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1. TYPES OF SOLID MODELS

integration of functions within the factory requires a product definition
that is unique and consistent throughout the design and manufacturing
process; it is computer graphics that makes possible a practical
implementation of this dictum. At the heart of this definition is the geometry
of the product— its shape. The world has three spatial dimensions, so
computer models must be three-dimensional.

Three-dimensional CAD models can take three forms:
1. Wireframe. Includes only points in space and the limes connecting
them. Objects are represented by their edges.
2. Surface. The edges of the wireframe are spanned by mathematically
defined areas.
3. Solid. The space enclosed by surfaces is defined and forms a closed

volume.

Wireframe  representations  of
complex objects are very difficult to
understand visually, because
computer dispiays and paper plots

seldom give an indication of depth and
invisible lines. Seeing all the edges at Fig. 1.1. Ambiguity of the
once leads to perceptual confusion wireframe model
because of ambiguities (Fig. 1.1).
Advantages of solid models (SM) are:

— SM are the least abstract and most realistic of the three forms;

- a complex object can be decomposed into a much smaller number
of solid components (primitives) than surfaces, lines, or points;

SM and surface models allow the generation of images with hidden
lines and hidden surfaces removed, which are much more realistic than
wireframe models (Flg 12), This edges are not identify

- the most important aspect of

solids is that their integrity can be
computationally determined. In other </ \ iP ‘
words, SM software with the aid of the
computer can tell if a given object is a \
legitimate solid or not. Objects \
designed in SM systems will be

a b

manufacturable, at least from the point

of view of spatial integrity. It is advised y , .

to keep in mind that anhough a given Fig. 1.2. Rea' and Wlf?frame view:
solid may be valid or geometrically 2 —real 3D view;b —wireframe view
complete (forming a closed volume),

this by no means quarantees it to be manufacturable;

—  SM systems can be automatically tested for interferences among parts;

- SM system makes analysis tools accessible to designers who do not
understand the mathematical details;
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- SM makes it possible to build “software” prototypes. These are models
that exist only within the memory of the computer. These models can be
subjected to computer-based simulations of the prototype tests, and the
results can be used to build a real prototype. Computer-based simulations
can often be better representations of realworld conditions than those to
which physical prototypes are subjected;
— solids are described by topology in addition to geometry. Topology is
the properties of the shape that are unaltered by deformation;
—~ SM allow to use parametric/relational (P/R), feature-based and
variational approach in modeling;
~ database of SM includes information which can determine the mass
properties of the physical objects being modeied so it may be possible to
predict object weight or dynamic behavior of a complex mechanism;
-~ SM may be used for kinematic and dynamic analysis;
— during numerical control manufacturing the computer-verifiable nature
of solids obviates problems concerned with flaws such as missing
geometry or unconnected surfaces.

Types of solid modeling system

Constructive Solid Geometry (CSG, C-Rep).

Geometric primitives are combined in this approach by means of
Boolean operations. CSG systems store a record of the primitives and the
operations used with them; each time the part is to be displayed, it is
computed from the tree of primitives and operations. Consequently, CSG
databases are usually quite small relative to other representations, but
display times are sometimes longer.

Boundary Representation (B-Rep).

Making use of the fact that higher-dimension geometries are bounded
by objects of lower dimensions, B-Rep systems maintain an explicit “tree”
of boundaries: a solid is bounded by surfaces; a surface is bounded by
lines; a line is bounded by points.

The coordinates of the points that bound the lines that bound the
surfaces that bound the solids are explicitly stored in B-Rep systems; the
geometric relationships are maintained by pointers. As a result, B-Rep files
are much larger than CSG files of similar parts. But display performance is
usually faster for B-Reps, because the model need not be "evaluated"” at
display time — that is, the Boolean operations on primitives that are
performed each time s CSG model is displayed do not have to be done.

Spatial enumeration (Octrees, O-Rep)

Wile both CSG and B-Rep systems approach solid geometry from the
point of view of the part, it is aiso possible to consider the part in the
context of the space in which it resides. Space can be divided by a
progressively refined grid of cubes, using cubes that stay completely within
or completely outside the model, and smaller and smaller cubical partitions
to approximate the boundaries of the model. O-Rep system performances
degrade much more slowly with the complexity of the mode! than do B-Rep
or CSG.



Hybrids

Most of the SM systems on the market today are some form of hybrid of
CSG and B-Rep. CSG is generally used for internal representation and B-
Rep for the generation of views. Since CSG models are stored
unevaluated, they are resolution-independent. B-Rep polygonization of
models can be geared to the desired trade-off between resolution and
dispiay speed.

2. SOLID MODELING CONCEPT

While 2D drawings can be created manually or electronically, solid
models must be created in an electronic “drawing universe”. Solid models
themselves are not physically accessible. CAD workstations are used to
create, edit, and display 2D representations of the electronic solid model.

3D coordinate systems

Solid models are located in an electronic space that is defined in terms
of 3D Cartesian coordinates. This is known as the 3D work space or model
space. Some 3D systems provide an auxiliary 2D work space as well. This
is sometimes referred to as draw space and is where 2D text and
conventional details are located.

Three-dimensional coordinates are used to specify the location of
points in space, the distances between pairs of points, and displacements
between consecutive positions of a point. A coordinate system consists of
an origin and a system of reference planes or axes. A coordinate system is
sometimes referred to as a coordinate frame.

The location of a point is specified by giving its distance and direction
from a given coordinate frame's origin. The location of an object is
determined by assigning 3D coordinates to an origin point on the object.
The orientation of the object is determined by assigning 3D coordinates to
additional features, or to coordinate system local to the object’s definition.

3D model space has at least one permanent coordinate system. This is
called the global, or world coordinate system, and is typically the default
coordinate system. For specific tasks, temporary or local coordinate
systems can be defined relative to the global coordinate system, to points
on an entity, or to and entity's coordinate system.

A Cartesian coordinate system consists of three mutually perpendicular
axes which intersect at the origin. These axes extend away from the origin
indefinitely in both a positive and negative direction. The location of a point
is specified by listing three coordinates, one measured along each of the
three axes. The cartesian is the most common coordinate system used in
SM systems. Another way to specify the location of an object is to use
cylindrical or spherical coordinates. Both forms can be used within the
Cartesian coordinate system. The choice of coordinate system format
depends largely upon the nature of the task at hand.

The cylindrical coordinate of a given point consists of the following
information:



1. A radial distance r from a chosen reference frame's origin to the
projection of the point of interest on that frame’s X-Y plane.

2. The angle a subtended by the X axis and the radial distance vector.

3. The projected distance d of the point from the X-Y plane.

The spherical coordinates of a given point consists of the following

information:

1. A vector r of radial distance from the origin to the point of interest.

2. The angle a; between the X axis and the projection of the radial
distance vector on the X-Z plane.

3. The angle a; between the X-Z plane and the radial distance vector.

Reference Planes

Any two of the three axes in a Cartesian coordinate system form a
reference plane. There are three generic reference planes: the X-Y plane,
the Y-Z plane, and the X-Z plane. A single coordinate value measures the
distance from the reference plane formed by the other two axes. Thus, a Z
coordinate specifies the distance from the X-Y plane to a point, measured
in a direction parallel to the Z axis.

Construction concept

Fundamental construction concepts are key to producing basic and
complex solid models. Understanding these concepts and their
applications will increase one's ability to grasp more advanced concepts,
thus increasing the overall capabilities of an SM system.

Construction Planes

Although SM systems allow the construction of objects in 3D model
space. The designer's interface consists of the monitor screen, pointing
device, and keyboard, which are typically two-dimensional. Movement of
the pointing device on a digitizer tablet or desktop is tracked by cross
hairs, aperture boxes, or other screen cursors. These movements are
two-dimensional.

During constructive operations the pointing device and screen cursor
can be made to correspond to the default or active construction plane, a
reference plane in 3D model space. When points and entities are entered
with the pointing device and/or keyboard, they are typically assigned the
elevation and orientation of the active construction plane.

If the global or world coordinate system is active, points and entities
appear on the X-Y plane of that coordinate system. If a temporary or local
coordinate system is active, its X-Y plane is typically the construction
plane. In some systems, an elevation above or below the X-Y plane can
be defined as a default value, so that the construction plane is parallel but
not coplanar to the X-Y plane of the current coordinate system.

When a new construction plane is created, a complete local Cartesian
coordinate system is established with its X-Y plane typically defined as
the new active construction plane. The graphic representation of
construction planes may vary from system to system. Their display
attributes can sometimes be modified to include a rectangular border,
snap grids, to suppress the positive Z axis, or to assign color to individual
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components. There may be many auxiliary construction planes defined in
model space as needed while only one is current and active at any given
time. The construction and modification of solid model is facilitated by
creating and activating construction planes as needed, but not all SM
constructive operations require the use of a construction plane.

Building Biocks

A solid model of a complex object typically consists of several simple
objects, just as a 2D drawing consists of simpler geometric entities, such
as lines, circles, and arcs. Because lines, circles, and arcs are not 3D
entities, they cannot enclose space and so cannot be assigned mass
properties. Also, lines, circles, and arcs cannot be combined directly to
yield a solid model, although they are used in the creation of a solid
model's visual display.

Basic solid models are constructed from elementary solid objects or
primitives (spheres, cylinders, prisms, slabs, etc.). Each of these solid
primitives is a shape that can be described simply. Solid primitives can be
combined like building blocks to construct more complex objects. Thus, a
model of a nail can be assembled from a cone and two cylinders.

These building blocks are typically combined with the use of the three
Boolean operations (sometimes referred to as set operations): UNION,
SUBTRACTION, and INTERSECTION (Fig. 2.1).

INITIAL UNION SUBTRACTION | INTERSECTION
OBJECTS AUB A-B ANB
Set
A B A B A B
Solid bodies

\ . =
50 |: &

Fig. 2.1. Boolean operations



Advanced 3D surfacing techniques may be required to define very
complex portions of a solid model.

Creation Solids from 2D Geometry
3D solids can be generated

from 2D geometry by extruding,
sweeping, or revolving a profile
along an axis. Typically, the
active reference plane is used to

construct a 2D profile. When
generating a 3D solid, the 2D
profile must form a closed area.
In conventional 2D wireframe and
surface modeling, this closed
condition is not required. The
closed curve may consist of several linear entities connected end to end,
depending upon the SM system used (Fig. 2.2).

Group and Assemblies

Physical products typically consist of parts and components organized
into groups and/or assemblies. To reflect this hierarchical structure, solid
models must also be organized into groups and assemblies.

The term group implies that the components of the group share a
common level in the assembly process. The term assembly implies that
the assembly is composed of components from a lower level in the
assembly process. For example, a bolt, nut, and washer used to bolt two
parts together may be treated as a group for ease of manipulation. Two
parts, along with several bolt-nut-washer groups may form an assembly.
As in real products, assemblies and individual components can be
combined to form higher-level assemblies. Groups and assemblies are
tools used to duplicate the organizational structure of the physical product.

Concepts for manipulation and management of 3D objects.

Translations and Rotations

The location of an entity in a solid model can be modified by either
translation or rotation. Translation shifts an object along one, two, or three
axes without changing its angular orientation relative to any of the three
axes.

Rotation changes the angular orientation of an object relative to a local or
global coordinate system. Rotation may occur about an arbitrary line (or axis)
that is part of or separate from the object being rotated. Positive or negative
rotation may occur based on the direction of the line or axis of rotation.

Translation and rotation often occurs simultaneously, as when an object
is translated along a curved path but remains aligned with a line belween
the origin and a fixed point on the object.

Some workstations provide auxiliary controls to enable a designer to
translate and/or rotate the solid model relative to the global coordinate
system, active reference plane, or a reference line in the case of rotation,
by turning knobs or repositioning other physical control devices. Such
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translations and rotation are hardware-controlled and are independent of
the SM software.

Copying, Scaling, and Mirroring

Components of physical products are often duplicated. Bolts, nuts,
and washers are examples. Some components occur in identical shapes,
but varying sizes. If a specific component is used several times in a
product, it need be modeled only once. Additional instances can be
copied from the first.

Similarly, if a component is used in several different sizes, only one
instance of the component need be modeled. Other instances of the
component can be created by simultaneously copying and scaling the
original component.

Physical objects often occur in left- and right-hand versions, or mirrored
images. Automotive design, for example, utilizes this concept extensively.
Once the right-hand version of a SM component is defined, the left-hand
version can be created with a mirroring operation. In SM, the mirrored
objects are symmetrical across a selected construction plane known as the
mirror plane.

Layers

Layers, sometimes referred to as levels, are techniques used to
organize and manage the solid model data for display. The term layer is
derived from the overlay or pinbar methods used in graphic design. Sheets
of punched Mylar are registered on a pinbar, so that a drawing can be
separated into objects, colors, classes of objects, systems, etc. Each sheet
of Mylar corresponds to a layer of the composite drawing. In SM, layers
are expanded into the third dimension and are typically assigned portions
of the entire composite model. Layers are convenient for storing reference
geometry, design, and modeling notes, as well as system-dependent
information.

In an SM system, layers are attributes or properties of objects. When
an object is defined, a value is assigned to the layer attribute. The layer
attribute can then be used to select objects for operations by specifying the
layer name or value. Additional common uses for layers are to control the
visibility, color, and linetype of a class of objects.

3. SOLID MODELING DATABASE STRUCTURES

Let's consider representation and modeling methods used in modern
SM systems databases.

To understand the function of various parts of a CAD database, it is
useful to consider the information represented at different "levels” of an
engineering effort. The global characteristics of a design are considered
“high-level" information, while local details make up the “low level” of a
design. Often a “top-down” design strategy is employed where the low-
level design is derived from high-level design information, using various
tools and methodologies. In computer programming, for example, a
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program is designed and written in a high-level language and then
translated by a compiler into a low-level “machine language” for the actual
control of the computer.

Early CAD systems were developed to model and manipulate the lower
levels of a design, primarily drawings. Their databases performed mostly a
bookkeeping function, keeping track of large numbers of points, lines,
curves, and other items. With SM, however, CAD systems extend into the
higher levels of design information, placing increased demands on the
database.

The primary function of any CAD database is to symbolically represent
certain characteristics of real or imagined 3D objects. To classify its
progression, CAD systems can be divided into four generations based on
the characteristics modeled. These are as follows:

First generation — Drawings. Objects are represented by the projections
of selected edges on a 2D plane. Lines and text can be interactively
entered and updated.

Second generation — Wireframes. Selected edges are modeled in 3D.
This supports 3D line display and the automatic generation of 2D vies from
any viewpoint.

Third generation — Surface. Objects are represented my modeling
selected surfaces. Realistic shaded images can be produced.

Fourth generation — solids. Objects are represented by the 3D space
they occupy. Advanced features such as mass property calculations and
interference detection can be performed automatically.

Basic Database Concepts

To a designer, the database is the part of a CAD system. With solid
models achieving a high level of understanding and interaction can be
much more difficult than with a drawing. Here are a few reasons why:

1. Important details are often visually hidden or obscured in 3D views,
hindering visualization and control.

2. With solids, the elements of a model are interrelated and must adhere
to various rules needed to maintain model integrity.

3. SM operations are very powerful, but can have side effects that are
not well understood (objects can become invalid).

4. Users do not view and interact with a single model in the database but
with a collection of models that represent various aspects of the object.

Because of these difficulties, an understanding of the SM database can
help to reduce wasted effort, disappointment, and erroneous resulfs when
using SM systems. !t should be noted that modern CAD databases contain
a wealth of information not directly related to the shape of a model. This
includes text notes, unit and scale information, material properties, part
numbers, modification history, and countless other pieces of information.

