_o
—30 +45 = 0; yad —
o = 15 MPa. X
Then
o,y = =30 MPa; o0, = —15MPa; o, = 45 MPa. Fig. 4.5

Let us find the principal stresses:

o, + 0o O, — 0,2 —15+ 45 —15 — 45\2
01,2,3) = y2 Zi\/(yz Z) T T = > i\/( 5 ) + 402 =

=15+ 50;

01 = 65 MPa, O, = —30 MPa, O3 = —35 MPa.

The equivalent stress according to the maximum shear stress theory is
Opy = 03 — 03 = 65 — (—35) = 100 MPa.

Thus, the safety factor with respect to yielding stress is

_ O-yield _ 240 _
nyie,d = ?{II = m = 2.4.
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Example 4.3

A cantilever bar with a square cross-section of

K : side a and length [ is loaded by a moment M
a> v Z/mTT (Fig. 4.6). Which position of the moment M (angle
Ry ———2—7 p) is the most critical according to the strength con-
v B/ s dition? Use the maximum shear stress theory for the
solution.
o e |- ) Solution
M Let us decompose the moment M into its com-
ponents (Fig. 4.7):
Fig. 4.6 M, =Mcosfp wu M, = M sinp.

In the most critical point of the cross-section (A4), the following normal and shear
stresses act (see Fig. 4.7):

M, . a3 6M cos f
Gx(A) =Wy= Smce Wy =E =T;
M, M sin
= ————— = {sl Wiorsionat = 0.208a3} = ——.
T W cional {since torsional a’} 0.2084a3
The equivalent stress at point 4:
sl Ooq (a) = V02 + 472 =
7 _ 4 36 cos? B + 4 sin” §
” | =@ [3ocos P Ago0e
* { From the condition
)4 Msinf o1l
Mcos[j’/ %(‘” =0
Fig. 4.7 we obtain § = 0 and B = /2.
M
At B =0: oy (4) = 6
2M M
At ,8 =T[/2: O-(:E(A) =W=9615§

Thus, the most critical case according to the strength condition is pure torsion at

B =mn/2.
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Example 4.4

Based on the condition
of equally critical stress
states, compare the weights of
two bars (Fig. 4.8). Use the
maximum shear stress theory.

Given: moment M, ma-
terial of the bars is steel.

Fig. 4.8

Solution

The stress states at the critical points of the first and second bars are plane.
The equivalent stresses in the first bar are:

M \? M\*
O'elg(l) =+0?+ 412 = (W ) + 4 <W> :
n.ax. D

Considering that for a circular cross-section:

nd3
Whax. =

- W. =
32° P

B d?3
16 °

e

The equivalent stresses in the second bar are:

Oeqz) = VO° + 477 Z\/(

) o)
Wn.ax. I/Vtorsion .

Considering that for a square cross-section:

a3
Whax. =

From the condition of equally critical stress states o, (1) =

M
14405 — =

d3

?a Vl/torsional -

q (2

m I
eq

Then the weight of the bar with circular cross-section amounts to

M
11.334— = a=0.923d.
a
ndt 92
4-(0.923d)2

of the weight of the bar with square cross-section.
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M
we get alg(l) = 14.405§.

M
0.208a%, we obtain apn ) = 11334 .

(2)» We obtain




Example 4.5

A cranked bar is loaded with a rectangu-

A P lar distributed load g and a concentrated force

| X P (Fig. 4.9). The values of g, the lengths of

@T yé L z | 9 the segments Iy, I, = 31;, and the diameters

11 | % 4 I of the cross-sections di, d, = d;V19 are
at known.

Determine the magnitude of the force P,

if the maximum equivalent stresses (accord-

Fig. 4.9 ing to the maximum shear stress theory) are
equal in the segments of the cranked bar.

Solution

At the end of the first segment, the maximum bending moment arises from the
action of the distributed load

ql
Mé max — T

The normal stresses acting in this cross-section are
émax T[d% _ ql% ) 32 _ 16 - ql%
32 2 nd3 nd3

Omax] = —o—
max Wnl.ax.
At the second segment, there is a combined action of the bending moments M,,,

= {taking into account W/, =

M, and the torsional moment M,,. At the end of the second segment:

qli
Mbending max — \/szz max T MZmax = \/(qlllz)z + (Pl,)%; M, = T;

2
qli
Mnllgvign max — \/szendingmax + M,% = \/(3 . ql%)z t (3 . Pll)z + <71> .

The equivalent stresses acting in this cross-section:

111
__ design max

Omax11 = Ueq | g
Wi
n.ax.

> Y19)° -3
where Wil = T[dZ — T[(dl 19) _ 19 T[dl
n.ax. 372 37 32 )

Using the condition of the problem 6,4, ; = Gmax 11, after substitution and trans-
formation, we obtain
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Example 4.6

Determine the magnitude of force P for
which the neutral axis in the bar cross-section
at the fixed-end will coincide with the diagonal
of the rectangular section b X h (Fig. 4.10).

Solution

The position of the neutral axis under oblique bending is determined by the for-
mula

I, o M, I, M,
tgp = —I—tga = {taking into account that tga = —¢ = ————.

z My

The bending moments in the support cross-section of the bar
q(3a)>  9qa*
2 2
The axial inertia moments of the rectangular cross-section OceBbie MOMEHTHI
WHEPIMH MPIMOYTOJILHOTO CEUCHHUS
bhg. hb3
I, = 17 I, = 17
According to the problem statement, the inclination angle of the neutral axis must
coincide with the diagonal of the rectangular cross-section, i.e.:

h
tg =E.

M, = — M, = 4Pa.

We equate the tangents of the neutral axis and rectangle's diagonal inclination
angles. After substituting the expressions for the bending moments and moments of
inertia, we get:
bh® 12 4Pa-2 .

12 hb3® 9qa?’
h h* 8P

b~ b? 9qa

h
b

Finally
9bqa
~ 8h
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Example 4.7

©r o rf

K At what 1 =b/a value will the
o\ maximum normal stress in the first bar
! : become greater than in the second one
, Py | Y (Fig. 4.11)? Neglect stress concentra-
Q‘ / Q‘ V/{/ % tion.
a a
Fig. 4.11

Solution

The first bar is subjected to eccentric tension, while the second bar is under central
(pure) tension.

In the weakened cross-section of the first bar, the force P is applied not at the
centroid of the section, and therefore creates a bending moment My, 4;,, = P b/2.

We write the expressions for determining the maximum normal stresses for the
first and second bars, considering that b = Aa:

P My, ai P Pb-6
1 _ bending
Omax = 0(P) + O-(Mbending) T r@ + Wi ax. N (a—b)h + 2 -h(a — b)?

_P( 1 N 31 )
T ah\1-21 (1-12/)°

P P P 1
a,(,fgx =o(P) = ( )

F@ ~ (a—2b)h  ah\1-24
: COIN ¢)
Let us consider the extreme case 0,5, = Oy, then
1 3 1

-2 aQ-M2 1-21
A-2DA-2)+321-20)-(1-D)?=0;
—5A2 +21=0.
The solution of this quadratic equation will be
A,=0 and A, =2/5=04.

