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DETERMINANTS 

 

• Definition and basic properties. 

 

Let us consider the system of two linear algebraic equations in two 

variables  

⎩
⎨
⎧

=+

=+

.

,

22221

11211

byaxa

byaxa
 

 

Using the method of substitution we can write the solution of this system 

 

21122211

122221

aaaa

abab
x

−

−

=  and 
21122211

211112

aaaa

abab
y

−

−

= . 

 

The numbers that are in numerator and denominator are often written as 

 

2221

1211

21122211
aa

aa

aaaa =− , 
222

121

122221
ab

ab
abab =− , 

221

111

211112
ba

ba
abab =− . 

 

The number 
21122211

2221

1211
aaaa

aa

aa

−=  is called the determinant of the second 

order. 

 

 Analogously, let us consider the system of three linear algebraic equations 

in three variables 

⎪
⎩

⎪
⎨

⎧

=++

=++

=++

.

,

,

3333231

2232221

1131211

bzayaxa

bzayaxa

bzayaxa

. 

 

Using the method of substitution we can write the solution of this system 

 

322311332112312213322113312312332211

322313321232213322133231233221

aaaaaaaaaaaaaaaaaa

aabababaaababaaaab
x

−−−++

−−−++

= ; 

 

322311332112312213322113312312332211

323113321131213321133123133211

aaaaaaaaaaaaaaaaaa

baaaabababaaaababa
y

−−−++

−−−++

= ; 
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322311332112312213322113312312332211

322113211231221322113121232211

aaaaaaaaaaaaaaaaaa

ababaaaabaabababaa
z

−−−++

−−−++

= . 

 

The numbers that are in numerator and denominator are often written as 

 

,

333231

232221

131211

322311

332112312213322113312312332211

aaa

aaa

aaa

aaa

aaaaaaaaaaaaaaa

=−

−−−++

 

 

33323

23222

13121

322313321232213322133231233221

aab

aab

aab

aabababaaababaaaab =−−−++

33331

23221

13111

323113321131213321133123133211

aba

aba

aba

baaaabababaaaababa =−−−++

33231

22221

11211

322113211231221322113121232211

baa

baa

baa

ababaaaabaabababaa =−−−++

 

The number 

 

333231

232221

131211

322311

332112312213322113312312332211

aaa

aaa

aaa

aaa

aaaaaaaaaaaaaaa

=−

−−−++

 

 

is called the determinant of the third order. 

 

It easily can be proved that 

 

 
3231

2221

13

3331

2321

12

3332

2322

11

333231

232221

131211

aa

aa
a

aa

aa
a

aa

aa
a

aaa

aaa

aaa

+−= ,  
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which is called the decomposition by the first row. Note that the signs in this 

decomposition are alternating. Now we can give the inductive definition to the 

determinant of any order. 

1. 
21122211

2221

1211

2
aaaa

aa

aa

−==∆ . 

 

2.  

( ) .1...

121

123231

122221

1

31

33331

22321

12

32

33332

22322

11

21

22221

11211

−

−

−

−++−

−==∆

nnnn

n

n

n

n

nnnn

n

n

nnnn

n

n

nnnn

n

n

n

aaa

aaa

aaa

a

aaa

aaa

aaa

a

aaa

aaa

aaa

a

aaa

aaa

aaa

L

MOMM

L

L

L

MOMM

L

L

L

MOMM

L

L

L

MOMM

L

L

 

 

Thus, the determinants of the n
th
 order are expressed in the terms of the 

determinants of the ( )thn 1−  order. 

 

 The properties of the determinants are as follows.  

1. If all rows are substituted for all columns the determinant stays the same. 

This operation is called transposition: 

 

nnnn

n

n

nnnn

n

n

aaa

aaa

aaa

aaa

aaa

aaa

L

MOMM

L

L

L

MOMM

L

L

21

22212

12111

21

22221

11211

= . 

 

It follows from this property that every statement that is true for rows is 

also true for columns. 

2. If one of the rows consists only of zeros then the determinant is equal to 

zero. 

3. If a determinant is obtained from another by interchanging two rows then 

the determinants are distinguished by the sign. 
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nnn

ini

jnj

n

nnn

jnj

ini

n

aa

aa

aa

aa

aa

aa

aa

aa

LLLLL

MMMMMMM

LLLLL

MMMMMMM

LLLLL

MMMMMMM

LLLLL

LLLLL

MMMMMMM

LLLLL

MMMMMMM

LLLLL

MMMMMMM

LLLLL

1

1

1

111

1

1

1

111

−= . 

 

4. If a determinant contains two equal rows then it is equal to zero. 

5. If all entries are multiplied by a number k then the determinant also 

multiplies by k: 

 

nnn

ini

n

nnn

ini

n

aa

aa

aa

k

aa

kaka

aa

LLL

MMMMM

LLL

MMMMM

LLL

LLL

MMMMM

LLL

MMMMM

LLL

1

1

111

1

1

111

= . 

 

6. If two rows of a determinant are proportional then the determinant is equal 

to zero. 

7. If all entries of a row of a determinant can be represented as 

njcba jjij ,1, =+=  then the determinant can be represented as a sum of 

two determinants: 

 

nnn

n

n

nnn

n

n

nnn

nn

n

aa

cc

aa

aa

bb

aa

aa

cbcb

aa

LL

MMMM

LL

MMMM

LL

LL

MMMM

LL

MMMM

LL

LL

MMMM

LL

MMMM

LL

1

1

111

1

1

111

1

11

111

+=++

 

8. If a row in a determinant is a linear combination of other rows then the 

determinant is equal to zero. 

9. A determinant stays the same if we multiply all entries of a row by the 

same number and add them to the entries of another row. 
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All of these properties can be proved using the principle of mathematical 

induction. For instance let us prove the second property.  

Let us consider the determinant of the second order 
ba

00
. By the 

definition it is equal to zero in the same way as 
00

ba
. Let us assume that this 

property is true for all determinants of the order less than n. Then, we consider the 

determinant  

nnnn

n

n

aaa

aaa

aaa

L

MOMM

L

L

21

22221

11211

. 

By the definition  

( ) .1...

121

123231

122221

1

1

31

33331

22321

12

32

33332

22322

11

21

22221

11211

−

−

−

−

−++

+−=

nnnn

n

n

n

n

nnnn

n

n

nnnn

n

n

nnnn

n

n

aaa

aaa

aaa

a

aaa

aaa

aaa

a

aaa

aaa

aaa

a

aaa

aaa

aaa

L

MOMM

L

L

L

MOMM

L

L

L

MOMM

L

L

L

MOMM

L

L

 

 

There are two possible variants:  

1) if the entries of the first row are equal to zero, then in the right-hand side all 

coefficients before the determinants are equal to zero. Consequently, the 

determinant in the left-hand side is also equal to zero.  

2) if the entries of another row are equal to zero, then all determinants in right-

hand side contain the row which entries are equal to zero. Finally, since by 

the induction hypothesis, all of them are equal to zero. Consequently, the 

determinant in the left-hand side is also equal to zero.  

Thus, the property is proved. 

Note that it follows from the properties of determinants that the definition 

of it can be given as a decomposition by any row or column. 

 

Example 1: find 
ϕϕ

ϕϕ

cossin

sincos −

. 
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 Solution: ( ) 1sincossincos
cossin

sincos
2222

=+=−−=

−

ϕϕϕϕ
ϕϕ

ϕϕ
. 

 

 Example 2: find 
2

2

2

1

1

1

cc

bb

aa

. 

Solution:  

 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )( ).

1

1

1

1
1

1

1

1

22

2222222

2

2

2

2

2

2

2

bcacababaabcbc

aabacbcbcbcabcbcabcbc

bacaabaccbbc
c

b
a

c

b
a

cc

bb

cc

bb

aa

−−−=−−−−=

=+−−−=−++−−−=

=−++−−=+−=

 

 

• Systems of n linear algebraic equations in n variables. Cramer's rule. 

 

In the first paragraphs it was shown that the solution of the systems of two 

and three equations in two and three variables is represented as the quotient of 

determinants. Now we will generalize this to the general case. 

Let us consider the system of n linear algebraic equations in n variables: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=+++

=+++

=+++

....

,

,...

,...

2211

22222121

11212111

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

LLLLLLLLLLLLL

 (*)

The system is called consistent, if there exists a set of values of variables, 

which satisfies every equation in the system.  

The system is called determined, if there exists a unique set of values of 

variables, which satisfies every equation in the system.  

The determinant formed with the coefficients of this system is called the 

determinant of the system 

 

nnn

n

aa

aa

L

MOM

L

1

111

=∆ . 

 



 10

 The determinant of the system, in which the i
th

 column is substituted by the 

column of right-hand values, is called the determinant of the i
th
 variable: 

nnnn

n

i

aba

aba

LL

MMMMM

LL

1

1111

=∆ . 

 

 Now we can formulate the Cramer's rule.  

1. If 0:,0 ≠∆∃=∆
i

i  then the system (*) is inconsistent. 

2. If ni
i

,1,0,0 ==∆=∆  then the system (*) is consistent, but undefined. 

3. If 0≠∆  then the system (*) is defined and nix
i

i
,1, =

∆

∆
= . 

 

Example 3: solve the system 

 

⎪
⎩

⎪
⎨

⎧

=−+

=−+

=−+

.7

,13

,36

xzy

yzx

zyx

 

 

 Solution: let us find the determinant of the system. Note that in the first 

column formed by the coefficients before x, second by the coefficients before y, 

third by the coefficients before z: 

 

( ) 4022
11

11
1

11

11
1

11

11
1

111

111

111

−=+−−=
−

−
−+

−
−

−
=

−

−

−

=∆ . 

 

Then, let us find the determinants of the variables: 

 

9820672
17

113
1

17

113
1

11

11
36

117

1113

1136

−=−−−=
−

−−
−

=−

−

=∆
x

, 

 

8620726
17

113
1

11

11
36

17

113
1

171

1131

1361

−=−−=
−

+
−

−=

−

−

=∆
y

, 
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4002020
11

11
36

71

131
1

71

131
1

711

1311

3611

−=+−−=
−

−
+

−
−

−
=

−

−=∆
z

. 

 

Thus, the system is determined and 

 

2

49

4

98
=

−

−
=

∆

∆
=

xx , 
2

43

4

86
=

−

−
=

∆

∆
=

y
y , 10

4

40
=

−

−
=

∆

∆
=

z

z . 

 

Example 4: solve the system 

⎪
⎩

⎪
⎨

⎧

=−−

−=++

−=+−

.323

,132

,22

zyx

zyx

zyx

 

 

 Solution: at first let us find the determinant of the system: 

 

( ) 05510
31

21
1

21

31
1

23

32
2

231

321

112

=−−=
−

+
−

−−
−−

=

−−

−

=∆ . 

 

Then, let us find the determinants of the variables. 

 

239410
33

21
1

13

11
1

13

12
2

133

121

112

−=−−−=
−

−
−

−
+

−
−=

−

−

−−−

=∆
x

, 

 

( ) 2641022
31

11
1

21

31
2

23

31
2

231

311

122

=+−=
−

+
−

−−
−

−
=

−

−

−

=∆
y

, 

 

( ) 410418
31

21
2

31

11
1

33

12
2

331

121

212

=−−=
−

−
−

−−
−

−
=

−

−

−−

=∆
z

. 

 

Since, 0,,,0 ≠∆∆∆=∆
zyx

 the system is inconsistent. 
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• 

• 

Q 

P 

PQ  

VECTOR ALGEBRA 

 

• Vectors and vector operations. 

 

Many quantities in geometry and physics, such as area, time, and 

temperature, can be represented by a single real number. Other quantities, such as 

force, velocity, involve both magnitude and direction and cannot be completely 

characterized by a single real number. To represent such a quantity, we use a 

directed line segment, as shown in Fig. 1. The directed line segment PQ  has 

initial point P and terminal point Q, and we denote its length by PQ . 

 

 

 

 

 

 

 

Fig. 1 

 

 Two directed line segments that have the same length (or magnitude) and 

direction are called equivalent. For example, the directed line segments in Fig. 2 

are all equivalent. The set of all directed line segments that are equivalent to a 

given directed line segment PQ  is a vector a . And we write PQa = . Two 

vectors that have the same or opposite direction are called collinear. A vector 

with zero length is called zero vector 0
r

. Zero vector has not got direction. 

 

 

 

 

 

 

 

 

 

Fig. 2 

 

  The two basic vector operations are scalar multiplication and vector 

addition. We will usually use the term scalar to mean a real number. 

Geometrically, the product of a vector a
r

 and a scalar k is the collinear vector that 
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a  a
2

1  a2  a−  a
2

3
−  

a

r

 

b

r

 

ba

r

r

+  

is k  times as long as a
r

. If k is positive, then ak
r

 has the same direction as a
r

, and 

if k is negative, then ak
r

 has the opposite direction of a
r

, as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

Fig. 3 

 

 To add vectors geometrically, place them (without changing length or 

direction) so that initial point of one coincides with the terminal point of the other. 

The sum ba
r

r

+  is formed by joining the initial point of the first vector a
r

 with the 

terminal point of the second vector b
r

, as shown in Fig 4. Because the vector 

ba
r

r

+  is the diagonal of a parallelogram having a
r

 and b
r

 as its adjacent sides, we 

call this the parallelogram law for vector addition.  

 

 

 

 

 

 

 

Fig. 4 

 

 The negative of vector a
r

 is vector  aa
rr

)1(−=−  and the difference of a
r

 

and b
r

 is )( baba
r

r

r

r

−+=− . To represent graphically, we use directed line 

segments with the same initial points. The difference ba
r

r

−  is the vector from the 

terminal point of b
r

 to the terminal point of a
r

, as shown in Fig. 5. 

 

 

 

 

 

 

Fig. 5 

 

a

r

 

b
r

 

ba
r

r

−  
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 Vector addition and scalar multiplication share many of the properties of 

ordinary arithmetic. Here are some of them. Let a
r

, b
r

, and c
r

 be vectors and let α  

and β  be scalars. Then the following properties are true: 

1. abba
r

rr

r

+=+ . 

2. )()( cbacba
r

r

rr

r

r

++=++ . 

3. aa
r

r

r

=+ 0 . 

4. 0)(
r

rr

=−+ aa . 

5. aa
rr

)()( αββα = . 

6. aaa

rrr

βαβα +=+ )( . 

7. baba
r

r

r

r

ααα +=+ )( . 

8. aa

rr

=)1( , 0)0(
r

r

=a . 

9. aa

rr

αα = . 

In many applications of vectors, it is useful to find a unit vector that has the 

same direction as a given nonzero vector a
r

 and its length is equal to 1: 
a

a

e
r

r

r

= . 

We call e
r

 a unit vector in the direction of a
r

. 

 

Example 5: in a triangle ABC AB a

r

=  and AC b
r

= . Find the vector AD  

if it is a bisector of the angle A. 

 Solution: from the property of the bisector we know that 
AB

AC

BD

CD
= . But 

ACCDBD =+ , or in the vector form CD+ DB= AB AC− ba
r

r

−=  and 

CD ( )CDCB
AB

AC
−= . Thus ( )ba

ACAB

AC
CB

ACAB

AC
CD

r

r

−

+

=

+

= . Finally the 

vector AD  can be expressed as a sum of vectors AC  and CD: 

AD ( ) ( ) b

ba

a
a

ba

b

ba

ba

b

bba
ACAB

AC
b

r

r

r

r

r

r

r

r

r

r

r

r

r

rr

r

r

+

+

+

=−

+

+=−

+

+=  (Fig. 6). 