Representing Geometric Elements

Solid models are represented by sets of geometric elements that are
somehow connected. Most all geometric elements in CAD are defined by
polynomials (equations where the exponents are positive integers and
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coefficients are constants such as ax’+bx+c=0). It is very convenient
because of the vast array of mathematical tools that can be applied to
them (differentiation to compute surface normals)

Degree of Equations

Robustness of a geometric element is limited by the largest exponent
used in its defining polynomial or set of polynomials. This is referred to as
the degree of the equation. With linear equations the largest exponent is 1
(ax+by=c). They can be used to represent straight lines and flat elements.
Quadratic equations have squared variables and can represent quadratic
curves (arcs, parabolas, ellipses). x*+y*+z?=R? — defines the surface of a
sphere where r is the radius.

Sculptured shapes

While many useful solid models can be constructed from geometric
elements defined by quadric surfaces, there has been an increasing need
for shapes with free-form or "sculptured” surfaces to fulfill aesthetic,
functional, efficiency, or other requirements, usually a sculptured shape
(curve, surface, or solid) is defined by a formula and the location of a
number of control points that may lie on, inside or outside the shape, Such
schemes include NURBS (Non-Uniform Rational B-Splines) and Bezier
shapes. In addition to providing increased representational freedom,
geometric transformations (translation, rotation, and scaling) can be easily
performed by transforming the control points, and local shape changes can
often be made simply by moving nearby control points.

SM system must have computer procedures that are able to
mathematically handle the interaction of any combination of elements (e.g.,
determine the edge of intersection between a cylinder and a sphere, a
cylinder and a cone). Traditional SM databases represent a wide variety of
geometric elements and therefore require a large number of such
procedures.

Since newer representation schemes such as NURBS are able to
represent classical shapes as well as sculptured shapes, their use may
mean that only one or small number of shape-representation formats are
needed. This can simplify the data base and greally reduce the number of
geometric procedures. However, the required procedures are often
complex, require more processing, and may be less reliable.

Bounded versus Unbounded objects

Geometric elements can form a boundary for elements of the next-
higher dimensionality, Thus, a point forms a boundary on a line (two points
bound a segment of a line). Lines can form boundaries on surfaces and
surfaces can bound 3D space (enclose a volume).

In SM, an object is "bounded” if it has a complete set of enclosing
surfaces that restrict it to a finite volume. An unbounded object can occupy
an infinite volume. For example, a cylinder without end caps is an
unbounded object and has infinite volume. Because of the mathematical
problems unbounded objects are often restricted or prohibited (or
automatically clipped at the edges of a finite volume).
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A half-space is a solid object consisting of all of the space on one side
of a surface. A half plane, for example, is the space on one side of a
plane. A half-space may be bounded (spheres) or unbounded (half planes
and unbounded cylinder).

Geometry versus Topology

There is a fundamental distinction between the geometry and topology
of a solid model stored in a database. Geometric information is the
shape, size, and location of geometric elements. Topological information
is the relationships between them (e.g. two faces share a common edge
or two solid elements are unioned).

Consider the cube. It is composed of three types of geometric
elements: points, lines and planes. Its geometric definition starts with
points. They define 12 lines which, in turn, define 6 planes. The
topological definition specifies how the geometric elements are bounded
(forming topological elements) and how they are connected. Thus,
topologically, a cube is defined as a region of space bounded by six faces
which are planed bounded by edges and connected to each other at
edges. The edges are, in turn, lines bounded by vertices (points of
intersection) and are connected to each other at the vertices. Note that
the topological definition does not change if the geometric definition is
modified (e.g. vertices moved to form a rectangular box or other shape). It
shouid be noted that this distinction between geometry and topology
exists in other areas of engineering. For example, in piping and electrical
systems, geometric information is the “layout”, while the topological
connections are represented in the “schematic”

Evaluated Representation

Within an SM database, geometric elements can be represented
explicity (mathematically) or they may be defined implicitly by
relationships between other geometric elements. A curve, for example,
could be defined explicitly by an equation or implicitly as the intersection
of two surfaces. An evaluated database is one in which the faces, edges,
and vertices of solid objects are explicitly represented.

In practice, a database may be more or less evaiuated. Often the
actual mathematical definition of an element is computed from other
elements in the database only when needed (saving overall processing
and memory). For example, the equation of an edge may be computed
from its two endpoints when needed for display and then discarded.

Manifold versus Nonmanifold objects

Mathemalicians separate solids into manifold and nonmanifold
objects. With a manifold object (with manifold topology), every surface
point has a neighborhood (an infinitesimal sphere around it) that can be
mathematically deformed into a locally planar surface. In other words, if
the object was made of a perfectly elastic material, a small spherical
region around any surface point could be flattened into a tiny flat disk
without cutting or tearing the material. For example, one could imagine
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that a point on an edge of a rubber A
cube could find itself on a locally
planar surface if it were pressed by i
a flat instrument. | B

While it may seem that all solid
objects are manifold objects, this is a
not the case when modeling solids
mathematically. Self-intersection is
an example. Suppose edges A and
B of the object were moved
together so they became one edge One Edge is common
(Fig. 3.1). The common edge b for two Faces
would now bound four faces rather
than the normal two. Given a point  Fig. 3.1. Manifold object becoming
on this combined edge, its nonmanifold: a — manifold object;
neighborhood could not be b — nonmanifold object
deformed into a planar surface on
the solid because there are more than two faces attached to it. Self-
interaction has caused it to become a nonmanifold object. Much more
difficult nonmanifold situations can arise, especially when curved
surfaces are allowed. Since some SM systems function properly only
with manifold objects, such situations can cause problems. Often,
checks are performed during or after operations in an attempt to detect
illegal occurrences.

Various models

SM systems maintain several representations of objects. The solid
model used by fundamental modeling algorithms is the primary or
working model. Others are secondary models and may not be solid
representations. Often, secondary models are derived from the primary
model to facilitate a specific function such as display, analysis (FEM,
mass properties, kinematic analysis), manufacturing, documentation or
data exchange. Secondary files are stored along with the primary
model to avoid time-consuming regeneration when they are needed.

The ability to establish a direct connection between models in a
database is called associativity. For example, changes in a solid model
might trigger an immediate update in related drawings (top-down model
translation). In some systems, parameters embedded in drawings are
used to define solid models. A modification to a drawing can thus resuit in
changes to the associated solid.

Often the steps used in building and modifying an object are saved by
an SM database in a journal or log file. This can be considered a
secondary model. It can be used for documentation, to re-create a part at
a later time and to support an “undo” capability (to correct errors and
mistakes).

A secondary model that facilitates display is called a display model.
This could, for example, be a list of lines and text used to regenerate a
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drawing or perhaps a set of polygons for rendering a shaded image.
These models are important in an SM database because display requests
are usually the most often requested operations.

Since the direct display of solids is slow, a two-stage approach is often
used. This involves converting solid objects into a nonsolid display model,
usually polygons or wireframe edges, this may take a considerable period
of time, especially for complex models. When completed, however, the
disptay model can be viewed rapidly.

While this compromise may be more desirable than the alternative (a
display that is always slow) confusion can result from the fact that the
primary model itself is not being viewed. The display model is the result of
one or more translations that can introduce various subtle (and not-to-
subtle) changes. For example, the display model is usually an
approximation using linear elements (lines or polygons). When viewed
close up, curves appear straight and curved surfaces appear flat. Small
features may not be represented at all.

Models portability

It is often desirable to move solid models between different SM
systems. Even with the availability of standard conversion formats this
may be impossible if the solid representations have incompatible types of
elements (although it may be possible with lower-level models such as
surfaces, wireframes and drawings). Sometimes only subsets of a model
can be successfully transiated, or subtle changes are introduced in
certain geometric entities.

it is possible to change a model by simply moving it to a different type
of computer (with the same SM system) because of differences in
numeric representations. If such cross-platform transfers are
contemplated, it would be advisable to obtain a written statement from the
vendor specifying under what conditions this could occur, what steps
should be taken to avoid it, how such changes could be detected and
what problems could arise later.

While much has been written about advantages of particular SM
representations, perhaps the factor most critical to ultimate success is
the development of mathematical methods to implement fundamental
SM operations.

Exact versus Inexact Mathematics

Computations of any kind can usually be classified as being exact or
inexact depending on whether the result could differ from a
mathematically perfect computation (having infinite precision). Integer
addition and multiplication (e.g., 6 x 20 + 30 = 150), for example, are
exact (assuming, of course, that the capabilities of the computer are not
exceeded). With such operations ‘the use of a computer with greater
precision would not change the result. On the other hand, integer
division (e.g.,1/3) and most floating-point operations (those involving
real numbers such as 2.531) are inexact.
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Because numbers are represented to a limited precision, the result
of inexact operations can differ from the mathematically perfect resuit
by a small amount due to round-off and other errors. For example, the
computation of 1 divided by 3 is always inexact, because the exact
value would require an infinite number of digits (0.3333...). Note,
however, that an inexact operation can generate an exact result (e.g.,
the floating-point division of 1.0 by 2.0 results in the exactly correct
result 0.5). They just can't be guaranteed to generate an exact result in
all cases.

Analytical versus Numerical Methods

An SM database relies on a collection of subroutines fo compute
information about geometric elements. The mathematical methods
employed by such routines can usually be divided into two classes:
analytical and numerical.

Analytical methods use mathematical formulas to directly compute a
solution. For example, the edge of intersection between two planes (a
straight line) is easily computed using analytical methods found in
elementary geometry textbooks. Modern SM systems, however, use
advanced modeling methods (e.g., NURBS) to represent sculptured
surfaces. Unfortunately, there is often no known method (or no practical
method) to analytically perform fundamental operations on such
representations. For example, computing the curve of intersection of two
bicubic patches is of great practical importance in SM. While it is
possible, in theory, to use analytical methods, the resulting equation
would be of degree 324! Since no formula is known for directly solving
equations above degree 4, such methods are unusable.

In such cases, numerical methods must be used. This usually
involves using repetitive mathematical procedures that attempt to
converge on an approximate solution. In the case of intersecting bicubic
patches, for example, numerical methods are employed to find
approximations of points on the edge. This typically involves the
execution of iterative procedures to generate points of increasing
accuracy as the computations proceed. A series of such points can then
be used to generate a spline curve representing the edge. This curve is
an approximation and will not, in general, lie exactly on either patch.
While this can cause errors, with sufficient processing the deviation can
usually be made small enough to be essentially negligible for most
purposes.

Unfortunately, numerical methods can fail to find a solution or fail to
find all possible solutions. Also, they sometimes exhibit numerical
instability. For example, instead of converging on a point of intersection,
the procedure may try to iterate forever between two points on opposite
sides of the edge. These problems are aggravated when geometric
situations become complex.
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4. GRAPHS AND TREES

Topological relationships are usually represented in a database with
graphs. As shown in Fig. 4.1a, a graph is a set of nodes linked by
connections. Connections are usually called edges by mathematicians.
This terminology is not used here because of potential confusion with
object edges. Nodes represent items, while connections represent rela-
tionships. A path is a sequence of nonrepeated connections between two

nodes.
—O

Connections

Nodes

Root node

Branch nodes

Leaf nodes

Fig. 4.1. Sample graph and tree: a — a graph is a collection of nodes which
represent distinct items with any number of connections that represent
relationships between items; b — a tree is a restricted form of graph

A tree is a restricted form of graph in which all nodes spread out from
a single "root" node and there are no paths that start and end in the
same node (no "loops"). As shown in Fig. 4.1, trees are traditionally
drawn with the root node at the top. A node immediately below another
node is a child (the upper node is its parent). Continuing this analogy, all
the nodes above a node (back to and including the root) are its
ancestors and all nodes below it are its descendants. A node and its
descendants form a subtree (the node itseif is the root of the sublree).
Nodes with no children are leaf or terminal nodes while those with more
than one child are branch nodes. There are no loops in a tree (a path of
connections which leave and return to the same node without crossing
the same connection twice).

Constructive Solid Geometry (CSG)

CSG is one of two major schemes currently used for representing
solids. An object is constructed using boolean operations (UNION,
INTERSECTION, and SUBTRACTION) to combine simple solid shapes
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(spheres, blocks, cylinders, etc.). Such geometric elements are called
primitive solids or simply primitives. As shown in Fig. 4.2, a, CSG objects
are usually stored using a tree database structure. Leaf nodes represent
primitives, and branch nodes represent boolean operations. Note that each
subtree also represents a legitimate solid.

This "classical” CSG tree can be extended by the use of transformation
nodes. As illustrated in Fig. 4.5,b, they can be used to change the location
and orientation of an object or some part of an object represented by a sub
tree. This provides for the independent design of a part and its later
incorporation into a larger object or assembly (as a subtree). Rather than
using separate nodes, often geometric transformations are simply
incorporated into each node. Nodes T, and T; each transform a single
primitive, while Ty transforms the entire object. Auxiliary information such
as material type or previously computed mass-properties data can also be
attached to nodes.

Object
Root node

Root node

Branch nodes

Branch nodes

Solid
8primitivc:s

Leaf nodes
a b

Fig. 4.2, CSG data structure: a — a tree structure is used to represent
a three-primitive CSG object; b — the CSG tree can be further extended
with transformation nodes

Supported CSG Primitives

The types of solid geometric elements that can be used as primitives in
a particular SM system is an important consideration. Sometimes they are
restricted to planar and quadric shapes to simplify the underlying
mathematics. More advanced SM systems allow the use of primitives with
sculptured surfaces (usually requiring cubic or higher-degree equations).

Multiple Use of Subtrees

A powerful CSG feature is the use of multiple instances of a part.
Fig. 4.3 shows a subtree (node A and its two children) used to represent a
countersunk hole. It is subtracted from a block in two places using

Leaf node

transformation nodes (Ty and T3) to position the instances. Any change fo
ﬂﬂ.{

the subtree definition is immediately rpﬂegted.m-bom—w theh,
technically, the overall CSG graph stnmyhﬁm@r tre cause
node A has two parent nodes. \ 51 NOTE KA©
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Fig. 4.3. The use of transformation nodes to create multiple instances of
an object: a — a block with two countersunk holes; b —node A represents
the countersunk hole

Point Classification

Point classification is a mathematical operation used to determine if a
specified point is outside, on the surface of, or inside a modeled solid.
This is a fundamental operation used with great frequency within SM
systems when executing various modeling tasks. Examining how this is
accomplished will provide a glimpse at the types of calculations that are
performed behind the screen in SM systems and will illustrate the
difficulty of making such systems compact fast, and reliable.

For a CSG object, the process begins by classifying the point for
each primitive — a simple computation for most shapes. A new
classification is then computed at each branch node until the final
classification is determined at the root. For example, a point
classification for the result of a union between two parts (subtrees), A
and B, would be

Out on in
Out: out on in
On: 'on ? in
v | R

Point classification for AU B

The columns, left to right, indicate whether the point has been found to
be outside, on, or inside object A. The rows, top to bottom, indicate the
same for object B. The associated value indicates the classification for the
combined object, A U B. For example, if the point is outside both A and B,
it is outside A U B. If it is inside either object, it is inside A U B. Fig. 4.4
shows an illustration of this (2D rectangles are used for simplicity).
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In Fig. 4.4,a, point P is on the surface of one object (B) but outside the
other (A). It is therefore on the surface of the resulting object. A problem
called the "on-on ambiguity" arises when the point is on the surface of both
objects (the "on on' case). In Fig 4.4b, the objects are on opposite sides of
the common face (edge in this 2D example) and P finds itself inside the
combined object In Fig 4.4,c, the two objects are on the same side of the
common face and P becomes a surface point. The new classification
cannot be resolved with just subtree classifications (thus the "?" in the
preceding case).

