Quasi-one-dimensional mathematical model of processes in Hall effect and plasma-ion thrusters

Öffnen
Datum
2021Autor
Loyan, A.V.
Nesterenko, N.Y.
Zongshuai, G.
Zhihao, H.
Metadata
Zur LanganzeigeZusammenfassung
Plasma-ion thrusters with a radial magnetic field in ionization chamber and Hall effect thrusters are electrostatic electric propulsion thrusters with closed electron drift. Axial symmetry in the dynamics of the components of propellant in these thrusters allows to write the equations of plasma-dynamics for electrons, ions and neutral atoms in two-dimensional axial-radial form. Attempts to reduce the equations to simpler one-dimensional form by simply removing the components with radius differentiation lead to the loss in the description of important effects, responsible for values of thruster performance. At the same time, a significant disadvantage of gas dynamics equation set is its fundamental openness – the correspondence between the number of unknown variables and equations is achieved approximately basing on some assumptions. In traditional form of gas dynamics, such closeness is made under the assumption of thermodynamic equilibrium with velocity distribution functions of components close to Maxwell one, which is the limit result of collisions. The use of such approximation to plasma components dynamics in electric propulsion thrusters is impossible due to the rarefaction of the substance in them. A mathematical model of two-component plasma-dynamics is represented in stationary form to describe the processes in the Hall effect thruster channel and the ionization chamber of plasma-ion thruster with radial magnetic field. Due to the impossibility of using the method of local thermodynamic equilibrium to describe the rarefied substance in electric propulsion thruster, a more advanced form of equations is used. A more reliable means of approximate closure of the set of equations is proposed in the description of the rarified gas. An approach to the description of the specifics of electrons energy transfer from the plasma to the walls of the channel, as well as the non-mirror reflection of electrons from the potential barrier within the Langmuir layer is shown. A method of averaging the parameters over the cross section of the channel is proposed, which allows to convert the equation into a quasi-one-dimensional form with the preservation of charge, momentum and energy losses on the channel walls. Плазмово-іонні двигуни з радіальним магнітним полем в іонізаційній камері та холлівські двигуни відносяться до електростатичних двигунів із замкненим дрейфом електронів. Осьова симетрія в динаміці компонент робочої речовини в цих двигунах дозволяє записати рівняння плазмодинаміки для електронів, іонів і нейтральних атомів у двовимірній аксіально-радіальній формі. Спроби зведення рівнянь до більш простої одновимірної форми шляхом простого видалення складових з диференціюванням по радіусу призводять до втрати в описанні важливих ефектів, відповідальних за величини експлуатаційних характеристик двигуна.
При цьому також істотним недоліком системи рівнянь газодинаміки є принципова її незамкненість – відповідність кількості невідомих і рівнянь досягається приблизно на основі певних припущень. У традиційній формі газодинаміки таке замикання здійснюється в припущенні про термодинамічну рівновагу з функціями розподілу компонент за швидкостями, близькими до максвеллівського розподілу, який є граничним результатом зіткнень. Використання такого наближення до динаміки компонент плазми в електроракетних двигунах є неможливим через розрідженість середовища у них. У стаціонарній формі представлено математичну модель двокомпонентної плазмодинамікі для опису процесів в каналі холлівського двигуна і іонізаційній камері плазмово-іонного двигуна з радіальним магнітним полем.
З урахуванням неможливості використання методу локальної термодинамічної рівноваги для опису розрідженого середовища в електроракетному двигуні використовується більш розширена форма рівнянь. Запропоновано більш надійний в описі розрідженого газу засіб приблизного замикання системи рівнянь. Показано підхід до опису специфіки перенесення енергії електронів від плазми до стінок каналу, а також недзеркального відбиття електронів від потенційного бар’єру всередині ленгмюрівского прошарку. Запропоновано метод усереднення параметрів по перетину каналу, що дозволяє перетворити рівняння у квазіодновимірний вид зі збереженням втрат заряду, імпульсу і енергії на стінках каналу.