 

 

 

 

 

 

 

Fig. 6 

D

C  

B

A  
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• Linear independence of vectors. 

 

The linear combination of vectors { }
n

aa

rr

,...,
1

 with coefficients { }
n

αα ,...,
1

 

is called a vector of the form 

∑
=

=

n

i

ii
ab

1

r

r

α . 

 

A linear combination is called trivial, if all coefficients are equal to zero, and is 

called non trivial in the opposite case. Trivial linear combination of vectors is 

obviously equal to zero.  

 The system of vectors { }
n

aa

rr

,...,
1

 is called linear independent if the linear 

combination of them is equal to zero only if it is trivial. The system is called 

linear dependent in the opposite case.  

• The Cartesian coordinate system. 

 

Just as real numbers are represented by points on the real number line; 

ordered triple of real numbers is represented by points in space. This space is 

called a rectangular coordinate system or the Cartesian space. 

The Cartesian space is formed by three real number lines intersecting at 

right angles in one point called origin. The lines are called axes. 

Each point in the plane corresponds to an ordered triple of real numbers 

zyx ,, , which are called coordinates of a point. Each coordinate tells how far 

the point is from appropriate axis, as shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 

 

 Since a directed line segment is defined by its initial and terminal points, 

and these points are defined by coordinates, a vector can be defined by 

coordinates as well, by the following rule. Let the coordinates of the initial point 

P be 
111

,, zyx , and let the coordinates of the terminal point Q be 
222

,, zyx . 

Then if we subtract the coordinates of initial point from the coordinates of the 

• 

zyx ,,  

z 

x 

y 
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terminal point we obtain the coordinates of the vector defined by this directed line 

segment. This representation of a vector is called component form: 

 

121212
,, zzyyxxPQa −−−==

r

. 

  

 The unit vectors 0,0,1 , 0,1,0 , and 1,0,0  are called standard unit 

vectors and are denoted by 0,0,1=i
r

, 0,1,0=j
r

, and 1,0,0=k

r

 as shown in 

Fig. 8. 

 

 

 

 

 

 

 

 

 

 

Fig. 8 

 

 The operations of addition and scalar multiplication of vectors represented 

in component form are introduced as follows. Let 
321

,, aaaa =

r

, and 

321
,, bbbb =

r

, then 

332211
,, babababa +++=+

r

r

, 
321

,, kakakaak =

r

. 

 

 Thus, every vector 
321

,, aaaa =

r

 can be represented as 

kajaiaa
rrr

r

321
++= , or as a linear combination of standard unit vectors. 

 The length or magnitude of a vector 
321

,, aaaa =

r

 can be found using the 

Pythagorean Theorem  
2

3

2

2

2

1
aaaa ++=

r

. 

 

• Scalar product of two vectors. 

 

The scalar or dot product of two vectors denoted by ( )ba
r

r

,  or ba
r

r

 is a 

number, which is equal to the product of their lengths multiplied by the cosine of 

the angle between them: 

( ) ( )bababa
r

r

r

r

r

r

^cos, = . 

k

r

 

j
r

 

i
r

 
x 

z 

y 
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 The properties of scalar product are as follows: 

1. If ( ) 0, =ba
r

r

 and 0,0
rrr

r

≠≠ ba  then the vectors are perpendicular or 

orthogonal. 

2. ( ) ( )abba
r

rr

r

,, = .  

3. ( ) ( ) ( )bababaa
r

r

r

r

r

rr

,,,
2121

+=+ . 

4. ( ) ( )baba
r

r

r

r

,, λλ = . 

5. ( ) 0,
2
≥= aaa

rrr

, ( ) 0, =aa

rr

 if and only if 0
r

r

=a . 

 

From the definition it follows that ( ) ( ) ( ) 1,,, === kkjjii
rrrrrr

, 

( ) ( ) ( ) 0,,, === kikjji
rrrrrr

. So we can find the expression of scalar product in 

component form.  

Let 
321

,, aaaa =

r

, and 
321

,, bbbb =

r

, then  

( ) ( )kbjbibkajaiaba
rrrrrrr

r

321321
,, ++++= , 

 

removing brackets by the third property and using the orthogonality of standard 

unit vectors, we obtain 

 

( )
332211

, babababa ++=

r

r

. 

 

 Example 6: find the cosine of the angle between vectors qpa
rrr

−= 2  and 

qpb
rr

r

2+= , if 1== qp
rr

 and ( )
3

^
π

=qp
rr

. 

 Solution: from the definition of scalar product ( ) ( )
ba

ba
ba r

r

r

r

r

r ,
^cos = ; 

from the 3
rd

 and 4
th
 properties  

( ) ( ) ( ) ( ) ( ) ( )qqqppqppqpqpb,a
rrrrrrrrrrrr

r

r

,2,4,,22,2 −+−=+−= , 

 

and from the 2
nd

 and 5
th
 properties ( ) ( ) 22

2,32 qqppb,a
rrrr

r

r

−+= , 

( ) ( )qpqpqp
rrrrrr

^cos, = . 

Thus, ( ) ( )
2

3
2

2

1
322,32

22
=−+=−+= qqppb,a

rrrr

r

r

. Analogously  

( ) ( ) ( ) 31
2

1
44,442,2,

22
=+−=+−=−−== qqppqpqpaaa

rrrrrrrrrrr

, 

( ) ( ) ( ) 74
2

1
414,42,2,

22
=++=++=++== qqppqpqpbbb

rrrrrrrr

rrr

. 
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Hence, ( ) ( )
212

3

73

2

3

,
^cos ===

ba

ba
ba r

r

r

r

r

r

. 

 

 Example 7: find the cosine of the angle between vectors a
r

 and b
r

 if 

6,2,3 −=a
r

 and 1,2,2 −=b
r

. 

 

 Solution: from the definition of scalar product ( ) ( )
ba

ba
ba r

r

r

r

r

r ,
^cos = .  

( ) 4162223,
332211

−=⋅−⋅−⋅=++= babababa
r

r

; 

 

( ) 7493649,
2

3

2

2

2

1
==++=++== aaaaaa

rrr

; 

 

( ) 39144,
2

3

2

2

2

1
==++=++== bbbbbb

rrr

. 

Hence, ( ) ( )
21

4

37

4,
^cos −=

⋅

−

==

ba

ba
ba r

r

r

r

r

r

. 

 Example 8: find the components of vector p
r

 if ap
rr

⊥ , bp
r

r

⊥ , 4=p
r

, 

1,1,1=a
r

, 1,2,1=b
r

. 

 

 Solution: let zyxp ,,=

r

, then since ap
rr

⊥ , 0=++ zyx . And since 

bp
r

r

⊥ , 02 =++ zyx . And finally if 4=p
r

, then 16
222
=++ zyx . We 

obtained the system: 

⎪
⎩

⎪
⎨

⎧

=++

=++

=++

.16

,02

,0

222
zyx

zyx

zyx

 

Subtracting the first equation from the second we have 0=y . Thus 

⎩
⎨
⎧

=+

=+

.16

,0

22
zx

zx

 

And finally 22,22 m=±= zx , hence 22,0,22 m
r

±=p . 
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• Projection of a vector on an axis. 

 

The expression 
l

la
r

r

r

 is called the projection of the vector a
r

 on the axis 

which direction is given by the vector l
r

. By the definition of the scalar product 

we see that the projection can be written as ( )laa
r

rr

^cos  (Fig. 9). 

 

 

 

 

 

 

 

Fig. 9 

 

Properties of the projection follow from the properties of the scalar product. The 

main property is that vector sum projection is equal to the sum of projections.  

 For instance the components of a vector in the Cartesian coordinate system 

are nothing else than projections of a vector on the coordinate axes. 

   

Example 9: find the projection of the vector 3,2,1 −=a

r

 on the vector 

2,2,1 −−=l
r

. 

 Solution: 
( ) ( )

( ) ( ) 3

11

3

11

221

232211
proj

222

−=
−

=

+−+−

⋅−−⋅+−⋅
==

l

la
a

j
r

r

r

r

r . 

 

• Vector product of two vectors. 

 

A vector c
r

 is said to be a vector product or cross product of two vectors a
r

 

and b
r

 denoted by [ ]ba
r

r

,  or ba
r

r

×  if it satisfies three conditions: 

1. Vector c
r

 is orthogonal to vectors a
r

 and b
r

 each. 

2. The length of vector c
r

 is equal to the product of vectors a
r

 and b
r

 lengths 

and the sine of the angle between vectors a
r

 and b
r

: 

( )babac
r

r

r

rr

^sin= . 

3. Vectors a
r

, b
r

 and c
r

 form the so-called right triple that is if we superpose 

the initial points of vectors a
r

, b
r

, c
r

 and look down from the terminal point 

of vector c
r

 to the plane of vectors a
r

 and b
r

, we will see the shortest angle  

a

r

 

l
r

 

a
l

r

proj  
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between vectors a
r

 and b
r

 in anticlockwise direction (Fig. 10). 

 

 

 

 

 

 

 

 

 

 

Fig. 10 

 

Note that vectors i
r

, j
r

, and k
r

 form the right triple (see Fig. 8). 

 The vector product of two vectors has the following properties: 

1. abba
r

rr

r

×−=× , hence 0
r

rr

=× aa . 

2. ( ) cbcacba
r

r

rrr

r

r

×+×=×+ . 

3. ( ) ( )baba
r

r

r

r

×=×⋅ αα . 

4. kji
rrr

=× , ikj
rrr

=× , jik
rrr

=× . 

Using the properties of vector product of two vectors we can prove the 

following statement. 

If two vectors a
r

 and b
r

 are represented in component form 
321

,, aaaa =

r

 

and 
321

,, bbbb =

r

 then the vector product of them can be written as: 

 

321

321

bbb

aaa

kji

ba

rrr

r

r

=× . 

 Example 10: find the area of the triangle ABC if 0,1,1A , 1,0,1B , 

1,1,2C . 

 Solution: the area of a triangle ABC can be found by the formula:  

( )ACABACABS
ABC

^sin
2

1
⋅⋅=

∆
,  

but the right-hand part of it is a half of the AB  and AC  vector product length.  

Hence ( ) ACABACABACABS
ABC

×=⋅⋅=

2

1
^sin

2

1

∆
. Let us find the 

components of vectors AB  and AC . AB = 1,1,0 − , AC = 1,0,1 .  

a

r

 

b
r

 

c

r
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Then ACAB× kjikji

kji
rrrrrr

rrr

++−=

−

+−

−

=−=

01

10

11

10

10

11

101

110 . Hence 

the area of the triangle is equal to ( )
2

3
111

2

1 222
=++− . 

 

Example 11: find ( ) ( )baba
r

r

r

r

32 +×−  if 2== ba
r

r

 and ( )
6

5
^

π

=ba
r

r

. 

 

 Solution: let us simplify the given expression using the properties of vector 

product:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) .10
2

1
225^sin55

323322

332232

=⋅⋅⋅==×=

=×+×=×−×+×−×=

=×−×+×−×=+×−

bababa

bababbbaabaa

bbbaabaababa

r

r

r

r

r

r

r

r

r

r

rrr

rr

r

rr

rrr

rr

r

rr

r

r

r

r

 

 

• Scalar triple product. 

 

The expression ( )cba
r

r

r

×⋅  is called the scalar triple product of vectors a
r

, b
r

 

and c
r

, and denoted as cba
r

r

r

.  

 The properties of scalar product are as follows. 

1. abcbcacabbacacbcba
r

r

r

r

rrrr

rr

rrrr

r

r

r

r

−=−=−=== . 

2. If at least two vectors in the triple a
r

, b
r

 and c
r

 are collinear, then the scalar 

triple product is equal to zero (e.g. 0=== cacbcbaba
rrr

r

r

r

r

r

r

). 

3. ( ) dbacbadcba
rr

rr

r

r

r

r

r

r

+=+ . 

4. ( ) ( )cbacba
r

r

rr

r

r

αα = . 

5. If 0>cba
r

r

r

 then vectors a
r

, b
r

 and c
r

 form the right triple, if 0<cba
r

r

r

 then 

vectors a
r

, b
r

 and c
r

 form the left triple, if 0=cba
r

r

r

 then vectors a
r

, b
r

 and c
r

  

lie in one plane or called coplanar. 

6. If vectors a
r

, b
r

 and c
r

 are given in a component form 
321

,, aaaa =

r

, 

321
,, bbbb =

r

 and 
321

,, cccc =

r

 then  

321

321

321

ccc

bbb

aaa

cba =
r

r

r

. 
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7. The volume of the parallelepiped, which adjacent edges are vectors a
r

, b
r

 

and c
r

 is equal to the scalar triple product absolute value. cbaV
r

r

r

= . 

 

Example 12: find ( )cbaba
r

r

r

r

r

323 +−  if 2=cba
r

r

r

. 

 Solution: using the properties of scalar triple product let us simplify the 

given expression: 

( ) ( ) ( ) ( ) .63323323323 ==+−=+−+=+− cbacbabbaabacbabbaabacbaba
r

r

rr

r

r

rr

rr

r

rr

r

r

rr

rr

r

rr

r

r

r

r

 

 

Example 13: find the volume of the pyramid ABCD if 1,1,2 −A , 4,5,5B , 

1,1,3 −C , 3,1,4D . 

 Solution: vectors AB , AC  and AD  form the adjacent edges of the 

pyramid. Volume of the pyramid is equal to 
6

1
 of the volume of the 

parallelepiped. Hence ADACABV
ABCD

6

1
= . Let us find the components of 

vectors AB , AC  and AD . AB = 3,6,3 , AC = 2,3,1 − , AD = 2,2,2 . 

Then ADACAB = 

184366103
22

31
3

22

21
6

22

23
3

222

231

363

−=⋅−⋅−⋅=+

−

−

−

=− . 

318
6

1

6

1
=−== ADACABV

ABCD
. 

 

Example 14: find λ  such that vectors 3,2,1 − , 1,2,4 − , λ,0,1−  are 

coplanar. 

 Solution: vectors are coplanar if their scalar triple product is equal to zero. 

Let us find the scalar triple product of given vectors: 

( ) ( ) .1913142
01

14
3

1

14
2

0

11

01

114

321

+−=−−+−−=

−

−

−

−

−

−

=

−

−

−

λλλ
λλ

λ

 

Solving the equation 019 =+− λ  we obtain 
9

1
=λ . 
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ANALYTIC GEOMETRY 

 

• Equation of a plane. 

 

An equation of a plane passing through a point 
000

,, zyxM , 

perpendicular to a vector CBAn ,,

r

 using  scalar product can be written as 

( ) 0
0
=− rrn

rrr

, where 
0
rr

rr

−  is a vector which initial point is a point with 

components zyx ,,  and terminal point is 
0

M  (Fig. 11). CBAn ,,

r

 is called 

normal vector to a plane. 

 

 

 

 

 

 

 

 

 

Fig. 11 

 

By the equation of a plane we understand the equation where if variables 

zyx ,,  are substituted for components of a point the equation is satisfied if and 

only if the point lies on the plane. Writing the expression ( ) 0
0
=− rrn

rrr

 in scalar 

form we obtain an equation of the plane passing through the point 
000

,, zyxM , 

perpendicular to vector CBAn ,,

r

: 

( ) ( ) ( ) 0
000
=−+−+− zzCyyBxxA . 

 

If we remove brackets we obtain the so-called general equation of a plane: 

 

0=+++ DCzByAx . 

 

Example 15: find equation of the plane passing through the point 1,1,1 , 

perpendicular to the vector 0,1,2 − . 

 Solution:  ( ) ( ) ( ) ( ) ( ) ( )=−+−−−=−+−+− 10112
000

zyxzzCyyBxxA  

12122 −−=+−−= yxyx . So the equation is 012 =−− yx . 

