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DETERMINANTS

e Definition and basic properties.

Let us consider the system of two linear algebraic equations in two
variables

apx+apy=by,

ale + a22y = bz .
Using the method of substitution we can write the solution of this system

X = bia,, —byay, and y =

a11ay; — a4y a4y —apar

b,a,, — byay,

The numbers that are in numerator and denominator are often written as

@11 42 b b _ by ay, b b | by
a11ay — a8 = > D1y —Drayy = > Dhay — D14y = .
ay; 4apy b, a, ay b,
ap

a
The number
ay; A4y

= @109, — A8, 1s called the determinant of the second

order.

Analogously, let us consider the system of three linear algebraic equations
in three variables

apXx+apy+apz=>b,
a21x + azzy + a23z = bz, .

a31x + a32y + a33z = b3.
Using the method of substitution we can write the solution of this system

biayaz; +ay,a,3b5 +agzbyaszy —azayby —apbyas; —bjayas,

X = 5
A1103033 + 13093431 + A130103) — A 303031 — A1301033 — A11d303)

y= ay byasy + bayzaz, +aza,b; —azbyay —biayaz; —agay;b; )
- )
A11a3033 + 13093431 + A130103) — A 303031 —A1301033 — A11d303,




ayaybs +ap,byay, + bayas, —biayaz —apay by —agbyaz,

z=

1103033 + 13093431 + A130103) — A 303031 — A13091033 — A11d303)

The numbers that are in numerator and denominator are often written as

1103033 + A130,53031 + Q13091035 — 130903 — Q1051033 —
ap a1y a3
— 4114343 = Ay Ay A3,

asz; asz 4asz

by ay
biayazz +apay3b; +apzbyasy —aza,by —apbyaz; —bayzas, =\by  ap,
by as
ay b
aybyazs + bayzaz +a3ay.b3 —azbyas, —biayaz; —aya53b3 =|ay by
az; by
ay ap

ayayb; +a,byaz + biayiaz, —biayay —apay by —aybyaz, =lay  ay,

The number

11023033 + A130,3031 + Q13091035 — 130903 — 1071033 —
ap a4 a3
—aq1ay3a3; =|dy; Ay Ap3

a3 a3 ds3
is called the determinant of the third order.

It easily can be proved that

app a4 a3
Ay day3 a1 a3 ay an
ay; ap; a3 =ag —dy +ag;
as, dass asz; ajzs az; asxp
az; 4z dass




which is called the decomposition by the first row. Note that the signs in this
decomposition are alternating. Now we can give the inductive definition to the

determinant of any order.

a
1. A, =| M

ax

ar
A .

a,

ar

as;
—dap| .

a1

ap

a

ar

a,

a3

ass

a,3

=apn

+uwt(-1)"a,

= a1y —apas; .

as

a,

ass

a,3

ax

as

a1

a,

Thus, the determinants of the n” order are expressed in the terms of the

th

determinants of the (n—1)" order.

The properties of the determinants are as follows.

1. If all rows are substituted for all columns the determinant stays the same.
This operation is called transposition:

a

ar

a1

ap;

aj

a,

a;

a,

nn

n

n

ap

ag;

Ain

as

az

ary

a4,

a,

nn

It follows from this property that every statement that is true for rows is
also true for columns.
2. If one of the rows consists only of zeros then the determinant is equal to

ZCro.

3. If a determinant is obtained from another by interchanging two rows then
the determinants are distinguished by the sign.



an
ai

am

4. If a determinant contains two equal rows then it is equal to zero.

n
in

jn

nn

a1

a1

a1

n
jn
in

nn

5. If all entries are multiplied by a number & then the determinant also

multiplies by &:

a1
ka;,

am

6. If two rows of a determinant are proportional then the determinant is equal

to zero.

7. If all entries of a row of a determinant can be represented as

a;=b;+c;,j= 1,n then the determinant can be represented as a sum of

two determinants:

an
b, + ¢,

a

nl

an
b,

au

nn

a1
&

am

nn

&. If a row in a determinant is a linear combination of other rows then the

determinant is equal to zero.

9. A determinant stays the same if we multiply all entries of a row by the
same number and add them to the entries of another row.



All of these properties can be proved using the principle of mathematical
induction. For instance let us prove the second property.

0
. By the

Let us consider the determinant of the second order b‘
a

definition it is equal to zero in the same way as . Let us assume that this

property is true for all determinants of the order less than n. Then, we consider the
determinant

ap, ap Aip
ay; 4ap ay,
anl an2 ann
By the definition
app 4 - Ay ay, 4aps arp ay; a3 ar,
a an Ay (@3 a3z as, a3 ds3 as,
. . =daq| . . .| T aqal . . .
a,17 4, -~ a,, a,, Qa,3 -~ 4a,, a,1 au3 Aun
ay; Ay ar n-1
a a a
-1 31 32 2 n-1
tot(=1)""a,| . :
a1 Ay - 4, ypg

There are two possible variants:

1) if the entries of the first row are equal to zero, then in the right-hand side all
coefficients before the determinants are equal to zero. Consequently, the
determinant in the left-hand side is also equal to zero.

2) if the entries of another row are equal to zero, then all determinants in right-
hand side contain the row which entries are equal to zero. Finally, since by
the induction hypothesis, all of them are equal to zero. Consequently, the
determinant in the left-hand side is also equal to zero.

Thus, the property is proved.
Note that it follows from the properties of determinants that the definition
of it can be given as a decomposition by any row or column.

cosp —sing

Example I: find

sing cosg



cosp —sing

Solution: :c0s2¢—(— sin’ ¢):c0s2¢+sin2¢):1.

sing cosg

1 a a*
Example 2: find 1 b b*|.
1 ¢ c?
Solution:
aZ
b b 1 b 1 b
1 b b*=1 z—al 2+a21 =bc? —b*c—ac® +ab* +a*c—a’b =
) c ¢ c c
c ¢

=bc(c—b)—a(c—b)(c+b)+a2(c—b): (c—b)(bc—ac—ab+a2):

=(c-b)c(b—a)-alb—a))=(b—a)c—a)c-b).

e Systems of » linear algebraic equations in » variables. Cramer's rule.

In the first paragraphs it was shown that the solution of the systems of two
and three equations in two and three variables is represented as the quotient of
determinants. Now we will generalize this to the general case.

Let us consider the system of » linear algebraic equations in n variables:
a,x, +a,x,+..+a,,x, =b,,

1n"%n

a, X, +a,x, +..+a,x,=b,,

(*)

a, ,x +a,x,+..+a,x, =b,.

The system is called consistent, if there exists a set of values of variables,
which satisfies every equation in the system.

The system i1s called determined, if there exists a unique set of values of
variables, which satisfies every equation in the system.

The determinant formed with the coefficients of this system is called the

determinant of the system



The determinant of the system, in which the i column is substituted by the
column of right-hand values, is called the determinant of the i"" variable:

all “ee bl cee aln

n nn

Now we can formulate the Cramer's rule.
1. If A=0,3i:A; #0 then the system (*) is inconsistent.

2. If A=0,A; =0,i = 1,n then the system (*) is consistent, but undefined.

A.
3. If A #0 then the system (*) is defined and x; = Xl’i =1,n.

Example 3: solve the system

x+y-—z=36,
x+z—-y=13,
y+z—-x="1.

Solution: let us find the determinant of the system. Note that in the first

column formed by the coefficients before x, second by the coefficients before y,
third by the coefficients before z:

-1 1 1 1
A=1 -1 1|=1 -1

1 1 -1 1

1 -1
+(-1 =2-2+0=—4.
-1 1

Then, let us find the determinants of the variables:

36 1 -1
-1 1 @3 11 (3 -1
A, =13 -1 1[=36 -1 -1 =-72-6-20=-98,
1 1 7 1 7 1
7 1
1 36 -1
13 1 1 1 (13 -1
A =|1 13 =1 - +1 =6-72-20=-86,
Y 7 1 -1 1 7
-1 7 1

10



Thus, the system is determined and

A, -98 49 A, -8 43 A, —40
X = =_=_,y=—=—=—’z=—=—=10
A -4 2 A -4 2 A -4

Example 4: solve the system
2x—y+z=-2,
xX+2y+3z=-1,
x-3y—-2z=3.

Solution: at first let us find the determinant of the system:

2 -1 1
3 1 3
A=1 2 3|=2 —(- +1 =10-5-5=0.
-3 -2 1 -2 -
1 -3 -2
Then, let us find the determinants of the variables.
-2 -1 -1
2 1 -1 1 -1 2
A, =-1 2 1|=-2 +1 -1 =-10-4-9=-23,
-3 1 3 1 3 -3
3 -3 1
2 -2 1
-1 3 1 3 -1
A, =1 -1 3|=2 —(—2 +1 =22-10+4 =26,
3 -2 1 -2 3
1 3 -2
2 -1 -2
2 -1 1 -1 1 2
A,=1 2 -1=2 —(—1 -2 =18-4-10=4.
-3 3 1 3 1 -3
1 -3 3

Since, A =0,A ,A y,Az # 0 the system is inconsistent.

11



VECTOR ALGEBRA

e Vectors and vector operations.

Many quantities in geometry and physics, such as area, time, and
temperature, can be represented by a single real number. Other quantities, such as
force, velocity, involve both magnitude and direction and cannot be completely
characterized by a single real number. To represent such a quantity, we use a

directed line segment, as shown in Fig. 1. The directed line segment PQ has

initial point P and terminal point Q, and we denote its length by ‘P—Q‘

0
PQ
P

Fig. 1

Two directed line segments that have the same length (or magnitude) and
direction are called equivalent. For example, the directed line segments in Fig. 2
are all equivalent. The set of all directed line segments that are equlvalent to a

given directed line segment PQ i1s a vector a. And we write a = PQ Two
vectors that have the same or opposite direction are called collinear. A vector
with zero length is called zero vector 0. Zero vector has not got direction.

i

Fig. 2

The two basic vector operations are scalar multiplication and vector
addition. We will usually use the term scalar to mean a real number.
Geometrically, the product of a vector @ and a scalar k is the collinear vector that

12



is ‘k‘ times as long as a . If k is positive, then ka has the same direction as @, and
if k is negative, then ka has the opposite direction of a, as shown in Fig. 3.

i Ya 2 -a -¥%a

To add vectors geometrically, place them (without changing length or
direction) so that initial point of one coincides with the terminal point of the other.

The sum a + b is formed by joining the initial point of the first vector @ with the
terminal point of the second vector b, as shown in Fig 4. Because the vector

d+b is the diagonal of a parallelogram having @ and b as its adjacent sides, we
call this the parallelogram law for vector addition.

b

Fig. 4

The negative of vector a is vector —d =(—1)a and the difference of a
and b is @—b=da+(-b). To represent graphically, we use directed line

segments with the same initial points. The difference @ —b is the vector from the
terminal point of b to the terminal point of @, as shown in Fig. 5.




Vector addition and scalar multiplication share many of the properties of

ordinary arithmetic. Here are some of them. Let a, b ,and ¢ be vectors and let
and f be scalars. Then the following properties are true:

1. a+b=b+a.

2. @+b)+¢=d+(b+7).
3. a+0=a.

4. d+(-a)=0.

5. a(fa)=(apf)a.

6. (a+B)d=cd+ .

7. a(@+b)=cd+ab.

8. Nda=da, (0)d=0.

9. |od| =

In many applications of vectors, it is useful to find a unit vector that has the

S : - : . . a
same direction as a given nonzero vector a and its length is equal to 1: e = —

4
We call e a unit vector in the direction of a .

Example 5: in a triangle ABC AB =4 and AC =b . Find the vector AD
if it 1s a bisector of the angle A.

D A
Solution: from the property of the bisector we know that Z—D =— ¢ . But

AB
BD+CD=AC, or in the vector form CD+ DB=AB—-AC=d-b and

CD- AC(CB CD) Thus CD = A€ CB= A€ (Zi—l;). Finally the
B AB+ AC AB + AC

—

vector AD can be expressed as a sum of vectors AC and CD:

AD :5+ﬁ(ﬁ—5) b+‘ “i“ ‘( _b)\é\‘i“ﬁ ‘ “b‘b (Fig. 6).
B
D
y
Fig. 6 ¢

14



e Linear independence of vectors.

The linear combination of vectors {d,...,a,, } with coefficients {@; .., }
is called a vector of the form

A linear combination is called #rivial, if all coefficients are equal to zero, and is
called non trivial in the opposite case. Trivial linear combination of vectors is
obviously equal to zero.

The system of vectors {@,,..,d, } is called linear independent if the linear
combination of them is equal to zero only if it is trivial. The system is called
linear dependent in the opposite case.

e The Cartesian coordinate system.

Just as real numbers are represented by points on the real number line;
ordered triple of real numbers is represented by points in space. This space is
called a rectangular coordinate system or the Cartesian space.

The Cartesian space is formed by three real number lines intersecting at
right angles in one point called origin. The lines are called axes.

Each point in the plane corresponds to an ordered triple of real numbers
<x, y,z>, which are called coordinates of a point. Each coordinate tells how far

the point is from appropriate axis, as shown in Fig. 7.
A

v

Fig. 7

Since a directed line segment is defined by its initial and terminal points,
and these points are defined by coordinates, a vector can be defined by
coordinates as well, by the following rule. Let the coordinates of the initial point
Pbe (x{,y;,2;), and let the coordinates of the terminal point @ be (x,,¥,,2,).