A AUB op

Fig. 4.4. The on on ambiguity problem while combining two objects: a — P
is on the surface of B and outside A; b — when P is on the surface of both
A and B: ¢c — P shares a common face and becomes surface point

A solution is to have the computer analyze a spherical neighborhood
of the point. The region of the sphere that is solid is computed for each
primitive. This information is then combined at every CSG branch node
to calculate the region or regions in the neighborhood that are solid.
When combined at the root, if the entire neighborhood is solid, the point
is classified as interior. |f the neighborhood is completely empty, it is
determined to be exterior. If it is partly solid, the point is determined to
be on the surface. While conceptually simple, implementing this scheme
is quite complex. One can appreciate the difficulty of maintaining and
combining these "neighborhood balls” if, for example, the vertex points
of many randomly oriented cones were ta meet at the point being tested.

CSG Pros
1. CSG is a powerful, high-level representation scheme.

2. CSG models can be created with a minimum of steps, are compact,
and are always valid (since they're built from solid elements).

3. Boolean operations are simple to implement and take little processing
time (a new branch node for the resulting tree is simply generated
and connected to the two CSG trees).
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4. Many designers find the addition and subtraction of solid primitives to
be an intuitive design paradigm that parallels manufacturing
operations (welding, drilling, etc.). This lends itself to top-down design
approaches.

CSG Cons

A pure CSG representation is severely limited in most SM situations,
however, because it is unevaluated. An object's faces, edges, and
vertices are not available in explicit form (mathematical equations). They
are implicitly defined by the CSG structure itself. While such information
can be computed explicitly for applications that need them, this is time-
consuming. It also becomes mathematically difficult as the degree of the
surfaces increases. Because of this, CSG primitives are sometimes
limited to shapes with quadric surfaces or are first converted to
polygonal approximations.

The unevaluated nature of CSG can also limit the design process.
For example, since edges are defined implicitly, one cannot easily start
with edges (perhaps from a drawing or wireframe representation) to
define an object.

Boundary Representation (B-Rep)

B-Rep is the second of the two commonly used database methods of
representing solids. Surface elements are assembled to form an
"airtight" boundary that encloses the three-dimensional space occupied
by the modeled object. Fig. 4.5,a illustrates a B-Rep half cylinder formed
by four surface elements: three planar and one cylindrical. The topology
can be represented using a graph where the nodes are faces and the
connections represent shared edges.

B-Rep versus Traditional Surface Modeling

It is important to understand how B-Rep differs from a conventional
surface modeling scheme. While a nonsolid CAD system may represent
surfaces, a B-Rep system must also guarantee that the surfaces form a
complete partition of space, even after being extensively modified. This
is, in practice, a major challenge. If this separation of space fails for any
reason, the model becomes invalid and the SM system has made a
serious error.

Winged-Edge Data Structure

In practice, the B-Rep graph illustrated in Fig. 4.5,a is usually
expanded into what is known as the winged-edge data structure.
As shown in Fig. 4.5,b, edges are defined by vertices (their
endpoinls). Faces are defined by loops of edges and are connected
at common edges to form a partition of space. Bottom-level nodes
determine geometric definition, while connections form topological
definition.

Fig. 4.6 shows an expanded winged-edge representation of a
simple triangular pyramid where the vertices, edges, faces, and the
solid are explicitly represented. Topological elements are shown on
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different levels based on their dimensionality. Bottom-level nodes
represent vertices. Above this are edges. Their downward
connections point to two vertices (their endpoints). Nodes at the
next-higher level represent faces. Each has connections to a loop of
edges forming its boundary (three each in this case). Finally, at the
top level, a single node represents the 3D solid. Its connections
indicate the enclosing faces.

Surface node urface
primitives
B-Rep-solid object S c G
onnection
represents
shared edge
a

b

Fig. 4.5. B-Rep database representation of a solid half cylinder: a — graph
where nodes represent faces (surface primitives), connections represent
common edges; b — winged-edge data structure where vertices are
explicitly represented as nodes, connections as edges, and faces as loops
(closed paths of connections)

Faces used in B-Rep systems are orientable; that is, they have an
inside surface and an outside surface. This information is typically
encoded by numbering the edges in a sequence such that the right-
hand rule defines a vector that points outward from the object. Note
that this is used to number the loop edges of each face of the
pyramid.

Note that the shape of the pyramid is completely determined by the
location of its vertices. If one is moved, the attached edges and faces
will move with it. This can be used to perform local shape changes on
B-Rep objects (often called tweaking) without changing the topology.
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Fig. 4.6. An expanded winged-edge representation of a simple
triangular pyramid

Euler's Formula

A B-Rep object can be proven to be topologically correct if its elements
are appropriately connected (e. g., all edges are connected to two vertices
and bound two faces) and it adheres to an equation known as Euler's
formula

V—-E+F=2
where V = number of vertices; £ = number of edges; F = number of
faces.

This can be easily verified for the pyramid of Fig. 4.6 (V=4, E=6, F=4,
and4-6+4=2)orforacube (V=8 E=12, F=6,and 8-12+ 6 = 2).
Topological correctness (all necessary geometric elements are present
and connected properly) does not guarantee a valid solid, however. An
example is shown in Fig. 4.7. If the geometry is changed such that a vertex
inadvertently pierces a face (see Fig. 4.7,c), the topological model no
longer represents the actual shape
. of the object. The four top face S
N\ intersect the bottom face resulting
/— in new vertices edges and faces
s that are not represented in the

original topological model. Should

A b $ the new pyramid region below the

Fig. 4.7. Local surface modifications:  original bottom be empty (forming a

a— original object; b — surface hole through the block) or solid?

modification that result in valid objects; The geometric and topological

¢ — surface modification that results in  definitions of the .model are

an invalid object contradictory, resulting in an invalid
"nonsense" object.

While CSG methods lend themselves to top-down design, the classical
method of generating B-Rep objects is a bottom-up construction from
vertices, edges, and faces. Internal database operators are used to make
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incremental topological and geometric modifications. These topology
operators are formulated to ensure that Euler's formula is not violated, and
are commonly called Euler operators. Although powerful and effective,
Euler operators are complex, operate at a low level, and are relatively
difficult for a designer to use. In many B-Rep systems they are used
internally to implement high-level operators (e. g., set operations) and are
not directly available for general use.

Boolean Operations with B-Rep

Boolean operations are much more difficult to accomplish with B-Rep
than with CSG because an evaluated model must be computed. This
requires the merging of two interpenetrating structures of vertices, edges,
and faces into a single structure. New edges and vertices must be created
where faces intersect, existing faces split accordingly, and then all vertices,
edges, and faces on the interior of the resulting object (for union) or
exterior to the resulting object (for intersection and subtraction) must be
dismantled and removed. An airtight surface sftructure with a flawless
topological definition must result from this process.

Fig. 4.8 illustrates the result when )
two B-Rep cubes are unioned. Of the Vertex  Edge
original 16 vertices (8 on each cube), Jace
two lie within the combined object and ‘ /
must be eliminated. Three edges on | «
each object penetrate faces of the

other creating six new vertices for a %f,
]

total of 20 (16-2+6). The original 24
edges all exist in the resulting object
(although 6 are shortened). Six
additional edges are generated where  Fig. 4.8. The result when two
three faces on one cube intersect two B-Rep cubes are unioned
faces each on the other, resulting in
30 edges (24+6). Six of the original square faces become six-sided
polygons, but the total number remains the same at 12. A quick calculation
of Euler's formula (20-30+12 = 2) confirms that the resulting object has the
correct number of topological elements.
Three fundamental problems can be seen to arise with B-Rep boolean
operations. These are as follows:
1. The pairing of geometric elements to find intersections exhibits
quadratic growth in the number of elements. As mentioned previously, this
causes processing time to grow much faster than object complexity.
2. The new topological model is derived from geometric calculations.
Errors in determining the topology can have unpredictable results.
3. If the two objects met at a common geometric efement (e.g., an edge)
a nonmanifold object can result (an illegal situation in some systems).
Although various techniques are used to reduce the occurrence or
correct the results of these situations, they remain a continuing problem in
B-Rep systems.
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B-Rep Pros and Cons

B-Rep database structures exhibit the benefits of being an evaluated
representation. Edges and faces are readily available for display or other
uses and can be specified directly or from drawings when constructing
objects (rather than implied by intersections as with CSG). Also, higher-
degree edges can be readily represented (they do not need to be
computed from intersections). In some situations the ability to make local
changes to topology and geometry (tweaking) is a major advantage. Also,
B-Rep is well known for its effective modeling of swept objects.

The fundamental problem with the B-Rep database structure is the
inability of the representation itself to guarantee object validity. Unlike
CSG, B-Rep validity depends on the correctness of modeler algorithms,
the quality of their implementation, and their sensitivity to the subtle
computational errors that will inevitably occur. This has been found to be a
major challenge with B-Reps. Applying internal constraints to prevent the
occurrence of such problem situations (e.g., enforcing a fixed topology)
can greatly increase reliability but reduces system utility (e.g., boolean
operations may be restricted because they modify topology).

Also, maintaining an evaluated database can be a burden for B-Rep
modelers in terms of system complexity, storage requirements, and
performance. Construction of objects usually requires many more
operations than with CSG (at least internally).

The Octree Database

An octree (also called an O-Rep) is an approximate solid representation
in which nodes in an eight-way branching tree structure are used to
represent the subdivisions of a cubical universe. As shown in Fig. 4.9, the
root node of the tree represents the entire universe. There are eight
children at the next-lower level representing the eight cubical octants of the
universe. This subdivision process can continue to any needed level of
resolution. Note that octrees are hierarchical in that the parent and its
children represent the same region of space (the children being at a higher
resolution).

Octree nodes are given one of three possible values: black, white, or
gray. White (W) indicates that no part of the object exists within the
represented space. Black (B) indicates that its space is completely
occupied by the object. Otherwise, it is partly occupied (at least part of a
surface is within the region) and the node is gray (G).

In the example of Fig. 4.9, a simple solid box is represented. Since it
partly occupies the universe, the root is a G node. The universe is then
subdivided. At this level two nodes, 4 and 5, are partly occupied and are
given a G value. The rest are W nodes. The subdivision of the G nodes
continues. One child of node 4 is completely occupied by the object and is
made a B node. Two children of node 5 become B nodes. The rest are
empty. Of significance is the fact that W and B nodes need not be
subdivided because no additional information would be represented.
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Because of this it can be shown that the number of nodes in an octree is
on the order of (limited by) the surface area of the object modeled.

Y

Fig. 4.9. An octree representation of a simple solid box: a — labeling
of octree octants; b — subdivision of octree universe; ¢ — octree data

Perhaps the most important characteristic of the octree data structure is
that it maintains a model in a spatially sorted format in which space can be
searched efficiently. This can be used to eliminate or reduce many of the
adverse computational complexity problems associated with SM
operations.

Point classification is simple and fast (the octree is simply traversed to
the appropriate leaf node). Set operations are also fast because there is
no need to generate and examine all the possible pairs of elements
between two objects. The two octrees are simply traversed
simultaneously and compared node by node to generate a third octree.
Display is fast because only the octree nodes on the outer visible| surface
of an object (from any particular viewpoint) need be accessed from an
octree stored in memory (or generated from another solid representation)
to produce an image.

Since they are hierarchical, octree algorithms can employ a "coarse-to-
fine" processing strategy where low-resolution information is used to
determine where the use of higher-resolution information is necessary.
During interference detection, for example, progressively higher-resolution
regions of the octrees are examined only in regions where there is a
continuing intersection. This stops when an intersection is actually found
(B nodes in both octrees for the same space) or it is determined that none
exists (or a preset resolution limit is reached). Situations where objects are
separated by wide gaps or where they intersect in large regions are
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resolved quickly, while more difficult situations require additional
processing.

Octree Pros and Cons

The primary advantage of the octree database structure is the
computational efficiency that results from its being hierarchical and
spatially sorted. Also, its recursive nature often results in algorithms that
are simple, compact, and fast. This, plus the almost exclusive use of
integer arithmetic (rather than floating-point arithmetic) facilitates
implementation in low-cost computers and hardware accelerators.

On the other hand, octrees are an approximate representation and are
unevaluated. If stored, large amounts of system memory are required for
octree models as the level of precision increases. For this reason they are
often generated "on-the-fly" (computed as needed and discarded). Octree
methods are currently used in CAD systems for computing mass
properties, generating FEM meshes, and improving the efficiency of
display. They are also used in "volumetric" SM.

The Hybrid Database

SM databases must support a wide variety of functions for both internal
and external use. An ideal solid representation would exhibit all needed
characteristics to effectively support them. Unfortunately, all existing
database methods are deficient in certain critical areas. CSG supports
high-level design, but the lower-level details (edges, vertices, etc.) are not
readily available. B-Rep explicitly represents the details but lacks some of
the design power and efficiency of working with solid elements and high-
level tools. Plus, allowing a designer to directly manipulate low-level
elements introduces reliability problems. Octrees can be seen as a "least
common denominator" approximation that any solid can be converted into.
While not suitable as a primary CAD representation, octrees can be
effective in facilitating SM operations. They fulfill a role in SM similar to that
of polygons in surface modeling.

This situation has led to the development of hybrid modeling schemes
in which multiple database representations are employed in order to,
hopefully, realize the strengths of each. The actual definition of a hybrid
database is debatable because virtually all SM systems make use of
secondary models for various purposes (e.g., polygon display lists). For
this discussion, a modeler will be considered a hybrid if it employs two or
more substantially different internal database representations that are valid
solids and are actively maintained to support modeling functions.

The use of multiple representations has several undesirable aspects.
The conversion between two formats may be difficult, impossible, inexact,
or introduce subtle changes (potentially introducing serious
inconsistencies). Because of this, conversion is often in one direction only
(e.g., CSG to B-Rep). The use of multiple models also increases the size
of programs and storage and increases processing requirements.

With most hybrid modelers the general strategy is to support a high-
level CSG representation which can then be internally translated into a
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lower-level B-Rep model. Actual implementations range primarily from
CSG systems that use B-Rep to facilitate display, to primarily B-Rep
systems that maintain CSG or CSG-like object descriptions.

Boundary Evaluation

The translation of a CSG model to a B-Rep model is called boundary
evaluation. This is generally reliable for linear and most quadric primitives.
Objects with higher-degree primitives are more difficult to handle and
usually are either converted to polygonal representations or processed
using numerical methods. Because the general flow of models is from
high-level to low-level models, a reverse conversion (B-Rep to CSG) is not
normally required (and not easily accomplished).

Boundary evaluation generates an explicit (evaluated) representation
from an implicit (unevaluated) one by locating and extracting surface
intersections to form a B-Rep network of vertices, edges, and faces. It
begins by generating the boundary of each CSG primitive. These
boundaries are then paired to find intersections that generate candidate
edges. These edges are then compared to the original CSG object to
eliminate the ones which lie inside or outside the object. The remaining
edges are boundary elements and are topologically connected to form a B-
Rep object. This conversion is similar to B-Rep set operations and exhibits
similar computational characteristics. The pairing of primitives is a
quadratic growth operation and a large number of candidate edge
segments may be generated as edges are subdivided (wherever they
intersect a face).

Using Octrees

The need for greater interaction with solid models has sometimes led to
the addition of an octree representation into the hybrid mix. With this
scheme, an evaluated model is not needed for display (CSG models are
displayed directly from octrees). To save computations, a solid model can
be partly evaluated as needed by a particular operation (e.g., find the edge
of intersection of two CSG primitives). Nonsolid entities such as surfaces,
curves, and points can also be directly displayed, providing a powerful
visualization capability.

Parametric/Relational Database

In this discussion so far, solid models have been considered to be static
shapes that were created by a series of operations requested by an
operator. Parametric/relational design attempts to improve on this situation
by making models flexible. Here we will discuss the impact such
technologies have on database structures. Basically, parametric modeis
are defined by a set of parameters that can range from simpie dimensional
values (e. g., radius of a specific fillet) to global parameters that have an
effect on an entire design (e. g., length of a crankshaft). The goal is to
somehow capture the designer's "intent” in the model.