 

Example 16: find equation of the plane passing through the point 1,0,2 , 

parallel to vectors 3,1,1 −=a
r

 and 1,2,0 −=b
r

. 

CBAn ,,

r

 

zyxM ,,  

000
,, zyxM  
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 Solution:  to write the equation of the plane we need the components of the 

normal vector. It is a vector which is perpendicular to the plane, but therefore it is 

perpendicular to any vector parallel to the plane, and hence it is perpendicular to 

given vectors. To find  normal vector we find  the vector product of a
r

 and b
r

. 

kjikji

kji

ban
rrrrrr

rrr

r

rr

25
20

11

10

31

12

31

120

311 ++−=

−

+

−

−

−

−

=

−

−=×= . 

Putting into the equation of a plane we obtain: 
( ) ( ) ( ) ( ) ( ) ( ) 82512025

000
+++−=−+−+−−=−+−+− zyxzyxzzCyyBxxA  

So the equation is 0825 =+++− zyx . 

Example 17: find the equation of the plane passing through the points 

1,0,1−A , 1,3,0B , 0,2,4 −C . 

 Solution:  we can reduce the problem to the previous one by finding two 

vectors lying on the plane. For instance AB = 0,3,1 , AC = 1,2,5 −− . Then 

=n

r

ACAB× = 

kjikji

kji
rrrrrr

rrr

173
25

31

15

01

12

03

125

031 −+−=

−

+

−

−

−−

=

−−

= . Taking point 

A we have 
( ) ( ) ( ) ( ) ( ) ( ) 14173117013

000
+−+−=−−−++−=−+−+− zyxzyxzzCyyBxxA

So the equation is 014173 =+−+− zyx . 

 

• Angle between planes. 

 

It is obvious that the angle between two planes is equal to the angle 

between their normal vectors.  

Example 18: find the angle between planes 022 =++− zyx  and 

032 =−++ zyx . 

Solution: normal vector to the first plane is 2,1,1
1

−=n
r

, and to the 

second one is 2,1,1
2
=n

r

. Using the scalar product we can write that 

( )
2

1

4

2

211211

221111
^cos

21

21

21
==

++++

⋅+⋅−⋅
=

⋅

⋅
=

nn

nn

nn
rv

rv

rr

. Hence the angle between 

the planes is equal to 
3

π
. 
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Moreover two planes are parallel if and only if their normal vectors are 

collinear.   

Example 19: find λ  and µ  such that planes 02 =++− zyx λ  and 

033 =−++ zyxµ  are parallel. 

Solution: λ,1,1
1

−=n
r

, 3,1,
2

µ=n

r

. Since these vectors are collinear their 

components are proportional: 
31

11 λ

µ
=

−

= , hence 1−=µ  and 3−=λ . 

 

 

• Distance from a point to a plane. 

 

Let us consider Fig. 12. We are to find the distance between the point 

000
,, zyxM  and the plane L. Let us take any point zyxN ,,  on the plane, then 

the distance is equal to the absolute value of the projection of the vector NM  to 

the vector CBAn ,,

r

.  

 

 

 

 

 

 

 

 

Fig. 12 

 

Using the formula 
n

rproj NM
n

NMn
r

r

⋅

=  we obtain 

222

000

222

000
,,,,

CBA

CzByAxCzByAx

CBA

zzyyxxCBA
d

++

−−−++

=

++

−−−⋅

= . But 

the point zyxN ,,  lies on the plane, hence it satisfies the equation of the plane 

0=+++ DCzByAx . Finally 
222

000

CBA

DCzByAx
d

++

+++

= . 

 

Example 20: find the bisector of planes 0222 =++− zyx  and 

0334 =−+ zy . The bisector of two planes is a plane which divides the dihedral 

angle between them by two. 

000
,, zyxM  

zyxN ,,  

d 

CBAn ,,

r

 

L 
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Solution: the bisector consists of points equidistant to the given planes. Let 

us take a point zyxN ,,  and find distances to the given planes: 

441

222

1
++

++−

=

zyx
d  and 

916

334

2
+

−+

=

zy
d . Since 

21
dd = , we obtain 

33432225 −+=++− zyzyx , or ( ) ( )33432225 −+±=++− zyzyx . 

Taking ‘+’ we get 019107 =++−− zyx , and taking ‘–’ we get 

01191017 =++− zyx . 

 

• Equation of a straight line. 

 

If two planes intersect the intersection is a straight line. Thus the equation 

of line can be written as  

⎩
⎨
⎧

=+++

=+++

,0

,0

2222

1111

DzCyBxA

DzCyBxA
 

which is called a general equation of a straight line. From the other hand a 

straight line is defined by a point on it and a vector codirectional to the straight 

line (Fig. 13). 

 

 

 

 

 

 

Fig. 13 

 

If we take a point 
000

,, zyxM  on the line and any point zyxN ,,  on the same 

line, the obtained vector is collinear to the vector nml ,,τ

r

. Thus the equation of 

the straight line can be written as  

n

zz

m

yy

l

xx
000

−

=

−

=

−

, 

which is called the canonical equation of a straight line. And the vector 

nml ,,τ

r

 is called the direction vector of the straight line. If in the canonical 

equation we define the coefficient of proportionality by t and express zyx ,,  in 

terms of it we obtain the parametrical equation of the straight line: 

⎪
⎩

⎪
⎨

⎧

+=

+=

+=

.

,

,

0

0

0

ntzz

mtyy

ltxx

 ℜ∈t , 

000
,, zyxM  

zyxN ,,  

nml ,,τ

r
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Note that there are a lot of different general as well as canonical equations 

of a straight line.  

 

Example 21: find the equation of the straight line passing through two 

points 3,2,1 −A  and 2,1,0 −B . 

 Solution: the direction vector for the straight line is the vector 

AB = 5,3,1 −− . Let us write the canonical equation of the straight line 

5

3

3

2

1

1 +
=

−

−
=

−

− zyx
. 

 

Example 22: find the canonical equation of a straight line 
⎩
⎨
⎧

=+−

=+−

.012

,023

zx

zyx
 

Solution: To write the canonical equation we need to know the direction 

vector of the straight line and a point on it. As far as the direction vector is 

parallel to both planes it is perpendicular to both normal vectors and can be 

expressed as their vector product: 

kjikji

kji
rrrrrr

rrr

44
21

23

01

13

20

12

201

1232,0,11,2,3 −+=

−

−

+−

−

−

=

−

−=−×− . 

To find a point on the plane we have to find any solution of the system 

⎩
⎨
⎧

=+−

=+−

.012

,023

zx

zyx
 Let us add two times the first equation to the second one. We 

have: 0147 =+− yx , or ( )17
4

1
+= xy . If we put 1=x , then 2=y  and 1=z . 

So the canonical equation has the form 
4

1

1

2

4

1

−

−

=

−

=

− zyx
. 

 

 The parametrical equation of the straight line is convenient to use when 

finding the intersection of a straight line and a plane. 

Example 23: find the point of intersection between the straight line 

3

4

0

1

2

1

−

−
=

−
=

+ zyx
 and a plane 03432 =−+− zyx . 

 Solution: let us write the equation of the straight line in the parametrical 

form  

⎪
⎩

⎪
⎨

⎧

−=

=

+−=

tz

y

tx

34

,1

,21
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and put these in the equation of the plane ( ) 03)34(4)1(3212 =−−+−+− tt , or 

088 =+− t , hence 1=t  and 1,1,1,, =zyx . 

 

• Positional relationship between straight lines. 

 

Two lines in a space can be parallel (their direction vectors are collinear, 

and they do not have common points),  coincide (every point of one straight line 

is a point of another), intersect (have only one common point), be skew (not 

parallel and having no common points). 

Two straight lines defined by their direction vectors 
1

τ

r

, 
2

τ

r

 and points 
1

M , 

2
M  are parallel if 0

21
=×ττ

rr

 and ×
1

τ

r

21
MM 0≠ . 

Two straight lines defined by their direction vectors 
1

τ

r

, 
2

τ

r

 and points 
1

M , 

2
M  are skew if  

21
ττ

rr

21
MM 0≠ . 

Two straight lines defined by their direction vectors 
1

τ

r

, 
2

τ

r

 and points 
1

M , 

2
M  intersect if 

21
ττ

rr

21
MM 0=  and 0

21
≠×ττ

rr

. 

Two straight lines defined by their direction vectors 
1

τ

r

, 
2

τ

r

 and points 
1

M , 

2
M  coincide if 0

21
≠×ττ

rr

 and ×
1

τ

r

21
MM 0= . 

 

Example 24: determine the positional relationship between the straight lines 

4

1

32

2 −
=

−

=
+ zyx

 and 
2

7

4

13 −

=

−

=

− zyx

α

. 

 Solution: we have 4,3,2
1

−=τ

r

 and 2,4,
2

ατ =

r

, 1,0,2
1
−M  and 

7,1,3
1

M . Then 21
MM 6,1,5= . Let us find 

21
ττ

rr

21
MM . 

21
ττ

rr

21
MM 6622

615

24

432

−=

−

= αα . It is equal to zero when 3=α . Thus these 

straight lines are skew if 3≠α .  

Let us find ( ) ( )kji

kji
rrr

rrr

rr

834422

24

432
21

++−+−=−=× αα

α

ττ . This vector is 

never equal to zero, so the straight lines cannot be parallel or coincide. Hence if 

3=α  these straight lines are intersected. 

 

 

 



 29

• Other problems on a plane and a straight line. 

 

Example 25: find the projection of the point 2,2,1 −M  on the straight line 

20

3

1

zyx
=

+
=  and the equation of the perpendicular from the point M on the 

straight line. 

 Solution: let us write the equation of the plane which is perpendicular to the 

straight line and passes through the point M. Then the intersection of the plane 

and the straight line is the projection of the point M on the straight line (Fig. 14). 

 

 

 

 

 

 

 

 

 

 

Fig. 14 

 

Since the direction vector of the straight line is perpendicular to the plane, we can 

write the equation of the plane ( ) ( ) ( ) 0222011 =−+++− zyx  or 052 =−+ zx . 

Let us write the equation of the straight line in the parametric form 
⎪
⎩

⎪
⎨

⎧

=

−=

=

tz

y

tx

2

,3

,

 and 

put it into the equation of the plane 054 =−+ tt  or 1=t . Hence the point 

2,3,1 −P . To find the equation of the perpendicular we are to find the direction 

vector. It will be vector MP 0,1,0 −= . Finally the equation of the perpendicular 

is 
0

2

1

2

0

1 −
=

−

+
=

− zyx
. 

Example 26: find the angle between the plane 0622 =−+− zyx  and the 

straight line 
01

2

1

1 zyx
=

−

+
=

−
. 

 Solution: the angle between a plane and a straight line is equal to 
2

π

 minus 

the angle between the direction vector of the straight line and the normal vector to 

the plane (Fig. 15). 

M

P
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Fig. 15 

 

Thus 
τ

τ
βα

rv

rr

⋅

⋅

==

n

n

cossin . We have 2,2,1 −=n
r

 and 0,1,1 −=τ

r

.  

Hence 
( )

( ) ( ) 2

1

23

3

011221

022211
sin

22222

==

+−+⋅+−+

⋅+−⋅−⋅
=

⋅

⋅
=

τ

τ

α
rv

rr

n

n

. Finally 

the angle between the plane and the straight line is equal to 
42

1
arcsin

π

= . 

 

Example 27: find the projection of a point 2,0,1 −M  to the plane 

0932 =−+− zyx . 

 

 Solution: to find the projection we are to find the equation of the 

perpendicular from the point M to the plane and then the intersection P of the 

perpendicular and the plane. The direction vector of the perpendicular is the 

normal vector of the plane (see Fig. 16). 

 

 

 

 

 

 

 

 

 

Fig. 16 

Thus the equation of the perpendicular is 
3

2

21

1 +
=

−

=
− zyx

. To find the  

n

r

 

τ

r

 

α  

β  

n

r

 
M 

P 
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intersection let us write this equation in parametric form: 
⎪
⎩

⎪
⎨

⎧

+−=

−=

+=

tz

ty

tx

32

2

1

 and put 

these in to the equation of the plane. ( ) ( ) ( ) 09323221 =−+−⋅+−⋅−+ ttt  or 

1=t . Finally 1,2,2 −P . 

 

Example 28: find the projection of the straight line 
3

1

2

1

1

1 −

=

−

−

=

− zyx
 on 

the plane 0223 =−+− zyx . 

 Solution: the projection of a straight line is another straight line which lies 

on the plane. Its direction vector (
1

τ

r

) then is perpendicular to the normal vector to 

the plane. From the other hand it is perpendicular to a vector product of the 

normal vector to the plane and the direction vector of the straight line (Fig. 17). 

 

 

 

 

 

 

 

 

 

Fig. 17 

 

We have 1,2,3 −=n
r

 and 3,2,1 −=τ

r

. Let us find n

rr

×τ :  

4,8,4484

123

321 =++=

−

−=× kji

kji

n
rrr

rrr

rr

τ .  

Then ( ) =−=××=

484

123
1

kji

nn

rrr

rrrr

ττ kji
rrr

32816 +−− .  

To write the equation of the projection we need to find a point on it. But it can be 

the point of the straight line and the plane intersection. Let us write the equation 

of the straight line in the parametrical form: 
⎪
⎩

⎪
⎨

⎧

+=

−=

+=

tz

ty

tx

31

,21

,1

 and put these into the 

n

r

 

τ

r

 

n

rr

×τ  

1
τ

r

 



 32

equation of the plane. We have ( ) ( ) ( ) 023121213 =−++−−+ ttt  or 0=t . Thus 

the point of intersection is 1,1,1 . Finally we can write the equation of the 

projection: 

32

1

8

1

16

1 −

=

−

−

=

−

− zyx
 or 

4

1

1

1

2

1

−

−

=

−

=

− zyx
. 

 

Example 29: find the distance between two skew straight lines 

2

3

4

3

3

7

−

+
=

−
=

+ zyx
 and 

1

2

4

1

6

21

−

−
=

−

+
=

− zyx
. 

 

 Solution: the distance between two skew straight lines is the length of the 

common perpendicular to these straight lines. Since this perpendicular is common 

to both straight lines its direction vector is equal to the vector product of the two 

given direction vectors. And the distance is the absolute value of the projection of 

any vector connecting two straight lines on the common perpendicular (Fig. 18). 

 

 

 

 

 

 

 

 

 

 

Fig. 18 

 

Thus the distance 
21

proj
ττ

rr

×
=d 21

MM
( )

21

2121

ττ

ττ

rr

rr

×

×

=

MM
.  

Let us find kji

kji
rrr

rrr

rr

36912

146

243
21

−−−=

−−

−=×ττ . Then 21
MM 5,1,28 −= .  

Putting into the formula we 

obtain:
( ) ( ) ( )

( ) ( ) ( )
13

39

507

36912

365911228

222

==

−+−+−

−⋅+−⋅−−⋅
=d . 

1
τ

r

 

2
τ

r

 

1
M  

2
M  
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MATRICES  

 

• Basic definitions and operations on matrices. 

 

If n and m are natural numbers, then mn×  matrix (read "n by m") is a 

rectangular array 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
==

nmnn

m

m

mn
jiij

aaa

aaa

aaa

a

L

MOMM

L

L

21

22221

11211

11
][ , 

 

in which each entry, ija , is a real (sometimes complex) number. mn×  matrix has 

m rows and n columns.  

If mn = , the matrix is square of order n. For a square matrix, the entries 

nn
aaa ,...,,

2211
 are the main diagonal entries.  