The zero root is not admissible for physical reasons; therefore, at the ratio
A= b/a = 2/5 the maximum normal stress in the first bar becomes greater than in the

second (a,(,}gx = a,(nzc)lx).
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Example 4.8

N
=
Determine at what k value the nor- . X
mal stress ratio on sections 1 and 2 will < < AV p —
be the greatest (Fig. 4.12). Neglect stress = : W
concentration. s M Y
\2 vz

Solution
The normal stresses in the thin part of the bar is

P
1 _
Omax = E
The maximum normal stresses in the thickened part of the bar is

,@ _ P P-0Sh(k=1) P P-05h(k—-1)-6_

max - bkh |4 bkh * b(kh)?
_ P 1+3(k—1) _ P 4k-3
~ bh\k k* ) bh k%
The ratio of the maximum normal stresses in segments 2 and 1 is
(2)
Omax 4k —3

max

To determine the extreme k value, we take the derivative of the function f(k) and
set it equal to zero:

df k) _ o
dk '
After transformation, we obtain a quadratic equation:
—4k* + 6k = 0.
The solutions of this quadratic equation will be
3
k1:0 nu k2=§:15

The zero root is not suitable for physical reasons, therefore, at the ratio of k = 3 /2
the maximum normal stress ratio on sections 2 and 1 will be the greatest:

3

4:5-3 12 4

finax(k2) =T 32 "9 3
2
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Example 4.9

How many times will the maximum stress increase in a square cross-section bar,
fixed at one end and subjected to a tensile force P applied at the other end along its
longitudinal axis, if the force, while remaining parallel to itself, moves: a) to the square
side's midpoint and b) to the square corner's vertex? The self-weight is neglected.

Solution

Under axial tension, the normal stress in any point of the cross-section is
P
o = ; )
where a is the square cross-section side length.

In a square, all centroidal axes are principal axes; therefore:

a4-

When the force P is applied at the square side midpoint, the maximum normal
stress 1is:

I

p P

Omax (a) = ? +

N Q

_ P 3P 4P

- +
2 a? a? a?’

at
12
Then

Omax (a) _ 4P a_Z _

o a* P "
that is, when the force is applied at the side midpoint of the square cross-section, the
maximum normal stresses increase in 4 times.

When the force P is applied at the square corner point, the maximum normal stress
1s:

a a

p P53 a P55 qa P 3P 3P 7P

Imax ) =TT Pt e T e e T
12 12

Then

that is, when the force is applied at the vertex of the square cross-section, the maximum
normal stresses increase in 7 times.
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Example 4.10

For the bar shown in Fig. 4.13, determine and show the A P,
neutral surface (layer) position, if the weight of the bar is Q P, /7
and the magnitudes of the forcesare P, = Q/2 and P, = Q/24. >7 7
/)
Solution !
h

In an arbitrary cross-section of the bar (Fig. 4.14) at a dis-
tance x, the following internal force and moment will act

_, @x_Q Qx Q. x\ .
Ne=P- =g e =2 (17 5) v
b Q b Q@ Q X

Fig. 4.13

4b
>

The normal stress at any arbitrary cross-section point is

1 -
3b *

p—2
6

“=?+3 ~ 2bh

4 hb3

N, M, Q( x)Q12( x)

At the neutral axis in an arbitrary section o = 0, then

2 (1254 22 (h-2) 0 =0,

2bh 3b/  hb3 6
After transformations we obtain
(3b —x)
me=—'@gj5-

To construct the neutral surface in the bar, we deter-
mine the position of the neutral axis in several cross-sec-
tions along the height of the bar (see Fig. 4.14):

=

b
at x=0 Z=—§;
2b
x=0>b Z_—?;
bo
x =2b Z=—Z,

0
b .
x =4b z=. Fig. 4.14
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Example 4.11

The wooden beam of a rectangular cross-section with the length [ = 2.4 m
(Fig. 4.15) is simply supported at its ends and loaded at mid-span with a concentrated
force P. Strain gauges A and B with a 20 mm base and a magnification of 1000 times
were installed in the beam critical section. They recorded the following reading
changes: 4 —a 9 mm decrease, B — a 6 mm increase. Determine the magnitude and the
direction (angle «) of the applied force P, as well as the value of the maximum normal
stress in the beam, if b = 120 mm, h = 200 mm and the modulus of longitudinal elas-
ticity of wood is E = 1 X 10* MPa.

Fig. 4.15

Solution

We decompose the force P
into its components and construct
the bending moment diagrams
(Fig. 4.16):

P,=Pcosa;

Py = Psina.
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In the critical section, the internal moments are

P, | Plcosa
My:Mymax:? EZ 4 )
P Plsina
MzzMzmaxz_? EZ_ 4

At A and B gauges, a uniaxial stress state is realized (Fig. 4.17). At these points
stresses are

Plcosa 6 _3 Plcosa.
4 Dbhz 2  bhz °

|M| Plsina 6 3 Plsina
4  hbZ 2  hb?

|O-A| = O-Amax( ) =

Op = 0Op max( )

o.(M,)

According to Hooke’s law for a uniaxial
stress state:

Ay
= |E = |E——
|UA| | 5A| | AK

Ag
O-B — ESB — EBO_K
where Ay, Ap are the strain gauge reading
changes;

Ay, By are the strain gauge bases;
K is the magnification factor of the strain
gauges.

Fig. 4.17
We equate the normal stress values at points 4 and B, respectively:
3 Plcosa Ay
2 e~ Eax @1
3 Pl sina Ag
S TR EBO—K. (4.2)

We divide (4.2) by (4.1). After transformations, we get:

- <A3b>_ L (6X107F 015\
e A\, n) T % ox108 02 ) T 0

From (4.1) we obtain
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_ME - 2bR? 9x107%-2x 10 2-0.15-0.22
T AoK 3l-cosp  20x1073-1000 3-2.4-cos26.57°

P = 8.4 kN.

The maximum stresses in the critical cross-section act at points € and D. For point
C we obtain

Oc = Omax = O-(My max) + G(Mz max) =

3 Plcosa 3 Plsina 3Pl /cosa sina

2 bRz T2 hpe :2bh< R b )z
3-8.4 % 103 - 2.4 /c0526.57° sin 26.57°

~ 7 2:02-015 ( 02 0415

At point D the stress differs only by sign.

) = 7.51 MPa.