Variational Design

A related technique is referred to as variational design. The parameters
and constraints are encoded into a set of simultaneous equations. Instead
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of replaying a sequential design procedure, the equations are solved to
determine a set of parameters to define the shape. This can be used for
optimization and has been found to be especially helpful in refining 2D
designs based on sketches. As the number of equations and their
mathematical sophistication increases, however, finding solutions
becomes more difficult and slow. Overconstraned situations can arise and
designs can exhibit strange behavior.

Feature-Based Design

Feature-based design is another methodology that impacts the
parametric/relational SM database. Essentially, this allows the designer to
specify form features (e. g. fillets and flanges) using familiar engineering
terms. If a through-hole was specified, for example, the bottom face of a
subtracted cylinder would be automatically constrained to lie on the bottom
of the object.

While popular with designers, form features are difficult to implement
because it is not possible to simply define geometric elements in isolation
and then add or subtract them in the database. Their shape depends on
finding and analyzing a specific situation existing in the model. For
example, a simple chamfer may require two planar faces meeting at a
straight edge with sufficient space on each to locate the new plane (without
hitting anything else).

As procedures that implement form features become more
sophisticated and powerful, the programs that implement them must
exhibit greater degrees of intelligence and the ability to perform spatial
reasoning. It is often a major challenge for an SM database to support
such capabilities. Because geometric elements such as vertices and edges
play an important role, an evaluated representation (B-Rep or hybrid) is
usually necessary.

5. CURVES, SURFACES, AND COMPUTERS

The problem of representing curves in computers derives from their
nature. Curves are by definition continuous; digital computers comprehend
a discontinuous framework for the representation of numbers. You cannot
directly store a curve in a computer; you must reduce it either to a series of
points whose coordinates are stored or to a mathematical equation—an
algebraic expression. Storing curves as points is, in general, impractical;
too many are needed to enable the computer to reproduce the curve
smoothly.

Also, the correspondence belween the geometry of curves and the
algebra of their representations is tricky. Curves that appeal aesthetically
to designers are often difficult to represent mathematically. And the
intersection of curve-based surfaces with each other can yield curves that
are even more difficult to represent.

Moreover, the manipulation of curved surfaces within the computer is
normally accomplished through the manipulation of control points, whose
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locations define the curves that prescribe the surface. However, many of
the most popular surface-defining curves have their control points located
off the surface, which tends to invite confusion.

This problem first appeared when aircraft designers attempted to
produce mathematical definitions of surfaces that intersected a given set of
points or a given set of curves. Powerful techniques falling under the
general heading of parametric surfaces were developed to deal with these
issues. But no single technique is applicable to every circumstance.

Curve and Surface Usage

More than any other aspect, the construction of curves and surfaces in
SM systems reflects the history of manual approaches to the design of
shapes. Motivation for the current approaches derives from two principal
sources: automotive and aerospace design.

Automotive designers were — and still are — primarily concerned with
aesthetics. In recent years, aerodynamics and their effects on fuel
economy and speed have begun to be taken into account as well. But the
look of the automobile, and especially the character of the reflective
qualities of its surfaces, dominate automotive design parameters.
Consumer products, such as kitchen appliances and home-use electric
hand tools, follow a similar pattern.

Airplane designers are interested in putting an aerodynamically
shaped skin around a tightly constrained physical design in which
structural strength, function, weight, size, cost, and other factors are
traded off against one another to produce a design solution. Like ship
designers of old, the airplane designer is given a set of sections that must
be smoothly interconnected by surfaces, or a set of edges for which a
"patch" must be designed so that the resultant shape is smooth. This
process is termed lofting.

Automotive designers start with artistic sketches. The design
progresses through many iterations of review before any attempt is made
to convert the artistic conception to 3D geometry. Airplane designs, on the
other hand, move rapidly to a phase in which the precise mathematical
nature of the surfaces becomes a concern.

When a design is initiated analytically, the result is usually a mesh of
precisely defined points which must be interpolated into a surface. There is
no general surface that can be made to fit an arbitrary collection of points
smoothly; that is the main reason for the existence of a variety of
mathematical surface types.

Another reason for the confusing proliferation of mathematical surface
types is the search for a variety whose construction is "natural" for a
particular category of designers. Bezier curves and surfaces, for example,
are considered "natural” by designers whose primary initial consideration is
the matching of a curve or surface to a predetermined set of points.
However, since the control points for these forms lie off the curve or
surface, many other designers find them unnatural.
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Curves and Splines

A sample of the types of curves that SM systems ought to produce
include:

1. Straight lines

2. Conic sections: circles, parabolas, hyperbolas, ellipses

3. Superconics: generalization of conics in which the degree of the terms
in the defining polynomial differs from 2.

4. Free-form parametric curves: B-splines, NURBS, etc.

5. |Intersection curves: curves resulting from the intersection of two
surfaces (Fig. 5.1).

Splines are by definition flexible pieces of wood or metal used by ship
and aircraft designers to draw smooth curves. Spline curves are curves
that run smoothly through an empirically selected set of points.

Bezier, B-Splines, and NURBS

At Renault in the 1960s, Pierre Bezier developed a definition of a
system of curves that combines features -of interpolating and
approximating polynomials. (Interpolating polynomials pass through a
given set of control points; approximating polynomials pass near the
control points.) In a Bezier curve, the first and last control point precisely
define the endpoints of the curve; intermediate control points influence the
path of the curve; and the first two and last two control points define lines
which are tangent to the beginning and end of the curve. Bezier curves can
therefore blend nicely together, as can Bezier surfaces. The point at which
two curves (not only Beziers) are joined is called a knot.

Blended Beziers give good local control; if a control point is moved, the
curve changes only in the immediate vicinity of the control point. But
construction constraints can sometimes be restrictive for the designer;
under such circumstances, B-spline curves may be useful.

a b c
Fig. 5.1. Curve types: a — free-form parametric (NURBS); b — conics;
¢ — interseclions

B-spline curves, unlike Beziers, can employ an arbitrary number of
control points. They are generated by multiplying an approximating
function in terms of the parameter u, where 0 < u < 1, by a matrix
containing a subset of the control points in the vicinity of the B-spline
curve.
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Since conic sections are common in manufactured forms, using rational
B-splines often makes sense in this context; they run precisely through the
defining points of the conic sections. Symmetrical forms yield a uniform
distribution of knots. But when combining B-spline curves and surfaces,
knots may appear in nonuniform distribution. The family of curves used for
creating such shapes has come to be known as NURBS, or nonuniform
rational B-splines (Table 5.1).

Table 5.1
Surface Techniques
Curve techniques Description
Through points /'\_/‘ A curve that passes through

multiple points

Control points /\/ A curve weighted by control
. points

Concatenate Two or more curves joined end to

end

Project Curve projected onto a plane or

surface

Edge Curve generated from existing

surface boundary

Curve of intersection between
two planes or surfaces

Surface
intersect

Silhouette Curve generated from the

silhouette of existing surface

tangent tangent to given vectors

Offset Curve offset from existing curve

Curve blend from two existing
curves

Curve generated from isoline of
existing surface

Blend

Isoline

raEn
g =
o
Through }.\_/ Curve whose end points are
e
oot s
=

Curve generated from existing

/ \_‘ / curve segment
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6. SURFACE TECHNIQUES AND CONCERNS

SM Concerns
1. Watch for surfaces that have the potential to self-intersect. These
include sweeps due to trajectory, revolves due to rotation angle, rules
due to curve relationships, and offsets due to curvature.

2. All surface areas have seams (as in a revolve) or boundary curves.
When positioned in a resulting solid topology, these seams and
boundaries should be located away from other edges or vertices.
Vertices or edges should never coexist within system tolerances unless
they in fact share common boundaries.

3. Surfaces generated directly from boundary curves such as rules and
patches are preferred over surfaces that are excessively trimmed.

4. When possible, always share existing vertices and edges between
surfaces.

5. Techniques such as lofting, meshing, and patching approximate
surface curvature between defining boundaries.

6. |If possible, when techniques generate new boundaries on surfaces
(such as with fillets), reconstruct mating surfaces from the new
boundaries rather than trimming existing surfaces.

7. Techniques that maintain surface tangency are recommended.

When Trimming Surfaces

Surfaces may be trimmed or divided by curve and/or other surface
boundaries. This is a very convenient and powerful technique to
seemingly discard unwanted surface areas. However, trimmed surfaces
pose concerns for the development of solid models and for data
exchange through neutral formats.

Many trimmed surfaces in a single model will increase database size
and complexity since more information is required for storage (original
surface, trim boundaries, and resulting trimmed surface). Also, the
resulting surface edge is dependent on the accuracy and dependability
of the system's surface-trimming +functions. Airtight surface enclosures
are required for solids, so always check trim boundaries that should
mate with other surfaces.

When Extending Surfaces

Surfaces may be extended in either or both the U and V directions.
Extending surfaces is very helpful during the development of surface
geometry (for exampie, to establish an additional section curve further
away from a surface's current boundary or to allow the continued
tangency of subsequent surface functions). As a rule, surface extensions
are used as a means to an end rather as an end in themselves. The
development of new surface boundaries is generally the result of surface
extensions.

Table 6.1 lists some of the more common techniques for constructing
surface geometry in SM as well as traditional CAD systems
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Table 6.1
Surface Techniques

/—/ > Sweep a curve along a speciﬁed‘
i trajectory— sweep

Rotate a curve about a specified
axis — revolve

Rule a surface between two curves
—rule

Offset a surface by a specified
distance — offset

Surface through a regular grid —
grid

Extrude a curve along a linear
trajectory — extrude

Loft a surface between dissimilar
curves — loft

Mesh a surface through control
curves — mesh

Patch a surface between
boundaries — patch

Surface through regular or irregular
control points

A constant or variable fillet between
two dissimilar surfaces — rolling ball

A tangent corner patch between
three surfaces — corner

&0 80019
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Surface Tangency
Some surface operations (such as fillets and corners) maintain surface
tangency during their construction. Such surface areas should not be
reconstructed from their boundaries in lieu of trimming as recommended
here for other surface areas unless subsequent tangency constraints can
be applied. Even though their boundaries would be the same, the surface
patch operation may not automatically take tangency into account, and the
resulting surface may differ from the one it is intended to replace.
Sculpted Surfaces
Sculpted surfaces are at best painful to construct when subsequent
features are to be attached or added. It is best to create any nonsculpted
surfaces or features first, and then use the existing edges to create the
final sculpted surfaces in place.
When Modifying Curves Locally
Surfaces may be modified locally. Any deviation that maintains a surface's
current boundaries and thus the solid's current topology is acceptable unless
the surface deviation internally or externally pierces another solid face.
Local surface deviations take several forms. Here are a few:
1. Radius dome. A smooth radiused surface deviation computed to fit a
selected surface.
2. Section dome. Replaces an entire planar surface with a blended,
extruded, or swept sculptured
surface.
- 3. Local push. Smoothly
" deforms a circular or
rectangular surface region.
Variable Radii Blends
Sometimes a blend of four
or more surfaces may be
required, each with different
converging fillet radii along
their edges. In many cases
this blend must be performed
manually and would require a
complex surface patch. At
first, the solution (the resulting
patch) may seem
overwhelming to achieve. The
Flg. 6.1. Vaﬁab'e l’adlus blend: steps pmvided here can be
a - converging surface edges; b —tangent applied to both simple and
lines of dissimilar fillet radii; c — section  complex surface  blends
curves normal to fillets at intersection of  (Fig. 6.1). The  surfacing
tangent lines; d — four sided patch created capability of some systems
from closed section curves; may eliminate the need for
e — converging fillets trimmed or replaced this procedure.
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1. Start by defining the tangent lines of the converging radii. Where two
intersect, a corner will be defined. Use this method to define each corner of
the required patch.
2. Generate a section curve between corner points normal to and
through each converging fillet surface. These curves will produce a closed
boundary.
3. Use the closed boundary curves to generate the surface patch. If your
SM system can apply surface tangency constraints, use them now.
4, Trim the converging fillets to the boundaries of the new surface patch.
It is recommended that the fillets be replaced by ruled surfaces instead of
trimming.
5. |If there are more than four boundary curves, the resulting patch may
be stretched or twisted. Even though this surface may not be desired, cut a
section curve through it to approximate the definition of a new curve
boundary and thus divide your required patch in two or more patches of
three or four sides each. Use this approximated curve as a reference to
generate a new curve that is tangent at its endpoints.
6. Validate the resulting surface patch to ensure that it blends smoothly
along its entire surface as well as at the fillet boundaries. Here are some
ways to perform this validation.
a. Change the display settings to show a large number of isolines on the
surface patch and then rotate the model to see if the patch looks smooth.
b. If the preceding visual test appears to indicate a problem, generate

section curves through the surface patch where it intersects the mating
filiets. These curves should indicate a smooth transition.

Surface Offsets

Some desirable operations introduce mathematical complexities that
have no general solution — the offset operation, so useful in the design of
numerical control tool paths, is one such operation. While most SM
systems support offset surfaces in one way or another, they all impose
restrictions to keep the resuitant surfaces within the realm of expectation
while maintaining mathematical integrity.

Solid modeling Considerations

Constructing curves and surfaces for use in solid models carries an
additional set of considerations above and beyond normal recommended
practices for these techniques. These concerns parallel those of the NC
programmer whose job depends on all surfaces being present, that they
meet, and that there are nc hidden cracks or gaps. A little extra care and
consideration is all that is required when constructing curves and
surfaces for SM.

Geometric Progression

The inherent integrity of SM functions when used properly will result in
valid closed 3D volumes. When the geometry of a design becomes too
complex for existing SM functions to model properly, designers are forced
to utilize curve and surface techniques to supplement the model-building
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process. This deviation from the SM environment carries a price.

A governing rule for model validity (surface closure) must be addressed
manually during construction (Fig. 6.2).

b [ There is a logical progression

of geometric elements that, when

/ constructed properly, will help

model This

ensure closure.

2 process is referred to here as
v modeling for closure. Modeling for
closure begins with points, and

progresses to a closed solid
volume. This progression includes:
1. Points on curves
2. Curves on surfaces
3. Surfaces on solids
Points on Curves
Fig. 6.2. Modeling for closure: Points are the most basic
a — mating points should be geometric elements. They form the
coincident; b — mating edges should basis of all geometric curves.
share existing boundaries; ¢ — mating Ensuring model closure begins
edges should have equal segments; With the proper creation and
d — surface to boundaries instead of manipulation of points and curves.
trimming when possible Control points for planar curves
should always remain coplanar
Endpoints of connecting curves should always remain coincident.
Remember that during wireframe and surface operations, internal controls
for model integrity and closure found in SM are not automatically applied.
Develop good point and curve strategies.
Curves on Surfaces
Just as points are the defining elements for curves, curves are the
defining elements for surfaces. Whenever possible, always generate
curves from existing surfaces. Be aware of how local curve modifications
can affect associated surface geometry. Always use simple curves (lines
and arcs) instead of splines whenever possible.
Surfaces on Solids
Surfaces must form a closed volume to define a solid and should
always share curve boundaries when they meet. If possible, mating curve
boundaries should always share equai segments. Difficuil surface areas
should always be redene rather than piecing small surface segments
together. The endpoints of connecting boundary curves for mating
surfaces should always remain coincident
Levels of Integration
There are many levels of integration among wireframe, surfaces, and
solids. SM systems that closely integrate these three representation
schemes in a common database are more flexible than those that do not.
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Usually, such systems allow the creation, joining, and exploding of
surfaces into and out of solids as needed without any loss of data or
integrity. Until SM functions can accurately represent and model complex
surface areas, the need to closely integrate wireframe and surface
functions into the SM database will remain great

Preferred Geometry

In surfacing, just as with any craft, there are preferred methods. Again,
always try to construct surfaces to defined boundaries rather than
performing extensive trimming. This is especially true if models are to be
exported to dissimilar systems via neutral formats. Try to use ruled
surfaces instead of surface patches whenever possible Ruled surfaces
require only two boundary curves, whereas a surface patch requires three
or more defining boundaries. Any technique that simplifies construction
and requires fewer database resources is recommended SM databases
can and will become quite large. Early simplification saves time and
worries later. The techniques can't be overstressed.