A matrix that has only one row is a row matrix, and a matrix that has only 

one column is a column matrix. 

The matrix having all entries equal to zero is called zero matrix, usually 

denoted as O. The square matrix that consists of zeros anywhere, except for the 

main diagonal, is called the diagonal matrix. The square nn×  matrix that 

consists of ones on its main diagonal and zeros elsewhere is called the identity 

matrix of order n and is denoted by 
n
I . 

Two matrices are equal if their corresponding entries are equal. 

 The following operations are defined on matrices: 

1. Matrix addition. 

2. Scalar multiplication. 

3. Matrix multiplication. 

 

If [ ] mn
jiijaA
11 ==

=  and [ ] mn
jiijbB
11 ==

=  are the matrices of order mn× , then 

their sum is the mn×  matrix given by [ ] mn
jiijij baBA
11 ==

+=+ . The sum of two 

matrices of the different order is undefined. 

 

Example 30 : find BA +  if ⎥
⎦

⎤
⎢
⎣

⎡−
=

10

21
A  and ⎥

⎦

⎤
⎢
⎣

⎡

−
=

21

31
B . 

 

Solution: ⎥
⎦

⎤
⎢
⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡

+−

++−
=⎥

⎦

⎤
⎢
⎣

⎡

−
+⎥

⎦

⎤
⎢
⎣

⎡−
=+

31

50

2110

3211

21

31

10

21
BA . 
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When working on matrices, we usually refer to numbers as scalars. 

If [ ] mn
jiijaA
11 ==

=  is the matrix of order mn×  and the c is a scalar, then the 

scalar multiple of A by c is mn×  matrix given by [ ] mn
jiijaccA
11 ==

⋅= . We use 

A−  to represent a scalar product ( )A1− . Moreover, if [ ] mn
jiijaA
11 ==

=  and 

[ ] mn
jiijbB
11 ==

= are the matrices of order mn× , the difference BA −  represents 

the sum of A and ( )B1− . 

 Example 31: for the matrices 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−=

212

103

421

A  and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−=

231

341

002

B  

find BA−3 . 

 Solution: ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅⋅

−⋅⋅−⋅

⋅⋅⋅

=

636

309

1263

231323

130333

432313

3A ; =− BA3  

 

( )
( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−

−−−−−−

−−−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−=

407

6410

1261

263316

334019

0120623

231

341

002

636

309

1263

. 

 It is often convenient to rewrite the scalar multiple cA by factoring c out of 

every entry in the matrix. For instance, in the following example, the scalar 
2

1
 has 

been factored out of the matrix: ⎥
⎦

⎤
⎢
⎣

⎡ −
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −

15

31

2

1

2
1

2
5

2
3

2
1

. 

The properties of matrix addition and scalar multiplication are similar to 

those of addition and multiplication of real numbers, and we summarize them in 

the following list. If A, B, and C are mn×  matrices and c and d are scalars, then 

the following properties are true: 

1. ABBA +=+ . 

2. ( ) ( ) CBACBA ++=++ . 

3. ( ) ( )dAcAcd = . 

4. AA =1 . 

5. ( ) cBcABAc +=+ . 

6. ( ) dAcAAdc +=+ . 

7. AOA =+ . 

8. OA =⋅0 . 
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Note that the second property of matrix addition allows us to write 

expressions such as CBA ++  without ambiguity because the same sum occurs 

no matter how the matrices are grouped. The same reasoning applies to sums of 

four or more matrices. 

 

The third basic matrix operation is matrix multiplication. If [ ] mn
jiijaA
11 ==

=  

is the matrix of order mn×  and [ ] pm
jiijbB
11 ==

=  is the matrix of order pm × , then 

their product AB  is pn×  matrix [ ] pn

jiijcAB
11 ==

= , where ∑
=

=

n

k

kjikij bac

1

. This 

definition indicates a row-by-column multiplication, where the entry ijc  in the i
th

 

row and j
th

 column of the product AB is obtained by multiplying the entries in the 

i
th

 row of A by the corresponding entries in the j
th

 column of B and then adding 

the results. 

Example 32: find the product AB, if 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=

05

24

31

A  and ⎥
⎦

⎤
⎢
⎣

⎡

−

−
=

14

23
B . 

Solution: first note that the product AB is defined because the number of 

columns of A is equal to the number of rows of B. Moreover, the product AB has 

order 23×  and will take the form  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

−

−
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

3231

2221

1211

14

23

05

24

31

cc

cc

cc

. 

To find 
11
c  (the entry in the first row and first column of the product), multiply 

corresponding entries in the first row of A and the first column of B. That is, 

( )( ) ( ) 94331
11

−=−+−−=c . Similarly, to find 
12
c , multiply corresponding 

entries in the first row of A and the second column of B to obtain 
( ) 11321

12
=⋅+−=c . Continuing the pattern produces the following results: 

 

( ) ( )( ) 44234
21

−=−−+−=c , 

( ) 61224
22

=−+⋅=c , 

( ) ( ) 154035
31

−=−+−=c , 

101025
32

=⋅+⋅=c . 

Thus, the product is  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=⎥
⎦

⎤
⎢
⎣

⎡

−

−
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=

1015

64

19

14

23

05

24

31

AB . 
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Example 33: find AB and BA where [ ]321 −−=A  and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

1

1

2

B . 

 

Solution: since the order of A is 31×  and the order of B is 13× , the order 

of product AB is 11× . Multiplying the row of A and the column of B we obtain  
( )( ) ( )[ ] [ ]1131221 =−+−−+⋅=AB . 

The product BA has the order 33×  and 

[ ]
( ) ( )

( ) ( )( ) ( )( )
( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−

−−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−⋅

−−−−−

−−⋅

=−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

321

321

642

312111

312111

322212

321

1

1

2

BA . 

 Note that the two products are different. Matrix multiplication is not, in 

general, commutative. That is, for most matrices, BAAB ≠ . 

  

Main properties of matrix multiplication are as follows. If A, B, and C are 

matrices and c is a scalar, then the following properties are true: 

1. ( ) ( )CABBCA = . 

2. ( ) ACABCBA +=+ . 

3. ( ) BCACCBA +=+ . 

4. ( ) ( ) ( )cBABcAABc == . 

5. If A is a square matrix then AAIIA == . 

 

• Elementary row operations. Gauss-Jordan elimination method. 

 

Two matrices are called row-equivalent if one can be obtained from the 

other by a sequence of elementary row operations. The elementary row 

operations are as follows: 

1. Interchange two rows. 

2. Multiply a row by a nonzero constant. 

3. Add a multiple of a row to another row. 

 

 

Example 34: 

a) Interchange the first and the second rows: 

Original matrix New row-equivalent matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

1432

3021

4310

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

1432

4310

3021
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b) Multiply the first row by 
2

1
. 

Original matrix New row-equivalent matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−

2125

0331

2642

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−

2125

0331

1321

 

c) Add –2 times the first row to the third row. 

Original matrix New row-equivalent matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−

−

2512

1230

3421

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−

−

81330

1230

3421

 

 

 It is said that the matrix is in row-echelon form if it has the following 

properties. 

1. All rows consisting entirely of zeros occur at the bottom of the matrix. 

2. For each row that does not consist entirely of zeros, the first nonzero entry 

is 1 (a leading 1). 

3. For two successive (nonzero) rows, the leading 1 in the higher row is 

farther to the left than the leading 1 in the lower row. 

A matrix in row-echelon form is in reduced row-echelon form if every 

column that has leading 1 has zeros in every position above and below its leading 

1. Every matrix is row-equivalent to a matrix in row-echelon form. 

 

Example 35: the following matrices are in row-echelon form. The matrices 

B and D also happen to be in reduced row-echelon form. 

A. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

2100

3010

4121

 B. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0000

3100

5010

 

C. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−

10000

41000

23100

31251

 D. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

0000

3100

2010

1001

 

  

Elementary row operations are applied in solving systems of linear 

equations. The method is called Gauss-Jordan elimination. This method works 

well for solving systems with a computer. Before we consider the method, we 

must give the following definitions. 
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 A matrix derived from a system of linear equations (each written in 

standard form with the constant term on the right) is called the augmented matrix 

of the system. Moreover, the matrix derived from the coefficients of the system 

(but which does not include the constant terms) is called the coefficient matrix of 

the system. We use zeros for the missing variables. Here is an example. 

System Augmented matrix Coefficient matrix 

⎪
⎩

⎪
⎨

⎧

=−

−=−+−

=+−

.642

,33

,534

zx

zyx

zyx

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−−

−

6402

3131

5341

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−

−

402

131

341

 

 Guidelines for using Gauss-Jordan elimination to solve a system of linear 

equation are summarized as follows: 

1. Write the augmented matrix of the system of linear equations. 

2. Use elementary row operations to rewrite the augmented matrix in row-

echelon form and then in reduced row-echelon form. 

3. If a coefficient matrix is the identity matrix then the solution of the system 

is in the column separated by vertical dots. 

For this algorithm, the order in which the elementary row operations are 

performed is important. We suggest operating from left-to-right by columns, 

using elementary row operations to obtain zeros in all entries directly below the 

leading ones, and then above the leading ones.  

When solving a system of linear equations, remember that it is possible for 

the system to have no solution. If, in elimination process, we obtain a row with 

zeros except for the last entry, it is unnecessary to continue the elimination 

process. We can simply conclude that the system is inconsistent.  

 

Example 36: solve the following system: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=−−−

−=−++

=−+

−=−+

.1974

,2342

,22

,32

wzyx

wzyx

zyx

wzy

 

 

Solution: the augmented matrix for this system is 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−

−

−−

191741

23142

20121

32110

. 
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 Let us start with obtaining a leading one in the upper left corner by 

interchanging the first and second rows, and then proceed to obtain zeros 

elsewhere in the first column. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−

−−

−

191741

23142

32110

20121

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−

−−

−

211660

63300

32110

20121

. 

 

We added –2 times the first row to the third row, and –1 times the first row to the 

fourth row. After that the first column has zeroes below its leading one. Now after 

the first column is already in the desired form, we can change the second, third, 

and fourth columns as follows. 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

−

3913000

63300

32110

20121

. We added 6 times the second row to the forth row. 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

−

3913000

21100

32110

20121

. We divided the third row by 3. 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−

31000

21100

32110

20121

. We divided the fourth row by –13. 

 

The matrix is now in row-echelon form, and now we continue elimination, 

starting with the last column: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

31000

10100

30110

20121

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

31000

10100

20010

30021

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

31000

10100

20010

10001

. 
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We added the fourth row to the third row and 2 times the forth row to the second 

row. Then we added –1 times the third row to the second row and the third row to 

the first row. And finally we added –2 times the second row to the first row. We 

obtained the identity matrix, hence in the last column we have the solution of the 

system: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=

=

=

.3

,1

,2

,1

w

z

y

x

 

 

• The rank of a matrix. Theorem of Kronecker-Capelli. 

 

A determinant composed of entries of a matrix by crossing out some rows 

and columns is called a minor. The size of the maximum nonzero minor is called 

the rank of a matrix. For example let us consider the following matrix: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333

222

111

. 

 

 The different minors that can be composed of entries of this matrix are as 

follows: 

3,2,1,
33

22
,

33

11
,

22

11
,

333

222

111

. 

 

It can be easily seen that the determinants of the third and second order are all 

equal to zero. Thus, the rank of a matrix is equal to 1. 

 If [ ] mn
jiijaA
11 ==

=  is the matrix of order mn× , then the rank of the matrix 

A, denoted by ( )Ar , satisfies the following inequality ( ) ( )mnAr ,min1 ≤≤ , 

except for zero matrix, which rank is equal to zero. 

 If a matrix has a big size then it is difficult to write and especially to 

calculate all minors. But the following theorem gives us an opportunity to do this 

easily. 

 

 Theorem 1. Two row-equivalent matrices have the same rank. 

 

 Thus, to find the rank of a matrix, we rewrite it in the row-echelon form. 

The number of nonzero rows will be the rank of the matrix. 
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 Example 37: find the rank of the following matrix: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

1464

131

220

402

. 

 Solution: 

Step 1. Interchange the first and the third row: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

1464

131

220

402

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

1464

402

220

131

. 

Step 2. Add 2 times the first row to the third row and –4 times the first row to the 

fourth row: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

1464

402

220

131

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

18180

660

220

131

. 

Step 3. Divide the second row by 2, the third row by –6, the fourth row by 18: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

18180

660

220

131

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −−

110

110

110

131

. 

Step 4. Add –1 times the second row to the third and fourth rows: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −−

110

110

110

131

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −−

000

000

110

131

. 

 

We obtained the row-echelon matrix, with 2 nonzero rows. Thus, the rank of the 

matrix is equal to 2. 

 

 Theorem 2. (Kronecker-Capelli). The system of n linear equations in m 

variables is consistent if and only if the rank of the augmented matrix is equal to 

the rank of the coefficient matrix. 
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 It is not necessary to find the ranks of augmented and coefficient matrices 

separately. We can find both ranks just considering the augmented matrix. 

 Example 38: check if the following system is consistent. 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−=+

=++

−=++

=++

=+

.1

,2

,3

,4

,1

54

543

432

321

21

xx

xxx

xxx

xxx

xx

 

 Solution: the augmented matrix for this system is 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

111000

211100

301110

400111

100011

. 

Step 1. Add –1 times the first row to the second row: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

111000

211100

301110

400111

100011

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

111000

211100

301110

300100

100011

. 

 

Step 2. Interchange the second and the third rows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

111000

211100

301110

300100

100011

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

111000

211100

300100

301110

100011

. 

 

Step 3. Add –1 times the third row to the fourth row: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

111000

211100

300100

301110

100011

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

111000

111000

300100

301110

100011

. 



 43

Step 4. Add –1 times the fourth row to the fifth row: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

111000

111000

300100

301110

100011

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

000000

111000

300100

301110

100011

. 

 

Thus, we have the row-echelon form of the matrix. It is seen that the ranks of the 

augmented and coefficient matrices are equal to 4. Hence, the system is 

consistent. 

 

 Example 39: check if the following system is consistent:  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=−++−

=+−++

=+−++

=−++−

=+−++

.428655

,12423

,335543

,132

,232

54321

54321

54321

54321

54321

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

 

 

 Solution: the augmented matrix for this system is 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−−

−

428655

124231

335543

113121

211312

. 

 

Step 1. Interchange the first and the second rows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−−

−

428655

124231

335543

113121

211312

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−

−−

428655

124231

335543

211312

113121

. 

 

Step 2. Add –2 times the first row to the second row, –3 times to the third, –1 

times to the fourth, and –5 times to the fifth: 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−

−−

428655

124231

335543

211312

113121

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

−−−

−−

137150

137150

0614220

017130

113121

. 

Step 3. Add –2 times the third row to the second row: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

−−−

−−

137150

137150

0614220

017130

113121

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

−−

−−

137150

137150

0614220

01321310

113121

. 

 

Step 4. Add 2 times the second row to the third row, –5 times to the fourth and 

fifth: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

−−

−−

137150

137150

0614220

01321310

113121

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−

−−

−−

−−

1681121400

1681121400

02028400

01321310

113121

. 

 

Step 5. Divide the third row by –4: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−

−−

−−

−−

1681121400

1681121400

02028400

01321310

113121

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−

−

−−

−−

1681121400

1681121400

057100

01321310

113121

. 

 

Step 6. Add 14 times the third row to the fourth and fifth rows: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−

−

−−

−−

1681121400

1681121400

057100

01321310

113121

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−−

−−

1138210000

1138210000

057100

01321310

113121

. 
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Step 7. Add –1 times the fourth row to the fifth row: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−−

−−

1138210000

1138210000

057100

01321310

113121

~

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−

−−

200000

1138210000

057100

01321310

113121

. 