Example 4.12
In a rectangular cross-section of a bar, normal stresses
) o, arise from the action of internal forces N, M,, and M,
N (Fig. 4.18). The known values of normal stresses in three
= M I points are o, ; = 9 MPa, o,, = 6 MPa, 0,5 = 12 MPa.
113 The points coordinates are: y; =3 cm, z; = 3cm,
Y, = 3cm, Zy = —3 cm,y3 = —3 cm, z3 = 3 cm.
Iz Determine the magnitudes of the internal forces and
b moments as well as the neutral axis position, if b = 12 cm,
= g h = 24 cm.
Fig. 4.18
Solution

The normal stress at an arbitrary point of the cross-section is:
N, M,z M,-

M Myrz M y ,
F L, I,

Ox

where N, M,,, M, are the axial force and bending moments acting in the section;
v, z are the coordinates of an arbitrary point;
F 1s the area of the cross-section;

I, I, are the axial moments of inertia of the cross-section relative to the y
and z-axes.
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We calculate the geometric characteristics of the rectangular section:
F =bh=0.12-0.24 = 2.88 x 1072 cm?,
bh3 _ 0.1z 0.243

_ -1 % 10~% em?-
L, 17 17 1.3824 x 10™* cm*;
. hb3 _0.24- 0.123 03456 x 10~ e
2 =157 = 17 = 0. cm”™.
We write a system of three linear equations:
( N, M,-3x107% M,-3x 1072
9 x 10° = — + — + i
2.88x 1072  1.3824 x10~*  0.3456 x 10~
N M, (=3x1072) M,-3x 1072
< 6 X 106 — X — + y ( — ) + zZ - ,
2.88 X 1072 1.3824 x 104 0.3456 x 1074
N M,-3x107% M, (-3 %1072
(12 x 106 = x4 7 — + 2 ( _).
2.88x 1072  1.3824 x 104 0.3456 x 10~4

A
Solving the system, we obtain the mag- S "
. . g *© >
nitudes of the internal forces and indicate = <
their direction (Fig. 4.19): | /
N, = 0.2592 kN; y _0.18m //,'

M, = 0.6912 X 1072 kN'm; y
M, = —0.1728 x 1072 kN-m. p
z %/z

Fig. 4.19

We write the neutral axis equation:

02592 06912x107  —01728x 107
288x 102  13824x10-*> " 03456 x 10-* °

After simplifications we get:
9+50-z—-50-y=0;
50-z=50-y—-09;

= 0.

z=y—0.18.
The neutral axis position is shown in Fig. 4.19.
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Example 4.13

It is known that at point K, the linear strain
at a 45° angle to the generator of a circular
cross-section bar is zero (s,’f1 = 0) (Fig. 4.20).
The diameter of the bar is d = 200 mm, the ap-
plied torque is M,, = 5 kN-m, and the Poisson’s
ratio of the bar material is u = 0.25.

Determine the maximum normal (princi-
pal) stress Gy,

Solution

In any cross-section of the bar, a pure bending with tension and torsion is realized
(Fig. 4.21, a).

The stress state at point K on the x, y, and z planes is

| | M, 16M, @3)
T=|—-T1T =T = — = ; .
XZ zX Vl/p n_dg
_ |_P Pd_|4P 32Pd_12P‘ 44
O E T w, 2l T ra? T wa® 2l T ma? #4)
gy, = a, = 0.
Xy
sz °
—_— 45
O-X K T)»Z
* o X
TXZ *
0. (M) T,
.
a b
Fig. 4.21
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Let us determine the normal stresses on mutually perpendicular planes x; and z;,
rotated relative to the y and z-axes by the angle @ = 45° with respect to the x-axis, as
shown in Fig. 4.21, b:

o
Oy, =O'xCOSZ(l-I-O'ZSII’IZ(X+TSII’12(X=§+T;

gy, = Oy = 0;
o

0,, = 0y sin®a + g, cos®* @ — 7sin2a = ST
According to Hooke’s law, the linear strain at point K in the x; -axis direction is
1 1 o
K
e = —[le — ,u(ayl + aZl)] = E[(l — ‘H)E_ (1+ ,u)r] :

X1 E

By the problem statement, e,(clf) = 0. Hence

1-u
T = 2(1—+M)6'
Taking into account (4.3) and (4.4):
16M, 1—u 12P
nd3 21+ ) wd?

From this, we get:

8 (1+u) M. 8 (14025 5x10% 1000 x 103
p8.0+mw M 8 ( ) = = 111.11 kN,

"3 (1-w d 3 (1-025 02 9
Now we determine the greatest normal stress, i.e. the maximum principal stress,
which will occur at point B of the bar (see the stress diagrams in Fig. 4.21, a). On the
x and z planes the following stresses act:

( P P d 4P 32P d 20P
Ox =45 t+t—'c=—F+—"5=—"F,
F W, 2 nd? mnd® 2 mnd?
10, =0, =0;
M, 16M,
kTXZ_Wp_nd3'

The maximum normal (principal) stress is:
oc+o, 1 10P 1 [[20P\° 16M,\*
Omax ==+ O 0% + 4T, = Wﬁﬂm) #4(Tg) -

_ 1011111 x10° 1102011111 x103\"  (16-5x 103" _ o
= - 0.22 2 - 0.22 m-0.23 S “

125



Example 4.14

The beam material (Fig. 4.22) is concrete, characterized by different ultimate ten-
sile (O’ultt = 0'0) and compressive (auhc = 50’0) strengths. The beam span length is [,
the cross-section is an isosceles triangle with height h and base b, and the safety factor
for concrete is n,,. It is required to determine the optimal initial prestress of the rein-
forcement located along the centroidal axis of the cross-section, i.e. such prestress N
that the bending capacity of the beam is maximized (P = P, ,). What is the value of
Prax?

P
y ; _
A
o
=
N, Ny “
[EEZ—Z—:—:—E Rttt Bttt It R ettt Z—:—I—ZE] - A ?][-
; Ev
’ 2 /2 707 b2 | b/2
> -~ >
Fig. 4.22
Solution
The beam is subjected to bending with compression.
N, P N,
> 7€ In the beam critical section
2 12 12 s (Fig. 4.23) at midspan, two inter-
nal loads will act:
Nit | ‘ x — initial prestress of the rein-
é forcement
]
| | Ny = —Ny;
My i /W X — and bending moment
' \\\\‘\\ ,/””’ M . P l . Pl
Pl/4 Y22 4
Fig. 4.23

We determine the optimal value of the initial reinforcement prestress N, by en-
suring the beam’s most tensioned (A) and most compressed (B) points are equally
strong (the equal strength condition):
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= lgl, = —
Emax lol; Ny My
Oyt 5O-O
] = ol = 2o =22,
ult ult

where n,,;, is the concrete safety factor.

The maximum tensile stresses act at point 4, and the maximum compressive
stresses act at point B (Fig. 4.24):

o= =My L, N PR No
R F 121, F’
M 2 N Pl 2 Ny| Plh N,
01 = el = [ 12 (-58) + 2| = |30 - = o+
¢ I, 3 F 41, 3 F 6l, F
b | bh3 P bh
where =—; =—.
Y 36" 2
o, (N o,(M
Then, we can rewrite the equal B, X(._x)_\ -0
strength condition as: - D 1 6P
= — .2
Pmaxl 1h NO _ 0o . “ b% g ol
41, 3 F ny’ ek —
<| pam
Pracl 2, No _ 50y AN, s
4, 37 F  mny b | bk bh'

After substituting /,, and F, we obtain:

3l p ZN _ 0g
bhz max F 0 — nult s
6l 2 50,

Pax + = .
bhz max F 0 nult

As a result of solving the linear equations system, we get:

_ 0y bh

° Ny 2

_ 0, 2bR?
max nuh 31 .
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Example 4.15

® ‘ p A short column made of an /-beam No. 20,
centrally loaded with a force P = 200 iN

(Fig. 4.25, a), 1s “reinforced” by a channel
No. 10, welded to the column along its entire
length (see Fig. 4.25, b). What was the maximum
compressive stress in the I-beam column and in
the column “reinforced” by the channel?

