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LIST OF SYMBOLS 
 

𝛼, 𝛽, 𝛾 – angles, numerical coefficients; 
𝜀 – strain; 

𝜀ଵ, 𝜀ଶ, 𝜀ଷ – strains in the system of principal axes; 
𝜇 – Poisson's ratio; 
𝜎 – normal stress; 

𝜎ଵ, 𝜎ଶ, 𝜎ଷ – principal stresses; 
ሾ𝜎ሿ – allowable normal stress; 
𝜎ult – ultimate stress; 

𝜎yield – yield stress; 
𝜎௘௤ – equivalent stress; 
𝜏 – shear stress; 

ሾ𝜏ሿ – allowable shear stress; 
𝑎, 𝑏, 𝑐,𝑑, 𝑙 – lengths of segments, spans; 

𝑎 – side length of a square; 
𝑏, ℎ – width and height of a rectangle; 
𝑑 – diameter; 
𝐸 – modulus of elasticity (Young’s modulus); 
𝐹 – cross-sectional area; 
𝐼ఘ – polar moment of inertia of the cross-section; 

𝐼௬, 𝐼௭ – axial moments of inertia of the cross-section; 
𝐼௬௭ – centrifugal moment of inertia of the cross-section; 

𝑖௬, 𝑖௭ – radii of gyration of the cross-section; 
𝑛 – safety factor; 
𝑀 – concentrated moment; 

𝑀௫, 𝑀torsional – torsional moment; 
𝑀௬, 𝑀௭ – bending moments about the 𝑦- and 𝑧-axes; 

𝑁௫ – axial force; 
𝑃 – concentrated force; 

𝑄௬, 𝑄௭ – shear forces; 
𝑞 – distributed load; 
𝑅 – reaction; 
𝑈 – potentional strain energy; 
𝑉 – volume; 
𝑊ఘ – polar cross-section modulus; 

𝑊௬, 𝑊௭ – cross-section modulus about the 𝑦- and 𝑧-axes; 
𝑥, 𝑦, 𝑧 – Cartesian coordinates. 
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1. THEORIES OF STRENGTH 
 
 

1.1. Problem Statement and Basic Definitions 
 
 

1.1.1. Concept of the Limiting Stress State 
 
The most crucial problem of engineering analysis is the assessment of a structural 

component's strength based on its known stress state. 
 

The stress state at a point is entirely defined: 
 

 in a simple (uniaxial) stress state – by one principal stress, 
 

 in a plane (biaxial) stress state – by two, 
 

 in a volumetric (triaxial) stress state – by three. 
 

If the external loads do not exceed a certain value that depends on the material and 
the type of stress state, then the material remains in the elastic state. With an increase in 
external load, the principal stresses will also increase, and at certain values noticeable 
residual deformations or local cracks may appear. Such a stress state is called the limiting 
state. 

 

Thus, the limiting state is understood as a complex stress state in which the follow-
ing occurs: 

 

а) in a ductile material, residual (plastic) strain begins to develop; 
 

б) in a brittle material, fracture begins. 
 
 
 

1.1.2. Necessity of Creating Strength Theories and their Purpose 
 
If the limiting stress state is known, then the strength analysis is reduced to deter-

mining the stress state at the critical point (or at all potentially critical points) of the 
body under investigation and comparing it with the limiting value. 

 

In the case of a simple (uniaxial) stress state, it is quite easy to experimentally 
determine the limiting stress state through a tension or compression test. 
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The following are accepted as the limiting values: 
 

– the yield strength of a ductile material (𝜎limit ൌ 𝜎yield); 
 

– the ultimate strength of a brittle material (𝜎limit ൌ 𝜎ult). 
 

In these cases, the safety factors are given by: 
 

𝑛yield ൌ
𝜎yield

𝜎
,                  𝑛ult ൌ 𝜎ult

𝜎ult

𝜎
 , 

 

where 𝜎 is the stress acting at the critical point. 
 

For a complex (biaxial or triaxial) stress state it is practically impossible to conduct 
tests for all possible ratios between 𝜎ଵ, 𝜎ଶ and 𝜎ଷ, since: 

 

1) the number of possible relationships between the components of a complex stress 
state is infinite, therefore the number of experiments needed to determine the 
limiting states corresponding to these combinations of principal stresses is also 
infinite; 

 

2) for many types of complex stress states, it is technically difficult, and sometimes 
impossible, to carry out an experiment to determine the limiting stress state. That 
is, current experimental techniques do not have the capability to realize tests for 
the majority of complex stress states. 
 

Such experiments, which require the use of exceptionally sophisticated equip-
ment for both loading the specimen and recording its behaviour under load, have 
so far been conducted in research laboratories for only a very limited number of 
types of complex stress states. 
 

The interpretation of the results of such experiments is highly complicated and 
often contradictory, since during these tests it is practically impossible to meet 
the most important requirement of such experiments to ensure the homogeneity 
of the stress-strain state within the gage section of the specimen. 

 

Therefore, there arises the necessity of developing strength theories (also called 
strength hypotheses or limit state theories), i.e., general methods of strength analysis for 
any type of complex stress state, based on the mechanical properties of materials obtained 
from a limited number of the simplest mechanical tests. 

 

 Theories of strength are designed for performing strength analyses under a complex 
stress state. 
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1.1.3. The Concept of Equally Critical (Equally Strong) Stress States 
 
Strength theories are based on the assumption that two stress states are considered 

equally strong if, when the principal stresses are proportionally increased, they simulta-
neously reach the limiting state. In that case, the safety factor for both stress states will 
be identical. 

 

 Two stress states are called equally critical (equally strong) if they have the same 
safety factor. 

 

 The safety factor is a number indicating how many times all components of a com-
plex stress state must be simultaneously increased for it to become the limiting state. 

 

Let us consider an example. Suppose that for two identical elements made of the 
same material, a uniaxial stress state is realized for the first, and a complex stress state 
for the second (Fig. 1.1). 

 

 
Fig. 1.1 

 

Let us assume that element I began to deform plastically (or to fracture if it is brittle) 
at 𝜎 ൌ 280 MPа. 

 

This value of 𝜎 should be considered the limiting one in the case of a uniaxial (one-
dimensional) stress state: 

 

𝜎limit ൌ 280 MPa. 
 

Element II began to deform plastically (or to fracture in a brittle manner) at: 
 

𝜎ଵ ൌ 170 МPа;        𝜎ଶ ൌ 110 МPа;            𝜎ଷ ൌ 60 МPа. 
 

This combination of stresses should be considered as the limiting stress state for 
the given ratio between 𝜎ଵ, 𝜎ଶ, and 𝜎ଷ, i.e. 

 

𝜎ଵ limit ൌ 170 МPа;        𝜎ଶ limit ൌ 110 МPа;        𝜎ଷ limit ൌ 60 МPа. 
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Suppose that for elements I and II it is necessary to ensure the same safety factor 
with a coefficient of safety 𝑛 ൌ 2. 

 

Then the uniaxial tension with a stress of: 
 

𝜎 ൌ
𝜎limit

𝑛
ൌ

280
2

ൌ 140 МPа 
 

and the volumetric stress state with: 
 

𝜎ଵ ൌ
𝜎ଵ limit

𝑛
ൌ

170
2

ൌ 85 МPа; 
 

𝜎ଶ ൌ
𝜎ଶ limit

𝑛
ൌ

110
2

ൌ 55 МPа; 
 

𝜎ଷ ൌ
𝜎ଷ limit

𝑛
ൌ

60
2
ൌ 30 МPа 

 

are equally critical, or equally strong. 
 
 
 

1.1.4. The Concept of Equivalent Stress 
 
The comparison of stress states for a given material can be performed using equiv-

alent stresses 𝜎eq. 
 

 Equivalent stress (𝜎eq) – is such a stress that must be created in a tensile specimen 

(i.e., under a linear (uniaxial) stress state), so that its stress state is equally critical to 
a given complex stress state (i.e., has the same safety factor). 

 

The problem and purpose of all theories of strength is to relate the equivalent 
stresses in two equally strong states by a specific relationship based on an analysis of the 
causes of fracture or transition of the material into the limiting state. This means deter-
mining the form of the function: 

 

𝜎eq ൌ 𝑓ሺ𝜎ଵ, 𝜎ଶ, 𝜎ଷሻ. (1.1) 
 

Thus, by means of strength theories, a transition is carried out from a complex stress 
state to an equally critical uniaxial one. That is, the equivalent stress is determined, which 
is then compared with the results of the simplest mechanical tests. In this way, a conclu-
sion is drawn about the degree of strength exhaustion under a complex stress state. 
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1.2. Main Theories of Strength 
 
All theories (criteria, hypotheses) of strength can be divided into two types: 
 

а) theories constructed on hypotheses, i.e., based on logically justified assumptions; 
 

б) theories based on a phenomenological approach, i.e., relying on the logical sys-
tematization of experimental research results. 

 
 

1.2.1. Theory of Maximum Normal Stresses 
(the First Strength Theory) 

 
By historical tradition, the theory (hypothesis) of maximum normal stresses is called 

the First Theory of Strength. It was formulated in 1638 by Galileo Galilei1. The sup-
porters of this theory included G. Leibniz, G. Lamé, A. Clebsch, and M. Rankine. In 
English and American literature, it is known as Rankine’s theory. 

 

This theory is based on the following assumption (hypothesis): 
 

 The strength of an element subjected to a complex stress state is considered to be 
exhausted (i.e., its limiting stress state is reached), if the magnitude of the largest of 
the principal stresses reaches the limiting value determined from simple tension or 
compression tests. 

 

Thus, the condition for the strength exhaustion takes the form: 
 

𝜎max ൌ 𝜎ଵ ൌ 𝜎limit ೟ 
         𝑜𝑟         𝜎max ൌ |𝜎ଷ| ൌ 𝜎limit ೎ , (1.2) 

 

where 𝜎limit ೟ and 𝜎limit ೎  are the limiting stresses determined from simple tensile and  

 compression tests, respectively. 
 

The condition of ensuring strength with a safety factor of 𝑛 has the form: 
 

𝜎eq
୍ ൌ 𝜎ଵ ൑ ሾ𝜎ሿ௧         𝑜𝑟         𝜎eq

୍ ൌ |𝜎ଷ| ൑ ሾ𝜎ሿ௖,  (1.3) 
 

 
1 Galileo Galilei (Italian: Galileo Galilei; February 15, 1564, Pisa – January 8, 

1642, Arcetri) – Italian physicist, mechanic, astronomer, philosopher, and mathemati-
cian, who exerted significant influence on the science of his time. He was the first to 
employ the telescope for celestial observations and made a series of outstanding astro-
nomical discoveries. Galileo was the founder of experimental physics and laid the foun-
dation of classical mechanics. 
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where ሾ𝜎ሿ௧ ൌ
𝜎limit ೟

𝑛
  and  ሾ𝜎ሿ௖ ൌ

𝜎limit ೎

𝑛
 

 

– allowable tensile and compressive 
     stresses, respectively. 

 

As experimental verification has shown, this theory of strength: 
 

а) does not reflect the conditions for a material's transition into the plastic state, 
meaning it cannot be used for the strength analysis of parts made from ductile 
materials; 

 

б) allows to obtain satisfactory results for brittle materials (quartz, rocks, ceram-
ics, tool steels, etc.) under a very limited number of stress state types. 

 

At present, it is rarely applied. 
 
 
 

1.2.2. Theory of Maximum Linear Strains 
(the Second Strength Theory) 

 
The Theory of Maximum Linear Strains was proposed by Edme Mariotte2 in 1682. 

Supporters of this theory included L. Navier and V. Saint-Venant. 
 

It is based on the following hypothesis: 
 

 The strength of an element subjected to a complex stress state is considered to be 
exhausted (i.e., its limiting stress state is reached), if the magnitude of the maximum 
strain (relative elongation) of this element reaches the limiting value determined 
from simple tension or compression tests. 

 

Thus, the strength exhaustion will occur when the condition is fulfilled 
 

𝜀max ൌ 𝜀ଵ ൌ 𝜀limit t          or         𝜀max ൌ |𝜀ଷ| ൌ ห𝜀limit ೎ห, (1.4) 
 

where 𝜀limit t  and 𝜀limit c  – are the maximum strains determined from simple tension and 

  compression tests, respectively. 
 

 
According to the generalized Hooke's law for a complex stress state 
 

 
2 Edme Mariotte (French: Edme Mariotte; 1620, Dijon (Burgundy) – May 12, 

1684, Paris) – French physicist of the 17th century, one of the founders (1666) and the 
first members of the Paris Academy of Sciences. His scientific work pertained to me-
chanics, heat, and optics. He served as prior of the Saint-Martin Monastery near Dijon. 
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𝜀ଵ ൌ
1
𝐸
ሾ𝜎ଵ െ 𝜇ሺ𝜎ଶ ൅ 𝜎ଷሻሿ;             𝜀ଷ ൌ

1
𝐸
ሾ𝜎ଷ െ 𝜇ሺ𝜎ଵ ൅ 𝜎ଶሻሿ. 

 

For a uniaxial stress state: 
 

𝜀limit t ൌ
𝜎limit t

𝐸
;                      𝜀limit с ൌ

𝜎limit с

𝐸
. 

 

This makes it possible to rewrite the limit state equation (1.4) in terms of stresses: 
 

𝜎ଵ െ 𝜇ሺ𝜎ଶ ൅ 𝜎ଷሻ ൌ 𝜎limit t;          𝜎ଷ െ 𝜇ሺ𝜎ଵ ൅ 𝜎ଶሻ ൌ 𝜎limit с . (1.5) 
 

Strength with a safety factor of 𝑛 will be ensured under the condition: 
 

𝜎ଵ െ 𝜇ሺ𝜎ଶ ൅ 𝜎ଷሻ ൌ
𝜎limit t

𝑛
ൌ ሾ𝜎ሿt;        𝜎ଷ െ 𝜇ሺ𝜎ଵ ൅ 𝜎ଶሻ ൌ

𝜎limit с

𝑛
ൌ ሾ𝜎ሿс. 

 

Therefore, the strength condition according to the second strength theory finally 
takes the form: 

 

𝜎eq
୍୍ ൌ 𝜎ଵ െ 𝜇ሺ𝜎ଶ ൅ 𝜎ଷሻ ൑ ሾ𝜎ሿ௧; 

 

𝜎eq
୍୍ ൌ 𝜎ଷ െ 𝜇ሺ𝜎ଵ ൅ 𝜎ଶሻ ൑ ሾ𝜎ሿс, 

(1.6) 

 

where ሾ𝜎ሿt ൌ
𝜎limit t

𝑛
  and  ሾ𝜎ሿс ൌ

𝜎limit с

𝑛
 

 

– allowable tensile and compressive 
   stresses, respectively. 

 

Experimental verification of this strength theory has led to results similar to those 
of the first strength theory. 

Thus, the first and second theories of strength are of historical rather than practical 
interest. 

 
 
 

1.2.3. Theory of Maximum Shear Stresses 
(the Third Strength Theory) 

 
The Theory of Maximum Shear Stress was proposed by C. Coulomb3 in 1773. This 

theory was further developed in the works of J. Guest, A. Tresca, and J. Bauschinger. 
 

It is based on the following hypothesis: 
 

 
3 Charles-Augustin de Coulomb (French: Charles-Augustin de Coulomb, June 14, 

1736 – August 23, 1806) – French military engineer and physicist, researcher of electro-
magnetic and mechanical phenomena; member of the Paris Academy of Sciences. 
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 The strength of an element in a complex stress state is considered exhausted (i.e., its 
limiting stress state is reached), if the magnitude of the maximum shear stress 
reaches the limiting value determined from simple tension tests. 

 

Consequently, the condition of strength exhaustion takes the form: 
 

𝜏max ൌ 𝜏limit. (1.7) 
 

In case of complex stress state (Fig. 1.2, а) 
 

𝜏max ൌ
𝜎ଵ െ 𝜎ଷ

2
. 

 

In case of uniaxial stress state (Fig. 1.2, b) 
 

𝜎ଷ ൌ 0            and            𝜏max ൌ
𝜎ଵ
2

, 

hence, 

    𝜏limit ൌ
𝜎limit

2
. 

 

  

а b 
Fig. 1.2 

 

This makes it possible to represent the condition for strength exhaustion (1.7) in 
terms of principal stresses: 

 

𝜎ଵ െ 𝜎ଷ ൌ 𝜎limit. 
 

The strength with a safety factor 𝑛 will be ensured if 
 

𝜎ଵ െ 𝜎ଷ ൌ
𝜎limit

𝑛
ൌ ሾ𝜎ሿ. 

 

The strength condition according to this theory of strength takes the form 
 

𝜎eq
୍୍୍ ൌ 𝜎ଵ െ 𝜎ଷ ൑ ሾ𝜎ሿ, (1.8) 

 
 

where ሾ𝜎ሿ ൌ
𝜎limit

𝑛
 

 

– allowable stress. 
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This theory of strength is confirmed by experiments as a theory of the transition of 
a material into the plastic state. Thus, in essence, it is a theory of plasticity and is widely 
used for the strength analysis of parts made from ductile materials, i.e., materials that 
resist tension and compression equally. 

A drawback of the third strength theory is that it does not take into account the 
intermediate principal stress 𝜎ଶ, which, as experiments show, also has some (although 
minor) influence on the strength of materials (the discrepancy between theoretical calcu-
lations and experimental data reaches 10–15%). 

 
 
 

1.2.4. Energy Theory of Strength 
(the Fourth Theory of Strength, Distortion Energy Hypothesis) 
 
In 1885, Italian mathematician E. Beltrami suggested that the specific potential 

strain energy (𝑈଴) is responsible for strength exhaustion. However, experiments did not 
confirm this assumption. 

Therefore, in 1904, M. T. Huber 4 proposed dividing 𝑈଴ into two parts: the specific 
potential volumetric strain energy (𝑈଴vol) and the specific potential deviatoric (or distor-

tional) strain energy (𝑈଴d). He assumed that only the distortion energy is responsible for 

strength exhaustion. 
Further development of this limit state theory was made in the works of 

R. von Mises5 (1913), H. Hencky (1925). 
The fourth strength theory is most often called the von Mises criterion. 
 

It is based on the following hypothesis: 
 

 The strength of an element in a complex stress state is considered exhausted (i.e., the 
limiting stress state occurs) if the specific potential deviatoric strain energy reaches 
the limiting value determined from simple tension tests. 

 

 
4 Maksymilian Tytus Huber (Polish: Maksymilian Tytus Huber, January 4, 1872 

– December 9, 1950) was a Polish scientist in the field of theoretical and applied me-
chanics, and the founder of the Polish school of mechanics. 

5 Richard Edler von Mises (German: Richard Edler von Mises, April 19, 1883, 
Lemberg, Austro-Hungarian Empire [now Lviv, Ukraine] – July 14, 1953, Boston, USA) 
was a mathematician and mechanician of Austrian origin. His works were devoted to 
aerodynamics, applied mechanics, fluid mechanics, aeronautics, statistics, and probabil-
ity theory. 
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Thus, the condition of strength exhaustion takes the form: 
 

𝑈଴d ൌ 𝑈଴d limit, (1.9) 
 

where 𝑈଴d is the specific potential deviatoric strain energy spent to change the shape of 

the element when reaching a given complex stress state; 
 

𝑈଴d limit is the limiting value of specific potential deviatoric strain energy determined 

from a simple tension test, i.e., in the case of a uniaxial stress state. 
 
 

Determining the potential strain energy of an elementary volume 
 

In an ideal elastic material, the potential strain energy accumulated in an elementary 
volume during its deformation is numerically equal to the sum of the work done by the 
forces applied to the faces of this volume. 

 

In each of the coordinate direc-
tions, on the faces of an infinitesimal 
volume 𝑑𝑉 ൌ 𝑑𝑥𝑑𝑦𝑑𝑧 (Fig. 1.3), nor-
mal forces act: 

 
 

𝑑𝑃ଵ ൌ 𝜎ଵ𝑑𝑦𝑑𝑧; 
 

𝑑𝑃ଶ ൌ 𝜎ଶ𝑑𝑥𝑑𝑧; 
 

𝑑𝑃ଷ ൌ 𝜎ଷ𝑑𝑥𝑑𝑦. 
 

Fig. 1.3 
 

The application of these forces leads to the development of principal strains: 
 

𝜀ଵ ൌ
𝛥𝑑𝑥
𝑑𝑥

;          𝜀ଶ ൌ
𝛥𝑑𝑦
𝑑𝑦

;          𝜀ଷ ൌ
𝛥𝑑𝑧
𝑑𝑧

. (1.10) 
 

Then the displacements of the points of applied forces are: 
 

𝛥𝑑𝑥 ൌ 𝜀ଵ𝑑𝑥;           𝛥𝑑𝑦 ൌ 𝜀ଶ𝑑𝑦;           𝛥𝑑𝑧 ൌ 𝜀ଷ𝑑𝑧. 
 

By virtue of the validity of Hooke’s law (a directly proportional relationship be-
tween forces and displacements), the total work of these elementary forces on the corre-
sponding displacements 𝛥𝑑𝑥, 𝛥𝑑𝑦, and 𝛥𝑑𝑧 can be determined by the formula: 

 

𝑑𝑊 ൌ 𝑑𝑈 ൌ
1
2
ሺ𝜎ଵ𝑑𝑦𝑑𝑧ሻ𝛥𝑑𝑥 ൅

1
2
ሺ𝜎ଶ𝑑𝑥𝑑𝑧ሻ𝛥𝑑𝑦 ൅

1
2
ሺ𝜎ଷ𝑑𝑦𝑑𝑥ሻ𝛥𝑑𝑧. (1.11) 
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Here 𝑑𝑈 is the elementary potential strain energy of elastic deformation accumu-
lated in the infinitesimal volume 𝑑𝑉. 

 

Let's introduce the concept of specific potential strain energy of elastic deformation, 
i.e., the energy accumulated in a unit volume: 

 

𝑑𝑈
𝑑𝑉

ൌ
𝑑𝑈

𝑑𝑥𝑑𝑦𝑑𝑧
ൌ 𝑈଴. 

 

Dividing the left and right parts of equation (1.11) by 𝑑𝑉, we obtain: 
 

𝑈଴ ൌ
1
2
൬𝜎ଵ

𝛥𝑑𝑥
𝑑𝑥

൅ 𝜎ଶ
𝛥𝑑𝑦
𝑑𝑦

൅ 𝜎ଷ
𝛥𝑑𝑧
𝑑𝑧

൰ (1.12) 
 

or taking into account expressions (1.10) 
 

𝑈଴ ൌ
1
2
ሺ𝜎ଵ𝜀ଵ ൅ 𝜎ଶ𝜀ଶ ൅ 𝜎ଷ𝜀ଷሻ. (1.13) 

 

Let's substitute in (1.13) the values of 𝜀ଵ, 𝜀ଶ, 𝜀ଷ from the generalized Hooke’s law: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧𝜀ଵ ൌ

1
𝐸
ሾ𝜎ଵ െ 𝜇ሺ𝜎ଶ ൅ 𝜎ଷሻሿ;

𝜀ଶ ൌ
1
𝐸
ሾ𝜎ଶ െ 𝜇ሺ𝜎ଵ ൅ 𝜎ଷሻሿ;

𝜀ଷ ൌ
1
𝐸
ሾ𝜎ଷ െ 𝜇ሺ𝜎ଵ ൅ 𝜎ଶሻሿ

 

 

and after simple transformations we obtain 
 

𝑈଴ ൌ
1

2𝐸
ሾ𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶ ൅ 𝜎ଷ

ଶ െ 2𝜇ሺ𝜎ଵ𝜎ଶ ൅ 𝜎ଶ𝜎ଷ ൅ 𝜎ଵ𝜎ଷሻሿ. (1.14) 
 

The potential strain energy accumulated by an elastic body is expended on changing 
its shape and volume. Let's represent the specific potential strain energy 𝑈଴ as the sum 
of the specific potential volumetric strain energy and the specific potential deviatoric 
(distortional) strain energy: 

 

𝑈଴ ൌ 𝑈଴vol ൅ 𝑈଴d, (1.15) 
 

where 𝑈଴d is the specific potential strain energy spent on shape change; 
 

     𝑈଴vol is the specific potential strain energy spent on volumetric change. 
 

Using the superposition principle, we transform the initial stress state (Fig. 1.4) and 
divide 𝑈଴ into two summands in accordance with expression (1.15). 
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Fig. 1.4 shows that 
 

𝜎ଵ ൌ 𝑃 ൅ 𝜎ଵ
ᇱ

𝜎ଶ ൌ 𝑃 ൅ 𝜎ଶ
ᇱ

𝜎ଷ ൌ 𝑃 ൅ 𝜎ଷ
ᇱ
ቑ  ⟹  

𝜎ଵ
ᇱ ൌ 𝜎ଵ െ 𝑃

𝜎ଶ
ᇱ ൌ 𝜎ଶ െ 𝑃

𝜎ଷ
ᇱ ൌ 𝜎ଷ െ 𝑃

ቑ . (1.16) 

 

It follows that the first summand actually determines only the change in volume, 
i.e., it describes the deformation of uniform (hydrostatic) tension. The second summand 
complements this stress state to the specified one. 

 

 
Fig. 1.4 

 

Let's find the values of stresses 𝜎ଵ
ᇱ, 𝜎ଶ

ᇱ , and 𝜎ଷ
ᇱ  from the condition that this part of 

the stress state does not participate in the change of volume, i.e. 
 

𝜀௏ ൌ
1 െ 2𝜇
𝐸

ሺ𝜎ଵ
ᇱ ൅ 𝜎ଶ

ᇱ ൅ 𝜎ଷ
ᇱሻ ൌ 0. 

Since 
1 െ 2𝜇
𝐸

് 0, 

then 
𝜎ଵ
ᇱ ൅ 𝜎ଶ

ᇱ ൅ 𝜎ଷ
ᇱ ൌ 0. 

 

Substituting in this expression the values 𝜎ଵ
ᇱ, 𝜎ଶ

ᇱ , 𝜎ଷ
ᇱ  from formula (1.16), we obtain 

 

𝑃 ൌ
𝜎ଵ ൅ 𝜎ଶ ൅ 𝜎ଷ

3
, (1.17) 

 

where 𝑃 is the average normal stress at the point. 
 

Thus, the value 𝑃 can always be determined unambiguously and in such a way that 
no change of volume occurs in the second stress state. 

 

Since there is no mutual work in such a division of the initial stress state, this divi-
sion is valid. 

 

Let's determine the specific potential strain energy spent on volume change 𝑈଴vol. 
 

For this, we substitute in (1.14) the value 𝑃 instead of 𝜎ଵ, 𝜎ଶ, and 𝜎ଷ. As a result, 
we obtain 
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𝑈଴vol ൌ
1

2𝐸
ሺ3𝑃ଶ െ 2𝜇3𝑃ଶሻ ൌ

1 െ 2𝜇
2𝐸

3𝑃ଶ. (1.18) 

 

Substituting into this expression the value of 𝑃 from (1.17), we finally obtain 
 

𝑈଴vol ൌ
1 െ 2𝜇

6𝐸
ሺ𝜎ଵ ൅ 𝜎ଶ ൅ 𝜎ଷሻଶ. (1.19) 

 

Subtracting from 𝑈଴ (1.14) the value of 𝑈଴vol (1.19), after performing the transfor-

mations, we obtain 
 

𝑈଴ௗ ൌ
1 ൅ 𝜇

6𝐸
ሾሺ𝜎ଵ െ 𝜎ଶሻଶ ൅ ሺ𝜎ଶ െ 𝜎ଷሻଶ ൅ ሺ𝜎ଷ െ 𝜎ଵሻଶሿ. (1.20) 

 

In the case of the uniaxial stress state this expression takes the form 
 

𝑈଴d  limit ൌ
1 ൅ 𝜇

6𝐸
∙2𝜎limit

ଶ . (1.21) 

 

By substituting the value of 𝑈଴d from the equation (1.20) and 𝑈଴d  limit from the ex-

pression (1.21) into the strength exhaustion condition (1.9), we obtain 
 

ሺ𝜎ଵ െ 𝜎ଶሻଶ ൅ ሺ𝜎ଶ െ 𝜎ଷሻଶ ൅ ሺ𝜎ଷ െ 𝜎ଵሻଶ ൌ 2𝜎limit
ଶ , 

or 
1

√2
ඥሺ𝜎ଵ െ 𝜎ଶሻଶ ൅ ሺ𝜎ଶ െ 𝜎ଷሻଶ ൅ ሺ𝜎ଷ െ 𝜎ଵሻଶ ൌ 𝜎limit. 

 

Strength with a safety factor 𝑛 will be ensured under the condition: 
 

1

√2
ඥሺ𝜎ଵ െ 𝜎ଶሻଶ ൅ ሺ𝜎ଶ െ 𝜎ଷሻଶ ൅ ሺ𝜎ଷ െ 𝜎ଵሻଶ ൌ

𝜎limit

𝑛
ൌ ሾ𝜎ሿ. 

 

The strength condition finally takes the form 
 

𝜎eq
IV ൌ

1

√2
ඥሺ𝜎ଵ െ 𝜎ଶሻଶ ൅ ሺ𝜎ଶ െ 𝜎ଷሻଶ ൅ ሺ𝜎ଷ െ 𝜎ଵሻଶ ൑ ሾ𝜎ሿ, (1.22) 

 
 

where ሾ𝜎ሿ ൌ
𝜎limit

𝑛
 

 

is an allowable stress. 

 

The fourth strength theory, like the third one, is well confirmed experimentally as a 
theory of material transition to plastic state and, along with the third strength theory, is 
widely used to analyse the strength of parts made from ductile materials. 

 

The occurrence of small plastic strains in the material according to the fourth 
strength theory is determined more accurately than according to the third theory. 
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1.2.5. The Mohr's Theory of the Strength 
 
 

Unlike the theories discussed above, the Mohr’s6 theory is not founded on hypoth-
eses, but is constructed upon a logical systematization of experimental results. 

 

The main assumption underlying this theory is that the strength exhaustion is deter-
mined only by the quantities σ₁ and σ₃, and does not depend on σ₂, which is fairly well 
confirmed by experiment. 

 

The relationship between the strength properties of a material and the type of stress 
state is derived and justified by means of Mohr’s circles. 

 

Suppose that it is possible to test specimens of a given material under any arbitrary 
complex stress state. Let us select a stress state with a fixed ratio between 𝜎ଵ and 𝜎ଷ and, 
by proportionally increasing these stress state components, bring the specimen either to 
fracture or to the onset of plastic yielding. This stress state will be the limit state. On the 
𝜎 – 𝜏 plane, we draw the largest of the three Mohr’s circles. Next, we conduct analogous 
tests on specimens of the same material at different ratios between 𝜎ଵ and 𝜎ଷ. Each such 
ratio corresponds to its own limiting Mohr’s circle. Next, the envelope of all limiting 
Mohr’s circles is constructed. This envelope essentially represents a mechanical charac-
teristic of the material under a complex stress state, just as under a uniaxial stress state, 
just as under a uniaxial stress state the principal mechanical strength characteristics are 
the yield strength 𝜎y or the ultimate tensile strength 𝜎u, determined from tensile or com-

pressive testing (Fig. 1.5). 
 

If the envelope of the limit Mohr’s circles for a given material has been obtained 
experimentally, then, in order to determine whether a stress state characterized by the 
principal stresses 𝜎ଵ, 𝜎ଶ, and 𝜎ଷ is limiting, and to assess the material’s strength, a stress 
circle for 𝜎ଵ and 𝜎ଷ should be constructed at the critical location. Strength is ensured if 
this circle lies entirely within the area of the envelope. 

 

 

6 Christian Otto Mohr (German: Christian Otto Mohr; 8 October 1835, Wes-
selbüren – 2 October 1918, Dresden) was a German engineer and scholar in the field of 
theoretical mechanics and the mechanics of materials. He studied at the Polytechnic 
School in Hanover. Beginning in 1855, he worked on the construction of railways and 
bridges in Hanover and Oldenburg. From 1867 he served as professor, first in Stuttgart 
and later in Dresden. His research focused on problems of the mechanics of materials, 
particularly their graphical representation. In 1882, he developed a graphical method of 
stress analysis, known as Mohr’s circle. 
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To determine the safety factor, it is necessary to establish by what multiple 𝜎ଵ and 
𝜎ଷ must be simultaneously increased so that the largest Mohr’s circle touches the limit 
envelope. The number indicating by how many times the values of 𝜎ଵ and 𝜎ଷ are scaled 
is equal to the safety factor. 

 

 

Fig. 1.5 
 

To construct the actual envelope of the limiting Mohr’s circles, it would be neces-
sary to experimentally investigate all possible stress states. his is an unfeasible problem; 
therefore, the question arises of how to construct the envelope of the limiting Mohr’s 
circles using only a limited number of sufficiently simple tests, the technical implemen-
tation of which is possible. Three such limiting circles can be constructed in a relatively 
simple way (Fig. 1.6): 

 

1st circle: by a simple tension test; 
 

2nd circle: by a simple compression test; 
 

3d circle: by a torsion test of a thin-walled tube, in which a state of pure shear is realized 
at all points of the test specimen (the tube). 

 

 

Fig. 1.6 
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For the ductile materials (see Fig. 1.6) 
 

𝜎limit t ൌ ห𝜎limit cห ൌ 𝜎yield t
ൌ 𝜎yield с

; 
 

for the brittle materials 
 

𝜎limit t ൌ 𝜎ult t;     𝜎limit с ൌ 𝜎ult с . 
 

Point A on the circular diagram characterizes the state of hydrostatic uniform triaxial 
tension. 

 

To obtain relationships suitable for practical strength analysis, the envelope of the 
limiting Mohr’s circles is approximated by a tangent line to the tensile and compressive 
circular diagrams. This approximation yields sufficiently accurate results if the center of 
the stress circle lies between points 𝑂ଵ (the center of the circle of pure tension) and 𝑂ଶ 
(the center of the circle of pure compression) (Fig. 1.7), 

 

where 𝜎limit t and 𝜎limit с denote the limiting stresses obtained from tests under pure 

   tension and pure compression, respectively. In the derivation, 
   the absolute value of 𝜎limit с is used; 

 

      𝜎ଵ and 𝜎ଷ  are the principal stresses of a complex stress state for which the 
  Mohr’s circle becomes limiting. 

 

 

Fig. 1.7 
 

From the geometric relationships, we obtain the strength condition for an interme-
diate stress state with principal stresses 𝜎ଵ, 𝜎ଷ and the limiting Mohr’s circle centered at 
point 𝑂ଷ (Fig. 1.7). 
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Let's draw the straight lines 𝑂ଵ𝑀ଵ, 𝑂ଶ𝑀ଶ, 𝑂ଷ𝑀ଷ connecting the centres of the lim-
iting Mohr’s circles with their tangent points on the limiting line, as well as the straight 
line 𝑂𝐷 parallel to 𝑀ଵ𝑀ଶ. Since the triangles 𝑂ଵ𝑂ଷ𝐶 and 𝑂ଵ𝑂ଶ𝐷 are similar, then 

 

𝑂ଷ𝐶തതതതത 

𝑂ଶ𝐷തതതതതത ൌ
𝑂ଵ𝑂ଷതതതതതതത 

𝑂ଵ𝑂ଶതതതതതതത , 

where 

𝑂ଷ𝐶തതതതത ൌ 𝑂ଷ𝑀ଷതതതതതതത െ 𝑂ଵ𝑀ଵതതതതതതത ൌ
𝜎ଵ െ  𝜎ଷ

2
െ
𝜎limit t

2
; 

 

𝑂ଶ𝐷തതതതതത ൌ 𝑂ଶ𝑀ଶതതതതതതത െ 𝑂ଵ𝑀ଵതതതതതതത ൌ
𝜎limit с

2
െ
𝜎limit t

2
; 

 

𝑂ଵ𝑂ଷതതതതതതത ൌ 𝑂𝑂ଵതതതതതത െ 𝑂𝑂ଷതതതതതത ൌ
𝜎limit t

2
െ
𝜎ଵ ൅  𝜎ଷ

2
; 

 

𝑂ଵ𝑂ଶതതതതതതത ൌ 𝑂𝑂ଵതതതതതത ൅ 𝑂𝑂ଶതതതതതത ൌ
𝜎limit t

2
൅
𝜎limit с

2
. 

Then 
ሺ𝜎ଵ െ  𝜎ଷሻ െ 𝜎limit t  

𝜎limit с െ 𝜎limit t

ൌ
𝜎limit t െ ሺ𝜎ଵ ൅  𝜎ଷሻ 

𝜎limit t ൅ 𝜎limit с

. 

 

Dividing both the numerator and the denominator of the previous expression by 
𝜎limit с

 and denoting  

𝑘 ൌ
𝜎limit t  

𝜎limit с

, (1.23) 

we get 
ሺ𝜎ଵ െ  𝜎ଷሻ
𝜎limit с

െ 𝑘 

1 െ 𝑘
ൌ
𝑘 െ

𝜎ଵ ൅  𝜎ଷ
𝜎limit с

 

𝑘 ൅ 1
. 

Let's transform this equality to the form 
 

𝜎ଵ െ 𝑘𝜎ଷ ൌ 𝑘𝜎limit с . 
 

Taking into account expression (1.23), the strength exhaustion condition (with a 
safety factor of one) is finally obtained in form 

 

𝜎eq
M ൌ 𝜎ଵ െ 𝑘𝜎ଷ ൌ 𝜎limit t . 

 

The strength with a safety factor of 𝑛 will be ensured provided that the following 
inequality holds: 

 

𝜎eq
M ൌ 𝜎ଵ െ 𝑘𝜎ଷ ൑ ሾ𝜎ሿ (1.24) 

or 

𝜎eq
M ൌ 𝜎ଵ െ

𝜎limit t  

𝜎limit с

𝜎ଷ ൑ ሾ𝜎ሿ, (1.25) 
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where ሾ𝜎ሿ ൌ
𝜎limit

𝑛
        is an allowable stress; 

 𝑘 ൌ 𝜎yield t
𝜎yield c

⁄       for ductile materials; 

 𝑘 ൌ 𝜎ult ೟ 𝜎ult c⁄       for brittle materials. 
 

For ductile materials, since 
𝜎limit t ൌ 𝜎yield t

ൌ 𝜎limit с ൌ 𝜎yield с
 

this relation degenerates into the strength criterion according to the maximum shear stress 
theory (the third strength theory). 
 

The Mohr's strength theory can be regarded as the primary theory recommended for 
the design of parts made from brittle and semi-brittle materials, i.e., materials that resist 
tension and compression differently ሺሾ𝜎ሿt ് ሾ𝜎ሿсሻ. 

Currently, the applicability of the Mohr`s theory of strength is limited because ex-
perimental data are practically absent in the regions of hydrostatic tension (at 𝜎ଵ ൐ 0 and 
𝜎ଷ ൐ 0) and hydrostatic compression (at 𝜎ଵ ൏ 0 and 𝜎ଷ ൏ 0). Nevertheless, such stress 
states occur relatively rarely. The Mohr`s theory provides the most reliable results for 
mixed stress states (at 𝜎ଵ ൐ 0 and 𝜎ଷ ൏ 0). 
 
 

1.2.6. The Strength Condition According to the Third and Fourth  
Theories of Strength under a Particular Case of Plane Stress State 
 
Let us consider a particular case of plane stress state. 
 

 
а b 

Fig. 1.8 
 

This case of plane stress state is most frequently realized at critical points of bar-
type parts under combined bending with torsion, as well as under the “plane transverse 
bending” deformation mode. Two variants of this case of plane stress state are shown in 
Fig. 1.8. In the design practice, the simpler variant (Fig. 1.8, b) is most often used. The 
stresses in Fig. 1.8 are given without indices, since specific problems may be considered 
in various coordinate systems. 

The principal stresses for this case of plane stress state are determined from the 
following relationships: 
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𝜎ଵ ൌ
𝜎
2
൅

1
2
ඥ𝜎ଶ ൅ 4𝜏ଶ;

𝜎ଶ ൌ 0;

𝜎ଷ ൌ
𝜎
2
െ

1
2
ඥ𝜎ଶ ൅ 4𝜏ଶ.