The only measure of quality for curves and surfaces in an SM system is
the extent to which the facilities meet the designer's needs. Systems and
approaches to these issues are far too diverse at this time to admit to a
linear ranking. All present products are somewhat deficient in robustness,
that is, the user can create shapes that will "break” any system. Designers
should know the limitations of the systems they are considering, and expect
them to degrade "gracefully" when they "break," without loss of data.

Combining Associative and Nonassociative Elements

In general, the greater the extent of associativity in a model, the less
you can modify the model through direct curve or surface manipulation
commands. In many cases, a fully associative model can be modified only
by changing the parent elements or the dimensions driving the associative
elements. However, by carefully combining associative and nonassociative
elements in a single model, you can create a model that is modifiable both
through dimension edits and through direct manipulation commands Four
common examples follow

Nonassociative Curves and Surface

Fig. 6.3 illustrates a simple example of a nonassociative surface placed
through nonassociative curves. Note that Fig. 6.3,a shows the original
curves and surface. Fig. 6.3,b shows the result after one of the curves is
modified. Note that the surface does not follow the modified. Curve. You
would then have to delete the original surface and create a new one.
Fig. 6.3,c shows the result of moving poles on the surface. Note that,
although the surface has been modified in the middle, the edges were not
modified. However, if the surface had been modified such that the edge
row of poles moved, the surface would deviate from the curves

Since both the curves and the surface are nonassociative, either the
curves or the surface may be modified. However, the drawback is that
there is no intelligence between the surface and the curves, and if one of
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the endpoints of a curve is moved, the adjacent curve will not be
connected to the modified curve,
Variational Curves and Associative Surface
This example shows how you
can construct an associative free-
form surface from fully constrained
variational profiles. Although the
concept of a fully constrained free-
form surface may sound like a
confradiction in terms, this surface
is fully dimensionally constrained.
Once the four profiles making up
the boundaries of the surface are
fully constrained, you can then
X R modify any of the dimensions to
Fig. 6.3. Nonassociative curves and modify the surface. In Fig. 6.4 the
surface: a — original surface; b—after  gimensional constraints for both
modifying curve; ¢ —after modifying surface ¢ross sections are all proportional
to the overall width and height of
the first cross section. By setting proportional expressions, you can then
modify the surface predictably by simply changing the height and/or width. As
shown in Fig. 6.4, the height is changed from 2.5 to 1.25 and the width is
changed from 3.5 to 5.0. This causes the surface to update to match the new
cross-sectional shapes.
There are three important items to note about the example in Fig. 6.4.
1. Since both the cross-section curves and the trace curves are
variational profiles with coincidence defined between the endpoints of the
curves, the curves will always remain connected at their end- points. When
the cross sections are modified, the trace curves update to remain
connected. This is important
since the skinning surface
would have problems if the
endpoints were not connected
2. Since the surface is
associative to the curves,
when the curves are modified,
50 the surface updates
accordingly.
29 a - b 3. Depending on the SM
Fig. 6.4. Variational curves and associative System used, you may not be
surface: a — original surface; b —surface  able to modify either the

after modifying width and height curves or the surface with
direct manipulation commands

since they are both associative. Standard constraint modification
techniques may be the only way to make changes.
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Nonassociative Curves and Associative Surface

This example shows one of the most useful combinations for pure free-
form modeling. In this case we created nonassociative curves and then
passed an associative skinning
surface through the curves. The
big advantage here is that you
can use any of the available
wireframe  modification tech-
niques to directly manipulate the
curves. The associative surface
will update to reflect any changes
made to the curves. As shown in
Fig. 6.5, the original surface is
shown, then the resulting surface
after directly modifying the poles

on the Sk Fig. 6.5. Nonassociative curves and
__Advisory  Notes.  The ,gq0ciative surface: a — original surface
important  point about  the with poles of curves displayed;

example in Fig. 6.5 is that you p, _ g rface after moving poles on curves
do not have to recreate the 900

surface to see the result of free-form modifications to the curves. This lets
you do "what-if" studies on a free-form, or aesthetic, shape without re-
creating surfaces. The drawback is that, depending on the SM system used,
you may not be able to directly modify the surface, and you must be careful
not to modify the curves so that the endpoints lose their connections.

Associative and Nonassociative Curves with Associative Surface

In this example, both associative and nonassociative curves are used to
construct an associative surface This method lets you modify some
aspects of a surface through direct curve manipulation commands, and
other aspects through dimension edits

In Fig. 6.6, two variational profiles are used for the cross sections The
single trace curve is a nonassociative B-spline The reference planes, on
which the two cross-section profiles are constructed, are created through
the endpoints of the B-spline Therefore, the B-spline can be modified in
any way and the cross-section profiles will still remain at the ends of the B-
spline trace curve Fig. 6.6,a shows the original curves and surface, a
skinning surface created with the B-spline trace curve and two open
profiles for cross sections Fig. 6.6,b shows the result of modifying the B-
spline trace curve. Fig. 6.6,c shows the subsequent result of modifying the
dimensional values on the two profiles as shown.

In both cases in Fig. 6.6,b and 6.6,c, the surface updates according to
the changes made, since the surface is associative to the cross sections
and trace curve. The important thing to note here is that you have some
flexibility in modifying the surface. You can either manipulate the trace
curve or modify the profiles.
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10
Fig. 6.6. Associative and nonassociative curves with associative surface:
a — original curves and surface; b — result after moving poles on trace
curve; ¢ — result after editing dimensions

Most Effective Modeling Approach

The examples above present a few ways in which you can combine
nonassociative elements, associative elements, and variational profiles
into a single model, particularly as they relate to free-form surfaces. The
examples given are only a few of the possible combinations. The important
thing to remember is that a model does not have to be fully associative to
be useful. Oftentimes the most effective modeling approach will include a
combination of variational profiles and other associative and
nonassociative elements.

System Tolerances

Be aware of your system's tolerance. Any deviations from your system
tolerance limits may result in unacceptable gaps and cracks. Modifying
your system tolerance fo obtain closure is not recommended. The proper
solution is to employ techniques that will allow the generation of curves
and surfaces within specified tolerance limits.

Effective Color Usage

Use differences in color and layers effectively. When dupiicating or
projecting curves, arrange it so that the resulting new curve will be a different
color or layer than the original. A newly constructed curve may differ only very
slightly from an existing one. Color coding causes less confusion when a
selection is required. This use of color and layering will also make it easier to
identify each entity as well as to manipulate entities as a group. Blanking and
deleting can be done by color and layer on most SM systems.
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Use Existing Edges

When adding a feature to a solid model using surfaces or when sewing
surfaces together, try to use existing and common edges for curve boundaries.
This will make the model easier to change later in the design cycle and will
keep gaps from appearing between surfaces. Gaps cause problems when
converting to a solid and in downstream operations such as NC.

Approximation

Many SM systems employ a CSG representation. The developers of CSG
systems introduced the concept of applying boolean operations to solid
shapes. These work fine when all surfaces are planar. But with surfaces of
any greater complexity, intersections can result in complex curves. Such
curves may not be precisely defined in the context of a particular SM system.
Rather than applying an analytic solution, the program must employ
numerical approximation techniques to express these intersections.

7. MODELING STRATEGIES

Solid models are built using the capabilities provided by a given Solid
Modeling (SM) system. Such capabilities often include solid primitives,
operator-defined profiles swept along a path, features, and surfaces. SM
system operators may combine these shapes in many and various ways to
meet the requirements of a given design.

Every SM system must provide a base set of geometric construction
capabilites apart from related functions such as drafting, analysis,
parametric/relational definition, or data exchange.

Solid Modeling attributes include surface finish, threads, location
tolerance, position tolerance, annotation, display color, etc. The solid model
definition is incomplete without these. Please note that not all SM systems
include this type of data in export files. Tolerances are so important that most
SM systems treat them as a separate entity group.

Solid primitives

A primitive is a volume defined by simple, standard geometrical shapes,
such as a box, cone, and cylinder. Primitives are used by the CSG modeling
method. There is a limited set of ready-made primitive shapes, each requiring
very little input. Primitives can be defined using simple menus and can be
combined to form complex geometry. Input can be relative to local or global
coordinate systems or other existing geometry.

Very complex shapes can be created by combining primitives through the
use of boolean operations. The resulting complex solid can then be saved
and treated as an operator-defined primitive

A box is a right rectangular hexahedron. That is, it has six rectangular
faces. Typical input required: Length, width, height, and location. The center
point and orthogonal edge vectors as well as two diagonally opposite corners
are specified with some systems

A cone has a base circle a curved exterior surface tapering to a point,
and an axis of revolution normal to the base circle. All lines on the curved
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exterior surface between the base circumference and the apex are linear.
Typical input required: Base radius, height or length, and the base center
point as a location.

A frustum is typically defined as the portion of a cone that lies between
two parallel intersecting planes. Typical input required: Bottom center point
for location an axial direction, bottom radius, top radius, and length.

Cylinders are defined by a constant diameter bounded on each end by
right-angular, parallel circles of equal radius. The axis is normal to the ends.
Typical input required: Direction, base point or location, radius, length.

A prism is similar to a right rectangular box, except that it has more
faces. Typical input required: Base point or location directional vector, the
radius of the defining circle, and length Prisms may be inscribed or
circumscribed about the defining circle Some systems also allow the
number of equilateral edges or facets on its base to be specified.

A tetrahedron has an equilateral triangular base and three triangular
sides. Typical input required: Base point or location, directional vector, the
radius of a defining circle, and length or height. The base may be inscribed
or circumscribed about the defining circle. A variation is known as a
pyramid, defined by four sides and a rectangular base.

A sphere is the volume generated by a semicircle revolved about an axis
passing through its end points. Typical input required: Spherical radius and
the center or polar point.

A torus is generated by revolving a circle about an axis in the plane of
the circle. The axis must not pass through the center of the circle and must
lie outside the circle in most SM systems. Typical input required: Radius of
the circle, the radius from the center of the circle to the axis of revolution,
and the direction of the axis must be defined. A hollow tube is created when
two concentric circles of differing radii are revolved.

Geometric Operations

Geometric operations in SM are volumes created using cross-sectional
planar profiles and dragging functions, such as blends, extrudes, sweeps,
revolves, fillets, corner rounds, and local surface deviations. It should be
noted here that in an SM system these geometric operations result in a
single closed solid entity. Similar operations are available in surface
modeling that result in one or more individual surface entities.

These SM volumes may have constant or variable cross sections and
linear, multilinear, curvilinear, or axisymmetric paths. The common naming
conventions used for such entities are: extrude, sweep, blend or transition,
and revolve. Fig. 7.1 illustrates common geomeiric operations.

Blends or Transitions

A blend or transition has a variable cross section swept along an
arbitrary path as illustrated in Fig, 7.1,a. Its definition consists of two or more
closed planar profiles of equal number of segments and a trajectory curve.
The blending operation causes the cross section between defining profiles
to be approximate. The trajectory may be a spline curve passing through the
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ordered sequence of profiles. The cross section blends from segment to
segment from one profile to the next. The profiles are generally normal to
the trajectory, but may be allowed to be normal to another surface as the
profile moves along the trajectory. Two profiles and a linear trajectory can
be used to create a linear blend.

Blending Example

An engine intake manifold which is of a circular profile at the intake valve
quickly blends along a tight three-dimensional curve into a rectangular
profile with large fillets (due to space limitations), and then more gradually
blends along an increasing radius into an elliptical profile before again
becoming circular. The cross-
sectional area must remain
unchanged along the length,
requiring accurate approximations
of intermediate cross sections.

Extrusions

Solid extrusions have a constant
cross section dragged along a
single linear path. The profile does
not rotate about the extrude line.
Consequently, lines on the cross-
section profile generate prismatic
surfaces. The extrude operation
generally uses a closed planar
profile that is extruded along a line

normal to the pl‘oﬁle. In SM, planar F'g_ 7.1. Common geometnc omraﬁons:
profiles have a front and a back- 5 _ plend or transition; b — extrusions;
side. Normal to the profile means ¢ — revolutions; d — sweeps

that the front of the profile is facing

the direction of extrusion. The extrude line may be defined as a distance off-
set from the planar profile, parallel to a straight edge of the solid, or may
extend between two parallel planar faces.

An outside planar profile and a nonintersecting inside planar profile on
the same plane can be used to create a hollow tubelike extrusion. A single
SM volume resuilts.

Revolutions

A solid revolution is a volume created by revolving an arbitrary planar
cross-section profile about an axis. The profile should be closed and not
cross the axis. If the profile is open, the axis must pass through its endpoints.

Sweeps

A solid sweep is a volume created by sweeping a planar cross-section
profile along an arbitrary curve. A sweep operation uses a ciosed planar
profile that is generally normal to and swept along a multiple segmented
curvilinear sweep trajectory. The adjacent segments of the sweep trajectory
are usually required to be tangent.

Lingar path
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Sweeping a Helix

Multiple sweep trajectories are sometimes allowed. One sweep
trajectory is used to define the sweep path, and another controls the
profile's local axis orientation (i.e., the rotation of the profile along the
trajectory). For example, the sweep trajectory may be a helix, and the local
axis trajectory for a noncircular cross section may lie along the long axis of
the helix. The local axis of the profile will always point toward the long axis
of the helix. A helix of circular profile requires only one trajectory.

Blending Concerns
1. Additional profiles to control cross sections may be difficult to position
accurately if the trajectory curve varies rapidly.
2. Due tc their approximate nature, blends can be created, sectioned
where refinement is desired, new improved profiles constructed at the
cross sections, and a new blend created.
3. As additional cross sections are added, check for surface continuity
between profiles, as waviness can be introduced.
4. The number of segments per profile is required to be equal, as each
segment is blended in consecutive profiles. Arcs and lines of profiles may
need to be subdivided.
5. Blends are sometimes restricted to profiles on parallel planes.

Sweep Concerns

The sweep volume must not self-intersect along the sweep trajectory as it
would if a figure-eight trajectory were used. Arc or spline segments of the
trajectory that are small compared to the profile can cause self-intersection.

Extrusion Concerns

Two or more nonintersecting outside planar profiles on the same plane
can be extruded simuitaneously to create muitiple unconnected parallel
solid primitives. Unconnected objects can define a valid solid, but
applications such as automatic finite element meshing and automatic NC
toolpath generation cannot use a solid of multiple volumes.

Profiles, Chamfers, and Fillets

When sweeping cross-section geometry into a solid, keep that
geometry as simple as possible. Do not include fillets, radii, and chamfers
(unless you have an incomplete or nontangent one). In some systems you
are limited to the number of entities that you are allowed to sweep. Also,
make sure that your geometry is planar before it is swept. Some nonplanar
geometry can be swept, but may resuit in an invalid or unstable solid.

Plan Your Edge Sequence

Before attempting to apply fillets or radii to a solid, spend some time studying
the model and plan the sequences of edges to which you want to apply them.
Think about the way the model would be manufactured. Use the "undo"
command (if your system has this feature) when the result is not as expecled.