4 7

@ |p
> _
L_f No. 16:L_f Solution

From the steel section tables, we write down
the necessary geometric characteristics of the

Fig. 4.25
‘g rolled sections for the subsequent calculation:

I-beam No. 20:  h; =20 X 1072 m; F; = 26.8 x 10™* m?;
I,, = 1840 x 1078 m*;

Channel No. 10:  y, = 1.44 X 1072 m; F, = 10.9 X 10™* m?;
I,, =204 %1078 m",

In the first case, pure axial compression is realized, where the normal stress is:

P 200 x 103

o

In the second case, it is eccentric compression. Then, the maximum normal
stresses occur at the points on the right face of the column:

P M,
Omax (A) :F'l' i "YV(4)-
z

In this expression,
F is the area of the compound section:
F=F +F,=268x10"*4+109 x 107* =37.7 x 10~* m*;

M, is the bending moment relative to the z-axis, caused by the eccentricity of the ap-
plied force P:
M, =Py
I, is the inertia moment of the compound section relative to the z-axis;

Y(a) 18 the coordinate of point 4 in the in the system of centroidal axes y0z of com-
pound cross-section.
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We find the coordinates of the com- ~ —— 121

pound section centroid (Fig. 4.26). Since 0, \ /
the y-axis is the axis of symmetry of the 1 7. | y
compound section, the centroid lies on this 21( / <> J&
axis (z, = 0). We find the second coordi-
nate of the centroid: > -

n

Z ;" 0-F + <— (% + yo)) F,

i=

1
Ye =" F, + F,
=1

>

l

_ (20 X 1072
2
26.8 x 10~* +10.9 x 10~*

—1247x107* 2508 10-2 .
T T377x10% i

Let us determine the compound section inertia moment relative to the central z-axis:
2

hy
IZ=1§1)+IZ(2)=121+y§-F1+122+(7+yo—yc> F, =

= 1840 x 1078 + (3.308 x 1072)2-26.8 x 10™* +

(20 X 1072

+ 1.44 X 10_2) -10.9 x 10~*

2
+20.4 x 1078 + +1.44 x 1072 — 3.308 x 10—2) +10.9 x 107* =

= 2133.269 x 1078 4+ 741.211 x 1078 = 2874.48 x 1078 m*.
Hence, the expression for determining the maximum normal stresses can be re-
written:
Omax (A) :F"l' I, C(?"'.Vc) =

200 x10? s 200 x 103-3.308 x 1072 /20 x 10~2
" 37.7%x107% 2874.48 x 108 2

+ 3.308 x 10—2> =

= 53.05 X 10® + 30.63 x 10° = 83.68 MPa.

Thus, the "reinforcement" of the column led to a 12.13% increase in the maximum
normal stresses.
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Example 4.16

P, — P, g A variable cross-section bar is
B B loaded with tensile forces P
‘PT‘ """"""" ‘? ") (Fig. 4.27). Determine the magnitude
: of forces Py, applied at points B, so that
_I’I - d .| the normal stress distribution is uni-
form in the bar critical section.
Fig. 4.27

Will the load-bearing capacity of the bar increase in this case, and by how much?
Neglect the stress concentration.

Solution

We find the force P; from the equality condi-
tion of normal stresses at the lower point (4) of
y the weakened cross-section under the moments
vy AN 4 caused by the forces P and P; relative to the sec-
z¥ tion centroid (Fig. 4.28):

Ox (My(P)) = Oy (My(Pl))-

d/2
Q

Fig. 4.28

Then
My(P) _ My(Pl)
Wy Wy o~

where M,,(P) = Pz,; M,,(P;) = P,zp are the bending moments caused by forces P
and P;;

Zy =z, =2d/3m = 0.2122d; zz = d/2 — z, = 0.2878d are the coordinates
of the forces P and P; application points relative to the section centroid;

F is the cross-sectional area;

W, = 0.0239d3; Wy = 0.0324d3 are the section moduli of the semicircular
cross-section relative to the y-axis for the upper (point B) and lower (point A)
fibers.

Let us substitute into the normal stress equality condition:

P-0.2122d P, -0.2878d

0.0324d3 ~  0.0324d3
and after transformations, we get:
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P, = 0.7373 - P.

According to the calculation scheme (Fig. 4.29), in the first loading case, the
maximum stress in the critical cross-section will be at the bottom fibers:
P PZA
951131ax = 0,(N,) + O_xmax( ) = - T
_P-8+P-0.2122d P
~ md?  0.0324d3

M, (P) M, (P)

P
(2 547 + 6.549) = 9.096 — 7z

Ox (Nx) O (AJ)’) Oy (N x) * 0y (Aly)

- = —
P S P g E
4__._.. ......... 'E_._._>_>_
G E ; o

O-X max

Fig. 4.29

In the second loading variant (Fig. 4.30), with P; = 0.7373 - P, the maximum
stresses will be at any point of the weakened cross-section, since the normal stresses
due to the bending moments will compensate each other (the bending moments are not
shown in Fig. 4.30):

@ _P+P (P+0.7373:P)-8 P

Ox max = o —_ = ﬁ‘l A424.

a,(N,) o, (M,(P))  0,(M,(P))

) e F
P.+P ~ P+P
i I~ K==
N“i ‘ X & o
O-xmax
Fig. 4.30

In the second loading variant, the maximum normal stress in the critical cross-
section decreases in 2.056 times compared to the first case: Ilpu BTOpoM Bapuante
Harpy>keHus HanboJblliee HOpMAIbHOE HANPSHKEHUE B OMMACHOM CEUYCHUW YMEHBIIa-
ercs B 2,056 pasza no CpaBHEHUIO C MIEPBBIM BAPUAHTOM.

(1)
9.096
Ox max
= = 2.056.
(2) 4424
Ox max
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AN e

10.
11.

12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

QUESTIONS FOR SELF-CHECK

What is a limiting stress state?

What are the strength theories, and for what purpose are they applied?

Which stress states at a point are called equally critical?

What is the equivalent stress?

What is the purpose of strength hypotheses (theories of limiting stress states)?
How is the theory of maximum normal stresses (the first strength theory) formu-
lated, and what is its strength condition?

How is the theory of maximum linear strains (the second strength theory) formu-
lated, and what is its strength condition?

How is the theory of maximum shear stresses (the third strength theory) formu-
lated, and what s its strength condition?

How is the energy theory of strength (the fourth strength theory) formulated, and
what is its strength condition?

What is Mohr’s strength theory?

Write down the strength conditions according to the third and fourth strength the-
ories for a special case of a plane stress state.

What are diagrams? Present the basic rules of their construction and the sign con-
ventions when constructing diagrams.

What is a planar cranked bar with out-of-plane loading?

What is combined loading of a bar?

Formulate the principles upon which the analysis of bars under combined loading
1s based.

Which points of a rectangular cross-section will be potentially critical, and what
stress state arises at these points under the combined action of bending with tor-
sion and tension?

Write the strength conditions for the critical points of a bar with a rectangular
cross-section under bending with torsion and tension.

What is the procedure for selecting the dimensions of a bar with a rectangular
cross-section under combined loading?

Which points of a circular cross-section are critical, and what stress state arises at
these points under the combined action of bending with torsion?