 

Thus, we have the row-echelon form of the matrices. The rank of the augmented 

matrix is equal to 5, but the rank of the coefficient matrix is equal to 4. Thus, the 

system is inconsistent. 

 

• Homogeneous systems of linear algebraic equations. 

 

The following system of linear algebraic equations is called homogeneous. 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=+++

=+++

=+++

.0...

,0...

,0...

2211

2222121

1212111

nnmmm

nn

nn

xaxaxa

xaxaxa

xaxaxa

LLLLLLLLLLLLL

 

 

 From the theorem of Kronecker-Capelli's it follows that this system is 

always consistent, since adding zero column does not change the rank. Moreover, 

it is seen that this system has the zero solution. 

Let the rank of the coefficient matrix of this system equal r. If nr =  then 

the zero solution will be unique. From the other hand, if the number of equations 

is less than the number of variables or nr < , then the system always has nonzero 

solutions. 

 

The solutions of homogeneous systems of linear algebraic equations have 

the following properties: 

1. If ( )
n
cc ,...,

1
 is a solution then ( )

n
kckc ,...,

1
 is also a solution for every k. 

2. If ( )
n
cc ,...,

1
 and ( )

n
dd ,...,

1
 are solutions then ( )

nn
dcdc ++ ,...,

11
 is also 

a solution. 

In other words, a linear combination of solutions of the homogeneous 

system of linear algebraic equations is also a solution of the system. 

Theorem 3. If the rank r of the coefficient matrix of the homogeneous 

system of linear algebraic equations in n variables is less than the number of 

variables, then there exist rn −  linear independent solutions, which are called the 

fundamental system of solutions. 
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To find the fundamental system of solutions we take r linear independent 

equations and solve it for r variables. Then, we take rn −  linear independent 

vectors which are, for instance, columns of the identity matrix of the order rn − . 

Substituting their components in the found solution for r variables, we obtain the 

fundamental system of solutions. 

 

Example 40: find the fundamental system of solutions of the following 

system: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=+−+−

=−+−+

=+−−−

=++−+

.031625

,05341211

,027322

,0283

54321

54321

54321

54321

xxxxx

xxxxx

xxxxx

xxxxx

 

 Solution: first of all let us derive the coefficient matrix to the reduced row-

echelon form. 

 

Step 1. Interchange the first and the third row: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−−

−

316251

53412111

27322

12813

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−−

−−

316251

12813

27322

53412111

. 

 

Step 2. Add –2 times the first row to the second row, –3 times to the third, –1 

times to the fourth: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−−

−−

316251

12813

27322

53412111

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

−−

85014160

1610028320

127521240

53412111

. 

 

Step 3. Divide the second row by –3, the third by 4, the fourth by 2: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

−−

85014160

1610028320

127521240

53412111

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

−−

425780

425780

425780

53412111

. 
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Step 4. Add the second row to the third and fourth: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

−−

425780

425780

425780

53412111

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

00000

00000

425780

53412111

. 

 

Step 5. Divide the second row by 8: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

00000

00000

425780

53412111

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

00000

00000

2
1

8
25

8
710

53412111

. 

 

Step 6. Add –11 times the second row to the first row: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

00000

00000

2
1

8
25

8
710

53412111

~

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

00000

00000

2
1

8
25

8
710

2
1

8
3

8
1901

. 

  

We have 2=r  and  

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−=

−+=

.
2

1

8

25

8

7

,
2

1

8

3

8

19

5432

5431

xxxx

xxxx

 Then we take three independent 

vectors 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

0

1

, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

1

0

, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1

0

0

 and after substituting the components of these vectors for 

3
x , 

4
x , 

5
x  we obtain the fundamental system of solutions:  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

1

8
7

8
19

, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

0

1

0

8
25

8
3

, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡−

1

0

0

0
1

2
1

. 
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• The inverse of a matrix. Matrix equations. 

 

Let A be a square matrix of order n. If there exists a matrix 1−
A  such that 

IAAAA ==

−− 11 , then 1−
A  is the inverse of A. 1−

A  is read "A inverse". Recall 

that it is not always true that AB=BA, even if both products are defined. However, 

if A and B are both square matrices and AB=I, then it can be shown that BA=I. 

If a matrix A has an inverse, then A is invertible (or non-singular); 

otherwise, A is singular. A nonsquare matrix cannot have an inverse. Not all 

square matrices possess an inverse. 

 

Theorem 4. The matrix A is invertible if and only if the determinant of the 

matrix A is not equal to zero. If the matrix does possess an inverse, then that 

inverse is unique. 

 

Example 41: show that B is inverse of A, where  

⎥
⎦

⎤
⎢
⎣

⎡

−

−
=

11

21
A , ⎥

⎦

⎤
⎢
⎣

⎡

−

−
=

11

21
B . 

 Solution: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−+−

−+−
=⎥

⎦

⎤
⎢
⎣

⎡

−

−
⋅⎥

⎦

⎤
⎢
⎣

⎡

−

−
=

10

01

1211

2221

11

21

11

21
AB , 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−+−

−+−
=⎥

⎦

⎤
⎢
⎣

⎡

−

−
⋅⎥

⎦

⎤
⎢
⎣

⎡

−

−
=

10

01

1211

2221

11

21

11

21
BA . 

 There are several methods of finding the inverse of a matrix. Let us 

consider two of them. The first method is the determinant method. Let A be a 

square matrix of order n, then  

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−

nnnn

n

n

AAA

AAA

AAA

A
A

L

MOMM

L

L

21

22212

12111

1

det

1
, 

where ijA  is a minor obtained from A by crossing out i
th

 row and j
th

 column, 

taken with "+" if i+j is even, and with "–" if i+j is odd. 

 

 Example 42: find the inverse of the matrix 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−=

620

541

312

A . 
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 Solution: let us find the determinant of A: 

 

( ) ( ) .162361142
20

41
3

60

51
1

62

54
2

620

541

312

det =−+⋅−⋅=

−

+

−

−

−

−

=

−

−=A  

 

Since, the determinant of A is not equal to zero the inverse matrix exists, and 

 

332313

322212

312111

1

16

1

AAA

AAA

AAA

A =

− . 

Let us find ijA : 

141024
62

54

11
=−=

−

−

=A , ( ) 606
60

51

12
−=−−=

−

−=A , 

202
20

41

13
−=−−=

−

=A , ( ) 1266
62

31

21
−=+−=

−

−=A , 

 

12012
60

32

22
=−==A , ( ) 404

20

12

23
=−−−=

−

−=A , 

 

17125
54

31

31
−=−−=

−

=A , ( ) 13310
51

32

32
=−−−=

−

−=A , 

 

718
41

12

33
=−==A . 

 

Thus, we can write the inverse of A: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−

=−

16
7

4
1

8
1

16
13

4
3

8
3

16
17

4
3

8
7

742

13126

171214

16

11
A . 

 

The second method is as follows. If we by a sequence of elementary row 

operations reduce a square matrix to the identity matrix, then with the same 
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sequence of elementary row operations the identity matrix is reduced to the 

inverse of the given matrix. 

 Example 43: find the inverse of the matrix 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−

−−

=

21103

1041

1072

2131

A . 

 

 Solution: at first we form the matrix, which consists of two parts. The first 

is the matrix A, the second is the identity matrix. Then with row operations we 

transform this matrix, such that the first part reduces to the identity matrix. 

Moreover, the second part will be the inverse 1−
A : 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−

−

−−

100021103

01001041

00101072

00012131

. 

 

Step 1. Add –2 times the first row to the second row, add to the third, –3 times to 

the fourth: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−

−

−−

100021103

01001041

00101072

00012131

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−

−−

10034210

01013110

00123210

00012131

. 

 

Step 2. Add the second row to the third, –1 times to the fourth: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−

−−

10034210

01013110

00123210

00012131

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−−

10111000

01110100

00123210

00012131

. 
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Step 3. Add –3 times the fourth row to the second row, and 2 times to the first 

row: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−−

10111000

01110100

00123210

00012131

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−−−

10111000

01110100

30410210

20210131

. 

 

Step 4. Add –2 times the third row to the second row, and to the first row: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−−−

10111000

01110100

30410210

20210131

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

−−

10111000

01110100

32230010

21120031

. 

 

Step 5. And finally add –3 times the second row to the first row: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

−−

10111000

01110100

32230010

21120031

~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

−−

10111000

01110100

32230010

1177110001

. 

 

Thus, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

−−

=−

1011

0111

3223

117711

1
A . 

 

 The system of n linear algebraic equations in n variables can be rewritten in 

the following matrix form. 

 

System Matrix form 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=+++

=+++

=+++

....

,

,...

,...

2211

22222121

11212111

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

LLLLLLLLLLLLL

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnnnn

nn

n

b

b

b

x

x

x

aaa

aaa

aaa

MM

L

MOMM

L

L

2

1

2

1

11

2221

11211

. 
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Or the system can be rewritten as BAX = . If we multiply this equation from the 

left by 1−
A , we obtain BAAXA

11 −−

= , then BAIX
1−

= , and finally 

BAX
1−

= . 

 

Example 44: solve the following system using the inverse matrix: 

 

⎪
⎩

⎪
⎨

⎧

−=−+

=++−

=+−

.8323

,42

,62

321

321

321

xxx

xxx

xxx

 

 

 Solution: let us rewrite this system as BAX = , where 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=

323

211

112

A , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

8

4

6

B , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

3

2

1

x

x

x

X . 

 

Using one of the mentioned methods we obtain 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−=−

175

593

317

22

11
A . =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−== −

8

4

6

175

593

317

22

11
BAX  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅+⋅+⋅

⋅−⋅+⋅−

⋅−⋅+⋅

=

3

1

1

66

22

22

22

1

814765

854963

834167

22

1
, or 

⎪
⎩

⎪
⎨

⎧

=

−=

=

.3

,1

,1

3

2

1

x

x

x
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VECTOR SPACES 

 

• Definition and examples. 

 

Let a set V be given; we will denote its elements by a, b, c, etc., and let two 

operations be defined on this set – adding, i.e. for every two elements a and b in 

V there exists the uniquely determined element ba +  also in V, which is called 

the sum of a and b; and scalar multiplication, i.e. for every element a in V and 

every real number α  there exists the uniquely determined element aα  also in V. 

The elements of the set V we will call vectors.  

This space is called a vector space if the mentioned operations have the 

following properties: 

I. abba +=+ . 

II. ( ) ( )cbacba ++=++ . 

III. In V there exists zero element 0, such that aa =+ 0  for all Va∈ ; it is 

easy to prove that zero element is unique. 

IV. For every Va∈  there exists the opposite element a− , such that 
( ) 0=−+ aa ; it is easy to prove that the opposite element is unique.         

V. ( ) baba ααα +=+ . 

VI. ( ) aaa βαβα +=+ . 

VII. ( ) ( )aa βααβ = . 

VIII. aa =⋅1 . 

From axioms I–IV we can infer the existence and uniqueness of the difference 

ba − , that is such an element, which satisfies the equation axb =+ . 

Let us state some properties following from these axioms: 

1. 00 =⋅α . 

2. 00 =⋅α . 

3. If 0=aα  then 0=a  or 0=α . 

4. ( ) aa αα −=− . 

5. ( ) aa αα −=− . 

6. ( ) baba ααα −=− . 

7. ( ) aaa βαβα −=− . 

 

The definition given above is the definition of a real vector space, but if we 

use complex numbers instead of real numbers in the axioms, we obtain the 

definition of a complex vector space. 

Here are some examples of vector spaces. 

1. Space of vectors on a plane or in space. Recall that a vector in a plane is 

an ordered pair of real numbers, and a vector in space is an ordered triple 

of real numbers. Thus, all axioms are true. 
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2. The set of all sequences. A sequence is a function defined on the set of 

natural numbers, usually denoted by ( ),...,...,,
21 n

ααα , where 
1

α  is the 

image of 1, 
2

α  is the image of 2, etc. Adding and scalar multiplication 

are defined as follows. 

( ),...,...,,
21 n

ααα + ( ),...,...,,
21 n

βββ = ( ),...,...,,
2211 nn

βαβαβα +++ , 

( ) ( ),...,...,,,...,...,,
2121 nn

γαγαγααααγ = . 

  It is easy to notice that all axioms are true. 

3. The set of all polynomials of order less or equal than n, denoted by n

P . 

All axioms follow from the properties of polynomials. 

4. The set of infinitely continuously differentiable functions on the segment 

[ ]ba, , denoted by [ ]
∞

ba
C

,
. All axioms follow from the properties of 

continuous functions. 

 

• Linear independence and basis. 

 

The linear independence of vectors in linear space is defined exactly as in a 

plane or a space. 

The linear combination of vectors { },...,...,
1 n

aa  with coefficients 

{ },...,...,
1 n

αα  is called a vector of the form 

∑
∞

=

=

1i

ii
ab α , 

if this series converges.  

A linear combination is called trivial, if all coefficients are equal to zero, 

and is called non trivial in the opposite case. Trivial linear combination of vectors 

is obviously equal to zero.  

 The system of vectors { },...,...,
1 n

aa  is called linear independent if their 

linear combination is equal to zero only if it is trivial. The system is called linear 

dependent in the opposite case.  

 

The set of all linear combinations of vectors in the system is called the 

linear span of the system of vectors Γ , and denoted as ( )ΓL . Let a linear space L 

and a system Γ  be given, if ( )ΓLL = , then the system Γ  is called full. A full 

linear independent system in the linear space L is called the basis of the linear 

space. A basis is usually denoted by { },...,...,,
21 n

eee . If a vector can be 

represented as ∑
∞

=

=

1i

ii
ea α  then this representation is unique and { }∞

=1ii
α  are 

called the components of the vector a in the basis { },...,...,,
21 n

eee . All bases of a 

linear space consist of equal number of vectors. The number of vectors in the 
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basis is called the dimension of the linear space L, denoted by ( )Ldim . If it is a 

finite number the vector space is called finite-dimensional linear space, and 

infinite-dimensional in the opposite case. 

Now, let us consider examples mentioned above. 

1. Vector spaces in a plane or space. Since every vector in space is an 

ordered triple of real numbers zyx ,, , then it can be represented as 

kzjyixzyx
rrr

++=,, . Thus, { }kji
rrr

,,  is a basis in this linear space, and 

its dimension equals 3, and this space is finite-dimensional. 

2.  The set of sequences. Every sequence can be represented as a linear 

combinations of the following sequences. ( ),...0,0,1 , ( ),...0,1,0  etc. For 

example: ( ) ( ) ( ) ...,...0,1,0,...0,0,1,...,...,,
2121

++= ααααα
n

. Thus, this 

system is a basis and the linear space is infinite-dimensional, because the 

number of such sequences is infinite. 

3. The set of polynomials of order less or equal than n. Every polynomial 

can be represented as n

n
xaxaxaa ++++ ...

2

210
, and the system 

{ }nxxx ,...,,,1
2  is a basis of this linear space and ( ) 1dim += nP

n . 

 

Let us consider a finite-dimensional linear space L, and let { }
n
eee ,...,,

21
 

and { }
n
eee ′′′ ,...,,

21
 be two bases of L. Every vector in the second basis, like every 

vector in L, can be represented as a linear combination of the first basis 

niee

n

j

jiji ,1,
1

==′ ∑
=

τ . The matrix  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnnn

n

n

T

τττ

τττ

τττ

L

MOMM

L

L

21

22221

11211

, 

the rows of which are the components of { }
n
eee ′′′ ,...,,

21
 in the basis { }

n
eee ,...,,

21
, 

is called the transition matrix from basis { }
n
eee ,...,,

21
 to the basis { }

n
eee ′′′ ,...,,

21
. 