  (1.26) 

 

The indices are assigned to the principal stresses in this manner because, regardless 
of the sign of 𝜎 

𝜎
2
൅

1
2
ඥ𝜎ଶ ൅ 4𝜏ଶ ൐ 0       and       

𝜎
2
െ

1
2
ඥ𝜎ଶ ൅ 4𝜏ଶ ൏ 0 

with any non-zero value of 𝜏. 
Let us consider the strength conditions: 
 

а) according to the third strength theory 
 

𝜎eq
III ൌ 𝜎ଵ െ 𝜎ଷ ൑ ሾ𝜎ሿ. 

 

Substituting the values of 𝜎ଵ and 𝜎ଷ from equation (1.26) into the previous expres-
sion, we obtain 

 

𝜎ଵ െ 𝜎ଷ ൌ
𝜎
2
൅

1
2
ඥ𝜎ଶ ൅ 4𝜏ଶ െ

𝜎
2
൅

1
2
ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ. 

 

Thus, finally: 
 

𝜎eq
III ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൑ ሾ𝜎ሿ; (1.27) 

 

b) according to the fourth strength theory with 𝜎ଶ ൌ 0 the relation (1.22) will take the 
form 

𝜎eq
IV ൌ ට𝜎ଵ

ଶ ൅ 𝜎ଷ
ଶ െ 𝜎ଵ𝜎ଷ ൑ ሾ𝜎ሿ.  

Substituting the values of 𝜎ଵ and 𝜎ଷ from equation (1.26) into previous expression, 
we obtain 

ඨ
𝜎ଶ

4
൅ 2

𝜎
2
∙

1
2
ඥ𝜎ଶ ൅ 4𝜏ଶ ൅

1
4
ሺ𝜎ଶ ൅ 4𝜏ଶሻ ൅ 

 

൅
𝜎ଶ

4
െ 2

𝜎
2
∙

1
2
ඥ𝜎ଶ ൅ 4𝜏ଶ ൅

1
4
ሺ𝜎ଶ ൅ 4𝜏ଶሻ െ ൭

𝜎ଶ

4
െ

1
4
ሺ𝜎ଶ ൅ 4𝜏ଶሻ൱

തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത
ൌ ඥ𝜎ଶ ൅ 3𝜏ଶ. 

Thus, finally: 
 

𝜎eq
IV ൌ ඥ𝜎ଶ ൅ 3𝜏ଶ ൑ ሾ𝜎ሿ. (1.28) 

 

Remark Relations (1.27) and (1.28), depending on which of the strength theo-
ries is adopted as the working one, allow verification of strength at 
characteristic points of a beam cross-section under transverse bending. 
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1.3. Problem-Solving Examples 
 

Example 1.1 
 

Compare the equivalent stresses for the stress states shown in Fig. 1.9. Calculate the 
equivalent stresses using the fourth (energy) strength theory. The stress values are given 
in MPa. 

 

 
Fig. 1.9 

 

Solution 
 

Determine the principal stresses for the first case: 

𝜎ଵ, 2, ሺ3ሻ ൌ
𝜎௬ ൅ 𝜎௭

2
േ ඨቀ

𝜎௬ െ 𝜎௭
2

ቁ
ଶ
൅ 𝜏௬௭ଶ ൌ

60 െ 20
2

േඨ൬
60 ൅ 20

2
൰
ଶ

൅ 30ଶ ൌ 

ൌ 20 േ 50; 
 

𝜎ଵ ൌ 70 МPа;     𝜎ଶ ൌ 0;     𝜎ଷ ൌ െ30 МPа. 
Equivalent stress according to the fourth strength theory 

𝜎eq
IV ൌ

1

√2
ඥሺ𝜎ଵ െ 𝜎ଶሻଶ ൅ ሺ𝜎ଶ െ 𝜎ଷሻଶ ൅ ሺ𝜎ଷ െ 𝜎ଵሻଶ ൌ 

ൌ
1

√2
ටሺ70 െ 0ሻଶ ൅ ൫0 െ ሺെ30ሻ൯

ଶ
൅ ሺെ30 െ 70ሻଶ ൌ 88.9 МPа. 

 

Determine the principal stresses for the second case: 

𝜎max, min ൌ
𝜎௫ ൅ 𝜎௬

2
േඨቀ

𝜎௫ െ 𝜎௬
2

ቁ
ଶ
൅ 𝜏௫௬ଶ ൌ

0 െ 0
2

േඨ൬
0 ൅ 0

2
൰
ଶ

൅ 50ଶ ൌ 0 േ 50; 

 

𝜎ଵ ൌ 50 МPа;     𝜎ଶ ൌ െ20 МPа;     𝜎ଷ ൌ െ50 МPа. 
Equivalent stress according to the fourth strength theory 

𝜎eq
IV ൌ

1

√2
ඥሺ𝜎ଵ െ 𝜎ଶሻଶ ൅ ሺ𝜎ଶ െ 𝜎ଷሻଶ ൅ ሺ𝜎ଷ െ 𝜎ଵሻଶ ൌ 

ൌ
1

√2
ටሺ50 ൅ 20ሻଶ ൅ ൫െ20 െ ሺെ50ሻ൯

ଶ
൅ ሺെ50 െ 50ሻଶ ൌ 88.9 МPа. 

Thus, the given stress states are equally critical. 
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Example 1.2 
 

 

In the critical cross-section of a part made of 
gray cast iron EN-GJL-200 (𝜎ult t ൌ 200 MPa; 

𝜎ult c ൌ 750 MPa; 𝜇 ൌ 0.25), an element is isolated, 

on the faces of which stresses (in MPa) act as shown 
in Fig. 1.10. It is necessary to verify the strength of 
the element. 

Fig. 1.10 
 

Solution 
 

Let us denote the stresses shown in Fig. 1.10 according to the 𝑥𝑦𝑧 coordinate sys-
tem: 

𝜎௫ ൌ 40 MPa;           𝜎௬ ൌ െ20 MPa;          𝜎௭ ൌ െ60 MPa; 
 

𝜏௬௫ ൌ 30 MPa;          𝜏௫௬ ൌ െ30 MPa. 
 

 

The plane whose normal is parallel to the 
𝑧-axis is principal, since no shear stresses act on it. 

Let us show the stress state on the other two 
planes in the 𝑥𝑂𝑦 plane (Fig. 1.11). 

Fig. 1.11 
 

Determine the principal stresses: 
 

𝜎max,  min ൌ
𝜎௫ ൅ 𝜎௬

2
േඨቀ

𝜎௫ െ 𝜎௬
2

ቁ
ଶ
൅ 𝜏௫௬ଶ ൌ

40 െ 20
2

േඨቆ
40 െ ሺെ20ሻ

2
ቇ
ଶ

൅ 30ଶ; 

 

𝜎௠௔௫ ൌ 10 ൅ 31.46 ൌ 41.46 MPa;     𝜎௠௜௡ ൌ 10 െ 31.46 ൌ െ21.46 MPa. 
 

Assign indices to the principal stresses in accordance with the condition 
𝜎ଵ ൒ 𝜎ଶ ൒ 𝜎ଷ: 

 

𝜎ଵ ൌ 41.46 MPa;     𝜎ଶ ൌ െ21.46 MPa;     𝜎ଷ ൌ െ60 MPa. 
 

Let us verify the calculation results using the property of normal stresses invariance: 
 

𝜎௫ ൅ 𝜎௬ ൅ 𝜎௭ ൌ 𝜎ଵ ൅ 𝜎ଶ ൅ 𝜎ଷ ൌ const; 
 

40 െ 20 െ 60 ൌ 41.46 െ 21.46 െ 60 ൌ െ40. 
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Let's check the strength of the element. Assign the allowable stresses, choosing a 
safety factor of ሾ𝑛ሿ ൌ 3, which is recommended for brittle materials that resist tension 
and compression differently: 

 

ሾ𝜎ሿ௧ ൌ
𝜎ult೟

𝑛
ൌ

200
3

ൌ 66.67 MPa;        ሾ𝜎ሿс ൌ
𝜎ult೎

𝑛
ൌ

750
3

ൌ 250 MPa. 
 

According to the first strength theory: 
 

𝜎௘௤୍ ൌ 𝜎ଵ ൌ 41.46 МPа ൑ ሾ𝜎ሿ௧ ൌ 66.67 МPа; 
 

𝜎௘௤୍ ൌ |𝜎ଷ| ൌ 60 МPа ൑ ሾ𝜎ሿ௖ ൌ 250 МPа. 

Strength is ensured. 
 

According to the second strength theory: 
 

𝜎௘௤୍୍ ൌ 𝜎ଵ െ 𝜇ሺ𝜎ଶ ൅ 𝜎ଷሻ ൑ ሾ𝜎ሿ௧; 
 

41.46 െ 0.25ሺെ21.46 െ 60ሻ ൌ 61.825 МPа ൑ ሾ𝜎ሿ௧ ൌ 66.67 MPa; 
 

𝜎௘௤୍୍ ൌ 𝜎ଷ െ 𝜇ሺ𝜎ଵ ൅ 𝜎ଶሻ ൑ ሾ𝜎ሿс; 
 

|െ60 െ 0.25ሺ41.46 െ 21.46ሻ| ൌ 65 МPа ൑ ሾ𝜎ሿс ൌ 250 MPa. 
Strength is ensured. 
 

According to the third strength theory: 
 

𝜎௘௤୍୍୍ ൌ 𝜎ଵ െ 𝜎ଷ ൌ 41.46 െ ሺെ60ሻ ൌ 100.46 МPа ൒ ሾ𝜎ሿ௧ ൌ 66.67 MPa. 
 

Strength is insufficient. 
 

According to the fourth strength theory: 
 

𝜎௘௤୍୚ ൌ
1

√2
ඥሺ𝜎ଵ െ 𝜎ଶሻଶ ൅ ሺ𝜎ଶ െ 𝜎ଷሻଶ ൅ ሺ𝜎ଷ െ 𝜎ଵሻଶ ൑ ሾ𝜎ሿ௧; 

 

1

√2
ට൫41.46 െ ሺെ21.46ሻ൯

ଶ
൅ ൫െ21.46 െ ሺെ60ሻ൯

ଶ
൅ ሺെ60 െ 41.46ሻଶ ൌ 

ൌ 102.2 МPа ൒ ሾ𝜎ሿ௧ ൌ 66.67 MPa. 
Strength is insufficient. 
 

According to Mohr’s strength theory 
 

𝜎௘௤୑ ൌ 𝜎ଵ െ
𝜎ult೟  

𝜎ultc

𝜎ଷ ൌ 41.46 െ
200
750

ሺെ60ሻ ൌ 51.46 МPа ൑ ሾ𝜎ሿ௧ ൌ 66.67 MPa. 

Strength is ensured. 
 

This example demonstrates the use of different strength theories for a verification 
analysis of a part made from a brittle material. The use of the third and fourth strength 
theories, which are applied for ductile materials, led to a negative result. 
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2. CONSTRUCTION OF DIAGRAMS  
OF INTERNAL FORCES AND MOMENTS  

FOR ARBITRARILY LOADED BROKEN BARS 
 
 

2.1. Diagrams and Fundamental Rules of Their Construction 
 
All six internal forces and moments may act in the cross-sections of a cranked bar: 

𝑁௫, 𝑄௭, 𝑄௬, 𝑀௫, 𝑀௬ and 𝑀௭. All the rules used for constructing diagrams in beams and 

planar frames also apply to cranked bars. 
 

 A diagram (historically on French “épure” – sketch) is a graphical representation 
showing the variation of an internal force or an internal moment along the longitu-
dinal axis of the bar. 

 

The graphical representation of a function is highly illustrative, making it easy to 
evaluate its key features. In the context of mechanics of materials and structural analysis, 
this means the ability to identify the critical section. This is the main purpose of con-
structing diagrams. 

 

Basic rules for constructing diagrams 
 

1. The diagram's base-axis is drawn parallel to the longitudinal axis of the bar. If the bar's 
axis is curved, the diagram's axis is also curved (or cranked). 

 

2. The value of the internal force or moment acting in a cross-section of the bar is plotted 
to scale along the normal to the base-axis at the point corresponding to that cross-
section. 

 

3. Each diagram must indicate the name of the internal force or moment, the units of 
measurement, the sign convention, numerical values at characteristic points, and be 
hatched perpendicularly to the diagram's axis. 

 

Rules for dividing a structural element into segments 
 

1. The law of external load application (including support reactions) remains unchanged 
within a single segment. That is, segment boundaries are defined by the cross-sections 
where concentrated forces (𝑃) or concentrated force couples (moment 𝑀) are applied, 
or where the action of an external distributed load (𝑞) begins or ends. 

2. The geometry of the cross-section does not change within a segment; alternatively, 
boundaries occur where the cross-sectional area changes abruptly. 
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3. The boundaries of segments in a frame and a cranked bar are also nodal points (points 
of bending). 

4. The material from which the bar is made does not change within a segment. 
 

Sign conventions for constructing diagrams 
 

1. Axial force 𝑵𝒙 

An external force acting on either side of the 
cross-section 𝑛 െ 𝑛 makes a positive contribution 
to the magnitude of the axial force 𝑁௫ if it causes 
tension (directed away from that cross-section) and 
negative if it causes compression (directed toward 
that cross-section) (Fig. 2.1).  

Fig. 2.1 
 

2. Torsional moment 𝑴𝒙 
 

When constructing torsional moment dia-
grams, an arbitrary sign convention is used. In 
this text, we will use the following rule: an exter-
nal torque acting on either side of the cross-sec-
tion  𝑛 െ 𝑛 makes a positive contribution to the 
magnitude of the torsional moment 𝑀௫, if, when 
viewed from the direction of the outward normal 
to the considered cross-section, it is directed 
counter-clockwise, and negative if it is directed 
clockwise (Fig. 2.2) 

 

Fig. 2.2 
 

3. Shear forces 𝑸𝒛 and 𝑸𝒚 
 

An external transverse force acting on either 
side of the cross-section 𝑛 െ 𝑛 makes a positive 
contribution to the magnitude of the shear force 𝑄௭ 
(or 𝑄௬) acting in that cross-section if it tends to ro-

tate the considered piece of a bar clockwise relative 
to the principal central axis of inertia 𝑦 (or 𝑧), and 
negative if it rotates it counter-clockwise (Fig. 2.3).  

Fig. 2.3 
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4. Bending moments 𝑴𝒚 and 𝑴𝒛 
 

 

An external force or a concentrated mo-
ment acting on either side of the cross-section 
𝑛 െ 𝑛 makes a positive contribution to the 
magnitude of the bending moment 𝑀௬ (or 𝑀௭), 

acting in that cross-section if this external force 
or concentrated moment causes compression of 
the top fibers and tension of the bottom fibers 
of the bar (causing a convex-downward bend), 
and negative if it causes tension of the top fi-
bers and compression of the bottom fibers 
(causing a convex-upward bend) (Fig. 2.4). Fig. 2.4 

 

The bending moment diagrams 𝑀௬ and 𝑀௭ are drawn on the side of the bar`s tensile 

fibers. 
 
 

2.2. Construction of Internal Forces and Moments Diagrams  
for a Planar Cranked Bar with Out-of-Plane Loading 

 
 A planar cranked bar with out-of-plane loading is a cranked bar whose elements 

are rigidly connected at the nodes (fixed joints) and lie in a single plane, but the 
external loads act in arbitrary directions. 

 

When constructing diagrams, the external forces are represented by their projec-
tions onto the accepted coordinate axes. 

 

In engineering practice, two main methods are used for constructing diagrams of 
internal forces and moments in cranked bars. 

 

2.2.1. The First Method for Constructing Diagrams 
 
The essence of this method is as follows: after determining the internal forces and 

moments in the first segment, all external loads (concentrated forces and moments, dis-
tributed loads) acting within that segment are resolved and transferred, in accordance 
with the theorems of statics, to the initial cross-section of the second segment. After de-
termining the internal forces and moments in the second segment, all external forces act-
ing within that segment are resolved to the initial cross-section of the third segment, and 
so on. With such approach, each segment of the cranked bar is treated as a cantilever. 
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Example 2.1 
 

Construct the diagrams of internal forces and mo-
ments for the given cranked bar (Fig. 2.5). 

 

Given: 𝑃ଵ ൌ 15 kN;  𝑃ଶ ൌ 20 kN;  𝑃ଷ ൌ 10 kN; 
𝑎 ൌ 2 m;  𝑏 ൌ 3 m;  𝑐 ൌ 4 m. 

It is necessary to construct the diagrams of 
 

𝑁௫,  𝑄௭,  𝑄௬,  𝑀௫,  𝑀௬,  𝑀௭. 
 

Fig. 2.5 
 

Solution 
 

1. Let us draw the cranked bar to scale and divide it into three segments: I, II, and III. 

In an arbitrary cross-section of each 
segment, at a distance 𝑥 from its beginning, 
we will place the local 𝑥𝑦𝑧 coordinate sys-
tem such that the 𝑥-axis coincides with the 
bar's longitudinal axis, the 𝑧-axis is directed 
downwards, and the horizontal 𝑦-axis, to-
gether with the first two axes, forms a right-
handed orthogonal basis (Fig. 2.6).  

Fig. 2.6 
 

Remark If the cranked bar is “unfolded” along the shortest angular path into a 
straight line, the directions of the 𝑥, 𝑦 and 𝑧 axes must coincide across 
all segments. 

 

2. Using the method of sections, we'll write the equations for the internal forces and 
moments for each segment. 

 

Let's consider segment I (Fig. 2.7) ሺ0 ൑ 𝑥 ൑ 𝑎,   𝑎 ൌ 2 mሻ. 
 

𝑁௫ூ ൌ െ𝑃ଶ ൌ െ20 kN; 
 

𝑄௭ூ ൌ 𝑃ଵ ൌ 15 kN; 
 

𝑄௬ூ ൌ െ𝑃ଷ ൌ െ10 kN; 
 

𝑀௫
ூ ൌ 0; 

 

𝑀௬
ூ ൌ െ𝑃ଵ𝑥 ൌ 15𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௔ୀଶ m
ൌ 

ൌ െ30 kN·m;  
Fig. 2.7 

 

𝑀௭
ூ ൌ െ𝑃ଷ𝑥 ൌ െ10𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௔ୀଶ m
ൌ െ20 kN·m. 

 



30 

Remark The moment created by a non-zero force relative to a certain axis is 
zero if the force's line of action intersects or is parallel to that axis. 

 
Let’s consider segment II ሺ0 ൑ 𝑥 ൑ 𝑏,   𝑏 ൌ 3 mሻ. 
 

Let us transfer the forces 𝑃ଵ, 𝑃ଶ, and 𝑃ଷ to the initial cross-section of segment II 
(point В) (Fig. 2.8). 

 

 

Since the line of action of force 𝑃ଶ 
passes through point B, according to the prin-
ciples of statics, the application point of force 
𝑃ଶ can be simply transferred to point В. 

 

To resolve force 𝑃ଵ to point B, we apply 
a statically equivalent system (a static zero) at 
this point, consisting of two equal and oppo-
sitely directed forces 𝑃ଵ whose lines of action 
coincide. Fig. 2.8 

 

Thus, the action of force 𝑃ଵ applied at point A is statically equivalent to the com-
bined action of force 𝑃ଵ and a moment 𝑃ଵ𝑎 applied at point B. 

 

The same procedure is used to transfer force 𝑃ଷ. 
 

The calculation scheme for segment II is shown in Fig. 2.9. 
 

 

𝑁௫ூூ ൌ െ𝑃ଷ ൌ െ10 kN; 
 

𝑄௭ூூ ൌ 𝑃ଵ ൌ 15 kN; 
 

𝑄௬ூூ ൌ 𝑃ଶ ൌ 20 kN; 
 

𝑀௫
ூூ ൌ 𝑃ଵ𝑎 ൌ 15 ∙ 2 ൌ 30 kN·m; 

Fig. 2.9 
 

𝑀௬
ூூ ൌ െ𝑃ଵ𝑥 ൌ െ15𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௕ୀଷ m
ൌ െ45 kN·m; 

 

𝑀௭
ூூ ൌ െ𝑃ଷ𝑎 ൅ 𝑃ଶ𝑥 ൌ െ10 ∙ 2 ൅ 20𝑥 ቚ

௫ୀ଴
ൌ െ20 kN·m  ቚ

௫ୀ௕ୀଷ m
ൌ 40 kN·m. 
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Let’s consider segment III ሺ0 ൑ 𝑥 ൑ 𝑐,   𝑐 ൌ 4 mሻ. 
 

We now resolve the system of external forces acting on segment II to the initial 
cross-section of segment III (point C), in the same manner as discussed above. 

The calculation scheme of segment III is shown in Fig. 2.10. 
 

Remark As shown in static, a moment is considered as a free load and may be 
relocated within its plane or between parallel planes without changing 
its magnitude or direction. 

 

𝑁௫ூூூ ൌ 𝑃ଶ ൌ 20 kN; 
 

𝑄௭ூூூ ൌ 𝑃ଵ ൌ 15 kN; 
 

𝑄௬ூூூ ൌ 𝑃ଷ ൌ 10 kN; 
 

𝑀௫
ூூூ ൌ 𝑃ଵ𝑏 ൌ 15 ∙ 3 ൌ 45 kN·m; 

 
Fig. 2.10 

 

𝑀௬
ூூூ ൌ 𝑃ଵ𝑎 െ 𝑃ଵ𝑥 ൌ 15 ∙ 2 െ 15𝑥 ቚ

௫ୀ଴
ൌ 30 kN·m ቚ

௫ୀ௖ୀସ m
ൌ െ30 kN·m; 

 

𝑀௭
ூூூ ൌ 𝑃ଶ𝑏 െ 𝑃ଷ𝑎 ൅ 𝑃ଷ𝑥 ൌ 20 ∙ 3 െ 10 ∙ 2 ൅ 10𝑥 ቚ

௫ୀ଴
ൌ 40 ቚ

௫ୀ௖ୀସ m
ൌ 80 kN·m. 

 

Remarks 1. To correctly establish the sign of the axial force 𝑁௫ created by the 
external load 𝑃ଶ (𝑃ଷ) in the cross-sections of Segment II (III), this 
force is to be regarded as applied in the same direction at the initial 
cross-section of the corresponding segment (see Fig. 2.6 – 2.10). 

 

2. To correctly determine the sign of the shear force 𝑄௭ (𝑄௬) created 

by the external load 𝑃ଵ (𝑃ଶ and 𝑃ଷ) in the cross-sections of Segments 
II and III, this force is to be regarded as applied in the same direction 
at the initial cross-sections of the corresponding segments II and III 
(see Fig. 2.6 – 2.10). 

 

3. Let us construct the diagrams (Fig. 2.11). 
 

Remark When constructing internal forces and moments diagrams for a 
cranked bar, the following must be taken into account: 

a) the diagrams of 𝑁௫ and 𝑀௫ can be drawn in any plane; 
b) the diagrams of 𝑄௭, 𝑄௬, 𝑀௬, 𝑀௭ must be drawn only in their re-

spective planes of action; 
c) the diagrams of 𝑀௬ and 𝑀௭ are drawn on the side of the tensile 

fibres of the bar. 
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Fig. 2.11 

 
4. Let us check the correctness of the diagram construction. 
 

To this end, infinitesimal elements of the cranked bar are isolated at the junctions 
of its parts (nodes B and C), and their equilibrium is analysed under the action of internal 
and external loads applied within these nodes (Fig. 2.12). 

In Fig. 2.12, all internal forces and moments are shown in their true directions. 
  



33 

 
Fig. 2.12 

 
Equilibrium equations for node В: 
 

∑𝑃௫ ൌ 20 െ 20 ൌ 0;  ∑𝑃௬ ൌ 10 െ 10 ൌ 0;  ∑𝑃௭ ൌ 15 െ 15 ൌ 0; 
 

∑𝑀௫ ൌ 0;   ∑𝑀௬ ൌ 30 െ 30 ൌ 0;  ∑𝑀௭ ൌ 20 െ 20 ൌ 0. 

 
Equilibrium equations for node C: 
 

∑𝑃௫ ൌ 20 െ 20 ൌ 0;  ∑𝑃௬ ൌ 10 െ 10 ൌ 0;  ∑𝑃௭ ൌ 15 െ 15 ൌ 0; 
 

∑𝑀௫ ൌ 45 െ 45 ൌ 0;  ∑𝑀௬ ൌ 30 െ 30 ൌ 0;  ∑𝑀௭ ൌ 40 െ 40 ൌ 0. 
 

Remark When constructing internal forces and moments diagrams for a 
cranked bar, each of its elements must be considered as a rod in ten-
sion-compression, a shaft in torsion, and a beam in transverse bending 
in two planes. In this process, all sign conventions for 𝑁௫, 𝑄௭, 𝑄௬, 𝑀௫, 
𝑀௬, 𝑀௭, and all rules for constructing diagrams are preserved. 
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Example 2.2 
 

Construct the diagrams of internal forces and moments for the given cranked bar 
(Fig. 2.13). 

 

 

Given: 𝑃ଵ ൌ 20 kN;  𝑃ଶ ൌ 10 kN;  𝑞 ൌ 15 kN/m; 
𝑎 ൌ 2 m;  𝑏 ൌ 2 m;  𝑐 ൌ 3 m. 
 

It is necessary to construct the diagrams of 
 

𝑁௫,  𝑄௭,  𝑄௬,  𝑀௫,  𝑀௬,  𝑀௭. 
Fig. 2.13 

 

Solution 
 

1. Let us draw the cranked bar to scale and divide it into three segments: I, II, and III. 
 

 

In an arbitrary cross-section of 
each segment at a distance 𝑥 from its be-
ginning, we will place a local 𝑥𝑦𝑧 coor-
dinate system (Fig. 2.14). 

Fig. 2.14 
 

2. Using the method of sections, we'll write the equations for the internal forces and 
moments for each segment. 

 

Let’s consider segment I (Fig. 2.15) ሺ0 ൑ 𝑥 ൑ 𝑎,   𝑎 ൌ 2 mሻ. 
 

 

𝑁௫ூ ൌ 0; 
 

𝑄௭ூ ൌ െ𝑃ଵ ൌ െ20 kN; 
 

𝑄௬ூ ൌ 𝑃ଶ ൌ 10 kN; 
 

𝑀௫
ூ ൌ 0; 

 

𝑀௬
ூ ൌ 𝑃ଵ𝑥 ൌ 20𝑥 ቚ

௫ୀ଴
ൌ 

 

ൌ 0 ቚ
௫ୀ௔ୀଶ m

ൌ 40 kN·m; Fig. 2.15 
 

𝑀௭
ூ ൌ 𝑃ଶ𝑥 ൌ 10𝑥 ቚ

௫ୀ଴
ൌ 0   ቚ

௫ୀ௔ୀଶ m
ൌ 20 kN·m. 
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Let’s consider segment II ሺ0 ൑ 𝑥 ൑ 𝑏,   𝑏 ൌ 2 mሻ. 
 

Let us transfer the forces 𝑃ଵ and 𝑃ଶ to the initial cross-section of segment II (point В) 
(Fig. 2.16). 

 

𝑁௫ூூ ൌ െ𝑃ଶ ൌ െ10 kN; 
 

𝑄௭ூூ ൌ 𝑞𝑥 െ 𝑃ଵ ൌ 15𝑥 െ 20 ቚ
௫ୀ଴

ൌ 
 

ൌ െ20 kN ቚ
௫ୀ௕ୀଶ m

ൌ 10 kN. 
 

Since the shear force 𝑄௭ changes sign within 
Segment II, it is necessary to determine the point 
𝑥e, at which 𝑄௭ூூ ൌ 0: 

𝑞𝑥e െ 𝑃ଵ ൌ 0  ⟹   𝑥e ൌ
𝑃ଵ
𝑞
ൌ

20
15

ൌ 1.33 m; 
 

Fig. 2.16 
 

𝑄௬ூூ ൌ 0; 
 

𝑀௫
ூூ ൌ 𝑃ଵ𝑎 ൌ 20 ∙ 2 ൌ 40 kN·m; 

 

𝑀௬
ூூ ൌ 𝑃ଵ𝑥 െ

𝑞𝑥ଶ

2
ൌ 20𝑥 െ

15𝑥ଶ

2
ቤ
௫ୀ଴

ൌ 0 ቚ
௫ୀ௕ୀଶ m

ൌ 10 kN·m ቚ
௫ୀ௫eୀଵ,ଷଷ m

ൌ 

 

ൌ 13,33 kN·m; 
 

𝑀௭
ூூ ൌ 𝑃ଶ𝑎 ൌ 10 ∙ 2 ൌ 20 kN·m. 

 

Let’s consider segment III ሺ0 ൑ 𝑥 ൑ 𝑐,   𝑐 ൌ 3 mሻ. 
 

Let us replace the distributed load acting within the second segment with a resultant 
force (Fig. 2.17) and resolve the system of external forces on segment II to the initial 
cross-section of segment III (point C). 

The calculation scheme for segment III is shown in Fig. 2.18. 
 

  
Fig. 2.17 Fig. 2.18 
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𝑁௫ூூூ ൌ 0; 
 

𝑄௭ூூூ ൌ െ𝑃ଵ ൅ 𝑞𝑏 ൌ െ20 ൅ 15 ∙ 2 ൌ 10 kN; 
 

𝑄௬ூூூ ൌ 𝑃ଶ ൌ 10 kN; 
 

𝑀௫
ூூூ ൌ െ𝑃ଵ𝑏 ൅

𝑞𝑏ଶ

2
ൌ െ20 ∙ 2 ൅

15 ∙ 2ଶ

2
ൌ െ10 kN·m; 

 

𝑀௬
ூூூ ൌ 𝑃ଵ𝑎 ൅ 𝑃ଵ𝑥 െ 𝑞𝑏𝑥 ൌ 20 ∙ 2 ൅ 20𝑥 െ 15 ∙ 2𝑥 ቚ

௫ୀ଴
ൌ 

ൌ 40 kN·m ቚ
௫ୀ௖ୀଷ m

ൌ 10 kN·m; 
 

𝑀௭
ூூூ ൌ 𝑃ଶ𝑥 ൅ 𝑃ଶ𝑎 ൌ 10 ∙ 𝑥 ൅ 10 ∙ 2 ቚ

௫ୀ଴
ൌ 20 kN·m ቚ

௫ୀ௖ୀଷ m
ൌ 50 kN·m. 

 

3. Let us construct the diagrams (Fig. 2.19). 
 

 
Fig. 2.19 
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4. Let us check the correctness of the diagram construction. 
 

To this end, infinitesimal elements of the cranked bar are isolated at the junctions 
of its parts (nodes B and C), and their equilibrium is analysed under the action of internal 
and external loads applied within these nodes (Fig. 2.20). 

In Fig. 2.20, all internal forces and moments are shown in their true directions. 
 

 
Fig. 2.20 

 

Equilibrium equations for node В: 
 

∑𝑃௫ ൌ 0;    ∑𝑃௬ ൌ 10 െ 10 ൌ 0;  ∑𝑃௭ ൌ 20 െ 20 ൌ 0; 
 

∑𝑀௫ ൌ 0;   ∑𝑀௬ ൌ 40 െ 40 ൌ 0;  ∑𝑀௭ ൌ 20 െ 20 ൌ 0. 
 

Equilibrium equations for node C: 
 

∑𝑃௫ ൌ 0;    ∑𝑃௬ ൌ 10 െ 10 ൌ 0;  ∑𝑃௭ ൌ 10 െ 10 ൌ 0; 
 

∑𝑀௫ ൌ 10 െ 10 ൌ 0;  ∑𝑀௬ ൌ 40 െ 40 ൌ 0;  ∑𝑀௭ ൌ 20 െ 20 ൌ 0. 
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2.2.2. The Second Method for Constructing Diagrams 
 

When using the second method, the operation of resolving the system of external 
forces acting on the considered segment into the initial section of the subsequent segment 
is excluded, which allows the solution to be presented in a more compact form. 

 

Example 2.3 
 

Construct the diagrams of internal forces and moments for the given cranked bar 
(Fig. 2.21). 

 

 

Given: 𝑃ଵ ൌ 5 𝑘𝑁;   𝑃ଶ ൌ 30 kN; 
𝑞ଵ ൌ 15 kN/m; 𝑞ଶ ൌ 20 kN/m; 
𝑀 ൌ 20 kN·m;   𝑎 ൌ 3 m; 
𝑏 ൌ 2 m;   𝑐 ൌ 2 m;   𝑙 ൌ 3 m. 

 

It is necessary to construct the dia-
grams of 
 

𝑁௫,  𝑄௭,  𝑄௬,  𝑀௫,  𝑀௬,  𝑀௭. 
Fig. 2.21 

 

Solution 
 

1. Let us draw a cranked bar to scale and divide it into segments. In an arbitrary 
cross-section of each segment, at a distance x from its beginning, let us introduce a local 
𝑥𝑦𝑧 coordinate system so that the 𝑥-axis coincides with the longitudinal axis of the bar, 
the 𝑧-axis is directed downwards, and the horizontal 𝑦-axis, together with the first two 
axes, forms a right-handed orthogonal basis (Fig. 2.22). 

 

 

Fig. 2.22 
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Remarks 1. To obtain a formally ordered sign convention for the internal forces 
and moments across all segments, it is preferable to derive the coor-
dinate system for segment II by a simple translation, that is, by rotat-
ing the coordinate system of segment I through 90° about the 𝑧-axis, 
and so on. 
2. If the cranked bar is straightened along the shortest angular path 
into a single line, the directions of the 𝑥, 𝑦 and 𝑧 axes in all segments 
must coincide. 

 

2. Using the method of sections, write the equilibrium equations for the internal 
forces and moments on each segment. 
 

Segment I ሺ0 ൑ 𝑥 ൑ 𝑎,   𝑎 ൌ 3 mሻ. 
 

𝑁௫ூ ൌ െ𝑃ଶ ൌ െ30 kN;  𝑄௭ூ ൌ െ𝑃ଵ ൌ െ5 kN;  𝑄௬ூ ൌ 0; 
 

𝑀௫
ூ ൌ 0; 

 

𝑀௬
ூ ൌ 𝑃ଵ𝑥 ൌ 5 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௔ୀଷ ௠
ൌ 15 kN·m; 

 

𝑀௭
ூ ൌ 0. 

 

Segment II ሺ0 ൑ 𝑥 ൑ 𝑏,   𝑏 ൌ 2 mሻ. 
 

𝑁௫ூூ ൌ 0; 
 

𝑄௭ூூ ൌ െ𝑃ଵ ൌ െ5 kN; 
 

𝑄௬ூூ ൌ 𝑞ଶ𝑥 െ 𝑃ଶ ൌ 20 ∙ 𝑥 െ 30 ቚ
௫ୀ଴

ൌ െ30 kN ቚ
௫ୀ௕ୀଶ m

ൌ 10 kN. 
 

Since the shear force 𝑄௬ changes sign within segment II, it is necessary to determine 

the point 𝑥e at which 𝑄௬ூூ ൌ 0: 

𝑞ଶ𝑥e െ 𝑃ଶ ൌ 0    ⟹     𝑥e ൌ
𝑃ଶ
𝑞ଶ

ൌ
30
20

ൌ 1.5 m; 

 

𝑀௫
ூூ ൌ 𝑃ଵ𝑎 ൌ 5 ∙ 3 ൌ 15 kN·m; 

 

𝑀௬
ூூ ൌ 𝑃ଵ𝑥 െ 𝑀 ൌ 5 ∙ 𝑥 െ 20 ൌ ቚ

௫ୀ଴
ൌ െ20 kN·m ቚ

௫ୀ௕ୀଶ m
ൌ െ10 kN·m; 

 

𝑀௭
ூூ ൌ

𝑞ଶ𝑥ଶ

2
െ 𝑃ଶ𝑥 ൌ

20𝑥ଶ

2
െ 30 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௕ୀଶ m
ൌ 

 

ൌ െ20 kN·m ቚ
௫ୀ௫eୀଵ.ହ ௠

ൌ െ22.5 kN·m. 
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Segment III ሺ0 ൑ 𝑥 ൑ 𝑐,   𝑐 ൌ 2 mሻ. 
 

Let us construct a separate calculation scheme by replacing the distributed load act-
ing within the second segment with a resultant concentrated force (Fig. 2.23). 

 

 
Fig. 2.23 

 

𝑁௫ூூூ ൌ 𝑃ଶ െ 𝑞ଶ𝑏 ൌ 30 െ 20 ∙ 2 ൌ െ10 kN; 
 

𝑄௭ூூூ ൌ െ𝑃ଵ ൌ െ5 kN; 
 

𝑄௬ூூூ ൌ 0; 
 

𝑀௫
ூூூ ൌ െ𝑀 ൅ 𝑃ଵ𝑏 ൌ െ20 ൅ 5 ∙ 2 ൌ െ10 kN·m; 

 

𝑀௬
ூூூ ൌ 𝑃ଵሺ𝑥 െ 𝑎ሻ ൌ 5ሺ𝑥 െ 3ሻ ቚ

௫ୀ଴
ൌ െ15 kN·m ቚ

௫ୀ௖ୀଶ m
ൌ െ5 kN·m; 

 

𝑀௭
ூூூ ൌ 𝑞ଶ𝑏

𝑏
2
െ 𝑃ଶ𝑏 ൌ 20 ∙ 2 ∙

2
2
െ 30 ∙ 2 ൌ െ20 kN·m. 

 

Segment IV ሺ0 ൑ 𝑥 ൑ 𝑙,   𝑙 ൌ 3 mሻ. 
 

𝑁௫ூ௏ ൌ 0; 
 

𝑄௭ூ௏ ൌ
𝑞ଵ𝑥ଶ

2𝑙
െ 𝑃ଵ ൌ

15𝑥ଶ

2 ∙ 3
െ 5 ቚ

௫ୀ଴
ൌ െ5 kN ቚ

௫ୀ௟ୀଷ m
ൌ 17.5 𝑘𝑁. 

 

Since the shear force 𝑄௬ changes sign within segment IV, it is necessary to deter-

mine the point 𝑥e at which 𝑄௭ூ௏ ൌ 0: 

𝑞ଵ𝑥e
ଶ

2𝑙
െ 𝑃ଵ ൌ 0    ⟹     𝑥e ൌ ඨ

2𝑃ଵ𝑙
𝑞ଵ

ൌ ඨ
2 ∙ 5 ∙ 3

15
ൌ 1.414 m; 

 

𝑄௬ூ௏ ൌ 𝑞ଶ𝑏 െ 𝑃ଶ ൌ 20 ∙ 2 െ 30 ൌ 10 kN; 
 

𝑀௫
ூ௏ ൌ 𝑃ଵሺ𝑎 െ 𝑐ሻ ൌ 5 ∙ ሺ3 െ 2ሻ ൌ 5 kN·m; 
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𝑀௬
ூ௏ ൌ 𝑃ଵሺ𝑏 ൅ 𝑥ሻ െ

𝑞ଵ𝑥ଷ

6𝑙
െ 𝑀 ൌ 5 ∙ ሺ2 ൅ 𝑥ሻ െ

15 ∙ 𝑥ଷ

6 ∙ 3
െ 20 ൌ 

 

ൌ ቚ
௫ୀ଴

ൌ െ10 kN·m ቚ
௫ୀ௟ୀଷ m

ൌ െ17.5 kN·m ቚ
௫ୀ௫eୀଵ.ସଵସ m

ൌ െ9.998 kN·m; 

 

𝑀௭
ூ௏ ൌ 𝑞ଶ𝑏 ൬

𝑏
2
൅ 𝑥൰ െ 𝑃ଶሺ𝑏 ൅ 𝑥ሻ ൌ 20 ∙ 2 ∙ ሺ1 ൅ 𝑥ሻ െ 30 ∙ ሺ2 ൅ 𝑥ሻ ൌ 

 

ൌ ቚ
௫ୀ଴

ൌ െ20 kN·m ቚ
௫ୀ௟ୀଷ m

ൌ 10 kN·m. 

 
3. Let us construct the diagrams (Fig. 2.24). 
 

Remarks 1. When constructing internal forces and moments diagrams for a 
cranked bar, each of its elements must be considered as a rod in ten-
sion-compression, a shaft in torsion, and a beam in transverse bending 
in two planes. In this process, all sign conventions for 𝑁௫, 𝑄௭, 𝑄௬, 𝑀௫, 
𝑀௬, 𝑀௭, and all rules for constructing diagrams are preserved: 
 

a) the diagrams of 𝑁௫ and 𝑀௫ can be drawn in any plane; 
b) the diagrams of 𝑄௭, 𝑄௬, 𝑀௬, and 𝑀௭ must be drawn only in their 

respective planes of action; 
c) the diagrams of 𝑀௬ and 𝑀௭ are drawn on the side of the tensile 

fibres of the bar. 
 