Write the strength conditions for the critical points of a bar with a circular cross-
section under the combined action of bending and torsion.

What is the procedure for selecting the diameter of a bar with a circular cross-
section under the combined action of bending with torsion and tension
(compression)?
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22.

23.

24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.

35.

36.

37.

38.

39.

40.

4].

42.

43.

How do you find the value of the design (equivalent) moment according to the
third and fourth strength theories for bending with torsion of a bar with a circular
cross-section?

Which point of a circular cross-section will be critical under the combined action
of bending with torsion and tension (compression)? Write the strength conditions
for this point.

Why are the shear stresses from the action of transverse (shear) forces usually not
taken into account in the analysis of bars for bending with torsion?

What is oblique bending?

What is called pure oblique bending and transverse oblique bending?

For which cross-sectional shapes of bars is oblique bending not possible?

To what resultants do the internal loads lead under oblique bending

How do you determine the neutral axis position under oblique bending?

Does the neutral axis pass through the centroid of the section under oblique
bending?

How do you determine the critical points in a cross-section under oblique
bending?

What is the procedure of bar analysing under oblique bending?

What kind of combined loading is called eccentric tension-compression?

What types of stresses arise in a bar subjected to eccentric tensile or compressive
loading?

What formulas are used to determine the normal stresses in the cross-sections of
a bar under eccentric tension and compression? What kind of diagram do these
stresses have?

How do you determine the neutral axis position under eccentric tension-compres-
sion?

How does the neutral axis move when the coordinates of the external force appli-
cation point change under eccentric tension-compression?

How do you determine the position of the most critical point of a bar cross-section
under eccentric tension-compression?

What is the core of a cross-section?

How is the core of a cross-section constructed?

What is the neutral axis position when the pressure center lies on the contour of
the cross-section core?

What will the stresses be at all points of the cross-section if it is known that the
tensile force lies inside the core of a cross-section?

Can compressive stresses arise at points of the cross-section under eccentric
tension?
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PROCEDURE AND EXAMPLE OF PERFORMING

THE HOME ASSIGNMENT

Objective. To perform a strength analysis of a cranked bar subjected to combined ac-

tion of bending and torsion.

1. Draw to scale the analytical scheme of the cranked bar with the given loads.

2. Divide the cranked bar into segments.

3. In arbitrary cross-sections of each segment at a distance x from its beginning, place

a coordinate system so that the x-axis coincides with the longitudinal axis of the bar,

the z-axis is directed downward, and the horizontal y-axis together with the first two
axes forms a right-handed orthogonal basis.

Remark

To obtain a formally ordered sign system for the internal forces and
moments on all segments, it is recommended to construct the coordi-
nate system of segment II by a simple translation, i.e. by rotating the
coordinate system of segment I by 90° about the z-axis, and so on.

4. Using the method of sections, write expressions for all internal forces and moments
in arbitrary cross-sections within each segment, following the adopted sign conven-

tions.

5. Construct (draw) the internal forces and moments diagrams.

Remarks

When constructing the internal forces and moments diagrams for a
cranked bar, keep in mind:

a) The N, and M, diagrams can be drawn in any plane.;

0) The diagrams of Q,, @y, M,,, and M, must be drawn only in their
respective planes of action;

B) The diagrams of bending moments M, and M, must be con-
structed on the tensioned fibers.

6. Verify the correctness of the constructed diagrams (equilibrium at the nodal

points).

7. Determine the critical cross-section.

Remark

If the position of the critical cross-section is not evident from the dia-
grams, all potentially critical cross-sections must be considered in the
strength analysis.
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8. Select a rectangular cross-section (k = h/b is prescribed by the instructor). Perform
the analysis for all potentially critical points of the critical cross-section. Apply the
maximum shear stress hypothesis (the third strength theory). Construct diagrams of
the normal and shear stresses distributions in the critical cross-section of the consid-
ered bar element due to the action of the axial force N,., torsional moment M,., and
bending moments M,, and M,. Identify the truly critical point. At all potentially crit-
ical points determine and show the stress state. Construct the combined diagram of
normal stresses and indicate the position of the cross-section neutral axis.

Remark If M, > M,, the cross-section should be oriented horizontally; if;
M, > M,, it should be oriented vertically, so that the greater bending

moment is opposed by the greater bending stiffness of the cross-sec-
tion (ensuring strength with smaller cross-section dimensions and, ac-
cordingly, reduced bar weight).

9. Select a circular cross-section. Apply the maximum shear stress hypothesis (the third
strength theory) and the strain energy hypothesis (the fourth strength theory). Show
the stress state at the critical point.

Remarks 1. The strength analysis is performed taking into account normal
stresses from bending and axial force (if present in the considered
cross-section), and shear stresses from torsion. Shear stresses due
to transverse (shear) forces are neglected.

2. If there is an axial force, first-approximation selection of section
dimensions is performed neglecting this axial force. After calcu-
lating section dimensions, determine the actual design stresses in
the critical cross-section. If this stress exceeds allowable stress by
more than 5%, increase section dimensions so that the overload
does not exceed 5%;

3. For material, assume [o] = 160 ... 240 MPa, coefficients a and y

for ratio k = h/b are given in the appendix.

10. Compare the weight of the rectangular and circular cross-sections.
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Example

Construct diagrams of internal forces and moments for the given cranked bar. For
the critical cross-section, determine the dimensions h and b of the rectangular cross-
section and the diameter d of the circular cross-section (Fig. 1).

Given: P =2 kN, q =5 kN/m; a =2 m;
b=05m; c=2m; d=0.5m;
l =1m; [o] = 180 MPa;

1 ! k=h/b=15; a=0231; y=0.859.
A
_P/ It is necessary to construct the Ny, Q,, Qy, My,
M, , and M, diagrams, and to determine the di-
mensions of the rectangular and the diameter
Fig. 1 of the circular cross-sections.
Solution

1. We draw to scale the analytical scheme of the cranked bar with the given loads.
In arbitrary cross-sections of each segment at a distance x from its beginning, place the
coordinate system xyz so that the x-axis coincides with the longitudinal axis of the bar,
the z-axis is directed downward, and the horizontal y-axis together with the first two
forms a right-handed orthogonal basis (Fig. 2).




2. Using the method of sections, we write expressions for all internal forces and
moments in arbitrary cross-sections within each segment, following the adopted sign

conventions.
SegmentI (0 < x <a, a=2m).

Ny = 0;

QL =qx = 5x | =0 | =10 kN;
x=0 x=a=2m
Qy=0;
My = 0;
2 2

qx 5x

MI = — = — = O =
Y 2 2 x=0 x=a=2m

M. =0

Segment II1 (0 < x < b, b =0.5m).

We will construct a separate analytical scheme, replacing the distributed load act-
ing within the first section with its resultant force (Fig. 3).