Copy Profiles First

Before you use a profile in a sweep operation, copy the profile in place
to another layer, and use the copied profile for the sweep. Some SM
systems do this automatically.
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Modifying Profiles

One thing to look for when evaluating SM systems is which techniques
are available for modifying profiles. Some systems allow you to change
profiles by changing dimensions. Some require that you extract the
defining curve, modify it, then replace the original curve. Or, you can just
replace the curve with a new one. Other systems won't let you modify the
profile. You must delete the part and start over, or modify it with boolean
operations.

Boolean Operations

A solid boolean operation is the mathematical joining by UNION,
SUBTRACTION, or INTERSECTION of two or more solids into a single
new solid object (Fig. 7.2). Any valid solid can be used in boolean
operations, including primitives,
geometric operations, or the A s AUS
results of previous boolean ~ #::D c@:o
operations.

The resulting solid will be a b c
either (1) the combined volumes

of the prior solids, (2) the net Ans 7 A-8 B-A
volume of subtracting one solid — Eﬁ — =
from another, or (3) the volume d A f

EONKIORIG: DOt GGl BOMIR. D 3 Hockom Blaimtione: & sl block:

Boolean operations give SM A

highly productive capability by b—$°"<(i)f cx'mder. - rels;:%t_sE gs%'gggN-

modifying large amounts of OPeration plus B; d - 3
e—SUBTRACTION A-B;

geometry (each solid) in a
single command operation. f~SUBTRACTION B~-A

Combining Solids

The boolean combine operation is typically named ADD, COMBINE,
JOIN, MERGE, or UNION. The new solid is equal to the combined
volumes of each selected solid. Typically, two or more solids can be
selected for a single join command. However, the SM system will join each
solid separately and display the final result.

Subtracting Solids

The boolean subtract operation is typically named CUT, DIFFERENCE,
REMOVE, or SUBTRACT. Only two solids are typically selected for a
subtract operation. The base solid is usually selected first, followed by the
subtracted solid. The resulting solid is defined as the volume of the first
less the volume of the second.

Intersecting Solids

The boolean intersect operation is typically named COMMON,
CONJOIN, or INTERSECT. Two or more solids can be selected for the
intersect operation, and the order of selection is allowed to vary. If more
than two solids are selected, the underlying database will perform each
intersect sequentially and display on the end result. The resulting solid is
defined as the volume common to the original solids.
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Boolean Groups and Errors

Some SM systems allow the selection of a group of solids that require
the same boolean operation. Remember that each operation is performed
sequentially and only the accumulative result is displayed. If any of the
operations should fail, the erroneous operation should be undone and the
model saved in this uncorrupted state. One additional boolean may require
being undone to remove the corrupted operation because, frequently, the
error is not known to the SM system or the designer until one boolean
operation after the actual error has occurred.

Regularized Boolean Operations

As illustrated in Fig. 7.3, certain difficulties can arise when using
boolean operations. An intersection operation between objects A and Bis
used to remove the part of object A to the left. The desired result is shown
in Fig. 7.3,b. But since objects A and B share a face, the intersection
leaves it "dangling in space" as shown in Fig. 7.3,c. This part of the object
occupies no volume — an illegal condition in many SM systems. To prevent
the occurrence of this and related conditions, specially formulated versions
called ‘regularized" boolean operations are often used. They are
sometimes indicated with an asterisk superscript (*).

n

Ane ANB

b c
Fig. 7.3. Regularized boolean operations: a — removal operation by the
intersection of A and B; b — desired result; ¢ — possible result

Using Booleans on Coincident Faces .

A boolean operation on objects having coincident faces may fail in
some cases, such as when faces adjacent to the coincident faces are
tangent. Solution: Use any of the following alternate construction
techniques instead of a boolean operation.

1. Always creates a single profile to be swept along the same drive
curve (trajectory).
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2. Rather than sweeping a profile, then sweeping a face of the result, and
then joining the two objects, sweep the profile once. Use local operations to
move faces when paossible.

3. Guidelines: You should also keep the following guidelines in mind to
avoid coincident faces, which may cause a boolean to fail:

a. Fillet a resulting solid after a boolean, so a large number of coincident or
tangent faces do not resuit. Exception: In a few cases (such as a vertex with
four edges), if attempts to fillet the resulting solid fail, try filleting the objects first.

b. When splitting or timming solids, extend the trimming surfaces beyond the
faces of the solid being modified so that the "knife" protrudes outside the solid.

c. Position boolean operands that make through-holes so that they
extend beyond the faces being punched, rather than making them flush.

Modeling Guidelines

The modeling guidelines discussed here are generally applicable to all
CSG and B-Rep SM systems and most surface modelers, even though
implementations vary. These guidelines are organized into three groups
addressing:

1.Minimum modeling time

2.Model size and complexity classifications

3. Clean modeling

The terminology UNION, SUBTRACT, and COMMON used here reflect
CSG boolean terminology. However, the information is also applicable to B-
Rep modeling. Merely substitute

ADD, CUT, and TRIM as required.
Minimum Modeling Time
The ideal CSG tree will have
several levels of constructions as
a b

shown by the model classes in
Fig. 7.4. The class 1 CSG tree
should never be used for

complex models. The ideal
B-Rep model is also built using
constructions. CSG and B-Rep
modeling and editing time will
both be greatly reduced with the
c d

use of multilevel constructions.

Because the model is built in

levels, deleting the boolean Fig. 7.4. Classes 1 through 4 CSG
associations of constructions to trees: a —class 1 models have a single
the model, or of individual level of constructions; b — class 2
shapes to each construction, will models have two levels of constructions;
delete only a few specific ©-—class 3 models have three levels of
boolean or surface intersection constructions; d — class 4 models have
associations. four levels of constructions
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Fig. 7.5 illustrates the
amount of modeling time
required versus the number of
operations in a class 1 model. In
a class 1 model, the time
necessary to perform a boolean
or surface intersection operation
has a small overhead time "b" If
the operation fails immediately,
the CPU time "b" is still
expended. Each subsequent
operaton of the same
complexity takes a little longer
("a") because more model
surfaces must be checked for
possible intersection with the
current shape |If all SM
operations are to a single root
object, then the total CPU time
is equal to the area under the
curve shown Note that the curve
can rise dramatically in later
operations due to data handlin
Fig. 7.6, CPU time vs number of operations g, 7.6 shows the S
mode! subdivided into six constructions of a class 2 model. Note the
amount of CPU time saved during construction. In a class 2 model like the
one represented in Fig 7.5, six equal subdivided constructions can be
made and then joined at the end The subdivision process causes each
construction to require relatively equal CPU time Since the accumulative
CPU time "a" is not encountered, a large portion of the CPU time required
in the class 1 model is saved

To Reduce Modeling and Editing Time:

1.Perform simple intersections first.

2.Perform basic shape operations first.

3.Avoid trimming features.

4.Construct detail and features last.

5.Add features to subdivision constructions.

6.Minimize the extent of intersections.

Subdivision Saves Time

As illustrated in Fig 7.5 and 7.6, a complex solid model can often be
subdivided into logical regions called constructions. Each construction can
be individually modeled and then combined to achieve the final solid.
Dividing the model into logical regions can save 50 percent of modeling
time and 80 percent of editing time. Please note, however, that smooth,
continuous surfaces should not be broken in the subdivision process.
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CPU Time versus Constructions and Operations

A solid consisting of 100 T =
primitives and geometric
operations can be built in many
ways. For example, the model
could have 100 constructions of
one primitive each, 50
constructions of two primitives
eaciuiate, s belative, CPU time 100x1 50x2 20x5 10x10 5x20 2x50 1x100
to build such a model is (Constristions) ¥ (Gobratins s GonstAiod)
compared in Fig. 7.7 Ideal
modeling is achieved when the Fig.7.7. CPU Time for a100-operation solid
total number of constructions
equals the total number of operations per construction. For a solid having 100
operations, using 10 constructions of 10 operations each yields the minimum
required CPU time, 20 constructions of 5 operations each or 5 constructions
of 20 operations each requires only slightly more time. At the extremes model
creation requires over twice the minimum time. A poorly constructed larger
model can consume over three times the minimum modeling time.

The CPU Time Curve

As shown in Fig. 7.8, the boolean (CSG) or intersection (B-Rep). CPU
time curve is greater for a series of complex surface intersections than for a
series of simple surface intersections. The number of intersections grows
rapidly with each succeeding operation, causing all succeeding operations to
perform even more intersection checks.

Simple Intersections First

Perform simple intersections first when possible (Fig. 7.9). As much as
80 percent of the total CPU time can be saved by following this rule, although
30to 50 percent savings is probably more typical. Modeling speed and
efficiency considerations become very important when a real-world part with
actual manufacturing surfaces must be created. Most moderately complex parts
require at least 50 shapes or surface intersection operations. A transmission
housing or engine block, for example, can easily require 300 to 500 operations.

CPU Time

Complex surfaces
i
R Planar surfacas
(¥
1
Operation number
Fig. 7.8. CPU time vs operations  Fig. 7.9. Performing simple surface
and surface complexity operations first
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Model Size and Complexity

Model size must be well understood in order to properly determine
the ideal modeling strategy. The model classifications shown in Fig. 7.4
can be further identified by the number and complexity of required
surface intersections. The larger and more complex the final model, the
more difficult and time-consuming each subsequent boolean or surface
intersection will be. The CPU time required to perform a boolean or
surface intersection is a function of the following:

1.The number of intersecting segments of all surfaces that must be
checked during the operation

2.The number of new intersection segments produced in the current
intersection

3.The order in which the intersection operations are performed

4.The accuracy of the intersections computed

5.0ther factors such as the data transfer rate with the database, how
1/O is performed, etc.

A complete intersection check requires more time to perform than a
local intersection check. Some SM systems limit the number of surfaces
checked for possible intersection with the current object by checking
only at surfaces selected. An intersection may be missed during a local
operation if complex surfaces are nearby. In some cases, the option of
performing the complete intersection check when desired or required is
available.

Model size can be approximated by measuring the number of
boolean operations for primitive and geometric shapes plus features
(CSG), or the number of surface intersection operations (B-Rep). In
Table 7.1 model classifications are further identified by the total
operations involved.

Table 7.1
Model Classifications by Number of Operations

Model Number of
class operations

15 Simple models; bearing cap, bracket
10-75 Complex surfaces; piston, crankshaft
50 - 200 Complex surfaces; manifolds, windage tray
> 150 Complex surfaces and constructions; engine
block, cvlinderhead

The number of operations and complexity of class 3 models are near
the capability limits of some SM systems. When class 3 or class 4 models
are created using high precision, later boolean or surface intersections can
take several minutes to perform. Consequently, simplified models are
sometimes created which may not be useful for aill applications. An
understanding of SM fundamentals can partially alleviate this problem.

Descriptive examples

BON =
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As surface complexity increases, the time required to perform
intersections can increase dramatically. Without proper direction, modeling
time for a 300 operation solid can easily grow exponentially.

Clean Modeling

Clean modeling techniques allow designers to avoid creating excess
geometry. If a model is not clean of excess geometry, the following
conditions may occur:

1.1. Automatic finite element meshing will generate more nodes and
elements, and the mesh will become more difficult to control.

2.NC toolpath generation will require stepping over extraneous edges
and surfaces.

3.Graphic displays may be inconsistent.

4.Drawings are incorrect, ambiguous, and undimensionable.

5.Tolerances and surface finishes cannot be specified properly.

For Clean Modeling

A clean solid model is more useful than an unclean one to all
downstream applications. Remember the following:

1.Always create continuous surfaces.

2.Always remove unwanted material.

3.Construct as produced.

4.Avoid offsetting surfaces.

5.Minimize narrow faces.
6.Avoid small corner angles.

Continuous Surfaces

Clean models have
continuous surfaces wherever
possible (Fig. 7.10). This iRl
requires that the total number siirface
of surfaces are kept to a
minimum: surfaces have the
fewest vertices, edges, and no
gaps. Do not break a
continuous  surface  unless
absolutely necessary.

Revolution Seams

Revolved (axisymmetric or
turned) shapes sometimes
have a seam present that will
remain on the solid and near g
another edge. The revoive can Sy
be rotated before performing
the SUBTRACT operation to
move the seam away from
other edges or to eliminate it
entirely.

Fig. 7.10. Clean models have continuous
surfaces and seams whose vertices are
not within system tolerance proximity or

each other
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Edge Precedence

Perform intersections in an order to produce the fewest number of
vertices, edges, and surfaces. The edges of shapes added usually take
precedence over existing solid model edges. Depending on the SM
system, existing edges may take precedence over the added edges, both
sets of edges may remain, or all edges on continuous surfaces are
automatically removed (this is the cleanest model).

Unnecessary edges will cause an automatic finite element mesh to
possess many more nodes and elements, and NC toolpaths will encounter
more surfaces, efc.

Rework Unclean Geometry

Always rework unclean geometry rather than covering it up or simply
trimming it off. The solid will retain more operations due to creating
unclean geometry and covering it up than it will if the geometry is
remodeled properly. The additional operations can contribute to future
errors and cause later operations to consume more time than is necessary.

Construct As Produced

Solids should be constructed similar to the way they will be machined.
Build a SUBTRACTiIon construction in the shape of pockets to produce
cleaner pockets, rather than subtracting a series of solids. Build a UNION
construction to produce a cleaner appendage, rather than UNIONing a
series of solids. Fillets should be created last as fillet features.

ADD Before SUBTRACT

Perform boolean ADDs before SUBTRACTS when possible so that
cavities and pockets are not erroneously filled in. Another identical
SUBTRACT can be built to clean up such an error, but coincident surface
intersection errors might then resuit.

Discard Often

A cleaner model will result if you eliminate primitives, geometric
operations, and features as soon as they are no longer needed.

Avoid Difficult Geometry

Unclean geometry such as short edges, narrow faces, and small
angles between edges can lead to application difficulties. Fillet radii can
sometimes be increased within the normal design tolerance to eliminate an
unnecessary adjacent surface. The design might be adjusted to eliminate
small surfaces by relocating a surface.

Cleaning the Model

When loo many extra vertices, edges, and surfaces are created, the
model can usually be cleaned by crealing and subtracting from the model
another construction which is outside the solid and coincident with its
surfaces. In some cases, the extra edges and surfaces may be removed
from the model, but the vertices may remain. Removal of a finite amount of
material may be required to remove the vertices. Alternatively, a
construction can sometimes be built internal to the model and coincident to
its surface, and a UNION performed.
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Exploding Solids
Some SM systems allow the solid to be exploded into individual
surfaces without loss of definition. Surface areas can then be cleaned up,
rejoined, and made into a solid once again. Geometry required for function
must not be eliminated, of course.
Select Actual Edges
When selecting a solid edge for an operation, make the selection on an
actual edge, not a meshed line. Rationale: Future operations may change
a mesh pattern. If so, selecting a meshed line will cause regeneration to
fail. Usage tip: You can distinguish if something is an actual edge by using
selection filters.
Navigating Errors
Modeling Errors
Modeling errors are almost always due to one of the following:
1.Exceeding array sizes in the computer code. A particularly complex
operation may require storing more entities such as edges than the
software was coded to handle.
2.Exceeding the memory size of the computer's CPU. A complex
operation may require more memory than is available.
3.Imprecise geometry.
To Reduce Modeling Errors
1.Avoid trimming features.
2.Avoid trimming surfaces.
3.Avoid latent inappropriate surfaces.
4.Minimize concurrent intersections.
5.Create final intersections directly.
6.Perform boolean ADDs before SUBTRACTS.
7.Minimize concurrent operations to avoid software array limits.
8.Eliminate extra operations.
9.Newer edges have precedence over coincident older edges.
Avoid Trimming Features
If at all possible, avoid trimming features (such as through-holes) by
basic-shape boolean or surface intersections. All intersections at exterior
faces will have been needlessly performed twice. If a single intersection
fails to be determined, the entire boolean or surface intersection will fail.
Always perform basic shape operations first.
Avoid Trimming Surfaces
Trimming surfaces can lead toc more boolean and surface
intersection errors later in the modeling process due to the extra
geometry and the extra operations not required with an untrimmed
surface. It is always best to build a surface to its trimmed location.
However, the definition of a complex surface at the desired boundaries
are not always known; hence, the trimmed surface is used. Trimmed
surfaces can also be a cause of lost geometry when translating to
neutral formats.
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Avoid Latent Gratuitous Surfaces

Latent or gratuitous surfaces are those that are no longer visible after
the boolean or intersection operation because they lie inside or outside the
solid. They can cause problems for subsequent operations. After a
SUBTRACTION has been performed, the box ADDITION operation may
fail due to its coincidence with the now-latent surfaces of the box
SUBTRACT, especially if complex surfaces are present (Fig 7.11). This
error can often be corrected with a shorter box SUBTRACT or a longer box
COMMON where the coincidence does not occur. Try to avoid complete
coincidence with latent surfaces.