2. At right-angled corners (fixed joints) of a planar cranked bar, there 
occurs a mutual transition of 𝑀௫ into 𝑀௬, as well as of 𝑁௫ into 𝑄௬, 
and vice versa. 
 

3. For parallel segments of a planar cranked bar with out-of-plane 
loading, the following rules hold true, the following rules hold true, 
provided there are no concentrated moments acting perpendicular to 
the plane of the bar at the nodes of these segments: 
 

a) for the coincident directions of the paths (see Fig. 2.22, seg-
ments II and IV), the value of 𝑀௬ at the end of one segment (seg-
ment II) must be equal to the value of 𝑀௬ at the beginning of the 
next segment (segment IV) (see Fig. 2.24); 

 

b) for the opposite (counter) directions of the paths (see Fig. 22, 
segments I and III), the value of 𝑀௬ at the end of one segment 
(segment I) must be equal in magnitude and opposite in sign to 
the value of 𝑀௬ at the beginning of the following segment (seg-
ment III) (see Fig. 2.24).  
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Fig. 2.24 

 
4. Let us check the correctness of the diagram construction. 
 

To this end, infinitesimal elements of the cranked bar are isolated at the junctions 
of its parts (nodes A, B and C), and their equilibrium is analysed under the action of 
internal and external loads applied within these nodes (Fig. 2.25). 

In Fig. 2.25, all internal forces and moments are shown in their true directions. 
 

Equilibrium equations for node А: 
 

∑𝑃௫ ൌ 10 െ 10 ൌ 0;  ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 20 െ 20 ൌ 0; 
 

∑𝑀௫ ൌ 0;    ∑𝑀௬ ൌ 30 െ 30 ൌ 0;  ∑𝑀௭ ൌ 0. 
 

Equilibrium equations for node В: 
 

∑𝑃௫ ൌ 0;    ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 20 െ 20 ൌ 0; 
 

∑𝑀௫ ൌ 0;    ∑𝑀௬ ൌ 40 െ 40 ൌ 0;  ∑𝑀௭ ൌ 0. 
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Equilibrium equations for node C: 
 

∑𝑃௫ ൌ 10 െ 10 ൌ 0; ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 15 െ 10 െ 5 ൌ 0; 
 

∑𝑀௫ ൌ 30 െ 30 ൌ 0; ∑𝑀௬ ൌ 30 ൅ 10 െ 40 ൌ 0; ∑𝑀௭ ൌ 30 െ 30 ൌ 0. 
 

 
Fig. 2.25 
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Example 2.4 
 

Construct the diagrams of internal forces and moments for the given cranked bar 
(Fig. 2.26). 

 

Given: 𝑃ଵ ൌ 10 kN;  𝑃ଶ ൌ 20 kN;  𝑃ଷ ൌ 5 kN; 
𝑀 ൌ 30 kN·m;   𝑞 ൌ 5 kN/m; 
𝑎 ൌ 2 m;   𝑏 ൌ 3 m;   𝑐 ൌ 2 m; 
𝑑 ൌ 2 m;   𝑙 ൌ 4 m. 
 

It is necessary to construct the diagrams of 
 

𝑁௫,  𝑄௭,  𝑄௬,  𝑀௫,  𝑀௬,  𝑀௭. 
Fig. 2.26 

 

Solution 
 

1. Let us draw a cranked bar to scale and divide it into segments. In an arbitrary 
cross-section of each segment, at a distance x from its beginning, let us introduce a local 
𝑥𝑦𝑧 coordinate system so that the 𝑥-axis coincides with the longitudinal axis of the bar, 
the 𝑧-axis is directed downward, and the horizontal 𝑦-axis, together with the first two 
axes, forms a right-handed orthogonal basis (Fig. 2.27). 

 

 
Fig. 2.27 

 

2. Using the method of sections, write the equilibrium equations for the internal 
forces and moments on each segment. 
 

Segment I ሺ0 ൑ 𝑥 ൑ 𝑎,   𝑎 ൌ 2 mሻ. 
 

𝑁௫ூ ൌ െ𝑃ଵ ൌ െ10 kN;    𝑄௭ூൌ0;   𝑄௬ூ ൌ 0; 
 

𝑀௫
ூ ൌ 0;      𝑀௬

ூ ൌ 0;   𝑀௭
ூ ൌ 0. 
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Segment II ሺ0 ൑ 𝑥 ൑ 𝑏,   𝑏 ൌ 3 mሻ. 
 

𝑁௫ூூ ൌ 0;     𝑄௭ூூ ൌ 0;  𝑄௬ூூ ൌ 𝑃ଵ ൌ 10 kN; 
 

𝑀௫
ூூ ൌ െ𝑀 ൌ െ30 kN·m;  𝑀௬

ூூ ൌ 0; 
 

𝑀௭
ூூ ൌ 𝑃ଵ𝑥 ൌ 10 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௕ୀଷ m
ൌ 30 kN·m. 

 

Segment III ሺ0 ൑ 𝑥 ൑ 𝑐,   𝑐 ൌ 2 mሻ. 
 

𝑁௫ூூூ ൌ 0;  𝑄௭ூூூ ൌ െ𝑃ଶ ൌ െ20 kN;      𝑄௬ூூூ ൌ 0; 
 

𝑀௫
ூூூ ൌ 0;  𝑀௬

ூூூ ൌ 𝑃ଶ𝑥 ൌ 20𝑥 ቚ
௫ୀ଴

ൌ 0 ቚ
௫ୀ௖ୀଷ m

ൌ 40 kN·m; 𝑀௭
ூூூ ൌ 0. 

 

Segment IV ሺ0 ൑ 𝑥 ൑ 𝑑,   𝑑 ൌ 2 mሻ. 
  

𝑁௫ூ௏ ൌ 0; 
 

𝑄௭ூ௏ ൌ 𝑞𝑥 െ 𝑃ଶ ൌ 5𝑥 െ 20 ቚ
௫ୀ଴

ൌ െ20 kN ቚ
௫ୀௗୀଶ m

ൌ െ10 kN; 
 

𝑄௬ூ௏ ൌ 0;    𝑀௫
ூ௏ ൌ െ𝑃ଶ𝑐 ൌ െ20 ∙ 2 ൌ െ40 kN·m; 

 

𝑀௬
ூ௏ ൌ 𝑃ଶ𝑥 െ

𝑞𝑥ଶ

2
ൌ 20𝑥 െ

5𝑥ଶ

2
ቚ
௫ୀ଴

ൌ 0 ቚ
௫ୀௗୀଶ m

ൌ 30 kN·m; 
 

𝑀௭
ூ௏ ൌ 0. 

 

Segment V ሺ0 ൑ 𝑥 ൑ 𝑙,   𝑙 ൌ 4 mሻ. 
 

Let us construct a separate calculation scheme by replacing the distributed load act-
ing within the fourth segment with a resultant concentrated force (Fig. 2.28). 

 

 
Fig. 2.28 
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𝑁௫௏ ൌ 𝑃ଵ ൌ 10 kN;  𝑄௭௏ ൌ 𝑞𝑑 െ 𝑃ଶ െ 𝑃ଷ ൌ 5 ∙ 2 െ 20 െ 5 ൌ െ15 kN; 
 

𝑄௬௏ ൌ 0;                                     𝑀௫
௏ ൌ െ𝑞𝑑

𝑑
2
൅ 𝑃ଶ𝑑 ൌ െ5 ∙ 2 ∙

2
2
൅ 20 ∙ 2 ൌ 30 kN·m; 

 

𝑀௬
௏ ൌ 𝑃ଷ𝑥 ൅ 𝑃ଵሺ𝑐 ൅ 𝑥ሻ െ 𝑞𝑑𝑥 െ𝑀 ൌ 5𝑥 ൅ 20 ∙ ሺ2 ൅ 𝑥ሻ െ 5 ∙ 2 ∙ 𝑥 െ 30 ൌ 

 

ൌ ቚ
௫ୀ଴

ൌ 10 kN·m ቚ
௫ୀ௟ୀସ m

ൌ 70 kN·m; 
 

𝑀௭
௏ ൌ 𝑃ଵ𝑏 ൌ 10 ∙ 3 ൌ 30 kN·m. 
 

3. Let us construct the diagrams (Fig. 2.29). 
 

 
Fig. 2.29 

 

4. Let us check the correctness of the diagram construction. 
 

To this end, infinitesimal elements of the cranked bar are isolated at the junctions 
of its parts (nodes A, B and C), and their equilibrium is analysed under the action of 
internal and external loads applied within these nodes (Fig. 2.30). 
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Fig. 2.30 

 

Equilibrium equations for node А: 
 

∑𝑃௫ ൌ 10 െ 10 ൌ 0;  ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 20 െ 20 ൌ 0; 
 

∑𝑀௫ ൌ 0;    ∑𝑀௬ ൌ 30 െ 30 ൌ 0;  ∑𝑀௭ ൌ 0. 
 

Equilibrium equations for node В: 
 

∑𝑃௫ ൌ 0;    ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 20 െ 20 ൌ 0; 
 

∑𝑀௫ ൌ 0;    ∑𝑀௬ ൌ 40 െ 40 ൌ 0;  ∑𝑀௭ ൌ 0. 
 

Equilibrium equations for node C: 
 

∑𝑃௫ ൌ 10 െ 10 ൌ 0; ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 15 െ 10 െ 5 ൌ 0; 
 

∑𝑀௫ ൌ 30 െ 30 ൌ 0; ∑𝑀௬ ൌ 30 ൅ 10 െ 40 ൌ 0; ∑𝑀௭ ൌ 30 െ 30 ൌ 0. 
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2.3. Construction of Diagrams of Internal Forces and Moments 
for a Spatial Cranked Bar 

 
 A cranked bar is called spatial if all its elements are rigidly connected at the nodes 

(fixed joints) and their longitudinal axes do not lie in a single plane. 
 
 

Example 2.5 
 

Construct the diagrams of internal forces and moments for the given spatial cranked 
bar (Fig. 2.31). 

 

 

Given: 𝑃 ൌ 10 kN;   𝑞 ൌ 15 kN/m; 
𝑎 ൌ 2 m;   𝑏 ൌ 1 m;   𝑐 ൌ 2 m; 
𝑑 ൌ 1.5 m;    𝑙 ൌ 2 m. 
 

It is necessary to construct the diagrams of 
 

𝑁௫,  𝑄௭,  𝑄௬,  𝑀௫,  𝑀௬,  𝑀௭. 

Fig. 2.31 
 

Solution 
 

1. Let us draw a cranked bar to scale and divide it into segments. 
 

 

In an arbitrary cross-section of seg-
ment V, at a distance 𝑥 from its begin-
ning, let us introduce a local 𝑥𝑦𝑧 coordi-
nate system so that the 𝑥-axis coincides 
with the longitudinal axis of the bar, the 
𝑧-axis is directed downward, and the hor-
izontal 𝑦-axis, together with the first two 
axes, forms a right-handed orthogonal ba-
sis (Fig. 2.32). On segment IV, the coor-
dinate system is obtained by a 90° rota-
tion about the 𝑦-axis; on segment III, by a 
90° rotation about the 𝑧-axis; on segment 
II, also by a 90° rotation about the 𝑧-axis; 
and on segment I, by a 90° rotation about 
the 𝑦-axis. Fig. 2.32 
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2. Using the method of sections, write the equilibrium equations for the internal 
forces and moments on each segment. 

 

Segment I (see Fig. 2.15) ሺ0 ൑ 𝑥 ൑ 𝑎,   𝑎 ൌ 2 mሻ. 
 

𝑁௫ூ ൌ 0; 
 

𝑄௭ூ ൌ െ𝑃 ൌ െ10 kN; 
 

𝑄௬ூ ൌ 0; 
 

𝑀௫
ூ ൌ 0; 

 

𝑀௬
ூ ൌ 𝑃𝑥 ൌ 10𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௔ୀଶ ௠
ൌ 20 kN·m; 

 

𝑀௭
ூ ൌ 0. 

 
Fig. 2.33 

 

Segment II ሺ0 ൑ 𝑥 ൑ 𝑏,   𝑏 ൌ 1 mሻ. 
 

Resolve the load 𝑃 to the initial cross-section of segment II (point A). (Fig. 2.34). 
 

𝑁௫ூூ ൌ െ𝑃 ൌ െ10 kN; 
 

𝑄௭ூூ ൌ െ𝑞𝑥 ൌ െ15𝑥 ቚ
௫ୀ଴

ൌ 
 

ൌ 0 ቚ
௫ୀ௕ୀଵ m

ൌ െ15 kN; 
 

𝑄௬ூூ ൌ 0; 
 

𝑀௫
ூூ ൌ 0; 

 

𝑀௬
ூூ ൌ 𝑃𝑎 ൅

𝑞𝑥ଶ

2
ൌ 10 ∙ 2 ൅

15𝑥ଶ

2
ቤ
௫ୀ଴

ൌ 

 

ൌ 20 kN·m ቚ
௫ୀ௕ୀଵ m

ൌ 27.5 kN·m; 
 

𝑀௭
ூூ ൌ 0. 

 

Fig. 2.34 
 

Segment III ሺ0 ൑ 𝑥 ൑ 𝑐,   𝑐 ൌ 2 mሻ. 
 

Replace the distributed load acting within segment II with an equivalent concen-
trated force, and resolve the system of external forces on segment II to the initial cross-
section of segment III (point B). 
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The calculation scheme of segment III is shown in Fig. 2.35. 
 

 

𝑁௫ூூூ ൌ 0; 
 

𝑄௭ூூூ ൌ െ𝑞𝑏 ൌ െ15 kN; 
 

𝑄௬ூூூ ൌ 𝑃 ൌ 10 kN; 
 

𝑀௫
ூூூ ൌ െ𝑃𝑎 െ 𝑞𝑏

𝑏
2
ൌ െ10 ∙ 2 െ 15 ∙ 1 ∙

1
2
ൌ 

 

ൌ െ27.5 kN·m; 
 

𝑀௬
ூூூ ൌ 𝑞𝑏𝑥 ൌ 15 ∙ 1 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 

 

ൌ 0 ቚ
௫ୀ௖ୀଶ m

ൌ 30 kN·m; 

 

𝑀௭
ூூூ ൌ 𝑃𝑥 ൌ 10𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௖ୀଶ m
ൌ 20 kN·m. 

Fig. 2.35 

 
Segment IV ሺ0 ൑ 𝑥 ൑ 𝑑,   𝑑 ൌ 1,5 mሻ. 
 

Resolve the system of loads acting on segment III to the initial cross-section of seg-
ment IV (point C) (Fig. 2.36). 

 

𝑁௫ூ௏ ൌ 𝑃 ൌ 10 kN; 
 

𝑄௭ூ௏ ൌ െ𝑞𝑏 ൌ െ15 kN; 
 

𝑄௬ூ௏ ൌ 0; 
 

𝑀௫
ூ௏ ൌ െ𝑞𝑏𝑐 ൌ െ15 ∙ 1 ∙ 2 ൌ െ30 kN·m; 

Fig. 2.36 
 

𝑀௬
ூ௏ ൌ െ𝑃𝑎 െ 𝑞𝑏

𝑏
2
൅ 𝑞𝑏𝑥 ൌ െ10 ∙ 2 െ 15 ∙ 1 ∙

1
2
൅ 15 ∙ 1 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 

ൌ െ27.5 kN·m ቚ
௫ୀௗୀଵ.ହ m

ൌ െ5 kN·m; 
 

𝑀௭
ூ௏ ൌ 𝑃𝑐 ൌ 20 kN·m. 
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Segment V ሺ0 ൑ 𝑥 ൑ 𝑙,   𝑙 ൌ 2 mሻ. 
 

Resolve the system of loads acting on segment IV to the initial cross-section of 
segment V (point D) (Fig. 2.37). 

 

𝑁௫௏ ൌ 𝑞𝑏 ൌ 15 kN; 
 

𝑄௭௏ ൌ 𝑃 ൌ 10 kN; 
 

𝑄௬௏ ൌ 0; 
 

𝑀௫
௏ ൌ 𝑃𝑐 ൌ 10 ∙ 2 ൌ 20 kN·m; 

 

𝑀௬
௏ ൌ 𝑞𝑏𝑑 െ 𝑞𝑏

𝑏
2
െ 𝑃𝑎 െ 𝑃𝑥 ൌ 

ൌ 15 ∙ 1 ∙ 1.5 െ 15 ∙ 1 ∙
1
2
െ 10 ∙ 2 െ 10𝑥 ൌ  

Fig. 2.37 
 

ൌ ቚ
௫ୀ଴

ൌ െ5 kN·m ቚ
௫ୀ௟ୀଶ m

ൌ െ25 kN·m; 
 

𝑀௭
௏ ൌ 𝑞𝑏𝑐 ൌ 15 ∙ 1 ∙ 2 ൌ 30 kN·m. 

 

3. Let us construct the diagrams (Fig. 2.38). 
 

Remarks 1. When constructing diagrams of internal forces and moments for a 
cranked bar, the following should be taken into account: 
а) the diagrams of 𝑁௫ and 𝑀௫ can be drawn in any plane; 
b) the diagrams of 𝑄௭, 𝑄௬, 𝑀௬, and 𝑀௭ must be drawn only in their 

respective planes of action; 
c) the diagrams of 𝑀௬ and 𝑀௭ are drawn on the side of the tensile 

fibres of the bar. 
2. If, for the members of a cranked bar lying in parallel planes, the same 

orientation of the 𝑥𝑦𝑧 axes is used, then on all these segments one 
obtains a formally ordered system of signs for the internal shear force 
𝑄௭ and bending moment 𝑀௬. For example, on segment I – the same 

as on segment V, on segment II – the same as on segment IV (see 
Fig. 2.32), and then 
𝑄௭ூ ൌ 𝑃 ൌ 10 kN; 

𝑀௬
ூ ൌ െ𝑃𝑥 ൌ ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௔ୀଶ m
ൌ െ20 kN·m; 

𝑄௭ூூ ൌ 𝑞𝑥 ൌ ቚ
௫ୀ଴

ൌ 0 ቚ
௫ୀ௕ୀଵ m

ൌ 15 kN; 

𝑀௬
ூூ ൌ െ𝑃𝑎 െ

𝑞𝑥ଶ

2
ൌቤ

௫ୀ଴

ൌ െ20 kN·m ቚ
௫ୀ௕ୀଵ m

ൌ െ27.5 kN·m. 
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Fig. 2.38 

 

4. Let us check the correctness of the diagram construction. 
 

To this end, we will consider the equilibrium of nodes A, B, C, and D under the action 
of internal forces and moments and external forces applied within these nodes (Fig. 2.39). 
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Fig. 2.39 

 

Equilibrium equations for node А: 
∑𝑃௫ ൌ 0;    ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 10 െ 10 ൌ 0; 

 

∑𝑀௫ ൌ 0;    ∑𝑀௬ ൌ 20 െ 20 ൌ 0;  ∑𝑀௭ ൌ 0. 
 

Equilibrium equations for node В: 
∑𝑃௫ ൌ 10 െ 10 ൌ 0;  ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 10 െ 10 ൌ 0; 

 

∑𝑀௫ ൌ 0;    ∑𝑀௬ ൌ 27.5 െ 27.5 ൌ 0; ∑𝑀௭ ൌ 0. 



54 

Equilibrium equations for node C: 
∑𝑃௫ ൌ 15 െ 15 ൌ 0;  ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 10 െ 10 ൌ 0; 

 

∑𝑀௫ ൌ 20 െ 20 ൌ 0;  ∑𝑀௬ ൌ 27.5 െ 27.5 ൌ 0; ∑𝑀௭ ൌ 30 െ 30 ൌ 0. 
 

Equilibrium equations for node D: 
∑𝑃௫ ൌ 15 െ 15 ൌ 0;  ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 10 െ 10 ൌ 0; 

 

∑𝑀௫ ൌ 20 െ 20 ൌ 0;  ∑𝑀௬ ൌ 5 െ 5 ൌ 0;  ∑𝑀௭ ൌ 30 െ 30 ൌ 0. 
 

Example 2.6 
 

Construct the diagrams of internal forces and moments for the given spatial cranked 
bar (Fig. 2.40). 

 

Given: 𝑃 ൌ 10 kN;   𝑎 ൌ 1 m;    𝑏 ൌ 2 m;    𝑙 ൌ 3 m. 
 

It is necessary to construct the diagrams of 
 

𝑁௫,  𝑄௭,  𝑄௬,  𝑀௫,  𝑀௬,  𝑀௭. 

Fig. 2.40 
 

Solution 
 

1. Let us draw a cranked bar to scale and divide it into segments. 

 

In an arbitrary cross-section of segment III, at 
a distance x from its beginning, let us introduce a 
local 𝑥𝑦𝑧 coordinate system so that the 𝑥-axis coin-
cides with the longitudinal axis of the bar, the 𝑧-axis 
is directed downward, and the horizontal 𝑦-axis, to-
gether with the first two axes, forms a right-handed 
orthogonal basis (Fig. 2.41). On segment II, the co-
ordinate system is obtained by a 90° rotation about 
the 𝑧-axis of the coordinate system of segment III; 
on segment I, by a 90° rotation about the 𝑦-axis of 
the coordinate system of segment II. Fig. 2.41 

2. Using the method of sections, write the equilibrium equations for the internal 
forces and moments on each segment. 

 

Segment I ሺ0 ൑ 𝑥 ൑ 𝑎,   𝑎 ൌ 1 mሻ. 
 

𝑁௫ூ ൌ 0;    𝑄௭ூൌ0;   𝑄௬ூ ൌ 𝑃 ൌ 10 kN; 
 

𝑀௫
ூ ൌ 0;    𝑀௬

ூ ൌ 0; 
 

𝑀௭
ூ ൌ െ𝑃𝑥 ൌ െ10 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௔ୀଵ m
ൌ െ10 kN·m. 
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Segment II ሺ0 ൑ 𝑥 ൑ 𝑏,   𝑏 ൌ 2 mሻ. 
 

𝑁௫ூூ ൌ 0;     𝑄௭ூூ ൌ 0;   𝑄௬ூூ ൌ 𝑃 ൌ 10 kN; 
 

𝑀௫
ூூ ൌ െ𝑃𝑎 ൌ െ10 ∙ 1 ൌ െ10 kN·m;    𝑀௬

ூூ ൌ 0; 
 

𝑀௭
ூூ ൌ െ𝑃𝑥 ൌ െ10 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௕ୀଶ ௠
ൌ െ20 kN·m. 

 

Segment III ሺ0 ൑ 𝑥 ൑ 𝑐,   𝑐 ൌ 3 mሻ. 
 

𝑁௫ூூூ ൌ െ𝑃 ൌ െ10 kN;  𝑄௭ூூூ ൌ 0;   𝑄௬ூூூ ൌ 0; 
 

𝑀௫
ூூூ ൌ 0;   𝑀௬

ூூூ ൌ െ𝑃𝑎 ൌ െ10 kN·m; 𝑀௭
ூூூ ൌ െ𝑃𝑏 ൌ െ20 𝑘𝑁·m. 

 

3. Let us construct the diagrams (Fig. 2.42). 
 

 
Fig. 2.42 
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4. Let us check the correctness of the diagram construction. 
 

To this end, infinitesimal elements of the cranked bar are isolated at the junctions 
of its parts (nodes A and B), and their equilibrium is analysed under the action of internal 
forces and moments and external forces applied within these nodes (Fig. 2.43). 

 

 
Fig. 2.43 

 
Equilibrium equations for node А: 
 

∑𝑃௫ ൌ 10 െ 10 ൌ 0;  ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 0; 
 

∑𝑀௫ ൌ 0;    ∑𝑀௬ ൌ 10 െ 10 ൌ 0;  ∑𝑀௭ ൌ 0. 

 
Equilibrium equations for node В: 
 

∑𝑃௫ ൌ 10 െ 10 ൌ 0;  ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 0; 
 

∑𝑀௫ ൌ 0;    ∑𝑀௬ ൌ 10 െ 10 ൌ 0;  ∑𝑀௭ ൌ 20 െ 20 ൌ 0. 
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3. COMBINED LOADING 
 
 

3.1. General Provisions 
 
By combined loading we shall understand such a type of deformation in the cross 

section of a bar when two or more internal forces and moments act simultaneously in this 
section. 

 

In the general case, under arbitrary loading, six internal forces and moments can act 
in the cross section of a bar (Fig. 3.1): 

 

𝑁௫ is an axial force; 
𝑄௬ and 𝑄௭ are shear forces; 

𝑀௫ is a torsional moment; 
𝑀௬ and 𝑀௭ are bending moments. 
 

The realization of tension-compression (pres-
ence of 𝑁௫) or bending (presence of 𝑀௬ or 𝑀௭) cre-

ates normal stresses 𝜎௫ at points within the bar's 
cross-section, whereas the realization of torsion 
(presence of 𝑀௫) or shear (presence of 𝑄௬ or 𝑄௭) cre-

ates shear stresses 𝜏. 

 

Fig. 3.1 
 

In strength analyses for sufficiently long bars, the shear forces 𝑄௭ and 𝑄௬ are usu-

ally neglected, since the shear stresses they induce are significantly smaller compared 
with the shear stresses caused by a torsional moment 𝑀௫ and the normal stresses caused 
by bending moments 𝑀௬ and 𝑀௭. 

 

The stresses acting in the cross sections of a bar under combined loading will be 
determined using the principle of superposition, which is valid if the structures are:  

 

а) physically linear, i.e., obeying Hooke’s law (𝜎 ൏ 𝜎௣, here 𝜎௣ is a proportional 

limit) 
б) geometrically linear, when under the action of loads all displacements remain 

much smaller than the characteristic dimensions of the structure (the hypothesis of rela-
tive rigidity holds). This allows one, when compiling the static equilibrium equations to 
determine support reactions and internal forces and moments, not to take into account 
changes in linear and angular dimensions of the structure. 

 

The methodology of strength analysis depends on the cross-section shape of the bar 
(rectangular, circular).   
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3.2. The Rectangular Cross-Section 
 

3.2.1. Bending with Torsion and Tension-Compression 
of a Rectangular Cross-Section Bar 

 
As practical calculations show, in a rectangular cross-section: 
 

𝜏௠௔௫ሺ𝑄ሻ ≪ 𝜏௠௔௫ሺ𝑀tortionalሻ   and   𝜏௠௔௫ሺ𝑄ሻ ≪ 𝜎௠௔௫൫𝑀bending൯, 
 

therefore, shear stresses caused by shear forces are neglected in this case. 
 

 

Let us consider a rectangular cross section 
(Fig. 3.2) with dimensions ℎ ൈ 𝑏 (for definite-
ness, assume ℎ ൐ 𝑏), subjected to: 

 

а) axial force 𝑁௫; 
 

б) torsional moment 𝑀௫; 
 

в) bending moment 𝑀௬ acting in the vertical 

plane; 
 

г) bending moment 𝑀௭ acting in the horizon-
tal plane. 

Fig. 3.2 
 

We will construct the stress diagrams due to each internal force or moment sepa-
rately, and by applying the principle of superposition, we will analyze their combined 
effect (Fig. 3.3 – 3.6): 

 

1. Only the axial force 𝑵𝒙 (Fig. 3.3) is applied: 
 

𝜎௫ሺ𝑁௫ሻ ൌ
𝑁௫
𝐹

, (3.1) 

where 𝐹 ൌ 𝑏ℎ is the cross-sectional area. 
 

2. Only the torsional moment 𝑴𝒙 (Fig. 3.4) is applied: 
 

𝜏௠௔௫ ൌ 𝜏஻ ൌ 𝜏஻ᇲ ൌ
𝑀௫

𝑊௧
; (3.2) 

 

𝜏௠௔௫ᇱ ൌ 𝜏஼ ൌ 𝜏஼ᇲ ൌ 𝛾𝜏௠௔௫; (3.3) 
 

𝜏஺ ൌ 𝜏஺ᇲ ൌ 𝜏஽ ൌ 𝜏஽ᇲ ൌ 0, (3.4) 
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where  𝑊௧ ൌ 𝛼ℎ𝑏ଶ is the torsional section modulus for a rectangular cross-section; 
 

𝛼, 𝛾 are coefficients depending on the ratio ℎ 𝑏⁄  (see Appendix). 
 

  
Fig. 3.3 Fig. 3.4 

 

  
Fig. 3.5 Fig. 3.6 

 

3. Only the bending moment 𝑴𝒚 (see Fig. 3.5) is applied: 
 

𝜎௫ ௠௔௫൫𝑀௬൯ ൌ 𝜎௫ ஺൫𝑀௬൯ ൌ 𝜎௫ ஼൫𝑀௬൯ ൌ 𝜎௫ ஽൫𝑀௬൯ ൌ
𝑀௬

𝑊௬
; 

𝜎௫ ஻൫𝑀௬൯ ൌ 0, 
(3.5) 

 

where 𝑊௬ ൌ
𝑏ℎଶ

6
 is the section modulus with respect to the 𝑦-axis under bending. 

 

For points of the section that are symmetric about the centroid to points A, C, and 
D, the stresses are equal in magnitude and opposite in sign. 
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4. Only the bending moment 𝑴𝒛 (see Fig. 3.6) is applied: 
 

𝜎௫ ௠௔௫ሺ𝑀௭ሻ ൌ 𝜎௫ ஺ሺ𝑀௭ሻ ൌ 𝜎௫ ஻ሺ𝑀௭ሻ ൌ 𝜎௫ ஽ᇲሺ𝑀௭ሻ ൌ
𝑀௭

𝑊௭
; 

 

𝜎௫ ஼ሺ𝑀௭ሻ ൌ 0, 

(3.6) 

 

where 𝑊௭ ൌ
ℎ𝑏ଶ

6
 

 

is the section modulus with respect to the 𝑧-axis under bending. 

 

For points of the section that are symmetric about the centroid to points А, В, and 
𝐷ᇱ, the stresses are equal in magnitude and opposite in sign. 

 

From the analysis of the diagrams in Fig. 3.3–3.6 it follows that it is not possible to 
unambiguously identify an only critical point. Therefore, all potentially critical points 
of the section must be considered. 

 

Remark The situation at points D and 𝐷ᇱ is typically not considered, since at 
these points the normal stresses due to bending moments 𝑀௬ and 𝑀௭ 

have opposite signs, which means they cancel each other out. 
 

Based on the diagrams, the following conclusions can be formulated: 
 

 

1. At point A of the section, a uniaxial 
(simple) stress state is realized (Fig. 3.7), and 
at this point, the maximum normal stress oc-
curs (the shaded area coincides with the cross-
sectional plane; stresses on hidden faces are 
not shown). 

Fig. 3.7 
 

The strength condition at this point is as follows: 
 

𝜎௫ ஺ ൌ 𝜎௫೘ೌೣ
ൌ

|𝑁௫|

𝐹
൅
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
൑ ሾ𝜎ሿ. (3.7) 

 

Remark A uniaxial stress state is also realized at all other corner points. 
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2. Other potentially critical points are B (midpoint of the longer side) and C (mid-
point of the shorter side). The stress state at these points is shown in Fig. 3.8 (the shaded 
areas coincide with the cross-sectional plane; stresses on hidden faces are not shown). 

 

 
Fig. 3.8 

 

At these points, a plane (combined) stress state of a particular type is realized, 
which was considered in Сlause 1.2.6. Therefore, the strength analysis at these poten-
tially critical points should be performed according to one of the strength theories.  

 

The strength conditions at points B and C, according to formulas (1.27) and (1.28), 
have the following form: 

 

a) according to the third strength theory 
 

𝜎௘௤ ஻
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨቆ

|𝑁௫|

𝐹
൅

|𝑀௭|

𝑊௭
ቇ
ଶ

൅ 4 ൬
𝑀௫

𝑊௧
൰
ଶ

൑ ሾ𝜎ሿ; (3.8) 

 

𝜎௘௤ ஼
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨቆ

|𝑁௫|

𝐹
൅
ห𝑀௬ห
𝑊௬

ቇ
ଶ

൅ 4 ൬𝛾
𝑀௫

𝑊௧
൰
ଶ

൑ ሾ𝜎ሿ; (3.9) 

 

b) according to the fourth strength theory 
 

𝜎௘௤ ஻
୍୚ ൌ ඥ𝜎ଶ ൅ 3𝜏ଶ ൌ ඨቆ

|𝑁௫|

𝐹
൅

|𝑀௭|

𝑊௭
ቇ
ଶ

൅ 3 ൬
𝑀௫

𝑊௧
൰
ଶ

൑ ሾ𝜎ሿ; (3.10) 

 

𝜎௘௤ ஼
୍୚ ൌ ඥ𝜎ଶ ൅ 3𝜏ଶ ൌ ඨቆ

|𝑁௫|

𝐹
൅
ห𝑀௬ห
𝑊௬

ቇ
ଶ

൅ 3 ൬𝛾
𝑀௫

𝑊௧
൰
ଶ

൑ ሾ𝜎ሿ. (3.11) 
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3.2.2. Procedure for Determining the Dimensions 
of a Rectangular Cross-Section 

 

Given: 𝑁௫, 𝑀௫, 𝑀௬, 𝑀௭, ℎ 𝑏⁄ ൌ 𝑘, ሾ𝜎ሿ (see Fig. 3.2). 

Determine: ℎ, 𝑏. 
 

1. A quarter of the section (quadrant), which is under triaxial tension (for 𝑁௫ ൐ 0) 
or triaxial compression (for  𝑁௫ ൏ 0), is identified (selected), and its three corner points 
A, B, and C are marked as potentially critical points. The fourth corner point 𝑂, which 
coincides with the section centroid, is not considered, since at this point 

𝜏ைሺ𝑀௫ሻ ൌ 𝜎௫ ை൫𝑀௬൯ ൌ 𝜎௫ ைሺ𝑀௭ሻ ൌ 0. 

2. The dimensions of the rectangular cross-section should be determined succes-
sively for the potentially critical points А, В and С. 

The strength conditions at these points are written in the first approximation by 
neglecting 𝑁௫, since usually 𝜎௫ሺ𝑁௫ሻ ≪ 𝜎௫൫𝑀௬,𝑀௭൯. The calculation begins with the cor-

ner point A, which in most cases proves to be the critical one in practice. 
Strength condition at point A 
 

𝜎௫ ஺ ൌ 𝜎௫೘ೌೣ
ൌ
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
൑ ሾ𝜎ሿ. (3.12) 

Here  𝑊௬ ൌ
𝑏ℎଶ

6
;   𝑊௭ ൌ

ℎ𝑏ଶ

6
. 

Taking into account that 
ℎ 𝑏⁄ ൌ 𝑘     ⇒       ℎ ൌ 𝑘𝑏, 

the expressions for the section moduli determination under bending can be rewritten in 
the form 

𝑊௬ ൌ
𝑘ଶ𝑏ଷ

6
;       𝑊௭ ൌ

𝑘𝑏ଷ

6
. (3.13) 

By substituting equations (3.13) into the equation (3.12), we obtain 
 

6𝑀௬

𝑘ଶ𝑏ଷ
൅

6𝑀௭

𝑘𝑏ଷ
൑ ሾ𝜎ሿ, 

from which we determine 

𝑏 ൒ ඩ
6𝑀௬

𝑘ଶ ൅
6𝑀௭
𝑘

ሾ𝜎ሿ

ଷ

ൌ ඨ
6𝑀௬ ൅ 6𝑘𝑀௭

𝑘ଶሾ𝜎ሿ

ଷ
. 

(3.14) 

 

Strength conditions at point B, located at the midpoint of the long side: 
 

𝜎௘௤ ஻
୍୍୍ ൌ ඨ൬

𝑀௭

𝑊௭
൰
ଶ

൅ 4 ൬
𝑀௫

𝑊௧
൰
ଶ

൑ ሾ𝜎ሿ;            𝜎௘௤ ஻
୍୚ ൌ ඨ൬

𝑀௭

𝑊௭
൰
ଶ

൅ 3 ൬
𝑀௫

𝑊௧
൰
ଶ

൑ ሾ𝜎ሿ.  (3.15) 
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Here 𝑊௧ ൌ 𝛼ℎ𝑏ଶ. 
 

Taking into account ℎ ൌ 𝑘𝑏, it follows that 
 

𝑊௧ ൌ 𝛼𝑘𝑏ଷ. (3.16) 
 

By substituting equations (3.13) and (3.16) into the equation (3.15), after transfor-
mations we obtain 

 

𝑏୍୍୍ ൒ ඩቀ
6𝑀௭
𝑘 ቁ

ଶ
൅ 4 ቀ

𝑀𝑥
𝛼𝑘ቁ

ଶ

ሾ𝜎ሿଶ

଺

;               𝑏୍୚ ൒ ඩቀ
6𝑀௭
𝑘 ቁ

ଶ
൅ 3 ቀ

𝑀𝑥
𝛼𝑘ቁ

ଶ

ሾ𝜎ሿଶ

଺

. 
(3.17) 

 

Strength conditions at point C, located at the midpoint of the short side: 
 

𝜎௘௤ ஼
୍୍୍ ൌ ඨቆ

𝑀௬

𝑊௬
ቇ
ଶ

൅ 4 ൬𝛾
𝑀௫

𝑊௧
൰
ଶ

൑ ሾ𝜎ሿ;       𝜎௘௤ ஼
୍୚ ൌ ඨቆ

𝑀௬

𝑊௬
ቇ
ଶ

൅ 3 ൬𝛾
𝑀௫

𝑊௧
൰
ଶ

൑ ሾ𝜎ሿ. (3.18) 

 

By substituting equations (3.13) and (3.16) into the equation (3.18), after transfor-
mations we obtain 

 

𝑏୍୍୍ ൒
ඩ൬

6𝑀௬

𝑘ଶ ൰
ଶ

൅ 4 ቀ𝛾
𝑀𝑥
𝛼𝑘ቁ

ଶ

ሾ𝜎ሿଶ

଺

;            𝑏୍୚ ൒
ඩ൬

6𝑀௬

𝑘ଶ ൰
ଶ

൅ 3 ቀ𝛾
𝑀𝑥
𝛼𝑘ቁ

ଶ

ሾ𝜎ሿଶ

଺

. 
(3.19) 

 

Remark 𝛼, 𝛾 are coefficients depending on the ratio ℎ 𝑏⁄  (see Appendix). 
 

3. Choose the larger dimension 𝑏. Then find ℎ ൌ 𝑘𝑏. 
 

Remark The cross-sectional point for which the larger pair of dimensions was 
selected will be the most critical point of the section. 

 

4. If an axial force 𝑁௫ acts in the cross-section, in the second approximation the 
strength is verified at the critical point (А, В or С) taking into account the presence of 𝑁௫ 
(at point А, according to condition (3.7); at point В, according to expressions (3.8), (3.10); 
and at point С, by formulas (3.9), (3.11), depending on which strength theory has been 
adopted as the governing one). 

If the strength verification confirms fulfillment of the strength conditions with an 
accuracy of ∆𝜎 ൑ 5 %, then the calculation is completed. 

If the strength condition at the critical point is not satisfied, it is necessary to in-
crease the dimensions h and b using the method of successive approximations. 

 

Remarks 1. If one of the bending moments 𝑀௬ or 𝑀௭ is equal to zero, then the 
corner points of the cross-section are excluded from the category of 
critical points. 
2. If the torsional moment 𝑀௫ is equal to zero, then the corner point 
becomes the only critical point of the cross-section. 
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3.3. The Circular Cross-Section 
 

3.3.1. Bending with Torsion of a Circular Cross-Section Bar 
 
As practical calculations show, in a circular cross-section: 
 

𝜏௠௔௫ሺ𝑄ሻ ≪ 𝜏௠௔௫ሺ𝑀torsionalሻ   and   𝜏௠௔௫ሺ𝑄ሻ ≪ 𝜎௠௔௫൫𝑀bending൯, 
 

therefore, the shear stresses resulting from shear forces are neglected in this case. 
 

Since all axes passing through the centroid of a circular cross-section are the prin-
cipal central axes of inertia of that section, it is not necessary to consider bending sepa-
rately in the coordinate planes (horizontal and vertical). 