Fig. 3
N = 0;
I'=qga=5-2=10kN;
y =0;
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MU= ga =522 2 10 kvm:
x 2 2 ’
M} =—qax=-5-2-x =0 = —5 kN-m;
x=0 x=b=0.5 m
Ml =o0.
Segment III (0 < x <c, c=2m).
NI = 0;
= ga=5-2=10kN;
ol =o:
MIT=qab=5-2-0.5=5kNm;
MU — g_ _5.2.5_5.2. =10 kN- - — -
y =qa qax = x = N-m = —10 kN'm;
2 2 x=0 xX=c=2m
M = 0.
SegmentIV (0 <x <d, d =0.5m).
Ni” = 0;
2 =0;
Q) = —P = =2kN;
My" = 0;
My = 0;
MY =-Px=-2-x | =0 | = —1 kNm.
x=0 x=d=0.5m
SegmentV(0<x <1 [=1m).
NY = —P = —2N;
QY =qa=5-2=10kN;
Qy =0;
v a 2
MY = —qa(c—z) = —5-2-(2—5) = —10 kNm;
My =—qa(b+x)=5-2-(0.5+x) = —5kNm = —15 kN'm;
x=0 x=l=1m

MY =—-Pd =-2-0.5=—1kNm.
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3. Let us construct the internal forces and moments diagrams (Fig. 4).

10

N,, kN M., kN-m
;
5
2 %; y
-10
10

/

d

.|_
Y/
Qz’ kN v MV’ kN’m
-15
10 10
@
Q., kN M., kN-m
-1
) )

=

The diagrams of N, @, and M, are drawn to a larger scale.

-2
Fig. 4

4. We check the correctness of the constructed diagrams.

To do this, we isolate infinitesimal elements of the cranked bar at the joints of its
parts (nodes A, B, and C) and examine their equilibrium under the action of internal
and external loads applied within these nodes (Fig. 5).
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1o (e s 10

Fig. 5
Equilibrium equations for node A4:
>P. =0; YB, =0; >P,=10—-10 = 0;
XM, =10-10 = 0; XM, =0; XM, =0.
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Equilibrium equations for node B:

>P. =0; YPB, =0; >P,=10—-10 = 0;

XM, =10-10=0; XM, =5-5=0; 2.M, =0.
Equilibrium equations for node C:

Y2P=2-2=0; X P, =0; Y.P,=10-10=0;

XM, =10-10 = 0; XM, =5-5=0; XM,=1-1=0.

5. Let us identify the critical cross-section.

From the analysis of the diagrams (Fig. 4) it follows that the most critical cross-
section is at the fixed support, where the following internal forces and moments act:

N, =—2kN, M,=—10kNm; M, =—15kNm; M,=—1kNm.

6. We determine the dimensions of the rectangular cross-section.

Since M,, > M,, we orient the section vertically to ensure the section's strength

with smaller dimensions.
The section with the applied internal

forces and moments is shown in Fig. 6. /
The internal forces and moments are ap- D 7t

plied in accordance with the adopted sign
O

conventions:
: D
tension of the upper fibers and compres- 4 ¢ /(]\4
sion of the lower fibers; z y

- a negative axial force N, signifies com-
pression;

- negative torsional moment M, signifies
clockwise rotation;

- a negative bending moment M,, signifies

- a negative bending moment M, signifies -
tension of the right fibers and compression
of the left fibers. Fig. 6

Let us determine the potentially critical points of the cross-section. Select the tri-
axially compressed quarter (since N, < 0) of the cross-section (the shaded area in
Fig. 6) and mark its three corner points 4, B, and C. These will be the potentially critical
points.

Y

We construct the normal and shear stress distribution diagrams across the section
(Fig. 7-10).
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For each of the three potentially critical points (4, B, and C) of the cross-section,
we show the stress state type and write the strength conditions (neglecting the influence

of the axial force N,).

Point 4

At point A4 of the cross-section, a uniaxial stress state is realized (Fig. 11).

.

. (N)

S naM) 7~

o, max(f\fz)/'

X

Fig. 11
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The strength condition at this point is written as:

[My[ 1M1
OxA = Oxppax = W < [o],
Z
bh? _ h kZb3
where Wy=T={smce sz }
hb? ) h kb3
Z=T={smce sz = h=kb}=T.

After substituting the values of W,, and W, into the strength condition and per-

forming transformations, we obtain:

. 3\/6|My| + 6k|M,| 3\/6- |-15 x 103| + 6+ 1.5 |—1 x 103|

= 0.0625 m.

k2[a] 1.52 - 180 x 106

Point B

At point B of the cross-section, a plane stress state is realized (Fig. 12).
e

»
g <N>/ A

Oy ”7‘”(]‘:1)/' \ Tinax _TB>

Fig. 12
Using the third strength theory, write the strength condition:
M2 M 2
Opgp =02 +412 = (—Z> +4( - ) < [a],
VVZ Vl/torsional

hb? , h kb3
where WZ=T={smcek=E = h= kb} o’

h
Wiorsional = @hb? = {since k = ;= h = kb} = akb3;

a = 0.231 is a coefficient that depends on the ratio h/b = 1.5 (see
Appendix).
After substituting the values of W, and W, ,.; Into the strength condition, we

obtain:

2 2
6|(6M,) MN? 6 <6 (=1 103)> 4(—10 X 103)
RUES ( k ) + 4(@) 1.5 +t4\0231-15

= []? (180 x 106)2

= 0.0685 m.
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Point C
At point C of the cross-section, a plane stress state is realized (Fig. 13).

D

Tc
o, 00 |7 — =
X v/ O,c Gxc
Gx max(]\fy)/ \ T 1,11 ax TC
X

Fig. 13
Using the third strength theory, we write the strength condition:

M,\° 2
aelgc=\/02+4rz=\/<—y> +4<]/ ) < [o],
VVy I/Vtorsional
bh® (| h k2p3
where Wy=?={smcek=g = h=kb}= c

h
W,prsional = @hb? = {since k = ;= h = kb} = akb?;

a = 0.231, y = 0.859 are coefficients that depend on the ratio h/b = 1.5
(see Appendix).

After substituting the values of W, and W;,on, into the strength condition, we
obtain

2

6 |(6M, MAN2  6|(6- (=15 % 103))* —10 x 103?
. <k2> +4(rak) ( 152 ) +4(0'859 0.231><1.5)

[]? (180 - 106)2

= 0.0707 m.

We choose the largest of the three dimensions for b.

The calculated dimensions of the rectangular cross-section and its geometric char-
acteristics are:
b =0.0707 m, h=kb=15-0.0707 = 0.1061 m;

F = bh =0.0707-0.1061 = 0.0075 m?;
bh* 0.0707 - 0.1061?

W, =— c = 1.3265 x 10~* m?;
hb*  0.1061-0.0707> »
W, =—= c = 0.8839 x 10™* m?;

Worsionas = @hb? = 0.231-0.1061 - 0.07072 = 1.2251 - 10™* m3.
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Point C is identified as the most critical point of the cross-section.

We determine the actual design stresses in the critical point taking into account
the action of the axial force N,

2
Nyl |M M, \°
a§3c=\/02+472=J(lFx|+—|Wy|> +4<)/—W = z> =
y torsiona

_ |—2X103|+ |—15 x 103| 2+4 0.859 —10 % 103 2_18031MP
—J\ 00075 " 1.3265x107* 07 o251 x 104, o0 a.

The overstress is

_0qc— o] ~180.31—180 B
Ao % = —r 73— 1009% = —— 20— 100 % = 0.17 % < 5 %.