Then if we subtract the coordinates of initial point from the coordinates of the

15



terminal point we obtain the coordinates of the vector defined by this directed line
segment. This representation of a vector is called component form:

_—

d=PQ= (X~ X{,¥; = Y1522 — %1)-

The unit vectors <1,0,0>, <0,1,0>, and <0,0,1> are called standard unit

vectors and are denoted by i = <1,0,0>, Jj= <0,1,0>, and k = <0,0,1> as shown in
Fig. 8.

A
4

el

v

.l

Fig. 8

The operations of addition and scalar multiplication of vectors represented
in component form are introduced as follows. Let a= <a1,a2,a3>, and

b = (b,,b,,b;), then

G+b=(a,+b,a,+by,a;+by), ki =ka,,ka,,kay).

Thus, every vector Zi=<a1,a2,a3> can be represented as

d=a,i +a,j+ask,or as a linear combination of standard unit vectors.
The length or magnitude of a vector a = <a1 N ,a3> can be found using the
Pythagorean Theorem

‘ﬁ‘=\/a12 +as +a; .
e Scalar product of two vectors.

The scalar or dot product of two vectors denoted by (ﬁ,l;) or @b is a

number, which is equal to the product of their lengths multiplied by the cosine of
the angle between them:

(ﬁ,l;)= ‘ﬁHl;‘cos([i’\ 5).
16



The properties of scalar product are as follows:

1. If (Zi,l; )= 0 and @ # 0,b = 0 then the vectors are perpendicular or
orthogonal.

(@,5)=(5,4).
(‘71 + 52,5)= (‘_il’l;)"' (‘72,5)-
Ma,5)=(1d,b)

d,d)=|d’ >0, (,d)=0 ifand only if a=0.

A

—
.

From the definition 1t follows that (l ,;)= (},;)= (E,E )= 1,

(17 ,f)= (}:,E)=(; ,I;)=0. So we can find the expression of scalar product in
component form.
Let a = <a1,a2,a3>, and b = <b1,b2,b3>, then

(@5)=ay7 +ayj +ask,byi +byj +bsk),

removing brackets by the third property and using the orthogonality of standard
unit vectors, we obtain

(5,5)= a,b; +a,b, +azb;.

Example 6: find the cosine of the angle between vectors @ =2p—¢q and

b=p+24,if |p|=|g =1 and (pu;):%.

|
SN

)

9

Solution: from the definition of scalar product cos(ii’\l; )=

Sy

a

from the 3™ and 4™ properties
@b)=5- .5 +24)=2(p:5)- @ p)+ 4(5,8)- 2(6.4).
and from the 2™ and 5" properties (é,l;)z 2‘13‘2 + 3(13,6)— 2‘(}"2 ,
(.4)=|]d|cos(p" ).
1

Thus, (6,5): 2‘13‘2 + 3(13,21’)— 2‘4}‘2 =2+ 35 -2= % Analogously

T A 1
il = (@) = @5 -7.2p- @) =45’ - 4(p.4)+lil" = 4-4_+1=43,

P— - . 1
‘b‘=w/‘b,bi=\/(p+2q,p+2q)=\/‘p‘2+4(p,q)+4‘q‘2 = 1+4E+4=ﬁ'

17




3
ab) 2 3

Hence, cos(ﬁ"l;)=( 1_5‘ = \Eﬁ= ok

a

—

Example 7. find the cosine of the angle between vectors @ and b if
d=(3,2,-6) and b = (2,-2,1).

Q)

)

s

Solution: from the definition of scalar product cos(ii" 1;) =

(‘_ial;)=a1b1 +azb2 +a3b3 =3-2—2.2_6.1=_4;

\{i\=\/i{i,*i=\/a12+a§+a§ =\V9+4+36=+49=7;

8] =(6,5) =6} + 52 +b} =Va+d+1=9=3.

Hence, cos(ﬁ“5)=@=;4=—i.

s 73

Example 8: find the components of vector p if pLla, pLb,
a=(1L1), b=(121).

pl=4,

Solution: let p= <x, y,z>, then since plda, x+y+z=0. And since
i)J_E, x+2y+z=0. And finally if ‘i)‘=4, then x? +y2 +z2=16. We
obtained the system:

x+y+z=0,
x+2y+1z=0,
x? +y2 +z% =16.
Subtracting the first equation from the second we have y=0. Thus

x+z=0,
xt+z72=16.

And finally x = +2+/2,7 = F2+/2 , hence pP= <i 2x/§,0,$2\/5>.
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e Projection of a vector on an axis.

—
—

al
d
which direction is given by the vector | . By the definition of the scalar product
we see that the projection can be written as ‘Zi‘cos(ﬁ"i ) (Fig. 9).

The expression is called the projection of the vector a on the axis

a

STRREERERE
v

proj; a

Fig. 9

Properties of the projection follow from the properties of the scalar product. The
main property is that vector sum projection is equal to the sum of projections.

For instance the components of a vector in the Cartesian coordinate system
are nothing else than projections of a vector on the coordinate axes.

Example 9: find the projection of the vector a :<1,2,—3> on the vector

[ =(-1,-2,2).
o al 1-(-1)+2-(-2)-3-2 -11_ 11
Solution: proj; a _W_ \/(_ 1)2 N (_ 2)2 5 =3 T3

e Vector product of two vectors.

A vector ¢ is said to be a vector product or cross product of two vectors a
and b denoted by [ﬁ,l; ] or @ x b if it satisfies three conditions:

1. Vector ¢ is orthogonal to vectors @ and b each.

2. The length of vector ¢ is equal to the product of vectors @ and b lengths
and the sine of the angle between vectors @ and b :

c|=(a|g[sin(a"5).

3. Vectors @, b and ¢ form the so-called right triple that is if we superpose
the initial points of vectors @, b, ¢ and look down from the terminal point
of vector ¢ to the plane of vectors @ and b, we will see the shortest angle

19



between vectors @ and b in anticlockwise direction (Fig. 10).

Sy

)

Fig. 10

Note that vectors i , ]’, and k form the right triple (see Fig. 8).
The vector product of two vectors has the following properties:
ﬁx5=—5x6,hence axa=0.
(@+b)xc=dxé+bxec.
(a-d)xb=aldxb)
ixj=k, jxk=i,kxi=j.

sl S

Using the properties of vector product of two vectors we can prove the
following statement.

If two vectors @ and b are represented in component form a = <a1,a2,a3>

and b = (by,by,bs5) then the vector product of them can be written as:

i j k
ixb=la; a, a.
b, b, by
Example 10: find the area of the triangle ABC if A<1,l,0>, B<1,0,l>,
C(2,L,1).
Solution: the area of a triangle ABC can be found by the formula:

S g = %AB - AC -sin(AB* AC),

but the right-hand part of it is a half of the AB and AC vector product length.

Hence S, pc = %AB . AC -sin(AB* AC)= %‘E x A_C" . Let us find the

components of vectors AB and AC . AB =(0,-1,1), AC =(1,0,1).
20



i J ok
Then ABX AC =0 -1 1:‘
1 0

J+

1 1. |0 1
1

i
o 11 11

k=—-i+j+k. Hence

— ‘0 _1

V3

the area of the triangle is equal to %\/(— 1)2 +1%7 +1% = 5

Example 11: find |(d — 5)x (2d + 35| if [a)=[p|=2 and (mb’):%”.

Solution: let us simplify the given expression using the properties of vector
product:

@ - 5)x (2 + 35)| =[a x (2a) - b x (2a) + @ x (35 ) b x (35)| =
:‘Z(Zi xc_i)— 2([; X E)+3([i X l;)— 3(1; X )‘ :‘2(6 X I;)Jr 3(& X I;)‘ =

=10.

S

=5(a x5)|=5(alB|sin(a5)=5-2-2-

N | -

e Scalar triple product.

The expression a - (l; Xc ) is called the scalar triple product of vectors a, b

and ¢, and denoted as @bé .
The properties of scalar product are as follows.

|. @bé =béa = cib =—bac =—ach =—chia.

2. If at least two vectors in the triple @, b and ¢ are collinear, then the scalar
triple product is equal to zero (e.g. @ba = bch = ¢ac =0).

3. ab(¢ +d)=abc +abd .

4. (i )bé = alabé).

5. If @b¢ >0 then vectors @, b and ¢ form the right triple, if @b¢ <0 then

vectors @, b and ¢ form the left triple, if ab¢ =0 then vectors @, b and ¢
lie in one plane or called coplanar.

6. If vectors @, b and ¢ are given in a component form a =<a1,a2,a3>,
b= <b1,b2,b3> and ¢ =<c1,cz,c3> then

a, a, ajz
(_ibE = bl b2 b3 .
€ € C3
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7. The volume of the parallelepiped, which adjacent edges are vectors a, b

and ¢ is equal to the scalar triple product absolute value. V' = ‘555‘.

Example 12: find @b(3d —2b + 3¢ ) if abc =2.
Solution: using the properties of scalar triple product let us simplify the
given expression:

ab(3d — 2b + 3¢)=ab(3d) + ab|(- 2b )+ ab(3¢) = 3@ba — 2abb + 3abc = 3abc = 6.
Example 13: find the volume of the pyramid ABCD if A<2,—1,1> , B<5,5,4> ,
C(3,1,-1), D(4,1,3).
Solution: vectors AB, AC and AD form the adjacent edges of the

pyramid. Volume of the pyramid is equal to % of the volume of the

—_—

parallelepiped. Hence V 4pp :%‘ABACAD. Let us find the components of

vectors AB, AC and AD . AB=(3,63), AC =(1,3,-2), AD =(22,2).
Then EEE:

3 6 3
3 -2 1 -2 1 3

1 3 -2(=3 -6 +3 =3-10-6-6-3-4=-18.
2 2 2 2 2 2

2 2 2

V igcp :%‘ER‘A_D' :%\— 18/=3.

Example 14: find A such that vectors <1,2,—3>, <4,—2,1>, <— 1,0,/1> are

coplanar.
Solution: vectors are coplanar if their scalar triple product is equal to zero.
Let us find the scalar triple product of given vectors:

1 2 -3

-1 1] |4 1] |4 -1
4 -1 1 :‘ ‘—2‘ ‘—3‘ ‘:—/1—2(4/1+1)—3(—1)=—9/1+1.
o0 gl 10 A R0

Solving the equation —94 +1=0 we obtain A4 = %
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ANALYTIC GEOMETRY

e Equation of a plane.

An equation of a plane passing through a point M <x0, yo,z0>,
perpendicular to a vector ﬁ<A,B,C > using scalar product can be written as
7(F —7))=0, where F—F, is a vector which initial point is a point with
components <x, y,z> and terminal point is M, (Fig. 11). ﬁ<A,B,C> is called

normal vector to a plane.

4 n(A,B,C)

./:]_/—" M<x9y9z>
M<x0,y0,z0>

Fig. 11

By the equation of a plane we understand the equation where if variables
x,y,z are substituted for components of a point the equation is satisfied if and

only if the point lies on the plane. Writing the expression ﬁ(? - 170): 0 in scalar
form we obtain an equation of the plane passing through the point M <x0, yo,z0>,

perpendicular to vector ﬁ<A,B,C > :
A(x = x¢)+ B(y — py)+ C(z—29)=0.

If we remove brackets we obtain the so-called general equation of a plane:

Ax+By+Cz+D=0.

Example 15: find equation of the plane passing through the point <1,1,1>,

perpendicular to the vector <2,—1,0>.
Solution: A(x —xy)+B(y—yy)+Clz—z4)=2(x-1)-(y-1)+0(z -1)=
=2x—-2—-y+1=2x—-y—1.So the equationis 2x—y—-1=0.

Example 16: find equation of the plane passing through the point <2,0,1>,

parallel to vectors a = <1,—1,3> and b = <0,2,—1>.
23



Solution: to write the equation of the plane we need the components of the
normal vector. It is a vector which is perpendicular to the plane, but therefore it is
perpendicular to any vector parallel to the plane, and hence it is perpendicular to

given vectors. To find normal vector we find the vector product of @ and 5.

- — —

i j k
- . g —:_1 3 —:1 3 —>1 _1 g re nd
n=axb=|1 -1 3|=i —j +k =-5i +j+2k.
0 2 1 2 -1 0 -1 0 2

Putting into the equation of a plane we obtain:
A(x - x0)+B(y - y0)+ C(z —z0)=—5(x—2)+ (y —0)+ 2(z —1):—5x+ y+2z+8
So the equationis —5x+ y+2z+8=0.

Example 17: find the equation of the plane passing through the points
A(-1,0,1), B(0,3,1), C(4,-2,0).

Solution: we can reduce the problem to the previous one by finding two

vectors lying on the plane. For instance AB =(1,3,0), AC =(5,-2,-1). Then

i j k
1 3 0 A I 0+1€1 3 3i +7—17k. Taki int
_ = — =-3i — . Takin oln
2 1l s T 22 / s P
5 -2 -1
A we have

A(x—x0)+B(y—y0)+C(z—z0)=—3(x+1)+(y—0)—17(z—1):—3x+y—17z+14
So the equationis —3x+ y—17z+14=0.

e Angle between planes.

It is obvious that the angle between two planes is equal to the angle
between their normal vectors.