 

Usually, bending of a circular cross-section bar is considered under the action of the 
resultant bending moment (Fig. 3.9) 

 

𝑀bending ൌ ට𝑀௬
ଶ ൅ 𝑀௭

ଶ. (3.20) 

 

 

Fig. 3.9 
 

Then, the maximum normal stresses 𝜎௫ acting at points A and B, which are most 
distant from the neutral axis (n.ax.), are determined by the formula: 

 

𝜎௫ ௠௔௫ ஺ ൌ |𝜎௫ ௠௔௫ ஻| ൌ
𝑀bending

𝑊୬.ୟ୶.
ൌ
ඥ𝑀௬

ଶ ൅ 𝑀௭
ଶ

𝑊୬.ୟ୶.
. (3.21) 
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Shear stresses 𝜏 caused by the torsional moment 𝑀௫ reach their maximum value at 
the peripheral points of the section, i.e. on the circumference, including at points A and B: 

 

𝜏௠௔௫ ൌ 𝜏஺ ൌ 𝜏஻ ൌ
𝑀௫

𝑊ఘ
. (3.22) 

 

Consequently, points A and B are the most critical points of the entire cross-section, 
since both 𝜎௠௔௫ and 𝜏௠௔௫ act at these points. As the strength conditions (1.27) and (1.28) 
are independent of the signs of 𝜎 and 𝜏, points A and B are equally critical.  

 

Since the stress state at considered points A and B is plane (Fig. 3.10) (the shaded 
areas coincide with the cross-sectional plane; stresses on hidden faces are not shown), 
the strength analysis must be carried out according to one of the strength theories (the 
third or the fourth). 

 

 
Fig. 3.10 

 

The strength conditions at points A and B are as follows: 
 

а) according to the third strength theory: 
 

𝜎௘௤ ஺ሺ஻ሻ
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨ൬

𝑀bending

𝑊୬.ୟ୶.
൰
ଶ

൅ 4ቆ
𝑀௫

𝑊ఘ
ቇ
ଶ

൑ ሾ𝜎ሿ, 

where  𝑊ఘ ൌ
𝜋𝑑ଷ

16
    is a polar section modulus; 

 

𝑊୬.ୟ୶. ൌ
𝜋𝑑ଷ

32
     is the section modulus with respect to the neutral axis. 

 

Since for a circular cross-section: 
 

𝑊ఘ ൌ 2𝑊୬.ୟ୶., 
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it follows that 

𝜎௘௤ಲ ሺಳሻ
୍୍୍ ൌ ඨ

𝑀bending
ଶ

𝑊୬.ୟ୶.
ଶ ൅

𝑀௫
ଶ

𝑊୬.ୟ୶.
ଶ ൌ

ට𝑀bending
ଶ ൅ 𝑀௫

ଶ

𝑊୬.ୟ୶.
. 

 

Let us introduce the notation: 
 

𝑀design
୍୍୍ ൌ ට𝑀bending

ଶ ൅ 𝑀௫
ଶ ൌ ට𝑀௬

ଶ ൅ 𝑀௭
ଶ ൅ 𝑀௫

ଶ,  (3.23) 
 

where 𝑀design
୍୍୍  is the design (or equivalent) moment according to the fourth strength 

theory. 
 

Then, finally: 
 

𝜎௘௤ಲ ሺಳሻ
୍୍୍ ൌ

𝑀design
୍୍୍

𝑊୬.ୟ୶.
൑ ሾ𝜎ሿ. (3.24) 

 

b) according to the fourth strength theory: 
 

𝜎௘௤ ஺ሺ஻ሻ
୍୚ ൌ ඥ𝜎ଶ ൅ 3𝜏ଶ ൌ ඨ൬

𝑀bending

𝑊୬.ୟ୶.
൰
ଶ

൅ 3ቆ
𝑀௫

𝑊ఘ
ቇ
ଶ

൑ ሾ𝜎ሿ. 

Then 

𝜎௘௤ಲሺಳሻ
୍୚ ൌ ඨ

𝑀bending
ଶ

𝑊୬.ୟ୶.
ଶ ൅

3
4
𝑀௫
ଶ

𝑊୬.ୟ୶.
ଶ ൌ

ට𝑀bending
ଶ ൅ 0.75𝑀௫

ଶ

𝑊୬.ୟ୶.
. 

 

Let's introduce the notation: 
 

𝑀design
୍୚ ൌ ට𝑀bending

ଶ ൅ 0.75𝑀௫
ଶ ൌ ට𝑀௬

ଶ ൅ 𝑀௭
ଶ ൅ 0.75𝑀௫

ଶ, (3.25) 
 

where 𝑀design
୍୚  is the design (or equivalent) moment according to the fourth strength 

theory. 
 

Then, finally: 

𝜎௘௤ಲ ሺಳሻ
୍୚ ൌ

𝑀design
୍୚

𝑊୬.ୟ୶.
൑ ሾ𝜎ሿ. (3.26) 

 

Since 

𝑊୬.ୟ୶. ൌ
𝜋𝑑ଷ

32
, 

 

then, using the strength condition (3.24) or (3.26), the design problem can be solved, i.e., 
the diameter of the cross-section can be determined: 
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𝑑୍୍୍ ൌ ඨ
32𝑀design

୍୍୍

𝜋ሾ𝜎ሿ

ଷ
 (3.27) 

 

or 
 

𝑑୍୚ ൌ ඨ
32𝑀design

୍୚

𝜋ሾ𝜎ሿ

ଷ
. (3.28) 

 

 
 

3.3.2. Bending with Torsion and Tension-Compression 
of a Circular Cross-Section Bar 

 
This calculation case differs from the previous one by the presence of an axial 

force 𝑁௫. 
 

Of the two equally critical points considered earlier, only one becomes the critical 
one. This is the point, in which the stresses from the action of the axial force 𝑁௫ and the 
bending moment 𝑀bending are summed up. 

 

The strength conditions at the critical point are: 
 

а) according to the third strength theory: 
 

𝜎௘௤୍୍୍ ൌ ඨቆ
|𝑁௫|

𝐹
൅
ห𝑀bendingห

𝑊௡.௔௫.
ቇ

ଶ

൅ 4ቆ
𝑀௫

𝑊ఘ
ቇ
ଶ

൑ ሾ𝜎ሿ; (3.29) 

 

b) according to the fourth strength theory: 
 

𝜎௘௤୍୚ ൌ ඨቆ
|𝑁௫|

𝐹
൅
ห𝑀bendingห

𝑊௡.௔௫.
ቇ

ଶ

൅ 3ቆ
𝑀௫

𝑊ఘ
ቇ
ଶ

൑ ሾ𝜎ሿ. (3.30) 

 

In the design calculation of structures, in this case, in the first approximation, the 
diameter 𝑑 is determined by neglecting the axial force 𝑁௫, according to formula (3.27) 
or (3.28), since in most cases: 

 

𝜎௫ሺ𝑁௫ሻ ≪ 𝜎௫൫𝑀bending൯, 
 

and in the second approximation, the strength verification at the critical point (A or B, 
depending on the direction of 𝑁௫) is performed according to condition (3.29) or (3.30). 
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3.4. Problem-Solving Examples 

Example 3.1 

For the cranked bar, diagrams of internal forces and moments have been constructed 

(see Example 2.1). With an allowable stress of ሾ𝜎ሿ ൌ 220 MPа, it is necessary to design: 
а) the dimensions of a circular cross-section; 
b) the dimensions of a rectangular cross-section with 𝑘 ൌ ℎ 𝑏⁄ ൌ 2;
c) to construct diagrams of the distribution of normal and shear stresses from the action

of 𝑁௫, 𝑀௫, 𝑀௬, 𝑀௭ for the rectangular cross-section;

d) to show the stress state at the critical points of the rectangular and circular cross-
sections;

e) to use the third and fourth strength theories for determining the circular cross-sec-
tion, and the third strength theory for the rectangular one;

f) to compare the weights of the resulting bars.

Solution 

1. Determine the critical cross-section.

From the analysis of the internal force and moment diagrams (see Example 2.1,
Fig. 2.12), it is evident that the most critical section is at the fixed-end section, where the 
following internal forces and moments act: 

𝑁௫ ൌ 20 kN;     𝑀௫ ൌ 45 kN·m;     𝑀௬ ൌ െ30 kN·m;     𝑀௭ ൌ 80 kN·m. 

2. Determine the diameter of the circular cross-section.

The plane of action of the 
resultant bending moment 

𝑀bending ൌ ඥ𝑀௬
ଶ ൅ 𝑀௭

ଶ the po-

sition of the points of maxi-
mum bending normal stresses 
(points A and B) (Fig. 3.11). 
Due to the presence of com-
pressive normal stresses 
caused by the axial force 𝑁௫, 
the maximum normal stress 
occurs at point A, where the 
stresses from the axial force 
and the bending moment are 
summed. 

Fig. 3.11 
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At the same time, this point is also the location of maximum shear stresses resulting 
from torsion, since it lies on the circumference of the cross-section. 

Thus, point A is the only critical point of the circular cross-section. 
Since the stress state at point A is plane, the strength calculation must be carried out 

according to one of the strength theories (the third or the fourth) (Fig. 3.12). 
 

 
Fig. 3.12 

 

The third strength theory 
 

In the first approximation, to determine the diameter d, we write the strength condi-
tion at point A, neglecting the influence of the axial force 𝑁௫ (3.24): 

 

𝜎௘௤ಲ
୍୍୍ ൌ

𝑀design
୍୍୍

𝑊୬.ୟ୶.
ൌ ቊsince 𝑊୬.ୟ୶. ൌ

𝜋𝑑ଷ

32
ቋ ൌ

32𝑀design
୍୍୍

𝜋𝑑ଷ
൑ ሾ𝜎ሿ, 

. 

from which we obtain: 

𝑑୍୍୍ ൒ ඨ
32𝑀design

୍୍୍

𝜋ሾ𝜎ሿ

ଷ
, 

 

where, in accordance with equation (3.23), 
 

𝑀design
୍୍୍ ൌ ට𝑀௬

ଶ ൅ 𝑀௭
ଶ ൅ 𝑀௫

ଶ ൌ ඥ30ଶ ൅ 80ଶ ൅ 45ଶ ൌ 96.566 kN·m. 

Then, 

𝑑୍୍୍ ൒ ඨ
32 ∙ 96.566 ൈ 10ଷ

𝜋 ∙ 220 ൈ 10଺
ଷ

ൌ 0.1647 m. 

 

We use formula (3.29) to determine the actual design stresses at the critical point, 
taking into account the axial force 𝑁௫: 

 

𝜎௘௤ ஺
୍୍୍ ൌ ඨቆ

|𝑁௫|

𝐹
൅
ห𝑀bendingห

𝑊୬.ୟ୶.
ቇ

ଶ

൅ 4ቆ
𝑀௫

𝑊ఘ
ቇ
ଶ

, 

 

where 𝑀bending ൌ ඥ𝑀௬
ଶ ൅ 𝑀௭

ଶ ൌ √30ଶ ൅ 80ଶ ൌ 85.44 kN·m; 
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𝐹 ൌ
𝜋𝑑ଶ

4
ൌ
𝜋 ∙ 0.1647ଶ

4
ൌ 2.1305 ൈ 10ିଶ mଶ; 

 

𝑊୬.ୟ୶. ൌ
𝜋𝑑ଷ

32
ൌ
𝜋 ∙ 0.1647ଷ

32
ൌ 4.3861 ൈ 10ିସ mଷ; 

 

𝑊ఘ ൌ
𝜋𝑑ଷ

16
ൌ 2𝑊୬.ୟ୶. ൌ

𝜋 ∙ 0.1647ଷ

16
ൌ 8.7722 ൈ 10ିସ mଷ. 

 

We get: 
 

𝜎௘௤ ஺
୍୍୍ ൌ ඨቆ

20 ൈ 10ଷ

2.1305 ൈ 10ିଶ
൅

85.44 ൈ 10ଷ

4.3861 ൈ 10ିସ
ቇ
ଶ

൅ 4ቆ
45 ൈ 10ଷ

8.7722 ൈ 10ିସ
ቇ
ଶ

ൌ 

 

ൌ 220.995 МPа. 
 

The overstress is: 
 

∆𝜎 % ൌ
𝜎௘௤ ஺
୍୍୍ െ ሾ𝜎ሿ

ሾ𝜎ሿ
∙ 100 % ൌ

220.995 െ 220
220

∙ 100 % ൌ 0.45 % ൏ 5 %. 
 

Thus, the strength of the bar`s cross-section is ensured. 
 

Remark Since 𝜎௫ሺ𝑁௫ሻ ≪ ሾ𝜎ሿ, the contribution of the axial force 𝑁௫ to the nor-
mal stress at the critical point can be estimated as 

𝜎௫ሺ𝑁௫ሻ ൌ
𝑁௫
𝐹
ൌ

20 ൈ 10ଷ

2.1305 ൈ 10ିଶ
ൌ 0.939 МPа. 

 
The fourth strength theory 
 

In the first approximation, to determine the diameter d, we write the strength condi-
tion at point A, neglecting the influence of the axial force 𝑁௫ (see (3.26)): 

 

𝜎௘௤ಲ
୍୚ ൌ

𝑀design
୍୚

𝑊୬.ୟ୶.
ൌ ቊsince 𝑊୬.ୟ୶. ൌ

𝜋𝑑ଷ

32
ቋ ൌ

32𝑀design
୍୚

𝜋𝑑ଷ
൑ ሾ𝜎ሿ, 

 

from which we obtain: 

𝑑୍୚ ൒ ඨ
32𝑀design

୍୚

𝜋ሾ𝜎ሿ

ଷ
, 

 

where, in accordance with equation (3.25), 
 

𝑀design
୍୚ ൌ ට𝑀௬

ଶ ൅ 𝑀௭
ଶ ൅ 0.75 ∙ 𝑀௫

ଶ ൌ ඥ30ଶ ൅ 80ଶ ൅ 0.75 ∙ 45ଶ ൌ 93.908 kN·m. 
 

Then 
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𝑑୍୚ ൒ ඨ
32 ∙ 93.908 ൈ 10ଷ

𝜋 ∙ 220 ൈ 10଺
ଷ

ൌ 0.1632 m. 

 

We use formula (3.30) to determine the actual design stresses at the critical point, 
taking into account the axial force 𝑁௫: 

 

𝜎௘௤ ஺
୍୚ ൌ ඨቆ

|𝑁௫|

𝐹
൅
ห𝑀bendingห

𝑊୬.ୟ୶.
ቇ

ଶ

൅ 3ቆ
𝑀௫

𝑊ఘ
ቇ
ଶ

, 

 

where 𝑀bending ൌ ඥ𝑀௬
ଶ ൅ 𝑀௭

ଶ ൌ √30ଶ ൅ 80ଶ ൌ 85.44 kN·m; 
 

𝐹 ൌ
𝜋𝑑ଶ

4
ൌ
𝜋 ∙ 0.1632ଶ

4
ൌ 2.0918 ൈ 10ିଶ mଶ; 

 

𝑊୬.ୟ୶. ൌ
𝜋𝑑ଷ

32
ൌ
𝜋 ∙ 0.1632ଷ

32
ൌ 4.2674 ൈ 10ିସ mଷ; 

𝑊ఘ ൌ
𝜋𝑑ଷ

16
ൌ 2𝑊୬.ୟ୶. ൌ

𝜋 ∙ 0.1632ଷ

16
ൌ 8.5378 ൈ 10ିସ mଷ. 

 

We get: 

𝜎௘௤ ஺
୍୚ ൌ ඨቆ

20 ൈ 10ଷ

2.0918 ൈ 10ିଶ
൅

85.44 ൈ 10ଷ

4.2674 ൈ 10ିସ
ቇ
ଶ

൅ 3ቆ
45 ൈ 10ଷ

8.5378 ൈ 10ିସ
ቇ
ଶ

ൌ 

 

ൌ 220.916 MPа. 
 

The overstress is: 
 

∆𝜎 % ൌ
𝜎௘௤ ஺
୍୚ െ ሾ𝜎ሿ

ሾ𝜎ሿ
∙ 100 % ൌ

220.916 െ 220
220

∙ 100 % ൌ 0.42 % ൏ 5 %. 
 

Thus, the strength of the bar`s cross-section is ensured. 

 
3. Determine the dimensions of the rectangular cross-section. 
 

Since 𝑀௭ ൐ 𝑀௬, we orient the section horizontally to ensure the cross-section 

strength with smaller dimensions. 
 

The section with the applied internal loads is shown in Fig. 3.13. The internal forces 
and moments are applied in accordance with the adopted sign conventions: 

 

 a positive axial force 𝑁௫ means tension; 
 a positive torsional moment 𝑀௫ means counter-clockwise rotation; 
 a negative bending moment 𝑀௬ means tension in the top fibers and compression in 

the bottom fibers; 
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 a positive bending moment 𝑀௭ means tension in the left fibers and compression in 
the right fibers. 

 

Let's determine the potentially 
critical points of the section. We iden-
tify the triaxially tensioned quarter 
(since 𝑁௫ ൐ 0) of the section (hatched 
area in Fig. 3.13) and mark its three 
corner points: A, B, and C. These will 
be the potentially critical points. 

Fig. 3.13 
 

Let us construct (draw) the diagrams of normal and shear stresses distributions 
across the section (Fig. 3.14 – 3.17). 

 

  
Fig. 3.14 Fig. 3.15 

 

  
Fig. 3.16 Fig. 3.17 

 

At each of the three potentially critical points of the cross-section, let us present the 
type of stress state and formulate the strength conditions (without taking into account the 
influence of the axial force 𝑁௫). 

 



73 

Point А 
 

At point A of the cross-section, a uniaxial stress state is realized (Fig. 3.18). 
 

 
Fig. 3.18 

 

The strength condition at this point has the form: 
 

𝜎௫ ஺ ൌ 𝜎௫೘ೌೣ
ൌ
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
൑ ሾ𝜎ሿ, 

where     𝑊௬ ൌ
ℎ𝑏ଶ

6
ൌ ൜ since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘𝑏ଷ

6
; 

 

𝑊௭ ൌ
𝑏ℎଶ

6
ൌ ൜ since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘ଶ𝑏ଷ

6
. 

 

Substituting the values of 𝑊௬ and 𝑊௭ into the strength condition and performing the 

transformations, we obtain: 
 

𝑏 ൒ ඨ
6𝑘ห𝑀௬ห ൅ 6|𝑀௭|

𝑘ଶሾ𝜎ሿ

ଷ
ൌ ඨ

6 ∙ 2 ∙ |െ30 ൈ 10ଷ| ൅ 6 ∙ 80 ൈ 10ଷ

2ଶ ∙ 220 ൈ 10଺
ଷ

ൌ 0.0985 m. 

 
Point B 
 

At point B of the cross-section, a plane stress state is realized (Fig. 3.19). 
 

 
Fig. 3.19 

 

We write the strength condition using the third strength theory: 
 

𝜎௘௤ ஻
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨቆ

𝑀௬

𝑊௬
ቇ
ଶ

൅ 4 ൬
𝑀௫

𝑊torsional
൰
ଶ

൑ ሾ𝜎ሿ, 



74 

where   𝑊௬ ൌ
ℎ𝑏ଶ

6
ൌ ൜ since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘𝑏ଷ

6
; 

 

𝑊torsional ൌ 𝛼ℎ𝑏ଶ ൌ ቄ since  𝑘 ൌ
௛

௕
   ⟹    ℎ ൌ 𝑘𝑏ቅ ൌ 𝛼𝑘𝑏ଷ; 

𝛼 ൌ 0.246 is a coefficient that depends on the ratio ℎ 𝑏⁄ ൌ 2 (see Appendix). 
 

Substituting the values of 𝑊௬ and 𝑊torsional into the strength condition, we get: 
 

𝑏୍୍୍ ൒
ඩ൬

6𝑀௬
𝑘 ൰

ଶ

൅ 4 ቀ
𝑀𝑥
𝛼𝑘ቁ

ଶ

ሾ𝜎ሿଶ

଺

ൌ
ඩ൬

6 ∙ |െ30 ൈ 10ଷ|
2 ൰

ଶ

൅ 4 ൬
45 ൈ 10ଷ
0.246 ∙ 2൰

ଶ

ሺ220 ൈ 10଺ሻଶ

଺

ൌ 0.0975 m. 

 
Point C 
 

At point C of the cross-section, a plane stress state is realized (Fig. 3.20). 
 

 
Fig. 3.20 

 

The strength condition, using the third strength theory, is: 

𝜎௘௤ ஼
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨ൬

𝑀௭

𝑊௭
൰
ଶ

൅ 4 ൬𝛾
𝑀௫

𝑊torsional
൰
ଶ

൑ ሾ𝜎ሿ, 

 

where     𝑊௭ ൌ
𝑏ℎଶ

6
ൌ ൜ since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘ଶ𝑏ଷ

6
; 

 

𝑊torsional ൌ 𝛼ℎ𝑏ଶ ൌ ൜ since  𝑘 ൌ
ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ 𝛼𝑘𝑏ଷ; 

𝛼 ൌ 0.246, 𝛾 ൌ 0.795 are coefficients that depend on the ratio ℎ 𝑏⁄ ൌ 2 (see 
Appendix). 

 

Substituting the values of 𝑊௭ and 𝑊௧௢௥௦௜௢௡௔௟ into the strength condition, we get: 
 

𝑏୍୍୍ ൒ ඩቀ
6𝑀௭
𝑘ଶ ቁ

ଶ
൅ 4 ቀ𝛾

𝑀𝑥
𝛼𝑘ቁ

ଶ

ሾ𝜎ሿଶ

଺

ൌ
ඩ൬

6 ∙ ሺ80 ൈ 10ଷሻ
2ଶ ൰

ଶ

൅ 4 ൬0.795 ∙
45 ൈ 10ଷ
0.246 ∙ 2൰

ଶ

ሺ220 ∙ 10଺ሻଶ

଺

ൌ 

 

ൌ 0.09499 m. 
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Let us select the largest of the three values of 𝑏: 
 

൞

𝑏஺ ൒ 0.0985 m;

𝑏஻ ൒ 0.0975 m;

𝑏஼ ൒ 0.09499 m.

 

 

Thus, point A is the most critical point of the cross-section. 
 

The design dimensions of the rectangular cross-section and its geometric character-
istics are: 

 

𝑏 ൌ 0.0985 m; 
 

ℎ ൌ 𝑘𝑏 ൌ 2 ∙ 0.0985 ൌ 0.197 m; 
 

𝐹 ൌ 𝑏ℎ ൌ 0.0985 ∙ 0.197 ൌ 0.0194 mଶ; 
 

𝑊௬ ൌ
ℎ𝑏ଶ

6
ൌ

0.197 ∙ 0.0985ଶ

6
ൌ 3.1856 ൈ 10ିସ mଷ; 

 

𝑊௭ ൌ
𝑏ℎଶ

6
ൌ

0.0985 ∙ 0.197ଶ

6
ൌ 6.3711 ൈ 10ିସ mଷ; 

 

𝑊torsional ൌ 𝛼ℎ𝑏ଶ ൌ 0.246 ∙ 0.197 ∙ 0.0985 ଶ ൌ 4.7019 ൈ 10ିସ mଷ. 
 

Since a uniaxial stress state is realized at point A, we determine the contribution of 
the axial force 𝑁௫ to the total normal stress using the formula: 

𝜎௫ ஺ሺ𝑁௫ሻ ൌ
𝑁௫
𝐹
ൌ

20 ൈ 10ଷ

0.0194
ൌ 1.031 МPа. 

 

The overstress is: 
 

∆𝜎 % ൌ
𝜎௫ ஺ሺ𝑁௫ሻ
ሾ𝜎ሿ

∙ 100 % ൌ
1.031
220

∙ 100 % ൌ 0.47 % ൏ 5 %. 
 

Thus, the strength of the bar`s cross-section is ensured. 
 

4. Compare weights of the circular and rectangular cross-section bars found using 
the third strength theory: 

 

𝐺

𝐺�
ൌ
𝐹

𝐹�
ൌ

2.1305 ൈ 10ିଶ

0.0194
ൌ 1.098. 

 

Therefore, for the given combination of internal forces and moments and aspect 
ratio 𝑘 ൌ ℎ 𝑏⁄ ൌ 2 for the rectangle, it is more advantageous to use a rectangular cross-
section to reduce the weight of the structure.  

 

However, the largest overall dimension of the rectangular cross-section is larger 
than the diameter of the circular one:  

 

ℎ ൌ 0.197 m ൐ 𝑑 ൌ 0.1647 m.  
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Example 3.2 
 

In the critical cross-section of a bar, a bending moment 𝑀௬ ൌ 5 kN·m and a torsional 

moment 𝑀௫ ൌ 20 kN·m are acting (Fig. 3.21). It is required, according to the fourth 
strength theory, to select the diameter, 𝑑, of a circular cross-section, the side size, 𝑎, of a 
square cross-section, and the dimensions 𝑏 and ℎ (with the ratio 𝑘 ൌ ℎ 𝑏⁄ ൌ 1.75) if the 
allowable stress is ሾ𝜎ሿ ൌ 160 МPа. Show the stress state at the critical points of the 
cross-sections and compare the bars by weight. 

 

 

Given:  𝑀௬ ൌ െ5 kN·m;   𝑀௫ ൌ 20 kN·m; 
 

ሾ𝜎ሿ ൌ 160 MPa;  𝑘 ൌ ℎ 𝑏⁄ ൌ 1.75; 
 

For a square cross-section: 𝛼 ൌ 0.208;  𝛾 ൌ 1; 
 

For a rectangular cross-section: 𝛼 ൌ 0.239; 𝛾 ൌ 0.820. 
 

It is necessary to determine 𝑑, 𝑎, 𝑏, and ℎ; to show the stress 
state at the critical points of the cross-sections; and to com-
pare the bars by weight. 

Fig. 3.21 
 

Solution 
 

1. Let us determine the diameter of the circular cross-section. 
 

 

In the circular cross-section, under the 
specified loading parameters, the maximum 
normal stresses from the action of the bending 
moment 𝑀௬ occur at points A and B of the 

cross-section, which are the most distant from 
the neutral axis 𝑦 (Fig. 3.22).  

At the same time, these points are also the 
locations of maximum shear stresses from the 
action of the torsional moment 𝑀௫, since they 
lie on the circumference of the cross-sectionч. 

Fig. 3.22 
 

Consequently, points A and B are the most critical points of the entire section, since 
both the maximum normal stress 𝜎௠௔௫ and the maximum shear stress 𝜏௠௔௫ act at these 
points. Because the strength conditions (1.27) and (1.28) are insensitive to the signs of 𝜎 
and 𝜏, points A and B are equally critical. Therefore, we will consider the stress state 
only at point A. 
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There is a plane stress state at point A, therefore, the strength analysis must be per-
formed according to the fourth strength theory (Fig. 3.23). 

 

 
Fig. 3.23 

 

To determine the diameter 𝑑, we write the strength condition (3.26) 
 

𝜎௘௤ಲ
୍୚ ൌ

𝑀design
୍୚

𝑊୬.ୟ୶.
ൌ ቊsince 𝑊୬.ୟ୶. ൌ

𝜋𝑑ଷ

32
ቋ ൌ

32𝑀design
୍୚

𝜋𝑑ଷ
൑ ሾ𝜎ሿ, 

from which we get: 

𝑑୍୚ ൌ ඨ
32𝑀design

୍୚

𝜋ሾ𝜎ሿ

ଷ
, 

 

where, in accordance with equation (3.25), 
 

𝑀design
୍୚ ൌ ට𝑀௬

ଶ ൅ 𝑀௭
ଶ ൅ 0.75 ∙ 𝑀௫

ଶ ൌ ඥ5ଶ ൅ 0ଶ ൅ 0.75 ∙ 20ଶ ൌ 18.028 kN·m. 
 

Then 

𝑑୍୚ ൌ ඨ
32 ∙ 18.028 ൈ 10ଷ

𝜋 ∙ 160 ൈ 10଺
ଷ

ൌ 0.1047 m. 

 

2. Let us determine the side size of the square cross-section. 
 

In a square cross-section under the speci-
fied loading parameters (Fig. 3.24), there are 
two potentially critical and equally critical 
points, 𝐶 and 𝐶ᇱ. The maximum normal and 
maximum shear stresses act at these points. 

The corner points of the section 
𝐴, 𝐴ᇱ, 𝐷, and 𝐷ᇱ are excluded from the category 
of potentially critical points because 
𝜎௫ ஺ ൌ 𝜎௫ ஺ᇲ ൌ 𝜎௫ ஽ ൌ 𝜎௫ ஽ᇲ ൌ 𝜎௫ ௠௔௫, while 
𝜏஺ ൌ 𝜏஺ᇲ ൌ 𝜏஽ ൌ 𝜏஽ᇲ ൌ 0.  

Fig. 3.24 
Points B and 𝐵ᇱ are also excluded from the category of potentially critical points, 

since 𝜎௫ ஻ ൌ 𝜎௫ ஻ᇲ ൌ 0, while 𝜏஻ ൌ 𝜏஻ᇲ ൌ 𝜏௠௔௫. 
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Since points 𝐶 and 𝐶ᇱ are equally critical, we will consider only one of them, 
point C. A plane stress state is realized at this point (Fig. 3.25). 

 

Fig. 3.25 
 

We write the strength condition using the fourth strength theory: 

𝜎௘௤ ஼
୍୚ ൌ ඥ𝜎ଶ ൅ 3𝜏ଶ ൌ ඨቆ

𝑀௬

𝑊௬
ቇ
ଶ

൅ 3 ൬
𝑀௫

𝑊torsional
൰
ଶ

൑ ሾ𝜎ሿ, 

where     𝑊௬ ൌ
ℎ𝑏ଶ

6
ൌ ቄsince  ℎ ൌ 𝑏 ൌ 𝑎 ⟹    𝑘 ൌ

𝑎
𝑏
ൌ 1ቅ ൌ

𝑎ଷ

6
; 

𝑊torsional ൌ 𝛼ℎ𝑏ଶ ൌ ቄsince  ℎ ൌ 𝑏 ൌ 𝑎 ⟹    𝑘 ൌ
𝑎
𝑏
ൌ 1ቅ ൌ 𝛼𝑎ଷ; 

𝛼 ൌ 0.239 is a coefficient that depends on the ratio ℎ 𝑏⁄ ൌ 1 (see  
Appendix). 

 

Substituting the values of 𝑊௬ and 𝑊௧௢௥௦௜௢௡௔௟ into the strength condition, we get: 

𝑎୍୚ ൒ ඩ൫6𝑀௬൯
ଶ
൅ 3 ቀ

𝑀𝑥
𝛼 ቁ

ଶ

ሾ𝜎ሿଶ

଺

ൌ
ඩሺ6 ∙ |െ5 ൈ 10ଷ|ሻଶ ൅ 3 ൬

20 ൈ 10ଷ
0.208 ൰

ଶ

ሺ160 ൈ 10଺ሻଶ

଺

ൌ 0.0974 m. 

 

3. Let us determine the dimensions of the rectangular cross-section. 
 

 

In a rectangular cross-section under the spec-
ified loading parameters (Fig. 3.26), the potentially 
critical points are the equally critical points B and 
𝐵ᇱ, at which stresses 
𝜎௫ ஻ ൌ 𝜎௫ ஻ᇲ ൌ 0   and   𝜏஻ ൌ 𝜏஻ᇲ ൌ 𝜏௠௔௫ act, 

as well as the equally critical points 𝐶 and 𝐶ᇱ, 
where stresses 
𝜎௫ ஼ ൌ 𝜎௫ ஼ᇲ ൌ 𝜎௫ ௠௔௫  and  𝜏஼ ൌ 𝜏஼ᇲ ൌ 𝜏௠௔௫ᇱ  act. 

The corner points 𝐴, 𝐴ᇱ, 𝐷, and 𝐷ᇱ of the sec-
tion are excluded from the category of potentially 
critical points because 

𝜎௫ ஺ ൌ 𝜎௫ ஺ᇲ ൌ 𝜎௫ ஽ ൌ 𝜎௫ ஽ᇲ ൌ 𝜎௫ ௠௔௫, 
while 

𝜏஺ ൌ 𝜏஺ᇲ ൌ 𝜏஽ ൌ 𝜏஽ᇲ ൌ 0. Fig. 3.26 
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Since points B and 𝐵ᇱ are equally critical, we will consider only one of them, 
point B. A state of pure shear is realized at this point (Fig. 3.27). 

 

 
Fig. 3.27 

 

The strength condition at point B has the form: 
 

𝜏஻ ൌ 𝜏௠௔௫ ൌ
|𝑀௫|

𝑊torsional
൑ ሾ𝜏ሿ ൎ 0.5 ∙ ሾ𝜎ሿ, 

where     𝑊torsional ൌ 𝛼ℎ𝑏ଶ ൌ ൜since  𝑘 ൌ
ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ 𝛼𝑘𝑏ଷ; 
 

𝛼 ൌ 0.239 is a coefficient that depends on the ratio ℎ 𝑏⁄ ൌ 1.75 (see 
Appendix). 

 

Substituting the value of 𝑊௧௢௥௦௜௢௡௔௟ into the strength condition, we get: 
 

𝑏஻ ൒ ඨ
|𝑀𝑥|

𝛼𝑘 ∙ 0.5 ∙ ሾ𝜎ሿ

ଷ
ൌ ඨ

20 ൈ 10ଷ

0.239 ∙ 1.75 ∙ 0.5 ∙ 160 ൈ 10଺
ଷ

ൌ 0.0842 m. 

 

Since points C and 𝐶ᇱ are equally critical, we will consider only one of them, 
point C. A plane stress state is realized at this point (Fig. 3.28). 

 

 
Fig. 3.28 

 

We write the strength condition using the fourth strength theory: 
 

𝜎௘௤ ஼
୍୚ ൌ ඥ𝜎ଶ ൅ 3𝜏ଶ ൌ ඨቆ

𝑀௬

𝑊௬
ቇ
ଶ

൅ 3 ൬𝛾
𝑀௫

𝑊torsional
൰
ଶ

൑ ሾ𝜎ሿ, 

 

where     𝑊௬ ൌ
𝑏ℎଶ

6
ൌ ൜since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘ଶ𝑏ଷ

6
; 

𝑊torsional ൌ 𝛼ℎ𝑏ଶ ൌ ൜since  𝑘 ൌ
ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ 𝛼𝑘𝑏ଷ; 
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𝛼 ൌ 0.239, 𝛾 ൌ 0.820 are coefficients that depend on the ratio ℎ 𝑏⁄ ൌ 1.75 
(see Appendix). 

 

Substituting the values of 𝑊௬ and 𝑊torsional into the strength condition, we get: 
 

𝑏஼
୍୚ ൒

ඩ൬
6𝑀௬

𝑘ଶ ൰
ଶ

൅ 3 ቀ𝛾
𝑀𝑥
𝛼𝑘ቁ

ଶ

ሾ𝜎ሿଶ

଺

ൌ
ඩ൬

6 ∙ |െ5 ൈ 10ଷ|
1.75ଶ ൰

ଶ

൅ 3 ൬0,820 ∙
20 ൈ 10ଷ

0.239 ∙ 1.75൰
ଶ

ሺ160 ൈ 10଺ሻଶ

଺

ൌ 

 

ൌ 0.0753 m. 
 

Let us select the largest of the two values of 𝑏: 
 

ቊ
𝑏஻ ൒ 0.0842 m;

𝑏஼ ൒ 0.0753 m.
 

 

Thus, point B is the most critical point of the cross-section. 
 

The final dimensions of the rectangular cross-section are: 
 

𝑏 ൌ 0.0842 m;                   ℎ ൌ 𝑘𝑏 ൌ 1.75 ∙ 0.0842 ൌ 0.1474 m. 
 

4. Compare the weight of the circular, square, and rectangular cross-section bars. 
 

Let us calculate the areas of the 
circular cross-section: 

𝐹 ൌ
𝜋𝑑ଶ

4
ൌ
𝜋 ∙ 0.1047ଶ

4
ൌ 8.6096 ൈ 10ିଷ mଶ; 

square cross-section: 

𝐹 ൌ 𝑎ଶ ൌ 0.0974ଶ ൌ 9.4868 ൈ 10ିଷ mଶ; 
rectangular cross-section: 

𝐹� ൌ 𝑏ℎ ൌ 0.0842 ∙ 0.1474 ൌ 12.4111 ൈ 10ିଷ mଶ. 
Then 
 

𝐺

𝐺
ൌ
𝐹

𝐹
ൌ

9.4868 ൈ 10ିଷ

8.6096 ൈ 10ିଷ
ൌ 1.102; 

 

𝐺�

𝐺
ൌ
𝐹�

𝐹
ൌ

12.4111 ൈ 10ିଷ

8.6096 ൈ 10ିଷ
ൌ 1.442. 

 

Thus, for the specified combination of internal forces and moments and the aspect 
ratio of the rectangle 𝑘 ൌ ℎ 𝑏⁄ ൌ 1.75 , in order to reduce the weight of the structure, it 
is more advantageous to use a circular cross-section, since it is lighter than the square 
one by 10.2 % and lighter than the rectangular one by 44.2 %. 

In this case, the circular cross-section is also preferable in terms of overall dimen-
sions.  
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3.5. Special Cases of Combined Loading 
 

3.5.1. Oblique Bending 
 
Oblique bending, like plane bending, is subdivided into pure and transverse. 
Pure oblique bending occurs when only a bending moment acts in the cross-section 

of a beam, and the plane of its action does not contain any of the principal central axes 
of inertia of the cross-section. In this case, it does not matter whether the principal central 
axes of inertia of the section are its axes of symmetry or not. 

Transverse oblique bending occurs under the condition that the cross-section of the 
beam has two axes of symmetry, and the transverse loads act in different sections and in 
different planes containing the longitudinal axis of the beam, or the transverse loads act 
in a single force plane that contains the longitudinal axis of the beam, but does not coin-
cide with any of the planes of symmetry of the beam (Fig. 3.29). 

 

 
Fig. 3.29 

 

If the beam's cross-section has one axis of symmetry or no axes of symmetry at all, 
then the transverse loads must act in planes that contain not the beam's longitudinal axis, 
but rather the line connecting the shear centers of the beam's cross-sections.  

Taking into account that in most standard courses on Mechanics of Materials and 
Structures the concept of the shear centre of beam`s cross-sections is not considered, and 
given the fact that the overwhelming majority of real beams operate under conditions of 
transverse bending, we will only consider beams whose cross-sections have two axes of 
symmetry. This somewhat narrows the application field of the calculation relations ob-
tained in this section; however, their practical significance is quite high due to the wide-
spread use of beams with rectangular, box, cross-shaped, I-beam, and other sections, in-
cluding composite and multi-cell sections, that have two axes of symmetry. 
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Determination of normal stresses in the cross-section of a beam 
 

Let us consider a beam operating under conditions of oblique bending (Fig. 3.30). 
 

 

In this figure, O is the centroid of the cross-
section, axes 𝑦 and 𝑧 are the principal central axes 
of inertia of the section; 𝑀bending is the bending mo-

ment acting in the cross-section of the bar at an an-
gle 𝛼 to the 𝑧-axis; the shear force is not shown, 
since the normal stress 𝜎௫ is determined only by the 
presence of bending moments. 

 

The action plane of the bending moment, i.e. 
the plane of loading, contains the 𝑥-axis, but does 
not contain either the 𝑦 or 𝑧-axis. 

Fig. 3.30 
 

Relying on the principle of superposition, oblique bending can be considered as 
simultaneous pure plane bending in two principal planes: 𝑥𝑂𝑧 and 𝑥𝑂𝑦. Therefore, 
oblique bending is a special case of combined loading. 

 

In Fig. 3.31, the moment 𝑀bending is shown in its usual and vector forms according 

to the rule adopted in the Theoretical Mechanics course. From this figure, it is clear that: 
 

𝑀௬ ൌ 𝑀bending cos𝛼 ;

𝑀௭ ൌ 𝑀bending sin𝛼 .
ቋ (3.31) 

 

In Fig. 3.32, the diagram of the internal forces and moments action in the section is 
shown, transformed in accordance with formula (3.31). 