Box subtraction

1

1

1

i ;: Box intersection is coincident
. 5 with latent box subtract

: 4 Shorten box.
1

i

1

1

i

1

i*—Box intersection

Fig. 7.11. Latent gratuitous surfaces

Minimize Concurrent Intersections

The hub should be intersected with just one spoke, and the resulting solid
intersected to the rim. The remaining spokes should then be intersected to
the model, one at a time. Alternatively, but to be avoided, all of the spokes
can be intersected to the hub first. However, intersecting the rim will then
entail numerous simultaneous intersections of the rim to all the spokes. The
intersections look as though they are all identical; but due to orientation,
positioning, and accuracy errors, they differ. If just one intersection segment
of a spoke to the rim fails, the entire intersection operation fais.

Large versus Small Geometry

Accuracy-related errors can occur when very large and very small
geometries exist within close
proximity. The coexistence of
very large and very small
geometry can produce accuracy
errors. The accuracy required by
the small radius r is clouded by
the imprecision generated from
the large radius R when the two
are required to be tangent.
Perhaps radius r can be left

- sharp or increased without undue
Fig. 7.12. Large vs. small geometry impact to the design In Fig. 7.12

r<<R B
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the existence of the small radius is clouded by the precision lost with the
occurrence of the very large radius. The precise locations of the
intersections at the radii clearly require that the geomelry possess more
than eight digits of accuracy. Consequently, the intersection may fail.

Minimize Size and Complexity of Intersections

To reduce memory and CPU
requirements, always minimize the
size and complexity of intersections.
Software array limits can overflow.
As illustrated in Fig. 7.13, the order
in which boolean operations are
performed can help minimize the
size and complexity of intersections.
In this simplified example, part B
should be intersected with part A
prior to the intersection of parts C to
reduce the risk of possible intersection errors.

Accuracy Settings

In Fig. 7.14, the search for the
intersection of the large and small
geometries will not be successful if
the search path is too coarse.
Coarseness greatly speeds up the
search process, but at the cost of
accuracy. If the SM system allows
the temporary tightening of

Fig. 7.13. Minimize the size and
complexity of intersections

~ b

intersection tolerances, extreme Fig. 7.14. Accuracy settings:
caution should be exercised in a — polygonalized search line;
doing so. b — small feature

The coarseness of the
system's accuracy settings can cause small features to appear not to
intersect when they actually do. In this example, the coarse polygonalized
intersection search line along the curve misses an intersecting feature.
Do not modify the system's accuracy settings unless absolutely
necessary. Small feature doesn't intersect search line.

Caution: Reset the accuracy to the default value for later
intersections. Also, changing accuracy from one intersection to another
may cause errors in later intersections.

Intersection Errors

Intersection errors generally result from reduced accuracy, which
causes geometry to be very slightly noncoincident or noiitangent when it
should be. The geomeiry types for coincidence and tangency errors are
vertex-vertex, vertex-edge, vertex-surface, edge-edge, edge-surface, and
surface-surface.
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Surface-Surface Tangency

Errors can often be overcome by extending and embedding one
surface inside another solid or surface. Transition and torus surface
tangency errors are the most prevalent, due to the variable radius and
double curvature conditions present in these geometries. In some cases a
different solid will be the result and the design may change, making this an
unacceptable alternative.

Narrow Faces

If narrow or small faces should exist, a subsequent finite element mesh
will probably be uncontroliably dense at this location. The narrow surfaces
may create more difficulty for the NC programmer, and/or the NC software.
For example, the width of a narrow face may be much smaller than the end
of the tool bit, causing the NC software to interpret this condition as an error.

Twin Edges

The topology of a polyhedron (solid body) can be defined as: (1) both
ends of every edge is a vertex, (2) edges bound an infinite surface into a
face, and (3) exactly two faces (polygons) meeting along each edge of the
solid.

The two edges of adjacent faces are known as twin edges because
they are coincident and identical. If a gap or overlap in the faces of the
solid occurs here, the solid is invalid. The twin of each edge at the gap or
overlap cannot be identified mathematically at this location.

Automated applications, such as finite element mesh generation or NC
tool path generation, cannot use such geometry. Note that some gaps and
overlaps may be within system tolerance levels. Also check to see that
downstream operations are not operating at a tighter tolerance level.

Vertex-Vertex Coincidence

Two vertices must coincide precisely (to about 12 significant figures) or
must be at clearly different locations (differing by at least one digit in the
fifth significant figure) or a boolean or surface intersection error becomes
more probable.

Intersection Error Debugging

If it is noted which and when error messages occur, and what the
source of the error is, then debugging becomes possible. A flowchart can
then be constructed where the message suggests the possible causes,
and each path suggests possible situations that will cause this message
and solutions to overcome the error. This practice applies to all system and
operational error messages as well.

8. EDITING STRATEGIES

Editing solids is very important because it frequently occurs late in the
product development cycle when changes can drastically impact product
cost, quality, schedule, and profitability. Editing which alters oniy geometry
may have limited impact, while that which alters topology (the total number
of vertices, edges, and faces) usually results in an impact of much greater
‘consequence.
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Occurring Types of Change

During the course of product development, three types of changes will
usually occur before the solid model is released for manufacturing. These
include the areas of (1) geometry, (2) topology, and (3) cosmetics.

Geometry Changes

If editing alters only geometry, then associativity is valid, and associated
applications of the solid will not be measurably impacted. Notifications sent
to the affected applications about the geometry changes permit the
applications to generate new or additional views, update notes, etc.

Editing that typically affects geometry includes only changes in the
surface intersection accuracy value, units, and minor changes in
dimensions, angles, dimensioning scheme, and tolerances which alter the
number of decimal places of dimensions and angles. The topology is
unchanged, as noted by no changes in the number of vertices or edges of
each face, and no change in the number of faces (see Fig. 8.1). Geometry
changes allow vertices to move and both edges and faces to be stretched
and or truncated.

Topology Changes

Topology changes can invalidate associativity by modifying the total
number of vertices, edges, and faces of a solid, often forcing complete
rework and delays in associated applications (Fig. 8.1). Labor costs in the
associated applications occur with each change. Later in the product
development cycle, costs may also include product retesting, new or
modified manufacturing processes and fixtures, packaging changes, etc.
adds or deletes vertices, modifies, adds, or deletes faces, and maodifies the
total number and relationship of vertices, edges, and faces.

Cosmetic Changes
Scme design information is
only cosmetic to the solid
model and is not evaluated
into the SM geometry or
a b c

topology. This information

usually conveys design intent L
to other applications. Fig. 8.1. Editing geometry and topology:

Cosmetic information never 2~ original soliq: b — editing geometry;
changes geometry or topology ¢ — editing topology
and includes changes in
dimension locations, material specifications, notes, and attributes. SM
attributes are entities such as tolerance, surface finish, surface plating and
coating, nonevaluated threads, flatness, perpendicularity, angularity,
concentricity, parallelism, straightness, runout, and circularity.

Editing solids

Solids can be edited directly for all operations that modify only geometry
as well as those operations that modify topology without adversely violating
surfaces. There is an exception, however, in SM systems that prevent
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modification of an evaluated root solid. Direct editing of solids can include:

1.Geometry

2. Topology

3.Dimensions

4. Surface intersection accuracy

Editing Geometry

Dimensional and angular changes frequently alter the size and location
of surfaces without altering topology. This editing can be performed directly
on the individual shapes without editing the CSG tree, as discussed later in
this chapter. The primary solid or local details can be stretched in one or
more directions, details repositioned, and parameters changed. Editing
functions are typically accessed via a MODIFY menu. Editing choices
under MODIFY may be for each primitive or geometric operation type or
for each editing operation type such as STRETCH, BEND, MOVE,
ROTATE, ENLARGE, WARP, TWEAK, or CHANGE.

Editing Topology

Topology editing changes the number of vertices or edges of some
faces, or the number of faces (see Fig. 7.1c). Editing that adds, removes,
or modifies topology without causing unwanted surface violations can be
performed directly on a solid.

Adding and Removing Topology

Topology edits that remove material are generally of minor impact,
These edits can include adding holes, chamfers, and minor details such as
pockets and slots. Manufacturing can sometimes add a tool and toolpath to
machine these changes, and additional analysis might not be required.
However, removing holes, chamfers, etc., may cause parts already
manufactured to become scrap. Topology edits which add material are
generally a greater problem. For example, bosses, fillets, and draft usually
require major rework in applications.

Topology versus Manufacturing Costs

Topology edits that substantially increase the number of surfaces will
almost always increase product development costs and production costs.
Manufacturing may require more tool changes, setups, and toolpaths.
These changes may be justified if they increase product quality.
Conversely, topology changes that substantially reduce the number of
surfaces and simplify the product can decrease product development and
production costs.

Editing Dimensions

Dimensions are typically edited by changing the dimension values,
relations, scheme, or changing tolerances. The product development team
will have used varying techniques to determine the ideal parameters for
optimal product quality, manufacturing time, and cost characteristics. By this
process, critical dimensions are identified, critical tolerances are tightened,
and noncritical tolerances are loosened. These techniques require time to
perform and, consequently, may require editing the solid model.
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The dimensioning scheme and related tolerances will cause a
particular tolerance, stack-up. They convey to manufacturing which
dimensions and tolerances are most important for achieving product
quality, and which are not as important. in some SM systems changing a
tolerance will change the number of decimal places in the dimension to
which the tolerance is applied.

Editing Surface Intersection Accuracy

Changing the surface intersection accuracy will affect all subsequent
intersections. A full model regeneration will of course recompute all
intersections at the new accuracy. The accuracy is sometimes tightened to
refine geometric and topological data for manufacturing.

Editing the CSG Tree

The CSG tree must be edited when:

1.Unwanted surface violations occur during direct SM editing.

2.The modeling scheme must be changed due to major redesign.

3.The logical shape of constructions has changed or a different number
of constructions must be used.

4.A shape type must be changed. For example, a revolve geometric
operation must be replaced by a cone primitive, a blend geometric
operation, or a construction.

If your SM system is associative, the CSG tree is edited by breaking
the associations of the shapes to be edited from the tree, editing the
necessary shapes, and then reconstructing the CSG tree associations.
The associations broken may be of the root shape fo individual primitives,
solid geometric operations, or constructions composed of primitives and
geometric operations. Only remove as many associations as necessary to
limit the amount of rework. Surface intersections that were performed to
create the B-Rep boundary object are also broken and again performed
upon reconstruction.

Breaking the CSG tree associations is usually performed using a
function called MODIFY SOLID, DELETE SOLID, REMOVE SOLID,
SMASH SOLID, etc.

Edited shapes may be individual primitives and geometric operations.
Hence, a construction removed from the solid for editing must in turn have
the associations and intersections of the shapes to be edited removed
from its CSG tree.

Editing Order of Shapes

it may be necessary to edit the order of constructions in a solid medel,
or shapes in a construction because:

1.A shape fills or removes a portion of another shape.

2. Computational and labor time can be saved during subsequent
reevaluations by shifting simpler shapes to earlier positions.

3.The design is better understood, allowing intuitive ordering.

4.Modeling operations can be grouped better.

Adding or Removing Shapes
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Shapes can be added or removed from the solid model as required for
design changes. Shapes added will be placed at the highest level in the
CSG tree. For example, a shape added to the root solid will be placed at
the highest level of the entire CSG tree; a shape added to a construction
(node) will be placed at the highest level of the CSG tree of that
construction; and a shape added to a leaf node (basic shape) may be
added at a lower level.

To Reduce CPU Editing Time

A solid model that was built using class 2,3, or 4 CSG constructions can
be edited in an order-of-magnitude less time than if a class 1 CSG
construction was used. Refer to Fig. 8.2 for examples of each CSG tree
class. The number of associations and boundary intersections that must
recomputed during this process is substantially reduced by using the proper
class of CSG tree. Note that over 90 percent of the CPU time required for
editing is saved. This is
illustrated by the shaded area

For example, if a solid is built
using six equally sized
constructions in a class 2 CSG
tree, and two constractions must
be modified, ' then over 90
percent of the CPU time required
for editing will have n saved
versus a class 1 CSG tree.

Associative Awareness

Shapes that are positioned
and/or dimensioned relative to a
shape being deleted or moved
must be redimensioned prior to removal to avoid corruption. A warning
message is usually issued if position associativity exists. If your SM system
is associative, a general awareness during all editing proce-es is highly
recommended.

Eliminate Unused Operations

Solids created with boolean operations should be edited or modified to
eliminate unused operations and "scabbing-on" other operations. For
example, don't increase a hole diameter by subtracting a larger cylinder
from a solid without deleting the original subtraction operation.

Editing Solid Primitives

Solid primitives are edited by changing their parameter values. For
example, a cone may be edited by changing its base radius, height, base
point, axis, and coordinate system of definition.

Each primitive usually has its own set of parameters accessed via a
function called EDIT PRIMitive or MODIFY PRIMITIVE.

Editing Solid Geometric Operations

Solid geometric operations such as Extrude, Sweep, Blend or

4 Reintersect constructions

Fig. 8.2. Editing the solid model of a
class 2 vs. aclass 1 CSG Tree
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Transition, and Revolve can be edited by replacing, adding, or removing a
cross-section profile curve. Substantial changes in surface definition can
occur.

Editing Blends

A blend can be edited by reorienting a cross section, changing a cross-
section shape, replacing one cross section with another, adding or
removing a cross section to the set of cross sections, or by modifying the
trajectory curve(s).

Editing Extrusions

A solid extrusion can be edited by reorienting the cross section,
changing the cross-section shape, replacing the cross section with
another, or changing the linear path length and/or direction.

Editing Revolutions

A solid revolution can be edited by reorienting the cross section,
changing the cross-section shape, replacing the cross section with
another, or changing the revolution angle and direction of revolution.

Editing Sweeps

A solid sweep can be edited by reorienting the cross section, changing
the cross-section shape, replacing the cross section with anather, or by
replacing or modifying the trajectory curve;

Affecting Other Shapes

To edit an Extrude, Sweep, Blend, or Revolve, redisplay the original
cross-section profile curves. Determine if the cross section or any
segment(s) of it are used to define any other shapes. For example, a cross
section may be used to extrude in one direction and sweep in the opposite
direction. If so, determine if editing or deleting the cross section will affect
the other shape as well. The other shape may have its own copy of the
cross section, which is not associated to the cross section being edited.
Determine if others are to be modified also.

NC Considerations

Replacing an arc with a spline in a cross-section profile of an Extrude,
Sweep, Blend, or Revolve will alter the surface definition produced.
Toolpaths become more difficult to produce. Conversely, replacing a spline
with an arc can have a desirabie affect.