Example 18: find the angle between planes x - y+\/5z+2:0 and
X+ y+ V27-3=0.
Solution: normal vector to the first plane is n, :<1,—1,\/E>, and to the

second one is n, :<1,1,\/E>. Using the scalar product we can write that

cos(i; M ii, ) = 111.’? = 11-11+v2 V2 :2:1. Hence the angle between
Ay |-y N1+1+241+1+2 4 2

the planes is equal to %
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Moreover two planes are parallel if and only if their normal vectors are
collinear.

Example 19: find A and u such that planes x—y+A4z+2=0 and
px + y+ 3z —3=0 are parallel.

Solution: ny = <1 -1 ﬂ,> n, = <,u,1,3>. Since these vectors are collinear their

components are proportional: 1 = -1 = 3 hence g=-1 and 4 =-3.
Y7,

e Distance from a point to a plane.

Let us consider Fig. 12. We are to find the distance between the point
M <x0, yo,z0> and the plane L. Let us take any point N <x, y,z> on the plane, then

the distance is equal to the absolute value of the projection of the vector NM to
the vector ﬁ<A,B,C> .

M(xy,¥0,29) 4#(A,B,C)

/]
VAL

N<x,y,z>
Fig. 12
Using the formula proj; W :ﬁ.‘% we obtain
n
‘ A, B, C =X, Y0 — VsZo — >‘ ‘Ax0 + By, + Czy — Ax — By — Cz
But
‘ JA +B2+C2 ‘ JA* + B* + C?

the point N <x, y,z> lies on the plane, hence it satisfies the equation of the plane
|Axy + Byy + Czg + D\

Ax+By+Cz+D=0.Finally d =
JA? + B+ C?

Example 20: find the bisector of planes x—-2y+2z+2=0 and
4y +3z—-3=0. The bisector of two planes is a plane which divides the dihedral
angle between them by two.
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Solution: the bisector consists of points equidistant to the given planes. Let
us take a point N <x, y,z> and find distances to the given planes:

p |x—2y+2z+2
VT iv4s4
Sx-2y+2z+2/=3dy+3z-3
Taking ‘+> we get —-7x-10y+z+19=0, and taking
17x-10y +19z+1=0.

y+3z—3‘

4
d =
PoJ16+9
, or  5(x—2y+2z7+2)=43(4y+3z-3).

[

Since d,=d,, we obtain

we get

e Equation of a straight line.

If two planes intersect the intersection is a straight line. Thus the equation
of line can be written as

which is called a general equation of a straight line. From the other hand a

straight line is defined by a point on it and a vector codirectional to the straight
line (Fig. 13).

N<x,y,z>
M<x0,y0,z0>
ﬂ”@lﬁ
Fig. 13

If we take a point M <x0, yo,z0> on the line and any point NV <x, y,z> on the same
line, the obtained vector is collinear to the vector 7 <l ,m,n>. Thus the equation of
the straight line can be written as
X—Xg_YV=Yo_2—%
[ m n

which is called the canonical equation of a straight line. And the vector
f<l,m,n> is called the direction vector of the straight line. If in the canonical

b

equation we define the coefficient of proportionality by # and express x, y,z in

terms of it we obtain the parametrical equation of the straight line:
x=x, +1t,

y=y,tmt, teR,
=23y t+nt.
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Note that there are a lot of different general as well as canonical equations
of a straight line.

Example 21: find the equation of the straight line passing through two
points A(1,2,-3) and B(0,-1,2).

Solution: the direction vector for the straight line is the vector
E=<— 1,—3,5>. Let us write the canonical equation of the straight line
x-1 y-2 z+3
-1 -3 5

. . _ _ 3x-2y+z=0,
Example 22: find the canonical equation of a straight line
x—-2z+1=0.
Solution: To write the canonical equation we need to know the direction
vector of the straight line and a point on it. As far as the direction vector is
parallel to both planes it is perpendicular to both normal vectors and can be

expressed as their vector product:

—

i j k
/ 21 B B2
<3’_2’1>X<1’07_2>: 3 -2 1|=i —J +k =4 +j—4k.
{0 5 0 -2 1 0 1 -2

To find a point on the plane we have to find any solution of the system
{3x—2 y+z=0,

Let us add two times the first equation to the second one. We
x—-2z+1=0.

have: 7x—-4y+1=0, or y:%(7x+1). If we put x=1, then y=2 and z=1.

x-1_y-2 z-1

So the canonical equation has the form ” 1

The parametrical equation of the straight line is convenient to use when
finding the intersection of a straight line and a plane.
Example 23: find the point of intersection between the straight line
x+1 = y—1: z—4 and a plane 2x -3y +4z-3=0.
2 0 -3
Solution: let us write the equation of the straight line in the parametrical
form

x=-1+2t,
y=1,
z1=4-3t
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and put these in the equation of the plane 2(— 1+ 2t) -3(1)+4(4-3t)-3=0, or
—8t+8=0,hence r=1 and <x,y,z> = <1,1,1>.

e Positional relationship between straight lines.

Two lines in a space can be parallel (their direction vectors are collinear,
and they do not have common points), coincide (every point of one straight line
is a point of another), intersect (have only one common point), be skew (not
parallel and having no common points).

Two straight lines defined by their direction vectors 7,, 7, and points M|,

M, are parallel if 7; x7, =0 and 7; x M\M, #0.

Two straight lines defined by their direction vectors 7;, 7, and points M,
M, are skew if 7,7, MM, #0.

Two straight lines defined by their direction vectors 7;, 7, and points M,

M, intersect if 7,7, MM, =0 and 7, x7, #0.
Two straight lines defined by their direction vectors 7,, 7, and points M,

_

M, coincide if 7y x7, #0 and 7; x M{M, =0.

Example 24: determine the positional relationship between the straight lines
x+2: y :z—l and x—3:y—1:z—7.
2 -3 4 a 4 2
Solution: we have 7;=(2,-3,4) and 7,=(a4,2), M;(-20,1) and

M(3,1,7). Then MM, =(5,1,6). Let us find 7,7, M1M, .

2 -3 4
717, m =la 4 2/ =22a-66.1t1s equal to zero when a =3. Thus these
5 1 6
straight lines are skew if a #3.
i j k
Let us find 7, x7, =2 -3 4/=-22i +(4a—4)j +(3a +8)k. This vector is
a 4 2

never equal to zero, so the straight lines cannot be parallel or coincide. Hence if
a =3 these straight lines are intersected.
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e Other problems on a plane and a straight line.

Example 25: find the projection of the point M <1,—2,2> on the straight line

%z y;3 :g and the equation of the perpendicular from the point M on the
straight line.

Solution: let us write the equation of the plane which is perpendicular to the
straight line and passes through the point M. Then the intersection of the plane
and the straight line is the projection of the point M on the straight line (Fig. 14).

Fig. 14

Since the direction vector of the straight line is perpendicular to the plane, we can
write the equation of the plane 1(x —1)+0(y +2)+2(z —2)=0 or x +2z-5=0.

x=1,
Let us write the equation of the straight line in the parametric form § y =-3, and
z=2t
put it into the equation of the plane #+4¢—-5=0 or #=1. Hence the point
P<1,—3,2>. To find the equation of the perpendicular we are to find the direction
vector. It will be vector MP = <0,—1,0>. Finally the equation of the perpendicular
x-1_ y+2 z-2

0 -1 0
Example 26: find the angle between the plane x -2y +2z—-6=0 and the

1S

straight line x—1:y+2:£'
1 -1 0

Solution: the angle between a plane and a straight line is equal to % minus

the angle between the direction vector of the straight line and the normal vector to
the plane (Fig. 15).
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B

o a

Fig. 15
Thus sina =cos f = ‘?Hzi‘ . We have n :<1,—2,2> and 7 =<1,—1,0>.

n-\7
: -7 1-1-2-(-2)+2-0 3 1
Hence sina=———= = = . Finally
Al-E 1P e(c2) 422 e (Cc1)tc0? W2 V2

the angle between the plane and the straight line is equal to arcsini = % :

V2

Example 27: find the projection of a point M <1,0,—2> to the plane
x-2y+3z-9=0.

Solution: to find the projection we are to find the equation of the
perpendicular from the point M to the plane and then the intersection P of the
perpendicular and the plane. The direction vector of the perpendicular is the
normal vector of the plane (see Fig. 16).

n
"

A

P

Fig. 16

Thus the equation of the perpendicular is > 1‘ L yz =% ; 2 To find the
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x=1+1¢
intersection let us write this equation in parametric form: {y=-2¢ and put
7=-2+3t
these in to the equation of the plane. (1+¢)—2-(=2¢)+3-(-2+3¢)-9=0 or
t=1.Finally P(2,-2,1).

x-1 y-1 z-1
-2 3

Example 28: find the projection of the straight line on

the plane 3x -2y +z—-2=0.
Solution: the projection of a straight line is another straight line which lies
on the plane. Its direction vector (7; ) then is perpendicular to the normal vector to

the plane. From the other hand it is perpendicular to a vector product of the
normal vector to the plane and the direction vector of the straight line (Fig. 17).

Apn

o
7

T XN

Fig. 17

We have r1=(3,-2,1) and 7 =(1,-2,3). Let us find 7 xn:

— —

i j k
Txii=]1 -2 3|=4i +8j+4k=(4,8,4).
3 -2 1
i j k
Then 7, =six (Fxi)=|3 -2 1/=-16i —8; +32k.
4 8 4

To write the equation of the projection we need to find a point on it. But it can be
the point of the straight line and the plane intersection. Let us write the equation
x=1+1¢,

of the straight line in the parametrical form: {y=1-2¢, and put these into the
7=1+3t
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equation of the plane. We have 3(1+¢)—2(1—-2¢)+(1+3¢)-2=0 or £=0. Thus
the point of intersection is <1,1,1>. Finally we can write the equation of the
projection:
x—1:y—1:z—1 or x—1:y—1:z—1.
-16 -8 32 2 1 -4

Example 29: find the distance between two skew straight lines

x+7:y—3:z+3 and x—21:y+1:z—2-
3 4 -2 6 -4 -1

Solution: the distance between two skew straight lines is the length of the
common perpendicular to these straight lines. Since this perpendicular is common
to both straight lines its direction vector is equal to the vector product of the two
given direction vectors. And the distance is the absolute value of the projection of
any vector connecting two straight lines on the common perpendicular (Fig. 18).

—

M, @

Fig. 18

Thus the distance d = |proj; .z, Mle‘ _ ‘M1M2(fl X Ty )‘

_‘ ‘flez‘ ‘
i j k
Letus find 7; x7, =3 4 —2/=-12i -9 —36k . Then MM, =(28,-1,5).
6 -4 -1

Putting into the formula we
:‘28-(—12)—1-(— 9)+5-(—36)‘ _507 _

obtain:d
t N E T

13.

32



MATRICES
e Basic definitions and operations on matrices.

If n and m are natural numbers, then nxm matrix (read "n by m") is a
rectangular array

ap 42 o
[@.]" ™= Ay A - Ay
ilisgjm= 00 ]

14m1 Qpy 0 Quy |

in which each entry, a;, is a real (sometimes complex) number. 7 x m matrix has

ij>
m rows and n columns.

If n=m, the matrix is square of order n. For a square matrix, the entries
Q11502 500y A, are the main diagonal entries.

A matrix that has only one row is a row matrix, and a matrix that has only
one column is a column matrix.

The matrix having all entries equal to zero is called zero matrix, usually
denoted as 0. The square matrix that consists of zeros anywhere, except for the
main diagonal, is called the diagonal matrix. The square mxmn matrix that
consists of ones on its main diagonal and zeros elsewhere is called the identity
matrix of order n and is denoted by 1,,.

Two matrices are equal if their corresponding entries are equal.
The following operations are defined on matrices:

1. Matrix addition.

2. Scalar multiplication.

3. Matrix multiplication.

If 4= [aij ] :.':1;.":1 and B = [bij]?zl}"zl are the matrices of order nxm, then

T ™  The sum of two

their sum 1s the #xm matrix given by A+ B = [aij +byi iz jor -

matrices of the different order is undefined.

-1 2] 1 3
Example 30 : find A+ B if A= and B = :
0 1 -1 2

. -1 2 1 3] [-1+1 2+3 0 5
Solution: A+ B = + = = )
0 1 -1 2] [0-1 1+2 -1 3
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When working on matrices, we usually refer to numbers as scalars.

If A= [aij ] ) ;": | is the matrix of order nxm and the c is a scalar, then the
scalar multiple of A by ¢ is nxm matrix given by cA = [c : aij]:.'zl}"zl. We use
n m

— A to represent a scalar product (—1)4. Moreover, if A:[a,-j]i:1 i

, and

B = [bij];’zl ;”: ,are the matrices of order nxm, the difference 4— B represents
the sum of 4 and (—1)B.

1 2 4 2 0 0
Example 31: for the matrices A=|-3 0 —-1| and B=| 1 -4 3
2 1 2 -1 3 2
find 34-B.
31 3.2 34 3 6 12
Solution: 34={3-(-3) 3-0 3-(-1)|=|-9 0 -3|;34-B=
3.2 31 32 6 3 6

3 6 1272 0 0 3-2 6-0 12-0 1 6 12
=-9 0 -3|-|1 -4 3|=|-9-1 0-(-4) -3-3|=|-10 4 -6
6 3 6| |-1 3 2| |6-(-1) 3-3 6-2 7 0 4

It is often convenient to rewrite the scalar multiple ¢4 by factoring ¢ out of

: : : : : 1
every entry in the matrix. For instance, in the following example, the scalar > has

1/ _3
been factored out of the matrix: {SA IA ] = 1{1 3} .
/é | 25 1
The properties of matrix addition and scalar multiplication are similar to
those of addition and multiplication of real numbers, and we summarize them in
the following list. If A, B, and C are nxm matrices and ¢ and d are scalars, then
the following properties are true:
. A+B=B+A.
2. A+(B+C)=(4+B)+C.