 

  
Fig. 3.31 Fig. 3.32 
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The normal stress 𝜎௫ in an arbitrary point C is determined, using the principle of 
independence of force action (superposition), as follows: 

 

𝜎௫ ൌ 𝜎௫൫𝑀௬൯ ൅ 𝜎௫ሺ𝑀௭ሻ ൌ
𝑀௬𝑧
𝐼௬

൅
𝑀௭𝑦
𝐼௭

. (3.32) 
 

By substituting the values of 𝑀௬ and 𝑀௭ from relations (3.31) into formula (3.32), 

we obtain: 

𝜎௫ ൌ 𝑀bending ቆ
𝑧
𝐼௬

cos𝛼 ൅
𝑦
𝐼௭

sin𝛼ቇ , (3.33) 

 

where   𝑦, 𝑧 are the coordinates of an arbitrary point С; 
𝑀bending is the bending moment acting in the cross-section; 

𝐼௬ and 𝐼௭ are inertia moments of the cross-section; 

𝛼 is the angle of inclination of the loading plane to the 𝑧-axis. 
 

Remark Sometimes it is convenient to work directly with the given bending 
moments 𝑀௬ and 𝑀௭, acting in two arbitrarily chosen perpendicular 
planes 𝑥𝑂𝑧 and 𝑥𝑂𝑦.  
Then, the formulas for determining the normal stresses caused by 
these moments will have the form: 
 

𝜎௫൫𝑀௬൯ ൌ
𝑀௬

𝐼௬𝐼௭ െ 𝐼௬௭ଶ
൫𝐼௭𝑧 െ 𝐼௬௭𝑦൯; 

 

𝜎௫ሺ𝑀௭ሻ ൌ
𝑀௭

𝐼௬𝐼௭ െ 𝐼௬௭ଶ
൫𝐼௬௭𝑧 െ 𝐼௬𝑦൯. 

 

These formulas are especially convenient for designing beams where 
the web and flanges are parallel to the 𝑦 and 𝑧 axes. 

 

Determination of the cross-section neutral axis position 
 

When performing strength analyses, the strength condition is written for the critical 
point of the cross-section, i.e., for the point, at which the normal stresses reach their 
maximum values. The most stressed point of an arbitrary shape cross-section is the point 
most distant from the neutral axis, which separates the tension and compression zones of 
the section. 

Using equation (3.33), we determine the position of the neutral axis of the section 
from the condition that, at the points belonging to the neutral axis, 𝜎௫ ൌ 0. Since 
𝑀bending ് 0, it follows that 

𝑧
𝐼௬

cos𝛼 ൅
𝑦
𝐼௭

sin𝛼 ൌ 0. 

 

From this, we obtain the equation of a straight line passing through the origin: 
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𝑧 ൌ ൬െ
𝐼௬
𝐼௭

sin𝛼
cos𝛼

൰ 𝑦 ൌ ൬െ
𝐼௬
𝐼௭

tg𝛼൰ 𝑦 (3.34) 
 

or                                                      𝑧 ൌ 𝑘ଵ𝑦, 
 

where                                         𝑘ଵ ൌ tg𝜑 ൌ െ
𝐼௬
𝐼௭

tg𝛼 . (3.35) 
 

Expression (3.35) allows us to find the inclination angle of the neutral axis to the 
𝑦-axis, and the minus sign indicates that the loading plane and the neutral axis in oblique 
bending pass through opposite quadrants. If the angle 𝜑 ൐ 0, then it is measured coun-
terclockwise from the 𝑦-axis; if the angle 𝛼 ൐ 0, then it is measured clockwise from the 
𝑧-axis. 

The angle 𝜑 does not depend on the magnitude of the force P, but only on the angle 
of inclination of the loading plane to the 𝑧-axis and on the shape of the cross-section. 

 

 

Let us determine the orientation of the neu-
tral axis relative to the action plane of 𝑀bending, 

since it cannot be uniquely assumed that they are 
perpendicular (Fig. 3.33). 

 

The equation of the loading line, i.e., the line 
of intersection of the action plane of 𝑀bending and 

the cross-sectional plane (line AB in Figs 3.30 and 
3.32), in the coordinate system 𝑧𝑂𝑦 has the form: 

𝑧 ൌ 𝑘ଶ𝑦, 
Fig. 3.33 

 

where                           𝑘ଶ ൌ tg ቀ
𝜋
2
െ 𝛼ቁ ൌ ctg𝛼 ൌ

1
tg𝛼

. (3.36) 

From the course of analytic geometry, it is known that the condition of perpendicu-
larity of two straight lines is 

𝑘ଵ ൌ െ
1
𝑘ଶ

. (3.37) 

By comparing the values of 𝑘ଵ from equation (3.35) and 𝑘ଶ from (3.36), it is evident 
that condition (3.37) is not fulfilled in this case: 

െ
𝐼௬
𝐼௭

tg𝛼 ് െ tg𝛼 . 

This means that, in the general case, the neutral line of the cross-section is not per-
pendicular to the action plane of the bending moment 𝑀bending (the loading line). 

 

In the special case of cross-sections for which 𝐼௬ ൌ 𝐼௭ ൌ 𝐼௠௔௫ ൌ 𝐼௠௜௡ (for example, 

square or circular), all axes passing through the cross-section centroid are principal 
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central axes of inertia. For such sections, according to the definition, realization of 
oblique bending is impossible, because the neutral axis is perpendicular to the loading 
plane. 

During oblique bending, according to formulas (3.31), the ratio of the bending mo-
ments 𝑀௬ and 𝑀௭ is constant along the entire length of the bar (𝑀௭ 𝑀௬⁄ ൌ tg𝛼). There-

fore, the inclination angle 𝜑 of the neutral line is also constant. This means that the cross-
sections of the bar, remaining plane, rotate around neutral axes parallel to each other, as 
in the case of simple plane bending. The curvature of the bar axis occurs in a single plane 
𝑛 െ 𝑛, normal to the direction of the neutral axis (see Fig. 3.33), which defines the name 
of this type of deformation. This plane is called the bending plane. 

 

Remark If the loading line in a bar with a rectangular cross-section passes along 
one of the diagonals, the neutral axis will pass along the other diagonal: 
 

tg𝜑 ൌ െ
𝐼௬
𝐼௭

tg𝛼 ൌ െ
𝑏ℎଷ

12
∙

12
ℎ𝑏ଷ

∙
𝑏
ℎ
ൌ െ

ℎ
𝑏

. 

 
The strength condition in oblique bending 

 

Expression (3.33) in the 𝜎௫, 𝑦, 𝑧 coordinate system represents the equation of a 
plane that intersects the beam's cross-section along the neutral axis. Consequently, the 
normal stresses (tensile and compressive) reach maximum values at those points of the 
cross-section that are most distant from its neutral axis. 

 

If the coordinates of the points most distant from the neutral axis are known (𝑦∗ and 
𝑧∗), then the strength condition takes the form: 

 

𝜎௫ ௠௔௫ ൌ 𝑀bending ቆ
𝑧∗

𝐼௬
cos𝛼 ൅

𝑦∗

𝐼௭
sin𝛼ቇ ൑ ሾ𝜎ሿ. (3.38) 

 

For determining the critical points of complex shape sections, it is necessary to con-
struct tangents to the contour of the section parallel to the neutral axis. The points of 
tangency will then be the critical points.  

 

Remark For cross-sections with protruding corners, in which both principal axes 
of inertia are axes of symmetry (rectangular, box-type, I-beam, etc.), the 
critical points are located at the corners of these sections, i.e., they can be 
found without determining the position of the neutral axis: 
 

𝜎௫ ௠௔௫ ൌ
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
ൌ ห𝑀bendingห ቆ

cos𝛼
𝑊௬

൅
sin𝛼
𝑊௭

ቇ ൑ ሾ𝜎ሿ. (3.39) 
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3.5.2. Problem-Solving Examples 
 
Example 3.3 
 

Select the dimensions of a rectangular cross-section of a cantilever beam (Fig. 3.34); 
construct the diagram of normal stresses in the critical cross-section; determine the posi-
tion of the neutral axis. 

 

 

Given:  𝑃 ൌ 20 kN;  𝑙 ൌ 2 m; 
 

𝛼 ൌ 20°;  ሾ𝜎ሿ ൌ 120 МPа; 
 

𝑘 ൌ ℎ 𝑏⁄ ൌ 2. 
 

It is necessary to determine 𝑏 and ℎ; to 
construct the 𝜎௫ diagram in the critical 
section; and to find the position of the 
neutral axis. 

Fig. 3.34 
 

Solution 
 

1. From Fig. 3.34, it is seen that the maximum bending moment acts at the fixed 
end: 

 

𝑀bending ൌ െ 𝑃𝑥 ൌ െ20𝑥 ቚ
௫ୀ଴

ൌ 0 ቚ
௫ୀ௟ୀଶ ௠

ൌ െ40 kN·m. 
 

Let us represent the maximum bending moment in projections onto the principal 
central axes of inertia of the beam's cross-section (the 𝑦 and 𝑧-axes) (Fig. 3.35): 

 

𝑀௬ ൌ 𝑀bending cos𝛼 ൌ െ40 ∙ cos 20° ൌ െ37.588 kN·m; 
 

𝑀௭ ൌ 𝑀bending sin𝛼 ൌ െ40 ∙ sin 20° ൌ െ13.681 kN·m. 
 

2. Show the scheme of internal forces and moments acting in the critical cross-sec-
tion (Fig. 3.36). 

 

  
Fig. 3.35 Fig. 3.36 
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From this figure, it is evident that the most critical points of the cross-section are 
the corner points A (with the maximum tensile stress) and C (with the maximum com-
pressive stress). 

Since the beam is made of a ductile material, ሾ𝜎ሿt ൌ ሾ𝜎ሿc ൌ ሾ𝜎ሿ, and consequently, 
points A and C are equally critical. 

Let us write the strength condition for oblique bending at the critical point A 
 

𝜎௫ ௠௔௫ ൌ
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
ൌ ห𝑀bendingห ቆ

cos𝛼
𝑊௬

൅
sin𝛼
𝑊௭

ቇ ൑ ሾ𝜎ሿ. 
 

We can rewrite this formula in another form: 
 

𝜎௫ ௠௔௫ ൌ
ห𝑀bendingห

𝑊௬
൬cos𝛼 ൅

𝑊௬

𝑊௭
sin𝛼൰ ൌ

ห𝑀bendingห

𝑊௬
ሺcos𝛼 ൅ 𝑘 sin𝛼ሻ ൑ ሾ𝜎ሿ, 

 

where     𝑊௬ ൌ
𝑏ℎଶ

6
ൌ ൜since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘ଶ𝑏ଷ

6
; 

 

𝑊௭ ൌ
ℎ𝑏ଶ

6
ൌ ൜since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘𝑏ଷ

6
; 

 

𝑊௬

𝑊௭
ൌ
𝑘ଶ𝑏ଷ

6
6
𝑘𝑏ଷ

ൌ 𝑘. 
 

Then 
 

𝑏 ൒ ඨ
6ห𝑀bendingห

𝑘ଶሾ𝜎ሿ
ሺcos𝛼 ൅ 𝑘 sin𝛼ሻ

ଷ
ൌ 

ൌ ඨ
6 ∙ 40 ൈ 10ଷ

2ଶ ∙ 120 ൈ 10଺
ሺcos 20° ൅ 2 ∙ sin 20°ሻ

ଷ
ൌ 0.0933 m; 

 

ℎ ൌ 𝑘𝑏 ൌ 2 ∙ 0.0977 ൌ 0.1866 m; 
 

𝑊௬ ൌ
𝑏ℎଶ

6
ൌ

0.0933 ∙ 0.1866ଶ

6
ൌ 541.444 ൈ 10ି଺ m3; 

 

𝑊௭ ൌ
ℎ𝑏ଶ

6
ൌ

0.1866 ∙ 0.0933ଶ

6
ൌ 270.722 ൈ 10ି଺ m3. 

 

3. Let us determine the acting stresses at the corner points of the cross-section and 
construct the diagram of normal stress distribution acting in the critical cross-section 
(Fig. 3.37): 

𝜎൫𝑀௬൯ ൌ
ห𝑀௬ห
𝑊௬

ൌ
37.588 ൈ 10ଷ

541.444 ൈ 10ି଺
ൌ 69.422 MPa; 

𝜎ሺ𝑀௭ሻ ൌ
|𝑀௭|

𝑊௭
ൌ

13.681 ൈ 10ଷ

270.722 ൈ 10ି଺
ൌ 50.535 MPa; 
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𝜎஺ ൌ 𝜎൫𝑀௬൯ ൅ 𝜎ሺ𝑀௭ሻ ൌ 69.422 ൅ 50.535 ൌ 119.957 MPa; 
 

𝜎஻ ൌ െ𝜎൫𝑀௬൯ ൅ 𝜎ሺ𝑀௭ሻ ൌ െ69.422 ൅ 50.535 ൌ െ18.887 MPa; 
 

𝜎஼ ൌ െ𝜎൫𝑀௬൯ െ 𝜎ሺ𝑀௭ሻ ൌ െ69.422 െ 50.535 ൌ െ119.957 MPa; 
 

𝜎஽ ൌ 𝜎൫𝑀௬൯ െ 𝜎ሺ𝑀௭ሻ ൌ 69.422 െ 50.535 ൌ 18.887 MPa. 
 

 
Fig. 3.37 

 

4. We determine analytically the position of the neutral axis 
 

tg𝜑 ൌ െ
𝐼௬
𝐼௭

tg𝛼 ൌ െ
𝑏ℎଷ

12
12
ℎ𝑏ଷ

tg𝛼 ൌ െ𝑘ଶ tg𝛼 ൌ െ2ଶ ∙ tg 20° ൌ െ1.4559; 
 

𝜑 ൌ െ55.52°. 
 

5. Let us compare the stresses in oblique and plane bending (with 𝛼 ൌ 0): 
 

𝜎௫௠௔௫ሺఈୀ଴ሻ ൌ
𝑀௬

𝑊௬
ൌ

40 ൈ 10ଷ

541.444 ൈ 10ି଺
ൌ 73.877 MPa; 

 

𝜎஺
𝜎ఈୀ଴

ൌ
119.957
73.877

ൌ 1.62. 
 

The maximum stresses in oblique bending are greater than in plane bending by a 
factor of 1.62, i.e., oblique bending is more dangerous than plane bending. 
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Example 3.4 
 

When installing an I-beam (No. 20, 𝑊௬ ൌ 184 ൈ 10ି଺ m3, 𝑊௭ ൌ 23.1 ∙ 10ି଺ m3) 

on supports, intended to operate in bending in the vertical plane coinciding with the web 
plane, an error was made: the web of the I-beam deviated from the vertical by an angle 
𝛼 ൌ 1°. Determine the increase in the maximum normal stresses associated with this de-
viation. 

 

Solution 
 

The deviation of the I-beam's axis (the 𝑧-axis) from the vertical leads to occurrence 
of oblique bending (Fig. 3.38) and the appearance of bending moments 𝑀௬ and 𝑀௭. 

 

Let's represent the caused by the action of force 
𝑃 in projections onto the principal central axes of in-
ertia of the beam's cross-section (the 𝑦 and  𝑧-axes): 

 

𝑀௬ ൌ 𝑀bending cos𝛼 ൌ 𝑀bending ∙ cos 1° ൌ
ൌ 0,99985 ∙ 𝑀bending; 

 

𝑀௭ ൌ 𝑀bending sin𝛼 ൌ 𝑀bending ∙ sin 1° ൌ
ൌ 0,01745 ∙ 𝑀bending.  

Fig. 3.38 
 

The maximum stress during oblique bending is: 
 

𝜎௫ ௠௔௫ ൌ
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
ൌ
𝑀bending cos𝛼

𝑊௬
൅
𝑀bending sin𝛼

𝑊௭
ൌ
𝑀bending

𝑊௬
൬cos𝛼 ൅

𝑊௬

𝑊௭
sin𝛼൰ . 

 

Then 
 

𝜎௫ ௠௔௫ ൌ
𝑀bending

𝑊௬
ቆcos 1° ൅

184 ൈ 10ି଺

23.1 ൈ 10ି଺
sin 1°ቇ ൌ 1.139 ∙

𝑀bending

𝑊௬
. 

 

In the case of correct installation of the beam, the force 𝑃 would coincide with the 
vertical 𝑧-axis, and simple (plane) bending would occur; the bending moment would be 
equal to 𝑀௕௘௡ௗ௜௡௚, and the maximum normal stress would be 

 

𝜎௫௠௔௫ሺఈୀ଴ሻ ൌ
𝑀bending

𝑊௬
. 

 

Thus, the maximum stresses during oblique bending due to such a minor deviation 
from the vertical increase by 13.9%. 
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Example 3.5 
 

A cantilever beam of rectangular cross-section is loaded by a concentrated force 𝑃 
and a uniformly distributed (rectangular) load 𝑞 (Fig. 3.39). Determine the maximum 
stress acting in the critical cross-section. 

 

 

Given:  𝑃 ൌ 12 kN;  𝑞 ൌ 14 kN/m; 
 

𝑏 ൌ 0.1 m;  𝑘 ൌ ℎ 𝑏⁄ ൌ 1.5; 
 

𝑙 ൌ 1.5 m;  𝛼 ൌ 20°. 
 

It is necessary to define 𝜎௫ ௠௔௫. 

Fig. 3.39 
 

Solution 
 

1. Let's represent all external loads acting on the beam in projections onto the prin-
cipal central axes of inertia of the beam's cross-section (the 𝑦 and  𝑧-axes). 

In this case: 
 

𝑃௭ ൌ 𝑃 cos𝛼 ൌ 12 ∙ cos 20° ൌ 11.276 kN;    𝑞௭ ൌ 𝑞 ൌ 14 kN/m; 
 

𝑃௬ ൌ 𝑃 sin𝛼 ൌ 12 ∙ sin 20° ൌ 4.104 kN;    𝑞௭ ൌ 0. 
 

2. Construct the bending moment diagram acting in the vertical plane (𝑥𝑂𝑧) 
(Fig. 3.40): 

 

𝑀௬ ൌ 𝑃௭𝑥 െ
𝑞𝑥ଶ

2
ൌ 11.276 ∙ 𝑥 െ

14𝑥ଶ

2
ቚ
௫ୀ଴

ൌ 0 ቚ
௫ୀ௟ୀଵ,ହ m

ൌ 1.164 kN·m. 
 

Let's determine the extreme value of 𝑀௬: 
 

𝑑𝑀௬

𝑑𝑥
ൌ 𝑃௭ െ 𝑞𝑥e ൌ 0    ⟹     𝑥e ൌ

𝑃௭
𝑞
ൌ

11.276
14

ൌ 0.805 m    and    𝑀௬
e ൌ 4.541 kN·m. 

 

3. Construct the bending moment diagram acting in the horizontal plane (𝑥𝑂𝑦) 
(see Fig. 3.40): 

 

𝑀௭ ൌ െ𝑃௬𝑥 ൌ െ4.104 ∙ 𝑥 ቚ
௫ୀ଴

ൌ 0 ቚ
௫ୀ௟ୀଵ,ହ m

ൌ െ6.156 kN·m. 
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Fig. 3.40 

 

4. Let us calculate the stress acting at the critical point of the critical cross-section: 
 

In any cross-section, the maximum stress acts at one of the points most distant both 
from the 𝑦-axis and from the 𝑧-axis. Therefore, 

𝜎௫ ௠௔௫ ൌ
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
ൌ
𝑃௭𝑥 െ

𝑞𝑥ଶ

2
𝑊௬

൅
𝑃௬𝑥
𝑊௭

. 

 

Introduce the notation:    𝑚 ൌ
𝑊௬

𝑊௭
ൌ
𝑏ℎଶ

6
∙

6
ℎ𝑏ଶ

ൌ
ℎ
𝑏
ൌ 𝑘 ൌ 1.5. 

Then 

𝜎௫ ௠௔௫ ൌ
1
𝑊௬

ቆ𝑃௭𝑥 െ
𝑞𝑥ଶ

2
൅𝑚𝑃௬𝑥ቇ . 

 

We determine the maximum value of the maximum stress. 
 

𝑑ሺ𝜎௫ ௠௔௫ሻ

𝑑𝑥
ൌ

1
𝑊௬

൫𝑃௭ െ 𝑥e
ఙ ൅ 𝑚𝑃௬൯ ൌ 0,  from where 

 

𝑥e
ఙ ൌ

𝑃௭
𝑞
൅ 𝑚

𝑃௬
𝑞
ൌ ሼsince 𝑚 ൌ 𝑘 ൌ 1.5ሽ ൌ

11.276
14

൅
1.5 ∙ 4.104

14
ൌ 1.245 m. 

 

Let us determine the values of the bending moments acting in the critical section: 

𝑀௬బ ൌ 11.276 ∙ 𝑥 െ
14𝑥ଶ

2
ቚ
௫ୀ௫e

഑
ൌ 3.188 kN·m; 

 

𝑀௭బ ൌ െ4.104 ∙ 𝑥 ቚ
௫ୀ௫e

഑
ൌ െ5.109 kN·m. 

 

Thus, finally: 
 

𝜎௫ ௠௔௫ ൌ
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
ൌ

3.188 ൈ 10ଷ

0.000375
൅

|െ5.109 ൈ 10ଷ|

0.00025
ൌ 28.937 МPа. 
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Remark With oblique bending, the critical cross-section is not always the one 
where the bending moment has the greatest value. In this case, 
at the critical section: 
 

𝑀bending ൌ ට𝑀௬బ
ଶ ൅ 𝑀௭బ

ଶ ൌ ඥ3.188ଶ ൅ 5.109ଶ ൌ 6.022 kN·m; 
 

𝜎௫ ௠௔௫ ൌ 28.937 MPa; 
 

at the fixed end: 
 

𝑀bending ൌ ට𝑀௬
ଶ ൅ 𝑀௭

ଶ ൌ ඥ1.164ଶ ൅ 6.156ଶ ൌ 6.265 kN·m; 
 

𝜎௫ ௠௔௫ ൌ
𝑀௬

𝑊௬
൅
𝑀௭

𝑊௭
ൌ

1.164
0.000375

൅
6.156

0.00025
ൌ 27.728 MPa; 

 

at the section with 𝑥e ൌ 0.805 m: 
 

𝑀bending ൌ ට𝑀௬
ଶ ൅ 𝑀௭

ଶ ൌ ඥ4.541ଶ ൅ 3.304ଶ ൌ 5.616 kN·m; 
 

𝜎௫ ௠௔௫ ൌ
𝑀௬

𝑊௬
൅
𝑀௭

𝑊௭
ൌ

4.541
0.000375

൅
3.304

0.00025
ൌ 25.325 MPa. 

 

Example 3.6 
 

A cantilever beam of I-section with a length 𝑙 ൌ 1 m is subjected to a uniformly 
distributed (rectangular) load with an intensity of 𝑞 ൌ 5 kN/m (Fig. 3.41). The loading 
plane forms an angle of 𝛼 ൌ 15° with the web plane of the I-beam. Design the I-beam 
section if ሾ𝜎ሿ ൌ 160 MPа. 

 

Given:  𝑙 ൌ 1 m;   𝑞 ൌ 10 kN/m; 
 

𝛼 ൌ 15°;  ሾ𝜎ሿ ൌ 160 MPа. 
 

It is required to select the I-beam number. 

Fig. 3.41 
 

Solution 
 

From Fig. 3.41 it is clear that the maximum bending moment will act at the fixed 
end: 

 

𝑀bending ൌ െ  
𝑞𝑥ଶ

2
ൌ െ5𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௟ୀଵ m
ൌ െ5 kN·m. 
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The strength condition in this case (a section with protruding corners) has the form 

𝜎௫ ௠௔௫ ൌ ห𝑀bendingห ቆ
cos𝛼
𝑊௬

൅
sin𝛼
𝑊௭

ቇ ൌ
ห𝑀bendingห

𝑊௬
൬cos𝛼 ൅

𝑊௬

𝑊௭
sin𝛼൰ ൑ ሾ𝜎ሿ, 

from which we get: 

𝑊௬ ൒
ห𝑀bendingห
ሾ𝜎ሿ

൬cos𝛼 ൅
𝑊௬

𝑊௭
sin𝛼൰ ൌ

5 ൈ 10ଷ

160 ൈ 10଺
൬cos 15° ൅

𝑊௬

𝑊௭
sin 15°൰ ൌ 

 

ൌ31.25ൈ10ି଺ ൬0.966 ൅
𝑊௬

𝑊௭
0.259൰ ൌ 30.188ൈ10ି଺ ൅

𝑊௬

𝑊௭
8.094ൈ10ି଺ mଷ. 

The section will be designed using the method of successive approximations. The 
right side of this expression contains the ratio 𝑊௬ 𝑊௭⁄ , which varies from 6.12 (I-beam 

No. 10) to 14.07 (I-beam No. 60). 
As a first approximation, we assume 𝑊௬ 𝑊௭⁄ ൌ 10, then 
 

𝑊௬ ൒ 30.188ൈ10ି଺ ൅ 10 ∙ 8.094ൈ10ି଺ ൌ 111.128ൈ10ି଺ mଷ. 
 

From the steel section tables, we select I-beam No. 16, which has 
 

𝑊௬ ൌ 109ൈ10ି଺ mଷ;      𝑊௭ ൌ 14.5ൈ10ି଺ mଷ. 
 

Let us check its strength: 
 

𝜎௫ ௠௔௫ ൌ
ห𝑀bendingห

𝑊௬
൬cos𝛼 ൅

𝑊௬

𝑊௭
sin𝛼൰ ൌ

5 ൈ 10ଷ

109 ൈ 10ି଺
൬0.966 ൅

109
14.5

∙ 0.259൰ ൌ 

 

ൌ 133.62 MPa. 
 

Underload is given by     ∆𝜎 % ൌ ฬ
133.88 െ 160

160
ฬ ൌ 16.325 %. 

 

Then, we select from the steel section tables I-beam No. 14, which has: 
 

𝑊௬ ൌ 81.7ൈ10ି଺ mଷ;      𝑊௭ ൌ 11.5ൈ10ି଺ mଷ. 

Let us check its strength 

𝜎௫ ௠௔௫ ൌ
5 ൈ 10ଷ

81.7 ൈ 10ି଺
൬0.966 ൅

81.7
11.5

∙ 0.259൰ ൌ 171.73 MPa. 
 

Overload is given by     ∆𝜎 % ൌ ฬ
171.73 െ 160

160
ฬ ൌ 7.33 % ൐ 5 %. 

Such an overload is not permissible; therefore, we finally select I-beam No. 16. 
Let us compare the maximum stresses under oblique and plane bending (at 𝛼 ൌ 0): 

𝜎௫௠௔௫  ሺఈୀ଴ሻ ൌ
𝑀௬

𝑊௬
ൌ

5 ൈ 10ଷ

109 ൈ 10ି଺
ൌ 45.872 MPa;         

𝜎஺
𝜎ఈୀ଴

ൌ
133.62
45.872

ൌ 2.91. 

Thus, the maximum stresses under oblique bending are greater than under simple 
bending by a factor of 2.91.  



94 

3.5.3. Eccentric Tension-Compression 
 

Eccentric tension-compression occurs in a bar's cross-sections, in the case when 
the bar is loaded by a force whose action line is parallel to the longitudinal axis of the 
bar but does not coincide with it. 

 

 

Let a force P act on a bar, parallel to the longi-
tudinal axis and applied at point C of the cross-sec-
tion. The coordinates of this point in the principal 
axes system are denoted as 𝑦௉ and 𝑧௉, and the dis-
tance from this point to the 𝑥-axis, which is called 
the eccentricity, is 𝑒 (Fig. 3.42). 

If the force 𝑃 is transferred parallel to itself from 
point C to the centroid of the cross-section, then the 
eccentric tension can be represented as the sum of 
three simple deformations: tension and bending in 
two planes. Fig. 3.42 

 

Then, in all cross-sections of the bar, the following internal forces and moments will 
act: 

 

𝑁௫ ൌ 𝑃;
𝑀௬ ൌ 𝑃 ∙ 𝑧௉;
𝑀௭ ൌ 𝑃 ∙ 𝑦௉.

 (3.40) 

 

Thus, eccentric tension-compression can be considered, based on the principle of 
superposition, as the result of the combined action of pure tension-compression and 
oblique or plane pure bending. That is, it is a special case of combined loading. 

 

Determining the acting stresses 
 

 

In Fig. 3.43 a diagram of internal forces 
and moments action in the bar`s cross-section 
is shown. The absence of a shear force in the 
bar's section means that pure bending (plane 
or oblique) occurs. This removes the limita-
tions that must be satisfied in the case of trans-
verse oblique bending.  

Fig. 3.43 
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Using the principle of superposition, we determine the normal stresses at an arbi-
trary point of the cross-section located in the first quadrant, with coordinates 𝑦, 𝑧 (see 
Fig. 3.43). We choose the direction of the 𝑦 and 𝑧 axes (i.e. the position of the first quad-
rant) such that 𝑁௫, 𝑀௬, and 𝑀௭ create positive stresses in this quadrant. Then: 

 

𝜎௫ ൌ 𝜎௫ሺ𝑁௫ሻ ൅ 𝜎௫൫𝑀௬൯ ൅ 𝜎௫ሺ𝑀௭ሻ ൌ
𝑁௫
𝐹
൅
𝑀௬

𝐼௬
𝑧 ൅

𝑀௭

𝐼௭
𝑦, (3.41) 

 

where 𝐹 is the area of the cross-section; 
 𝐼௬, 𝐼௭ are the inertia moments of the cross-section. 

 

Substitute into this relation the values of 𝑁௫, 𝑀௬, and 𝑀௭ from formulas (3.40): 
 

𝜎௫ ൌ
𝑃
𝐹
൅
𝑃𝑧௉
𝐼௬

𝑧 ൅
𝑃𝑦௉
𝐼௭

𝑦 ൌ
𝑃
𝐹
ቌ1 ൅

𝑧௉
𝐼௬
𝐹

𝑧 ൅
𝑦௉
𝐼௭
𝐹

𝑦ቍ . (3.42) 

Let us introduce the notation: 

𝑖௬ ൌ ඨ
𝐼௬
𝐹

,                𝑖௭ ൌ ඨ
𝐼௭
𝐹

, (3.43) 

 

where 𝑖௬, 𝑖௭ are the radii of gyration of the bar's cross-section relative to its principal 

central axes of inertia. 
 

Taking into account relations (3.43), we rewrite expression (3.42) in the following 
form: 

𝜎௫ಶ ൌ
𝑃
𝐹
ቆ1 ൅

𝑧௉
𝑖௬ଶ
𝑧 ൅

𝑦௉
𝑖௭ଶ
𝑦ቇ , (3.44) 

 

where 𝑧௉, 𝑦௉ are the coordinates of the 𝑃-force application point; 
𝑦, 𝑧 are the coordinates of the point at which the stress is determined. 

 

The obtained expression makes it possible to find the stress at any point of the cross-
section in any quadrant. 

 

Determining of the neutral axis position 
 

To find the critical point (or points) of the section, it is necessary to determine the 
position of the neutral axis of the section. 

The equation of the neutral axis is obtained from the condition 𝜎௫ ൌ 0, by equating 
the right side of expression (3.44) to zero. Since 𝑃 𝐹⁄ ് 0, it follows that: 

 

1 ൅
𝑧௉
𝑖௬ଶ
𝑧 ൅

𝑦௉
𝑖௭ଶ
𝑦 ൌ 0. (3.45) 
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This is the equation of a straight line not passing through the origin. 
 

We transform equation (3.45) into the intercept form on the coordinate axes 
 

𝑧

൬െ
𝑖௬ଶ

𝑧௉
൰
൅

𝑦

൬െ
𝑖௭ଶ
𝑦௉
൰
ൌ 1 

 

(3.46) 

or 
𝑧
𝑎௭
൅
𝑦
𝑎௬

ൌ 1. (3.47) 
 

Consequently, the intercepts cut off by the neutral axis on the 𝑦 and 𝑧-axes can be 
determined from the relations 

 

𝑎௬ ൌ െ
𝑖௭ଶ

𝑦௉
,                     𝑎௭ ൌ െ

𝑖௬ଶ

𝑧௉
. (3.48) 

 

 

From these relations, it follows 
that 𝑎௬ and 𝑦௉, and 𝑎௭ and 𝑧௉ always 

have mutually opposite signs. That is, 
the point of application of the force 
(point C) and the neutral axis always lie 
on opposite sides of the centroid of the 
section (Fig. 3.44). 

Let's consider some characteristic 
features related to the behaviour of the 
neutral axis with different positions of 
the 𝑃-force application point: Fig. 3.44 

 

1. The neutral axis position does not depend on the magnitude or sign of force 𝑃; 
 

2. Under eccentric tension-compression, the neutral axis can either intersect the cross-
section or lie outside its boundaries. In the first case, stresses of different signs arise 
in the cross-section: one part of the section is in tension, and other part is in com-
pression. In the second case, the stresses at all points of the cross-section will have 
the same sign. 
 

3. The neutral axis position depends on the coordinates of load application point. The 
closer the force is applied to the centroid of the cross-section (the smaller the eccen-
tricity), the farther away the neutral axis is located from it. 

 

4. If force 𝑃 is applied at a point on the 𝑦-axis ሺ𝑧௉ ൌ 0ሻ, then the neutral axis will be 
parallel to the 𝑧-axis, since 𝑎௭ ൌ െ 𝑖௬ଶ 𝑧௉⁄ ൌ െ 𝑖௬ଶ 0⁄ ൌ െ∞. 



97 

If force 𝑃 is applied at a point on the 𝑧-axis ሺ𝑦௉ ൌ 0ሻ, then the neutral axis will be 
parallel to the 𝑦-axis, since 𝑎௬ ൌ െ 𝑖௭ଶ 𝑦௉⁄ ൌ െ 𝑖௭ଶ 0⁄ ൌ െ∞. 

 
 

Strength condition for eccentric tension-compression 
 

Expression (3.44) in the 𝜎௫, 𝑦, 𝑧 coordinate system represents the equation of a 
plane. Consequently, 𝜎௫ ൌ 𝜎௠௔௫ will occur at those points of the cross-section most dis-
tant from its neutral axis.  

 

If the coordinates of the critical point are defined and equal to 𝑦∗ and 𝑧∗, then the 
strength condition takes the form 

 

𝜎௫ ௠௔௫ ൌ
𝑃
𝐹
ቆ1 ൅

𝑧௉
𝑖௬ଶ
𝑧∗ ൅

𝑦௉
𝑖௭ଶ
𝑦∗ቇ ൑ ሾ𝜎ሿ. (3.49) 

 

For cross-sections of complex shapes, the coordinates of the critical points can be 
determined by drawing tangents to the contour of the cross-section parallel to the neutral 
axis. The points of tangency whose distance to the neutral axis is maximal are the critical 
points of the cross-section. 

 

Remark For cross-sections with protruding corners, where both principal axes 
of inertia are axes of symmetry (e.g., rectangular, box, I-beam, etc.), 
the critical points are located at the corners of these sections. That is, 
they can be found without determining the position of the neutral axis: 
 

𝜎௫ ௠௔௫ ൌ
|𝑁௫|

𝐹
൅
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
൑ ሾ𝜎ሿ. (3.50) 

 

 
 

3.5.4. Cross-Section Core 
 
When designing bars made of materials with poor resistance to tension (e.g., cast 

iron, brickwork, concrete), it is desirable to ensure that the entire cross-section works 
only in compression. This is achieved by preventing the P-force application point from 
moving too far from the centroid of the section, thereby limiting the eccentricity. 

It is also desirable to know in advance what eccentricity may be allowed for a se-
lected type of cross-section without risking the occurrence of opposite signs stresses in 
the section of the bar. To this end, it is necessary to establish the region of possible posi-
tions of the force application point, within which the stresses at all points of the cross-
section will have the same sign. This region is called the core of the cross-section. 
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 The cross-section core is the region located in the vicinity of the cross-sectioncen-
troid, within which the application of a tensile or compressive force results in stresses 
of the same sign at all points of the cross-section. 

 

From this definition, it follows that if a tensile or compressive force is applied on 
the boundary of the cross-section core, the neutral axis touches the contour of the cross-
section. 

To construct the boundary contour of the cross-section core, it is necessary to con-
sider various positions of the neutral axis tangent to the cross-section contour and com-
pute the coordinates of the corresponding 𝑃-force application points using formulas de-
rived from relations (3.46): 

 

𝑦௉ ൌ െ
𝑖௭ଶ

𝑎௬
;               𝑧௉ ൌ െ

𝑖௬ଶ

𝑎௭
. (3.51) 

 

The calculated coordinates determine points lying on the boundary of the cross-
section core. 

 

 

To facilitate the construction of the cross-sec-
tion core, we use a property of the neutral axis: when 
the neutral axis rotates around some fixed-point A on 
the section contour, the point of application of the 
force moves along a certain straight line (Fig. 3.45). 

 

In Fig. 3.45 three positions of the 𝑃-force appli-
cation point are shown on a certain line 1–3, and cor-
respondingly, three positions of the neutral axis.  

Fig. 3.45 
 

To prove this property, it is sufficient to substitute the coordinates of point А 
ሺ𝑦஺,  𝑧஺ሻ, which lies on the neutral axis, into equation (3.45). 

We obtain: 
 

1 ൅
𝑧௉
𝑖௬ଶ
𝑧஺ ൅

𝑦௉
𝑖௭ଶ
𝑦஺ ൌ 0. (3.52) 

 

Indeed, expression (3.52) for 𝑧஺ ൌ 𝑐𝑜𝑛𝑠𝑡 represents the equation of a straight line 
with respect to the coordinates of the points of force application 𝑃 – ሺ𝑦௉,  𝑧௉ሻ. 

 

Thus, to construct the cross-section core for a given shape, it is necessary to draw 
several positions of the neutral axis that coincide with the section sides and also touch its 
protruding points. Then, the coordinates of the points lying on the boundary of the cross-
section core are calculated.  
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3.5.5. Problem-Solving Examples 
 

Example 3.7 
 

For a bar with a rectangular cross-section (Fig. 3.46), find the acting stresses at the 
section characteristic points; construct the diagram of normal stress distribution in this 
section; and analytically determine the position of the neutral axis. 

 

Given: 𝑃 ൌ 40 kN; 𝑏 ൌ 0.08 m; ℎ ൌ 0.04 m. 
 

 

It is necessary to: 
1) determine the acting stresses at the section 

characteristic points; 
2) construct the diagram of 𝜎௫ distribution; 
3) determine the position of the neutral axis. 

 
Fig. 3.46 

 

Solution 
 

1. We reduce the external force 𝑃 to the cross-section centroid as a statically equiv-
alent system (Fig. 3.47). Then, in an arbitrary cross-section of the bar, the following in-
ternal forces and moments will act: 

 

|𝑁௫| ൌ 𝑃 ൌ 40 kN; 
 

ห𝑀௬ห ൌ 𝑃 ∙ 𝑧௉ ൌ |െ40 ∙ 0.01| ൌ 0.4 kN·m; 
 

|𝑀௭| ൌ 𝑃 ∙ 𝑦௉ ൌ 40 ∙ 0.04 ൌ 1.6 kN·m, 
where 

𝑦௉ ൌ
𝑏
2
ൌ

0.08
2

ൌ 0.04 m; 
 

𝑧௉ ൌ െ
ℎ
4
ൌ െ

0.04
4

ൌ െ0.01 m.  
Fig. 3.47 

 

2. Let us determine the stresses in the corner points of the cross-section using for-
mula (3.48) and construct the distribution diagram of the normal stresses acting in the 
section (Fig. 3.48): 

𝜎௫ ௠௔௫ ൌ 𝜎௫ሺ𝑁௫ሻ ൅ 𝜎௫ ௠௔௫൫𝑀௬൯ ൅ 𝜎௫ ௠௔௫ሺ𝑀௭ሻ ൌ
|𝑁௫|

𝐹
൅
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
, 

where  𝐹 ൌ 𝑏ℎ ൌ 0.08 ∙ 0.04 ൌ 0.0032 mଶ; 
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𝑊௬ ൌ
𝑏ℎଶ

6
ൌ

0.08 ∙ 0.04ଶ

6
ൌ 21.33 ൈ 10ି଺ m3; 

 

𝑊௭ ൌ
ℎ𝑏ଶ

6
ൌ

0.04 ∙ 0.08ଶ

6
ൌ 42.67 ൈ 10ି଺ m3; 

 

𝜎௫ሺ𝑁௫ሻ ൌ
|𝑁௫|

𝐹
ൌ

40 ∙ 10ଷ

0.0032
ൌ 12.5 MPa; 

 

𝜎௫ ௠௔௫൫𝑀௬൯ ൌ
ห𝑀௬ห
𝑊௬

ൌ
0.4 ൈ 10ଷ

21.33 ൈ 10ି଺
ൌ 18.753 MPa; 

 

𝜎௫ ௠௔௫ሺ𝑀௭ሻ ൌ
|𝑀௭|

𝑊௭
ൌ

1,6 ൈ 10ଷ

42.67 ൈ 10ି଺
ൌ 37.497 MPa. 