This can be written as  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′

′

′

nnnnn

n

n

n
e

e

e

e

e

e

M

L

MOMM

L

L

M

2

1

21

22221

11211

2

1

τττ

τττ

τττ

, 

or if we denote the two bases written as a column by e  and e′ , then Tee =′ . From 

the other hand, if T ′  is the transition matrix from e′  to e , then eTe ′′= . Hence,  

TeTe ′=  and eTTe ′′=′ . 
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Thus, on account of linear independence of e  and e′  ITTTT =′=′ , and 
1−

=′ TT . This states that the transition matrix is an invertible matrix. And the 

converse, every invertible matrix is a transition matrix from a basis to another 

basis. 

 

• Linear transformations. 

 

Let a finite-dimensional linear space L be given. The representation 

LL→:ϕ  is called a transformation of the linear space.  

The transformation ϕ  is called a linear transformation if 

( ) ( ) ( )baba βϕαϕβαϕ +=+ . This means that a linear transformation transform 

any linear combination of vectors in a linear combination of the images of these 

vectors, moreover, with the same coefficients. 

The following properties of linear transformations are true. ( ) 00 =ϕ , 

( ) ( )aa ϕϕ −=− . 

Let us show some examples: 

1. identity transformation, that is ( ) aa =ϕ ; 

2. zero transformation, that is ( ) 0=aϕ . 

Let { }
n
eee ,...,,

21
 be a basis in the linear space L.  

Theorem 1. For an ordered system of vectors { }
n
ccc ,...,,

21
 there exists 

only one transformation ϕ , such that ( ) nice
ii

,1, ==ϕ .  

Thus, we have one-to-one correspondence between all linear 

transformations and all ordered systems of vectors { }
n
ccc ,...,,

21
. However every 

vector from this system can be represented as a linear combination of the basis 

vectors { }
n
eee ,...,,

21
: 

niec

n

j

jiji ,1,
1

==∑
=

α . 

From the components of the vectors { }
n
ccc ,...,,

21
 in the basis { }

n
eee ,...,,

21
 we 

can form the square matrix [ ]n
jiijA

1, =

= α . Thus, we have one-to-one 

correspondence between all linear transformations and all square matrices of the 

order n, this correspondence, certainly, depends on the choice of the basis 

{ }
n
eee ,...,,

21
.  

We will say that the matrix A defines the linear transformation ϕ  or A is 

the matrix of the linear transformation ϕ  in the basis { }
n
eee ,...,,

21
. If we define 

( )eϕ  as the images column of the basis, then ( ) Aee =ϕ  and if ∑
=

=

n

i

ii
eb

1

β , then 

( ) [ ] eAb
n

⋅⋅= βββϕ L

21
. The linear transformation is called non-singular 



 57

if it is a surjection. The matrix of a non-singular linear transformation is non-

singular (i.e. its determinant is not equal to zero).  

 

Example 45: let { }
321

,, eee  be the basis of linear space, matrix A be the 

matrix of linear transformation ϕ . Find the image of the element 

321
25 eeea −+= , if 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=

140

231

012

A . 

 Solution:  

( ) [ ] [ ]
21

3

2

1

3

2

1

1690169

140

231

012

215 ee

e

e

e

e

e

e

a +−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

⋅−=ϕ . 

 Let two bases e  and e′ , with the transition matrix T ( Tee =′ ) be given. 

And let the linear transformation ϕ  in these bases be defined by matrices A  and 

A′  ( ( ) Aee =ϕ  and ( ) eAe ′′=′ϕ . We have ( ) TeATe ′=ϕ , but ( ) ( )eTTe ϕϕ = , 

because ϕ  is the linear transformation. Thus, ( ) ( )eTAeTA ′= , and because e is 

the linear independent system TATA ′= . Finally, because T is invertible, 
1−

=′ TATA  and TATA ′=
−1 . 

If two matrices are connected with such a correlation they are called 

similar. The determinants of similar matrices are equal. 

 

 

• Characteristic numbers and characteristic vectors of a linear 

transformation. 

 

Let a linear transformation ϕ  in a real linear space be given. If a non-zero 

vector b transforms under this linear transformation into a proportional vector, 

then such vector is called a characteristic vector or eigenvector of the linear 

transformation and a proportional coefficient is called a characteristic number or 

eigenvalue of the linear transformation. If ( ) bb λϕ =  then λ  is a characteristic 

number and b is a characteristic vector of the linear transformation ϕ . We will 

usually say that the characteristic vector b corresponds to the characteristic 

number λ . 

If [ ]n
jiijaA
1, =

=  is a matrix of the linear transformation ϕ , then bAb λ= or 

if 
n
bbbb ,...,,

21
=  then 
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⎪
⎪

⎩

⎪
⎪

⎨

⎧

=+++

=+++

=+++

....

,.................................................

,...

,...

2211

22222121

11212111

nnnnnn

nn

nn

bbababa

bbababa

bbababa

λ

λ

λ

 

 

Since 0≠b , not all 
n

bbb ,...,,
21

 are equal to zero. This means that the system  

      

( )
( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

=−+++

=++−+

=+++−

.0...

,......................................................

,0...

,0...

2211

2222121

1212111

nnnnn

nn

nn

xaxaxa

xaxaxa

xaxaxa

λ

λ

λ

 (*)

has got non-zero solution, which means that the matrix of the system is singular 

(i.e. ( ) 0det =− IA λ ). This is called the characteristic equation. The roots of this 

equation are the characteristic numbers of the linear transformation. Every non-

zero solution of the system (*) will satisfy the corresponding matrix equation 

xAx λ=  and will be components of characteristic vector corresponding to the 

characteristic number λ  in the same basis as A. 

 Example 46: find characteristic numbers and characteristic vectors of the 

linear transformation ϕ  represented in a basis by a matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−

−−

=

202

043

2127

A . 

  

Solution: let us write the characteristic equation ( ) 0det =− IA λ , or   

( )( )( ) ( ) ( )=−−+−−−−−−−−=

−−−

−−

−−−

λλλλλ

λ

λ

λ

23644247

202

043

2127

  

( )( )( ) ( )( ) 01225632247
23

=+−−=++−=−−−−−−−= λλλλλλλλλλ , i.e. 

0
1
=λ , 2

2
=λ  and 1

3
−=λ . 

Firstly, let us consider the case 0
1
=λ . Then the system (*) will be:  

⎪
⎩

⎪
⎨

⎧

=−−

=−

=−−

.022

,043

,02127

31

21

321

xx

xx

xxx

 It has got non-zero solution because the determinant of 

the system is equal to zero. If we put tx 4
1
= , where t is any real number, then 

tx 3
2
=  from the second equation and tx 4

3
−=  from the third one. Thus the first 

characteristic vector will be ttte 4,3,4
1

−= , where t is any real number. 
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 Then, let we have 2
2
=λ . Then the system (*) will be: 

⎪
⎩

⎪
⎨

⎧

=−−

=−

=−−

.042

,063

,02125

31

21

321

xx

xx

xxx

 If we put tx =
2

, then tx 2
1
=  and tx 2

3
−= . And the 

second characteristic vector will be ttte 2,,2
2

−= , where t is any real number. 

 And finally, let we have 1
2

−=λ . Then the system (*) will be: 

⎪
⎩

⎪
⎨

⎧

=−−

=−

=−−

.02

,033

,02128

31

21

321

xx

xx

xxx

 If we put tx =
2

, then tx =
1

 and tx 2
3

−= . And the 

third characteristic vector will be ttte 2,,
3

−= , where t is any real number.  

  

• Euclid spaces.  

 

We will say that in finite-dimensional real linear space the scalar product is 

defined, if every two elements a and b corresponds with a real number ( )ba, , 

which satisfies the following properties. (a, b, c are arbitrary vectors, α  – a real 

number): 

I. ( ) ( )abba ,, = . 

II. ( ) ( ) ( )cbcacba ,,, +=+ . 

III. ( ) ( )baba ,, αα = . 

IV. If 0≠a , then ( ) 0, >aa . 

From II and III it follows that ( )∑∑∑∑
= ===

=

n

i

n

j

jiji

n

j

ii

n

i

ii baba

1 111

,βαβα . If in a 

finite-dimensional linear space the scalar product is defined, then such space is 

called Euclid space. In every finite-dimensional linear space the scalar product 

can be defined. For example, let { }
n
eee ,...,,

21
 be a basis in the linear space L.  

Then, if ∑
=

=

n

i

ii
ea

1

α  and ∑
=

=

n

i

ii
eb

1

β , we can state that  

( ) ∑
=

=

n

i

ii
ba

1

, βα  

satisfies all the properties of scalar product. 

 Two vectors a and b in a Euclid space are called orthogonal if ( ) 0, =ba . A 

system of vectors { }
n

aa ,...,
1

 is called orthogonal system if ( ) jiaa ji ≠= ,0, . 

 

 Theorem 2. Every orthogonal system is linear independent.  
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A vector a is called normalized if ( ) 1, =aa . If a vector 0≠a  then 

normalization is the following transformation of the vector: 

( )
a

aa
b

,

1
= . 

This vector will be normalized. The basis { }
n
eee ,...,,

21  is called 

orthonormal, if it is orthogonal and ( ) niee
ii

,1,1, == . Every Euclid space has 

orthonormal basis.  

 

• Orthogonal and symmetric transformations. 

 

A linear transformation ϕ  of a Euclid space is called orthogonal, if for 

every vector a from the space ( ) ( )( ) ( )aaaa ,, =ϕϕ . It has the following properties: 

1. For every vectors a and b it is true that ( ) ( )( ) ( )baba ,, =ϕϕ . From the definition 

( ) ( )( ) ( ) ( ) ( ) ( )bbbaaababababa ,,2,,, ++=++=++ ϕϕ , but on the other hand 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )+=++=++ aababababa ϕϕϕϕϕϕϕϕ ,,,

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )bbbaaabbba ,,2,,,2 ++=++ ϕϕϕϕϕϕ .  

     Hence ( ) ( )( ) ( )baba ,, =ϕϕ . 

2. The images of an orthonormal system under an orthogonal transformation form 

another orthonormal system. Let { }
n
eee ,...,,

21
 be a orthonormal system in the 

space. Let us consider ( ) ( )( ) ( ) 0, == jiji eee,e ϕϕ , if ji ≠ . And 

( ) ( )( ) ( ) 1, ==
iiii
eee,e ϕϕ . Hence ( ) ( ) ( ){ }

n
eee ϕϕϕ ,...,,

21
 is orthonormal. 

3. In every orthonormal basis the matrix of an orthogonal transformation is an 

orthogonal matrix (i.e. T
AA =

−1 ). 

4. Every orthogonal transformation is non-singular. 

 

 

A linear transformation ϕ  of a Euclid space is called symmetrical, if for every 

vectors a and b from the space ( )( ) ( )( )baba ϕϕ ,, = . It has the following 

properties: 

1. In every orthonormal basis the matrix of a symmetrical transformation is 

also a symmetric matrix (i.e. T
AA = ). Let { }

n
eee ,...,,

21
 be an 

orthonormal system in the space. Let us consider 

( )( ) ( ) ij

n

k

jkikj

n

k

kikji aeeaeeaee ==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑

== 11

,,,ϕ , and on the other hand 

     ( )( ) ( )( ) ( ) ji

n

k

kijk

n

k

kjkijiji aeeaeaeeeee ==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== ∑∑

== 11

,,,, ϕϕ . Hence jiij aa = . 
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2. All characteristic numbers of a symmetrical transformation are real. Let us 

have λ  that is a characteristic number (maybe complex) of the linear 

transformation with the matrix [ ]n
jiijaA

1, =

= . Let us consider the system  

( )
( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

=−+++

=++−+

=+++−

.0...

,.......................................................

,0...

,0...

2211

2222121

1212111

nnnnn

nn

nn

xaxaxa

xaxaxa

xaxaxa

λ

λ

λ

 

 

This system has got a non-zero solution because λ  is a characteristic number. 

Let it be nββ ,...,
1

 (maybe complex). Then i

n

j

jija λββ =∑
=1

, ni ,1= . Let 

us multiply the th
i  equation by 

i
β  (complex conjugate to 

i
β ) and sum up 

all the equations. We obtain ∑ ∑∑
= ==

=

n

i

n

i

ii

n

j

ijija

1 11

ββλββ . If we prove that the 

left-hand part of the equality is a real number it will imply that λ  is a real 

number as well, because ∑
=

n

i

ii

1

ββ  is always a real number. Let us consider 

==== ∑∑∑∑∑∑∑∑
= == == == =

n

i

n

j

jiji

n

i

n

j

ijij

n

i

n

j

ijij

n

i

n

j

ijij aaaa

1 11 11 11 1

ββββββββ  

∑∑
= =

=

n

i

n

j

ijija

1 1

ββ . Thus this is a real number and hence λ  is a real number 

as well. 

3. Characteristic vectors of a symmetrical transformation form an orthogonal 

system. Let 
1

λ  and 
2

λ  be two different characteristic numbers. And let a 

and b be corresponding characteristic vectors. Let us consider an expression 
( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ).,,,,,,,0

212121
bababaabbababa λλλλλλϕϕ −=−=−=−=

Then, because 
21

λλ ≠  ( ) 0, =ba . 

 

4. For every symmetrical transformation there exists an orthonormal basis in 

which the matrix of this transformation is diagonal. This basis consists of 

normalized characteristics vectors. On the diagonal in the matrix there are 

characteristic numbers. 
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Example 47: find the basis in which the matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

21

12
A  of a symmetric 

transformation is diagonal. 

 

Solution: let us find characteristic numbers of this transformation: 

( ) ( )( ) 0313412
21

12
22

=−−=+−=−−=

−

−

λλλλλ
λ

λ
. Thus 1

1
=λ  and 

3
2
=λ . 

Let us find the first normalized characteristic vector: 
⎩
⎨
⎧

=+

=+

0

,0

21

21

xx

xx

 or 
⎩
⎨
⎧

−=

=

,

,

2

1

tx

tx
 

where t is a real number. Then, 
( )

⎥
⎦

⎤
⎢
⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡

−−+
=

1

1

2

11

22
1

t

t

tt

e . 

Let us find the second normalized characteristic vector: 
⎩
⎨
⎧

=−

=+−

0

,0

21

21

xx

xx

 or 

⎩
⎨
⎧

=

=

,

,

2

1

tx

tx
 where t is a real number. Then, ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

+
=

1

1

2

11

22
2

t

t

tt

e . Hence the 

matrix A is diagonal in the basis { }
21

,ee , and it is ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=′

30

01

0

0

2

1

λ

λ
A . Let 

us check it. 1−
=′ TATA , where T is a matrix composed of characteristic vectors 

rows. In our case 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

2

1

2

1

2

1

2

1

T  and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=−

2

1

2

1

2

1

2

1

1
T . Then, 

==′
−1

TATA   

=⎥
⎦

⎤
⎢
⎣

⎡

−
⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

11

11

21

12

11

11

2

1

2

1

2

1

2

1

2

1

21

12

2

1

2

1

2

1

2

1

 

 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−
⋅⎥

⎦

⎤
⎢
⎣

⎡ −
=

30

01

60

02

2

1

11

11

33

11

2

1
. 
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IDENTIFYING SECOND DEGREE EQUATIONS 

 

• Classification of second degree curves. 

 

Thus far we have considered the first degree equations, where the variables 

in the equations were in the first degree. Next step is the second degree equations. 

