Study on potential application of brightness temperature models in passive remote sensing
View/ Open
Date
2024Author
Nezhalskaya, K.
Volosyuk, V.
Bilousov, K.
Kolesnikov, D.
Cherepnin, G.
Metadata
Show full item recordAbstract
In the modern science and practice of remote sensing of any surface, including various types of land cover, radio systems are widely used. Due to low energy consumption and high stealth, the most promising direction of technical tools for remote sensing is the development of passive remote sensing systems. To estimate the specific parameters of the surface, information on the relation between the signals of the thermal radiation and these parameters is needed. Therefore, it is relevant to study and analyze the existing types of such relations that connect the brightness temperature and the parameters of the Earth’s surfaces; this is the subject matter of the study in this paper. The goal of this study is to analyze existing relation models and study the conditions of their application in terms of operating frequencies, geometric characteristics, type of surface coverage (with vegetation, without vegetation, etc.), as well as the method of obtaining mathematical relations (electrodynamic models or empirical models). Due to the large number of different types of earth surface coverings and different types of surface models, in order to simplify remote sensing tasks for passive systems, as well as to improve the results of modeling or experiments, the following tasks are formulated: to study and classify existing models of the relation between surface parameters and brightness temperature, and to calculate and analyze the potential ac-curacy of estimating surface parameters by passive remote sensing systems. The following results were obtained: the impact of the atmosphere on the surface’s brightness temperature, described by the electrodynamic flat model, for the operating frequencies 75–110 GHz of the radiometer was analyzed. The impact of the atmosphere on the brightness temperature appears at sighting angles greater than 50° at horizontal polarization and greater than 80° at vertical polarization. According to the results, it can be said that the estimation accuracy of the imaginary part of the complex permittivity decreases with an operating wavelength decrease, and the estimation accuracy of the real part is the opposite. Conclusions. The results of simulation modeling show that for radiometers with the above-mentioned operating frequencies, it is possible to estimate the real permittivity or only the real component separately in the case of describing the surface with a complex permittivity parameter. It is recommended that the study be conducted at vertical and horizontal polarizations, without and with the impact of the atmosphere. To estimate the surface conductivity (the imaginary part of the complex permittivity of a surface), systems with lower operating frequencies are required. Thus, this study presents an analysis of existing models, calculates the potential accuracy of parameters estimation when using these models, and provides recommendations for practical experiments or modeling. У сучасній науці та практиці для дистанційного дослідження будь-яких поверхонь, в тому числі й різних типів покривів земної поверхні, широко використовують радіотехнічні засоби. Завдяки малим енергетичним затратам та великій скритності найбільш перспективним напрямком розвитку технічних засобів для дистанційних досліджень є розвиток пасивних систем дистанційного зондування. При цьому для оцінювання конкретних параметрів досліджуваної поверхні необхідна інформація щодо зв’язку сигналів власного теплового випромінювання, які приймаються радіометричною системою, з цими параметрами. Саме тому актуальним є дослідження та аналіз існуючих типів таких зв’язків, моделей поверхонь, які пов’язують яскравісну температуру та параметри земних площин, що і є предметом дослідження в представленій роботі. Метою роботи є аналіз існуючих моделей зв’язку, вивчення умов їх застосування за робочими частотами, за геометричними характеристиками, за типом покриття поверхонь (з рослинністю, без рослинності і т.і.), а також за способом отримання математичних зв’язків (електродинамічні моделі або емпіричні моделі). У зв’язку з великою кількістю різних типів покриттів земної поверхні та різних типів моделей поверхонь, для спрощення вирішення задачі дистанційного зондування пасивними системами, а також покращення результатів виконання моделювання або реальних експериментів, в даній роботі сформульоване таке завдання: вивчення та класифікація існуючих моделей зв’язку параметрів поверхонь з яскравісною температурою, розрахунок та аналіз потенційної точності оцінювання параметрів поверхні досліджуваної пасивними засобами дистанційного зондування. Отримані такі результати. Проаналізовано вплив атмосфери на яскравісну температуру поверхні, що описана електродинамічною плоскою моделлю, для робочих частот радіометра 75-110 ГГц. Вплив атмосфери на яскравісну температуру з’являється при кутах візування більших за 50о на горизонтальній поляризації та кутах більших за 80о на вертикальній поляризації. За результатами дослідження потенційної точності оцінювання можна сказати, що точність оцінювання уявної частини комплекс-ної діелектричної проникності зменшується при зменшенні довжини робочої хвилі, а точність оцінок дійсної частини комплексної діелектричної проникності – навпаки. Висновки. У результаті імітаційного моделювання показано, що для радіометрів із вказаними вище робочими частотами можливе оцінювання дійсної діелектричної проникності або окремо тільки дійсної компоненти у випадку опису поверхні комплексним параметром проникності. Дослідження рекомендується проводити на вертикальній та горизонтальній поляризаціях, без урахування та з урахуванням впливу атмосфери. Для оцінки провідності поверхні (уявної частини комплексної діелектричної проникності поверхні) необхідні пристрої з меншими робочими частотами. Таким чином, в роботі представлений аналіз існуючих моделей, виконані розрахунки потенційної точності оцінювання параметрів при використанні цих моделей, надано рекомендації до проведення практичних експериментів або моделювання.