 

Then 
 

𝜎஺ ൌ െ𝜎ሺ𝑁௫ሻ ൅ 𝜎൫𝑀௬൯ ൅ 𝜎ሺ𝑀௭ሻ ൌ െ12.5 ൅ 18.753 ൅ 37.497 ൌ 43.75 MPa; 
 

𝜎஻ ൌ െ𝜎ሺ𝑁௫ሻ െ 𝜎൫𝑀௬൯ ൅ 𝜎ሺ𝑀௭ሻ ൌ െ12.5 െ 18.753 ൅ 37.497 ൌ 6.244 MPa; 
 

𝜎஼ ൌ െ𝜎ሺ𝑁௫ሻ െ 𝜎൫𝑀௬൯ െ 𝜎ሺ𝑀௭ሻ ൌ െ12,5 െ 18.753 െ 37.497 ൌ െ68.75 MPa; 
 

𝜎஽ ൌ െ𝜎ሺ𝑁௫ሻ ൅ 𝜎൫𝑀௬൯ െ 𝜎ሺ𝑀௭ሻ ൌ െ12.5 ൅ 18.753 െ 37.497 ൌ െ31.244 MPa. 
 

 
Fig. 3.48 

 

Let us draw the neutral axis through the intersection points of the normal stresses 
diagram with the cross-sectional plane (points E and F). From Fig. 3.48, it is clear that 
the force application point and the neutral axis lie on opposite sides of the centroid of the 
cross-section. 
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3. We analytically determine the neutral axis position, i.e., the intercepts cut by the 
neutral axis on the 𝑦 and 𝑧 axes, using relations (3.48), and we compare them with the 
intercepts obtained by the graphical method (Fig. 3.48): 

 

𝑎௬ ൌ െ
𝑖௭ଶ

𝑦௉
ൌ െ

ሺ2.309 ൈ 10ିଶሻଶ

0.04
ൌ െ0.01333 m; 

 

𝑎௭ ൌ െ
𝑖௬ଶ

𝑧௉
ൌ െ

ሺ1.155 ൈ 10ିଶሻଶ

െ0.01
ൌ 0.01334 m, 

where 

𝐼௬ ൌ
𝑏ℎଷ

12
ൌ

0.08 ∙ 0.04ଷ

12
ൌ 42.67 ൈ 10ି଼ m4; 

 

𝐼௭ ൌ
ℎ𝑏ଷ

12
ൌ

0.04 ∙ 0.08ଷ

12
ൌ 170.67 ൈ 10ି଼ m4; 

 

𝑖௬ ൌ ඨ
𝐼௬
𝐹
ൌ ඨ

42.67 ൈ 10ି଼

0.0032
ൌ 1.155 ∙ 10ିଶ m; 

 

𝑖௭ ൌ ඨ
𝐼௭
𝐹
ൌ ඨ

170.67 ൈ 10ି଼

0.0032
ൌ 2.309 ൈ 10ିଶ m. 

 

Example 3.8 
 

A crack appeared on the edge of a steel strip loaded with a tensile force (Fig. 3.49). 
To prevent the crack from propagating, a fillet was milled out in its place. Determine the 
amount by which the stress in the strip increased as a result. Neglect stress concentration. 
 

Given:   𝑃 ൌ 40 kN;   𝑏 ൌ 50 mm; 
 

𝑡 ൌ 8 mm;    𝑎 ൌ 5 mm. 
 

It is necessary to compare the maximum 
stresses acting in the original strip and the 
strip with the fillet.  

Fig. 3.49 
 

Solution 
 

In the cross-sections of the strip without the fillet, pure tension is realized. There-
fore, the normal stresses are uniformly distributed across the section and are determined 
from the relation: 
 

𝜎௫ ൌ
𝑃
𝑏𝑡
ൌ

40 ൈ 10ଷ

50 ൈ 10ିଷ ∙ 8 ൈ 10ିଷ
ൌ 100 MPa. 
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In the section with the fillet, eccentric tension is realized. 
That is, the axial force and the bending moment act: 

 

𝑁௫ ൌ 𝑃, 
 

𝑀௬ ൌ 𝑃𝑒 ൌ ൜since   𝑒 ൌ
𝑏
2
െ
𝑏 െ 𝑎

2
ൌ
𝑎
2
ൠ ൌ 𝑃

𝑎
2

, 
 

where 𝑒 is the eccentricity of the force application (Fig. 3.50). 
 

In Fig. 3.50: 
𝑂 is the 𝑃-force application point; 
𝑂ଵ is the centroid of the cross-section with the fillet. 

Fig. 3.50 
 

The maximum normal stress will act in the lower part of the cross-section with the 
fillet: 
 

𝜎௫ ௠௔௫ ൌ
𝑃
𝐹
൅
𝑀௬

𝑊௬
ൌ

𝑃
𝑡ሺ𝑏 െ 𝑎ሻ

൅
𝑃ሺ𝑎 2⁄ ሻ ∙ 6
𝑡ሺ𝑏 െ 𝑎ሻଶ

ൌ
𝑃

𝑡ሺ𝑏 െ 𝑎ሻ
൬1 ൅

3𝑎
𝑏 െ 𝑎

൰ ൌ 
 

ൌ
40 ൈ 10ଷ

8 ൈ 10ିଷ ∙ ሺ50 ൈ 10ିଷ െ 5 ൈ 10ିଷሻ
ቆ1 ൅

3 ∙ 5 ൈ 10ିଷ

50 ൈ 10ିଷ െ 5 ൈ 10ିଷ
ቇ ൌ 148.15 MPa. 

 

The stress increased by the value: 
 

∆𝜎௫ ൌ
𝜎௫ ௠௔௫ െ 𝜎௫

𝜎௫
ൌ

148.15 െ 100
100

∙ 100 % ൌ 48.15 %. 

 

Remark If the same fillet is cut out symmetrically from the opposite side of the 
strip, then central (axial) tension will occur in this section. Taking into 
account the reduction in the cross-sectional area, we get: 
 

𝜎௫ ൌ
𝑃

𝑡ሺ𝑏 െ 2𝑎ሻ
ൌ

40 ൈ 10ଷ

8 ൈ 10ିଷ ∙ ሺ50 ൈ 10ିଷ െ 2 ∙ 5 ൈ 10ିଷሻ
ൌ 125 MPa. 

 

Let us consider the distribution of normal stresses along the height of the section 
with the fillet: 

 

𝜎௫ ൌ
𝑃
𝐹
൅
𝑀௬

𝐼௬
𝑧 ൌ

𝑃
ሺ𝑏 െ 𝑎ሻ𝑡

൅
𝑃𝑎 ∙ 12

2𝑡ሺ𝑏 െ 𝑎ሻଷ
∙ 𝑧 ൌ

𝑃
𝑡ሺ𝑏 െ 𝑎ሻ

൬1 ൅
6𝑎

ሺ𝑏 െ 𝑎ሻଶ
∙ 𝑧൰ ൌ 

 

ൌ 111.11 ൈ 10଺ ∙ ሺ1 ൅ 14.815 ∙ 𝑧ሻ ቚ
௭భ
ൌ 148.15 MPa ቚ

௭మ
ൌ 74.07 MPa, 

 

where     𝑧ଵ ൌ
𝑏 െ 𝑎

2
ൌ

50 ൈ 10ିଷ െ 5 ൈ 10ିଷ

2
ൌ 22.5 ∙ 10ିଷ m; 

 

𝑧ଶ ൌ െ𝑧ଵ ൌ െ22.5 ൈ 10ିଷ m. 
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The diagrams of the normal stress 
distribution along the height for the sec-
tion without the fillet and with the fillet 
are shown in Fig. 3.51. 

 
Fig. 3.51 

 
Example 3.9 
 

Determine the cross-section dimension ℎ of the clamp (Fig. 3.52) if the compression 
force on the parts is 𝑃 ൌ 10 kN. 

 

Given:  𝑃 ൌ 10 kN;   𝑎 ൌ 80 mm; 
 

𝑏 ൌ 14 mm;   ሾ𝜎ሿ ൌ 100 MPa. 
 

It is necessary to determine ℎ. 
 

Solution 
 

In the cross-section of the clamp, eccentric tension oc-
curs (Fig. 3.53), for which the strength condition has the 
form: 

𝜎௫ ௠௔௫ ൌ
𝑁௫
𝐹
൅
𝑀௬

𝑊௬
൑ ሾ𝜎ሿ,  

Fig. 3.52 
 

where   𝐹 ൌ 𝑏ℎ is the cross-sectional area; 
𝑁௫ ൌ 𝑃 is the longitudinal force; 
𝑀௬ ൌ 𝑃𝑒 ൌ 𝑃ሺ𝑎 ൅ ℎ 2⁄ ሻ is the bending moment 

relative to the 𝑦-axis; 
𝑊௬ ൌ 𝑏ℎଶ 6⁄  is the section modulus relative to the 

𝑦-axis. 
 

Fig. 3.53 
 

Then 
 

𝜎௫ ௠௔௫ ൌ
𝑃
𝑏ℎ

൅
𝑃ሺ𝑎 ൅ ℎ 2⁄ ሻ ∙ 6

𝑏ℎଶ
ൌ

𝑃
𝑏ℎ

൅
6𝑃𝑎
𝑏ℎଶ

൅
3𝑃
𝑏ℎ

ൌ
4𝑃
𝑏ℎ

൅
6𝑃𝑎
𝑏ℎଶ

൑ ሾ𝜎ሿ. 
 

After transformations, we obtain a quadratic equation with respect to ℎ: 
 

ሾ𝜎ሿ𝑏ℎଶ െ 4𝑃ℎ െ 6𝑃𝑎 ൌ 0. 
 

Its solution is 
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ℎ ൒
െሺെ4𝑃ሻ േ ඥሺ4𝑃ሻଶ െ 4 ∙ ሾ𝜎ሿ ∙ 𝑏 ∙ ሺെ6𝑃𝑎ሻ

2 ∙ ሾ𝜎ሿ ∙ 𝑏
ൌ

40 ൈ 10ଷ

2 ∙ 100 ൈ 10଺ ∙ 14 ൈ 10ିଷ
േ 

 

േ
ඥሺ4 ∙ 10 ൈ 10ଷሻଶ ൅ 4 ∙ 100 ൈ 10଺ ∙ 14 ൈ 10ିଷ ∙ 6 ∙ 10 ൈ 10ଷ ∙ 80 ൈ 10ିଷ

2 ∙ 100 ൈ 10଺ ∙ 14 ൈ 10ିଷ
ൌ 

 

ൌ
40 ൈ 10ଷ േ 168 ൈ 10ଷ

2.8 ൈ 10଺
ൌ 14.286 ൈ 10ିଷ േ 60 ൈ 10ିଷ. 

From which we get: 
ℎ ൒ 74.56 ൈ 10ିଷ m. 

 

Let us compare the contribution of bending and tension to the total stress: 
 

𝜎௫ ௠௔௫ ൌ 𝜎௫ ௠௔௫ሺ𝑁௫ሻ ൅ 𝜎௫ ௠௔௫൫𝑀௬൯ ൌ
𝑃
𝑏ℎ

൅
𝑃 ቀ𝑎 ൅

ℎ
2ቁ ∙ 6

𝑏ℎଶ
ൌ 

 

ൌ
10 ൈ 10ଷ

14 ൈ 10ିଷ ∙ 74.56 ൈ 10ିଷ
൅

10 ൈ 10ଷ ∙ ൬80 ൈ 10ିଷ ൅
74.56 ൈ 10ିଷ

2 ൰ ∙ 6

14 ൈ 10ିଷ ∙ ሺ74.56 ൈ 10ିଷሻଶ
ൌ 

 

ൌ 9.58 ൈ 10଺ ൅ 91.41 ൈ 10଺ ൌ 99.99 MPa; 
 

𝜎௫ ௠௔௫ሺ𝑁௫ሻ

𝜎௫ ௠௔௫
ൌ

9.58
99.99

ൌ 0.096;            
𝜎௫ ௠௔௫൫𝑀௬൯
𝜎௫ ௠௔௫

ൌ
90.41
99.99

ൌ 0.904.  
 

Thus, 𝜎௫ ௠௔௫൫𝑀௬൯ exceeds 𝜎௫ ௠௔௫ሺ𝑁௫ሻ by a factor of 9.42. 
 

Remark The contribution of tensile stresses from the action of the bending mo-
ment 𝑀௬ can be reduced by decreasing the eccentricity 𝑒. In practice, 

𝑇 or 𝐼-beam cross-sections are typically used, which shifts the cen-
troid of the section 𝑂 closer to the 𝑃-force action line and places more 
material in the region of tensile stresses, to which brittle materials are 
more sensitive (Fig. 3.54). 
 

 
Fig. 3.54 
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Example 3.10 
 

Construct the section core for a circular cross-section with diameter 𝑑 (Fig. 3.55). 
 

Solution 
 

If the application point of the tensile or compressive stresses lies on the boundary 
of the cross-section core, then the neutral axis touches the cross-section without inter-
secting it. 

 

Assume that the neutral axis 1 െ 1 is 
tangent to the circle at point A and is parallel 
to the 𝑧-axis (see Fig. 3.55). In this case, the 
intercepts cut by the neutral axis on the co-
ordinate axes are: 

 

𝑎௬ ൌ െ𝑟 ൌ െ
𝑑
2

;         𝑎௭ ൌ ∞. 
 

Fig. 3.55 
 

The coordinates of the tensile or compressive force application point are determined 
by formulas (3.51): 

 

𝑦я ሺ஺భሻ ൌ 𝑦௉ ൌ െ
𝑖௭ଶ

𝑎௬
ൌ െ

𝐼௭
𝐹𝑎௬

ൌ െ
𝜋𝑑ସ

64
4
𝜋𝑑ଶ

൬െ
2
𝑑
൰ ൌ

𝑑
8
ൌ
𝑟
4

; 

 

𝑧я ሺ஺భሻ ൌ 𝑧௉ ൌ െ
𝑖௬ଶ

𝑎௭
ൌ െ

𝐼௬
𝐹𝑎௭

ൌ െ
𝜋𝑑ସ

64
4
𝜋𝑑ଶ

൬
1
∞
൰ ൌ 0, 

 

where   𝐹 is the cross-sectional area; 
 

𝑖௬, 𝑖௭ are the radii of gyration relative to the 𝑦 and 𝑧-axes; 
 

𝐼௬, 𝐼௭ are the moments of inertia relative to the 𝑦 and 𝑧-axes. 
 

Thus, in order for the neutral axis to touch the cross-section at point A, it is necessary 
that the tensile or compressive force be applied at point 𝐴ଵሼ𝑟 4⁄ ; 0ሽ. 

 

Due to the symmetry of the cross-section with respect to any axes passing through 
the geometric centre of the circle, it follows that for other positions of the neutral axis on 
the circumference of diameter 𝑑, the points of the cross-section core form a concentric 
circle with a diameter of 𝑑 4⁄ .  
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Example 3.11 
 

Construct the section core for a rectangular cross-section with side dimensions 
𝑏 ൈ ℎ (Fig. 3.56). 
 

Solution 
 

 

We align the neutral axis with the 
side of the rectangle 𝐴𝐵 (position 1– 1). 
Then, the intercepts cut by the neutral axis 
on the coordinate axes are: 

 

𝑎௬ ൌ
𝑏
2

;         𝑎௭ ൌ ∞. 

Fig. 3.56 
 

According to equations (3.51), the coordinates of the corresponding point ሺ1′ሻ of 
the cross-section core are: 

 

𝑦ሺଵᇲሻ ൌ 𝑦௉ ൌ െ
𝑖௭ଶ

𝑎௬
ൌ െ

𝐼௭
𝐹𝑎௬

ൌ െ
ℎ𝑏ଷ

12
1
𝑏ℎ

൬
2
𝑏
൰ ൌ െ

𝑏
6

; 

 

𝑧ሺଵᇲሻ ൌ 𝑧௉ ൌ െ
𝑖௬ଶ

𝑎௭
ൌ െ

𝐼௬
𝐹𝑎௭

ൌ െ
𝑏ℎଷ

12
1
𝑏ℎ

൬
1
∞
൰ ൌ 0, 

 

where   𝐹 is the cross-sectional area; 
𝑖௬, 𝑖௭ are the radii of gyration relative to the 𝑦 and 𝑧-axes; 

𝐼௬, 𝐼௭ are the moments of inertia relative to the 𝑦 and 𝑧-axes. 
 

Now, let's align the neutral axis with the side BC (position 2– 2). Then, the inter-
cepts cut by the neutral axis on the coordinate axes are: 

 

𝑎௬ ൌ ∞;         𝑎௭ ൌ െ
ℎ
2

, 
 

and the coordinates of the corresponding point ሺ2′ሻ of the cross-section core will have 
the values: 
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𝑦ሺଶᇲሻ ൌ 𝑦௉ ൌ െ
𝑖௭ଶ

𝑎௬
ൌ െ

𝐼௭
𝐹𝑎௬

ൌ െ
ℎ𝑏ଷ

12
1
𝑏ℎ

൬
1
∞
൰ ൌ 0; 

 

𝑧ሺଶᇲሻ ൌ 𝑧௉ ൌ െ
𝑖௬ଶ

𝑎௭
ൌ െ

𝐼௬
𝐹𝑎௭

ൌ
𝑏ℎଷ

12
1
𝑏ℎ

൬െ
2
ℎ
൰ ൌ

ℎ
6

. 
 

In a similar way, determine the coordinates of points 3′ and 4′ corresponding to 
neutral axis positions  3 െ 3 and 4 െ 4. 

 

To construct the cross-section core, we use the following property of the neutral 
axis: when the neutral axis is rotated about some fixed point on the cross-section contour, 
the force application point moves along a straight line. In this case, when the neutral axis 
is rotated about the fixed point B (dashed lines in Fig. 3.56), the 𝑃-force application point 
moves along the straight line passing through points 1ᇱ and 2ᇱ. 

 

By connecting points 1′, 2′, 3′, and 4′ with straight lines, we get the contour of the 
cross-section core in the form of a rhombus with diagonals equal to ℎ 3⁄  and 𝑏 3⁄ . 

 

Therefore, in a rectangular cross-section under eccentric tension or compression, 
the stress will be of a single sign if the force application point does not lie outside the 
middle third of the section side. 

 

Let us consider a special case of eccentric compression when one of the eccentrici-
ties is zero (𝑧௉ ൌ 0, 𝑦௉ ൌ 𝑒). Show the diagrams of normal stress distribution for a rec-
tangular section with an eccentricity e that is zero, less than, equal to, and greater than 
one-sixth of the section width (Fig. 3.57). 

 

 
Fig. 3.57 

 
From Fig. 3.57 it is evident that, for all positions of the force 𝑃, the stress at the 

centroid (point 𝑂) is the same and equal to 𝑃 𝐹⁄ .  



108 

Example 3.12 
 

Construct the cross-section core of a Channel section No. 10 (Fig. 3.58). 
 

Solution 
 

 

1. From the steel section tables, let us 
write out all the geometric characteristics 
for channel section No. 10: 

 

ℎ ൌ 10 ൈ 10ିଶ m; 
 

𝑏 ൌ 4.6 ൈ 10ିଶ m; 
 

𝑖௬ ൌ 3.99 ൈ 10ିଶ m; 
 

𝑖௭ ൌ 1.37 ൈ 10ିଶ m; 
 

𝑦଴ ൌ 1.44 ൈ 10ିଶ m. 
 

2. We make a drawing of the channel 
section to scale. 

 

3. We align the neutral axis with the 
side 𝐴𝐵 (position 1– 1). Then we deter-
mine the intercepts that the neutral axis 
cuts on the coordinate axes: 

 

𝑎௬ ൌ 𝑦଴ ൌ 1.44 ൈ 10ିଶ m; 
 

𝑎௭ ൌ ∞. 
 

According to expression (3.51), the 
coordinates of the corresponding point 
ሺ1′ሻ of the cross-section core are: 

Fig. 3.58 
 

𝑦ሺଵᇲሻ ൌ 𝑦௉ ൌ െ
𝑖௭ଶ

𝑎௬
ൌ െ

ሺ1.37 ൈ 10ିଶሻଶ

1.44 ൈ 10ିଶ
ൌ െ1.30 ൈ 10ିଶ m; 

 

𝑧ሺଵᇲሻ ൌ 𝑧௉ ൌ െ
𝑖௬ଶ

𝑎௭
ൌ െ

ሺ3.99 ൈ 10ିଶሻଶ

∞
ൌ 0, 

 

where 𝑖௬, 𝑖௭ are the radii of gyration relative to the 𝑦 and 𝑧-axes. 
 

4. Now we align the neutral axis with the side 𝐵𝐶 (position 2– 2). We get the inter-
cepts that the neutral axis cuts on the coordinate axes: 

𝑎௬ ൌ ∞;         𝑎௭ ൌ െ
ℎ
2
ൌ െ

10 ൈ 10ିଶ

2
ൌ െ5 ൈ 10ିଶ m, 
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and the corresponding point coordinates ሺ2′ሻ of the section core will have the values: 
 

𝑦ሺଶᇲሻ ൌ 𝑦௉ ൌ െ
𝑖௭ଶ

𝑎௬
ൌ െ

ሺ1.37 ൈ 10ିଶሻଶ

∞
ൌ 0; 

 

𝑧ሺଶᇲሻ ൌ 𝑧௉ ൌ െ
𝑖௬ଶ

𝑎௭
ൌ െ

ሺ3.99 ൈ 10ିଶሻଶ

െ5 ൈ 10ିଶ
ൌ 3.18 ൈ 10ିଶ m. 

 

5. Now we align the neutral axis with the side 𝐶𝐷 (position 3– 3). Next, let us de-
termine the intercepts cut off by the neutral axis on the coordinate axes: 

 

𝑎௬ ൌ െሺ𝑏 െ 𝑦଴ሻ ൌ െሺ4.6 ൈ 10ିଶ െ 1.44 ൈ 10ିଶሻ ൌ െ3.16 ൈ 10ିଶ m;         𝑎௭ ൌ ∞, 
 

and the corresponding point coordinates ሺ3′ሻ of the section core will have the values: 
 

𝑦ሺଷᇲሻ ൌ 𝑦௉ ൌ െ
𝑖௭ଶ

𝑎௬
ൌ െ

ሺ1.37 ൈ 10ିଶሻଶ

െ3.16 ൈ 10ିଶ
ൌ 0.59 ൈ 10ିଶ m; 

 

𝑧ሺଷᇲሻ ൌ 𝑧௉ ൌ െ
𝑖௬ଶ

𝑎௭
ൌ െ

ሺ3.99 ൈ 10ିଶሻଶ

∞
ൌ 0, 

 

6. Now we align the neutral axis with the side 𝐷𝐴 (position 4– 4). Then the inter-
cepts that the neutral axis cuts on the coordinate axes are: 

 

𝑎௬ ൌ ∞;         𝑎௭ ൌ
ℎ
2
ൌ

100 ൈ 10ିଶ

2
ൌ 50 ൈ 10ିଶ m, 

and the corresponding point coordinates ሺ4′ሻ of the section core will have the values: 
 

𝑦ሺସᇲሻ ൌ 𝑦௉ ൌ െ
𝑖௭ଶ

𝑎௬
ൌ െ

ሺ1.37 ൈ 10ିଶሻଶ

∞
ൌ 0; 

 

𝑧ሺସᇲሻ ൌ 𝑧௉ ൌ െ
𝑖௬ଶ

𝑎௭
ൌ െ

ሺ3.99 ൈ 10ିଶሻଶ

5 ൈ 10ିଶ
ൌ െ3.18 ൈ 10ିଶ m. 

 

By connecting points 1ᇱ, 2ᇱ, 3ᇱ and 4ᇱ with straight lines, we obtain the contour of 
the section core, which is a quadrilateral that is asymmetrical with respect to the 𝑧-axis. 

 

Remark 1. The position and shape of the cross-section core depend only on the 
shape and dimensions of the cross-section, but not on the magnitude 
of the applied force. 
 

2. The neutral axis, when rolled along the cross-section contour, has 
to avoid intersecting the section at any position (position 5– 5 in Fig. 
3.58 is unacceptable).  
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4. SOLVING NONSTANDARD PROBLEMS 
 

Example 4.1 
 

  

Determine, according to the 
maximum shear stress theory, which 
of the stress states (Fig. 4.1, Cases A 
and B) is more dangerous if 𝜎 ൌ 𝜏. 

 

Solution 
 

Using the principle of superposi-
tion (principle of force action inde-
pendence), we reduce the given stress 
state of the elements to the following 
forms: 

Case A Case B 

Fig. 4.1 
 

Case A – to a triaxial stress state with the components of the principal normal 
stresses (Fig. 4.2): 

 

 

𝜎ଵ ൌ 𝜏, 
 

𝜎ଶ ൌ 𝜏, 
 

𝜎ଷ ൌ െ𝜏. 
 

In doing so: 
 

𝜎௘௤୍୍୍ ൌ 𝜎ଵ െ 𝜎ଷ ൌ 2𝜏. Fig. 4.2 
 

Case B – to hydrostatic tension and pure shear (Fig. 4.3): 
𝜎ଵ ൌ 𝜏,            𝜎ଷ ൌ െ𝜏. 

Since no shear stresses arise on any of the cutting planes under hydrostatic ten-
sion, in this case as well: 

 

𝜎௘௤୍୍୍ ൌ 𝜎ଵ െ 𝜎ଷ ൌ 2𝜏. 
 

 
Fig. 4.3 
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Thus, according to the maximum shear stress theory, stress states A and B are 
equally critical. 

 
Example 4.2 
 

The stress state shown in Fig. 4.4 is supple-
mented by a hydrostatic compression (stresses on the 
invisible faces are not shown). As a result, all the po-
tential strain energy is related only to the change in 
shape. Determine the safety factor with respect to 
yielding stress of 𝜎yield ൌ 240 MPa. Use the maxi-

mum shear stress theory.  
 

Fig. 4.4 
 

Solution 
 

Since the element volume (Fig. 4.5) does not 
change, then 

𝜎௫ ൅ 𝜎௬ ൅ 𝜎௭ ൌ െሺ15 ൅ 𝜎ሻ െ 𝜎 ൅ ሺ60 െ 𝜎ሻ ൌ 0. 
 

Hence 
 

െ3𝜎 ൅ 45 ൌ 0; 
𝜎 ൌ 15 MPa. 

Then 
𝜎௫ ൌ െ30 MPa;   𝜎௬ ൌ െ15 MPa;   𝜎௭ ൌ 45 MPa. 

 

Fig. 4.5 
 

Let us find the principal stresses: 

𝜎ଵ, 2, ሺ3ሻ ൌ
𝜎௬ ൅ 𝜎௭

2
േඨቀ

𝜎௬ െ 𝜎௭
2

ቁ
ଶ
൅ 𝜏௭௫ଶ ൌ

െ15 ൅ 45
2

േඨ൬
െ15 െ 45

2
൰
ଶ

൅ 40ଶ ൌ 

ൌ 15 േ 50; 
 

𝜎ଵ ൌ 65 MPa;       𝜎ଶ ൌ െ30 MPa;       𝜎ଷ ൌ െ35 MPa. 
 

The equivalent stress according to the maximum shear stress theory is  
𝜎௘௤୍୍୍ ൌ 𝜎ଵ െ 𝜎ଷ ൌ 65 െ ሺെ35ሻ ൌ 100 MPa. 

 

Thus, the safety factor with respect to yielding stress is 
 

𝑛yield ൌ
𝜎yield

𝜎௘௤୍୍୍
ൌ

240
100

ൌ 2.4. 

  



112 

Example 4.3 
 

 

A cantilever bar with a square cross-section of 
side 𝑎 and length 𝑙 is loaded by a moment 𝑀 
(Fig. 4.6). Which position of the moment 𝑀 (angle 
𝛽) is the most critical according to the strength con-
dition? Use the maximum shear stress theory for the 
solution. 

Solution 
 

Let us decompose the moment 𝑀 into its com-
ponents (Fig. 4.7): 

𝑀௬ ൌ 𝑀 cos𝛽   и   𝑀௫ ൌ 𝑀 sin𝛽. Fig. 4.6 
 

In the most critical point of the cross-section (А), the following normal and shear 
stresses act (see Fig. 4.7): 

 

𝜎௫ ሺ஺ሻ ൌ
𝑀௬

𝑊௬
ൌ ቊsince   𝑊௬ ൌ

𝑎ଷ

6
ቋ ൌ

6𝑀 cos𝛽
𝑎ଷ

; 
 

𝜏ሺ஺ሻ ൌ
𝑀௫

𝑊torsional
ൌ ሼsince   𝑊torsional ൌ 0.208𝑎ଷሽ ൌ

𝑀 sin𝛽
0.208𝑎ଷ

. 
 

 

The equivalent stress at point А: 
 

        𝜎௘௤ ሺ஺ሻ
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ 

 

ൌ
𝑀
𝑎ଷ
ඨ36 cosଶ 𝛽 ൅ 4

sinଶ 𝛽
0.208ଶ

. 

 

From the condition 
 

𝑑𝜎௘௤ ሺ஺ሻ
୍୍୍

𝑑𝛽
ൌ 0 

we obtain 𝛽 ൌ 0 and 𝛽 ൌ 𝜋 2⁄ . Fig. 4.7 
 

At 𝛽 ൌ 0: 𝜎௘௤ ሺ஺ሻ
୍୍୍ ൌ 6

𝑀
𝑎ଷ

. 

At 𝛽 ൌ 𝜋 2⁄ : 𝜎௘௤ ሺ஺ሻ
୍୍୍ ൌ

2𝑀
0.208𝑎ଷ

ൌ 9.615
𝑀
𝑎ଷ

. 
 

Thus, the most critical case according to the strength condition is pure torsion at 
𝛽 ൌ 𝜋 2⁄ . 
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Example 4.4 
 

Based on the condition 
of equally critical stress 
states, compare the weights of 
two bars (Fig. 4.8). Use the 
maximum shear stress theory. 

 
Given: moment 𝑀, ma-

terial of the bars is steel. 
 

Fig. 4.8 
 

Solution 
 

The stress states at the critical points of the first and second bars are plane. 
The equivalent stresses in the first bar are: 

𝜎௘௤ ሺଵሻ
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨ൬

𝑀
𝑊୬.ୟ୶.

൰
ଶ

൅ 4ቆ
𝑀
𝑊ఘ
ቇ
ଶ

. 

Considering that for a circular cross-section: 

𝑊௡.௔௫. ൌ
𝜋𝑑ଷ

32
,    𝑊ఘ ൌ

𝜋𝑑ଷ

16
,      we get      𝜎௘௤ ሺଵሻ

୍୍୍ ൌ 14.405
𝑀
𝑑ଷ

. 
 

The equivalent stresses in the second bar are: 

𝜎௘௤ ሺଶሻ
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨ൬

𝑀
𝑊୬.ୟ୶.

൰
ଶ

൅ 4 ൬
𝑀

𝑊torsion
൰
ଶ

. 

Considering that for a square cross-section: 

𝑊௡.௔௫. ൌ
𝑎ଷ

6
,    𝑊torsional ൌ 0.208𝑎ଷ,     we obtain     𝜎௘௤ ሺଶሻ

୍୍୍ ൌ 11.334
𝑀
𝑎ଷ

. 
 

From the condition of equally critical stress states 𝜎௘௤ ሺଵሻ
୍୍୍ ൌ 𝜎௘௤ ሺଶሻ

୍୍୍ , we obtain 
 

14.405
𝑀
𝑑ଷ

ൌ 11.334
𝑀
𝑎ଷ

    ⟹      𝑎 ൌ 0.923𝑑. 
 

Then the weight of the bar with circular cross-section amounts to 
𝜋𝑑ଶ

4 ∙ ሺ0.923𝑑ሻଶ
ൌ 0.922 

 

of the weight of the bar with square cross-section. 
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Example 4.5 
 

 

A cranked bar is loaded with a rectangu-
lar distributed load 𝑞 and a concentrated force 
𝑃 (Fig. 4.9). The values of 𝑞, the lengths of 
the segments 𝑙ଵ, 𝑙ଶ ൌ 3𝑙ଵ, and the diameters 

of the cross-sections 𝑑ଵ, 𝑑ଶ ൌ 𝑑ଵ√19య  are 
known. 

Determine the magnitude of the force 𝑃, 
if the maximum equivalent stresses (accord-
ing to the maximum shear stress theory) are 
equal in the segments of the cranked bar. 

Fig. 4.9 

 

Solution 
 

At the end of the first segment, the maximum bending moment arises from the 
action of the distributed load 

𝑀௭ ௠௔௫
ூ ൌ

𝑞𝑙ଵ
ଶ

2
. 

The normal stresses acting in this cross-section are 

𝜎௠௔௫ ூ ൌ
𝑀௭ ௠௔௫
ூ

𝑊୬.ୟ୶.
ூ ൌ ቊtaking into account   𝑊୬.ୟ୶.

ூ ൌ
𝜋𝑑ଵ

ଷ

32
ቋ ൌ

𝑞𝑙ଵ
ଶ

2
∙

32

𝜋𝑑ଵ
ଷ ൌ

16 ∙ 𝑞𝑙ଵ
ଶ

𝜋𝑑ଵ
ଷ . 

At the second segment, there is a combined action of the bending moments 𝑀௬, 

𝑀௭ and the torsional moment 𝑀௫. At the end of the second segment: 

𝑀bending  ௠௔௫ ൌ ට𝑀௬ ௠௔௫
ଶ ൅ 𝑀௭ ௠௔௫

ଶ ൌ ඥሺ𝑞𝑙ଵ𝑙ଶሻଶ ൅ ሺ𝑃𝑙ଶሻଶ;         𝑀௫ ൌ
𝑞𝑙ଵ

ଶ

2
; 

 

𝑀design ௠௔௫
୍୍୍ ൌ ට𝑀bending ௠௔௫

ଶ ൅ 𝑀௫
ଶ ൌ ඨሺ3 ∙ 𝑞𝑙ଵ

ଶሻଶ ൅ ሺ3 ∙ 𝑃𝑙ଵሻଶ ൅ ቆ
𝑞𝑙ଵ

ଶ

2
ቇ
ଶ

. 

The equivalent stresses acting in this cross-section: 
 

𝜎௠௔௫ ூூ ൌ 𝜎௘௤ ୍୍
୍୍୍ ൌ

𝑀design ௠௔௫
୍୍୍

𝑊୬.ୟ୶.
ூூ , 

 

where 𝑊୬.ୟ୶.
ூூ ൌ

𝜋𝑑ଶ
ଷ

32
ൌ
𝜋൫𝑑ଵ√19య ൯

ଷ

32
ൌ

19 ∙ 𝜋𝑑ଵ
ଷ

32
. 

 

Using the condition of the problem 𝜎௠௔௫ ூ ൌ 𝜎௠௔௫ ூூ, after substitution and trans-
formation, we obtain 

𝑃 ൌ 3𝑞𝑙ଵ. 
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Example 4.6 

Determine the magnitude of force 𝑃 for 
which the neutral axis in the bar cross-section 
at the fixed-end will coincide with the diagonal 
of the rectangular section 𝑏 ൈ ℎ (Fig. 4.10). 

 
Fig. 4.10 

 

Solution 
 

The position of the neutral axis under oblique bending is determined by the for-
mula 

 

tg𝜑 ൌ െ
𝐼௬
𝐼௭

tg𝛼 ൌ ቊtaking into account that  tg𝛼 ൌ
𝑀௭

𝑀௬
ቋ ൌ െ

𝐼௬
𝐼௭

𝑀௭

𝑀௬
. 

 

The bending moments in the support cross-section of the bar 
 

𝑀௬ ൌ െ
𝑞ሺ3𝑎ሻଶ

2
ൌ െ

9𝑞𝑎ଶ

2
;          𝑀௭ ൌ 4𝑃𝑎. 

 

The axial inertia moments of the rectangular cross-section Осевые моменты 
инерции прямоугольного сечения 

 

𝐼௬ ൌ
𝑏ℎଷ

12
;        𝐼௭ ൌ

ℎ𝑏ଷ

12
. 

 

According to the problem statement, the inclination angle of the neutral axis must 
coincide with the diagonal of the rectangular cross-section, i.e.: 

 

tg𝜑 ൌ
ℎ
𝑏

. 
 

We equate the tangents of the neutral axis and rectangle's diagonal inclination 
angles. After substituting the expressions for the bending moments and moments of 
inertia, we get: 

 

ℎ
𝑏
ൌ
𝑏ℎଷ

12
∙

12
ℎ𝑏ଷ

∙
4𝑃𝑎 ∙ 2
9𝑞𝑎ଶ

; 
 

ℎ
𝑏
ൌ
ℎଶ

𝑏ଶ
∙

8𝑃
9𝑞𝑎

. 

Finally 

𝑃 ൌ
9𝑏𝑞𝑎

8ℎ
. 

  



116 

Example 4.7 
 

 

At what 𝜆 ൌ 𝑏 𝑎⁄  value will the 
maximum normal stress in the first bar 
become greater than in the second one 
(Fig. 4.11)? Neglect stress concentra-
tion. 

Fig. 4.11 
 

Solution 
 

The first bar is subjected to eccentric tension, while the second bar is under central 
(pure) tension. 

In the weakened cross-section of the first bar, the force 𝑃 is applied not at the 
centroid of the section, and therefore creates a bending moment 𝑀bending ൌ 𝑃 𝑏 2⁄ . 

We write the expressions for determining the maximum normal stresses for the 
first and second bars, considering that 𝑏 ൌ 𝜆𝑎: 
 

𝜎௠௔௫
ሺଵሻ ൌ 𝜎ሺ𝑃ሻ ൅ 𝜎൫𝑀bending൯ ൌ

𝑃

𝐹ሺଵሻ
൅
𝑀bending

𝑊୬.ୟ୶.
ൌ

𝑃
ሺ𝑎 െ 𝑏ሻℎ

൅
𝑃𝑏 ∙ 6

2 ∙ ℎሺ𝑎 െ 𝑏ሻଶ
ൌ 

 

ൌ
𝑃
𝑎ℎ

൬
1

1 െ 𝜆
൅

3𝜆
ሺ1 െ 𝜆ሻଶ

൰ ; 
 

𝜎௠௔௫
ሺଶሻ ൌ 𝜎ሺ𝑃ሻ ൌ

𝑃

𝐹ሺଶሻ
ൌ

𝑃
ሺ𝑎 െ 2𝑏ሻℎ

ൌ
𝑃
𝑎ℎ

൬
1

1 െ 2𝜆
൰ . 

 

Let us consider the extreme case 𝜎௠௔௫
ሺଵሻ ൌ 𝜎௠௔௫

ሺଶሻ , then 
 

1
1 െ 𝜆

൅
3

ሺ1 െ 𝜆ሻଶ
ൌ

1
1 െ 2𝜆

; 
 

ሺ1 െ 𝜆ሻሺ1 െ 2𝜆ሻ ൅ 3𝜆ሺ1 െ 2𝜆ሻ െ ሺ1 െ 𝜆ሻଶ ൌ 0; 
 

െ5𝜆ଶ ൅ 2𝜆 ൌ 0. 
 

The solution of this quadratic equation will be 
 

𝜆ଵ ൌ 0     and     𝜆ଶ ൌ 2 5⁄ ൌ 0.4. 
 