Thus, the strength of the cranked bar is ensured.

For the critical cross-section, we construct the diagram of normal stress distribu-
tion and show the position of the cross-section neutral axis.

Let us determine the normal stresses at the corner points of the cross-section, hav-
ing calculated in advance the stress contributions from each of the internal loads N,,
M,,, and M,:

Nx_2><103_027MP |
F ~ 00075 @

_ M, 15x10°

|Gx(Nx)| =

|0 max (M, )| W, = 13265 x 107 113.08 MPa;
M, 1x 103
|0 max(M)| = W, = 08839 X 10-F = 11.31 MPa.
Then
Oxa = —0x(Ny) = Ox max(My ) — 0y max (M) = —0.27 — 113.08 — 11.31 =
= —124.66 MPa;
0xp = —0x(Ny) — 0y max(My ) + 0y max(M,) = —0.27 — 113.08 + 11.31 =
= —102.04 MPa;
Oxat = —0x(Ny) + Ox max(My ) + 0y max(M;) = —0.27 + 113.08 + 11.,31 =
= 124.12 MPa;
0xp' = —0x(Ny) + 0y max(My ) = 0% max(M;) = —0.27 + 113.08 — 11.31 =
= 101.50 MPa.
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Let us draw the rectangular

A, cross-section to scale according
101.5 . . .
to the obtained dimensions
_4 12412 (b =0.0707 m, h = 0.1061 m)
and construct the normal stress
-~ 4£ -_0 diagram (Fig. 14).

To determine the neutral
axis position, we connect the in-
tersection points of the diagram
with the cross-sectional plane (£
D and F) with a straight line.

-102.04

J S
N
(@)
(@)
A I
I
w '

Fig. 14

7. We determine the diameter of the circular cross-section.

Since all axes passing
through the circular cross-sec-
tion's centroid are its principal
central axes of
inertia, the bending should be
considered in the plane of the
M total bending moment

Mpending = M3 + MZ, which
determines the position of the
points with the maximum

Mbending

yo A= n.ax.

/ bending normal  stresses
Vz (points A4 and B) (Fig. 15).
Fig. 15

Due to the compressive normal stresses caused by the axial force N,, the maxi-
mum value of the normal stress occurs at point 4, where the stresses from the axial
force and the bending moment are additive. At the same time, this point is also the
location of maximum shear stresses due to torsion, since it lies on the circumference of
the cross-section.

Thus, point 4 is the only critical point of the circular cross-section.
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Since the stress state at the considered point is plane, the strength analysis must
be performed according to one of the strength theories (the third or the fourth) (Fig. 16).

<
Ty f ‘
o (V) ="
T
Oy max (M hending) / Umax !
/x

Fig. 16
Using the third strength theory, we write the strength condition:
N [ Myonane ™ (M)
ol = Jo? + 472 = < 2 be”d’”g> + 4<—"> < [o],

F Wi ax. W,

where My, = /My + M7 is the total bending moment;

2
Td* _
F = X is the cross-sectional area;

wd3
Whax = EVE is the section modulus relative to the neutral axis;
md3 . L
W, = ST 2W, ax. 1S the polar moment of inertia.

In the first approximation, to determine the diameter d, we write the strength con-
dition without taking into account the effect of the axial force N,

2 2 2 M?, .+ M2
I =\/<Mbending) +4(%> =\/Mbending+ M;% =\/ bending X S[J]

O¢
da 2 2
Wh.ax. A Witax,. =~ Wiax. Wh.ax.

We denote:

Mibsion = \/M,?end,-ng + M2 = /MZ + MZ + MZ = V152 + 12 + 102 = 18.055 kN'm,

where M, ﬂvign 1s the design moment determined according to the third strength theory.

Then the condition of strength takes the form:

I11 I11
mr Mdesign _ 32Mdesign

0
cda Wn.ax. nd3

it s 32Mjeyign _ 3[32-18.055 x 103 _ 01007
- nlo] m-180x 106 "
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Let us determine the actual design stresses in the critical point taking into account
the action of the axial force N, :

Myending = | M2 + M2 = /152 + 12 = 15.033 kN-m;

d? T 0.10072

F = 7 1 = 7.964 x 1073 m?;
nd® m-0.10073 4 3
Wyax = 37 = = = 1.0025 x 10~* m3;
nd3 m-0.10073
W = <& = 2Whax = —¢—— = 2005 X 107* m*;

2 2
N Mypai M
=i - (A By o ) -

|-2x 103]  |—15.033 x 103]\° ~10x 103 \°
= + + 4 = 180.31 MPa.

7.964 x 1073~ 1.0025 x 10~* 2.005 x 1074

The overstress is:

LH-100%= 100 % = 0.17 % < 5 %.
o] 180

Thus, the strength of the cranked bar is ensured.

Ao % =

Let us determine the diameter of the section using the fourth strength theory:

M jasion = \/M,fending +0.75- M2 = \/M§ + M2+ 0.75- M2 =

= /152 + 12 + 0.75 - 102 = 17.349 kN-m;

s 3132M gy 3[32-17.349 x 103 0.0994
= | 7wle] | m-180x106 oo™

8. Let us compare the weight of bars with rectangular and circular cross-sections:
G° F° 7964-1073
¢l FI 0.0075
Thus, for the given combination of internal forces and moments and the rectangle
aspect ratio k = h/b = 1.5, it is more beneficial to use a rectangular cross-section to
reduce the weight of the structure.

At the same time, the largest overall dimension of the rectangular cross-section
exceeds the diameter of the circular one: h = 0.1061 m > d = 0.1007 m.
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Table 1