The general equation of the second degree has the following form: 

 

0
22

=+++++ FEyDxCyBxyAx . 

 

Later you will see that there are only three different second order curves: ellipse, 

parabola, and hyperbola. Let us define them. 

 

 An ellipse is the set of all points yx,  the sum of whose distances from 

two distinct fixed points, called foci, is constant. The line through the foci 

intersects the ellipse at two points, called vertices. The chord joining the vertices 

is the major axis, and its midpoint is the center of the ellipse. The chord 

perpendicular to the major axis at the center is called the minor axis (Fig. 19). 
1

F  

and 
2

F  are foci, A  and C  are vertices, AC  is major axis and BD  is minor axis, 

O  is the center and constKFKF =+
21

 for any point K  on the ellipse. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19 

 

Let us deduce the standard equation of an ellipse. Let us put the center in the 

origin and foci at points 0,c  and 0,c− . Let us put major axis as a2 . Then 

the point will lie on the ellipse if ( ) ( ) aycxycx 2
2222
=++++− . 

Raising to the second power and simplifying we get  

1
2

2

2

2

=+

b

y

a

x
,  

1
F  

2
F  

K K ′

O  

D

C  

B

A
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where 22
cab −=  is the half of the minor axis. This is called the standard 

equation of an ellipse. 

A parabola is the set of all points yx,  that are equidistant from a fixed 

straight line called directrix and a fixed point called the focus (not on the 

straight line). The midpoint between the focus and the directrix is called the 

vertex, and the straight line passing through the focus and the vertex is called 

the axis of the parabola (Fig. 20).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 

 

 Using the definition we can easily derive the following standard form of 

the equation of a parabola. Let us suppose that the equation of the directrix is 

2

p
x −=   and the focus is in the point 0,

2

p
. Because the point yx,  is 

equidistant from 
2

p
x −=  and 0,

2

p
 we can write 

( )
2

0
2

2

2
p

xy
p

x +=−+⎟
⎠

⎞
⎜
⎝

⎛
− . Raising to the square both sides and simplifying 

the expression we obtain: 

 

pxy 2
2
= , 

 

which is called the standard equation of a parabola. 

 

 A hyperbola is the set of all points yx,  the difference of whose distances 

from two distinct fixed points, called foci, is constant. The graph of a hyperbola 

has two disconnected parts, called branches. The straight line through the two 

foci intersects the hyperbola at two points, called vertices. The straight line 

F  

 

B  

 A  
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segment connecting the vertices is the transverse axis, and the midpoint of the 

transverse axis is the center of the hyperbola (Fig. 21). 

 An important aid in graphing a hyperbola is the determination of its 

asymptotes. Each hyperbola has two asymptotes that intersect in the center of the 

hyperbola. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21 

 

Let us deduce the standard equation of a hyperbola. Let us put the center in the 

origin and foci at points 0,c  and 0,c− . Let us put the transverse axis as 

a2 . Then the point will lie on the hyperbola if 

( ) ( ) aycxycx 2
2222
=++−+− . Raising to the second power and 

simplifying we get  

1
2

2

2

2

=−

b

y

a

x
, 

where 22
cab −=  is referred to as the conjugate axis of the hyperbola. Note 

that asymptotes of a hyperbola pass through the corners of a rectangle of 

dimensions a2  and b2 . 

 

Example 48: find the standard equation of 09864
22

=+−++ yxyx . 

 Solution: let us at first group terms: ( ) ( ) 09246
22

=+−++ yyxx , then 

complete the squares: ( ) ( ) 04143
22

=−−++ yx  or 
( ) ( )

1
1

1

4

3
22

=
−

+
+ yx

. 

1
F  

2
F  

A

O  

a2  

b2  
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Finally making the substitution 
⎩
⎨
⎧

−=

+=

1

3

yy

xx
, we obtain the standard equation of an 

ellipse with major axis 2 and minor axis 1: 

1

12
2

2

2

2

=+
yx

. 

Example 49: find the standard equation of 0414244
22

=−+++− yxyx . 

 Solution: as in previous example let us complete the squares. We obtain: 

( ) ( ) 9234
22
=++−− yx . Making the substitution 

⎩
⎨
⎧

−=

+=

3

2

xy

yx
, we obtain the 

standard equation of a hyperbola: 

( )
1

2
33

2

2

2

2

=−

yx
. 

Example 50: find the standard equation of 0342
2

=−+− yxx . 

 Solution: we can rewrite the equation as ( ) ( )2114 −=−− xy . Making the 

substitution 
⎩
⎨
⎧

−=

−=

1

1

xy

yx
, we obtain the standard equation of a parabola: 

xy 4
2

−= . 

 From the previous examples we can see, that if the general equation of the 

second degree 0
22

=+++++ FEyDxCyBxyAx  does not contain the term 

Bxy , completing the square and making the linear substitution, we can easily 

identify the curve and write its equation in the standard form. The following 

method helps us in case 0≠B . 

 

• The eigenvalues method. 

 

 Let us consider the first part of the general equation of the second degree 
22

CyBxyAx ++ , which is called the quadratic form. It can be written in the 

form [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⋅

y

x

CB

BA
yx

2

2 . The matrix 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

CB

BA

2

2  is called the matrix of the 

quadratic form. It is a symmetric matrix, and we know that there exists a basis in 

which this matrix is diagonal. Furthermore, this basis is the basis of eigenvectors. 

Thus, making the substitution ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

y

x
T

y

x

~

~

, where T  is the transition matrix, we 
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make the quadratic form not to contain the term Bxy . Moreover, the quadratic 

form becomes 2

2

2

1

~~

yx λλ + .  

 

Example 51: find the standard equation of  

0131423103
22

=−−−++ yxyxyx . 

 Solution: let us write the matrix of the quadratic form ⎥
⎦

⎤
⎢
⎣

⎡
=

35

53
A . Then, let 

us find its eigenvalues. The characteristic equation is 

166
35

53
2

−−=

−

−

λλ
λ

λ
 

Solving it we get 8
1
=λ  and 2

2
−=λ . Let us now find the corresponding 

eigenvectors. 

Let us find the first normalized eigenvector: 
⎩
⎨
⎧

=−

=+−

055

,055

21

21

xx

xx

 or 
⎩
⎨
⎧

=

=

,

,

2

1

tx

tx
 where 

t is a real number. Then, ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

+
=

1

1

2

11

22
1

t

t

tt

e . Let us find the second 

normalized eigenvector: 
⎩
⎨
⎧

=+

=+

055

,055

21

21

xx

xx

 or 
⎩
⎨
⎧

=

−=

,

,

2

1

tx

tx
 where t is a real number. 

Then, 
( )

⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡−

−+
=

1

1

2

11

22
2

t

t

tt

e . Hence the matrix A is diagonal in the 

basis { }
21

,ee , and the transition matrix ⎥
⎦

⎤
⎢
⎣

⎡ −
=

11

11

2

1
T . Then, let us make the 

substitution ⎥
⎦

⎤
⎢
⎣

⎡

+

−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

yx

yx

y

x

y

x
T

y

x

~~

~~

2

1

~

~

11

11

2

1

~

~

. Putting this into the 

equation we obtain 013
~

26
~

28
~

2
~

8
22

=−+−− yxyx . After completing the 

squares, we get 08
2

23~
2

2

2~
8

22

=−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
− yx . Making the substitution  

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

−=

,
2

23~

,
2

2~

yy

xx

 we obtain the standard form of the equation of a hyperbola  

1

21
2

2

2

2

=−

yx
. 
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Example 52: find the standard equation of  

0501102016249
22

=−+−+− yxyxyx . 

 Solution: let us write the matrix of the quadratic form ⎥
⎦

⎤
⎢
⎣

⎡

−

−
=

1612

129
A . 

Then, let us find its eigenvalues. The characteristic equation is 

025
1612

129
2

=−=

−−

−−

λλ
λ

λ
. Solving it we get 0

1
=λ  and 25

2
=λ . Let us now 

find the corresponding eigenvectors. 

Let us find the first normalized eigenvector: 
⎩
⎨
⎧

=+−

=−

01612

,0129

21

21

xx

xx

 or 
⎩
⎨
⎧

=

=

,3

,4

2

1

tx

tx
 

where t is a real number. Then, ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

+
=

3

4

5

1

3

4

916

1

22
1

t

t

tt

e . Let us find the 

second normalized eigenvector: 
⎩
⎨
⎧

=−−

=−−

0912

,01216

21

21

xx

xx

 or 
⎩
⎨
⎧

=

−=

,4

,3

2

1

tx

tx
  where t is a 

real number. Then, 
( )

⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡−

−+
=

4

3

5

1

4

3

916

1

22
2

t

t

tt

e . Hence the matrix A is 

diagonal in the basis { }
21

,ee , and the transition matrix ⎥
⎦

⎤
⎢
⎣

⎡ −
=

43

34

5

1
T . Then, let 

us make the substitution ⎥
⎦

⎤
⎢
⎣

⎡

+

−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

yx

yx

y

x

y

x
T

y

x

~
4

~
3

~
3

~
4

5

1

~

~

43

34

5

1

~

~

. Putting this 

into the equation we obtain 050
~

100
~

50
~

25
2

=−++ yxy . After completing the 

squares and dividing by 25, we get ( ) 06
~

22
~ 2

=−++ xy . Making the substitution  

⎩
⎨
⎧

+=

−=

,2~

,3~

yy

xx
 we obtain the standard form of the equation of a parabola 

xy 2
2

−= . 

 

Example 53: find the standard equation of  

02246464251425
22

=−−++− yxyxyx . 

 Solution: let us write the matrix of the quadratic form ⎥
⎦

⎤
⎢
⎣

⎡

−

−
=

257

725
A . 

Then, let us find its eigenvalues. The characteristic equation is 

067450
257

725
2 =−−=

−−

−−
λλ

λ

λ
. Solving it we get 18

1
=λ  and 32

2
=λ . Let  
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us now find the corresponding eigenvectors. 

Let us find the first normalized eigenvector: 
⎩
⎨
⎧

=+−

=−

077

,077

21

21

xx

xx

 or 
⎩
⎨
⎧

=

=

,

,

2

1

tx

tx
 where t 

is a real number. Then, ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

+
=

1

1

2

11

22
1

t

t

tt

e . Let us find the second 

normalized eigenvector: 
⎩
⎨
⎧

=−−

=−−

077

,077

21

21

xx

xx

 or 
⎩
⎨
⎧

=

−=

,

,

2

1

tx

tx
 where t is a real number. 

Then, 
( )

⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡−

−+
=

1

1

2

11

22
2

t

t

tt

e . Hence the matrix A is diagonal in the 

basis { }
21

,ee , and the transition matrix ⎥
⎦

⎤
⎢
⎣

⎡ −
=

11

11

2

1
T .  Then, let us make the 

substitution ⎥
⎦

⎤
⎢
⎣

⎡

+

−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

yx

yx

y

x

y

x
T

y

x

~~

~~

2

1

~

~

11

11

2

1

~

~

. Putting this into the 

equation we obtain 0224
~

264
~

32
~

18
22

=−−+ yyx . After completing the 

squares and dividing by 288, we get 
( )

1
9

2
~

16

~ 22

=
−

+
yx

. Making the substitution 

⎩
⎨
⎧

−=

=

,2~

,~

yy

xx
 we obtain the standard form of the equation of an ellipse 

1

34
2

2

2

2

=+
yx

. 

 

• Sketching second degree curves. 

 

 It is easy to sketch a second degree curve if its equation is given in the 

standard form. However, it is possible in general case. Each substitution we made 

in examples 51-53 is a transformation of the coordinate axes. Since eigenvectors 

of a symmetric matrix are orthogonal their directions could be coordinate axis 

direction. After the first substitution the coordinate axes “rotate” with respect to 

the origin. The second substitution is linear, thus the coordinate axes shift with 

respect to the origin. And in the obtained coordinate system yx,  we sketch the 

curve given in the standard form. 

 

Example 54: sketch the curve 0131423103
22

=−−−++ yxyxyx . 
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 Solution: as it is shown in the example 51 the standard form of this 

equation 1

21
2

2

2

2

=−

yx
, where ⎥

⎦

⎤
⎢
⎣

⎡

+

−
=⎥

⎦

⎤
⎢
⎣

⎡

yx

yx

y

x

~~

~~

2

1
 and 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

−=

2

23~

2

2~

yy

xx

. Firstly, x~ -

axis has the direction of ⎥
⎦

⎤
⎢
⎣

⎡
=

1

1

2

1

1
e , and y

~ -axis has the direction of 

⎥
⎦

⎤
⎢
⎣

⎡−
=

1

1

2

1

2
e . Secondly, x -axis has the same direction as x~ -axis and has a shift 

2

23−

. y -axis has the same direction as y~ -axis and has a shift 
2

2
. Finally, in 

the new coordinate system yx,  we sketch a hyperbola with the equation 

1

21
2

2

2

2

=−

yx
 (Fig. 22). 
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Example 55: sketch the curve 0501102016249
22

=−+−+− yxyxyx . 

  

Solution: as it is shown in the example 52 the standard form of this equation 

xy 2
2

−= , where ⎥
⎦

⎤
⎢
⎣

⎡

+

−
=⎥

⎦

⎤
⎢
⎣

⎡

yx

yx

y

x

~
4

~
3

~
3

~
4

5

1
 and 

⎩
⎨
⎧

+=

−=

.2~

,3~

yy

xx
 Firstly, x

~ -axis has the 

direction of ⎥
⎦

⎤
⎢
⎣

⎡
=

3

4

5

1

1
e , and y~ -axis has the direction of ⎥

⎦

⎤
⎢
⎣

⎡−
=

4

3

5

1

2
e . Secondly, 

x -axis has the same direction as x~ -axis and has a shift 2 . y -axis has the same 

direction as y~ -axis and has a shift 1− . Finally, in the new coordinate system 

yx,  we sketch a parabola with the equation xy 2
2

−=  (Fig. 23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23 

 

Example 56: sketch the curve 02246464251425
22

=−−++− yxyxyx . 

  

 Solution: as it is shown in the example 53 the standard form of this 

equation 1

34
2

2

2

2

=+
yx

, where ⎥
⎦

⎤
⎢
⎣

⎡

+

−
=⎥

⎦

⎤
⎢
⎣

⎡

yx

yx

y

x

~~

~~

2

1
 and 

⎩
⎨
⎧

−=

=

.2~

,~

yy

xx
. Firstly, x~ -

y  

y
~

 

y  

x  

x  

x
~

 

1
e  

2
e  

3  

2
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axis has the direction of ⎥
⎦

⎤
⎢
⎣

⎡
=

1

1

2

1

1
e , and y

~ -axis has the direction of 

⎥
⎦

⎤
⎢
⎣

⎡−
=

1

1

2

1

2
e . Secondly, x -axis has the same direction as x~ -axis and has a 

shift 2 . y -axis coincides with y~ -axis. Finally, in the new coordinate system 

yx,  we sketch a hyperbola with the equation 1

34
2

2

2

2

=+
yx

 (Fig. 24). 
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PROBLEMS 

 

• Determinants. 

 

Find the determinants: 

1. 

3111

1311

1131

1113

 2. 

201041

10631

4321

1111

 3. 

3214

2143

1432

4321

 4. 

1234

2143

3412

5321

−−

−−

−−

           

5. 

5111

1411

1131

1112

 6. 

642781

16941

4321

1111

 7. 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )accbba

accbba

accbba

+++

+++

−−−

sinsinsin

coscoscos

coscoscos

 

8*. 