The zero root is not admissible for physical reasons; therefore, at the ratio 
𝜆ൌ 𝑏 𝑎⁄ ൒ 2 5⁄  the maximum normal stress in the first bar becomes greater than in the 

second ቀ𝜎௠௔௫
ሺଵሻ ൒ 𝜎௠௔௫

ሺଶሻ ቁ. 
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Example 4.8 
 

Determine at what 𝑘 value the nor-
mal stress ratio on sections 1 and 2 will 
be the greatest (Fig. 4.12). Neglect stress 
concentration. 

 
Fig. 4.12 

 

Solution 
 

The normal stresses in the thin part of the bar is 

𝜎௠௔௫
ሺଵሻ ൌ

𝑃
𝑏ℎ

. 

The maximum normal stresses in the thickened part of the bar is 
 

𝜎௠௔௫
ሺଶሻ ൌ

𝑃
𝑏𝑘ℎ

൅
𝑃 ∙ 0.5ℎሺ𝑘 െ 1ሻ

𝑊௬
ൌ

𝑃
𝑏𝑘ℎ

൅
𝑃 ∙ 0.5ℎሺ𝑘 െ 1ሻ ∙ 6

𝑏ሺ𝑘ℎሻଶ
ൌ 

 

ൌ
𝑃
𝑏ℎ

ቆ
1
𝑘
൅

3ሺ𝑘 െ 1ሻ

𝑘ଶ
ቇ ൌ

𝑃
𝑏ℎ

4𝑘 െ 3
𝑘ଶ

. 

The ratio of the maximum normal stresses in segments 2 and 1 is 

𝑓ሺ𝑘ሻ ൌ
𝜎௠௔௫
ሺଶሻ

𝜎௠௔௫
ሺଵሻ ൌ

4𝑘 െ 3
𝑘ଶ

. 

To determine the extreme 𝑘 value, we take the derivative of the function 𝑓ሺ𝑘ሻ and 
set it equal to zero: 

𝑑𝑓ሺ𝑘ሻ

𝑑𝑘
ൌ 0. 

After transformation, we obtain a quadratic equation: 
 

െ4𝑘ଶ ൅ 6𝑘 ൌ 0. 
The solutions of this quadratic equation will be 

𝑘ଵ ൌ 0     и     𝑘ଶ ൌ
3
2
ൌ 1.5. 

 

The zero root is not suitable for physical reasons, therefore, at the ratio of 𝑘 ൌ 3 2⁄  
the maximum normal stress ratio on sections 2 and 1 will be the greatest: 

𝑓௠௔௫ሺ𝑘ଶሻ ൌ
4 ∙

3
2 െ 3

ቀ
3
2ቁ

ଶ ൌ
12
9
ൌ

4
3

. 
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Example 4.9 
 

How many times will the maximum stress increase in a square cross-section bar, 
fixed at one end and subjected to a tensile force 𝑃 applied at the other end along its 
longitudinal axis, if the force, while remaining parallel to itself, moves: a) to the square 
side's midpoint and b) to the square corner's vertex? The self-weight is neglected.  

 

Solution 
 

Under axial tension, the normal stress in any point of the cross-section is 

𝜎 ൌ
𝑃
𝑎ଶ

, 

where 𝑎 is the square cross-section side length. 
 

In a square, all centroidal axes are principal axes; therefore: 
 

𝐼 ൌ
𝑎ସ

12
. 

 

When the force 𝑃 is applied at the square side midpoint, the maximum normal 
stress is: 

 

𝜎௠௔௫  ሺаሻ ൌ
𝑃
𝑎ଶ

൅
𝑃 ∙

𝑎
2

𝑎ସ
12

∙
𝑎
2
ൌ
𝑃
𝑎ଶ

൅
3𝑃
𝑎ଶ

ൌ
4𝑃
𝑎ଶ

. 

Then 
𝜎௠௔௫  ሺаሻ

𝜎
ൌ

4𝑃
𝑎ଶ

∙
𝑎ଶ

𝑃
ൌ 4, 

that is, when the force is applied at the side midpoint of the square cross-section, the 
maximum normal stresses increase in 4 times. 

 

When the force 𝑃 is applied at the square corner point, the maximum normal stress 
is: 

 

𝜎௠௔௫  ሺୠሻ ൌ
𝑃
𝑎ଶ

൅
𝑃 ∙

𝑎
2

𝑎ସ
12

∙
𝑎
2
൅
𝑃 ∙

𝑎
2

𝑎ସ
12

∙
𝑎
2
ൌ
𝑃
𝑎ଶ

൅
3𝑃
𝑎ଶ

൅
3𝑃
𝑎ଶ

ൌ
7𝑃
𝑎ଶ

. 

 

Then 
𝜎௠௔௫  ሺୠሻ

𝜎
ൌ

7𝑃
𝑎ଶ

∙
𝑎ଶ

𝑃
ൌ 7, 

 

that is, when the force is applied at the vertex of the square cross-section, the maximum 
normal stresses increase in 7 times. 
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Example 4.10 
 

For the bar shown in Fig. 4.13, determine and show the 
neutral surface (layer) position, if the weight of the bar is 𝑄 
and the magnitudes of the forces are 𝑃ଵ ൌ 𝑄 2⁄  and 𝑃ଶ ൌ 𝑄 24⁄ . 

 

Solution 
 

In an arbitrary cross-section of the bar (Fig. 4.14) at a dis-
tance 𝑥, the following internal force and moment will act 

 

𝑁௫ ൌ 𝑃ଵ െ
𝑄𝑥
6𝑏

ൌ
𝑄
2
െ
𝑄𝑥
6𝑏

ൌ
𝑄
2
ቀ1 െ

𝑥
3𝑏
ቁ ; 

 

𝑀௬ ൌ 𝑃ଵ
𝑏
2
െ 𝑃ଶ𝑥 ൌ

𝑄
2
∙
𝑏
2
െ
𝑄
24

𝑥 ൌ
𝑄
4
ቀ𝑏 െ

𝑥
6
ቁ . 

 
Fig. 4.13 

 

The normal stress at any arbitrary cross-section point is 
 

𝜎 ൌ
𝑁௫
𝐹
൅
𝑀௬

𝐼௬
𝑧 ൌ

𝑄
2𝑏ℎ

ቀ1 െ
𝑥

3𝑏
ቁ ൅

𝑄
4
∙

12
ℎ𝑏ଷ

ቀ𝑏 െ
𝑥
6
ቁ 𝑧. 

 

At the neutral axis in an arbitrary section 𝜎 ൌ 0, then 
 

𝑄
2𝑏ℎ

ቀ1 െ
𝑥

3𝑏
ቁ ൅

3𝑄
ℎ𝑏ଷ

ቀ𝑏 െ
𝑥
6
ቁ 𝑧୬.ୟ୶. ൌ 0. 

 

After transformations we obtain 
 

𝑧୬.ୟ୶. ൌ െ𝑏
ሺ3𝑏 െ 𝑥ሻ
ሺ6𝑏 െ 𝑥ሻ

. 
 

To construct the neutral surface in the bar, we deter-
mine the position of the neutral axis in several cross-sec-
tions along the height of the bar (see Fig. 4.14): 

 

at       𝑥 ൌ 0             𝑧 ൌ െ
𝑏
2

; 
 

𝑥 ൌ 𝑏             𝑧 ൌ െ
2𝑏
5

; 
 

𝑥 ൌ 2𝑏           𝑧 ൌ െ
𝑏
4

; 
 

𝑥 ൌ 3𝑏           𝑧 ൌ 0; 
 

𝑥 ൌ 4𝑏           𝑧 ൌ
𝑏
2

. 

 

Fig. 4.14 
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Example 4.11 
 

The wooden beam of a rectangular cross-section with the length 𝑙 ൌ 2.4 m 
(Fig. 4.15) is simply supported at its ends and loaded at mid-span with a concentrated 
force 𝑃. Strain gauges A and B with a 20 mm base and a magnification of 1000 times 
were installed in the beam critical section. They recorded the following reading 
changes: A – a 9 mm decrease, B – a 6 mm increase. Determine the magnitude and the 
direction (angle 𝛼) of the applied force 𝑃, as well as the value of the maximum normal 
stress in the beam, if 𝑏 ൌ 120 mm, ℎ ൌ 200 mm and the modulus of longitudinal elas-
ticity of wood is 𝐸 ൌ 1 ൈ 10ସ МPа. 

 

 
Fig. 4.15 

 
Solution 

 

 

We decompose the force 𝑃 
into its components and construct 
the bending moment diagrams 
(Fig. 4.16): 

 
𝑃௭ ൌ 𝑃 cos𝛼 ; 

 

𝑃௬ ൌ 𝑃 sin𝛼 . 

Fig. 4.16 
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In the critical section, the internal moments are 
 

𝑀௬ ൌ 𝑀௬ ௠௔௫ ൌ
𝑃௭
2
∙
𝑙
2
ൌ
𝑃𝑙 cos𝛼

4
; 

 

𝑀௭ ൌ 𝑀௭ ௠௔௫ ൌ െ
𝑃௬
2
∙
𝑙
2
ൌ െ

𝑃𝑙 sin𝛼
4

. 
 

At 𝐴 and 𝐵 gauges, a uniaxial stress state is realized (Fig. 4.17). At these points 
stresses are 

 

|𝜎஺| ൌ 𝜎஺ ௠௔௫൫𝑀௬൯ ൌ
𝑀௬

𝑊௬
ൌ
𝑃𝑙 cos𝛼

4
∙

6
𝑏ℎଶ

ൌ
3
2
∙
𝑃𝑙 cos𝛼
𝑏ℎଶ

; 

 

𝜎஻ ൌ 𝜎஻ ௠௔௫൫𝑀௬൯ ൌ
|𝑀௭|

𝑊௭
ൌ
𝑃𝑙 sin𝛼

4
∙

6
ℎ𝑏ଶ

ൌ
3
2
∙
𝑃𝑙 sin𝛼
ℎ𝑏ଶ

. 

 

According to Hooke’s law for a uniaxial 
stress state: 

 

|𝜎஺| ൌ |𝐸𝜀஺| ൌ ฬ𝐸
∆஺
𝐴଴𝐾

ฬ ; 

 

𝜎஻ ൌ 𝐸𝜀஻ ൌ 𝐸
∆஻
𝐵଴𝐾

, 

where ∆஺, ∆஻ are the strain gauge reading 
changes; 
𝐴଴, 𝐵଴ are the strain gauge bases; 
𝐾 is the magnification factor of the strain 

gauges.  
Fig. 4.17 

 

We equate the normal stress values at points A and B, respectively: 
 

3
2
∙
𝑃𝑙 cos𝛼
𝑏ℎଶ

ൌ 𝐸
∆஺
𝐴଴𝐾

; (4.1) 

3
2
∙
𝑃𝑙 sin𝛼
ℎ𝑏ଶ

ൌ 𝐸
∆஻
𝐵଴𝐾

. (4.2) 

 

We divide (4.2) by (4.1). After transformations, we get: 
 

𝛼 ൌ arctg ൬
∆஻
∆஺

𝑏
ℎ
൰ ൌ arctgቆ

6 ൈ 10ିଷ

9 ൈ 10ିଷ
∙

0.15
0.2

ቇ ൌ 26.57°. 
 

From (4.1) we obtain 
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𝑃 ൌ
∆஺𝐸
𝐴଴𝐾

∙
2𝑏ℎଶ

3𝑙 ∙ cos𝜑
ൌ

9 ൈ 10ିଷ ∙ 2 ൈ 10ଵଵ

20 ൈ 10ିଷ ∙ 1000
∙

2 ∙ 0.15 ∙ 0.2ଶ

3 ∙ 2.4 ∙ cos 26.57°
ൌ 8.4 kN. 

 

The maximum stresses in the critical cross-section act at points 𝐶 and 𝐷. For point 
𝐶 we obtain  

 

𝜎஼ ൌ 𝜎௠௔௫ ൌ 𝜎൫𝑀௬ ௠௔௫൯ ൅ 𝜎ሺ𝑀௭ ௠௔௫ሻ ൌ 
 

ൌ
3
2
∙
𝑃𝑙 cos𝛼
𝑏ℎଶ

൅
3
2
∙
𝑃𝑙 sin𝛼
ℎ𝑏ଶ

ൌ
3𝑃𝑙
2𝑏ℎ

൬
cos𝛼
ℎ

൅
sin𝛼
𝑏

൰ ൌ 
 

ൌ
3 ∙ 8.4 ൈ 10ଷ ∙ 2.4

2 ∙ 0.2 ∙ 0.15
൬

cos 26.57°
0.2

൅
sin 26.57°

0.15
൰ ൌ 7.51 МPа. 

 

At point 𝐷 the stress differs only by sign. 
 
Example 4.12 
 

 

In a rectangular cross-section of a bar, normal stresses 
𝜎௫ arise from the action of internal forces 𝑁௫, 𝑀௬ and 𝑀௭ 

(Fig. 4.18). The known values of normal stresses in three 
points are 𝜎௫ ଵ ൌ 9 МPа, 𝜎௫ ଶ ൌ 6 МPа, 𝜎௫ ଷ ൌ 12 МPа. 
The points coordinates are: 𝑦ଵ ൌ 3 cm, 𝑧ଵ ൌ 3 cm, 
𝑦ଶ ൌ 3 cm, 𝑧ଶ ൌ െ3 cm, 𝑦ଷ ൌ െ3 cm, 𝑧ଷ ൌ 3 cm. 

Determine the magnitudes of the internal forces and 
moments as well as the neutral axis position, if 𝑏 ൌ 12 cm, 
ℎ ൌ 24 cm. 

Fig. 4.18 
 

Solution 
 

The normal stress at an arbitrary point of the cross-section is: 
 

𝜎௫ ൌ
𝑁௫
𝐹
൅
𝑀௬ ∙ 𝑧
𝐼௬

൅
𝑀௭ ∙ 𝑦
𝐼௭

, 

 

where 𝑁௫, 𝑀௬, 𝑀௭ are the axial force and bending moments acting in the section; 

 𝑦, 𝑧 are the coordinates of an arbitrary point; 

 𝐹 is the area of the cross-section; 

 𝐼௬, 𝐼௭ are the axial moments of inertia of the cross-section relative to the 𝑦 

and 𝑧-axes. 
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We calculate the geometric characteristics of the rectangular section: 
 

𝐹 ൌ 𝑏ℎ ൌ 0.12 ∙ 0.24 ൌ 2.88 ൈ 10ିଶ cmଶ; 
 

𝐼௬ ൌ
𝑏ℎଷ

12
ൌ

0.12 ∙ 0.24ଷ

12
ൌ 1.3824 ൈ 10ିସ cmସ; 

 

𝐼௭ ൌ
ℎ𝑏ଷ

12
ൌ

0.24 ∙ 0.12ଷ

12
ൌ 0.3456 ൈ 10ିସ cmସ. 

 

We write a system of three linear equations: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧9 ൈ 10଺ ൌ

𝑁௫
2.88 ൈ 10ିଶ

൅
𝑀௬ ∙ 3 ൈ 10ିଶ

1.3824 ൈ 10ିସ
൅
𝑀௭ ∙ 3 ൈ 10ିଶ

0.3456 ൈ 10ିସ
;

6 ൈ 10଺ ൌ
𝑁௫

2.88 ൈ 10ିଶ
൅
𝑀௬ ∙ ሺെ3 ൈ 10ିଶሻ

1.3824 ൈ 10ିସ
൅
𝑀௭ ∙ 3 ൈ 10ିଶ

0.3456 ൈ 10ିସ
;

12 ൈ 10଺ ൌ
𝑁௫

2.88 ൈ 10ିଶ
൅
𝑀௬ ∙ 3 ൈ 10ିଶ

1.3824 ൈ 10ିସ
൅
𝑀௭ ∙ ሺെ3 ൈ 10ିଶሻ

0.3456 ൈ 10ିସ
.

 

 

Solving the system, we obtain the mag-
nitudes of the internal forces and indicate 
their direction (Fig. 4.19): 

 

𝑁௫ ൌ 0.2592 kN; 
 

𝑀௬ ൌ 0.6912 ൈ 10ିଶ kN·m; 
 

𝑀௭ ൌ െ0.1728 ൈ 10ିଶ kN·m. 

 
Fig. 4.19 

 

We write the neutral axis equation: 
 

0.2592
2.88 ൈ 10ିଶ

൅
0.6912 ൈ 10ିଶ

1.3824 ൈ 10ିସ
𝑧 ൅

െ0.1728 ൈ 10ିଶ

0.3456 ൈ 10ିସ
𝑦 ൌ 0. 

 

After simplifications we get: 
 

9 ൅ 50 ∙ 𝑧 െ 50 ∙ 𝑦 ൌ 0; 
 

50 ∙ 𝑧 ൌ 50 ∙ 𝑦 െ 9; 
 

𝑧 ൌ 𝑦 െ 0.18. 
 

The neutral axis position is shown in Fig. 4.19. 
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Example 4.13 
 

 

It is known that at point K, the linear strain 
at a 45° angle to the generator of a circular 
cross-section bar is zero (𝜀௫భ

௄ ൌ 0) (Fig. 4.20). 

The diameter of the bar is 𝑑 ൌ 200 mm, the ap-
plied torque is 𝑀௫ ൌ 5 kN∙m, and the Poisson’s 
ratio of the bar material is 𝜇 ൌ 0.25. 

Determine the maximum normal (princi-
pal) stress 𝜎௠௔௫. 

Fig. 4.20 
 

Solution 
 

In any cross-section of the bar, a pure bending with tension and torsion is realized 
(Fig. 4.21, а). 

 

The stress state at point K on the 𝑥, 𝑦, and 𝑧 planes is 
 

𝜏 ൌ |െ𝜏௫௭| ൌ 𝜏௭௫ ൌ
𝑀௫

𝑊ఘ
ൌ

16𝑀௫

𝜋𝑑ଷ
; (4.3) 

𝜎 ൌ |𝜎௫| ൌ ฬ
𝑃
𝐹
െ
𝑃
𝑊௭

∙
𝑑
2
ฬ ൌ ฬ

4𝑃
𝜋𝑑ଶ

െ
32𝑃
𝜋𝑑ଷ

∙
𝑑
2
ฬ ൌ

12𝑃
𝜋𝑑ଶ

; (4.4) 

𝜎௬ ൌ 𝜎௭ ൌ 0.  
 

  

а b 

Fig. 4.21 
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Let us determine the normal stresses on mutually perpendicular planes 𝑥ଵ and 𝑧ଵ, 
rotated relative to the 𝑦 and 𝑧-axes by the angle 𝛼 ൌ 45° with respect to the 𝑥-axis, as 
shown in Fig. 4.21, b: 

 

⎩
⎪
⎨

⎪
⎧𝜎௫భ ൌ 𝜎௫ cosଶ 𝛼 ൅ 𝜎௭ sinଶ 𝛼 ൅ 𝜏 sin 2𝛼 ൌ

𝜎
2
൅ 𝜏;

𝜎௬భ ൌ 𝜎௬ ൌ 0;

𝜎௭భ ൌ 𝜎௫ sinଶ 𝛼 ൅ 𝜎௭ cosଶ 𝛼 െ 𝜏 sin 2𝛼 ൌ
𝜎
2
െ 𝜏.

 

 

According to Hooke’s law, the linear strain at point K in the 𝑥ଵ-axis direction is 
 

𝜀௫భ
ሺ௄ሻ ൌ

1
𝐸
ൣ𝜎௫భ െ 𝜇൫𝜎௬భ ൅ 𝜎௭భ൯൧ ൌ

1
𝐸
ቂሺ1 െ 𝜇ሻ

𝜎
2
െ ሺ1 ൅ 𝜇ሻ𝜏ቃ . 

 

By the problem statement, 𝜀௫భ
ሺ௄ሻ ൌ 0. Hence 

 

𝜏 ൌ
1 െ 𝜇

2ሺ1 ൅ 𝜇ሻ
𝜎. 

 

Taking into account (4.3) and (4.4): 
 

16𝑀௫

𝜋𝑑ଷ
ൌ

1 െ 𝜇
2ሺ1 ൅ 𝜇ሻ

∙
12𝑃
𝜋𝑑ଶ

. 

From this, we get: 
 

𝑃 ൌ
8
3
∙
ሺ1 ൅ 𝜇ሻ
ሺ1 െ 𝜇ሻ

∙
𝑀௫

𝑑
ൌ

8
3
∙
ሺ1 ൅ 0.25ሻ
ሺ1 െ 0.25ሻ

∙
5 ൈ 10ଷ

0.2
ൌ

1000 ൈ 10ଷ

9
ൌ 111.11 kN. 

 

Now we determine the greatest normal stress, i.e. the maximum principal stress, 
which will occur at point B of the bar (see the stress diagrams in Fig. 4.21, a). On the 
𝑥 and 𝑧 planes the following stresses act: 

 

⎩
⎪
⎨

⎪
⎧𝜎௫ ൌ

𝑃
𝐹
൅

𝑃
𝑊௬

∙
𝑑
2
ൌ

4𝑃
𝜋𝑑ଶ

൅
32𝑃
𝜋𝑑ଷ

∙
𝑑
2
ൌ

20𝑃
𝜋𝑑ଶ

;

𝜎௭ ൌ 𝜎௬ ൌ 0;

𝜏௫௭ ൌ
𝑀௫

𝑊ఘ
ൌ

16𝑀௫

𝜋𝑑ଷ
.

 

The maximum normal (principal) stress is: 
 

𝜎௠௔௫ ൌ
𝜎௫ ൅ 𝜎௭

2
൅

1
2
ඥሺ𝜎௫ ൅ 𝜎௭ሻଶ ൅ 4𝜏௫௭ଶ ൌ

10𝑃
𝜋𝑑ଶ

൅
1
2
ඨ൬

20𝑃
𝜋𝑑ଶ

൰
ଶ

൅ 4 ൬
16𝑀௫

𝜋𝑑ଷ
൰
ଶ

ൌ 

 

ൌ
10 ∙ 111.11 ൈ 10ଷ

𝜋 ∙ 0.2ଶ
൅

1
2
ඨቆ

20 ∙ 111.11 ൈ 10ଷ

𝜋 ∙ 0.2ଶ
ቇ
ଶ

൅ 4ቆ
16 ∙ 5 ൈ 10ଷ

𝜋 ∙ 0.2ଷ
ቇ
ଶ

ൌ 18.239 МРа. 
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Example 4.14 
 

The beam material (Fig. 4.22) is concrete, characterized by different ultimate ten-
sile ൫𝜎ult೟ ൌ 𝜎଴൯ and compressive ൫𝜎ult೎ ൌ 5𝜎଴൯ strengths. The beam span length is 𝑙, 
the cross-section is an isosceles triangle with height ℎ and base 𝑏, and the safety factor 
for concrete is 𝑛ult. It is required to determine the optimal initial prestress of the rein-
forcement located along the centroidal axis of the cross-section, i.e. such prestress 𝑁଴ 
that the bending capacity of the beam is maximized (𝑃 ൌ 𝑃௠௔௫). What is the value of 
𝑃௠௔௫? 

 

 
Fig. 4.22 

 

Solution 
 

The beam is subjected to bending with compression. 
 

 

In the beam critical section 
(Fig. 4.23) at midspan, two inter-
nal loads will act: 

 

– initial prestress of the rein-
forcement 

 

𝑁௫ ൌ െ𝑁଴; 
 

– and bending moment 
 

𝑀௬ ൌ
𝑃
2
∙
𝑙
2
ൌ
𝑃𝑙
4

. 

Fig. 4.23 
 

We determine the optimal value of the initial reinforcement prestress 𝑁଴ by en-
suring the beam’s most tensioned ሺ𝐴ሻ and most compressed ሺ𝐵ሻ points are equally 
strong (the equal strength condition): 
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⎩
⎪
⎨

⎪
⎧𝜎௧ ೘ೌೣ

ൌ ሾ𝜎ሿ௧ ൌ
𝜎ultt

𝑛ult
ൌ
𝜎଴
𝑛ult

;

ห𝜎௖ ೘ೌೣ
ห ൌ ሾ𝜎ሿ௖ ൌ

𝜎ult೎

𝑛ult
ൌ

5𝜎଴
𝑛ult

,
 

 

where 𝑛ult is the concrete safety factor. 
 

The maximum tensile stresses act at point A, and the maximum compressive 
stresses act at point B (Fig. 4.24): 

 

𝜎஺ ൌ 𝜎௧ ೘ೌೣ
ൌ
𝑀௬

𝐼௬
∙

1
3
ℎ െ

|𝑁௫|

𝐹
ൌ
𝑃𝑙ℎ
12𝐼௬

െ
𝑁଴
𝐹

; 

 

|𝜎஻| ൌ ห𝜎௖ ೘ೌೣ
ห ൌ ቤ

𝑀௬

𝐼௬
∙ ൬െ

2
3
ℎ൰ ൅

𝑁௫
𝐹
ቤ ൌ ቤെ

𝑃𝑙
4𝐼௬

∙
2
3
ℎ െ

𝑁଴
𝐹
ቤ ൌ

𝑃𝑙ℎ
6𝐼௬

൅
𝑁଴
𝐹

, 

 

 

where 𝐼௬ ൌ
𝑏ℎଷ

36
;     𝐹 ൌ

𝑏ℎ
2

. 
 

Then, we can rewrite the equal 
strength condition as: 

 

⎩
⎪
⎨

⎪
⎧
𝑃௠௔௫𝑙

4𝐼௬
∙

1
3
ℎ െ

𝑁଴
𝐹
ൌ
𝜎଴
𝑛ult

;

𝑃௠௔௫𝑙
4𝐼௬

∙
2
3
ℎ ൅

𝑁଴
𝐹
ൌ

5𝜎଴
𝑛ult

.

 

 
 

Fig. 4.24 
 

After substituting 𝐼௬ and 𝐹, we obtain: 
 

⎩
⎪
⎨

⎪
⎧ 3𝑙
𝑏ℎଶ

𝑃௠௔௫ െ
2
𝐹
𝑁଴ ൌ

𝜎଴
𝑛ult

;

6𝑙
𝑏ℎଶ

𝑃௠௔௫ ൅
2
𝐹
𝑁଴ ൌ

5𝜎଴
𝑛ult

.

 

 

As a result of solving the linear equations system, we get: 
 

𝑁଴ ൌ
𝜎଴
𝑛ult

∙
𝑏ℎ
2

; 
 

𝑃௠௔௫ ൌ
𝜎଴
𝑛ult

∙
2𝑏ℎଶ

3𝑙
. 
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Example 4.15 
 

 

A short column made of an I-beam No. 20, 
centrally loaded with a force 𝑃 ൌ 200 kN 
(Fig. 4.25, а), is “reinforced” by a channel 
No. 10, welded to the column along its entire 
length (see Fig. 4.25, b). What was the maximum 
compressive stress in the I-beam column and in 
the column “reinforced” by the channel? 

 
Solution 

 

From the steel section tables, we write down 
the necessary geometric characteristics of the 
rolled sections for the subsequent calculation: 

Fig. 4.25 

 

I-beam No. 20: ℎଵ ൌ 20 ൈ 10ିଶ m;   𝐹ଵ ൌ 26.8 ൈ 10ିସ m2; 
𝐼௭భ ൌ 1840 ൈ 10ି଼ m4; 

 

Channel No. 10: 𝑦଴ ൌ 1.44 ൈ 10ିଶ m;   𝐹ଶ ൌ 10.9 ൈ 10ିସ m2; 
𝐼௭మ ൌ 20.4 ൈ 10ି଼ m4. 

 

In the first case, pure axial compression is realized, where the normal stress is: 
 

𝜎 ൌ
𝑃
𝐹ଵ
ൌ

200 ൈ 10ଷ

26.8 ൈ 10ିସ
ൌ 74.63 МPа. 

 

In the second case, it is eccentric compression. Then, the maximum normal 
stresses occur at the points on the right face of the column: 

 

𝜎௠௔௫  ሺ஺ሻ ൌ
𝑃
𝐹
൅
𝑀௭

𝐼௭
∙ 𝑦ሺ஺ሻ. 

In this expression, 
 

𝐹 is the area of the compound section: 
 

𝐹 ൌ 𝐹ଵ ൅ 𝐹ଶ ൌ 26.8 ൈ 10ିସ ൅ 10.9 ൈ 10ିସ ൌ 37.7 ൈ 10ିସ m4; 
 

𝑀௭ is the bending moment relative to the 𝑧-axis, caused by the eccentricity of the ap-
plied force 𝑃: 

𝑀௭ ൌ 𝑃 ∙ 𝑦௖; 
 

𝐼௭ is the inertia moment of the compound section relative to the 𝑧-axis; 
 

𝑦ሺ஺ሻ is the coordinate of point A in the in the system of centroidal axes 𝑦𝑂𝑧 of com-

pound cross-section. 
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We find the coordinates of the com-
pound section centroid (Fig. 4.26). Since 
the 𝑦-axis is the axis of symmetry of the 
compound section, the centroid lies on this 
axis (𝑧௖ ൌ 0). We find the second coordi-
nate of the centroid:  

Fig. 4.26 

𝑦௖ ൌ

෍𝑆௭
ሺ௜ሻ

௡

௜ୀଵ_________

෍𝐹௜

௡

௜ୀଵ

ൌ
0 ∙ 𝐹ଵ ൅ ቆെቀ

ℎଵ
2 ൅ 𝑦଴ቁቇ𝐹ଶ

𝐹ଵ ൅ 𝐹ଶ
ൌ 

 

ൌ
െ൬

20 ൈ 10ିଶ
2 ൅ 1.44 ൈ 10ିଶ൰ ∙ 10.9 ൈ 10ିସ

26.8 ൈ 10ିସ ൅ 10.9 ൈ 10ିସ
ൌ 

 

ൌ
െ1.247 ൈ 10ିସ

37.7 ൈ 10ିସ
ൌ െ3.308 ∙ 10ିଶ m; 

 

Let us determine the compound section inertia moment relative to the central 𝑧-axis: 

𝐼௭ ൌ 𝐼௭
ሺଵሻ ൅ 𝐼௭

ሺଶሻ ൌ 𝐼௭భ ൅ 𝑦௖ଶ ∙ 𝐹ଵ ൅ 𝐼௭మ ൅ ൬
ℎଵ
2
൅ 𝑦଴ െ 𝑦௖൰

ଶ

𝐹ଶ ൌ 
 

ൌ 1840 ൈ 10ି଼ ൅ ሺ3.308 ൈ 10ିଶሻଶ ∙ 26.8 ൈ 10ିସ ൅ 
 

൅20.4 ൈ 10ି଼ ൅ ቆ
20 ൈ 10ିଶ

2
൅ 1.44 ൈ 10ିଶ െ 3.308 ൈ 10ିଶቇ

ଶ

∙ 10.9 ൈ 10ିସ ൌ 

 

ൌ 2133.269 ൈ 10ି଼ ൅ 741.211 ൈ 10ି଼ ൌ 2874.48 ൈ 10ି଼ m4. 
 

Hence, the expression for determining the maximum normal stresses can be re-
written: 

𝜎୫ୟ୶  ሺ஺ሻ ൌ
𝑃
𝐹
൅
𝑃 ∙ 𝑦௖
𝐼௭

൬
ℎଵ
2
൅ 𝑦௖൰ ൌ 

 

ൌ
200 ൈ 10ଷ

37.7 ൈ 10ିସ
൅

200 ൈ 10ଷ ∙ 3.308 ൈ 10ିଶ

2874.48 ൈ 10ି଼
ቆ

20 ൈ 10ିଶ

2
൅ 3.308 ൈ 10ିଶቇ ൌ 

 

ൌ 53.05 ൈ 10଺ ൅ 30.63 ൈ 10଺ ൌ 83.68 МPа. 
 

Thus, the "reinforcement" of the column led to a 12.13% increase in the maximum 
normal stresses. 
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Example 4.16 
 

 

A variable cross-section bar is 
loaded with tensile forces 𝑃 
(Fig. 4.27). Determine the magnitude 
of forces 𝑃ଵ, applied at points В, so that 
the normal stress distribution is uni-
form in the bar critical section. 

Fig. 4.27 
 

Will the load-bearing capacity of the bar increase in this case, and by how much? 
Neglect the stress concentration. 

 

Solution 
 

 

We find the force 𝑃ଵ from the equality condi-
tion of normal stresses at the lower point ሺ𝐴ሻ of 
the weakened cross-section under the moments 
caused by the forces 𝑃 and 𝑃ଵ relative to the sec-
tion centroid (Fig. 4.28): 

 

𝜎௫ ቀ𝑀௬ሺ𝑃ሻቁ ൌ 𝜎௫ ቀ𝑀௬ሺ𝑃ଵሻቁ. 
Fig. 4.28 

 

Then 
𝑀௬ሺ𝑃ሻ

𝑊஺
ൌ
𝑀௬ሺ𝑃ଵሻ

𝑊஺
, 

 

where 𝑀௬ሺ𝑃ሻ ൌ 𝑃𝑧஺;  𝑀௬ሺ𝑃ଵሻ ൌ 𝑃ଵ𝑧஻ are the bending moments caused by forces 𝑃 

and 𝑃ଵ; 

 𝑧஺ ൌ 𝑧௖ ൌ 2𝑑 3𝜋⁄ ൌ 0.2122𝑑;  𝑧஻ ൌ 𝑑 2⁄ െ 𝑧௖ ൌ 0.2878𝑑 are the coordinates 
of the forces 𝑃 and 𝑃ଵ application points relative to the section centroid; 

 𝐹 is the cross-sectional area; 

 𝑊஺ ൌ 0.0239𝑑ଷ;  𝑊஻ ൌ 0.0324𝑑ଷ are the section moduli of the semicircular 
cross-section relative to the y-axis for the upper (point B) and lower (point A) 
fibers. 

 

Let us substitute into the normal stress equality condition: 
 

𝑃 ∙ 0.2122𝑑
0.0324𝑑ଷ

ൌ
𝑃ଵ ∙ 0.2878𝑑

0.0324𝑑ଷ
 

and after transformations, we get: 
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𝑃ଵ ൌ 0.7373 ∙ 𝑃. 
 

According to the calculation scheme (Fig. 4.29), in the first loading case, the 
maximum stress in the critical cross-section will be at the bottom fibers: 

 

𝜎௫ ௠௔௫
ሺଵሻ ൌ 𝜎௫ሺ𝑁௫ሻ ൅ 𝜎௫ ௠௔௫൫𝑀௬൯ ൌ

𝑃
𝐹
൅
𝑃𝑧஺
𝑊஺

ൌ 
 

ൌ
𝑃 ∙ 8
𝜋𝑑ଶ

൅
𝑃 ∙ 0.2122𝑑
0.0324𝑑ଷ

ൌ
𝑃
𝑑ଶ
ሺ2.547 ൅ 6.549ሻ ൌ 9.096

𝑃
𝑑ଶ

. 
 

 
Fig. 4.29 

 

In the second loading variant (Fig. 4.30), with 𝑃ଵ ൌ 0.7373 ∙ 𝑃, the maximum 
stresses will be at any point of the weakened cross-section, since the normal stresses 
due to the bending moments will compensate each other (the bending moments are not 
shown in Fig. 4.30): 

 

𝜎௫ ௠௔௫
ሺଶሻ ൌ

𝑃 ൅ 𝑃ଵ
𝐹

ൌ
ሺ𝑃 ൅ 0.7373 ∙ 𝑃ሻ ∙ 8

𝜋𝑑ଶ
ൌ
𝑃
𝑑ଶ

4.424. 
 

 
Fig. 4.30 

 

In the second loading variant, the maximum normal stress in the critical cross-
section decreases in 2.056 times compared to the first case: При втором варианте 
нагружения наибольшее нормальное напряжение в опасном сечении уменьша-
ется в 2,056 раза по сравнению с первым вариантом. 

 

𝜎௫ ௠௔௫
ሺଵሻ

𝜎௫ ௠௔௫
ሺଶሻ ൌ

9.096
4.424

ൌ 2.056. 
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QUESTIONS FOR SELF-CHECK 
 
1. What is a limiting stress state? 
2. What are the strength theories, and for what purpose are they applied? 
3. Which stress states at a point are called equally critical? 
4. What is the equivalent stress? 
5. What is the purpose of strength hypotheses (theories of limiting stress states)? 
6. How is the theory of maximum normal stresses (the first strength theory) formu-

lated, and what is its strength condition? 
7. How is the theory of maximum linear strains (the second strength theory) formu-

lated, and what is its strength condition? 
8. How is the theory of maximum shear stresses (the third strength theory) formu-

lated, and what is its strength condition? 
9. How is the energy theory of strength (the fourth strength theory) formulated, and 

what is its strength condition? 
10. What is Mohr’s strength theory? 
11. Write down the strength conditions according to the third and fourth strength the-

ories for a special case of a plane stress state. 
12. What are diagrams? Present the basic rules of their construction and the sign con-

ventions when constructing diagrams.  
13. What is a planar cranked bar with out-of-plane loading? 
14. What is combined loading of a bar? 
15. Formulate the principles upon which the analysis of bars under combined loading 

is based. 
16. Which points of a rectangular cross-section will be potentially critical, and what 

stress state arises at these points under the combined action of bending with tor-
sion and tension? 

17. Write the strength conditions for the critical points of a bar with a rectangular 
cross-section under bending with torsion and tension. 

18. What is the procedure for selecting the dimensions of a bar with a rectangular 
cross-section under combined loading? 

19. Which points of a circular cross-section are critical, and what stress state arises at 
these points under the combined action of bending with torsion? 

20. Write the strength conditions for the critical points of a bar with a circular cross-
section under the combined action of bending and torsion. 

21. What is the procedure for selecting the diameter of a bar with a circular cross-
section under the combined action of bending with torsion and tension  
(compression)? 
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22. How do you find the value of the design (equivalent) moment according to the 
third and fourth strength theories for bending with torsion of a bar with a circular 
cross-section? 

23. Which point of a circular cross-section will be critical under the combined action 
of bending with torsion and tension (compression)? Write the strength conditions 
for this point. 

24. Why are the shear stresses from the action of transverse (shear) forces usually not 
taken into account in the analysis of bars for bending with torsion? 

25. What is oblique bending? 
26. What is called pure oblique bending and transverse oblique bending? 
27. For which cross-sectional shapes of bars is oblique bending not possible? 
28. To what resultants do the internal loads lead under oblique bending 
29. How do you determine the neutral axis position under oblique bending? 
30. Does the neutral axis pass through the centroid of the section under oblique  

bending? 
31. How do you determine the critical points in a cross-section under oblique  

bending? 
32. What is the procedure of bar analysing under oblique bending? 
33. What kind of combined loading is called eccentric tension-compression? 
34. What types of stresses arise in a bar subjected to eccentric tensile or compressive 

loading? 
35. What formulas are used to determine the normal stresses in the cross-sections of 

a bar under eccentric tension and compression? What kind of diagram do these 
stresses have? 

36. How do you determine the neutral axis position under eccentric tension-compres-
sion? 

37. How does the neutral axis move when the coordinates of the external force appli-
cation point change under eccentric tension-compression? 

38. How do you determine the position of the most critical point of a bar cross-section 
under eccentric tension-compression? 

39. What is the core of a cross-section? 
40. How is the core of a cross-section constructed? 
41. What is the neutral axis position when the pressure center lies on the contour of 

the cross-section core? 
42. What will the stresses be at all points of the cross-section if it is known that the 

tensile force lies inside the core of a cross-section? 
43. Can compressive stresses arise at points of the cross-section under eccentric  

tension? 
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PROCEDURE AND EXAMPLE OF PERFORMING 
THE HOME ASSIGNMENT 

 
Objective. To perform a strength analysis of a cranked bar subjected to combined ac-

tion of bending and torsion. 
 

1. Draw to scale the analytical scheme of the cranked bar with the given loads. 
 

2. Divide the cranked bar into segments. 
 

3. In arbitrary cross-sections of each segment at a distance x from its beginning, place 
a coordinate system so that the 𝑥-axis coincides with the longitudinal axis of the bar, 
the 𝑧-axis is directed downward, and the horizontal 𝑦-axis together with the first two 
axes forms a right-handed orthogonal basis. 

 

Remark To obtain a formally ordered sign system for the internal forces and 
moments on all segments, it is recommended to construct the coordi-
nate system of segment II by a simple translation, i.e. by rotating the 
coordinate system of segment I by 90° about the 𝑧-axis, and so on. 

 

4. Using the method of sections, write expressions for all internal forces and moments 
in arbitrary cross-sections within each segment, following the adopted sign conven-
tions. 