3. (cd)A=c(dA).

4. 14=A.

5. c(4+B)=cA+cB.
6. (c+d)A=cA+dA.
7. A+0=A.

8. 0-4=0.

34



Note that the second property of matrix addition allows us to write
expressions such as 4+ B+ C without ambiguity because the same sum occurs
no matter how the matrices are grouped. The same reasoning applies to sums of
four or more matrices.

n m

The third basic matrix operation is matrix multiplication. If A = [a i ] i=1j-1

is the matrix of order nxm and B = [b | 1s the matrix of order m x p, then

11]

their product AB is nx p matrix AB :[ l]] where ¢;; Za ikbyj - This

n
i=1j=1"
definition indicates a row-by-column multiplication, where the entry c; in the "

row and j” column of the product AB is obtained by multiplying the entries in the
i" row of A by the corresponding entries in the / column of B and then adding
the results.

-1 3
-3 2
Example 32: find the product AB,if A=| 4 —-2|and B :{ 4 J.
5 0 -

Solution: first note that the product AB is defined because the number of
columns of A4 is equal to the number of rows of B. Moreover, the product AB has
order 3x2 and will take the form

-1 3 c c
) - 3 2 11 12
-2 =lc Coyy |.
_4 1 21 22
5 0 31 €3

To find ¢;; (the entry in the first row and first column of the product), multiply
corresponding entries in the first row of 4 and the first column of B. That is,
ci1 = (— 1)(— 3)+ 3(— 4): —9. Similarly, to find ¢;,, multiply corresponding
entries in the first row of A4 and the second column of B to obtain
Cpy = (— 1)2 +3-1=1. Continuing the pattern produces the following results:

ey =4(-3)+(-2)-4)=4
Cyy =4-2+(-2)1=6,
¢y =5(-3)+0(-4)=-15,
¢35 =5-2+0-1=10.
Thus, the product is



2
Example 33: find AB and BA where A=[1 -2 -3]and B=|-1]|.
1

Solution: since the order of A is 1x 3 and the order of B is 3x1, the order
of product AB is 1x1. Multiplying the row of 4 and the column of B we obtain
AB=[1-2+(-2)-1)+(-3n]=[1].
The product BA has the order 3 x3 and

2 2.1 2(-2)  2(-3) 2 -4 -6
BA=|-11 -2 -3]=((-1n (-1)-2) (-1)(-3)|=|-1 2 3
1 -1 1(-2)  1(-3) 1 -2 -3

Note that the two products are different. Matrix multiplication is not, in
general, commutative. That is, for most matrices, AB # BA .

Main properties of matrix multiplication are as follows. If 4, B, and C are
matrices and c is a scalar, then the following properties are true:

1. A(BC)=(A4B)C.

A(B+C)=AB+ AC.
(4+B)C=AC+BC.

c(AB)=(cA)B = A(cB).

If A is a square matrix then I4= Al = A.

ke

e Elementary row operations. Gauss-Jordan elimination method.

Two matrices are called row-equivalent if one can be obtained from the
other by a sequence of elementary row operations. The elementary row
operations are as follows:

1. Interchange two rows.
2. Multiply a row by a nonzero constant.
3. Add a multiple of a row to another row.

Example 34:
a) Interchange the first and the second rows:
Original matrix New row-equivalent matrix
0 1 3 4 -1 2 0 3
-1 2 0 3 0 1 3 4
2 -3 41 2 -3 41
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b) Multiply the first row by % :

Original matrix New row-equivalent matrix
2 -4 6 -2 1 -2 3 -1
1 3 -3 0 1 3 -3 0
5 -2 1 2 5 -2 1 2
c) Add -2 times the first row to the third row.
Original matrix New row-equivalent matrix
1 2 -4 3 1 2 -4 3
0 3 -2 -1 0o 3 -2 -1
21 5 -2 0 -3 13 -8

It is said that the matrix is in row-echelon form if it has the following
properties.
1. All rows consisting entirely of zeros occur at the bottom of the matrix.
2. For each row that does not consist entirely of zeros, the first nonzero entry
is 1 (a leading 1).
3. For two successive (nonzero) rows, the leading 1 in the higher row is
farther to the left than the leading 1 in the lower row.
A matrix in row-echelon form is in reduced row-echelon form if every
column that has leading 1 has zeros in every position above and below its leading
1. Every matrix is row-equivalent to a matrix in row-echelon form.

Example 35: the following matrices are in row-echelon form. The matrices
B and D also happen to be in reduced row-echelon form.

1 2 -1 4 01035
A0 1 0 3 B.|0 0 13
0 0 1 -2 0000
1 -5 2 -1 3] 1 0 0 —1]
0 0 1 3 -2 010 2
C. D.
0 0 0 1 4 0 01 3
0 0 0 0 1 | 0 0 0 0|

Elementary row operations are applied in solving systems of linear
equations. The method is called Gauss-Jordan elimination. This method works
well for solving systems with a computer. Before we consider the method, we
must give the following definitions.
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A matrix derived from a system of linear equations (each written in
standard form with the constant term on the right) is called the augmented matrix
of the system. Moreover, the matrix derived from the coefficients of the system
(but which does not include the constant terms) is called the coefficient matrix of
the system. We use zeros for the missing variables. Here is an example.

System Augmented matrix Coefficient matrix
x—4y+3z=5, 1 -4 3.5 1 -4 3
-x+3y—-2z=-3, -1 3 —1i—3 -1 3 -1
2x-4z=6. 2 0 -4 6 2 0 -4

Guidelines for using Gauss-Jordan elimination to solve a system of linear
equation are summarized as follows:
1. Write the augmented matrix of the system of linear equations.
2. Use elementary row operations to rewrite the augmented matrix in row-
echelon form and then in reduced row-echelon form.
3. If a coefficient matrix is the identity matrix then the solution of the system
1s in the column separated by vertical dots.

For this algorithm, the order in which the elementary row operations are
performed is important. We suggest operating from left-to-right by columns,
using elementary row operations to obtain zeros in all entries directly below the
leading ones, and then above the leading ones.

When solving a system of linear equations, remember that it is possible for
the system to have no solution. If, in elimination process, we obtain a row with
zeros except for the last entry, it is unnecessary to continue the elimination
process. We can simply conclude that the system is inconsistent.

Example 36: solve the following system:
y+z-2w=-3,

xX+2y—-z=2,
2x+4y+z-3w=-2,

x—4y-T7z—w=-19.

Solution: the augmented matrix for this system is

0 1 1 -2} -3
1 2 -1 0! 2

2 1 -3 -2
1 -4 -7 -11-19]
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Let us start with obtaining a leading one in the upper left corner by
interchanging the first and second rows, and then proceed to obtain zeros
elsewhere in the first column.

1 2 -1 0 2|1 2 -1 0, 2]
0 1 1 -2/-3|]0 1 1 -2!-3
2 4 1 -31-2/]0 0 3 -3 -6
1 -4 -7 -11-19] [0 -6 -6 —11-21]

We added -2 times the first row to the third row, and —1 times the first row to the
fourth row. After that the first column has zeroes below its leading one. Now after
the first column is already in the desired form, we can change the second, third,
and fourth columns as follows.

1 2 -1 0 | 2 ]
|
01 1 -2'!-3
: . We added 6 times the second row to the forth row.
00 3 -3!-6
00 0 -131-39
1 2 -1 0 | 2 ]
|
01 1 -2'!-3
| . We divided the third row by 3.
00 1 -1!-2
00 0 —131-39
1 2 -1 0} 2]
|
01 1 -2'-3 .
| . We divided the fourth row by —13.
00 1 -1!-2
00 0 13|

The matrix is now in row-echelon form, and now we continue elimination,
starting with the last column:

1 2 -1 0;2][1 200310001
01 1 0/3[/0100!2 (01002
00 1 0/1/]0 01 0i1|]0 01 01|
00 0 1:3/(0 00 1:3/[0 00 1!3]
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We added the fourth row to the third row and 2 times the forth row to the second
row. Then we added —1 times the third row to the second row and the third row to
the first row. And finally we added —2 times the second row to the first row. We
obtained the identity matrix, hence in the last column we have the solution of the
system:

x=1,
:2’
4.1’
z=1,
w=23.

e The rank of a matrix. Theorem of Kronecker-Capelli.

A determinant composed of entries of a matrix by crossing out some rows
and columns is called a minor. The size of the maximum nonzero minor is called
the rank of a matrix. For example let us consider the following matrix:

1 11
2 2 2
3 33

The different minors that can be composed of entries of this matrix are as

follows:

111
1 11 12 2

2 2 2, , , 1, 12, 13-
2 213 33 3

3 33

It can be easily seen that the determinants of the third and second order are all
equal to zero. Thus, the rank of a matrix is equal to 1.

If A= [aij ] i1 o1 is the matrix of order #xm , then the rank of the matrix
A, denoted by r(A4), satisfies the following inequality 1< r(4)<min(n,m),
except for zero matrix, which rank is equal to zero.

If a matrix has a big size then it is difficult to write and especially to

calculate all minors. But the following theorem gives us an opportunity to do this
easily.

Theorem 1. Two row-equivalent matrices have the same rank.

Thus, to find the rank of a matrix, we rewrite it in the row-echelon form.
The number of nonzero rows will be the rank of the matrix.
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Example 37: find the rank of the following matrix:

-y 4]
0 2
1 -3 -1
4 14
Solution: ) )
Step 1. Interchange the first and the third row:
-2 0 -4]|[1 -3 -1]
o 2 2 0o 2 2
1 -3 -1 |-2 0 -4
4 6 14 4 6 14
Step 2. Add 2 times the_ﬁrst row to the— th}rd row and —4_times the first row to the
fourth row: i o i
1 -3 -1 |1 -3 -1
o 2 2 0o 2 2
~2 0 -4||0 -6 -6
4 6 14| |0 18 18
Step 3. Divide the second row by 2, the_:[hi_r_d row by —6_,_the fourth row by 18:
1 -3 -1 |1 -3 -1
0o 2 2 0 1 1
0 -6 -6/ [0 1 1
0 18 18, (0 1 1
Step 4. Add —1 times the s:econd row to:thé third and fo:urth TOWS:
1 -3 -1} |1 -3 -1
0o 1 1 0O 1 1
0 1 1[0 0 o
0o 1 1 0O 0 0

We obtained the row-echelon matrix, with 2 nonzero rows. Thus, the rank of the
matrix is equal to 2.

Theorem 2. (Kronecker-Capelli). The system of n linear equations in m
variables is consistent if and only if the rank of the augmented matrix is equal to
the rank of the coefficient matrix.
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It is not necessary to find the ranks of augmented and coefficient matrices
separately. We can find both ranks just considering the augmented matrix.
Example 38: check if the following system is consistent.

Solution: the augmented matrix for this system is

Step 1. Add —1 times the ﬁrst_row to the second rovs;:

1

IR

1

S O =

0

1
1
1
0

X1 +x2 :1,

x1+x2+x3:4,

x2+x3+x4:_3,

X3+x4+x5=2,

x4 +x5 :_1.

1100 0]
11100
0111 0!
00111,
0001 1
0 0, 1] [1 1
00/ 4|00
1 0/-3|~0 1
1 112 [0 0
1 1:-1/ (0 0

1
4

-31.

2

0

S i

Step 2. Interchange the second and the third rows:

Step 3. Add —1 times the third row to the fourth row:

1

(== —— T

1

=T N R

1

— I

1

— IR

0
1
1
1
0
0

1
1
1
0

0

0
1
1
1

0

1
0
1
1

0, 1
0! 3
01-3
112
11-1

0 1]
0/-3
0! 3
112
11-1
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1

=R R

1
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N e S S —

0

S O =

e — ) — = OO

- T —

e e S — A — N — e A —

e e — ]




Step 4. Add —1 times the fourth row to the fifth row:

= — R — R

O O =

S D e m D
— - D = D

l
= — I — R

=

CO = O

S = O = O

0,1
03
0! 3
111
01 0 |

Thus, we have the row-echelon form of the matrix. It is seen that the ranks of the
augmented and coefficient matrices are equal to 4. Hence, the system is

consistent.