0321

021

301

321

L

MOMMM

L

L

L

−−−

−−

−

n

n

n

 9*. 

nL

MOMMM

L

L

L

222

2322

2222

2221

 10*. 

xaaa

axaa

aaxa

aaax

L

MOMMM

L

L

L

 

 

Solve the systems by the Cramer’s rule: 

11. 
⎪
⎩

⎪
⎨

⎧

=+−

=−+−

=+−

.0123

,232

,32

zyx

zyx

zyx

 12. 
⎪
⎩

⎪
⎨

⎧

−=+−

=++−

=−+

.623

,622

,22

zyx

zyx

zyx

 13. 
⎪
⎩

⎪
⎨

⎧

=+−

=+−

=+−

.253

,1342

,342

zyx

zyx

zyx

 

14. 
⎪
⎩

⎪
⎨

⎧

=++

=++

=++

.3473

,322

,10532

zyx

zyx

zyx

 15. 
⎪
⎩

⎪
⎨

⎧

=−−

=++

−=−+−

.02

,3

,33

zyx

zyx

zyx

 16. 
⎪
⎩

⎪
⎨

⎧

=−+−

−=−+

=++

.323

,632

,0

321

321

321

xxx

xxx

xxx

 

17. 
⎪
⎩

⎪
⎨

⎧

=−+

−=−+

=−+

.0123

,232

,32

zyx

zyx

zyx

 18. 
⎪
⎩

⎪
⎨

⎧

=+

=+−

=++

.225

,323

,32

21

321

321

xx

xxx

xxx

 19. 
⎪
⎩

⎪
⎨

⎧

=−

−=−

=++

.756

,1732

,36

31

31

321

xx

xx

xxx

 

20. 
⎪
⎩

⎪
⎨

⎧

=++−

=+−

=−+

.7

,13

,36

321

321

321

xxx

xxx

xxx

 21. 
⎪
⎩

⎪
⎨

⎧

=−+

=+−

=++

.872

,1353

,42

321

321

321

xxx

xxx

xxx

 22. 
⎪
⎩

⎪
⎨

⎧

=−+

−=−+

=+−

.5997

,1637

,28942

321

321

321

xxx

xxx

xxx
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23. 
⎪
⎩

⎪
⎨

⎧

=−

=+

=+

.105

,163

,52

32

31

21

xx

xx

xx

 24. 
⎪
⎩

⎪
⎨

⎧

=+−

=+−

=++

.3651110

,15235

,15327

321

321

321

xxx

xxx

xxx

 25. 
⎪
⎩

⎪
⎨

⎧

−=++−

=+−

=++

.7

,13

,17

321

321

321

xxx

xxx

xxx

 

26. 
⎪
⎩

⎪
⎨

⎧

−=++−

=+−

=++

.4

,10

,2

321

321

321

xxx

xxx

xxx

 27. 

⎪
⎩

⎪
⎨

⎧

=++−

−=+−

=++

.17

,13

,21

321

321

321

xxx

xxx

xxx

 28. 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=−++

−=−−+

−=−−−

=+++

.432

,632

,423

,132

4321

4321

4321

4321

xxxx

xxxx

xxxx

xxxx

 

29. 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=++−

=+−+

=−−−

=−++

.8232

,4223

,8322

,6232

4321

4321

4321

4321

xxxx

xxxx

xxxx

xxxx

 30. 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=+++

=+++

=+++

=+++

.5234

,1223

,1322

,5432

4321

4321

4321

4321

xxxx

xxxx

xxxx

xxxx

 

 

• Vector algebra. 

 

1. Find the angle between vectors pqa
rrr

+=  and qpb
rr

r

−= , if ,2=p
r

 1=q
r

, 

0
135=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∧

qp
rr

.  

2. Find the angle between vectors qpa
rrr

−= 2  and qpb
rr

r

2+= , if 1== qp
rr

 and 

( )
3

^
π

=qp
rr

.  

3. Find the angle between vectors nma

rrr

2+=  and nmb
rr

r

−= 3 , if 1=m

r

, 

2=n

r

, 0
120=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∧

nm

rr

.  

4. Prove that in a parallelogram the sum of diagonal squares is equal to the sum 

of all sides’ squares.  

5. Find pnm
rrr

−+ 2 , if 2== mn

rr

, 1=p
r

, 0
60=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∧
nm
rr

, =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∧
pm
rr

 

0
90=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∧
= pn

rr

. Find the angle between vectors a
r

 and b
r

 if 6,2,3 −=a

r

 and 

1,2,2 −=b
r

.  

6. Find a
cb

r

r

r

+
proj , if 4,3,1 −a

r

, 2,4,3 −b
r

, 4,1,1−c
r

.  

7. Find ( )ca
b

rr

r 32proj + , if 1,1,2 −−a

r

, 0,1,2 −b
r

, 7,3,1 −−c

r

.  

8. Find the angles of the triangle ABC, if А 1,2,1 , В 7,1,3 − , С 2,4,7 − .  
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9. Find the components of the vector x
r

, if kjix
rrr

r

+−⊥ 2 , kjix
rrr

r

+−⊥ 32 , 

and modulus of the vector x
r

 equals 36 .  

10. Find the components of the vector x
r

, if kjix
rrr

r

−−⊥ , ( ) 2=− jix
rr

r

, and 

6=x

r

.  

11. Find the components of the vector x
r

, if ABC∆⊥x

r

: А 4,3,1 , В 9,0,1− , 

3,2,3C , and 35=x

r

.  

12. Find the area of the parallelogram ABCD if 3,0,1A , 5,1,2−B  and 

4,5,1 −−C . Find the area of the triangle ABC if 0,1,1A , 1,0,1B , 

1,1,2C . 

13. Find ba
r

r

×  if 1=a

r

, 2=b
r

 and 1−=⋅ ba
r

r

. 

14. Find ba
r

r

⋅  if 5=a
r

, 3=b
r

 and 9=× ba
r

r

. 

15. Find ( ) ( )baba
r

r

r

r

32 +×−  if 2== ba
r

r

 and ( )
6

5
^

π

=ba
r

r

. 

16. Find ( ) ( )abba
r

rr

r

−×− 232 , if 2=× ba
r

r

.  

17. Prove that 
bbab

baaa
ba vr

r

r

r

rrr

r

r

⋅⋅

⋅⋅

=×

2

.  

18. Find ( )cbaba
r

r

r

r

r

323 +−  if 2=cba
r

r

r

.  

19. Find ( ) ( ) ( )cbacbacba
r

r

rr

r

rr

r

v

533232 −+⋅++−×+− , if 2=cba
r

r

r

.  

20. Find the volume of the pyramid ABCD if 3,2,1 −A , 2,1,0 −B , 4,5,1 −−C  

and 5,7,2D .  

21. Prove that vectors cba
r

r

r

74 ++ , cba
r

r

r

852 ++  and cba
r

r

r

963 ++  are always 

coplanar. 

22. Find λ  such that vectors 3,2,1 − , 1,2,4 − , λ,0,1−  are coplanar.  

 

• Analytic geometry. 

 

1. Find the equation of the plane passing through the point А(0; 1; 3) and the 

line 
21

1

2

zyx
=

−

+
= . 

2. Find the equation of the plane passing through the points А(-1; 1; 2), В(0; 1; 

3) and С(2; 0; -1. 

3. Find the equation of the plane passing through two parallel lines: 

41

1

3

1 zyx
=

−

−

=

−

, 
4

5

13

+
=

−

=
zyx

. 
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4. Find the equation of the plane passing through the point А(0; 1; 3) and the 

line 
21

1

2

zyx
=

−

+
= . 

5. Find the equation of the plane passing through the point 1,0,2 , parallel to 

vectors 3,1,1 −=a
r

 and 1,2,0 −=b
r

.  

6. Find the equation of the plane passing through the points А(-1; 1; 2), В(0; 1; 

3) and 1,0,2 −C . 

7. Find the equation of the plane passing through the points 1,0,1−A , 

1,3,0B , 0,2,4 −C . 

8. Find the bisector to planes 0222 =++− zyx  and 0334 =−+ zy . 

9. Find the angle between planes 01362 =++− zyx  and 

016124 =+−+− zyx . 

10. Find the angle between planes 022 =++− zyx  and 032 =−++ zyx .  

11. Find λ  and µ  such that planes 02 =++− zyx λ  and 033 =−++ zyxµ  

are parallel. 

12. Determine the positional relationship between the straight lines 

4

1

32

2 −
=

−

=
+ zyx

 and 
2

7

4

13 −

=

−

=

− zyx

α

.  

13. Find the canonical equation of a straight line 
⎩
⎨
⎧

=+−

=+−

012

023

zx

zyx
. 

14. Find the distance between the point М(1; 2; -3) and the plane 

01186 =−+− zyx . 

15. Find the intersection of the line 
1

4

3

1

2

1

−

+
=

−

+
=

+ zyx
 and the plane 

062 =−++ zyx . 

16. Find the plane passing through two parallel lines: 
41

1

3

1 zyx
=

−

−
=

−
, 

4

5

13

+
=

−

=
zyx

. 

17. Find the point of intersection between the straight line 
3

4

0

1

2

1

−

−
=

−
=

+ zyx
 

and a plane 03432 =−+− zyx . 

18. Find the projection of the point 2,0,1 −M  to the plane 0932 =−+− zyx . 

19. Find the projection of the point 2,2,1 −M  on the straight line 
20

3

1

zyx
=

+
=  

and the equation of the perpendicular from the point M on the straight line. 
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20. Find the volume of the pyramid ABCD if 3,2,1 −A , 2,1,0 −B , 4,5,1 −−C  

and 5,7,2D . 

21. Find the volume of the pyramid ABCD if 1,1,2 −A , 4,5,5B , 1,1,3 −C , 

3,1,4D . 

 

• Matrices. 

 

Find products 

1. ⎥
⎦

⎤
⎢
⎣

⎡ −
⋅⎥

⎦

⎤
⎢
⎣

⎡

11

11

23

12
. 2. ⎥

⎦

⎤
⎢
⎣

⎡

−
⋅⎥

⎦

⎤
⎢
⎣

⎡

− 23

12

16

53
. 3. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

101

112

111

321

212

113

. 

4.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⎥
⎦

⎤
⎢
⎣

⎡

01

12

13

103

112
. 5.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⎥
⎦

⎤
⎢
⎣

⎡

−
3

2

1

120

132
. 6.[ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅

1

3

2

321 . 7. [ ]321

3

1

2

−⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

. 

8*. 

n

⎥
⎦

⎤
⎢
⎣

⎡

10

11
 9*. 

n

⎥
⎦

⎤
⎢
⎣

⎡

− ϕϕ

ϕϕ

cossin

sincos
  

Find ( )Af  

10. ( ) 1
2

−−= xxxf , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

011

213

112

A . 11. ( ) 35
2

+−= xxxf , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

123

010

001

A . 

Solve the systems using Gauss-Jordan elimination method 

12. 
⎪
⎩

⎪
⎨

⎧

−=+−

=++−

=−+

.623

,622

,22

zyx

zyx

zyx

 13. 
⎪
⎩

⎪
⎨

⎧

=+−

=+−

=+−

.253

,1342

,342

zyx

zyx

zyx

 14. 
⎪
⎩

⎪
⎨

⎧

=++

=++

=++

.3473

,322

,10532

zyx

zyx

zyx

  

15. 
⎪
⎩

⎪
⎨

⎧

=−−

=++

−=−+−

.02

,3

,33

zyx

zyx

zyx

 16. 
⎪
⎩

⎪
⎨

⎧

=−+−

−=−+

=++

.323

,632

,0

321

321

321

xxx

xxx

xxx

  

17. 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=++−

=+−+

=−−−

=−++

.8232

,4223

,8322

,6232

4321

4321

4321

4321

xxxx

xxxx

xxxx

xxxx

       18. 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=++−

=+−+

=−−−

=−++

.8232

,8223

,4322

,6232

4321

4321

4321

4321

xxxx

xxxx

xxxx

xxxx
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Find the inverse of the matrices  

19. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=

510

305

017

A . 20. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−=

302

012

520

A . 21. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=

011

231

230

A .  

22. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

301

010

521

A . 23. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=

081

013

551

A . 24.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−

−−

=

21103

1041

1072

2131

A . 

 

Solve the systems using an inverse of the matrix 

25. 
⎪
⎩

⎪
⎨

⎧

=+−

=++

=++

.103

,2925

,312

321

321

321

xxx

xxx

xxx

  26. 
⎪
⎩

⎪
⎨

⎧

=+−

=++−

=−+

.10273

,7235

,5242

321

321

321

xxx

xxx

xxx

 27. 
⎪
⎩

⎪
⎨

⎧

=−

−=−

=−

.2023

,554

,1045

31

32

21

xx

xx

xx

 

28.   
⎪
⎩

⎪
⎨

⎧

−=+−

=++−

=−+

.623

,622

,22

zyx

zyx

zyx

    29. 
⎪
⎩

⎪
⎨

⎧

=+−

=+−

=+−

.253

,1342

,342

zyx

zyx

zyx

    30. 
⎪
⎩

⎪
⎨

⎧

=++

=++

=++

.3473

,322

,10532

zyx

zyx

zyx

 

 

Find the rank of the matrices 

31. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

5827

2313

1112

1201

.    32. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7732654

3214321

63100

52010

41001

.     33. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−

81282

611174

202133

21392

41141

.     

       34. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−

−

−−

−−

30122511

327167

02594

34273

36321

.       35.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−−−

−−−

−−−−

121111

572106

134852

220112

211321

. 

Find the fundamental system of solutions of the following systems 

36. 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=+−+−

=−+−+

=+−−−

=++−+

.031625

,05341211

,027322

,0283

54321

54321

54321

54321

xxxxx

xxxxx

xxxxx

xxxxx

  37. 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=+−−−

=+++

=+−−−

=++++

.02342

,0423

,0332

,02

54321

5431

54321

54321

xxxxx

xxxx

xxxxx

xxxxx
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38. 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=−−−

=+−+−

=+−+−

=−+−+

.0337

,03436

,02353

,022

4321

54321

54321

54321

xxxx

xxxxx

xxxxx

xxxxx

      39. 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=++−

=++−−

=++−−

=++−−

.024

,048736

,025325

,0234

4321

54321

54321

54321

xxxx

xxxxx

xxxxx

xxxxx

 

 

 

• Linear transformations and second degree curves. 

 

1. Find eigenvalues and eigenvectors of the matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−

−−

=

202

043

2127

A . 

2. Find eigenvalues and eigenvectors of the matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

311

131

113

A . 

3. Sketch the curve 0131423103
22

=−−−++ yxyxyx . 

4. Sketch the curve 0501102016249
22

=−+−+− yxyxyx . 

5. Sketch the curve 02246464251425
22

=−−++− yxyxyx . 

6. Sketch the curve 036121634
2

=−−++ yxyxy . 

7. Sketch the curve 028122867
22

=+++−+ yxyxyx . 

8. Sketch the curve 02963811619
22

=+++++ yxyxyx . 

9. Sketch the curve 020204525
22

=++−+− yxyxyx . 

10. Sketch the curve 0139184212414
22

=−+−++ yxyxyx . 

11. Sketch the curve 0182042011
22

=+−−−− yxyxyx . 

12. Sketch the curve 07601432607
22

=+−−++ yxyxyx . 

13. Sketch the curve 067810035850
22

=+−++− yxyxyx . 

14. Sketch the curve 012911234342441
22

=+−+++ yxyxyx . 

15. Sketch the curve 0919682362429
22

=−−++− yxyxyx . 

16. Sketch the curve 051426411244
22

=+++++ yxyxyx . 
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