 

5. Construct (draw) the internal forces and moments diagrams. 
 

Remarks When constructing the internal forces and moments diagrams for a 
cranked bar, keep in mind: 
 

а) The 𝑁௫ and 𝑀௫ diagrams can be drawn in any plane.; 
 

б) The diagrams of 𝑄௭, 𝑄௬, 𝑀௬, and 𝑀௭ must be drawn only in their 

respective planes of action; 
 

в) The diagrams of bending moments 𝑀௬ and 𝑀௭ must be con-

structed on the tensioned fibers. 
 

6. Verify the correctness of the constructed diagrams (equilibrium at the nodal 
points). 
 

7. Determine the critical cross-section. 
 

Remark If the position of the critical cross-section is not evident from the dia-
grams, all potentially critical cross-sections must be considered in the 
strength analysis. 
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8. Select a rectangular cross-section (𝑘 ൌ ℎ 𝑏⁄  is prescribed by the instructor). Perform 
the analysis for all potentially critical points of the critical cross-section. Apply the 
maximum shear stress hypothesis (the third strength theory). Construct diagrams of 
the normal and shear stresses distributions in the critical cross-section of the consid-
ered bar element due to the action of the axial force 𝑁௫, torsional moment 𝑀௫, and 
bending moments 𝑀௬ and 𝑀௭. Identify the truly critical point. At all potentially crit-

ical points determine and show the stress state. Construct the combined diagram of 
normal stresses and indicate the position of the cross-section neutral axis. 

 

Remark If 𝑴𝒛 ൐ 𝑴𝒚, the cross-section should be oriented horizontally; if; 

𝑴𝒚 ൐ 𝑴𝒛, it should be oriented vertically, so that the greater bending 

moment is opposed by the greater bending stiffness of the cross-sec-
tion (ensuring strength with smaller cross-section dimensions and, ac-
cordingly, reduced bar weight). 

 

9. Select a circular cross-section. Apply the maximum shear stress hypothesis (the third 
strength theory) and the strain energy hypothesis (the fourth strength theory). Show 
the stress state at the critical point. 

 

Remarks 1. The strength analysis is performed taking into account normal 
stresses from bending and axial force (if present in the considered 
cross-section), and shear stresses from torsion. Shear stresses due 
to transverse (shear) forces are neglected. 

 

2. If there is an axial force, first-approximation selection of section 
dimensions is performed neglecting this axial force. After calcu-
lating section dimensions, determine the actual design stresses in 
the critical cross-section. If this stress exceeds allowable stress by 
more than 5%, increase section dimensions so that the overload 
does not exceed 5%; 

 

3. For material, assume ሾ𝜎ሿ ൌ 160 … 240 МPа, coefficients 𝛼 and 𝛾 
for ratio 𝑘 ൌ ℎ 𝑏⁄  are given in the appendix. 

 

10. Compare the weight of the rectangular and circular cross-sections. 
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Example 
 

Construct diagrams of internal forces and moments for the given cranked bar. For 
the critical cross-section, determine the dimensions ℎ and 𝑏 of the rectangular cross-
section and the diameter 𝑑 of the circular cross-section (Fig. 1).  

 

 

Given: 𝑃 ൌ 2 kN;  𝑞 ൌ 5 kN m⁄ ;  𝑎 ൌ 2 m; 
 

𝑏 ൌ 0.5 m;  𝑐 ൌ 2 m;  𝑑 ൌ 0.5 m; 
 

𝑙 ൌ 1 m;  ሾ𝜎ሿ ൌ 180 МPа; 
 

𝑘 ൌ ℎ 𝑏⁄ ൌ 1.5;  𝛼 ൌ 0.231;  𝛾 ൌ 0.859. 
 

It is necessary to construct the  𝑁௫, 𝑄௭, 𝑄௬, 𝑀௫, 

𝑀௬, and 𝑀௭ diagrams, and to determine the di-

mensions of the rectangular and the diameter 
of the circular cross-sections. Fig. 1 

 

Solution 
 

1. We draw to scale the analytical scheme of the cranked bar with the given loads. 
In arbitrary cross-sections of each segment at a distance x from its beginning, place the 
coordinate system 𝑥𝑦𝑧 so that the 𝑥-axis coincides with the longitudinal axis of the bar, 
the 𝑧-axis is directed downward, and the horizontal 𝑦-axis together with the first two 
forms a right-handed orthogonal basis (Fig. 2). 
 

 

Fig. 2 
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2. Using the method of sections, we write expressions for all internal forces and 
moments in arbitrary cross-sections within each segment, following the adopted sign 
conventions. 
 

Segment I ሺ0 ൑ 𝑥 ൑ 𝑎,   𝑎 ൌ 2 mሻ. 
 

𝑁௫ூ ൌ 0; 
 

𝑄௭ூ ൌ 𝑞𝑥 ൌ 5𝑥 ቚ
௫ୀ଴

ൌ 0 ቚ
௫ୀ௔ୀଶ m

ൌ 10 kN; 
 

𝑄௬ூൌ0; 
 

𝑀௫
ூ ൌ 0; 

 

𝑀௬
ூ ൌ െ

𝑞𝑥ଶ

2
ൌ െ

5𝑥ଶ

2
ቚ
௫ୀ଴

ൌ 0 ቚ
௫ୀ௔ୀଶ m

ൌ െ10 kN·m; 
 

𝑀௭
ூ ൌ 0. 

 

Segment II ሺ0 ൑ 𝑥 ൑ 𝑏,   𝑏 ൌ 0.5 mሻ. 
 

We will construct a separate analytical scheme, replacing the distributed load act-
ing within the first section with its resultant force (Fig. 3). 

 

 
Fig. 3 

 

𝑁௫ூூ ൌ 0; 
 

𝑄௭ூூ ൌ 𝑞𝑎 ൌ 5 ∙ 2 ൌ 10 kN; 
 

𝑄௬ூூ ൌ 0; 
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𝑀௫
ூூ ൌ 𝑞𝑎

𝑎
2
ൌ 5 ∙ 2 ∙

2
2
ൌ 10 kN·m; 

 

𝑀௬
ூூ ൌ െ𝑞𝑎𝑥 ൌ െ5 ∙ 2 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀ௕ୀ଴.ହ m
ൌ െ5 kN·m; 

 

𝑀௭
ூூ ൌ 0. 

 

Segment III ሺ0 ൑ 𝑥 ൑ 𝑐,   𝑐 ൌ 2 mሻ. 
 

𝑁௫ூூூ ൌ 0; 
 

𝑄௭ூூூ ൌ 𝑞𝑎 ൌ 5 ∙ 2 ൌ 10 kN; 
 

𝑄௬ூூூ ൌ 0; 
 

𝑀௫
ூூூ ൌ 𝑞𝑎𝑏 ൌ 5 ∙ 2 ∙ 0.5 ൌ 5 kN·m; 

 

𝑀௬
ூூூ ൌ 𝑞𝑎

𝑎
2
െ 𝑞𝑎𝑥 ൌ 5 ∙ 2 ∙

2
2
െ 5 ∙ 2 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 10 kN·m ቚ

௫ୀ௖ୀଶ m
ൌ െ10 kN·m; 

 

𝑀௭
ூூூ ൌ 0. 

 

Segment IV ሺ0 ൑ 𝑥 ൑ 𝑑,   𝑑 ൌ 0.5 mሻ. 
 

𝑁௫ூ௏ ൌ 0; 
 

𝑄௭ூ௏ ൌ 0; 
 

𝑄௬ூ௏ ൌ െ𝑃 ൌ െ2 kN; 
 

𝑀௫
ூ௏ ൌ 0; 

 

𝑀௬
ூ௏ ൌ 0; 

 

𝑀௭
ூ௏ ൌ െ𝑃𝑥 ൌ െ2 ∙ 𝑥 ቚ

௫ୀ଴
ൌ 0 ቚ

௫ୀௗୀ଴.ହ m
ൌ െ1 kN·m. 

 

Segment V ሺ0 ൑ 𝑥 ൑ 𝑙,   𝑙 ൌ 1 mሻ. 
 

𝑁௫௏ ൌ െ𝑃 ൌ െ2 kN; 
 

𝑄௭௏ ൌ 𝑞𝑎 ൌ 5 ∙ 2 ൌ 10 kN; 
 

𝑄௬௏ ൌ 0; 
 

𝑀௫
௏ ൌ െ𝑞𝑎 ቀ𝑐 െ

𝑎
2
ቁ ൌ െ5 ∙ 2 ∙ ൬2 െ

2
2
൰ ൌ െ10 kN·m; 

 

𝑀௬
௏ ൌ െ𝑞𝑎ሺ𝑏 ൅ 𝑥ሻ ൌ 5 ∙ 2 ∙ ሺ0.5 ൅ 𝑥ሻ ቚ

௫ୀ଴
ൌ െ5 kN·m ቚ

௫ୀ௟ୀଵ m
ൌ െ15 kN·m; 

 

𝑀௭
௏ ൌ െ𝑃𝑑 ൌ െ2 ∙ 0.5 ൌ െ1 kN·m. 
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3. Let us construct the internal forces and moments diagrams (Fig. 4). 
 

 
Fig. 4 

 

The diagrams of 𝑁௫, 𝑄௬ and 𝑀௭ are drawn to a larger scale. 
 

4. We check the correctness of the constructed diagrams. 
 

To do this, we isolate infinitesimal elements of the cranked bar at the joints of its 
parts (nodes A, B, and C) and examine their equilibrium under the action of internal 
and external loads applied within these nodes (Fig. 5). 
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Fig. 5 

 

Equilibrium equations for node А: 
 

∑𝑃௫ ൌ 0;    ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 10 െ 10 ൌ 0; 
 

∑𝑀௫ ൌ 10 െ 10 ൌ 0;  ∑𝑀௬ ൌ 0;    ∑𝑀௭ ൌ 0. 
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Equilibrium equations for node В: 
 

∑𝑃௫ ൌ 0;    ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 10 െ 10 ൌ 0; 
 

∑𝑀௫ ൌ 10 െ 10 ൌ 0;  ∑𝑀௬ ൌ 5 െ 5 ൌ 0;  ∑𝑀௭ ൌ 0. 
 

Equilibrium equations for node C: 
 

∑𝑃௫ ൌ 2 െ 2 ൌ 0;   ∑𝑃௬ ൌ 0;    ∑𝑃௭ ൌ 10 െ 10 ൌ 0; 
 

∑𝑀௫ ൌ 10 െ 10 ൌ 0;  ∑𝑀௬ ൌ 5 െ 5 ൌ 0;  ∑𝑀௭ ൌ 1 െ 1 ൌ 0. 
 

5. Let us identify the critical cross-section. 
 

From the analysis of the diagrams (Fig. 4) it follows that the most critical cross-
section is at the fixed support, where the following internal forces and moments act: 

 

𝑁௫ ൌ െ2 kN;     𝑀௫ ൌ െ10 kN·m;     𝑀௬ ൌ െ15 kN·m;     𝑀௭ ൌ െ1 kN·m. 
 

6. We determine the dimensions of the rectangular cross-section. 
 

Since 𝑀௬ ൐ 𝑀௭, we orient the section vertically to ensure the section's strength 

with smaller dimensions. 
The section with the applied internal 

forces and moments is shown in Fig. 6. 
The internal forces and moments are ap-

plied in accordance with the adopted sign 
conventions: 
 a negative axial force 𝑁௫ signifies com-

pression; 
 negative torsional moment 𝑀௫ signifies 

clockwise rotation; 
 a negative bending moment 𝑀௬ signifies 

tension of the upper fibers and compres-
sion of the lower fibers; 

 a negative bending moment 𝑀௭ signifies 
tension of the right fibers and compression 
of the left fibers. 

 

Fig. 6 
 

Let us determine the potentially critical points of the cross-section. Select the tri-
axially compressed quarter (since 𝑁௫ ൏ 0) of the cross-section (the shaded area in 
Fig. 6) and mark its three corner points A, B, and C. These will be the potentially critical 
points. 

 

We construct the normal and shear stress distribution diagrams across the section 
(Fig. 7–10). 
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Fig. 7 Fig. 8 

 

  
Fig. 9 Fig. 10 

 

For each of the three potentially critical points (A, B, and C) of the cross-section, 
we show the stress state type and write the strength conditions (neglecting the influence 
of the axial force 𝑁௫). 

 

Point А 
 

At point A of the cross-section, a uniaxial stress state is realized (Fig. 11). 

 
Fig. 11 
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The strength condition at this point is written as: 
 

𝜎௫ ஺ ൌ 𝜎௫೘ೌೣ
ൌ
ห𝑀௬ห
𝑊௬

൅
|𝑀௭|

𝑊௭
൑ ሾ𝜎ሿ, 

where     𝑊௬ ൌ
𝑏ℎଶ

6
ൌ ൜ since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘ଶ𝑏ଷ

6
; 

 

𝑊௭ ൌ
ℎ𝑏ଶ

6
ൌ ൜ since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘𝑏ଷ

6
. 

 

After substituting the values of 𝑊௬ and 𝑊௭ into the strength condition and per-

forming transformations, we obtain: 
 

𝑏 ൒ ඨ
6ห𝑀௬ห ൅ 6𝑘|𝑀௭|

𝑘ଶሾ𝜎ሿ

ଷ
ൌ ඨ

6 ∙ |െ15 ൈ 10ଷ| ൅ 6 ∙ 1.5 ∙ |െ1 ൈ 10ଷ|

1.5ଶ ∙ 180 ൈ 10଺
ଷ

ൌ 0.0625 m. 

 

Point B 
 

At point B of the cross-section, a plane stress state is realized (Fig. 12). 

 
Fig. 12 

 

Using the third strength theory, write the strength condition: 
 

𝜎௘௤ ஻
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨ൬

𝑀௭

𝑊௭
൰
ଶ

൅ 4 ൬
𝑀௫

𝑊torsional
൰
ଶ

൑ ሾ𝜎ሿ, 

where     𝑊௭ ൌ
ℎ𝑏ଶ

6
ൌ ൜ since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘𝑏ଷ

6
; 

𝑊torsional ൌ 𝛼ℎ𝑏ଶ ൌ ൜ since  𝑘 ൌ
ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ 𝛼𝑘𝑏ଷ; 

𝛼 ൌ 0.231 is a coefficient that depends on the ratio ℎ 𝑏⁄ ൌ 1.5 (see  
Appendix). 

After substituting the values of 𝑊௭ and 𝑊torsional into the strength condition, we 
obtain: 

 

𝑏୍୍୍ ൒ ඩቀ
6𝑀௭
𝑘 ቁ

ଶ
൅ 4 ቀ

𝑀𝑥
𝛼𝑘ቁ

ଶ

ሾ𝜎ሿଶ

଺

ൌ
ඩ൬

6 ∙ ሺെ1 ൈ 10ଷሻ
1.5 ൰

ଶ

൅ 4 ൬
െ10 ൈ 10ଷ
0.231 ∙ 1.5൰

ଶ

ሺ180 ൈ 10଺ሻଶ

଺

ൌ 0.0685 m. 
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Point C 
 

At point C of the cross-section, a plane stress state is realized (Fig. 13). 
 

 
Fig. 13 

 

Using the third strength theory, we write the strength condition: 
 

𝜎௘௤ ஼
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨቆ

𝑀௬

𝑊௬
ቇ
ଶ

൅ 4 ൬𝛾
𝑀௫

𝑊torsional
൰
ଶ

൑ ሾ𝜎ሿ, 

 

where     𝑊௬ ൌ
𝑏ℎଶ

6
ൌ ൜ since  𝑘 ൌ

ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ
𝑘ଶ𝑏ଷ

6
; 

 

𝑊torsional ൌ 𝛼ℎ𝑏ଶ ൌ ൜ since  𝑘 ൌ
ℎ
𝑏

   ⟹    ℎ ൌ 𝑘𝑏ൠ ൌ 𝛼𝑘𝑏ଷ; 

𝛼 ൌ 0.231, 𝛾 ൌ 0.859 are coefficients that depend on the ratio ℎ 𝑏⁄ ൌ 1.5 
(see Appendix). 

 

After substituting the values of 𝑊௬ and 𝑊torsional into the strength condition, we 

obtain 
 

𝑏୍୍୍ ൒
ඩ൬

6𝑀௬

𝑘ଶ ൰
ଶ

൅ 4 ቀ𝛾
𝑀𝑥
𝛼𝑘ቁ

ଶ

ሾ𝜎ሿଶ

଺

ൌ
ඩ൬

6 ∙ ሺെ15 ൈ 10ଷሻ
1.5ଶ ൰

ଶ

൅ 4 ൬0.859 ∙
െ10 ൈ 10ଷ
0.231 ൈ 1.5൰

ଶ

ሺ180 ∙ 10଺ሻଶ

଺

ൌ 

 

ൌ 0.0707 m. 
 

We choose the largest of the three dimensions for 𝑏. 
 

The calculated dimensions of the rectangular cross-section and its geometric char-
acteristics are: 

𝑏 ൌ 0.0707 m,                  ℎ ൌ 𝑘𝑏 ൌ 1.5 ∙ 0.0707 ൌ 0.1061 m; 
 

𝐹 ൌ 𝑏ℎ ൌ 0.0707 ∙ 0.1061 ൌ 0.0075 mଶ; 
 

𝑊௬ ൌ
𝑏ℎଶ

6
ൌ

0.0707 ∙ 0.1061ଶ

6
ൌ 1.3265 ൈ 10ିସ mଷ; 

 

𝑊௭ ൌ
ℎ𝑏ଶ

6
ൌ

0.1061 ∙ 0.0707ଶ

6
ൌ 0.8839 ൈ 10ିସ mଷ; 

 

𝑊torsional ൌ 𝛼ℎ𝑏ଶ ൌ 0.231 ∙ 0.1061 ∙ 0.0707ଶ ൌ 1.2251 ∙ 10ିସ mଷ. 
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Point C is identified as the most critical point of the cross-section. 
 

We determine the actual design stresses in the critical point taking into account 
the action of the axial force 𝑁௫ 

 

𝜎௘௤ ஼
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨቆ

|𝑁௫|

𝐹
൅
ห𝑀௬ห
𝑊௬

ቇ
ଶ

൅ 4 ൬𝛾
𝑀௫

𝑊torsional
൰
ଶ

ൌ 

 

ൌ ඨቆ
|െ2 ൈ 10ଷ|

0.0075
൅

|െ15 ൈ 10ଷ|

1.3265 ൈ 10ିସ
ቇ
ଶ

൅ 4ቆ0.859 ∙
െ10 ൈ 10ଷ

1.2251 ൈ 10ିସ
ቇ
ଶ

ൌ 180.31 МPа. 

 

The overstress is 
 

∆𝜎 % ൌ
𝜎௘௤ ஼
୍୍୍ െ ሾ𝜎ሿ

ሾ𝜎ሿ
∙ 100 % ൌ

180.31 െ 180
180

∙ 100 % ൌ 0.17 % ൏ 5 %. 
 

Thus, the strength of the cranked bar is ensured. 
 

For the critical cross-section, we construct the diagram of normal stress distribu-
tion and show the position of the cross-section neutral axis. 

Let us determine the normal stresses at the corner points of the cross-section, hav-
ing calculated in advance the stress contributions from each of the internal loads 𝑁௫, 
𝑀௬, and 𝑀௭: 

 

|𝜎௫ሺ𝑁௫ሻ| ൌ
𝑁௫
𝐹
ൌ

2 ൈ 10ଷ

0.0075
ൌ 0.27 МPа; 

 

ห𝜎௫ ௠௔௫൫𝑀௬ ൯ห ൌ
𝑀௬

𝑊௬
ൌ

15 ൈ 10ଷ

1.3265 ൈ 10ିସ
ൌ 113.08 МPа; 

 

|𝜎௫ ௠௔௫ሺ𝑀௭ሻ| ൌ
𝑀௭

𝑊௭
ൌ

1 ൈ 10ଷ

0.8839 ൈ 10ିସ
ൌ 11.31 МPа. 

Then 
 

𝜎௫ ஺ ൌ െ𝜎௫ሺ𝑁௫ሻ െ 𝜎௫ ௠௔௫൫𝑀௬ ൯ െ 𝜎௫ ௠௔௫ሺ𝑀௭ሻ ൌ െ0.27 െ 113.08 െ 11.31 ൌ 
 

    ൌ െ124.66 МPа; 
 

𝜎௫ ஽ ൌ െ𝜎௫ሺ𝑁௫ሻ െ 𝜎௫ ௠௔௫൫𝑀௬ ൯ ൅ 𝜎௫ ௠௔௫ሺ𝑀௭ሻ ൌ െ0.27 െ 113.08 ൅ 11.31 ൌ 
 

    ൌ െ102.04 МPа; 
 

𝜎௫ ஺ᇲ ൌ െ𝜎௫ሺ𝑁௫ሻ ൅ 𝜎௫ ௠௔௫൫𝑀௬ ൯ ൅ 𝜎௫ ௠௔௫ሺ𝑀௭ሻ ൌ െ0.27 ൅ 113.08 ൅ 11. ,31 ൌ 
 

     ൌ 124.12 МPа; 
 

𝜎௫ ஽ᇲ ൌ െ𝜎௫ሺ𝑁௫ሻ ൅ 𝜎௫ ௠௔௫൫𝑀௬ ൯ െ 𝜎௫ ௠௔௫ሺ𝑀௭ሻ ൌ െ0.27 ൅ 113.08 െ 11.31 ൌ 
 

     ൌ 101.50 МPа. 
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Let us draw the rectangular 
cross-section to scale according 
to the obtained dimensions 
(𝑏 ൌ 0.0707 m, ℎ ൌ 0.1061 m) 
and construct the normal stress 
diagram (Fig. 14). 

 

To determine the neutral 
axis position, we connect the in-
tersection points of the diagram 
with the cross-sectional plane (E 
and F) with a straight line. 

Fig. 14 

 
7. We determine the diameter of the circular cross-section. 
 

 

Since all axes passing 
through the circular cross-sec-
tion's centroid are its principal 
central axes of 
inertia, the bending should be 
considered in the plane of the 
total bending moment 

𝑀bending ൌ ඥ𝑀௬
ଶ ൅ 𝑀௭

ଶ, which 

determines the position of the 
points with the maximum 
bending normal stresses 
(points A and B) (Fig. 15). 

Fig. 15 
 

Due to the compressive normal stresses caused by the axial force 𝑁௫, the maxi-
mum value of the normal stress occurs at point A, where the stresses from the axial 
force and the bending moment are additive. At the same time, this point is also the 
location of maximum shear stresses due to torsion, since it lies on the circumference of 
the cross-section. 

 

Thus, point A is the only critical point of the circular cross-section. 
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Since the stress state at the considered point is plane, the strength analysis must 
be performed according to one of the strength theories (the third or the fourth) (Fig. 16). 

 

 
Fig. 16 

 

Using the third strength theory, we write the strength condition: 
 

𝜎௘௤ ஺
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨቆ

|𝑁௫|

𝐹
൅
ห𝑀bendingห

𝑊n.ax.
ቇ

ଶ

൅ 4ቆ
𝑀௫

𝑊ఘ
ቇ
ଶ

൑ ሾ𝜎ሿ, 

 

where 𝑀bending ൌ ඥ𝑀௬
ଶ ൅ 𝑀௭

ଶ is the total bending moment; 
 

𝐹 ൌ
𝜋𝑑ଶ

4
   is the cross-sectional area; 

 

𝑊୬.ୟ୶. ൌ
𝜋𝑑ଷ

32
   is the section modulus relative to the neutral axis; 

 

𝑊ఘ ൌ
𝜋𝑑ଷ

16
ൌ 2𝑊୬.ୟ୶.   is the polar moment of inertia. 

 

In the first approximation, to determine the diameter 𝑑, we write the strength con-
dition without taking into account the effect of the axial force 𝑁௫ 

 

𝜎௘௤ಲ
୍୍୍ ൌ ඨ൬

𝑀bending

𝑊୬.ୟ୶.
൰
ଶ

൅ 4ቆ
𝑀௫

𝑊ఘ
ቇ
ଶ

ൌ ඨ
𝑀bending
ଶ

𝑊୬.ୟ୶.
ଶ ൅

𝑀௫
ଶ

𝑊୬.ୟ୶.
ଶ ൌ

ට𝑀bending
ଶ ൅ 𝑀௫

ଶ

𝑊୬.ୟ୶.
൑ ሾ𝜎ሿ. 

 

We denote: 
 

𝑀design
୍୍୍ ൌ ට𝑀bending

ଶ ൅ 𝑀௫
ଶ ൌ ඥ𝑀௬

ଶ ൅ 𝑀௭
ଶ ൅ 𝑀௫

ଶ ൌ √15ଶ ൅ 1ଶ ൅ 10ଶ ൌ 18.055 kN·m, 
 

where   𝑀design
୍୍୍  is the design moment determined according to the third strength theory. 

 

Then the condition of strength takes the form: 
 

𝜎௘௤ಲ
୍୍୍ ൌ

𝑀design
୍୍୍

𝑊୬.ୟ୶.
ൌ

32𝑀design
୍୍୍

𝜋𝑑ଷ
൑ ሾ𝜎ሿ, 

from which 

𝑑୍୍୍ ൒ ඨ
32𝑀design

୍୍୍

𝜋ሾ𝜎ሿ

ଷ
ൌ ඨ

32 ∙ 18.055 ൈ 10ଷ

𝜋 ∙ 180 ൈ 10଺
ଷ

ൌ 0.1007 m. 
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Let us determine the actual design stresses in the critical point taking into account 
the action of the axial force 𝑁௫: 

 

𝑀bending ൌ ට𝑀௬
ଶ ൅ 𝑀௭

ଶ ൌ ඥ15ଶ ൅ 1ଶ ൌ 15.033 kN·m; 

 

𝐹 ൌ
𝜋𝑑ଶ

4
ൌ
𝜋 ∙ 0.1007ଶ

4
ൌ 7.964 ൈ 10ିଷ mଶ; 

 

𝑊୬.ୟ୶. ൌ
𝜋𝑑ଷ

32
ൌ
𝜋 ∙ 0.1007ଷ

32
ൌ 1.0025 ൈ 10ିସ mଷ; 

 

𝑊ఘ ൌ
𝜋𝑑ଷ

16
ൌ 2𝑊n.ax. ൌ

𝜋 ∙ 0.1007ଷ

16
ൌ 2.005 ൈ 10ିସ mଷ; 

 

𝜎௘௤ ஺
୍୍୍ ൌ ඥ𝜎ଶ ൅ 4𝜏ଶ ൌ ඨቆ

|𝑁௫|

𝐹
൅
ห𝑀bendingห

𝑊୬.ୟ୶.
ቇ

ଶ

൅ 4ቆ
𝑀௫

𝑊ఘ
ቇ
ଶ

ൌ 

 

ൌ ඨቆ
|െ2 ൈ 10ଷ|

7.964 ൈ 10ିଷ
൅

|െ15.033 ൈ 10ଷ|

1.0025 ൈ 10ିସ
ቇ
ଶ

൅ 4ቆ
െ10 ൈ 10ଷ

2.005 ൈ 10ିସ
ቇ
ଶ

ൌ 180.31 МPа. 

 

The overstress is: 
 

∆𝜎 % ൌ
𝜎௘௤ ஺
୍୍୍ െ ሾ𝜎ሿ

ሾ𝜎ሿ
∙ 100 % ൌ

180.31 െ 180
180

∙ 100 % ൌ 0.17 % ൏ 5 %. 
 

Thus, the strength of the cranked bar is ensured. 
 

Let us determine the diameter of the section using the fourth strength theory: 
 

𝑀design
୍୚ ൌ ට𝑀bending

ଶ ൅ 0.75 ∙ 𝑀௫
ଶ ൌ ට𝑀௬

ଶ ൅ 𝑀௭
ଶ ൅ 0.75 ∙ 𝑀௫

ଶ ൌ 
 

ൌ ඥ15ଶ ൅ 1ଶ ൅ 0.75 ∙ 10ଶ ൌ 17.349 kN·m; 
 

𝑑୍୚ ൒ ඨ
32𝑀design

୍୚

𝜋ሾ𝜎ሿ

ଷ
ൌ ඨ

32 ∙ 17.349 ൈ 10ଷ

𝜋 ∙ 180 ൈ 10଺
ଷ

ൌ 0.0994 m. 

 

8. Let us compare the weight of bars with rectangular and circular cross-sections: 
 

𝐺

𝐺�
ൌ
𝐹

𝐹�
ൌ

7.964 ∙ 10ିଷ

0.0075
ൌ 1.062. 

 

Thus, for the given combination of internal forces and moments and the rectangle 
aspect ratio 𝑘 ൌ ℎ 𝑏⁄ ൌ 1.5, it is more beneficial to use a rectangular cross-section to 
reduce the weight of the structure. 

At the same time, the largest overall dimension of the rectangular cross-section 
exceeds the diameter of the circular one: ℎ ൌ 0.1061 m ൐ 𝑑 ൌ 0.1007 m.  
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PROBLEM VARIANTS 
 

Figure 1 (Table 1) Figure 2 (Table 1) 

  

Figure 3 (Table 1) Figure 4 (Table 1) 

  

Figure 5 (Table 1) Figure 6 (Table 5) 

  

Figure 7 (Table 6) Figure 8 (Table 5) 
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Figure 9 (Table 1) Figure 10 (Table 1) 

  

Figure 11 (Table 1) Figure 12 (Table 1) 

  

Figure 13 (Table 2) Figure 14 (Table 2) 

  

Figure 15 (Table 2) Figure 16 (Table 2) 
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Figure 17 (Table 2) Figure 18 (Table 5) 

  

Figure 19 (Table 2) Figure 20 (Table 5) 

  

Figure 21 (Table 3) Figure 22 (Table 3) 

  

Figure 23 (Table 3) Figure 24 (Table 3) 
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Figure 25 (Table 3) Figure 26 (Table 3) 

  

Figure 27 (Table 4) Figure 28 (Table 4) 

  

Figure 29 (Table 4) Figure 30 (Table 4) 

  

Figure 31 (Table 4) Figure 32 (Table 2) 
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Figure 33 (Table 4) Figure 34 (Table 4) 

  

Figure 35 (Table 4) Figure 36 (Table 4) 

  

Figure 37 (Table 6) Figure 38 (Table 6) 

  

Figure 39 (Table 6) Figure 40 (Table 6) 
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Figure 41 (Table 6) Figure 42 (Table 6) 

  

Figure 43 (Table 6) Figure 44 (Table 6) 

  

Figure 45 (Table 6) Figure 46 (Table 6) 

  

Figure 47 (Table 6) Figure 48 (Table 6) 
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Figure 49 (Table 8) Figure 50 (Table 8) 

  

Figure 51 (Table 8) Figure 52 (Table 8) 

  

Figure 53 (Table 7) Figure 54 (Table 7) 

  

Figure 55 (Table 7) Figure 56 (Table 8) 
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Table 1 
 

Variant 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝑎, m 0.5 0.8 0.5 0.8 0.5 0.2 1 1.2 0.5 0.8 0.8 1 1 1.1 0.4 0.6 1.5 0.4 1 1.2 

𝑏, m 0.5 0.4 1 0.8 0.5 1.2 1.5 1.2 1.5 1.5 1.5 1.2 1.5 1.2 1 0.8 1 1.2 1.5 1.2 

𝑐, m 1.5 1.2 1.5 1.2 1 0.3 0.5 0.4 1 0.9 1 1.2 1.5 1.2 0.5 0.4 0.5 0.4 0.5 0.4 

𝑙, m 1.5 1.2 1.5 1.2 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 0.5 0.4 0.5 0.4 0.5 0.4 

𝑃, kN 10 5 20 10 10 5 10 12 8 5 4 5 6 5 20 10 5 8 12 8 

𝑞, kN/m 5 10 5 4 10 20 8 4 10 25 6 8 5 4 10 15 10 10 8 12 
 

Table 2 
 

Variant 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝑎, m 0.5 0.5 0.5 1 0.5 0.5 1 1.5 0.5 1.5 0.5 1 1.5 0.5 1 1.5 0.5 0.5 0.5 0.5 

𝑏, m 0.5 0.5 1 1 0.5 1.5 1.5 1.5 1.5 1.2 1.5 1.5 1.5 1 1 1.5 0.5 0.5 0.5 0.5 

𝑐, m 1.5 1.5 1.5 1.5 1 1 1.5 1.5 1 1.5 1.5 1.5 1.5 0.7 1.2 2 1 1.5 1.5 1.5 

𝑙, m 1.5 1.5 2 1.5 1 1 1 0.5 1.5 1 1 1 1 0.5 0.5 2 1.5 0.5 1 1.5 

𝑃, kN 10 5 10 10 10 5 10 12 8 5 4 5 6 5 20 10 5 8 10 8 

𝑀, kN·m 10 15 20 30 10 15 20 30 10 15 20 30 10 15 20 30 10 15 20 30 

𝑞, kN/m 5 10 5 4 10 10 8 4 10 10 6 8 5 4 10 10 10 10 8 12 
 

Table 3 
 

Variant 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝑎, m 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1 1 0.5 0.5 0.5 0.5 0.5 1 1.5 1.5 

𝑏, m 1.5 1.5 1.5 1.5 1 1 1 1 1 0.5 1.5 1 1.5 1 0.5 0.5 1 1.6 0.5 0.5 

𝑐, m 0.5 0.5 1 1 0.5 0.5 1 1 1 1 1 0.5 1 1 1 1.5 1.5 1.5 0.5 1 

𝑙, m 0.5 1 0.5 1 0.5 0.8 0.5 0.8 0.5 0.4 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 

𝑃, kN 5 10 5 4 10 10 8 4 10 10 6 8 5 4 10 10 10 10 8 12 

𝑀, kN·m 10 15 20 30 10 15 20 30 10 15 20 25 30 10 15 20 25 30 10 15 

𝑞, kN/m 10 5 20 10 10 5 10 12 8 5 4 5 6 5 20 10 5 8 10 8 
 

Table 4 
 

Variant 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝑎, m 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1 1 0.5 0.5 0.5 0.5 0.5 1 1.5 1.5 

𝑏, m 1.8 1.5 1.5 1.5 1 1 1 1 0.5 0.5 1.5 1 1.5 1 0.5 0.5 1 1 0.5 0.5 

𝑐, m 0.5 0.5 1 1 0.5 0.5 1 1 1 1 1 0.5 1 1 1 1.5 1.5 1.5 0.5 1 

𝑙, m 0.5 1 0.5 1 0.5 0.8 0.5 0.8 0.5 0.4 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 

𝑃, kN 10 5 10 10 10 5 10 12 8 5 4 5 6 5 20 10 5 8 10 8 

𝑞, kN/m 5 10 5 4 10 10 8 4 10 10 8 8 5 4 10 10 10 10 8 12 
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Table 5 
 

Variant 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝑎, m 1 1 1 0.5 0.5 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5 1 1.5 1.5 1.5 1.5 0.5 

𝑏, m 1.5 1 1.5 1 0.5 0.5 1 1 1 1.5 1 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5 

𝑐, m 0.5 0.5 1 1 1 1.5 1.5 1.5 0.6 1 1 1 1.5 1.5 1.5 0.5 1 1 0.5 1 

𝑙, m 1 1 1 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1 1 0.5 

𝑃, kN 10 5 20 10 10 5 10 12 8 5 4 5 5 5 20 10 5 8 10 8 

𝑀, kN·m 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 

𝑞, kN/m 5 10 5 4 10 10 8 4 10 10 6 8 5 4 10 10 10 10 8 12 
 

Table 6 
 

Variant 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝑎, m 1 1 1 0.5 0.5 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5 1 1.5 1.5 1.5 1.5 0.5 

𝑏, m 1.5 1 1.5 1 0.5 0.5 1 1 1 1.5 1 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5 

𝑐, m 0.5 0.5 1 1 1 1.5 1.5 1.5 0.5 1 1 1 1.5 1.5 1.5 0.5 1 1 0.5 1 

𝑙, m 1 1 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1 1 0.5 

𝑃, kN 10 5 12 10 10 5 10 12 8 5 4 5 6 5 20 10 5 8 10 8 

𝑞, kN/m 5 10 5 4 10 10 8 4 10 10 6 8 5 4 10 10 10 10 8 12 
 

Table 7 
 

Variant 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝑎, m 0.5 0.5 0.5 1.5 0.5 0.5 1 1 1.5 1 1 0.5 0.5 1 1.5 1 1 1.5 0.5 0.5 

𝑏, m 0.5 0.5 1 1 1.5 1 0.5 0.5 1 0.5 1 1.5 1 1 0.5 1.5 1 0.5 0.5 1 

𝑐, m 1 0.5 1 1 0.5 0.5 0.5 1 0.5 0.5 0.5 1 1.5 1.5 0.5 0.5 0.5 0.5 1 1.5 

𝑙, m 1 1 2 2 1.8 1 2 2 2 1.5 1.5 1 1.5 1.5 2 1.5 1.5 2 1.5 1.5 

𝑃, kN 10 5 12 10 10 5 10 12 8 5 6 5 20 10 5 8 5 8 10 8 

𝑞, kN/m 5 10 5 4 10 10 8 4 10 10 6 8 5 4 10 10 10 10 8 12 
 

Table 8 
 

Variant 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝑎, m 0.5 0.5 0.5 1.5 0.5 0.5 1 1 1.5 1 1 0.5 0.5 1 1.5 1 1 1.5 0.5 0.5 

𝑏, m 0.5 0.5 1 1 1.5 1 0.5 0.5 1 0.5 1 1.5 1 1 0.5 1.5 1 0.5 0.5 1 

𝑐, m 1 0.5 1 1 0.5 0.5 0.5 1 0.5 0.5 0.5 1 1.5 1.5 0.5 0.5 0.5 0.5 1 1.5 

𝑙, m 1 1 2 2 1.8 1 2 2 2 1.5 1.5 1 1.5 1.5 2 1.5 1.5 2 1.5 1.5 

𝑃, kN 10 5 12 10 10 5 10 12 8 5 4 5 6 5 20 10 5 8 10 8 

𝑀, kN·m 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 

𝑞, kN/m 5 10 5 4 10 10 8 4 10 10 6 8 5 4 10 10 10 10 8 12 
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Appendix 

TORSION OF A BAR WITH A RECTANGULAR  
CROSS-SECTION 

 

 

At the middle of the long sides: 

𝜏௠௔௫ ൌ 𝜏஻ ൌ 𝜏஻ᇲ ൌ
𝑀torsional

𝑊torsional
. 

 

At the middle of the short sides: 
 

𝜏௠௔௫ᇱ ൌ 𝜏஼ ൌ 𝜏஼ᇲ ൌ 𝛾𝜏௠௔௫. 
 

At the corner points and at the center: 
 

𝜏஺ ൌ 𝜏஺ᇲ ൌ 𝜏஽ ൌ 𝜏஽ᇲ ൌ 𝜏ை ൌ 0. 
 

Twisting angle: 

𝜑 ൌ
𝑀torsional𝑙
𝐺𝐼torsional

. 
Fig. A.1 

 

𝑊torsional ൌ 𝛼ℎ𝑏ଶ;               𝐼torsional ൌ 𝛽ℎ𝑏ଷ, 
 

where  𝑀torsional is a torsional moment acting in the cross-section; 
𝑊torsional is torsional section modulus of the rectangular cross-section; 
𝐼torsional is torsional moment of inertia of the rectangular cross-section; 
𝐺𝐼torsional is torsional stiffness of the rectangular cross-section; 
𝛼, 𝛽, 𝛾 are coefficients depending on the rectangle aspect ratio 𝑘 ൌ ℎ 𝑏⁄ . 

 

𝒌 ൌ
𝒉
𝒃

 𝜶 𝜷 𝜸 

1,0 0,208 0,141 1,000 
1,2 0,219 0,166 0,935 
1,25 0,221 0,172 0,910 
1,5 0,231 0,196 0,859 
1,75 0,239 0,214 0,820 
2,0 0,246 0,229 0,795 
2,5 0,258 0,249 0,766 
3,0 0,267 0,263 0,753 
4,0 0,282 0,281 0,745 
5,0 0,291 0,291 0,744 
6,0 0,299 0,299 0,743 
8,0 0,307 0,307 0,742 
10,0 0,313 0,313 0,742 

> 10,0 0,333 0,333 0,742 
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