Example 39: check if the following system is consistent:

Solution: the augmented matrix for this system is

2

N = G

1
-2

3

3
1
5
2
-5 6

-1 1 ;2]
3 -1'1
~5 3

-4 211
8 -214

Step 1. Interchange the first and the second rows:

2

1
3
1
5

A N U = W

-1
3
-5
—4
8

112
|
11

313
2 11
|

-214

1
3
5
2
6

3 -11
1112
~5 3 13
4 211
8 -214

Step 2. Add —2 times the first row to the second row, —3 times to the third, —1
times to the fourth, and —5 times to the fifth:
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Step 7. Add —1 times the fourth row to the fifth row:

1 -2 1 3 -1;1]ft -2 1 3 -1;1]
0 1 -3 21 -13'0| |0 1 -3 21 -1310
0 0 1 -7 510|~0 0 1 -7 5

0 0 0 -210 1381 1| |0 0 0 -210 13811
0 0 0 -210 138, -1/ (0 0 0 0 0 12

Thus, we have the row-echelon form of the matrices. The rank of the augmented
matrix is equal to 5, but the rank of the coefficient matrix is equal to 4. Thus, the
system is inconsistent.

e Homogeneous systems of linear algebraic equations.
The following system of linear algebraic equations is called homogeneous.

allxl + alzxz + e t+ alnxn — 0,
6121x1 + a22x2 T+ eee + aznxn - 0,

---------------------------------------

A, X1 +8,,Xy + e t+a,,x, =0.

From the theorem of Kronecker-Capelli's it follows that this system is
always consistent, since adding zero column does not change the rank. Moreover,
it is seen that this system has the zero solution.

Let the rank of the coefficient matrix of this system equal r. If r =mn then
the zero solution will be unique. From the other hand, if the number of equations
is less than the number of variables or r < n, then the system always has nonzero
solutions.

The solutions of homogeneous systems of linear algebraic equations have
the following properties:
1. If (¢ yoeenc,, ) is a solution then (kc; ..., kc,, ) is also a solution for every k.

2. If (g yeeesc,, ) and (dy,...d,,) are solutions then (c; +d, ync, +d,,) is also

a solution.

In other words, a linear combination of solutions of the homogeneous
system of linear algebraic equations is also a solution of the system.

Theorem 3. If the rank r of the coefficient matrix of the homogeneous
system of linear algebraic equations in » variables is less than the number of
variables, then there exist n—r linear independent solutions, which are called the
fundamental system of solutions.
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To find the fundamental system of solutions we take r linear independent
equations and solve it for r variables. Then, we take n»—r linear independent
vectors which are, for instance, columns of the identity matrix of the order n—r.
Substituting their components in the found solution for r variables, we obtain the
fundamental system of solutions.

Example 40: find the fundamental system of solutions of the following
system:

Solution: first of all let us derive the coefficient matrix to the reduced row-
echelon form.

Step 1. Interchange the first and the third row:

31 -8 2 11 11 -12 34 -5]
2 -2 -3 -7 2|2 -2 -3 -7 2
1 11 -12 34 -5/|3 1 -8 2 1
1 -5 2 -16 3] |1 -5 2 -16 3

Step 2. Add —2 times the first row to the second row, —3 times to the third, —1
times to the fourth:

1 11 -12 34 -5|[1 11 -12 34 -5]
2 -2 -3 -7 2 0 —-24 21 -75 12
31 -8 2 1 0 -32 28 -100 16|
1 -5 2 -16 3] |0 -16 14 -50 8
Step 3. Divide the second row by —3, the third by 4, the fourth by 2:
1 11 -12 34 -5][1 11 -12 34 -5]
0 -24 21 -75 12| |0 8 -7 25 -4
0 -32 28 -100 16| |0 -8 7 -25 4 |
0 -16 14 -50 8| |0 -8 7 -25 4|
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Step 4. Add the second row to the third and fourth:

1 11 -12 34 -5|[1 11 -12 34 -5
0 8 -7 25 -4/ |0 8 -7 25 —4
0 -8 7 -25 4(/0 0 0 0 O]
0 -8 7 -25 4]0 0 0 0 O]
Step 5. Divide the second row by 8:
1 11 -12 34 -5 [1 11 -12 34 -5
_ _ _7/ 25/ _1
0 8 -7 25 —4| |0 1 A A A
0 0 0 0 0|0 0 o0 0 0
00 0 0 0|0 0 O 0 0 |

111 -12 34 -5 (10 195 34 1
7/ 25 1 9 9 2
o0 o0 0 O 00 0 0 0
o0 0 0 0 jjoo0o o 0 0
19 3 1
X1 —§X3 +§.3C4 —Exs,
We have r =2 and ; )5 ) Then we take three independent
Xy =—X3 ——X4 +—X5.
27 g3 T g M Ys
1] |10} |0
vectors |0 |, 1|, | 0| and after substituting the components of these vectors for
0| (0] |1

X3, X4, X5 We obtain the fundamental system of solutions:
191 [ 3/ | [-1/]
B % || h
7 25
T ||~

0
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e The inverse of a matrix. Matrix equations.

Let A be a square matrix of order a. If there exists a matrix A7! such that

AYA=A447" =1, then A" is the inverse of A. A7 is read "A inverse". Recall
that it is not always true that AB=BA, even if both products are defined. However,
if A and B are both square matrices and AB=I, then it can be shown that BA=I.

If a matrix 4 has an inverse, then A is invertible (or non-singular);
otherwise, A 1s singular. A nonsquare matrix cannot have an inverse. Not all
square matrices possess an inverse.

Theorem 4. The matrix A is invertible if and only if the determinant of the
matrix A is not equal to zero. If the matrix does possess an inverse, then that
inverse is unique.

Example 41: show that B is inverse of A, where

B

Solution: i o i i i
-1 2][1 =-2] [-1+2 2-2] [1 0

AB: . = — ,

-1 1|1 -1] [-1+1 2-1] |0 1

1 -2]1[-1 2] [-1+2 2-2] [1 O]

BA: . = — .

1 -1 |-1 1] [-1+1 2-1] |0 1

There are several methods of finding the inverse of a matrix. Let us
consider two of them. The first method is the determinant method. Let 4 be a
square matrix of order n, then

Ay Ay o Ay

i 1 (A Ap - Ap
det(A4)| T

_Aln A2n Ann

where A;; is a minor obtained from 4 by crossing out i" row and j* column,

taken with "+" if i4j is even, and with "-" if i+j is odd.

Example 42: find the inverse of the matrix

2 1 3
A= 4 -5
0 -2 6



Solution: let us find the determinant of A:

2 1 3
4 -5 1 -5 1 4
det(4)=]1 4 -5=2 -1 +3 =2-14-1-6+3(-2)=16.
0 3 6| "2 6l 0 6] o -

Since, the determinant of A4 is not equal to zero the inverse matrix exists, and

1 Ay Ay Ay
Al = E A12 Azz Asz .
Az Ay Az
Let us find A,-]- :

4 -5

1 -5

Ay = =24-10=14,4,, = - =—(6-0)=-6,

-2 6 0
Ag =l Y20-2,4y - 3—(6+6)—12
B0 -2 I B A -
Ay =" Y —12-0-12, 4, = 1—(4 )=4
20 6 I -
Ay = Y os12-17, 4y, = =—(-10-3)=13
31_4 _5_ - 932_1__ - >
dy = Yogo1-7
P4 T

Thus, we can write the inverse of A4:

14 -2 % - e

-1_ 2 -3 3 13
R
__A A A6 ]
The second method is as follows. If we by a sequence of elementary row
operations reduce a square matrix to the identity matrix, then with the same
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sequence of elementary row operations the identity matrix is reduced to the
inverse of the given matrix.
Example 43: find the inverse of the matrix

1 3 -1 -2]
2 7 0 -1
-1 -4 0 -1/
-3 10 -1 -2]

Solution: at first we form the matrix, which consists of two parts. The first
is the matrix A4, the second is the identity matrix. Then with row operations we
transform this matrix, such that the first part reduces to the identity matrix.
Moreover, the second part will be the inverse A47":

1 3 -1 -211
|

2 7 0 -1'0
1 -4 0 -110

3 10 -1 -210

R
L =

=

Step 1. Add —2 times the first row to the second row, add to the third, —3 times to
the fourth:

(1 3 -1 -2{1.0 0 0|1 3 -1 -2;1 00 0
2 7 0 -1/0100[|0 1 2 3! -2100
1 -4 0 1100100 -1-1-3110T1020
'3 10 -1 210 0 0 1/]0 1 2 41-3 0 0 1]

Step 2. Add the second row to the third, —1 times to the fourth:

1 3 -1 -2/1 00 0] 1 3 -1 =21 0 0
01 2 3/ -2100//01 2 31=2 1 00
0 -1 -1 -3/1 01000 1 0/-1 1 10
0 1 2 41-3 00100 0 1 -1 -10 1]
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Step 3. Add —3 times the fourth row to the second row, and 2 times to the first

row:

13 -1 -2/1 0 0
01 2 31-2 1 0
00 1 0!-1 1 1
00 0 1 '-1-10

-, O <O

=R R

= e

-1 -2
|

1 4
-1
-1 -1

— e —

Step 4. Add -2 times the third row to the second row, and to the first row:

13 -10/-1-20
01 2 0,1 4 0
00 1 0-1 1 1
00 0 1:-1 -1 0

=R

S o = W

S = o o

-2 -1
32
-1 1
-1 -1

Step 5. And finally add —3 times the second row to the first row:

-

1300 -2-11 271
|
0100 3 2 -2 -3|]0
0010 -1 1 1 0]]0
0001 -1 -1 0 1]]0
11
3
Thus, A" =
-1
-1

=

S = o D

L —11 -7
3 2
-1 1
-1 -1
11 |

-3

ol

1_

The system of n linear algebraic equations in n variables can be rewritten in
the following matrix form.

System
a,x, +a,x, +..+a,x,=b,
a,x, +a,x,+..+a,x, =b,,

a,x, +a,x,+..+a,x,=b,.
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Or the system can be rewritten as AX = B. If we multiply this equation from the
left by A1 , we obtain A'AX=47'B , then IX = A_IB, and finally
X=A4"B.

Example 44: solve the following system using the inverse matrix:

2x1—x2 +X3=6,

Solution: let us rewrite this system as 4X = B, where

2 -1 1 6 Xy
A=|-1 1 2 |,B=|4 |, X=|x,
3 2 -3 -8 X3
Using one of the mentioned methods we obtain
. 7 1 3 . 7 3 6
A'=—|-3 9 5| X=4'B=—|-3 9 5|.| 4 |=
22 22
5 7 -1 5 -1] (-8
) 7-6+1-4-3-8 . 22 1 x, =1,
=—|-3:6+9-4-5-8|=—|-22|=|-1|,0r<x, =—1,
22 22
5-6+7-4+1-8 66 3 Xy =
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VECTOR SPACES
e Definition and examples.

Let a set V' be given; we will denote its elements by a, b, ¢, etc., and let two
operations be defined on this set — adding, i.e. for every two elements a and b in
V there exists the uniquely determined element a + b also in V, which is called
the sum of a and b; and scalar multiplication, i.c. for every element a in V' and
every real number a there exists the uniquely determined element axa also in V.

The elements of the set ¥ we will call vectors.
This space is called a vector space if the mentioned operations have the
following properties:
I. a+b=b+a.
II. (a+b)+c :a+(b+c).
III. In V there exists zero element 0, such that a+0=a forall acV ; it is
easy to prove that zero element is unique.
IV. For every aeV there exists the opposite element —a, such that
a+ (— a) = 0; it is easy to prove that the opposite element is unique.

V. a(a +b):aa +ab.

VI. (a+pa=ca+ fa.

VIL (af)a=a(pa).

Vill.1-a=a.
From axioms I-IV we can infer the existence and uniqueness of the difference
a — b, that is such an element, which satisfies the equation b+ x =a.
Let us state some properties following from these axioms:

l. a-0=0.

2. 0-a=0.

3. faa=0thena=0or a=0.
4+, a(—a):—aa.

5. (—a)a:—aa.

6. ala—b)=ca—ab.

7. (a—ﬂ)a:aa—ﬂa.

The definition given above is the definition of a real vector space, but if we
use complex numbers instead of real numbers in the axioms, we obtain the
definition of a complex vector space.

Here are some examples of vector spaces.

1. Space of vectors on a plane or in space. Recall that a vector in a plane is
an ordered pair of real numbers, and a vector in space is an ordered triple
of real numbers. Thus, all axioms are true.

53



2. The set of all sequences. A sequence is a function defined on the set of
natural numbers, usually denoted by (051,052 yeees Ol ,...), where o, is the

image of 1, a, is the image of 2, etc. Adding and scalar multiplication
are defined as follows.

(0 50y yores Oy sues) ¥ (Brs B seees By seee) =€) + BrsQly + Boseres@yy + Pyyees)s

Y0y 5Oy greny Oy yone) = (FOU YOy yoves VO o).
It is easy to notice that all axioms are true.

3. The set of all polynomials of order less or equal than n, denoted by P".
All axioms follow from the properties of polynomials.
4. The set of infinitely continuously differentiable functions on the segment

la,b], denoted by Cf:;,b]. All axioms follow from the properties of

continuous functions.
e Linear independence and basis.

The linear independence of vectors in linear space is defined exactly as in a
plane or a space.
The linear combination of vectors {al,...,an,...} with coefficients

{@) yoees @,y 3oe) 18 called a vector of the form

0
b = Zaiai 5
i=1

if this series converges.

A linear combination is called #rivial, if all coefficients are equal to zero,
and is called non trivial in the opposite case. Trivial linear combination of vectors
1s obviously equal to zero.

The system of vectors {al,...,an,...} is called linear independent if their

linear combination is equal to zero only if it is trivial. The system is called linear
dependent in the opposite case.