:li‘;:z'el: 1123|456 |7|8|9/|10/11|12[13|14/15/16|17|18]19]20
a, m 0.510.8/0.5]0.8[0.5[02] 1 [1.2]0.5[0.8[0.8] 1 |1 [1.1]0.4[0.6]1.5]0.4] 1 [1.2
b, m 05104 1 [08]os[12]15[12[15[1.5[1.5[12]1.5(12] 1 [08] 1 [12]1.5]12
c,m 15012[1.5]12] 1 [03]05[04] 1 [oo] 1 [12]1.5[1.2[0.5[0.4]0.5]0.4]0.5[0.4
L, m 15012[1.5/12] 1 o.8] 1 [0.8] 1 [0.8] 1 0.8] 1 [0.8[0.5[0.4]0.5]0.4[0.5[0.4
P. kN [10]5[20]10]10] 5 [10]12] 8|54 6|5[20[10]5]|812]8
q. kN/m |5 |10] 5|4 10[20] 8|4 ]10[25]6 504]10]15/10]10] 8 [12
Table 2
Variant | 1y 13l g 1506 7(8]9(10/11]12|13]14]15]16|17]18]19]20
number
a, m 0.510.5(05] 1 [0.5]0.5] 1 [1.5/0.5[1.5[0.5] 1 [1.5]0.5] 1 [1.5]0.5[0.5]0.5]0.5
b, m 051050 1] 1]05/1.5/1.5[1.5(15[12[1.5[1.5/1.5] 1 [ 1 [1.5]0.5/0.5]0.5]0.5
c,m 150150150105 1 |1 [15015] 1 [1s]is]15[15[07[12] 2 |1 [1.5]1.51.5
L, m 15015 2 (ts/ 11 fos[is| i1 ]1]1]os[os] 21505115
P. kN |10]5]10]10]10]5[10]12] 85456 520[10]5]8]10]s8
M, kN-m|10[15]20]30]10]15|20]30]10]15]20|30]10]15|20]30|10]15]20]30
g, kN/m | 5105 al10[10]8][4a]10]10l6|8]5]4][10[10]10]10]8 |12
Table 3
Xj;:f)g: 1123|456 |7|8|9/|10/11|12[13|14/15/16|17|18|19]20
a,m 15015[1.5]1.5]1.5[1.5[15[1.5[1.5[1.5] 1 [ 1 [0.5]05[0.5[05]05] 1 [1.5]1.5
b, m 1501501s)is/ 111 oslis] 1151 05]05]1 [1.6]05]05
c.m 050051 1]oslos| 11 [1[1]1]os]1]1]1]15/1515]05]1
L, m 05| 1 (05 1]05]08/05]0.8[0.5/04] 1]0.5/0.5]0.505/05]0.5]0.5 1
P.kN [5[10]5]4]10]10]8]4]10[10]6|8]5]410[10/10[10]8 |12
M, kN-m|10]15]20]30]10]15|20]30]10|15]20 (25 30| 10| 15]20]25|30]10]15
g, kN/m 10| 5 [20]10]10] s [10]12] 8|5 |4 |5 |6 |5 [20][10]5]810]8
Table 4
:li‘l‘l'l‘g‘e‘: 1123|4567 |8|9/|10/11|12[13|14/15/16|17|18]19]|20
a, m 1501.5[1.5[1.5/1.501.5[1.5[1.5[1.5[1.5] 1 ] 1 [0.5]0.5[0.5[0.5]0.5] 1 [1.5]1.5
b, m 18015015015/ 111 ]1]os[os]1s]1[15] 1 os]0os]1]1 [05]05
c.m 050051 1]oslos| 1111 ]1os]1]1]1]15[1515]05]1
L, m 05| 1 (05 1]05]/0.8/0.5[0.8[05/04] 1[0.5]0.50.5/05/0.5/0.5/0.5] 1
P.iN |10]5]10]10][10] 5 [10]12] 8[54 5201058 10]38
q. kN/m |5 ]10] s[4 l10[10]8]4]10]10]38 4 [10]10]10]10] 8 [12
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Table 5

Variant | oy 13l g 56| 7(8]9(10/11]12|13]14]15]16|17]18] 1920
number
a, m 111 ]1]0sl05l05]05] 1105050505051 [1.5/1.5[1.5[1.5/05
b, m 1501 (1501 [oslos| 1 [ 11151 ]oslos| 1|1 [05]05]05]05/05
c,m 0505/ 1|11 [15/15/15/06] 111 [15/15/1.5/05]1]1]05]1
L, m a1 [is|islis|isis[is[is/15]15 1105
P. kN |10]5]20]10]10] 5 [10]12] 8|5 4]5]5]520][10]5]8]10]s8
M, kN-m|10[15]20]25]30 10| 15]20]25]30 10| 15]20]2530] 10| 15] 202530
g, kN/m | 5105 |al10[10]8][4a]10]10l6|8]5]4][10[10]10]10]8 |12
Table 6
:li‘;llzlel:l234567891011121314151617181920
a, m 111 ]1]0sl05l05]05] 1105050505051 1515151505
b, m 1501 (1501 [oslos| 1 [ 11151 ]oslos| 1|1 ]05]05]05]0505
c,m 0505/ 1|11 [1s5/1s/1slos] 111 [1s5]15]15]05]1]1]05]1
L, m o [islis|islis|isis[is[1s5[15]15 105
P. kN |10] 5 [12]10]10] 5 [10]12] 8[54 52010 5]810]38
g, kN/m | 5 (1054 ]10[10]8]410]10]56 4 [10]10]10]10] 8 [12
Table 7
X;ll;zg:lz34567891011121314151617181920
a,m 0.510.5(05/1.5[05]05] 11115/ 1]1]0sl0o5]1[15]1]1]15]05]05
b, m 05005/ 1] 1[1.5] 105l05] 1 [05] 11511 os[1.5]1 [0o5]05]1
c.m 1105 1] 105l05]05] 1 ]05]05/05] 1 [1.5[1.5[05]0.5[050.5] 1 [1.5
L, m vl 2208l 2]2]201slis] 1 [15[15] 2 15]15]2 1515
P. kN  |10] 5 [12]10]10] 5 [10]12] 8|5 6|5 [20]10]5]8|5]8]10]8
g, kN/m | 5105 [a]10[10] 8][4 f10]10]6|s8]s|4]10]10]10]10]8 12
Table 8
Variant | 1y 13l g 1506 7(8]9(10/11]12/13]14]15]16|17]18] 1920
number
a, m 0.5105]05/1.5]05]05] 1] 1 1.5 1] 1]05]05] 1]1.5] 1] 1]1.5]05]05
b, m 0505/ 11151 05/05] 105/ 115/ 1]1]05/1.5]1]05]05]1
c,m 1105 1] 105l05[05] 1]05]05/05] 1 [1.5/1.5[0.5]0.5]0.50.5] 1 [1.5
L, m 112208l 122 201sl15]1 (15152 15[15]2 (1515
P. kN |10] 5 [12]10]10] 5 [10]12] 8|5 456 5[20[10]5]8]10]8
M, kN-m|10[15]20]25]30]10[15]20]25]30 10| 15]20]25 |30 10| 15] 202530
g, kN/m | 5105 al10[10]8[4a]10]10l6|8]5]4][10[10]10]10]8 |12
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Appendix
TORSION OF A BAR WITH A RECTANGULAR

CROSS-SECTION

At the middle of the long sides:

A - — T = T = Mtorsional
max — B — B’ — .
T VVtorsional

At the middle of the short sides:

’ _ _ _
Tmax = Tc = T¢’ = VTlmax-

max

At the corner points and at the center:

Ty =Ty =Tp =Tp =To = 0.

D’
Twisting angle:
o= Mtorsionall

Flg- A.l Gltorsional

VVtorsional = ahbz; Itorsional = Bhbgo

where M, .m0 1S @ torsional moment acting in the cross-section;
W, sionas 18 torsional section modulus of the rectangular cross-section;
Liprsionas 18 torsional moment of inertia of the rectangular cross-section;
G Liprsiona 18 torsional stiffness of the rectangular cross-section;
a, B, y are coefficients depending on the rectangle aspect ratio k = h/b.

h

k = b a B Y
1,0 0,208 0,141 1,000
1,2 0,219 0,166 0,935
1,25 0,221 0,172 0,910
1,5 0,231 0,196 0,859
1,75 0,239 0,214 0,820
2,0 0,246 0,229 0,795
2,5 0,258 0,249 0,766
3,0 0,267 0,263 0,753
4,0 0,282 0,281 0,745
5,0 0,291 0,291 0,744
6,0 0,299 0,299 0,743
8,0 0,307 0,307 0,742
10,0 0,313 0,313 0,742

> 10,0 0,333 0,333 0,742
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