Blend Cross Sections

It is often necessary to change a particular cross section of the blend to
attain a new cross-section shape, area, perimeter, etc. The number of
segments in the cross section must not change unless all cross sections are
modified to use the new value. Some SM systems allow a new cross section
to be built and the current cross section then replaced with the new one.

Blend Segments

Cross seclions are generally added or removed from the original set,
or a cross section is reoriented in order to alter the surface between blend
segments. The original surface may be too wavy between cross sections,
or have inadeguate clearance with surrounding components. Remember
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that blends are approximate and are controlied only at their defining cross
sections.

Parametric/Relational Solid Modeling System

Classical P/R SM systems are composed of five major components.
These are:

1.The sketcher

2.The SM system

3.The dimensional constraint engine (DCE) (also called variational
engine and parametric engine)

4.The feature manager

5.The assembly manager

Editor's Note: Many of these concerns are eliminated in newer
systems.

History Refiects Intent

Parametric modeling captures the operations you use to build a
product. The captured operations, called parametric history, reflect your
design intent (any geometric relationships you establish) and strictly
adhere to that intent as sizes of the design change.

Importance: During the life cycle of a design, the product matures and
design intent can change. As a result, you may have to redesign portions
of the product. You can use many techniques to incorporate flexibility into
the parametric history of a model, such as with equational constraints, so
_that it is easy to handle certain design-intent changes.

Order Is Important

History is time-dependent. Importance: Parametric modelers record
operations in a chronological order and maintain any relationships you
define with displayed parameters. Because operations are order-
dependent, they are aware of a model's state only at the time you insert
them. Operations do not know about any future operations you may enter.
When regenerating a model, the system may not conduct an operation if
either of the following occur:

1.A previous operation negates it. (Example: If you change the
parameter of a solid so that it no longer intersects with any other entities,
any boolean operations in which the solid is an operand will fail.)

2.1t requires another operation before it, but you placed the needed
operation after it.

Verify History Pericdically

As you build a model and relationships get more complex, take the
time to periodically review dependencies. Purpose: Using these options
" can show which entities are dependent on a selected command or
operation so that you can verify history independence.

Example: If you create an entity that contains more than one operation
of the same name, you may be able to display the history number of each
operation. You can then be sure you are selecting the desired operation for
something, such as the removal of a hole.
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Modifying Events

You can typically make two kinds of parametric changes:

1.You can remove an operation from the parametric history of a model.

2.You can change the value of a parameter to alter such things as the
size, shape, and location of an entity.

Depending on the SM system, you may not, however, be able to
modify a parametric event. Example: You may not be able to create a
general radius fillet having four radius values and later add two more
radius values.

Possible work-around: If you know you may need to add radius vaiues,
create that fillet with extra but equal values. Later in the design process,
you can change parameters as required or use constraints to build
relationships between the values.

The Sketcher

The sketcher is one of three common ways in which geometry (profiles
and features) are supplied to a P/R SM system. The other two ways are
geometry which is created using standard CAD and SM construction
techniques and geometry which is imported from external design systems.

Sketchers today are another form of entering planar (or, in some of the
more sophisticated systems, 3D) preliminary designs. Since most P/R SM
systems allow sketching with a grid, it is possible for a "sketch" to have the
same dimensional accuracy that a figure constructed in any other part of
the SM system would have.

Sketching typically provides for the entry of line, arc, and (in some
cases) spline data. Most P/R SM systems allow for lines to be constrained
under a designer's control. Thus, it is possible to constrain all lines to the
closest 45.0° angle, or the closest 10.0°, or 1.0° angle, etc.

Also, most sketchers today incorporate implication engines which
examine the geometry as it is sketched, and if it meets certain implications,
assigns attributes to the geometry. For example, if two lines are
approximately parallel, then as a first guess, the sketcher will supply the
constraint "parallel” to these lines. If two arcs have approximately the same
radius, then most sketchers will imply that the radii are meant to be equal.

A sketch is typically used to generate the profile for either an axial or a
rotational sweep, for user-defined features which can be generated from
an axial or rotational sweep, or for hard-coded features. Hard-coded or
canned refers to features which are selected from a menu (choice list),
icon, or other mechanism for identifying a predetermined geometric
configuration, the methods for controlling its placement, and the types of
variables it can contain. Sketches are ordinarily controlled by modals.
These allow the designer to influence the implication engine.

Sketch types include, but are not limited to:

1.Chain (i.e., "heel and toe")

2.Centerline

3. Axis-symmetric

63



Examples of sketch modals are:

1.Snap angle

2.Sketch mode

a.Linear

b.Nonlinear

3. Fillet mode

a.Automatic between linear sketch curves

b.No fillets between linear sketch curves

4.Dynamic notch

5. Dynamic round

a. Semicircular

b. Free angle

6. Sketch closure

a. Direct to start point

b. Horizontal, then vertical to start point

¢. Vertical, then horizontal to start point

d. Direct to start point with fillet between first and last curves

The Solid Modeling System

The solid modeler is the area in Which planar profiles and 3D curves are
tumed into solid objects by axial or rotational sweeps, general surface
enclosures, or creation of analytic solids (cubes, spheroids, cones, toroids,
right-circular cylinders, etc.). While the objective of all P/R SM systems is to
generate solid mod-els, that fact is often obscured by the sketcher, relational
edit, feature generation, and assembly capabilities. All of these components
would be useless without a mechanism for creating the actual solid.

The most common ways of generating a solid are by either an axial or
rotational sweep. However, robust P/R SM systems include a significant
number of additional ways to produce solids. These include:

Each P/R SM system has special cases for producing a solid model.
However, the axial and rotational sweep as well as boolean operations
which are applied to the results of these sweeps produce a large
percentage of the solids in any given system. (Refer to Chap. 6 for specific
modeling strategies.)

The Dimensional Constraint Engine (DCE)

The DCE (also called variational engine and parametric engine)
provides for the modification of dimensions (variables) associated with the
model and the regeneration of the model after variables have been
changed. The DCE is the P/R segment which provides for the following:

1. The establishment and modification of dimensions

2.The establishment and modification of topological relationships
between geometric entities (a topological relationship is used here to mean
the way geometry is arranged relative to other geometry);

3.The creation and modification of mathematical relationships in which
one entity is constrained by arithmetic values associated with parameters
of one or more other entities
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The DCE is the heart of a P/R SM system and often contains most of
the functionality of a "variational" engine. The DCE is a software
component which manipulates geometric designs to satisfy given
dimension and topological constraints. When geometry is changed, either
directly or by changing an associated dimension, it is the function of the
DCE to analyze the impact of that change on other geometry in the design
and to modify the geometry corresponding to the constraints and relations
which have been established for that design.

The DCE also determines whether a particular design is (1)
underdimensioned, (2) dimensioned correctly, or (3) overdimensioned. In
the event that a design is underdimensioned, a typical DCE flags the
geometry which is not dimensioned adequately so that the designer can
add the dimensions necessary to make a "correctly" dimensioned part.
Regardless of the dimensional state of a design, a proper DC should
operate for each of these situations.

DCEs are typically concerned with evaluating geometry in a 2D
subspace of 3D. They typically allow points, lines, circles, conies, and
splines as the representative geometry, along with geometric constraint
such as concentric, parallel, perpendicular, tangent, and coincident. A
significant amount of work is currently under way in several organizations
to generate a DCE which will handle full three-dimensional geometry.

Five factors determine the usefulness of a DCE (a discussion of each
follows):

1.Dimension types recognized

2.Degree of geometric constraints

3.Freedom to postpone dimensioning

4.External compatability

5.Configuration of variables

Dimension Types Recognized

This refers to the number and type of dimensions supported by the
DCE. Every major design and/o manufacturing organization adheres to a
drafting standard. While specific standards vary throughout the world,
there is usually one significant standard within a particular country. It is
important that geographically dependent dimensioning standards be
acceptable to the DCE. If the DCE forces a particular mode or type of
dimensioning which is inconsistent with the standard used by the industry
in which it is operational, that particular DCE is of academic and not
industrial value.

If varying types of dimensions are accepted by the DCE, they should
include, but not be limited to:

1.Angle

2.Baseline

3.Diameter

4.Horizontal

5.Ordinate
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6.Parallel

7.Parallel with reference line

8.Radius

9. Thickness

10.Vertical

Degree of Geometric Constraints

This refers to the number and type of geometric constraints supported
by the DCE. A robust should provide support for, but not be limited to:
Coincedent arcs
Concentric arcs
Colinear endpoints
Colinear lines
Fixed
Horizontal
Vertical
Normal
. Parallel

10. Points On a curve
11. Tangent

The Feature Manager

The feature manager provides for the addition of pockets, slots,
holes, bosses, ribs, etc., and user-define features to any face or faces of
a model. The functionality which contributes to the dramatic increase
performance of a feature-based P/R SM system over a traditional
CSG/B-Rep hybrid SM system is th intelligence which is imparted by
features. A necessity in any feature-based P/R SM system is a usei
defined feature. This allows the geometric and topological
characteristics of the feature to be total defined by the designer and then
applied to existing solids.

Many P/R SM systems also provide a full selection of default (hard-
coded) features including, bi not limited to:

1.Constant offset pockets

2.Circular and rectangular arrays of holes

3.Free slots

a.Straight or two-point slots

b.Three-point T and L slots

c.Four-point U siots

d.Circular slots

e.Slots parallel to a boundary

4.Necks or protrusions

5.Flanges

Traditional SM systems that are not feature-based or P/R force
designers to use CSG boolean operators in order to create complex
objects from simple components. P/R SM systems use not only CSG
boolean operators, but all of the geometry associated with embedded

000 N Gy PN
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features as well. Thus a hole, a slot, a groove, and a pocket are
recognized for what they are and do not require the creation of additional
geometry which is subtracted (using boolean operations) from the base
geometry. While some of the earlier P/R systems have the boolean
operations embedded in the feature codes, most modern (post-1991) P/R
systems use entirely different mathematics, leveraging off of the
knowledge inherent in features, to generate the required geometry. This
"feature-driven” philosophy both speeds the design process and simplifies
the underlying database.

Advantages of Feature-Based Modeling

Designing with features provides a number of advantages. You can:

1. Insert intelligent parametric geometry into a model without
having to create intermediate con struction geometry.

2. Associate a variety of information to portions of a model.

3. Create features with atiributes unique to your specific design
requirements. Additional advantages:

4 Conventional CSG boolean operations which are time-consuming
are not required.

5. Embedded feature characteristics are conveyed more Mtelligently
to manufacturing applications such as NC. Holes are holes, pockets are
pockets, etc., instead of simply raw surface geometry.

Relocating Features

Although highly productive, the P/R intelligence of feature definitions
and their subsequent geometric locations places additional burden on the
designer in the form of forethought and planning. Options for relocating
features are limited to those that would result in equal topology.

Example: Relocating a boss feature on a flat surface close to an edge
may not be possible. If the boss has a base radius which intersects the
edge radius, the existing topology is violated.

The Assembly Manager

The assembly manager provides for the creation of subassemblies
from piece-parts and the creation of assemblies from piece-parts and/or
subassemblies. The assembly manager also controls the regeneration of
assemblies and subassemblies when changes have been made to
individual piece-parts. In addition, it controls the modification of the way in
which assemblies are put together. Last, assembly management provides
for the explosion of assemblies into their component piece-parts and
subassemblies.

During the design phase, adequate planning often identifies those
components which can or should be used as subassemblies based on
design function or the manufacturing processes required.

There are two dislinct ways of placing parts when creating a
subassembly or assembly: (1) relative placement and (2) boolean
placement. Each is discussed here, along with gathering operations for
placing and relating parts in an assembly or subassembly.)
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Relative Placement

In this method parts are placed relative to each another. This
placement can be thought of as "loosely gluing" the parts to form a unit.
The idea is that at some point in the future it would be desirable to
explode or unrelate the assembly back into individual parts.

Boolean Placement

This method utilizes boolean operations. The result is the formation of
a new single part, typically referred to as a constructive solid geometry
(CSG) solid combined from two or more parts. The CSG solid usually
cannot be exploded or unrelated easily. “

Gathering Operations ¢

Subassemblies and assemblies are created by the use of "gathering"
operations. These operation define and retain relationships among parts.
Gathering operations include, but are not limited to:

1.Align axes

a.Match centers

b.End to end

c.Offset from end

d.Normal to face-centered on face

e. Normal to face-centered on normal point

f. Normal to face-centered on face-offset

g. Normal to face-centered on normal point-offset

2. Align corners

a.Both flush

b.Offset first

c.Offset second d Offset both

3.Align definition coordinate system (DCS)

4.Align edges

a.Flush

b.Offset

5.Align faces

a.Align faces

b.Center aligned faces

c.Offset face from a face

6.Align features

a.Centered

b.Align an edge

7.Logical union (addition, A + B)

8.Logical difference (subtraction, A - B)

9.Logical intersection (both A and B)

Dimension-Driven Editing

In a P/R SM system, dimensions are typically assigned a symboiic
variable name at one of three times: (1) when they are created, (2) when
they are automatically scanned by the system, or (3) when they are
chosen for use with a profile. In most systems the variable name can be
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generated by the system or supplied by the designer, and it is usually
displayed below or near the dimension value.

There are three classes of edits that can be performed on dimensions
or variables. These are (1) value, (2) reference, and (3) appearance
editing. Each is discussed in the following sections.

Value Editing

The first and most obvious way to change the value of a dimension is
to select it and enter a new value. A second method is to select the name
of a part or feature, or to select one of its profite curves. When this is
done, many systems display a list of the pertinent variables and
dimensions for that item, allowing the designer to enter one or more new
values.

A third method for editing a dimension value is to key in the symbolic
variable name followed by an expression that establishes the relationship
between this dimension and other dimensions or variables. If a dimension
is assigned an expression, the expression is usually displayed in place of
the dimension name.

Reference Editing

Reference editing refers to the ability to toggle the reference status of
a dimension. This gives the designer an option of displaying a dimension
on-screen without having it affect the operation of the dimensional
constraint engine (DCE).

Normally, a dimension is active and considered in all relevant
relational operations. But if the dimension status is switched to reference,
it is displayed but otherwise ignored. This can be useful, for example, if a
design is overdimensioned. Changing one or more dimensions from
active to reference allows the designer to eliminate the overdimensioning
while still being able to view the information in those dimensions.

Appearance Editing

The first and most obvious method of appearance editing is changing
a dimension's location. This is sometimes necessary after a dimensional
change to a model. P/IR SM systems do position dimensions
automatically, but the ability to adjust the position manually allows the
designer to improve both the legibility and the aesthetics of the annotated
design. There are other methods of appearance editing which include:

Shared Dimensions

This method allows a dimension to be shared by more than one
location in the design. This reduces clutter on the display while
constraining the geometry just as if the extra dimensions were there.

Bidirectional Associativity

Associative dimensioning implies that a dimension is automatically
updated when the geometry it is dimensioning changes. Dimension-
driven implies the ability to change a dimension and have all affected
geometry change. Bidirectional associativity implies that both update
methods are available.
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Associativity

Clarifying Associative Dimensioning

With associative dimensioning, a dimension is associated with
geometry such that if the geometry is changed, the dimension is updated
automatically. An example would be a dimension that changed to reflect
that a line had been stretched. This capability does not change the length
of the line if the dimension is changed. A P/R SM system adds this last
step, where changes to dimensions or parameters drive geometry
. changes.

Tracking Associativity

While associativity can be a very powerful tool when used properly, it
could be disastrous if not implemented properly. A master model that is
used in multiple assemblies cannot be changed without consideration of
each instance of its use. Each change to a model should be tracked. One
. cannot have an effective engineering system if changes can be
propagated without each person who uses the data being aware that
changes have been made. An integrated tracking system should allow
those affected by a change to approve or deny it.
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