The set of all linear combinations of vectors in the system is called the
linear span of the system of vectors I', and denoted as L(T"). Let a linear space L

and a system ' be given, if L= L(T), then the system I is called full. A full

linear independent system in the linear space L is called the basis of the linear
space. A basis is usually denoted by {el,ez,...,en,...}. If a vector can be

o0
represented as a = Za,-e,- then this representation is unique and {e; };021 are
i=1
called the components of the vector a in the basis {el,ez,...,en,...}. All bases of a
linear space consist of equal number of vectors. The number of vectors in the
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basis is called the dimension of the linear space L, denoted by dim(L). Ifitisa

finite number the vector space is called finite-dimensional linear space, and
infinite-dimensional in the opposite case.
Now, let us consider examples mentioned above.

1.

Vector spaces in a plane or space. Since every vector in space is an
ordered triple of real numbers <x, y,z>, then it can be represented as

—
.

<x,y,z> = xi + yj + zk . Thus, {z ,f,I;} is a basis 1n this linear space, and

its dimension equals 3, and this space is finite-dimensional.
The set of sequences. Every sequence can be represented as a linear
combinations of the following sequences. (1,0,0,...),(0,1,0,...) etc. For

example: (al sQly yeues A py ,) = (1,0,0,...) +a, (0,1,0,...) + «.. Thus, this
system is a basis and the linear space is infinite-dimensional, because the

number of such sequences is infinite.
The set of polynomials of order less or equal than n. Every polynomial

can be represented as a0+a1x+a2x2 +..+a,x", and the system

{1, Xy x2 ey x" } is a basis of this linear space and dim(P” ) =n+1.

Let us consider a finite-dimensional linear space L, and let {el,ez,...,en}

and {ei,e’z,...,e;,} be two bases of L. Every vector in the second basis, like every

vector in L, can be represented as a linear combination of the first basis

n

r . .
e; = ZT,-jej,t =1,n. The matrix

j=1

M 712 T1n
Ta1 T2 (4]
T=| " ) ",
Tn1 T2 " Tun |

the rows of which are the components of {e],e},...,e/,} in the basis {e;,€, e, |,

is called the transition matrix from basis {e;,e,,...,e, } to the basis {e],e},...,e, }.

This can be written as

- L
€] M T2 Un €]
14
€| |71 T2 Tan | | €2
!

_en_ Tl Tm2 z-nn_ _en_

or if we denote the two bases written as a column by e and e', then e’ =Te. From
the other hand, if 7' is the transition matrix from e’ to e, then e =T'e’. Hence,

e=T'Te and ¢’ =TTe'.
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Thus, on account of linear independence of e and ¢ TT=TT'=1, and

T'=T'. This states that the transition matrix is an invertible matrix. And the
converse, every invertible matrix is a transition matrix from a basis to another
basis.

e Linear transformations.

Let a finite-dimensional linear space L be given. The representation
@: L — L is called a transformation of the linear space.

The transformation ¢ is called a [linear transformation if
plaa + pb)=ap(a)+ fp(b). This means that a linear transformation transform
any linear combination of vectors in a linear combination of the images of these
vectors, moreover, with the same coefficients.

The following properties of linear transformations are true. (p(O): 0,
o(-a)=-0la).

Let us show some examples:

1. identity transformation, that is p(a)=a ;

2. zero transformation, that is ¢(a)=0.
Let {e;,e,,...,e, | be a basis in the linear space L.
Theorem 1. For an ordered system of vectors {cl,cz,...,cn} there exists

only one transformation ¢, such that ¢)(e,. ) =c,,i=1n.
Thus, we have one-to-one correspondence between all linear
transformations and all ordered systems of vectors {cl 5C guees cn}. However every

vector from this system can be represented as a linear combination of the basis
vectors {el 9€2 5000y €, } X

n —
c; = Zaijej,z =1,n.
j=1
From the components of the vectors {cl,c2 ,...,cn} in the basis {el,e2 ,...,en} we

can form the square matrix A:[aij ];’j_ - Thus, we have one-to-one

correspondence between all linear transformations and all square matrices of the
order n, this correspondence, certainly, depends on the choice of the basis
{el,e2 yores en}.

We will say that the matrix 4 defines the linear transformation ¢ or A is
the matrix of the linear transformation ¢ in the basis {el, € 40009 €, } If we define

¢le) as the images column of the basis, then @(e)= Ae and if b= > Bie; , then
i=1
ob)=[p, B, - B,]-A-e.The linear transformation is called non-singular
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if it is a surjection. The matrix of a non-singular linear transformation is non-
singular (i.e. its determinant is not equal to zero).

Example 45: let {e;,e,,e;} be the basis of linear space, matrix 4 be the
matrix of linear transformation ¢. Find the image of the element
a=>5e +e,—2e,4,if

-2 1 0
A=|1 3 2
0 -4 1
Solution:
-2 1 0| |¢g e,
pla)=[5 1 =2]| 1 3 2||e,|=[-9 16 0]-|e, |=—9¢, +16e,.
0 -4 1| |e; e,

Let two bases e and e’, with the transition matrix T (e’ =Te) be given.
And let the linear transformation ¢ in these bases be defined by matrices 4 and

A (p(e)=Ae and p(e')=A'e’. We have ¢(Te)=A'Te, but ¢(Te)=Tople),
because @ is the linear transformation. Thus, (TA4)e = (4'T)e, and because e is
the linear independent system 74 = A'T . Finally, because T is invertible,
A'=TAT ' and A=T'A'T.
If two matrices are connected with such a correlation they are called
similar. The determinants of similar matrices are equal.

e Characteristic numbers and characteristic vectors of a linear
transformation.

Let a linear transformation ¢ in a real linear space be given. If a non-zero

vector b transforms under this linear transformation into a proportional vector,
then such vector is called a characteristic vector or eigenvector of the linear
transformation and a proportional coefficient is called a characteristic number or
eigenvalue of the linear transformation. If @(h)=Ab then A is a characteristic

number and b is a characteristic vector of the linear transformation ¢ . We will

usually say that the characteristic vector b corresponds to the characteristic
number A .

If A= [a i ];’jzl is a matrix of the linear transformation ¢, then Ab = Abor

if b=(by,b,,...,b,) then
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a,b, +a,b, +..+a, b =1b,

a,b, +a,b, +..+a,b, =1b,,

a, b +a,b,+..+a,b =1b,.

Since b # 0, not all b,,b,,...,b, are equal to zero. This means that the system
(@, —A)x, + a,x, +..+a,,x, =0,

a, x, + (a22 - ﬂ.)x2 +ota,x, =0,

*)

a,xX,+a,x, + .+ (a,m — ﬂ)xn =0.
has got non-zero solution, which means that the matrix of the system is singular
(i.e. det(4 — AI)=0). This is called the characteristic equation. The roots of this
equation are the characteristic numbers of the linear transformation. Every non-
zero solution of the system (*) will satisfy the corresponding matrix equation
Ax = Ax and will be components of characteristic vector corresponding to the
characteristic number A in the same basis as A.

Example 46: find characteristic numbers and characteristic vectors of the

7 -12 -2
linear transformation ¢ represented in a basis by amatrix 4={ 3 -4 0
-2 0 -2

Solution: let us write the characteristic equation det(4—AI)=0, or
7-4  -12 -2
3 —4-4 0 [=(7-A)-4-2)-2-1)-4(-4-1)+36(-2-1)=

-2 0 -2-1
=(7-A)-4-21)-2-1)-324-56=-2 + 2 +21=-A(1-2)1+1)=0, ie.
A =0,1,=2and 4; =-1.
Firstly, let us consider the case A4; = 0. Then the system (*) will be:

Tx; —12x, —2x5 =0,

3x; —4x, =0, It has got non-zero solution because the determinant of

-2x; —2x3=0.
the system is equal to zero. If we put x; =4¢, where ¢ is any real number, then
x, = 3¢ from the second equation and x; = —4¢ from the third one. Thus the first
characteristic vector will be e; = <4t,3t,—4t> , Where t is any real number.
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Then, let we have A,=2. Then the system (*) will be:
Sx; -12x, —2x5; =0,
3x; —6x, =0, If we put x, =¢, then x; =2¢ and x; =-2¢. And the
—-2x; —4x3 =0.
second characteristic vector will be e, = <2t,t,—2t> , Where ¢ is any real number.
And finally, let we have A,=-1. Then the system (*) will be:
8x; —12x, —2x; =0,
3x; -3x, =0, If we put x, =¢, then x; =¢ and x; =-2¢. And the
-2x; —x3=0.

third characteristic vector will be e; = <t,t,—2t> , Where # is any real number.

e Euclid spaces.

We will say that in finite-dimensional real linear space the scalar product is
defined, if every two elements a and b corresponds with a real number (a,b),

which satisfies the following properties. (a, b, ¢ are arbitrary vectors, ¢ — a real
number):

L. (a,b) = (b,a).

. (a+b,c)=(a,c)+(b,c).

1. a(a,b)=(aa,b).

IV.If @ # 0, then (a,a)> 0.

n n n n
From II and 11T it follows that > e;a; > Bib; =D > a;f3; (a,-,b]-). Ifin a
i=1 j=1 i=1 j=1
finite-dimensional linear space the scalar product is defined, then such space is
called Euclid space. In every finite-dimensional linear space the scalar product
can be defined. For example, let {e;,e, ,...,e, } be a basis in the linear space L.

n n
Then, if @ = ) a;e; and b= ) f;e; , we can state that
i-1 i-1

n
(aab) = Z aiﬂi
i=1
satisfies all the properties of scalar product.
Two vectors a and b in a Euclid space are called orthogonal if (a,b) =0.A
system of vectors {al ,...,an} is called orthogonal system if (a,-,aj): 0,i+j.

Theorem 2. Every orthogonal system is linear independent.
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A vector a is called normalized if (a,a)=1. If a vector a#0 then
normalization is the following transformation of the vector:

P 1
1/ia,ai

This vector will be normalized. The basis {e;,ey,e,} is called

a.

orthonormal, if it is orthogonal and (e;,e;)=1,i = 1,n. Every Euclid space has
orthonormal basis.

e Orthogonal and symmetric transformations.

A linear transformation ¢ of a Euclid space is called orthogonal, if for
every vector a from the space (¢(a),¢(a))=(a,a). It has the following properties:
1. For every vectors a and b it is true that (p(a),p(b))=(a,b). From the definition

(p(a +b),pla+b))=(a+b,a+b)=(a,a)+2(a,b)+(b,b), but on the other hand
(pla +b)pla +b))=(p(a) + p(b),pla) + ¢(b))= (pla) pla)) +
+2(pla)p(b))+ (0(b), (b)) =(a,a) + 2(pla) p(b)) + (6,).
Hence (p(a),o(b))=(a,b).
2. The images of an orthonormal system under an orthogonal transformation form
another orthonormal system. Let {el,e2 ,...,en} be a orthonormal system in the

space. Let us consider ((o(e,- ), (p(e j )): (e,-,e j):(), if i#j. And
(p(e; ), 0(e;))=(e;,e;)=1. Hence {p(e, ), 0(e, )...0le, )} 1s orthonormal.

3.In every orthonormal basis the matrix of an orthogonal transformation is an
orthogonal matrix (i.e. A7 = AT).

4. Every orthogonal transformation is non-singular.

A linear transformation ¢ of a Euclid space is called symmetrical, if for every
vectors @ and b from the space (¢(a),b)=(a,p(h)). It has the following
properties:

1. In every orthonormal basis the matrix of a symmetrical transformation is
also a symmetric matrix (ie. A=A"). Let {e;,e;,me,} be an
orthonormal system in the space. Let us consider

(( ) ) [Zazkekae] Za,k(ek,e) a,-j,andontheotherhand
(co(ei)ae') (n¢’( )) [,,Za kek] Z“jk(ei’ek)z“ﬁ'Hence Ay =4ji-
k=1
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2. All characteristic numbers of a symmetrical transformation are real. Let us
have A that is a characteristic number (maybe complex) of the linear

transformation with the matrix A4 = [aij ]:j=1 . Let us consider the system
(@, —)x, +a,x, +..+a,,x, =0,

a, x, + (a22 - /"L)x2 +..ta,,x, =0,

This system has got a non-zero solution because A is a characteristic number.
n -
Let it be <,81 ,...,,Bn> (maybe complex). Then Zaijﬁj =Ap;, i=1,n. Let
j=1
us multiply the i equation by f; (complex conjugate to ;) and sum up

n n - n o
all the equations. We obtain Z Zaij BiBi= /12 B;B; - If we prove that the
i=1j=1 i=1

left-hand part of the equality is a real number it will imply that A is a real

n
number as well, because Z B;B; 1s always a real number. Let us consider

i=1
Z 2.4 BiBi =2 20588 =2 > a; BB = 2.2 4 BiB; =
i=1j=1 i=1j=1 i=1j=1 i=1j=1
n J—
= z Zaij B;B; - Thus this is a real number and hence 4 is a real number
i=1 j=1
as well.

3. Characteristic vectors of a symmetrical transformation form an orthogonal
system. Let 4; and 4, be two different characteristic numbers. And let a

and b be corresponding characteristic vectors. Let us consider an expression
0= (¢(“)’b) - (“9¢(b)) =4 (a,b) — A (b,a) =4 (a,b) ) (“91’) = (/11 — 4, )(“91’)'
Then, because A; # A, (a,b)=0.

4. For every symmetrical transformation there exists an orthonormal basis in
which the matrix of this transformation is diagonal. This basis consists of
normalized characteristics vectors. On the diagonal in the matrix there are
characteristic numbers.
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2 1
Example 47: find the basis in which the matrix A4 = L 2} of a symmetric
transformation is diagonal.

Solution: let us find characteristic numbers of this transformation:

2-1 1
‘ o, =(2-2-1=2*-42+3=(1-1J4-3)=0. Thus A4, =1 and
/12 = 3 .
. L. x1+x2:0, x1=t,
Let us find the first normalized characteristic vector: or
x1+x2=0 xZ:_t,
i 1 t 1|1
where ¢ 1s a real number. Then, ¢; = ————— =—= .
(e Lt V21
. .. - xl + x2 — 0,
Let us find the second normalized characteristic vector: or
xl —_ xz = 0
=h here | number. Th U U fence th
where ¢ is a real number. Then, e, =————| |=—=| |. Hence the
Xy =1, el 2l

: L : : S R | 10
matrix A is diagonal in the basis {e;,e,}, and it is 4’ = = . Let
0 4, 0 3

us check it. A4'=TAT ™", where T is a matrix composed of characteristic vectors

rows. In our case T = /\/_ /\/_ and T '= /\/_ /\/_.Then
Va2 Vo i Vo

—TAT ' =

?g//gr 12 2 200 -

S sl s
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IDENTIFYING SECOND DEGREE EQUATIONS

e C(lassification of second degree curves.

Thus far we have considered the first degree equations, where the variables
in the equations were in the first degree. Next step is the second degree equations.
The general equation of the second degree has the following form:

Ax2+Bxy+Cy2+Dx+Ey+F:0.

Later you will see that there are only three different second order curves: ellipse,
parabola, and hyperbola. Let us define them.

An ellipse is the set of all points <x, y> the sum of whose distances from

two distinct fixed points, called foci, is constant. The line through the foci
intersects the ellipse at two points, called vertices. The chord joining the vertices
is the major axis, and its midpoint is the center of the ellipse. The chord
perpendicular to the major axis at the center is called the minor axis (Fig. 19). F,

and F, are foci, 4 and C are vertices, AC 1is major axis and BD is minor axis,
O 1s the center and F; K + F, K = const for any point K on the ellipse.

Fig. 19

Let us deduce the standard equation of an ellipse. Let us put the center in the
origin and foci at points <c,0> and <— c,0>. Let us put major axis as 2a. Then

the point will lie on the ellipse if \/(x—c)2 + y2 +\/(x-|—c)2 +y2 =2a.

Raising to the second power and simplifying we get

2 2
ad +y 1,

a’ b*
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where b=+/a’? —¢? is the half of the minor axis. This is called the standard
equation of an ellipse.
A parabola is the set of all points <x, y> that are equidistant from a fixed

straight line called directrix and a fixed point called the focus (not on the
straight line). The midpoint between the focus and the directrix is called the
vertex, and the straight line passing through the focus and the vertex is called
the axis of the parabola (Fig. 20).

Fig. 20

Using the definition we can easily derive the following standard form of
the equation of a parabola. Let us suppose that the equation of the directrix is

x:—g and the focus is in the point <§,0>. Because the point <x, y> is
equidistant from X = —g and <§,0> we can write

2
\/(x —gj + (y - 0)2 =x+ g Raising to the square both sides and simplifying

the expression we obtain:
yi=2px,
which is called the standard equation of a parabola.

A hyperbola is the set of all points <x, y> the difference of whose distances

from two distinct fixed points, called foci, is constant. The graph of a hyperbola
has two disconnected parts, called branches. The straight line through the two
foci intersects the hyperbola at two points, called vertices. The straight line
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segment connecting the vertices is the #ransverse axis, and the midpoint of the
transverse axis is the center of the hyperbola (Fig. 21).

An important aid in graphing a hyperbola is the determination of its
asymptotes. Each hyperbola has two asymptotes that intersect in the center of the
hyperbola.

Fig. 21

Let us deduce the standard equation of a hyperbola. Let us put the center in the
origin and foci at points <c,0> and <— c,0>. Let us put the transverse axis as

2a. Then the  point | will lie on the  hyperbola if
V=l + y% = (x4 ) + 2

simplifying we get

=2a. Raising to the second power and

Xy

2
a* b?
where b=+a? —¢? is referred to as the conjugate axis of the hyperbola. Note

that asymptotes of a hyperbola pass through the corners of a rectangle of
dimensions 2a and 2b.

Example 48: find the standard equation of x> +4 y2 +6x—-8y+9=0.
Solution: let us at first group terms: (x2 + 6x)+ 4(y2 — 2y)+ 9=0, then

(3f G-1P

complete the squares: (x + 3)2 +4(y - 1)2 -4=0 n
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x=x+3
Finally making the substitution {_ 1’ we obtain the standard equation of an
y=y-
ellipse with major axis 2 and minor axis 1:
-2 2
’2‘—2 + f_z ~1.

Example 49: find the standard equation of —4x* + y* +24x+4y —41=0.

Solution: as in previous example let us complete the squares. We obtain:

X=y+2
—4(x - 3)2 +(y+ 2)2 =9. Making the substitution {)j d 3’ we obtain the
y=x-

standard equation of a hyperbola:
X!y

(/

Example 50: find the standard equation of x*-2x+4 y—-3=0.

Solution: we can rewrite the equation as —4(y —1)=(x - 1)2. Making the
x=y-1
substitution {_ Y X we obtain the standard equation of a parabola:
y=x-
-2 —
Yy =—-4x.
From the previous examples we can see, that if the general equation of the
second degree Ax? + Bxy +Cy> + Dx+ Ey+ F =0 does not contain the term
Bxy, completing the square and making the linear substitution, we can easily

identify the curve and write its equation in the standard form. The following
method helps us in case B#0.

e The eigenvalues method.

Let us consider the first part of the general equation of the second degree
Ax? + Bxy + Cyz, which is called the quadratic form. It can be written in the

B B
A { } / 1s called the matrix of the

The matrix ly

form [x y]- 17

quadratic form. It is a symmetric matrix, and we know that there exists a basis in
which this matrix is diagonal. Furthermore, this basis is the basis of eigenvectors.

~

X

Thus, making the substitution { }: T {N} , where T 1s the transition matrix, we
y y

66



make the quadratic form not to contain the term Bxy. Moreover, the quadratic

form becomes 1,X% + 1,5*.

Example 51: find the standard equation of
3x* +10xy +3y? —2x-14y -13=0.

5
Solution: let us write the matrix of the quadratic form A4 = L 3} . Then, let

us find its eigenvalues. The characteristic equation is

3-14 5
=A*-61-16
5 3-1
Solving it we get A4, =8 and A, =-2. Let us now find the corresponding
eigenvectors.
. . _5x1 +5x2:0, xlzt,
Let us find the first normalized eigenvector: or where
le_5x2:0 x2=t,
ti 1 ber. Th ! ! L1 Let find th d
i1s a real number. Then, ¢, =————| |=—=|  |. Let us find the secon
e el V2

5x1 + 5x2 = 0, xl = _t, .
or where ¢ is a real number.

normalized eigenvector: {

1 —t 1|1 . .. :
Then, e =——— =—= . Hence the matrix 4 is diagonal in the
(el ] V201
) .. : 1|1 -1
basis {el,ez}, and the transition matrix 7T :ﬁ . Then, let us make the

_ x X 1|1 -1||x| 1|X-) : .
substitution =T _|=—= _|=—=| _ _|. Putting this into the
y ¥l J2[1 1| F| 2|%+7
equation we obtain 8%2 — 252 —8v2X + 6425 —13=0. After completing the

JE}Z zfy 342
S

2
squares, we get 8[37 S —J — 8 =0. Making the substitution

L 2
X=xXx-—,
2 we obtain the standard form of the equation of a hyperbola
S~ 32
y=Jy 5
 F
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Example 52: find the standard equation of
9x? —24xy +16y* —20x+110y —50=0.

9 -12
Solution: let us write the matrix of the quadratic form A :{ 2 16 }

Then, let us find its eigenvalues. The characteristic equation is

9-14 -12
‘ 3 16 /1212_251:0.Solvingitweget,llz() and A, =25. Let us now

find the corresponding eigenvectors.

Let us find the first normalized eigenvector: or

_12x1 +16x2 =0 Xy :3t,
, 1 4| 1|4
where ¢ is a real number. Then, ¢ =—— =—| _|. Let us find the
V16e* +9¢% 3] 5(3
second normalized eigenvector: or where 7 is a
—12x1 —9x2 =0 Xy :4t,
-3t -3
real number. Then, e, = L { }:1{ } Hence the matrix A4 is
J16r2 +o(—¢ L4t ] 54

diagonal in the basis {e,,e, }, and the transition matrix T = %{ 4 } Then, let

e x| 1|14 -3|x| 1/4x-3y , .
us make the substitution =T| _|== _ == __ _|. Putting this
y y| 513 4 ||y| 5/3x+4y

into the equation we obtain 255> + 50X +100% —50=0. After completing the
squares and dividing by 25, we get (7 + 2)2 +2X — 6 = 0. Making the substitution

=X - 33 . .
{)_C f 5 we obtain the standard form of the equation of a parabola
y=y+4

y2 =-2x.

Example 53: find the standard equation of
25x% —14xy + 25y + 64x — 64y —224=0.
Solution: let us write the matrix of the quadratic form Az{_zi ;57}
Then, let us find its eigenvalues. The characteristic equation is
‘25__7/1 25__71‘ =% —504—674=0. Solving it we get 4, =18 and 1, =32. Let
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us now find the corresponding eigenvectors.

, _ Tx; —7x, =0, x; =t,
Let us find the first normalized eigenvector: or where ¢
: 1 t 1|1
1s a real number. Then, e, = = . Let us find the second
ﬂtz + tz t '\/E 1
. . _7x1 _7x2 :0, xl :_t, .
normalized eigenvector: or where 7 1s a real number.
1 —t 1 (-1 : g .
Then, e; =———— =— . Hence the matrix 4 1s diagonal in the
2a(-ep Lt ] N2l
| N | 11 -1
basis {e;,e,}, and the transition matrix T :ﬁ L1l Then, let us make the

X 1 -1|x X-7]
substitution o =T f :L f :L f { . Putting this into the
y] ¥ V21 1 ]F] 2[R+

equation we obtain 18%% +325% — 64&? —224=0. After completing the

~2+(}—9\/E)2:

squares and dividing by 288, we get )166

1. Making the substitution

{)_c X,
y=5-,

we obtain the standard form of the equation of an ellipse
—2 =2
z—z + ;;—2 =1.

e Sketching second degree curves.

It is easy to sketch a second degree curve if its equation is given in the
standard form. However, it is possible in general case. Each substitution we made
in examples 51-53 is a transformation of the coordinate axes. Since eigenvectors
of a symmetric matrix are orthogonal their directions could be coordinate axis
direction. After the first substitution the coordinate axes “rotate” with respect to
the origin. The second substitution is linear, thus the coordinate axes shift with
respect to the origin. And in the obtained coordinate system X,y we sketch the

curve given in the standard form.

Example 54: sketch the curve 3x? +10xy +3y* —2x 14y —-13=0.
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Solution: as it is shown in the example 51 the standard form of this

cox_ V2
Xt P x| 1[%-F EYTY N
equation —-—-—=1, where =— _ | and < . Firstly, x-
12 2 y] J2[X+5 L 32
y:y+T

axis has the direction of e, =
V2|1

1|-1 : o ~ . :
e, = T{ } . Secondly, X -axis has the same direction as X -axis and has a shift
2
—34/2 . . ~ . : : :
3\/_. y -axis has the same direction as y -axis and has a shift 5 Finally, in

2
the new coordinate system Xx,y we sketch a hyperbola with the equation

1
L {}, and y-axis has the direction of

2 2
T Y 1 (Fig. 22).

12 22
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Example 55: sketch the curve 9x? —24xy +16y? —20x +110y —50=0.

Solution: as it is shown in the example 52 the standard form of this equation

~

s _ x| 1/4x-3y x=x-3, _. -
y~ =-2Xx, where =—| _ | and ¢ _ Firstly, X -axis has the
y| 5/3x+4y y=y+2.

4 -3
direction of e, :%L}, and y -axis has the direction of e, :%{ 4 } Secondly,

x -axis has the same direction as X -axis and has a shift 2. y-axis has the same
direction as y -axis and has a shift —1. Finally, in the new coordinate system

X,y we sketch a parabola with the equation fz =-2x (Fig. 23).

Fig. 23

Example 56: sketch the curve 25x% — 14xy + 25y2 +64x -64y —224=0.

Solution: as it is shown in the example 53 the standard form of this

=2 yl

X—-9 X=X
equation x—2+—2:1, where {x}:i{f { } and ~, . Firstly, X-
42 3 y| V2|X+7 y=y-+2.
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1
axis has the direction of e :%L}, and y-axis has the direction of

e :L L Secondly, X -axis has the same direction as X -axis and has a
2 \/E 1

shift+/2 . y-axis coincides with ¥ -axis. Finally, in the new coordinate system

-2 =2
x,y we sketch a hyperbola with the equation z—z + y—2 =1 (Fig. 24).

X
bl

/ ~
4 / A X
e 2 7
/

v

Fig. 24
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PROBLEMS

e Determinants.

Find the determinants:

3111 111 1 1 2 3 4 1 2 3 5
1 311 _ 12 3 4 2 3 41 -2 1 -4 3
1. 2. 3. 4.
1131 1 3 6 100 3 4 1 2 3 -4 -1 2
1 113 1 410 20 4 1 2 3 4 3 -2 -1
2111 [t1 1 1
cos(a - b) cos(b - c) cos(c -a
1 311 12 3 4
5. 6. 7. [cos\a + b) cos(b + c) cos(c +a
1 1 41 1 4 9 16 ] ) )
s1na+b) s1n(b+c) s1n(c+a)
1 115 1 8 27 64
1 2 3 1 2 2 2 X a a - a
-1 0 3 2 2 2 a x a - a
8. -1 =2 0 n 9*. 2 2 3 2/ 10*. la a x - a
-1 -2 -3 -~ 0 2 2 2 - n a a a - X
Solve the systems by the Cramer’s rule:
x—y+2z7=3, xX+2y—z=2, x—-2y+4z7=3,
1. <2x+3y—-z=2, 12. 1-2x+y+2z=6, 13.¢ 2x—-4y+3z=1,
3x—-y+12z=0. 3x-2y+z=-6. 3x—-y+5z=2.
2x+3y+5z=10, —3x+y—-z=-3, x| +x, +x3=0,

14.

17.

20.

x+2y+2z=3, 15 x+y+z=3, 16.< 2x;+x,—-3x3=-6,

3x+T7y+4z=3. 2x—-y-2z=0. —x; +3x, —2x5 =3.
x+2y—-2=3, 2x; + x5 +x3 =3, x| +Xx, + x3 =36,
2x+y—-3z=-2,18. <3x; —x, +2x3 =3, 19. 12x; —3x;3 =17,

| 3x+12y—-2z=0. Sx; +2x, =2. 6x, —5x;="1.

(x; +x, — x3 =36, X; +2x, +x3 =4, 2x; —4x, +9x;5 =28,

_x1+x2+x3:7. 2x1+7x2—x3=8. 7x1+9X2_9x3:5.
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23.

26. 4x1 — Xy +x3:10, 27. X1 — X, +X3:—13, 2

29.

2x; +x, =5, Tx; +2x, +3x3 =15, X +x, +x3 =17,
x; +3x3 =16, 24. {5x; —3x, +2x3 =15, 25. <x; —x, + x3 =13,
Sx, — x5 =10. 10x; —11x, + 5x; = 36. - X1+ X, +x3=-T7.
X;+ X, +XxX3=2, X+ X, +x3=21, Xp+X; +2x3 +3x4 =1,
g |3x1—x; —x3-2x4 =4,

2x1 +3x2 _x3 _x4 = _6,

—X; + X, +x3=-4. - X+ x5 +x3=17.

i X +2x, +3x3 —x4 =4
Xy +2x, +3x3—2x4 =6, Xy +2x, +3x3 +4x4 =5,

2x; — x5 —2x3—3x, =8, 30. 2x; + x5 +2x3+3x4 =1,

3x; +2x, —x3 +2x4 =4, 3x; +2x, + x5 +2x4 =1,

2x; —3x,; +2x;5 + x4 =-8. 4x; +3x, +2x3 + x4 =-5.

Vector algebra.

Find the angle between vectors 4 =g+ p and b = p—¢, if‘f)‘ =2, ‘Zi‘ =1,

(13 q}:ms".

Find the angle between vectors @ =2p —§ and b = p + 24, if ‘f)‘ = ‘t_i‘ =1 and
e
(p*4)=7-
Find the angle between vectors @ = m + 2n and b=3m-n,if ‘171‘ =1,
AN
A|=2,|m n|=120".

Prove that in a parallelogram the sum of diagonal squares is equal to the sum
of all sides’ squares.

- AN 0 AN

p‘=1, m n|=60",|m p|=

if |7 = |m| = 2,
= (ﬁ/\ ﬁj =90". Find the angle between vectors @ and b if @ = <3,2,—6> and

Find |m + 25— p

b=(2,-2,1).

Find proj;, . a, if @(1,-34), b(3,-4,2), ¢(-1,1,4).

Find proj; (2d + 3¢), if a(- 2,-1,1), b(2,-1,0), &(-1,3,-7).

Find the angles of the triangle ABC, if A <1,2,1> , B <3,—1,7> ,C <7,4,—2> .
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9. Find the components of the vector x, if x L i — 2} +k,x12i- 3]’ +k,
and modulus of the vector ¥ equals 6+/3 .

10. Find the components of the vector x, if x L i— } - I;, 5:(17 - }): 2, and
%= +6.

11. Find the components of the vector x, if x L AABC: 4 <1,3,4> , B<— 1,0,9> ,
C(3,2,3), and |/ =53 .

12. Find the area of the parallelogram ABCD if A<1,0,3> , B<— 2,1,5> and
C(—1,5,-4). Find the area of the triangle ABC if 4(1,1,0), B(1,0,1),
C(2,1,1).

13. Find |d x | if |a|=1.

b if ‘a‘

I;‘=2 and a@-b=—

14. Find 13\=3 and \ﬁx5\=

57[

i-b
15. Find |(@ - b )x (2a + 35| if |a| =[5|=2 and (@*5)=
(2d -

35)x (25 - a) if

17. Prove that ‘a X b‘

16. Find (2 xh=2.

Ql

Sy

Q*l &l
1 =N

Sy Ry

Sy

18. Find ab(3d — 25 + 3c) bé =2

19. Find (2a - 3b + 26 )x (— @ + b + 3¢)- (3d + b — 5¢), if dbc =2

20. Find the volume of the pyramid ABCD if A<1,2,—3>, B<0,—1,2>, C <— 1,5,—4>
and D(2,7,5).

21. Prove that vectors d + 4b + 7¢, 2d + 5b + 8¢ and 3d + 6b + 9¢ are always
coplanar.
22. Find A4 such that vectors <1,2,—3>, <4,—2,1>, <— 1,0,ﬂ> are coplanar.

e Analytic geometry.

1. Find the equation of the plane passing through the point A(0; 1; 3) and the

line — * y+1—£.
2 -1 2

2. Find the equation of the plane passing through the points A(-1; 1; 2), B(0; 1;
3) and C(2; 0; -1.

3. Find the equation of the plane passing through two parallel lines:
x-1_y-1_z x_y z+3

3 -1 4°3 -1 4
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10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Find the equation of the plane passing through the point A(0; 1; 3) and the

line X = yrl =£

2 -1 2
Find the equation of the plane passing through the point <2,0,1> , parallel to
vectors a = <1,—1,3> and b = <0,2,—1>.
Find the equation of the plane passing through the points A(-1; 15 2), B(0;
3) and C(2,0,-1).
Find the equation of the plane passing through the points A<— 1,0,1>,
B(0,3,1), C(4,-2,0).
Find the bisector to planes x -2y +2z7+2=0 and 4y +3z-3=0.
Find the angle between planes 2x—-6y+3z+1=0 and
—4x+12y—-6z+1=0.

1;

Find the angle between planes x—y+\/5z+2:0 and x+y+\/5z—3:0.

Find A and g such that planes x — y+ Az +2=0 and ux + y +3z-3=0
are parallel.
Determine the positional relationship between the straight lines
x+2: y :z—l and x—3:y—1:z—7‘
2 -3 4 a 4 2

3x-2y+z=0
x-2z+1=0
Find the distance between the point M(1; 2; -3) and the plane
x—-6y+18z-1=0.

Find the canonical equation of a straight line {

x+1 y+1 z+4

Find the intersection of the line 3 ” and the plane
xX+2y+z-6=0.
Find the plane passing through two parallel lines: x; L S _11 = %,

x y z+3

3 -1 4
x+1 y-1 z-4

Find the point of intersection between the straight line 0 3

and a plane 2x -3y +4z-3=0.

Find the projection of the point M <1,0,—2> to the plane x -2y +3z-9=0.

x y+3

Find the projection of the point M <1,—2,2> on the straight line 1

and the equation of the perpendicular from the point M on the straight line.
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20. Find the volume of the pyramid ABCD if A<1,2,—3>, B<0,—1,2>, C <— 1,5,—4>
and D(2,7,5).

21. Find the volume of the pyramid ABCD if A<2,—1,1> , B<5,5,4>, C<3,1,—1> ,
D(4,1,3).

e Matrices.

Find products )
31 1|1 1 -1
2 1|1 -1 3 5 2 1
1. : 2. : 3001201 21412 -1 1
3 21 1 6 —-1||-3 2
1 2 3][1 0 1
3 1 2] 2
2 11 2 3 1
4. 12 1].5. q2(.61 2 3]|3|7]1|-1 -2 3]
3 01 0 -2 1
1 0 1] 3
g% 1 1"9*' cosg sing |
01 —sing cosg
Find f(A)
2 1 1 1 00
10. f(x)=x*-x-1,4=(3 1 2|11 f(x)=x*-5x+3,4=|0 1 0
1 -1 0 3 21
Solve the systems using Gauss-Jordan elimination method
xX+2y—z=2, x—-2y+4z=3, 2x+3y+5z=10,
12.3-2x+y+2z=6, 13.5 2x—-4y+3z=1,14. ¢ x+2y+2z=3,
3x-2y+z=-6. 3x—-y+5z=2. 3x+T7y+4z=3.
-3x+y—-z=-3, x; +x, +x3=0,
15.9 x+y+2z=3, 16.9 2x; +x, —3x3 =-6,
2x-y-2z=0. —x; +3x, —2x3 =3.
17 2x1 _x2 _2x3 _3x4 :8, 18 2x1 _x2 _2x3 _3x4 :4,
.3 .3

77



Find the inverse of the matrices

7 -1 0 0 2 5 0 -3 2
19. A=|-5 0 3 [.20.4=]2 -1 0 [.2]1.4=1 3 -2|.
0 1 -5 -2 0 -3 1 -1 0
_ (1 3 -1 -2]
1 2 5 -1 5 5§
2 7 0 -1
22. A=|0 -1 0|.23. A=|3 -1 0|.24.4= .
-1 -4 0 -1
1 0 3 1 8 0
- -3 10 -1 -2]
Solve the systems using an inverse of the matrix
xX+2y—z=2, xX—2y+4z7=3, 2x+3y+5z=10,
28, {-2x+y+2z=6, 29.4 2x—-4y+3z=1, 30.< x+2y+27=3,
3x-2y+z=-6. 3x—-y+5z=2. 3x+T7y+4z=3.
Find the rank of the matrices
_ - 1.0 0 1 4] i _ ]
bo 21 01 0 2 5 - e
s 2 7P ndeo 01 3 6 33293_1_2
13 1 3 2| : - 1313 2 0 2
1 2 3 14 32 4 17 1 1 6
7 -2 8 5
- - 4 5 6 32 77 2 8 -2 1 8
1 -2 3 6 -3] 1 -2 3 -1 -1 -2
3 -7 2 -4 3 2 -1 1 0 -2 -2
34./14 -9 § 2 0| 35,-2 -5 8 -4 3 -1}/
7 -16 7 -2 -3 6 0 -1 2 -7 -5
1 -25 12 0 -3 -1 -1 1 -1 2 1|
Find the fundamental system of solutions of the following systems
3x; +x; —8x3 +2x4 + x5 =0, X +X, +Xx3+2x, +x5 =0,
36 2x1 _2x2 —3X3 _7x4 +2x5 :0, 37 2x1 —xz —3x3 —x4 +3x5 :0,
xl _5x2 + ZX3 _16x4 +3x5 :0. xl —2x2 —4X3 —3X4 +2x5 = 0.
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38.

2x1 +x2—2x3 +x4_x5:0,
3x; —5x, +x3-3x4 +2x5 =0,

39.
x; —6x, +3x; —4x4 +3x5 =0,

Tx; —3x5 —3x3 —x4=0.

Linear transformations and second degree curves.

7 -12
Find eigenvalues and eigenvectors of the matrix A=| 3 -4
-2 0
31 1
Find eigenvalues and eigenvectors of the matrix 4={1 3 1.
1 1 3

Sketch the curve 3x% +10xy +3p* —2x—14y —13=0.
Sketch the curve 9x* —24xy +16y> —20x+110y-50=0.
Sketch the curve 25x% —14xy +25y + 64x— 64y —224=0.
Sketch the curve 4xy+3y* +16x-12y-36=0.

Sketch the curve 7x* + 6xy — y2 +28x+12y +28=0.
Sketch the curve 19x% + 6xy +11p* +38x+6y+29=0.
Sketch the curve 5x* —2xp +5y* —4x+20y+20=0.

. Sketch the curve 14x* +24xy +21y* —4x+18y—-139=0.

. Sketch the curve 11x* —20xy —4y* —20x -8y +1=0.

. Sketch the curve 7x? +60xy +32y* —14x-60y+7=0.

. Sketch the curve 50x2 — 8xy + 35y2 +100x-8y+67=0.

. Sketch the curve 41x% +24xy +34y? +34x-112y+129=0.
. Sketch the curve 29x* —24xy +36y* +82x—96y—91=0.

. Sketch the curve 4x* +24xy+11y* +64x+42y+51=0.

79

X — Xy —4x3+3x4 +2x5=0,
Sx; —2x5 —3x3 +5x4 +2x5 =0,
6x;, —3x, —Tx; +8x4 +4x5 =0,

4x1 —X2 +X3 +2x4 :0.
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